CINXE.COM
Dynamics/Kinematics/Angular Velocity - Wikiversity
<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-disabled skin-theme-clientpref-day vector-toc-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>Dynamics/Kinematics/Angular Velocity - Wikiversity</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-disabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikiversitymwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""], "wgDefaultDateFormat":"dmy","wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"ca9a1fc4-e549-4718-b63e-24aa5447a570","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Dynamics/Kinematics/Angular_Velocity","wgTitle":"Dynamics/Kinematics/Angular Velocity","wgCurRevisionId":2254869,"wgRevisionId":2254869,"wgArticleId":271803,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["Angle","Physical quantities","Rotational symmetry","Temporal rates","Tensors","Velocity"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName":"Dynamics/Kinematics/Angular_Velocity","wgRelevantArticleId":271803,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikiversity", "wgCiteReferencePreviewsActive":false,"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":30000,"wgCentralAuthMobileDomain":false,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"wgSiteNoticeId":"2.101"};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.math.styles":"ready","ext.cite.styles":"ready","skins.vector.search.codex.styles":"ready", "skins.vector.styles":"ready","skins.vector.icons":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready","ext.dismissableSiteNotice.styles":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","ext.math.popup","mediawiki.page.media","site","mediawiki.page.ready","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.ReferenceTooltips","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.checkUser.clientHints","ext.dismissableSiteNotice"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&modules=ext.cite.styles%7Cext.dismissableSiteNotice.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&only=styles&skin=vector-2022"> <script async="" src="/w/load.php?lang=en&modules=startup&only=scripts&raw=1&skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&modules=site.styles&only=styles&skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.5"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/1/17/Angular_velocity1.svg/1200px-Angular_velocity1.svg.png"> <meta property="og:image:width" content="1200"> <meta property="og:image:height" content="1200"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/1/17/Angular_velocity1.svg/800px-Angular_velocity1.svg.png"> <meta property="og:image:width" content="800"> <meta property="og:image:height" content="800"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/1/17/Angular_velocity1.svg/640px-Angular_velocity1.svg.png"> <meta property="og:image:width" content="640"> <meta property="og:image:height" content="640"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Dynamics/Kinematics/Angular Velocity - Wikiversity"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikiversity.org/wiki/Dynamics/Kinematics/Angular_Velocity"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=Dynamics/Kinematics/Angular_Velocity&action=edit"> <link rel="icon" href="/static/favicon/wikiversity.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikiversity (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikiversity.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikiversity.org/wiki/Dynamics/Kinematics/Angular_Velocity"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikiversity Atom feed" href="/w/index.php?title=Special:RecentChanges&feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Dynamics_Kinematics_Angular_Velocity rootpage-Dynamics skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-Main-Page" class="mw-list-item"><a href="/wiki/Wikiversity:Main_Page"><span>Main Page</span></a></li><li id="n-Browse" class="mw-list-item"><a href="/wiki/Wikiversity:Browse"><span>Browse</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes in the wiki [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-Guided-tours" class="mw-list-item"><a href="/wiki/Help:Guides"><span>Guided tours</span></a></li><li id="n-Random" class="mw-list-item"><a href="/wiki/Special:RandomRootpage"><span>Random</span></a></li><li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="The place to find out"><span>Help</span></a></li> </ul> </div> </div> <div id="p-community" class="vector-menu mw-portlet mw-portlet-community" > <div class="vector-menu-heading"> Community </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-portal" class="mw-list-item"><a href="/wiki/Wikiversity:Community_Portal" title="About the project, what you can do, where to find things"><span>Portal</span></a></li><li id="n-Colloquium" class="mw-list-item"><a href="/wiki/Wikiversity:Colloquium"><span>Colloquium</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Wikiversity:News" title="Find background information on current events"><span>News</span></a></li><li id="n-Projects" class="mw-list-item"><a href="/wiki/Wikiversity:Community_projects"><span>Projects</span></a></li><li id="n-Sandbox" class="mw-list-item"><a href="/wiki/Wikiversity:Sandbox"><span>Sandbox</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Wikiversity:Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikiversity.svg" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikiversity" src="/static/images/mobile/copyright/wikiversity-wordmark-en.svg" style="width: 9.125em; height: 1em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikiversity [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikiversity" aria-label="Search Wikiversity" autocapitalize="sentences" title="Search Wikiversity [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page's font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="//donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_en.wikiversity.org&uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&returnto=Dynamics%2FKinematics%2FAngular+Velocity" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&returnto=Dynamics%2FKinematics%2FAngular+Velocity" title="You are encouraged to log in; however, it is not mandatory [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="More options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="//donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_en.wikiversity.org&uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&returnto=Dynamics%2FKinematics%2FAngular+Velocity" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&returnto=Dynamics%2FKinematics%2FAngular+Velocity" title="You are encouraged to log in; however, it is not mandatory [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><div id="mw-dismissablenotice-anonplace"></div><script>(function(){var node=document.getElementById("mw-dismissablenotice-anonplace");if(node){node.outerHTML="\u003Cdiv class=\"mw-dismissable-notice\"\u003E\u003Cdiv class=\"mw-dismissable-notice-close\"\u003E[\u003Ca tabindex=\"0\" role=\"button\"\u003Edismiss\u003C/a\u003E]\u003C/div\u003E\u003Cdiv class=\"mw-dismissable-notice-body\"\u003E\u003C!-- CentralNotice --\u003E\u003Cdiv id=\"localNotice\" data-nosnippet=\"\"\u003E\u003Cdiv class=\"anonnotice\" lang=\"en\" dir=\"ltr\"\u003E\u003Cdiv class=\"center\" style=\"\"\u003E\n\u003Cbig\u003E\u003Ca href=\"/wiki/Wikiversity:Why_create_an_account%3F\" class=\"mw-redirect\" title=\"Wikiversity:Why create an account?\"\u003EWhy create a Wikiversity account?\u003C/a\u003E\u003C/big\u003E\u003C/div\u003E\u003C/div\u003E\u003C/div\u003E\u003C/div\u003E\u003C/div\u003E";}}());</script></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contents" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contents</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">Beginning</div> </a> </li> <li id="toc-Introduction" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Introduction"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Introduction</span> </div> </a> <ul id="toc-Introduction-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Orbital_angular_velocity_of_a_point_particle" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Orbital_angular_velocity_of_a_point_particle"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Orbital angular velocity of a point particle</span> </div> </a> <button aria-controls="toc-Orbital_angular_velocity_of_a_point_particle-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Orbital angular velocity of a point particle subsection</span> </button> <ul id="toc-Orbital_angular_velocity_of_a_point_particle-sublist" class="vector-toc-list"> <li id="toc-Particle_in_two_dimensions" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Particle_in_two_dimensions"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.1</span> <span>Particle in two dimensions</span> </div> </a> <ul id="toc-Particle_in_two_dimensions-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Particle_in_three_dimensions" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Particle_in_three_dimensions"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.2</span> <span>Particle in three dimensions</span> </div> </a> <ul id="toc-Particle_in_three_dimensions-sublist" class="vector-toc-list"> <li id="toc-Addition_of_angular_velocity_vectors" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Addition_of_angular_velocity_vectors"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.2.1</span> <span>Addition of angular velocity vectors</span> </div> </a> <ul id="toc-Addition_of_angular_velocity_vectors-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> </ul> </li> <li id="toc-Angular_velocity_vector_for_rigid_body_or_reference_frame" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Angular_velocity_vector_for_rigid_body_or_reference_frame"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Angular velocity vector for rigid body or reference frame</span> </div> </a> <button aria-controls="toc-Angular_velocity_vector_for_rigid_body_or_reference_frame-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Angular velocity vector for rigid body or reference frame subsection</span> </button> <ul id="toc-Angular_velocity_vector_for_rigid_body_or_reference_frame-sublist" class="vector-toc-list"> <li id="toc-Angular_velocity_components_from_the_basis_vectors_of_a_body-fixed_frame" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Angular_velocity_components_from_the_basis_vectors_of_a_body-fixed_frame"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.1</span> <span>Angular velocity components from the basis vectors of a body-fixed frame</span> </div> </a> <ul id="toc-Angular_velocity_components_from_the_basis_vectors_of_a_body-fixed_frame-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Components_from_Euler_angles" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Components_from_Euler_angles"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.2</span> <span>Components from Euler angles</span> </div> </a> <ul id="toc-Components_from_Euler_angles-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Angular_velocity_tensor_or_skew-symmetric_matrix" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Angular_velocity_tensor_or_skew-symmetric_matrix"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Angular velocity tensor or skew-symmetric matrix</span> </div> </a> <button aria-controls="toc-Angular_velocity_tensor_or_skew-symmetric_matrix-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Angular velocity tensor or skew-symmetric matrix subsection</span> </button> <ul id="toc-Angular_velocity_tensor_or_skew-symmetric_matrix-sublist" class="vector-toc-list"> <li id="toc-Calculation_from_the_orientation_matrix" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Calculation_from_the_orientation_matrix"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.1</span> <span>Calculation from the orientation matrix</span> </div> </a> <ul id="toc-Calculation_from_the_orientation_matrix-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Angular_velocity_as_a_vector_field" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Angular_velocity_as_a_vector_field"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.2</span> <span>Angular velocity as a vector field</span> </div> </a> <ul id="toc-Angular_velocity_as_a_vector_field-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Rigid_body_considerations" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Rigid_body_considerations"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Rigid body considerations</span> </div> </a> <button aria-controls="toc-Rigid_body_considerations-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Rigid body considerations subsection</span> </button> <ul id="toc-Rigid_body_considerations-sublist" class="vector-toc-list"> <li id="toc-Consistency" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Consistency"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.1</span> <span>Consistency</span> </div> </a> <ul id="toc-Consistency-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Time_derivatives_in_two_frames" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Time_derivatives_in_two_frames"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.2</span> <span>Time derivatives in two frames</span> </div> </a> <ul id="toc-Time_derivatives_in_two_frames-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-References" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#References"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>References</span> </div> </a> <ul id="toc-References-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Dynamics/Kinematics/Angular Velocity</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="This article exist only in this language. Add the article for other languages" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-0" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">Add languages</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> <div class="after-portlet after-portlet-lang"><span class="uls-after-portlet-link"></span><span class="wb-langlinks-add wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:NewItem?site=enwikiversity&page=Dynamics%2FKinematics%2FAngular+Velocity" title="Add interlanguage links" class="wbc-editpage">Add links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Dynamics/Kinematics/Angular_Velocity" title="View the content page [c]" accesskey="c"><span>Resource</span></a></li><li id="ca-talk" class="new vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Talk:Dynamics/Kinematics/Angular_Velocity&action=edit&redlink=1" rel="discussion" class="new" title="Discussion about the content page (page does not exist) [t]" accesskey="t"><span>Discuss</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Dynamics/Kinematics/Angular_Velocity"><span>Read</span></a></li><li id="ca-ve-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Dynamics/Kinematics/Angular_Velocity&veaction=edit" title="Edit this page [v]" accesskey="v"><span>Edit</span></a></li><li id="ca-edit" class="collapsible vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Dynamics/Kinematics/Angular_Velocity&action=edit" title="Edit the source code of this page [e]" accesskey="e"><span>Edit source</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Dynamics/Kinematics/Angular_Velocity&action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Dynamics/Kinematics/Angular_Velocity"><span>Read</span></a></li><li id="ca-more-ve-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Dynamics/Kinematics/Angular_Velocity&veaction=edit" title="Edit this page [v]" accesskey="v"><span>Edit</span></a></li><li id="ca-more-edit" class="collapsible vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Dynamics/Kinematics/Angular_Velocity&action=edit" title="Edit the source code of this page [e]" accesskey="e"><span>Edit source</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Dynamics/Kinematics/Angular_Velocity&action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/Dynamics/Kinematics/Angular_Velocity" title="A list of all wiki pages that link here [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/Dynamics/Kinematics/Angular_Velocity" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages" title="A list of all special pages [q]" accesskey="q"><span>Special pages</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Dynamics/Kinematics/Angular_Velocity&oldid=2254869" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Dynamics/Kinematics/Angular_Velocity&action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&page=Dynamics%2FKinematics%2FAngular_Velocity&id=2254869&wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&url=https%3A%2F%2Fen.wikiversity.org%2Fwiki%2FDynamics%2FKinematics%2FAngular_Velocity"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&url=https%3A%2F%2Fen.wikiversity.org%2Fwiki%2FDynamics%2FKinematics%2FAngular_Velocity"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-wikimedia_projects" class="vector-menu mw-portlet mw-portlet-wikimedia_projects" > <div class="vector-menu-heading"> Wikimedia Projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-Commons" class="mw-list-item"><a href="https://commons.wikimedia.org/wiki/Main_Page"><span>Commons</span></a></li><li id="n-Wikibooks" class="mw-list-item"><a href="https://en.wikibooks.org/wiki/Project:Main_Page"><span>Wikibooks</span></a></li><li id="n-Wikidata" class="mw-list-item"><a href="https://www.wikidata.org/wiki/Wikidata:Main_Page"><span>Wikidata</span></a></li><li id="n-Wikinews" class="mw-list-item"><a href="https://en.wikinews.org/wiki/Main_Page"><span>Wikinews</span></a></li><li id="n-Wikipedia" class="mw-list-item"><a href="https://en.wikipedia.org/wiki/Main_Page"><span>Wikipedia</span></a></li><li id="n-Wikiquote" class="mw-list-item"><a href="https://en.wikiquote.org/wiki/Main_Page"><span>Wikiquote</span></a></li><li id="n-Wikisource" class="mw-list-item"><a href="https://en.wikisource.org/wiki/Main_Page"><span>Wikisource</span></a></li><li id="n-Wikispecies" class="mw-list-item"><a href="https://species.wikimedia.org/wiki/Main_Page"><span>Wikispecies</span></a></li><li id="n-Wikivoyage" class="mw-list-item"><a href="https://en.wikivoyage.org/wiki/Main_Page"><span>Wikivoyage</span></a></li><li id="n-Wiktionary" class="mw-list-item"><a href="https://en.wiktionary.org/wiki/Project:Main_Page"><span>Wiktionary</span></a></li><li id="n-Meta-Wiki" class="mw-list-item"><a href="https://meta.wikimedia.org/wiki/Main_Page"><span>Meta-Wiki</span></a></li><li id="n-Outreach" class="mw-list-item"><a href="https://outreach.wikimedia.org/wiki/Main_Page"><span>Outreach</span></a></li><li id="n-MediaWiki" class="mw-list-item"><a href="https://www.mediawiki.org/wiki/MediaWiki"><span>MediaWiki</span></a></li><li id="n-Wikimania" class="mw-list-item"><a href="https://meta.wikimedia.org/wiki/Wikimania"><span>Wikimania</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-create_a_book" class="mw-list-item"><a href="/w/index.php?title=Special:Book&bookcmd=book_creator&referer=Dynamics%2FKinematics%2FAngular+Velocity"><span>Create a book</span></a></li><li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&page=Dynamics%2FKinematics%2FAngular_Velocity&action=show-download-screen"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Dynamics/Kinematics/Angular_Velocity&printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects emptyPortlet" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">From Wikiversity</div> </div> <div id="contentSub"><div id="mw-content-subtitle"><div class="subpages">< <bdi dir="ltr"><a href="/wiki/Dynamics" title="Dynamics">Dynamics</a></bdi> | <bdi dir="ltr"><a href="/wiki/Dynamics/Kinematics" title="Dynamics/Kinematics">Kinematics</a></bdi></div></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Introduction">Introduction</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Dynamics/Kinematics/Angular_Velocity&veaction=edit&section=1" title="Edit section: Introduction" class="mw-editsection-visualeditor"><span>edit</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Dynamics/Kinematics/Angular_Velocity&action=edit&section=1" title="Edit section's source code: Introduction"><span>edit source</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><i>Content taken from <a href="https://en.wikipedia.org/wiki/Angular_velocity" class="extiw" title="wikipedia:Angular velocity">Angular velocity</a> and <a href="https://en.wikipedia.org/wiki/Rotating_reference_frame" class="extiw" title="wikipedia:Rotating reference frame">Rotating reference frame</a></i> </p><p>In <a href="https://en.wikipedia.org/wiki/physics" class="extiw" title="wikipedia:physics">physics</a>, <b>angular velocity</b> (<b><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {\omega }}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>ω<!-- ω --></mi> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {\omega }}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f4e066a68ceb355e3314fb2b97f1c0c421ca6074" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.446ex; height:2.343ex;" alt="{\displaystyle {\vec {\omega }}}"></span></b> or <b><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {\Omega }}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="normal">Ω<!-- Ω --></mi> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {\Omega }}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/367f42c8ae5d9ce4fb6020c7f0820dea7bedafb6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:3.009ex;" alt="{\displaystyle {\vec {\Omega }}}"></span></b>), also known as <b>angular frequency vector</b>,<sup id="cite_ref-UP1_1-0" class="reference"><a href="#cite_note-UP1-1"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup> is a vector measure of rotation rate, that refers to how fast an object rotates or revolves relative to another point, i.e. how fast the angular position or orientation of an object changes with time. </p><p>There are two types of angular velocity: orbital angular velocity and spin angular velocity. Spin angular velocity refers to how fast a rigid body rotates with respect to its center of rotation. Orbital angular velocity refers to how fast a point object revolves about a fixed origin, i.e. the time rate of change of its angular position relative to the origin. Spin angular velocity is independent of the choice of origin, in contrast to orbital angular velocity which depends on the choice of origin. </p><p>In general, angular velocity is measured in angle per unit time, e.g. <a href="https://en.wikipedia.org/wiki/radians_per_second" class="extiw" title="wikipedia:radians per second">radians per second</a> (angle replacing <a href="https://en.wikipedia.org/wiki/distance" class="extiw" title="wikipedia:distance">distance</a> from linear <a href="https://en.wikipedia.org/wiki/velocity" class="extiw" title="wikipedia:velocity">velocity</a> with time in common). The <a href="https://en.wikipedia.org/wiki/SI" class="extiw" title="wikipedia:SI">SI</a> unit of angular velocity is expressed as radians per second with the radian having a dimensionless value of unity, thus the SI units of angular velocity are listed as 1/s or s<sup>−1</sup>. Angular velocity is usually represented by the symbol <a href="https://en.wikipedia.org/wiki/omega" class="extiw" title="wikipedia:omega">omega</a> (<b>ω</b>, sometimes <b>Ω</b>). By convention, positive angular velocity indicates counter-clockwise rotation, while negative is clockwise. </p><p>For example, a <a href="https://en.wikipedia.org/wiki/Geosynchronous_orbit" class="extiw" title="wikipedia:Geosynchronous orbit">geostationary</a> satellite completes one orbit per day above the equator, or 360 degrees per 24 hours, and has angular velocity <i>ω</i> = (360°)/(24 h) = 15°/h, or (2π rad)/(24 h) ≈ 0.26 rad/h. If angle is measured in <a href="https://en.wikipedia.org/wiki/radians" class="extiw" title="wikipedia:radians">radians</a>, the linear velocity is the radius times the angular velocity, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle v=r\omega }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>v</mi> <mo>=</mo> <mi>r</mi> <mi>ω<!-- ω --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle v=r\omega }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/23b5b5c066f5be8dee84c4cb33dea2383de8b012" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.721ex; height:1.676ex;" alt="{\displaystyle v=r\omega }"></span>. With orbital radius 42,000 km from the earth's center, the satellite's speed through space is thus <i>v</i> = 42,000 km × 0.26/h ≈ 11,000 km/h. The angular velocity is positive since the satellite travels eastward with the Earth's rotation (counter-clockwise from above the north pole.) </p><p>Angular velocity is a <a href="https://en.wikipedia.org/wiki/psuedovector" class="extiw" title="wikipedia:psuedovector">pseudovector</a>, with its magnitude measuring the <i><a href="https://en.wikipedia.org/wiki/angular_speed" class="extiw" title="wikipedia:angular speed">angular speed</a></i>, the rate at which an object rotates or revolves, and its direction pointing perpendicular to the instantaneous plane of rotation or angular displacement. The orientation of angular velocity is conventionally specified by the <a href="https://en.wikipedia.org/wiki/right-hand_rule" class="extiw" title="wikipedia:right-hand rule">right-hand rule</a>.<sup id="cite_ref-EM1_2-0" class="reference"><a href="#cite_note-EM1-2"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Orbital_angular_velocity_of_a_point_particle">Orbital angular velocity of a point particle</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Dynamics/Kinematics/Angular_Velocity&veaction=edit&section=2" title="Edit section: Orbital angular velocity of a point particle" class="mw-editsection-visualeditor"><span>edit</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Dynamics/Kinematics/Angular_Velocity&action=edit&section=2" title="Edit section's source code: Orbital angular velocity of a point particle"><span>edit source</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Particle_in_two_dimensions">Particle in two dimensions</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Dynamics/Kinematics/Angular_Velocity&veaction=edit&section=3" title="Edit section: Particle in two dimensions" class="mw-editsection-visualeditor"><span>edit</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Dynamics/Kinematics/Angular_Velocity&action=edit&section=3" title="Edit section's source code: Particle in two dimensions"><span>edit source</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Angular_velocity1.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/1/17/Angular_velocity1.svg/256px-Angular_velocity1.svg.png" decoding="async" width="256" height="256" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/1/17/Angular_velocity1.svg/384px-Angular_velocity1.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/1/17/Angular_velocity1.svg/512px-Angular_velocity1.svg.png 2x" data-file-width="512" data-file-height="512" /></a><figcaption>The angular velocity of the particle at <i>P</i> with respect to the origin <i>O</i> is determined by the <a class="external text" href="https://wikipedia.org/Perpendicular+component">perpendicular component</a> of the velocity vector <b>v</b>.</figcaption></figure> <p>In the simplest case of circular motion at radius <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>r</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0d1ecb613aa2984f0576f70f86650b7c2a132538" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.049ex; height:1.676ex;" alt="{\displaystyle r}"></span>, with position given by the angular displacement <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \phi (t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ϕ<!-- ϕ --></mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \phi (t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/23781b983d21d78467b65e7e32b9e7bc05d625f8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.034ex; height:2.843ex;" alt="{\displaystyle \phi (t)}"></span> from the x-axis, the orbital angular velocity is the rate of change of angle with respect to time: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \omega ={\tfrac {d\phi }{dt}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ω<!-- ω --></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mrow> <mi>d</mi> <mi>ϕ<!-- ϕ --></mi> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \omega ={\tfrac {d\phi }{dt}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fd4f8bf63dfb835ea98684ae64d168e11da2d8e5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:7.22ex; height:4.176ex;" alt="{\displaystyle \omega ={\tfrac {d\phi }{dt}}}"></span>. If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \phi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ϕ<!-- ϕ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \phi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/72b1f30316670aee6270a28334bdf4f5072cdde4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.385ex; height:2.509ex;" alt="{\displaystyle \phi }"></span> is measured in <a class="external text" href="https://wikipedia.org/Radian">radians</a>, the arc-length from the positive x-axis around the circle to the particle is <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ell =r\phi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ℓ<!-- ℓ --></mi> <mo>=</mo> <mi>r</mi> <mi>ϕ<!-- ϕ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ell =r\phi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1c7a0183de3910197375c12f2da661b14cee50b1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.502ex; height:2.509ex;" alt="{\displaystyle \ell =r\phi }"></span>, and the linear velocity is <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle v(t)={\tfrac {d\ell }{dt}}=r\omega (t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>v</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mrow> <mi>d</mi> <mi>ℓ<!-- ℓ --></mi> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> </mstyle> </mrow> <mo>=</mo> <mi>r</mi> <mi>ω<!-- ω --></mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle v(t)={\tfrac {d\ell }{dt}}=r\omega (t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e7e20a7e61904154eed22d9f8ca8cbdf0a7e94e8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:17.498ex; height:3.843ex;" alt="{\displaystyle v(t)={\tfrac {d\ell }{dt}}=r\omega (t)}"></span>, so that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \omega ={\tfrac {v}{r}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ω<!-- ω --></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mi>v</mi> <mi>r</mi> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \omega ={\tfrac {v}{r}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b3187c4a33b84e49fbdec92b51d17902c985777e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:6.178ex; height:3.009ex;" alt="{\displaystyle \omega ={\tfrac {v}{r}}}"></span>. </p><p>In the general case of a particle moving in the plane, the orbital angular velocity is the rate at which the position vector relative to a chosen origin "sweeps out" angle. The diagram shows the position vector <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {r} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {r} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/eca0f46511c4c986c48b254073732c0bd98ae0c1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.102ex; height:1.676ex;" alt="{\displaystyle \mathbf {r} }"></span> from the origin <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle O}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>O</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle O}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9d70e1d0d87e2ef1092ea1ffe2923d9933ff18fc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.773ex; height:2.176ex;" alt="{\displaystyle O}"></span> to a particle <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b4dc73bf40314945ff376bd363916a738548d40a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.745ex; height:2.176ex;" alt="{\displaystyle P}"></span>, with its <a class="external text" href="https://wikipedia.org/Polar+coordinates">polar coordinates</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (r,\phi )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>r</mi> <mo>,</mo> <mi>ϕ<!-- ϕ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (r,\phi )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/389994f381dc6fcbbf41cef5bb3f694b9bfef296" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.277ex; height:2.843ex;" alt="{\displaystyle (r,\phi )}"></span>. (All variables are functions of time <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>t</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/65658b7b223af9e1acc877d848888ecdb4466560" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.84ex; height:2.009ex;" alt="{\displaystyle t}"></span>.) The particle has linear velocity splitting as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {v} =\mathbf {v} _{\|}+\mathbf {v} _{\perp }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> <mo>=</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo fence="false" stretchy="false">‖<!-- ‖ --></mo> </mrow> </msub> <mo>+</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>⊥<!-- ⊥ --></mo> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {v} =\mathbf {v} _{\|}+\mathbf {v} _{\perp }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/efcf4de42cdfa8f917d3175ad2e8037ea8106aa8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:12.737ex; height:2.843ex;" alt="{\displaystyle \mathbf {v} =\mathbf {v} _{\|}+\mathbf {v} _{\perp }}"></span>, with the radial component <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {v} _{\|}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo fence="false" stretchy="false">‖<!-- ‖ --></mo> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {v} _{\|}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/13affcf189cfe3a5cab69f0926b68a36c49d9530" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:2.465ex; height:2.509ex;" alt="{\displaystyle \mathbf {v} _{\|}}"></span> parallel to the radius, and the cross-radial (or tangential) component <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {v} _{\perp }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>⊥<!-- ⊥ --></mo> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {v} _{\perp }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3f52e365b25af2de60f34a144fad912ead6fa563" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.922ex; height:2.009ex;" alt="{\displaystyle \mathbf {v} _{\perp }}"></span> perpendicular to the radius. When there is no radial component, the particle moves around the origin in a circle; but when there is no cross-radial component, it moves in a straight line from the origin. Since radial motion leaves the angle unchanged, only the cross-radial component of linear velocity contributes to angular velocity. </p><p>The angular velocity <i>ω</i> is the rate of change of angular position with respect to time, which can be computed from the cross-radial velocity as: </p> <dl><dd><span class="mwe-math-element" data-qid="Q240105"><a href="/w/index.php?title=Special:MathWikibase&qid=Q240105" style="color:inherit;"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \omega ={\frac {d\phi }{dt}}={\frac {v_{\perp }}{r}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ω<!-- ω --></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mi>ϕ<!-- ϕ --></mi> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>⊥<!-- ⊥ --></mo> </mrow> </msub> <mi>r</mi> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \omega ={\frac {d\phi }{dt}}={\frac {v_{\perp }}{r}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/528e7183358eea2c29304795db03278acc30603f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:15.202ex; height:5.509ex;" alt="{\displaystyle \omega ={\frac {d\phi }{dt}}={\frac {v_{\perp }}{r}}.}"></a></span></dd></dl> <p>Here the cross-radial speed <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle v_{\perp }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>⊥<!-- ⊥ --></mo> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle v_{\perp }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f80a8cf80254aa3ef2640555e94986487d5cba0b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.638ex; height:2.009ex;" alt="{\displaystyle v_{\perp }}"></span> is the signed magnitude of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {v} _{\perp }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>⊥<!-- ⊥ --></mo> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {v} _{\perp }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3f52e365b25af2de60f34a144fad912ead6fa563" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.922ex; height:2.009ex;" alt="{\displaystyle \mathbf {v} _{\perp }}"></span>, positive for counter-clockwise motion, negative for clockwise. Taking polar coordinates for the linear velocity <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {v} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {v} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/35c1866e359fbfd2e0f606c725ba5cc37a5195d6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.411ex; height:1.676ex;" alt="{\displaystyle \mathbf {v} }"></span> gives magnitude <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle v}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>v</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle v}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e07b00e7fc0847fbd16391c778d65bc25c452597" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.128ex; height:1.676ex;" alt="{\displaystyle v}"></span> (linear speed) and angle <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \theta }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>θ<!-- θ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \theta }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6e5ab2664b422d53eb0c7df3b87e1360d75ad9af" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.09ex; height:2.176ex;" alt="{\displaystyle \theta }"></span> relative to the radius vector; in these terms, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle v_{\perp }=v\sin(\theta )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>⊥<!-- ⊥ --></mo> </mrow> </msub> <mo>=</mo> <mi>v</mi> <mi>sin</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>θ<!-- θ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle v_{\perp }=v\sin(\theta )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/163f5f644793a0f6eb62286bb838848317b0a8cb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.007ex; height:2.843ex;" alt="{\displaystyle v_{\perp }=v\sin(\theta )}"></span>, so that </p> <dl><dd><span class="mwe-math-element" data-qid="Q161635"><a href="/w/index.php?title=Special:MathWikibase&qid=Q161635" style="color:inherit;"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \omega ={\frac {v\sin(\theta )}{r}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ω<!-- ω --></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>v</mi> <mi>sin</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>θ<!-- θ --></mi> <mo stretchy="false">)</mo> </mrow> <mi>r</mi> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \omega ={\frac {v\sin(\theta )}{r}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d86e1b45e12305f9246b28c3af54ab57f63edb69" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:13.297ex; height:5.676ex;" alt="{\displaystyle \omega ={\frac {v\sin(\theta )}{r}}.}"></a></span></dd></dl> <p>These formulas may be derived from <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {r} =(x(t),y(t))}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mo>=</mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>,</mo> <mi>y</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {r} =(x(t),y(t))}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/89635b7301d972a92b0e24c053ae0cc759eb8de9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.827ex; height:2.843ex;" alt="{\displaystyle \mathbf {r} =(x(t),y(t))}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {v} =(x'(t),y'(t))}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> <mo>=</mo> <mo stretchy="false">(</mo> <msup> <mi>x</mi> <mo>′</mo> </msup> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>,</mo> <msup> <mi>y</mi> <mo>′</mo> </msup> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {v} =(x'(t),y'(t))}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ca54b3c5ff976a76ed575e34890ac795486ebc87" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:16.51ex; height:3.009ex;" alt="{\displaystyle \mathbf {v} =(x'(t),y'(t))}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \phi =\arctan(y(t)/x(t))}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ϕ<!-- ϕ --></mi> <mo>=</mo> <mi>arctan</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>y</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>x</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \phi =\arctan(y(t)/x(t))}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ed0cd0f0dadfcec0335223f4bfce1f6e0d0d6a35" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:21.705ex; height:2.843ex;" alt="{\displaystyle \phi =\arctan(y(t)/x(t))}"></span>, together with the projection formula <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle v_{\perp }={\tfrac {\mathbf {r} ^{\perp }\!\!}{r}}\cdot \mathbf {v} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>⊥<!-- ⊥ --></mo> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mrow> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>⊥<!-- ⊥ --></mo> </mrow> </msup> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> </mrow> <mi>r</mi> </mfrac> </mstyle> </mrow> <mo>⋅<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle v_{\perp }={\tfrac {\mathbf {r} ^{\perp }\!\!}{r}}\cdot \mathbf {v} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/de7278823653090dc57188fbd5b4a78db117c3cf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:10.87ex; height:3.843ex;" alt="{\displaystyle v_{\perp }={\tfrac {\mathbf {r} ^{\perp }\!\!}{r}}\cdot \mathbf {v} }"></span>, where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {r} ^{\perp }=(-y,x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>⊥<!-- ⊥ --></mo> </mrow> </msup> <mo>=</mo> <mo stretchy="false">(</mo> <mo>−<!-- − --></mo> <mi>y</mi> <mo>,</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {r} ^{\perp }=(-y,x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/33f57921d97b5ba4b5a71443fde33871199857dd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.848ex; height:3.176ex;" alt="{\displaystyle \mathbf {r} ^{\perp }=(-y,x)}"></span>. </p><p>In two dimensions, angular velocity is a number with plus or minus sign indicating orientation, but not pointing in a direction. The sign is conventionally taken to be positive if the radius vector turns counter-clockwise, and negative if clockwise. Angular velocity then may be termed a <a class="external text" href="https://wikipedia.org/Pseudoscalar">pseudoscalar</a>, a numerical quantity which changes sign under a <a class="external text" href="https://wikipedia.org/Parity+(physics)">parity inversion</a>, such as inverting one axis or switching the two axes. </p> <div class="mw-heading mw-heading3"><h3 id="Particle_in_three_dimensions">Particle in three dimensions</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Dynamics/Kinematics/Angular_Velocity&veaction=edit&section=4" title="Edit section: Particle in three dimensions" class="mw-editsection-visualeditor"><span>edit</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Dynamics/Kinematics/Angular_Velocity&action=edit&section=4" title="Edit section's source code: Particle in three dimensions"><span>edit source</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure typeof="mw:File/Thumb"><a href="/wiki/File:Angular_velocity.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/d/d5/Angular_velocity.svg/250px-Angular_velocity.svg.png" decoding="async" width="250" height="189" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/d/d5/Angular_velocity.svg/375px-Angular_velocity.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/d/d5/Angular_velocity.svg/500px-Angular_velocity.svg.png 2x" data-file-width="352" data-file-height="266" /></a><figcaption>The orbital angular velocity vector encodes the time rate of change of angular position, as well as the instantaneous plane of angular displacement. In this case (counter-clockwise circular motion) the vector points up.</figcaption></figure> <p>In <a class="external text" href="https://wikipedia.org/Three-dimensional+space">three-dimensional space</a>, we again have the position vector <b>r</b> of a moving particle. Here, orbital angular velocity is a <a class="external text" href="https://wikipedia.org/Pseudovector">pseudovector</a> whose magnitude is the rate at which <b>r</b> sweeps out angle, and whose direction is perpendicular to the instantaneous plane in which <b>r</b> sweeps out angle (i.e. the plane spanned by <b>r</b> and <b>v</b>). However, as there are <i>two</i> directions perpendicular to any plane, an additional condition is necessary to uniquely specify the direction of the angular velocity; conventionally, the <a class="external text" href="https://wikipedia.org/Right-hand+rule">right-hand rule</a> is used. </p><p>Let the pseudovector <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {u} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">u</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {u} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/261e20fe101de02a771021d9d4466c0ad3e352d7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.485ex; height:1.676ex;" alt="{\displaystyle \mathbf {u} }"></span> be the unit vector perpendicular to the plane spanned by <b>r</b> and <b>v</b>, so that the right-hand rule is satisfied (i.e. the instantaneous direction of angular displacement is counter-clockwise looking from the top of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {u} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">u</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {u} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/261e20fe101de02a771021d9d4466c0ad3e352d7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.485ex; height:1.676ex;" alt="{\displaystyle \mathbf {u} }"></span>). Taking polar coordinates <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (r,\phi )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>r</mi> <mo>,</mo> <mi>ϕ<!-- ϕ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (r,\phi )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/389994f381dc6fcbbf41cef5bb3f694b9bfef296" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.277ex; height:2.843ex;" alt="{\displaystyle (r,\phi )}"></span> in this plane, as in the two-dimensional case above, one may define the orbital angular velocity vector as: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\boldsymbol {\omega }}=\omega \mathbf {u} ={\frac {d\phi }{dt}}\mathbf {u} ={\frac {v\sin(\theta )}{r}}\mathbf {u} ,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">ω<!-- ω --></mi> </mrow> <mo>=</mo> <mi>ω<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">u</mi> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mi>ϕ<!-- ϕ --></mi> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">u</mi> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>v</mi> <mi>sin</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>θ<!-- θ --></mi> <mo stretchy="false">)</mo> </mrow> <mi>r</mi> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">u</mi> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\boldsymbol {\omega }}=\omega \mathbf {u} ={\frac {d\phi }{dt}}\mathbf {u} ={\frac {v\sin(\theta )}{r}}\mathbf {u} ,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a4b7382758abdba0858e2386f0fc929abcb68325" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:29.056ex; height:5.843ex;" alt="{\displaystyle {\boldsymbol {\omega }}=\omega \mathbf {u} ={\frac {d\phi }{dt}}\mathbf {u} ={\frac {v\sin(\theta )}{r}}\mathbf {u} ,}"></span></dd></dl> <p>where <i>θ</i> is the angle between <b>r</b> and <b>v</b>. In terms of the cross product, this is: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\boldsymbol {\omega }}={\frac {\mathbf {r} \times \mathbf {v} }{r^{2}}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">ω<!-- ω --></mi> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mo>×<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> </mrow> <msup> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\boldsymbol {\omega }}={\frac {\mathbf {r} \times \mathbf {v} }{r^{2}}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cb08b50b5ed23de26c5be3fae30a56040cd6bb90" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:11.604ex; height:5.176ex;" alt="{\displaystyle {\boldsymbol {\omega }}={\frac {\mathbf {r} \times \mathbf {v} }{r^{2}}}.}"></span></dd></dl> <p>From the above equation, one can recover the tangential velocity as: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {v} _{\perp }={\boldsymbol {\omega }}\times \mathbf {r} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>⊥<!-- ⊥ --></mo> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">ω<!-- ω --></mi> </mrow> <mo>×<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {v} _{\perp }={\boldsymbol {\omega }}\times \mathbf {r} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/727e2660507afd37e8157ee1a81b74cffcc4f2de" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:11.631ex; height:2.009ex;" alt="{\displaystyle \mathbf {v} _{\perp }={\boldsymbol {\omega }}\times \mathbf {r} }"></span></dd></dl> <p>Note that the above expression for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\boldsymbol {\omega }}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">ω<!-- ω --></mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\boldsymbol {\omega }}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7cb8af7a2f64af348e559652b6b1f0d2415ba444" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.669ex; height:1.676ex;" alt="{\displaystyle {\boldsymbol {\omega }}}"></span> is only valid if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\boldsymbol {r}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">r</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\boldsymbol {r}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e6a5e169814762d75ef0dd3a3d0bc99b4a5a06e0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.23ex; height:1.676ex;" alt="{\displaystyle {\boldsymbol {r}}}"></span> is in the same plane as the motion. </p> <div class="mw-heading mw-heading4"><h4 id="Addition_of_angular_velocity_vectors">Addition of angular velocity vectors</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Dynamics/Kinematics/Angular_Velocity&veaction=edit&section=5" title="Edit section: Addition of angular velocity vectors" class="mw-editsection-visualeditor"><span>edit</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Dynamics/Kinematics/Angular_Velocity&action=edit&section=5" title="Edit section's source code: Addition of angular velocity vectors"><span>edit source</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Gimbaleuler.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/7/72/Gimbaleuler.svg/220px-Gimbaleuler.svg.png" decoding="async" width="220" height="220" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/7/72/Gimbaleuler.svg/330px-Gimbaleuler.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/7/72/Gimbaleuler.svg/440px-Gimbaleuler.svg.png 2x" data-file-width="480" data-file-height="480" /></a><figcaption>Schematic construction for addition of angular velocity vectors for rotating frames</figcaption></figure> <p>If a point rotates with orbital angular velocity <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \omega _{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>ω<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \omega _{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e20e29ac56d6cc52eaeb2f9c0bf79ef706428ddf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.5ex; height:2.009ex;" alt="{\displaystyle \omega _{1}}"></span> about its center of rotation in a <a class="external text" href="https://wikipedia.org/Frame+of+a+vector+space">coordinate frame</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F_{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F_{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/100c7fbf174fe8b06eacc2a6b0bb2e1badd1c7ce" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.549ex; height:2.509ex;" alt="{\displaystyle F_{1}}"></span> which itself rotates with a spin angular velocity <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \omega _{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>ω<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \omega _{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7b914a8bfef5d1b9b106048afa0aab4a99251f38" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.5ex; height:2.009ex;" alt="{\displaystyle \omega _{2}}"></span> with respect to an external frame <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F_{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F_{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0fd17e0779153d765b40ebef91533489b87b2e37" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.549ex; height:2.509ex;" alt="{\displaystyle F_{2}}"></span>, we can define <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \omega _{1}+\omega _{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>ω<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>ω<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \omega _{1}+\omega _{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/076da3e04cb19107c2a930a63e0cff4b26629100" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.84ex; height:2.343ex;" alt="{\displaystyle \omega _{1}+\omega _{2}}"></span> to be the composite orbital angular velocity vector of the point about its center of rotation with respect to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F_{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F_{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0fd17e0779153d765b40ebef91533489b87b2e37" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.549ex; height:2.509ex;" alt="{\displaystyle F_{2}}"></span>. This operation coincides with usual addition of vectors, and it gives angular velocity the algebraic structure of a true <a class="external text" href="https://wikipedia.org/Vector+space#Definition">vector</a>, rather than just a pseudo-vector. </p><p>The only non-obvious property of the above addition is <a href="/wiki/Commutative_property" title="Commutative property">commutativity</a>. This can be proven from the fact that the velocity tensor <i>W</i> (see below) is skew-symmetric, so that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R=e^{W\cdot dt}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> <mo>=</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>W</mi> <mo>⋅<!-- ⋅ --></mo> <mi>d</mi> <mi>t</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R=e^{W\cdot dt}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6eafff5c880ddd417fb829594d0694fd0f60227d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:9.811ex; height:2.676ex;" alt="{\displaystyle R=e^{W\cdot dt}}"></span> is a <a class="external text" href="https://wikipedia.org/Rotation+matrix">rotation matrix</a> which can be expanded as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R=I+W\cdot dt+{\tfrac {1}{2}}(W\cdot dt)^{2}+\ldots }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> <mo>=</mo> <mi>I</mi> <mo>+</mo> <mi>W</mi> <mo>⋅<!-- ⋅ --></mo> <mi>d</mi> <mi>t</mi> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mstyle> </mrow> <mo stretchy="false">(</mo> <mi>W</mi> <mo>⋅<!-- ⋅ --></mo> <mi>d</mi> <mi>t</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mo>…<!-- … --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R=I+W\cdot dt+{\tfrac {1}{2}}(W\cdot dt)^{2}+\ldots }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4a4d886e65dfad3f955cc462c52c0f84a88b5b7b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:34.14ex; height:3.509ex;" alt="{\displaystyle R=I+W\cdot dt+{\tfrac {1}{2}}(W\cdot dt)^{2}+\ldots }"></span>. The composition of rotations is not commutative, but <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (I+W_{1}\cdot dt)(I+W_{2}\cdot dt)=(I+W_{2}\cdot dt)(I+W_{1}\cdot dt)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>I</mi> <mo>+</mo> <msub> <mi>W</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>⋅<!-- ⋅ --></mo> <mi>d</mi> <mi>t</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>I</mi> <mo>+</mo> <msub> <mi>W</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>⋅<!-- ⋅ --></mo> <mi>d</mi> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo stretchy="false">(</mo> <mi>I</mi> <mo>+</mo> <msub> <mi>W</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>⋅<!-- ⋅ --></mo> <mi>d</mi> <mi>t</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>I</mi> <mo>+</mo> <msub> <mi>W</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>⋅<!-- ⋅ --></mo> <mi>d</mi> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (I+W_{1}\cdot dt)(I+W_{2}\cdot dt)=(I+W_{2}\cdot dt)(I+W_{1}\cdot dt)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/154f33aafe07c86a0582c976b6da61fedb0cc2e1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:54.314ex; height:2.843ex;" alt="{\displaystyle (I+W_{1}\cdot dt)(I+W_{2}\cdot dt)=(I+W_{2}\cdot dt)(I+W_{1}\cdot dt)}"></span> is commutative to first order, and therefore <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \omega _{1}+\omega _{2}=\omega _{2}+\omega _{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>ω<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>ω<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>ω<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>ω<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \omega _{1}+\omega _{2}=\omega _{2}+\omega _{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/24202680abd0394e617714943efe183b8c961bb6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:18.779ex; height:2.343ex;" alt="{\displaystyle \omega _{1}+\omega _{2}=\omega _{2}+\omega _{1}}"></span>. </p><p>Notice that this also defines the subtraction as the addition of a negative vector. </p> <div class="mw-heading mw-heading2"><h2 id="Angular_velocity_vector_for_rigid_body_or_reference_frame">Angular velocity vector for rigid body or reference frame</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Dynamics/Kinematics/Angular_Velocity&veaction=edit&section=6" title="Edit section: Angular velocity vector for rigid body or reference frame" class="mw-editsection-visualeditor"><span>edit</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Dynamics/Kinematics/Angular_Velocity&action=edit&section=6" title="Edit section's source code: Angular velocity vector for rigid body or reference frame"><span>edit source</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Given a rotating frame of three unit coordinate vectors, all the three must have the same angular speed at each instant. In such a frame, each vector may be considered as a moving particle with constant scalar radius. </p><p>The rotating frame appears in the context of <a class="external text" href="https://wikipedia.org/Rigid+body">rigid bodies</a>, and special tools have been developed for it: the spin angular velocity may be described as a vector or equivalently as a <a href="/wiki/Tensor" title="Tensor">tensor</a>. </p><p>Consistent with the general definition, the spin angular velocity of a frame is defined as the orbital angular velocity of any of the three vectors (same for all) with respect to its own center of rotation. The addition of angular velocity vectors for frames is also defined by the usual vector addition (composition of linear movements), and can be useful to decompose the rotation as in a <a class="external text" href="https://wikipedia.org/Gimbal">gimbal</a>. All components of the vector can be calculated as derivatives of the parameters defining the moving frames (Euler angles or rotation matrices). As in the general case, addition is commutative: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \omega _{1}+\omega _{2}=\omega _{2}+\omega _{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>ω<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>ω<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>ω<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>ω<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \omega _{1}+\omega _{2}=\omega _{2}+\omega _{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/24202680abd0394e617714943efe183b8c961bb6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:18.779ex; height:2.343ex;" alt="{\displaystyle \omega _{1}+\omega _{2}=\omega _{2}+\omega _{1}}"></span>. </p><p>By <a class="external text" href="https://wikipedia.org/Euler's+rotation+theorem">Euler's rotation theorem</a>, any rotating frame possesses an <a class="external text" href="https://wikipedia.org/Instantaneous+axis+of+rotation">instantaneous axis of rotation</a>, which is the direction of the angular velocity vector, and the magnitude of the angular velocity is consistent with the two-dimensional case. </p><p>If we choose a reference point <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\boldsymbol {R}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\boldsymbol {R}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7945da372695d49cd4229e2a84ac6dc8ae6c99b8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.047ex; height:2.176ex;" alt="{\displaystyle {\boldsymbol {R}}}"></span> fixed in the rigid body, the velocity <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\dot {\boldsymbol {r}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold-italic">r</mi> <mo>˙<!-- ˙ --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\dot {\boldsymbol {r}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7417b4d4033f20326c0276fa50739a2cf1bb9338" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.345ex; height:2.176ex;" alt="{\displaystyle {\dot {\boldsymbol {r}}}}"></span> of any point in the body is given by </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\dot {\boldsymbol {r}}}={\dot {\boldsymbol {R}}}+({\boldsymbol {r}}-{\boldsymbol {R}})\times {\boldsymbol {\omega }}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold-italic">r</mi> <mo>˙<!-- ˙ --></mo> </mover> </mrow> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold-italic">R</mi> <mo>˙<!-- ˙ --></mo> </mover> </mrow> </mrow> <mo>+</mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">r</mi> </mrow> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">R</mi> </mrow> <mo stretchy="false">)</mo> <mo>×<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">ω<!-- ω --></mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\dot {\boldsymbol {r}}}={\dot {\boldsymbol {R}}}+({\boldsymbol {r}}-{\boldsymbol {R}})\times {\boldsymbol {\omega }}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b6dceebaf9285690fb4d7533cc93a406ed2355bc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:21.767ex; height:3.176ex;" alt="{\displaystyle {\dot {\boldsymbol {r}}}={\dot {\boldsymbol {R}}}+({\boldsymbol {r}}-{\boldsymbol {R}})\times {\boldsymbol {\omega }}}"></span></dd></dl> <div class="mw-heading mw-heading3"><h3 id="Angular_velocity_components_from_the_basis_vectors_of_a_body-fixed_frame">Angular velocity components from the basis vectors of a body-fixed frame</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Dynamics/Kinematics/Angular_Velocity&veaction=edit&section=7" title="Edit section: Angular velocity components from the basis vectors of a body-fixed frame" class="mw-editsection-visualeditor"><span>edit</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Dynamics/Kinematics/Angular_Velocity&action=edit&section=7" title="Edit section's source code: Angular velocity components from the basis vectors of a body-fixed frame"><span>edit source</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Consider a rigid body rotating about a fixed point O. Construct a reference frame in the body consisting of an orthonormal set of vectors <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {e} _{1},\mathbf {e} _{2},\mathbf {e} _{3}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">e</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">e</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">e</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {e} _{1},\mathbf {e} _{2},\mathbf {e} _{3}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6b830763a1f552a9c87e7a97e3fb34924c92f3ba" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:8.906ex; height:2.009ex;" alt="{\displaystyle \mathbf {e} _{1},\mathbf {e} _{2},\mathbf {e} _{3}}"></span> fixed to the body and with their common origin at O. The angular velocity vector of both frame and body about O is then </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\boldsymbol {\omega }}=({\dot {\mathbf {e} }}_{1}\cdot \mathbf {e} _{2})\mathbf {e} _{3}+({\dot {\mathbf {e} }}_{2}\cdot \mathbf {e} _{3})\mathbf {e} _{1}+({\dot {\mathbf {e} }}_{3}\cdot \mathbf {e} _{1})\mathbf {e} _{2},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">ω<!-- ω --></mi> </mrow> <mo>=</mo> <mo stretchy="false">(</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">e</mi> </mrow> <mo>˙<!-- ˙ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>⋅<!-- ⋅ --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">e</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">e</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>+</mo> <mo stretchy="false">(</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">e</mi> </mrow> <mo>˙<!-- ˙ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>⋅<!-- ⋅ --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">e</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo stretchy="false">)</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">e</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <mo stretchy="false">(</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">e</mi> </mrow> <mo>˙<!-- ˙ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>⋅<!-- ⋅ --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">e</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">e</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\boldsymbol {\omega }}=({\dot {\mathbf {e} }}_{1}\cdot \mathbf {e} _{2})\mathbf {e} _{3}+({\dot {\mathbf {e} }}_{2}\cdot \mathbf {e} _{3})\mathbf {e} _{1}+({\dot {\mathbf {e} }}_{3}\cdot \mathbf {e} _{1})\mathbf {e} _{2},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7973eb9d6d8e7cbb63b3239549c2a73655a06f11" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:42.075ex; height:2.843ex;" alt="{\displaystyle {\boldsymbol {\omega }}=({\dot {\mathbf {e} }}_{1}\cdot \mathbf {e} _{2})\mathbf {e} _{3}+({\dot {\mathbf {e} }}_{2}\cdot \mathbf {e} _{3})\mathbf {e} _{1}+({\dot {\mathbf {e} }}_{3}\cdot \mathbf {e} _{1})\mathbf {e} _{2},}"></span></dd></dl> <p>Here </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\dot {\mathbf {e} }}_{i}={\frac {d\mathbf {e} _{i}}{dt}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">e</mi> </mrow> <mo>˙<!-- ˙ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">e</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\dot {\mathbf {e} }}_{i}={\frac {d\mathbf {e} _{i}}{dt}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5370d4e6c24e68caa0f1c97021681b804678d916" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:9.2ex; height:5.509ex;" alt="{\displaystyle {\dot {\mathbf {e} }}_{i}={\frac {d\mathbf {e} _{i}}{dt}}}"></span> is the time rate of change of the frame vector <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {e} _{i},i=1,2,3,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">e</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>,</mo> <mi>i</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mn>3</mn> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {e} _{i},i=1,2,3,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e02c393dca3251539e0558bec0fdf5a84c8ce1dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:13.162ex; height:2.509ex;" alt="{\displaystyle \mathbf {e} _{i},i=1,2,3,}"></span> due to the rotation.</dd></dl> <p>Note that this formula is incompatible with the expression </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\boldsymbol {\omega }}={\frac {\mathbf {r} \times \mathbf {v} }{r^{2}}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">ω<!-- ω --></mi> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mo>×<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> </mrow> <msup> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\boldsymbol {\omega }}={\frac {\mathbf {r} \times \mathbf {v} }{r^{2}}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cb08b50b5ed23de26c5be3fae30a56040cd6bb90" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:11.604ex; height:5.176ex;" alt="{\displaystyle {\boldsymbol {\omega }}={\frac {\mathbf {r} \times \mathbf {v} }{r^{2}}}.}"></span></dd></dl> <p>as that formula defines only the angular velocity of a <i>single point</i> about O, while the formula in this section applies to a frame or rigid body. In the case of a rigid body a <i>single</i> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\boldsymbol {\omega }}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">ω<!-- ω --></mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\boldsymbol {\omega }}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7cb8af7a2f64af348e559652b6b1f0d2415ba444" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.669ex; height:1.676ex;" alt="{\displaystyle {\boldsymbol {\omega }}}"></span> has to account for the motion of <i>all</i> particles in the body. </p> <div class="mw-heading mw-heading3"><h3 id="Components_from_Euler_angles">Components from Euler angles</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Dynamics/Kinematics/Angular_Velocity&veaction=edit&section=8" title="Edit section: Components from Euler angles" class="mw-editsection-visualeditor"><span>edit</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Dynamics/Kinematics/Angular_Velocity&action=edit&section=8" title="Edit section's source code: Components from Euler angles"><span>edit source</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Eulerframe.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/b/b4/Eulerframe.svg/220px-Eulerframe.svg.png" decoding="async" width="220" height="248" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/b/b4/Eulerframe.svg/330px-Eulerframe.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/b/b4/Eulerframe.svg/440px-Eulerframe.svg.png 2x" data-file-width="688" data-file-height="775" /></a><figcaption>Diagram showing Euler frame in green</figcaption></figure> <p>The components of the spin angular velocity pseudovector were first calculated by <a class="external text" href="https://wikipedia.org/Leonhard+Euler">Leonhard Euler</a> using his <a class="external text" href="https://wikipedia.org/Euler+angles">Euler angles</a> and the use of an intermediate frame: </p> <ul><li>One axis of the reference frame (the precession axis)</li> <li>The line of nodes of the moving frame with respect to the reference frame (nutation axis)</li> <li>One axis of the moving frame (the intrinsic rotation axis)</li></ul> <p>Euler proved that the projections of the angular velocity pseudovector on each of these three axes is the derivative of its associated angle (which is equivalent to decomposing the instantaneous rotation into three instantaneous <a class="external text" href="https://wikipedia.org/Euler+rotations">Euler rotations</a>). Therefore:<sup id="cite_ref-3" class="reference"><a href="#cite_note-3"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\boldsymbol {\omega }}={\dot {\alpha }}\mathbf {u} _{1}+{\dot {\beta }}\mathbf {u} _{2}+{\dot {\gamma }}\mathbf {u} _{3}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">ω<!-- ω --></mi> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>α<!-- α --></mi> <mo>˙<!-- ˙ --></mo> </mover> </mrow> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">u</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>β<!-- β --></mi> <mo>˙<!-- ˙ --></mo> </mover> </mrow> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">u</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>γ<!-- γ --></mi> <mo>˙<!-- ˙ --></mo> </mover> </mrow> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">u</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\boldsymbol {\omega }}={\dot {\alpha }}\mathbf {u} _{1}+{\dot {\beta }}\mathbf {u} _{2}+{\dot {\gamma }}\mathbf {u} _{3}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6a06047cd55031ee1272f8718a19d585265a451e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:22.268ex; height:3.343ex;" alt="{\displaystyle {\boldsymbol {\omega }}={\dot {\alpha }}\mathbf {u} _{1}+{\dot {\beta }}\mathbf {u} _{2}+{\dot {\gamma }}\mathbf {u} _{3}}"></span></dd></dl> <p>This basis is not orthonormal and it is difficult to use, but now the velocity vector can be changed to the fixed frame or to the moving frame with just a change of bases. For example, changing to the mobile frame: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\boldsymbol {\omega }}=({\dot {\alpha }}\sin \beta \sin \gamma +{\dot {\beta }}\cos \gamma )\mathbf {i} +({\dot {\alpha }}\sin \beta \cos \gamma -{\dot {\beta }}\sin \gamma )\mathbf {j} +({\dot {\alpha }}\cos \beta +{\dot {\gamma }})\mathbf {k} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">ω<!-- ω --></mi> </mrow> <mo>=</mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>α<!-- α --></mi> <mo>˙<!-- ˙ --></mo> </mover> </mrow> </mrow> <mi>sin</mi> <mo>⁡<!-- --></mo> <mi>β<!-- β --></mi> <mi>sin</mi> <mo>⁡<!-- --></mo> <mi>γ<!-- γ --></mi> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>β<!-- β --></mi> <mo>˙<!-- ˙ --></mo> </mover> </mrow> </mrow> <mi>cos</mi> <mo>⁡<!-- --></mo> <mi>γ<!-- γ --></mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">i</mi> </mrow> <mo>+</mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>α<!-- α --></mi> <mo>˙<!-- ˙ --></mo> </mover> </mrow> </mrow> <mi>sin</mi> <mo>⁡<!-- --></mo> <mi>β<!-- β --></mi> <mi>cos</mi> <mo>⁡<!-- --></mo> <mi>γ<!-- γ --></mi> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>β<!-- β --></mi> <mo>˙<!-- ˙ --></mo> </mover> </mrow> </mrow> <mi>sin</mi> <mo>⁡<!-- --></mo> <mi>γ<!-- γ --></mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">j</mi> </mrow> <mo>+</mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>α<!-- α --></mi> <mo>˙<!-- ˙ --></mo> </mover> </mrow> </mrow> <mi>cos</mi> <mo>⁡<!-- --></mo> <mi>β<!-- β --></mi> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>γ<!-- γ --></mi> <mo>˙<!-- ˙ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">k</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\boldsymbol {\omega }}=({\dot {\alpha }}\sin \beta \sin \gamma +{\dot {\beta }}\cos \gamma )\mathbf {i} +({\dot {\alpha }}\sin \beta \cos \gamma -{\dot {\beta }}\sin \gamma )\mathbf {j} +({\dot {\alpha }}\cos \beta +{\dot {\gamma }})\mathbf {k} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/032d35e9526d9baddf627c3a80f9b2194e470004" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:71.215ex; height:3.343ex;" alt="{\displaystyle {\boldsymbol {\omega }}=({\dot {\alpha }}\sin \beta \sin \gamma +{\dot {\beta }}\cos \gamma )\mathbf {i} +({\dot {\alpha }}\sin \beta \cos \gamma -{\dot {\beta }}\sin \gamma )\mathbf {j} +({\dot {\alpha }}\cos \beta +{\dot {\gamma }})\mathbf {k} }"></span></dd></dl> <p>where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {i} ,\mathbf {j} ,\mathbf {k} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">i</mi> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">j</mi> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">k</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {i} ,\mathbf {j} ,\mathbf {k} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6d0ff20e01dd78f8f2149bcd2193013bd4aa8035" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.037ex; height:2.509ex;" alt="{\displaystyle \mathbf {i} ,\mathbf {j} ,\mathbf {k} }"></span> are unit vectors for the frame fixed in the moving body. This example has been made using the Z-X-Z convention for Euler angles. </p> <div class="mw-heading mw-heading2"><h2 id="Angular_velocity_tensor_or_skew-symmetric_matrix">Angular velocity tensor or skew-symmetric matrix</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Dynamics/Kinematics/Angular_Velocity&veaction=edit&section=9" title="Edit section: Angular velocity tensor or skew-symmetric matrix" class="mw-editsection-visualeditor"><span>edit</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Dynamics/Kinematics/Angular_Velocity&action=edit&section=9" title="Edit section's source code: Angular velocity tensor or skew-symmetric matrix"><span>edit source</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The angular velocity vector <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\boldsymbol {\omega }}=(\omega _{x},\omega _{y},\omega _{z})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">ω<!-- ω --></mi> </mrow> <mo>=</mo> <mo stretchy="false">(</mo> <msub> <mi>ω<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>ω<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>ω<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\boldsymbol {\omega }}=(\omega _{x},\omega _{y},\omega _{z})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bda4e31bdb891a338973e6e674aa906e0771eada" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:16.205ex; height:3.009ex;" alt="{\displaystyle {\boldsymbol {\omega }}=(\omega _{x},\omega _{y},\omega _{z})}"></span> defined above may be equivalently expressed as an <b>angular velocity tensor</b>, the matrix (or linear mapping) <i>W</i> = <i>W</i>(<i>t</i>) defined by: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle W={\begin{pmatrix}0&-\omega _{z}&\omega _{y}\\\omega _{z}&0&-\omega _{x}\\-\omega _{y}&\omega _{x}&0\\\end{pmatrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>W</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mo>−<!-- − --></mo> <msub> <mi>ω<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> </mrow> </msub> </mtd> <mtd> <msub> <mi>ω<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>ω<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> </mrow> </msub> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mo>−<!-- − --></mo> <msub> <mi>ω<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <mo>−<!-- − --></mo> <msub> <mi>ω<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> </msub> </mtd> <mtd> <msub> <mi>ω<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle W={\begin{pmatrix}0&-\omega _{z}&\omega _{y}\\\omega _{z}&0&-\omega _{x}\\-\omega _{y}&\omega _{x}&0\\\end{pmatrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/12b82cce7cd8ab4d9f645248001aeee9bb54b834" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.338ex; width:27.983ex; height:9.843ex;" alt="{\displaystyle W={\begin{pmatrix}0&-\omega _{z}&\omega _{y}\\\omega _{z}&0&-\omega _{x}\\-\omega _{y}&\omega _{x}&0\\\end{pmatrix}}}"></span></dd></dl> <p>This is an <a class="external text" href="https://wikipedia.org/Angular+displacement#Infinitesimal+rotation+matrices">infinitesimal rotation matrix</a> or a skew-symmetric matrix. The linear mapping <i>W</i> acts as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ({\boldsymbol {\omega }}\times )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">ω<!-- ω --></mi> </mrow> <mo>×<!-- × --></mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ({\boldsymbol {\omega }}\times )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c672963400a3ec78a78219be7904b744ec8b5e12" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.286ex; height:2.843ex;" alt="{\displaystyle ({\boldsymbol {\omega }}\times )}"></span>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\boldsymbol {\omega }}\times \mathbf {r} =W\cdot \mathbf {r} .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">ω<!-- ω --></mi> </mrow> <mo>×<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mo>=</mo> <mi>W</mi> <mo>⋅<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\boldsymbol {\omega }}\times \mathbf {r} =W\cdot \mathbf {r} .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/39caeb8244ef6984e2cd996b694e43de513eebe1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:14.573ex; height:2.176ex;" alt="{\displaystyle {\boldsymbol {\omega }}\times \mathbf {r} =W\cdot \mathbf {r} .}"></span></dd></dl> <div class="mw-heading mw-heading3"><h3 id="Calculation_from_the_orientation_matrix">Calculation from the orientation matrix</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Dynamics/Kinematics/Angular_Velocity&veaction=edit&section=10" title="Edit section: Calculation from the orientation matrix" class="mw-editsection-visualeditor"><span>edit</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Dynamics/Kinematics/Angular_Velocity&action=edit&section=10" title="Edit section's source code: Calculation from the orientation matrix"><span>edit source</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>A vector <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {r} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {r} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/eca0f46511c4c986c48b254073732c0bd98ae0c1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.102ex; height:1.676ex;" alt="{\displaystyle \mathbf {r} }"></span> undergoing uniform circular motion around a fixed axis satisfies: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {d\mathbf {r} }{dt}}={\boldsymbol {\omega }}\times \mathbf {r} =W\cdot \mathbf {r} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">ω<!-- ω --></mi> </mrow> <mo>×<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mo>=</mo> <mi>W</mi> <mo>⋅<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {d\mathbf {r} }{dt}}={\boldsymbol {\omega }}\times \mathbf {r} =W\cdot \mathbf {r} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1f7dba881e420ebe27944dcc2b07298ae1d2fd46" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:20.179ex; height:5.509ex;" alt="{\displaystyle {\frac {d\mathbf {r} }{dt}}={\boldsymbol {\omega }}\times \mathbf {r} =W\cdot \mathbf {r} }"></span></dd></dl> <div class="mw-heading mw-heading3"><h3 id="Angular_velocity_as_a_vector_field">Angular velocity as a vector field</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Dynamics/Kinematics/Angular_Velocity&veaction=edit&section=11" title="Edit section: Angular velocity as a vector field" class="mw-editsection-visualeditor"><span>edit</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Dynamics/Kinematics/Angular_Velocity&action=edit&section=11" title="Edit section's source code: Angular velocity as a vector field"><span>edit source</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Also, it can be shown that the spin angular velocity vector field is exactly half of the <a href="/w/index.php?title=Curl_(mathematics)&action=edit&redlink=1" class="new" title="Curl (mathematics) (page does not exist)">curl</a> of the linear velocity vector field <b>v</b>(<b>r</b>) of the rigid body. In symbols, </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\boldsymbol {\omega }}={\frac {1}{2}}\nabla \times \mathbf {v} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">ω<!-- ω --></mi> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mi mathvariant="normal">∇<!-- ∇ --></mi> <mo>×<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\boldsymbol {\omega }}={\frac {1}{2}}\nabla \times \mathbf {v} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/eee50cdd885a2b2dbf94f3c1c3a4507f5624cb19" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:12.953ex; height:5.176ex;" alt="{\displaystyle {\boldsymbol {\omega }}={\frac {1}{2}}\nabla \times \mathbf {v} }"></span></dd></dl> <div class="mw-heading mw-heading2"><h2 id="Rigid_body_considerations">Rigid body considerations</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Dynamics/Kinematics/Angular_Velocity&veaction=edit&section=12" title="Edit section: Rigid body considerations" class="mw-editsection-visualeditor"><span>edit</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Dynamics/Kinematics/Angular_Velocity&action=edit&section=12" title="Edit section's source code: Rigid body considerations"><span>edit source</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:AngularVelocity02.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/e/e2/AngularVelocity02.svg/320px-AngularVelocity02.svg.png" decoding="async" width="320" height="227" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/e/e2/AngularVelocity02.svg/480px-AngularVelocity02.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/e/e2/AngularVelocity02.svg/640px-AngularVelocity02.svg.png 2x" data-file-width="612" data-file-height="434" /></a><figcaption>Position of point P located in the rigid body (shown in blue). <b>R</b><sub><i>i</i></sub> is the position with respect to the lab frame, centered at <i>O</i> and <b>r</b><sub><i>i</i></sub> is the position with respect to the rigid body frame, centered at O'. The origin of the rigid body frame is at vector position <b>R</b> from the lab frame.</figcaption></figure> <p>The same equations for the angular speed can be obtained reasoning over a rotating <a class="external text" href="https://wikipedia.org/Rigid+body">rigid body</a>. Here is not assumed that the rigid body rotates around the origin. Instead, it can be supposed rotating around an arbitrary point that is moving with a linear velocity <i>V</i>(<i>t</i>) in each instant. </p><p>To obtain the equations, it is convenient to imagine a rigid body attached to the frames and consider a coordinate system that is fixed with respect to the rigid body. Then we will study the coordinate transformations between this coordinate and the fixed "laboratory" system. </p><p>As shown in the figure on the right, the lab system's origin is at point <i>O</i>, the rigid body system origin is at O' and the vector from <i>O</i> to O' is <b>R</b>. A particle (<i>i</i>) in the rigid body is located at point P and the vector position of this particle is <b>R</b><sub><i>i</i></sub> in the lab frame, and at position <b>r</b><sub><i>i</i></sub> in the body frame. It is seen that the position of the particle can be written: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {R} _{i}=\mathbf {R} +\mathbf {r} _{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">R</mi> </mrow> <mo>+</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {R} _{i}=\mathbf {R} +\mathbf {r} _{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6002070fa6d4ad65b2b6623f4f57918222bf11ed" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:12.647ex; height:2.509ex;" alt="{\displaystyle \mathbf {R} _{i}=\mathbf {R} +\mathbf {r} _{i}}"></span></dd></dl> <p>The defining characteristic of a rigid body is that the distance between any two points in a rigid body is unchanging in time. This means that the length of the vector <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {r} _{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {r} _{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ed603561819ebd007acd75a0931d3ba401ad677a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.902ex; height:2.009ex;" alt="{\displaystyle \mathbf {r} _{i}}"></span> is unchanging. By <a class="external text" href="https://wikipedia.org/Euler's+rotation+theorem">Euler's rotation theorem</a>, we may replace the vector <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {r} _{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {r} _{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ed603561819ebd007acd75a0931d3ba401ad677a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.902ex; height:2.009ex;" alt="{\displaystyle \mathbf {r} _{i}}"></span> with <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {R}}\mathbf {r} _{io}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">R</mi> </mrow> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>o</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {R}}\mathbf {r} _{io}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d38bb10cad262bea46af36030009125705be2524" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.67ex; height:2.509ex;" alt="{\displaystyle {\mathcal {R}}\mathbf {r} _{io}}"></span> where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {R}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">R</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {R}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/74532dc308c806964b832df0d0d73352195c2f2f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.971ex; height:2.176ex;" alt="{\displaystyle {\mathcal {R}}}"></span> is a 3×3 <a class="external text" href="https://wikipedia.org/Rotation+matrix">rotation matrix</a> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {r} _{io}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>o</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {r} _{io}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/419572dc2a878b11126313a6e131daab844ed8be" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.699ex; height:2.009ex;" alt="{\displaystyle \mathbf {r} _{io}}"></span> is the position of the particle at some fixed point in time, say <span class="nowrap"><i>t</i> = 0</span>. This replacement is useful, because now it is only the rotation matrix <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {R}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">R</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {R}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/74532dc308c806964b832df0d0d73352195c2f2f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.971ex; height:2.176ex;" alt="{\displaystyle {\mathcal {R}}}"></span> that is changing in time and not the reference vector <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {r} _{io}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>o</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {r} _{io}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/419572dc2a878b11126313a6e131daab844ed8be" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.699ex; height:2.009ex;" alt="{\displaystyle \mathbf {r} _{io}}"></span>, as the rigid body rotates about point O'. Also, since the three columns of the rotation matrix represent the three <a class="external text" href="https://wikipedia.org/Versor">versors</a> of a reference frame rotating together with the rigid body, any rotation about any axis becomes now visible, while the vector <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {r} _{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {r} _{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ed603561819ebd007acd75a0931d3ba401ad677a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.902ex; height:2.009ex;" alt="{\displaystyle \mathbf {r} _{i}}"></span> would not rotate if the rotation axis were parallel to it, and hence it would only describe a rotation about an axis perpendicular to it (i.e., it would not see the component of the angular velocity pseudovector parallel to it, and would only allow the computation of the component perpendicular to it). The position of the particle is now written as: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {R} _{i}=\mathbf {R} +{\mathcal {R}}\mathbf {r} _{io}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">R</mi> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">R</mi> </mrow> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>o</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {R} _{i}=\mathbf {R} +{\mathcal {R}}\mathbf {r} _{io}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8e76fd46d3c2f96a1752f583607b2805912b6824" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:15.415ex; height:2.509ex;" alt="{\displaystyle \mathbf {R} _{i}=\mathbf {R} +{\mathcal {R}}\mathbf {r} _{io}}"></span></dd></dl> <p>Taking the time derivative yields the velocity of the particle: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {V} _{i}=\mathbf {V} +{\frac {d{\mathcal {R}}}{dt}}\mathbf {r} _{io}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">V</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">V</mi> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">R</mi> </mrow> </mrow> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>o</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {V} _{i}=\mathbf {V} +{\frac {d{\mathcal {R}}}{dt}}\mathbf {r} _{io}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/83503b51071d1ba39e50cc008eb2268688325852" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:17.499ex; height:5.509ex;" alt="{\displaystyle \mathbf {V} _{i}=\mathbf {V} +{\frac {d{\mathcal {R}}}{dt}}\mathbf {r} _{io}}"></span></dd></dl> <p>where <b>V</b><sub><i>i</i></sub> is the velocity of the particle (in the lab frame) and <b>V</b> is the velocity of O' (the origin of the rigid body frame). Since <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {R}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">R</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {R}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/74532dc308c806964b832df0d0d73352195c2f2f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.971ex; height:2.176ex;" alt="{\displaystyle {\mathcal {R}}}"></span> is a rotation matrix its inverse is its transpose. So we substitute <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {I}}={\mathcal {R}}^{\text{T}}{\mathcal {R}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">I</mi> </mrow> </mrow> <mo>=</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">R</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mtext>T</mtext> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">R</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {I}}={\mathcal {R}}^{\text{T}}{\mathcal {R}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c277dfae86bc36f2eb0976b6e6c2a671c2c1bb5d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; margin-left: -0.069ex; width:10.02ex; height:2.676ex;" alt="{\displaystyle {\mathcal {I}}={\mathcal {R}}^{\text{T}}{\mathcal {R}}}"></span>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {V} _{i}=\mathbf {V} +{\frac {d{\mathcal {R}}}{dt}}{\mathcal {I}}\mathbf {r} _{io}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">V</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">V</mi> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">R</mi> </mrow> </mrow> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">I</mi> </mrow> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>o</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {V} _{i}=\mathbf {V} +{\frac {d{\mathcal {R}}}{dt}}{\mathcal {I}}\mathbf {r} _{io}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e216f544aac685e1117e1783ecbf3dc58a220236" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:18.992ex; height:5.509ex;" alt="{\displaystyle \mathbf {V} _{i}=\mathbf {V} +{\frac {d{\mathcal {R}}}{dt}}{\mathcal {I}}\mathbf {r} _{io}}"></span></dd></dl> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {V} _{i}=\mathbf {V} +{\frac {d{\mathcal {R}}}{dt}}{\mathcal {R}}^{\text{T}}{\mathcal {R}}\mathbf {r} _{io}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">V</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">V</mi> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">R</mi> </mrow> </mrow> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> </mrow> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">R</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mtext>T</mtext> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">R</mi> </mrow> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>o</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {V} _{i}=\mathbf {V} +{\frac {d{\mathcal {R}}}{dt}}{\mathcal {R}}^{\text{T}}{\mathcal {R}}\mathbf {r} _{io}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f056bc8e47d69322f8d43221b319600964a0c652" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:22.86ex; height:5.509ex;" alt="{\displaystyle \mathbf {V} _{i}=\mathbf {V} +{\frac {d{\mathcal {R}}}{dt}}{\mathcal {R}}^{\text{T}}{\mathcal {R}}\mathbf {r} _{io}}"></span></dd></dl> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {V} _{i}=\mathbf {V} +{\frac {d{\mathcal {R}}}{dt}}{\mathcal {R}}^{\text{T}}\mathbf {r} _{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">V</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">V</mi> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">R</mi> </mrow> </mrow> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> </mrow> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">R</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mtext>T</mtext> </mrow> </msup> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {V} _{i}=\mathbf {V} +{\frac {d{\mathcal {R}}}{dt}}{\mathcal {R}}^{\text{T}}\mathbf {r} _{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8e7d314c5ba71d6119208c82c4aa1b4b44e2227a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:20.092ex; height:5.509ex;" alt="{\displaystyle \mathbf {V} _{i}=\mathbf {V} +{\frac {d{\mathcal {R}}}{dt}}{\mathcal {R}}^{\text{T}}\mathbf {r} _{i}}"></span></dd></dl> <p>or </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {V} _{i}=\mathbf {V} +W\mathbf {r} _{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">V</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">V</mi> </mrow> <mo>+</mo> <mi>W</mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {V} _{i}=\mathbf {V} +W\mathbf {r} _{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/afda7c738cdddd0623d1392e05cef7dfa8e7f10d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:15.115ex; height:2.509ex;" alt="{\displaystyle \mathbf {V} _{i}=\mathbf {V} +W\mathbf {r} _{i}}"></span></dd></dl> <p>where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle W={\frac {d{\mathcal {R}}}{dt}}{\mathcal {R}}^{\text{T}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>W</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">R</mi> </mrow> </mrow> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> </mrow> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">R</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mtext>T</mtext> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle W={\frac {d{\mathcal {R}}}{dt}}{\mathcal {R}}^{\text{T}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0ec33f06b139ab6ac9f4d1074caf8ad761f381d7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:12.946ex; height:5.509ex;" alt="{\displaystyle W={\frac {d{\mathcal {R}}}{dt}}{\mathcal {R}}^{\text{T}}}"></span> is the previous <a class="external text" href="https://wikipedia.org/Angular+velocity+tensor">angular velocity tensor</a>. </p><p>It can be <a class="mw-selflink-fragment" href="#W_is_skew-symmetric">proved</a> that this is a <a class="external text" href="https://wikipedia.org/Skew-symmetric+matrix">skew symmetric matrix</a>, so we can take its <a class="external text" href="https://wikipedia.org/Dual+space">dual</a> to get a 3 dimensional pseudovector that is precisely the previous angular velocity vector <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {\omega }}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>ω<!-- ω --></mi> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {\omega }}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f4e066a68ceb355e3314fb2b97f1c0c421ca6074" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.446ex; height:2.343ex;" alt="{\displaystyle {\vec {\omega }}}"></span>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\boldsymbol {\omega }}=[\omega _{x},\omega _{y},\omega _{z}]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">ω<!-- ω --></mi> </mrow> <mo>=</mo> <mo stretchy="false">[</mo> <msub> <mi>ω<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>ω<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>ω<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> </mrow> </msub> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\boldsymbol {\omega }}=[\omega _{x},\omega _{y},\omega _{z}]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c8f418d52c41570663e22f7b19a8d3a427b69cab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:15.69ex; height:3.009ex;" alt="{\displaystyle {\boldsymbol {\omega }}=[\omega _{x},\omega _{y},\omega _{z}]}"></span></dd></dl> <p>Substituting <i>ω</i> for <i>W</i> into the above velocity expression, and replacing matrix multiplication by an equivalent cross product: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {V} _{i}=\mathbf {V} +{\boldsymbol {\omega }}\times \mathbf {r} _{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">V</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">V</mi> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">ω<!-- ω --></mi> </mrow> <mo>×<!-- × --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {V} _{i}=\mathbf {V} +{\boldsymbol {\omega }}\times \mathbf {r} _{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0c2646d1b052981bf942e306064293e86f6dd90d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:17.188ex; height:2.509ex;" alt="{\displaystyle \mathbf {V} _{i}=\mathbf {V} +{\boldsymbol {\omega }}\times \mathbf {r} _{i}}"></span></dd></dl> <p>It can be seen that the velocity of a point in a rigid body can be divided into two terms – the velocity of a reference point fixed in the rigid body plus the cross product term involving the orbital angular velocity of the particle with respect to the reference point. This angular velocity is what physicists call the "spin angular velocity" of the rigid body, as opposed to the <i>orbital</i> angular velocity of the reference point O' about the origin <i>O</i>. </p> <div class="mw-heading mw-heading3"><h3 id="Consistency">Consistency</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Dynamics/Kinematics/Angular_Velocity&veaction=edit&section=13" title="Edit section: Consistency" class="mw-editsection-visualeditor"><span>edit</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Dynamics/Kinematics/Angular_Velocity&action=edit&section=13" title="Edit section's source code: Consistency"><span>edit source</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>We have supposed that the rigid body rotates around an arbitrary point. We should prove that the spin angular velocity previously defined is independent of the choice of origin, which means that the spin angular velocity is an intrinsic property of the spinning rigid body. (Note the marked contrast of this with the <i>orbital</i> angular velocity of a point particle, which certainly <i>does</i> depend on the choice of origin.) </p> <figure class="mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:AngularVelocity03.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/6/65/AngularVelocity03.svg/320px-AngularVelocity03.svg.png" decoding="async" width="320" height="269" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/6/65/AngularVelocity03.svg/480px-AngularVelocity03.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/6/65/AngularVelocity03.svg/640px-AngularVelocity03.svg.png 2x" data-file-width="599" data-file-height="503" /></a><figcaption> Proving the independence of spin angular velocity from choice of origin</figcaption></figure> <p>See the graph to the right: The origin of lab frame is <i>O</i>, while <i>O</i><sub>1</sub> and <i>O</i><sub>2</sub> are two fixed points on the rigid body, whose velocity is <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {v} _{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {v} _{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/282458bb19c231f94697405bddd93af04a34cabe" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.465ex; height:2.009ex;" alt="{\displaystyle \mathbf {v} _{1}}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {v} _{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {v} _{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/498720fbe6f897f2b86d2cf0f37498d682932aa0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.465ex; height:2.009ex;" alt="{\displaystyle \mathbf {v} _{2}}"></span> respectively. Suppose the angular velocity with respect to <i>O</i><sub>1</sub> and O<sub>2</sub> is <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\boldsymbol {\omega }}_{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">ω<!-- ω --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\boldsymbol {\omega }}_{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2757a8a569de692029f0c02fcccc09d111f124c7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.723ex; height:2.009ex;" alt="{\displaystyle {\boldsymbol {\omega }}_{1}}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\boldsymbol {\omega }}_{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">ω<!-- ω --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\boldsymbol {\omega }}_{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c39d68264adcb3baf8fce17b536c9b5fe6a6ac8d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.723ex; height:2.009ex;" alt="{\displaystyle {\boldsymbol {\omega }}_{2}}"></span> respectively. Since point <i>P</i> and <i>O</i><sub>2</sub> have only one velocity, </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {v} _{1}+{\boldsymbol {\omega }}_{1}\times \mathbf {r} _{1}=\mathbf {v} _{2}+{\boldsymbol {\omega }}_{2}\times \mathbf {r} _{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">ω<!-- ω --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>×<!-- × --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>=</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>+</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">ω<!-- ω --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>×<!-- × --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {v} _{1}+{\boldsymbol {\omega }}_{1}\times \mathbf {r} _{1}=\mathbf {v} _{2}+{\boldsymbol {\omega }}_{2}\times \mathbf {r} _{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/454711e0869d2d0ddff23de42213492166ae410f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:29.149ex; height:2.343ex;" alt="{\displaystyle \mathbf {v} _{1}+{\boldsymbol {\omega }}_{1}\times \mathbf {r} _{1}=\mathbf {v} _{2}+{\boldsymbol {\omega }}_{2}\times \mathbf {r} _{2}}"></span></dd></dl> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {v} _{2}=\mathbf {v} _{1}+{\boldsymbol {\omega }}_{1}\times \mathbf {r} =\mathbf {v} _{1}+{\boldsymbol {\omega }}_{1}\times (\mathbf {r} _{1}-\mathbf {r} _{2})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>=</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">ω<!-- ω --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>×<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mo>=</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">ω<!-- ω --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>×<!-- × --></mo> <mo stretchy="false">(</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>−<!-- − --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {v} _{2}=\mathbf {v} _{1}+{\boldsymbol {\omega }}_{1}\times \mathbf {r} =\mathbf {v} _{1}+{\boldsymbol {\omega }}_{1}\times (\mathbf {r} _{1}-\mathbf {r} _{2})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9bb70e2bd0a87d6fc223a581086e3cbca4aeaad0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:40.465ex; height:2.843ex;" alt="{\displaystyle \mathbf {v} _{2}=\mathbf {v} _{1}+{\boldsymbol {\omega }}_{1}\times \mathbf {r} =\mathbf {v} _{1}+{\boldsymbol {\omega }}_{1}\times (\mathbf {r} _{1}-\mathbf {r} _{2})}"></span></dd></dl> <p>The above two yields that </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ({\boldsymbol {\omega }}_{2}-{\boldsymbol {\omega }}_{1})\times \mathbf {r} _{2}=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">ω<!-- ω --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>−<!-- − --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">ω<!-- ω --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>×<!-- × --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ({\boldsymbol {\omega }}_{2}-{\boldsymbol {\omega }}_{1})\times \mathbf {r} _{2}=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d3c8981792ee17133d84d34e69ecd7231943ef1c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:19.353ex; height:2.843ex;" alt="{\displaystyle ({\boldsymbol {\omega }}_{2}-{\boldsymbol {\omega }}_{1})\times \mathbf {r} _{2}=0}"></span></dd></dl> <p>Since the point <i>P</i> (and thus <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {r} _{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {r} _{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e31052adfa9397ad639d996f70a9877eac35eb7b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.156ex; height:2.009ex;" alt="{\displaystyle \mathbf {r} _{2}}"></span>) is arbitrary, it follows that </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\boldsymbol {\omega }}_{1}={\boldsymbol {\omega }}_{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">ω<!-- ω --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>=</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">ω<!-- ω --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\boldsymbol {\omega }}_{1}={\boldsymbol {\omega }}_{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/42ec11b13ca421291e2d083473b5a56fa62d538b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:8.545ex; height:2.009ex;" alt="{\displaystyle {\boldsymbol {\omega }}_{1}={\boldsymbol {\omega }}_{2}}"></span></dd></dl> <p>If the reference point is the <a class="external text" href="https://wikipedia.org/Instantaneous+axis+of+rotation">instantaneous axis of rotation</a> the expression of the velocity of a point in the rigid body will have just the angular velocity term. This is because the velocity of the instantaneous axis of rotation is zero. An example of the instantaneous axis of rotation is the hinge of a door. Another example is the point of contact of a purely rolling spherical (or, more generally, convex) rigid body. </p> <div class="mw-heading mw-heading3"><h3 id="Time_derivatives_in_two_frames">Time derivatives in two frames</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Dynamics/Kinematics/Angular_Velocity&veaction=edit&section=14" title="Edit section: Time derivatives in two frames" class="mw-editsection-visualeditor"><span>edit</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Dynamics/Kinematics/Angular_Velocity&action=edit&section=14" title="Edit section's source code: Time derivatives in two frames"><span>edit source</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><i>Content taken from <a href="https://en.wikipedia.org/wiki/Rotating_reference_frame" class="extiw" title="wikipedia:Rotating reference frame">Rotating reference frame</a></i> </p><p>Introduce the unit vectors <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\hat {\boldsymbol {\imath }}},\ {\hat {\boldsymbol {\jmath }}},\ {\hat {\boldsymbol {k}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold-italic">ı<!-- ı --></mi> <mo stretchy="false">^<!-- ^ --></mo> </mover> </mrow> </mrow> <mo>,</mo> <mtext> </mtext> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold-italic">ȷ<!-- ȷ --></mi> <mo stretchy="false">^<!-- ^ --></mo> </mover> </mrow> </mrow> <mo>,</mo> <mtext> </mtext> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold-italic">k</mi> <mo stretchy="false">^<!-- ^ --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\hat {\boldsymbol {\imath }}},\ {\hat {\boldsymbol {\jmath }}},\ {\hat {\boldsymbol {k}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/227dda128fc49046fc65b7fec4331b9434a087a9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.255ex; height:3.176ex;" alt="{\displaystyle {\hat {\boldsymbol {\imath }}},\ {\hat {\boldsymbol {\jmath }}},\ {\hat {\boldsymbol {k}}}}"></span> representing standard unit basis vectors in the rotating frame. As they rotate they will remain normalized. If we let them rotate at the speed of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Omega (t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">Ω<!-- Ω --></mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Omega (t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dcd81d597f937f23da35708c4b1e9d58b80fc87f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.327ex; height:2.843ex;" alt="{\displaystyle \Omega (t)}"></span> about an axis <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\boldsymbol {\Omega }}(t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">Ω<!-- Ω --></mi> </mrow> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\boldsymbol {\Omega }}(t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1ac5c426e970e45d0f10acbbda7f4ad7554ff5ca" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.58ex; height:2.843ex;" alt="{\displaystyle {\boldsymbol {\Omega }}(t)}"></span> then each unit vector <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\hat {\boldsymbol {u}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold-italic">u</mi> <mo stretchy="false">^<!-- ^ --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\hat {\boldsymbol {u}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2a90aba65a92ed5d98ec22961b0ce7165060c0c2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.583ex; height:2.343ex;" alt="{\displaystyle {\hat {\boldsymbol {u}}}}"></span> of the rotating coordinate system abides by the following equation: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {\mathrm {d} }{\mathrm {d} t}}{\hat {\boldsymbol {u}}}={\boldsymbol {\Omega }}(t)\times {\boldsymbol {\hat {u}}}\ .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>t</mi> </mrow> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold-italic">u</mi> <mo stretchy="false">^<!-- ^ --></mo> </mover> </mrow> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">Ω<!-- Ω --></mi> </mrow> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>×<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold-italic">u</mi> <mo mathvariant="bold" stretchy="false">^<!-- ^ --></mo> </mover> </mrow> </mrow> <mtext> </mtext> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {\mathrm {d} }{\mathrm {d} t}}{\hat {\boldsymbol {u}}}={\boldsymbol {\Omega }}(t)\times {\boldsymbol {\hat {u}}}\ .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6945922816304938c7f6ef69f9c3a7609ba71c73" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:17.88ex; height:5.509ex;" alt="{\displaystyle {\frac {\mathrm {d} }{\mathrm {d} t}}{\hat {\boldsymbol {u}}}={\boldsymbol {\Omega }}(t)\times {\boldsymbol {\hat {u}}}\ .}"></span></dd></dl> <p>Then if we have a vector function <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\boldsymbol {f}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">f</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\boldsymbol {f}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9637dfaeb3214b577efe019ad53b8269f042e306" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.45ex; height:2.509ex;" alt="{\displaystyle {\boldsymbol {f}}}"></span>, </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\boldsymbol {f}}(t)=f_{x}(t){\hat {\boldsymbol {\imath }}}+f_{y}(t){\hat {\boldsymbol {\jmath }}}+f_{z}(t){\hat {\boldsymbol {k}}}\ ,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">f</mi> </mrow> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold-italic">ı<!-- ı --></mi> <mo stretchy="false">^<!-- ^ --></mo> </mover> </mrow> </mrow> <mo>+</mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold-italic">ȷ<!-- ȷ --></mi> <mo stretchy="false">^<!-- ^ --></mo> </mover> </mrow> </mrow> <mo>+</mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold-italic">k</mi> <mo stretchy="false">^<!-- ^ --></mo> </mover> </mrow> </mrow> <mtext> </mtext> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\boldsymbol {f}}(t)=f_{x}(t){\hat {\boldsymbol {\imath }}}+f_{y}(t){\hat {\boldsymbol {\jmath }}}+f_{z}(t){\hat {\boldsymbol {k}}}\ ,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fe6fd6a2dc3b4fec7e842ba635a33e4f76627539" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:32.72ex; height:3.509ex;" alt="{\displaystyle {\boldsymbol {f}}(t)=f_{x}(t){\hat {\boldsymbol {\imath }}}+f_{y}(t){\hat {\boldsymbol {\jmath }}}+f_{z}(t){\hat {\boldsymbol {k}}}\ ,}"></span></dd></dl> <p>and we want to examine its first derivative we have (using the <a href="/w/index.php?title=Product_rule&action=edit&redlink=1" class="new" title="Product rule (page does not exist)">product rule</a> of differentiation):<sup id="cite_ref-Lanczos_4-0" class="reference"><a href="#cite_note-Lanczos-4"><span class="cite-bracket">[</span>4<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Taylor_5-0" class="reference"><a href="#cite_note-Taylor-5"><span class="cite-bracket">[</span>5<span class="cite-bracket">]</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}{\frac {\mathrm {d} }{\mathrm {d} t}}{\boldsymbol {f}}&={\frac {\mathrm {d} f_{x}}{\mathrm {d} t}}{\hat {\boldsymbol {\imath }}}+{\frac {\mathrm {d} {\hat {\boldsymbol {\imath }}}}{\mathrm {d} t}}f_{x}+{\frac {\mathrm {d} f_{y}}{\mathrm {d} t}}{\hat {\boldsymbol {\jmath }}}+{\frac {\mathrm {d} {\hat {\boldsymbol {\jmath }}}}{\mathrm {d} t}}f_{y}+{\frac {\mathrm {d} f_{z}}{\mathrm {d} t}}{\hat {\boldsymbol {k}}}+{\frac {\mathrm {d} {\hat {\boldsymbol {k}}}}{\mathrm {d} t}}f_{z}\\&={\frac {\mathrm {d} f_{x}}{\mathrm {d} t}}{\hat {\boldsymbol {\imath }}}+{\frac {\mathrm {d} f_{y}}{\mathrm {d} t}}{\hat {\boldsymbol {\jmath }}}+{\frac {\mathrm {d} f_{z}}{\mathrm {d} t}}{\hat {\boldsymbol {k}}}+\left[{\boldsymbol {\Omega }}(t)\times \left(f_{x}{\hat {\boldsymbol {\imath }}}+f_{y}{\hat {\boldsymbol {\jmath }}}+f_{z}{\hat {\boldsymbol {k}}}\right)\right]\\&=\left({\frac {\mathrm {d} {\boldsymbol {f}}}{\mathrm {d} t}}\right)_{r}+{\boldsymbol {\Omega }}(t)\times {\boldsymbol {f}}(t)\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>t</mi> </mrow> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">f</mi> </mrow> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> </mrow> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>t</mi> </mrow> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold-italic">ı<!-- ı --></mi> <mo stretchy="false">^<!-- ^ --></mo> </mover> </mrow> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold-italic">ı<!-- ı --></mi> <mo stretchy="false">^<!-- ^ --></mo> </mover> </mrow> </mrow> </mrow> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>t</mi> </mrow> </mfrac> </mrow> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> </msub> </mrow> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>t</mi> </mrow> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold-italic">ȷ<!-- ȷ --></mi> <mo stretchy="false">^<!-- ^ --></mo> </mover> </mrow> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold-italic">ȷ<!-- ȷ --></mi> <mo stretchy="false">^<!-- ^ --></mo> </mover> </mrow> </mrow> </mrow> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>t</mi> </mrow> </mfrac> </mrow> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> </msub> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> </mrow> </msub> </mrow> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>t</mi> </mrow> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold-italic">k</mi> <mo stretchy="false">^<!-- ^ --></mo> </mover> </mrow> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold-italic">k</mi> <mo stretchy="false">^<!-- ^ --></mo> </mover> </mrow> </mrow> </mrow> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>t</mi> </mrow> </mfrac> </mrow> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> </mrow> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>t</mi> </mrow> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold-italic">ı<!-- ı --></mi> <mo stretchy="false">^<!-- ^ --></mo> </mover> </mrow> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> </msub> </mrow> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>t</mi> </mrow> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold-italic">ȷ<!-- ȷ --></mi> <mo stretchy="false">^<!-- ^ --></mo> </mover> </mrow> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> </mrow> </msub> </mrow> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>t</mi> </mrow> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold-italic">k</mi> <mo stretchy="false">^<!-- ^ --></mo> </mover> </mrow> </mrow> <mo>+</mo> <mrow> <mo>[</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">Ω<!-- Ω --></mi> </mrow> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>×<!-- × --></mo> <mrow> <mo>(</mo> <mrow> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold-italic">ı<!-- ı --></mi> <mo stretchy="false">^<!-- ^ --></mo> </mover> </mrow> </mrow> <mo>+</mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold-italic">ȷ<!-- ȷ --></mi> <mo stretchy="false">^<!-- ^ --></mo> </mover> </mrow> </mrow> <mo>+</mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold-italic">k</mi> <mo stretchy="false">^<!-- ^ --></mo> </mover> </mrow> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> <mo>]</mo> </mrow> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <msub> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">f</mi> </mrow> </mrow> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>t</mi> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> </mrow> </msub> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">Ω<!-- Ω --></mi> </mrow> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>×<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">f</mi> </mrow> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}{\frac {\mathrm {d} }{\mathrm {d} t}}{\boldsymbol {f}}&={\frac {\mathrm {d} f_{x}}{\mathrm {d} t}}{\hat {\boldsymbol {\imath }}}+{\frac {\mathrm {d} {\hat {\boldsymbol {\imath }}}}{\mathrm {d} t}}f_{x}+{\frac {\mathrm {d} f_{y}}{\mathrm {d} t}}{\hat {\boldsymbol {\jmath }}}+{\frac {\mathrm {d} {\hat {\boldsymbol {\jmath }}}}{\mathrm {d} t}}f_{y}+{\frac {\mathrm {d} f_{z}}{\mathrm {d} t}}{\hat {\boldsymbol {k}}}+{\frac {\mathrm {d} {\hat {\boldsymbol {k}}}}{\mathrm {d} t}}f_{z}\\&={\frac {\mathrm {d} f_{x}}{\mathrm {d} t}}{\hat {\boldsymbol {\imath }}}+{\frac {\mathrm {d} f_{y}}{\mathrm {d} t}}{\hat {\boldsymbol {\jmath }}}+{\frac {\mathrm {d} f_{z}}{\mathrm {d} t}}{\hat {\boldsymbol {k}}}+\left[{\boldsymbol {\Omega }}(t)\times \left(f_{x}{\hat {\boldsymbol {\imath }}}+f_{y}{\hat {\boldsymbol {\jmath }}}+f_{z}{\hat {\boldsymbol {k}}}\right)\right]\\&=\left({\frac {\mathrm {d} {\boldsymbol {f}}}{\mathrm {d} t}}\right)_{r}+{\boldsymbol {\Omega }}(t)\times {\boldsymbol {f}}(t)\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/59e6d05722f244c38073c2b99f8ff1d10ac623d7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -8.32ex; margin-bottom: -0.184ex; width:62.581ex; height:18.176ex;" alt="{\displaystyle {\begin{aligned}{\frac {\mathrm {d} }{\mathrm {d} t}}{\boldsymbol {f}}&={\frac {\mathrm {d} f_{x}}{\mathrm {d} t}}{\hat {\boldsymbol {\imath }}}+{\frac {\mathrm {d} {\hat {\boldsymbol {\imath }}}}{\mathrm {d} t}}f_{x}+{\frac {\mathrm {d} f_{y}}{\mathrm {d} t}}{\hat {\boldsymbol {\jmath }}}+{\frac {\mathrm {d} {\hat {\boldsymbol {\jmath }}}}{\mathrm {d} t}}f_{y}+{\frac {\mathrm {d} f_{z}}{\mathrm {d} t}}{\hat {\boldsymbol {k}}}+{\frac {\mathrm {d} {\hat {\boldsymbol {k}}}}{\mathrm {d} t}}f_{z}\\&={\frac {\mathrm {d} f_{x}}{\mathrm {d} t}}{\hat {\boldsymbol {\imath }}}+{\frac {\mathrm {d} f_{y}}{\mathrm {d} t}}{\hat {\boldsymbol {\jmath }}}+{\frac {\mathrm {d} f_{z}}{\mathrm {d} t}}{\hat {\boldsymbol {k}}}+\left[{\boldsymbol {\Omega }}(t)\times \left(f_{x}{\hat {\boldsymbol {\imath }}}+f_{y}{\hat {\boldsymbol {\jmath }}}+f_{z}{\hat {\boldsymbol {k}}}\right)\right]\\&=\left({\frac {\mathrm {d} {\boldsymbol {f}}}{\mathrm {d} t}}\right)_{r}+{\boldsymbol {\Omega }}(t)\times {\boldsymbol {f}}(t)\end{aligned}}}"></span></dd></dl> <p>where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left({\frac {\mathrm {d} {\boldsymbol {f}}}{\mathrm {d} t}}\right)_{r}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">f</mi> </mrow> </mrow> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>t</mi> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left({\frac {\mathrm {d} {\boldsymbol {f}}}{\mathrm {d} t}}\right)_{r}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b324f2e540d10de0e1d91c70a6127c3343b424d5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:7.974ex; height:6.176ex;" alt="{\displaystyle \left({\frac {\mathrm {d} {\boldsymbol {f}}}{\mathrm {d} t}}\right)_{r}}"></span> is the rate of change of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\boldsymbol {f}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">f</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\boldsymbol {f}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9637dfaeb3214b577efe019ad53b8269f042e306" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.45ex; height:2.509ex;" alt="{\displaystyle {\boldsymbol {f}}}"></span> as observed in the rotating coordinate system. As a shorthand the differentiation is expressed as: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {\mathrm {d} }{\mathrm {d} t}}{\boldsymbol {f}}=\left[\left({\frac {\mathrm {d} }{\mathrm {d} t}}\right)_{r}+{\boldsymbol {\Omega }}(t)\times \right]{\boldsymbol {f}}\ .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>t</mi> </mrow> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">f</mi> </mrow> <mo>=</mo> <mrow> <mo>[</mo> <mrow> <msub> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>t</mi> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> </mrow> </msub> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">Ω<!-- Ω --></mi> </mrow> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>×<!-- × --></mo> </mrow> <mo>]</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">f</mi> </mrow> <mtext> </mtext> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {\mathrm {d} }{\mathrm {d} t}}{\boldsymbol {f}}=\left[\left({\frac {\mathrm {d} }{\mathrm {d} t}}\right)_{r}+{\boldsymbol {\Omega }}(t)\times \right]{\boldsymbol {f}}\ .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b203f2fe291382e3cadb8a409db26bcebae924ee" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:29.629ex; height:6.176ex;" alt="{\displaystyle {\frac {\mathrm {d} }{\mathrm {d} t}}{\boldsymbol {f}}=\left[\left({\frac {\mathrm {d} }{\mathrm {d} t}}\right)_{r}+{\boldsymbol {\Omega }}(t)\times \right]{\boldsymbol {f}}\ .}"></span></dd></dl> <p>This result is also known as the Transport Theorem in analytical dynamics and is also sometimes referred to as the Basic Kinematic Equation.<sup id="cite_ref-6" class="reference"><a href="#cite_note-6"><span class="cite-bracket">[</span>6<span class="cite-bracket">]</span></a></sup> </p><p><br /> </p> <div class="mw-heading mw-heading2"><h2 id="References">References</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Dynamics/Kinematics/Angular_Velocity&veaction=edit&section=15" title="Edit section: References" class="mw-editsection-visualeditor"><span>edit</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Dynamics/Kinematics/Angular_Velocity&action=edit&section=15" title="Edit section's source code: References"><span>edit source</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r2661605">.mw-parser-output .reflist{font-size:90%;margin-bottom:0.5em;list-style-type:decimal}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist"> <div class="mw-references-wrap"><ol class="references"> <li id="cite_note-UP1-1"><span class="mw-cite-backlink"><a href="#cite_ref-UP1_1-0">↑</a></span> <span class="reference-text"><span class="citation book">Cummings, Karen; Halliday, David (2007). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=rAfF_X9cE0EC"><i>Understanding physics</i></a>. New Delhi: John Wiley & Sons Inc., authorized reprint to Wiley – India. pp. 449, 484, 485, 487. ISBN <a href="/wiki/Special:BookSources/978-81-265-0882-2" title="Special:BookSources/978-81-265-0882-2">978-81-265-0882-2</a><span class="printonly">. <a rel="nofollow" class="external free" href="https://books.google.com/books?id=rAfF_X9cE0EC">https://books.google.com/books?id=rAfF_X9cE0EC</a></span>.</span><span class="Z3988" title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Understanding+physics&rft.aulast=Cummings&rft.aufirst=Karen&rft.au=Cummings%2C%26%2332%3BKaren&rft.au=Halliday%2C+David&rft.date=2007&rft.pages=pp.%26nbsp%3B449%2C+484%2C+485%2C+487&rft.place=New+Delhi&rft.pub=John+Wiley+%26+Sons+Inc.%2C+authorized+reprint+to+Wiley+%E2%80%93+India&rft.isbn=978-81-265-0882-2&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DrAfF_X9cE0EC&rfr_id=info:sid/en.wikipedia.org:Dynamics/Kinematics/Angular_Velocity"><span style="display: none;"> </span></span>(UP1)</span> </li> <li id="cite_note-EM1-2"><span class="mw-cite-backlink"><a href="#cite_ref-EM1_2-0">↑</a></span> <span class="reference-text"><span class="citation book">Hibbeler, Russell C. (2009). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=tOFRjXB-XvMC&q=angular+velocity&pg=PA314"><i>Engineering Mechanics</i></a>. Upper Saddle River, New Jersey: Pearson Prentice Hall. pp. 314, 153. ISBN <a href="/wiki/Special:BookSources/978-0-13-607791-6" title="Special:BookSources/978-0-13-607791-6">978-0-13-607791-6</a><span class="printonly">. <a rel="nofollow" class="external free" href="https://books.google.com/books?id=tOFRjXB-XvMC&q=angular+velocity&pg=PA314">https://books.google.com/books?id=tOFRjXB-XvMC&q=angular+velocity&pg=PA314</a></span>.</span><span class="Z3988" title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Engineering+Mechanics&rft.aulast=Hibbeler&rft.aufirst=Russell+C.&rft.au=Hibbeler%2C%26%2332%3BRussell+C.&rft.date=2009&rft.pages=pp.%26nbsp%3B314%2C+153&rft.place=Upper+Saddle+River%2C+New+Jersey&rft.pub=Pearson+Prentice+Hall&rft.isbn=978-0-13-607791-6&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DtOFRjXB-XvMC%26q%3Dangular%2Bvelocity%26pg%3DPA314&rfr_id=info:sid/en.wikipedia.org:Dynamics/Kinematics/Angular_Velocity"><span style="display: none;"> </span></span>(EM1)</span> </li> <li id="cite_note-3"><span class="mw-cite-backlink"><a href="#cite_ref-3">↑</a></span> <span class="reference-text"><a rel="nofollow" class="external text" href="http://www.vti.mod.gov.rs/ntp/rad2007/3-07/hedr/hedr.pdf">K.S.HEDRIH: Leonhard Euler (1707–1783) and rigid body dynamics</a></span> </li> <li id="cite_note-Lanczos-4"><span class="mw-cite-backlink"><a href="#cite_ref-Lanczos_4-0">↑</a></span> <span class="reference-text"><span class="citation book">Cornelius Lanczos (1986). <a rel="nofollow" class="external text" href="https://books.google.com/books?num=10&btnG=Google+Search"><i>The Variational Principles of Mechanics</i></a> (Reprint of Fourth Edition of 1970 ed.). <a href="/w/index.php?title=Dover_Publications&action=edit&redlink=1" class="new" title="Dover Publications (page does not exist)">Dover Publications</a>. pp. Chapter 4, §5. ISBN <a href="/wiki/Special:BookSources/0-486-65067-7" title="Special:BookSources/0-486-65067-7">0-486-65067-7</a><span class="printonly">. <a rel="nofollow" class="external free" href="https://books.google.com/books?num=10&btnG=Google+Search">https://books.google.com/books?num=10&btnG=Google+Search</a></span>.</span><span class="Z3988" title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=The+Variational+Principles+of+Mechanics&rft.aulast=Cornelius+Lanczos&rft.au=Cornelius+Lanczos&rft.date=1986&rft.pages=pp.%26nbsp%3BChapter+4%2C+%C2%A75&rft.edition=Reprint+of+Fourth+Edition+of+1970&rft.pub=%5B%5BDover+Publications%5D%5D&rft.isbn=0-486-65067-7&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fnum%3D10%26btnG%3DGoogle%2BSearch&rfr_id=info:sid/en.wikipedia.org:Dynamics/Kinematics/Angular_Velocity"><span style="display: none;"> </span></span></span> </li> <li id="cite_note-Taylor-5"><span class="mw-cite-backlink"><a href="#cite_ref-Taylor_5-0">↑</a></span> <span class="reference-text"><span class="citation book">John R Taylor (2005). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=P1kCtNr-pJsC&pg=PP1"><i>Classical Mechanics</i></a>. University Science Books. p. 342. ISBN <a href="/wiki/Special:BookSources/1-891389-22-X" title="Special:BookSources/1-891389-22-X">1-891389-22-X</a><span class="printonly">. <a rel="nofollow" class="external free" href="https://books.google.com/books?id=P1kCtNr-pJsC&pg=PP1">https://books.google.com/books?id=P1kCtNr-pJsC&pg=PP1</a></span>.</span><span class="Z3988" title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Classical+Mechanics&rft.aulast=John+R+Taylor&rft.au=John+R+Taylor&rft.date=2005&rft.pages=p.%26nbsp%3B342&rft.pub=University+Science+Books&rft.isbn=1-891389-22-X&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DP1kCtNr-pJsC%26pg%3DPP1&rfr_id=info:sid/en.wikipedia.org:Dynamics/Kinematics/Angular_Velocity"><span style="display: none;"> </span></span></span> </li> <li id="cite_note-6"><span class="mw-cite-backlink"><a href="#cite_ref-6">↑</a></span> <span class="reference-text"><style data-mw-deduplicate="TemplateStyles:r2527938">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free a,.mw-parser-output .citation .cs1-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited a,.mw-parser-output .id-lock-registration a,.mw-parser-output .citation .cs1-lock-limited a,.mw-parser-output .citation .cs1-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription a,.mw-parser-output .citation .cs1-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:#d33}.mw-parser-output .cs1-visible-error{color:#d33}.mw-parser-output .cs1-maint{display:none;color:#3a3;margin-left:0.3em}.mw-parser-output .cs1-format{font-size:95%}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}</style><cite id="CITEREFCorless" class="citation web cs1">Corless, Martin. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20121024121222/https://engineering.purdue.edu/AAE/Academics/Courses/aae203/2003/fall/aae203F03supp.pdf">"Kinematics"</a> <span class="cs1-format">(PDF)</span>. <i>Aeromechanics I Course Notes</i>. <a href="/w/index.php?title=Purdue_University&action=edit&redlink=1" class="new" title="Purdue University (page does not exist)">Purdue University</a>. p. 213. Archived from <a rel="nofollow" class="external text" href="https://engineering.purdue.edu/AAE/Academics/Courses/aae203/2003/fall/aae203F03supp.pdf">the original</a> <span class="cs1-format">(PDF)</span> on 24 October 2012<span class="reference-accessdate">. Retrieved <span class="nowrap">18 July</span> 2011</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=Aeromechanics+I+Course+Notes&rft.atitle=Kinematics&rft.pages=213&rft.aulast=Corless&rft.aufirst=Martin&rft_id=https%3A%2F%2Fengineering.purdue.edu%2FAAE%2FAcademics%2FCourses%2Faae203%2F2003%2Ffall%2Faae203F03supp.pdf&rfr_id=info%3Asid%2Fen.wikiversity.org%3ADynamics%2FKinematics%2FAngular+Velocity" class="Z3988"></span></span> </li> </ol></div></div> <!-- NewPP limit report Parsed by mw‐web.codfw.main‐588896774d‐svbpq Cached time: 20241112042914 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 0.243 seconds Real time usage: 0.529 seconds Preprocessor visited node count: 3187/1000000 Post‐expand include size: 21185/2097152 bytes Template argument size: 6184/2097152 bytes Highest expansion depth: 15/100 Expensive parser function count: 0/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 15190/5000000 bytes Lua time usage: 0.052/10.000 seconds Lua memory usage: 2647825/52428800 bytes Number of Wikibase entities loaded: 0/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 145.827 1 -total 96.60% 140.868 1 Template:Reflist 54.63% 79.666 1 Template:Cite_web 24.26% 35.372 4 Template:Cite_book 21.48% 31.330 4 Template:Citation/core 4.94% 7.200 4 Template:Citation/identifier 1.95% 2.848 4 Template:Citation/make_link 1.58% 2.310 4 Template:Only_in_print 1.58% 2.299 1 Template:Nowrap 1.37% 1.997 1 Template:Main_other --> <!-- Saved in parser cache with key enwikiversity:pcache:idhash:271803-0!canonical and timestamp 20241112042914 and revision id 2254869. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikiversity.org/w/index.php?title=Dynamics/Kinematics/Angular_Velocity&oldid=2254869">https://en.wikiversity.org/w/index.php?title=Dynamics/Kinematics/Angular_Velocity&oldid=2254869</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Special:Categories" title="Special:Categories">Categories</a>: <ul><li><a href="/w/index.php?title=Category:Angle&action=edit&redlink=1" class="new" title="Category:Angle (page does not exist)">Angle</a></li><li><a href="/wiki/Category:Physical_quantities" title="Category:Physical quantities">Physical quantities</a></li><li><a href="/w/index.php?title=Category:Rotational_symmetry&action=edit&redlink=1" class="new" title="Category:Rotational symmetry (page does not exist)">Rotational symmetry</a></li><li><a href="/w/index.php?title=Category:Temporal_rates&action=edit&redlink=1" class="new" title="Category:Temporal rates (page does not exist)">Temporal rates</a></li><li><a href="/wiki/Category:Tensors" title="Category:Tensors">Tensors</a></li><li><a href="/wiki/Category:Velocity" title="Category:Velocity">Velocity</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 2 February 2021, at 18:29.</li> <li id="footer-info-copyright">Text is available under the <a rel="nofollow" class="external text" href="//creativecommons.org/licenses/by-sa/4.0/">Creative Commons Attribution-ShareAlike License</a>; additional terms may apply. By using this site, you agree to the <a class="external text" href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use">Terms of Use</a> and <a class="external text" href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy Policy.</a></li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikiversity:About">About Wikiversity</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikiversity:General_disclaimer">Disclaimers</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikiversity.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikiversity.org/w/index.php?title=Dynamics/Kinematics/Angular_Velocity&mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-74cc59cb9d-jpjkc","wgBackendResponseTime":110,"wgPageParseReport":{"limitreport":{"cputime":"0.243","walltime":"0.529","ppvisitednodes":{"value":3187,"limit":1000000},"postexpandincludesize":{"value":21185,"limit":2097152},"templateargumentsize":{"value":6184,"limit":2097152},"expansiondepth":{"value":15,"limit":100},"expensivefunctioncount":{"value":0,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":15190,"limit":5000000},"entityaccesscount":{"value":0,"limit":400},"timingprofile":["100.00% 145.827 1 -total"," 96.60% 140.868 1 Template:Reflist"," 54.63% 79.666 1 Template:Cite_web"," 24.26% 35.372 4 Template:Cite_book"," 21.48% 31.330 4 Template:Citation/core"," 4.94% 7.200 4 Template:Citation/identifier"," 1.95% 2.848 4 Template:Citation/make_link"," 1.58% 2.310 4 Template:Only_in_print"," 1.58% 2.299 1 Template:Nowrap"," 1.37% 1.997 1 Template:Main_other"]},"scribunto":{"limitreport-timeusage":{"value":"0.052","limit":"10.000"},"limitreport-memusage":{"value":2647825,"limit":52428800}},"cachereport":{"origin":"mw-web.codfw.main-588896774d-svbpq","timestamp":"20241112042914","ttl":2592000,"transientcontent":false}}});});</script> </body> </html>