CINXE.COM
List of integrals of rational functions - Wikipedia
<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>List of integrals of rational functions - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy", "wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"d3eeef1c-021d-47b4-a8b8-97ed7f6574e7","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"List_of_integrals_of_rational_functions","wgTitle":"List of integrals of rational functions","wgCurRevisionId":1258567263,"wgRevisionId":1258567263,"wgArticleId":234854,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["Articles with short description","Short description is different from Wikidata","Articles needing additional references from November 2024","All articles needing additional references","Articles lacking reliable references from February 2021","All articles lacking reliable references","Lists of integrals"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName": "List_of_integrals_of_rational_functions","wgRelevantArticleId":234854,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":30000,"wgRelatedArticlesCompat":[],"wgCentralAuthMobileDomain":false,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q484623","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness", "fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.math.styles":"ready","ext.cite.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","jquery.makeCollapsible.styles":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","site","mediawiki.page.ready","jquery.makeCollapsible","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp", "ext.gadget.ReferenceTooltips","ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cjquery.makeCollapsible.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&only=styles&skin=vector-2022"> <script async="" src="/w/load.php?lang=en&modules=startup&only=scripts&raw=1&skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&modules=site.styles&only=styles&skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.4"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="List of integrals of rational functions - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/List_of_integrals_of_rational_functions"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=List_of_integrals_of_rational_functions&action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/List_of_integrals_of_rational_functions"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-List_of_integrals_of_rational_functions rootpage-List_of_integrals_of_rational_functions skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page's font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_en.wikipedia.org&uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&returnto=List+of+integrals+of+rational+functions" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&returnto=List+of+integrals+of+rational+functions" title="You're encouraged to log in; however, it's not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_en.wikipedia.org&uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&returnto=List+of+integrals+of+rational+functions" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&returnto=List+of+integrals+of+rational+functions" title="You're encouraged to log in; however, it's not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contents" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contents</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(Top)</div> </a> </li> <li id="toc-Miscellaneous_integrands" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Miscellaneous_integrands"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Miscellaneous integrands</span> </div> </a> <ul id="toc-Miscellaneous_integrands-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Integrands_of_the_form_xm(a_x_+_b)n" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Integrands_of_the_form_xm(a_x_+_b)n"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Integrands of the form <i>x</i><sup><i>m</i></sup>(<i>a x</i> + <i>b</i>)<sup><i>n</i></sup></span> </div> </a> <ul id="toc-Integrands_of_the_form_xm(a_x_+_b)n-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Integrands_of_the_form_xm_/_(a_x2_+_b_x_+_c)n" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Integrands_of_the_form_xm_/_(a_x2_+_b_x_+_c)n"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Integrands of the form <i>x</i><sup><i>m</i></sup> / (<i>a x</i><sup>2</sup> + <i>b x</i> + <i>c</i>)<sup><i>n</i></sup></span> </div> </a> <ul id="toc-Integrands_of_the_form_xm_/_(a_x2_+_b_x_+_c)n-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Integrands_of_the_form_xm_(a_+_b_xn)p" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Integrands_of_the_form_xm_(a_+_b_xn)p"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Integrands of the form <i>x</i><sup><i>m</i></sup> (<i>a</i> + <i>b x</i><sup><i>n</i></sup>)<sup><i>p</i></sup></span> </div> </a> <ul id="toc-Integrands_of_the_form_xm_(a_+_b_xn)p-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Integrands_of_the_form_(A_+_B_x)_(a_+_b_x)m_(c_+_d_x)n_(e_+_f_x)p" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Integrands_of_the_form_(A_+_B_x)_(a_+_b_x)m_(c_+_d_x)n_(e_+_f_x)p"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Integrands of the form (<i>A</i> + <i>B x</i>) (<i>a</i> + <i>b x</i>)<sup><i>m</i></sup> (<i>c</i> + <i>d x</i>)<sup><i>n</i></sup> (<i>e</i> + <i>f x</i>)<sup><i>p</i></sup></span> </div> </a> <ul id="toc-Integrands_of_the_form_(A_+_B_x)_(a_+_b_x)m_(c_+_d_x)n_(e_+_f_x)p-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Integrands_of_the_form_xm_(A_+_B_xn)_(a_+_b_xn)p_(c_+_d_xn)q" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Integrands_of_the_form_xm_(A_+_B_xn)_(a_+_b_xn)p_(c_+_d_xn)q"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>Integrands of the form <i>x</i><sup><i>m</i></sup> (<i>A</i> + <i>B x</i><sup><i>n</i></sup>) (<i>a</i> + <i>b x</i><sup><i>n</i></sup>)<sup><i>p</i></sup> (<i>c</i> + <i>d x</i><sup><i>n</i></sup>)<sup><i>q</i></sup></span> </div> </a> <ul id="toc-Integrands_of_the_form_xm_(A_+_B_xn)_(a_+_b_xn)p_(c_+_d_xn)q-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Integrands_of_the_form_(d_+_e_x)m_(a_+_b_x_+_c_x2)p_when_b2_−_4_a_c_=_0" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Integrands_of_the_form_(d_+_e_x)m_(a_+_b_x_+_c_x2)p_when_b2_−_4_a_c_=_0"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>Integrands of the form (<i>d</i> + <i>e x</i>)<sup><i>m</i></sup> (<i>a</i> + <i>b x</i> + <i>c x</i><sup>2</sup>)<sup><i>p</i></sup> when <i>b</i><sup>2</sup> − 4 <i>a c</i> = 0</span> </div> </a> <ul id="toc-Integrands_of_the_form_(d_+_e_x)m_(a_+_b_x_+_c_x2)p_when_b2_−_4_a_c_=_0-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Integrands_of_the_form_(d_+_e_x)m_(A_+_B_x)_(a_+_b_x_+_c_x2)p" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Integrands_of_the_form_(d_+_e_x)m_(A_+_B_x)_(a_+_b_x_+_c_x2)p"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>Integrands of the form (<i>d</i> + <i>e x</i>)<sup><i>m</i></sup> (<i>A</i> + <i>B x</i>) (<i>a</i> + <i>b x</i> + <i>c x</i><sup>2</sup>)<sup><i>p</i></sup></span> </div> </a> <ul id="toc-Integrands_of_the_form_(d_+_e_x)m_(A_+_B_x)_(a_+_b_x_+_c_x2)p-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Integrands_of_the_form_xm_(a_+_b_xn_+_c_x2n)p_when_b2_−_4_a_c_=_0" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Integrands_of_the_form_xm_(a_+_b_xn_+_c_x2n)p_when_b2_−_4_a_c_=_0"> <div class="vector-toc-text"> <span class="vector-toc-numb">9</span> <span>Integrands of the form <i>x</i><sup><i>m</i></sup> (<i>a</i> + <i>b x</i><sup><i>n</i></sup> + <i>c x</i><sup>2<i>n</i></sup>)<sup><i>p</i></sup> when <i>b</i><sup>2</sup> − 4 <i>a c</i> = 0</span> </div> </a> <ul id="toc-Integrands_of_the_form_xm_(a_+_b_xn_+_c_x2n)p_when_b2_−_4_a_c_=_0-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Integrands_of_the_form_xm_(A_+_B_xn)_(a_+_b_xn_+_c_x2n)p" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Integrands_of_the_form_xm_(A_+_B_xn)_(a_+_b_xn_+_c_x2n)p"> <div class="vector-toc-text"> <span class="vector-toc-numb">10</span> <span>Integrands of the form <i>x</i><sup><i>m</i></sup> (<i>A</i> + <i>B x</i><sup><i>n</i></sup>) (<i>a</i> + <i>b x</i><sup><i>n</i></sup> + <i>c x</i><sup>2<i>n</i></sup>)<sup><i>p</i></sup></span> </div> </a> <ul id="toc-Integrands_of_the_form_xm_(A_+_B_xn)_(a_+_b_xn_+_c_x2n)p-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-References" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#References"> <div class="vector-toc-text"> <span class="vector-toc-numb">11</span> <span>References</span> </div> </a> <ul id="toc-References-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">List of integrals of rational functions</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Go to an article in another language. Available in 34 languages" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-34" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">34 languages</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D9%82%D8%A7%D8%A6%D9%85%D8%A9_%D8%AA%D9%83%D8%A7%D9%85%D9%84%D8%A7%D8%AA_%D8%A7%D9%84%D8%AF%D9%88%D8%A7%D9%84_%D8%A7%D9%84%D9%83%D8%B3%D8%B1%D9%8A%D8%A9" title="قائمة تكاملات الدوال الكسرية – Arabic" lang="ar" hreflang="ar" data-title="قائمة تكاملات الدوال الكسرية" data-language-autonym="العربية" data-language-local-name="Arabic" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-bg mw-list-item"><a href="https://bg.wikipedia.org/wiki/%D0%A2%D0%B0%D0%B1%D0%BB%D0%B8%D1%86%D0%B0_%D1%81_%D0%B8%D0%BD%D1%82%D0%B5%D0%B3%D1%80%D0%B0%D0%BB%D0%B8_%D0%BD%D0%B0_%D1%80%D0%B0%D1%86%D0%B8%D0%BE%D0%BD%D0%B0%D0%BB%D0%BD%D0%B8_%D1%84%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D0%B8" title="Таблица с интеграли на рационални функции – Bulgarian" lang="bg" hreflang="bg" data-title="Таблица с интеграли на рационални функции" data-language-autonym="Български" data-language-local-name="Bulgarian" class="interlanguage-link-target"><span>Български</span></a></li><li class="interlanguage-link interwiki-bs mw-list-item"><a href="https://bs.wikipedia.org/wiki/Spisak_integrala_racionalnih_funkcija" title="Spisak integrala racionalnih funkcija – Bosnian" lang="bs" hreflang="bs" data-title="Spisak integrala racionalnih funkcija" data-language-autonym="Bosanski" data-language-local-name="Bosnian" class="interlanguage-link-target"><span>Bosanski</span></a></li><li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/Llista_d%27integrals_de_funcions_racionals" title="Llista d'integrals de funcions racionals – Catalan" lang="ca" hreflang="ca" data-title="Llista d'integrals de funcions racionals" data-language-autonym="Català" data-language-local-name="Catalan" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-cv mw-list-item"><a href="https://cv.wikipedia.org/wiki/%D0%A0%D0%B0%D1%86%D0%B8%D0%BE%D0%BD%D0%B0%D0%BB%D0%BB%C4%83_%D1%84%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D1%81%D0%B5%D0%BD%D1%87%D0%B5%D0%BD_%D0%B8%D0%BB%D0%BD%C4%95_%D0%B8%D0%BD%D1%82%D0%B5%D0%B3%D1%80%D0%B0%D0%BB%D1%81%D0%B5%D0%BD_%D0%B9%D1%8B%D1%88%C4%95" title="Рационаллă функцисенчен илнĕ интегралсен йышĕ – Chuvash" lang="cv" hreflang="cv" data-title="Рационаллă функцисенчен илнĕ интегралсен йышĕ" data-language-autonym="Чӑвашла" data-language-local-name="Chuvash" class="interlanguage-link-target"><span>Чӑвашла</span></a></li><li class="interlanguage-link interwiki-cs mw-list-item"><a href="https://cs.wikipedia.org/wiki/Seznam_integr%C3%A1l%C5%AF_racion%C3%A1ln%C3%ADch_funkc%C3%AD" title="Seznam integrálů racionálních funkcí – Czech" lang="cs" hreflang="cs" data-title="Seznam integrálů racionálních funkcí" data-language-autonym="Čeština" data-language-local-name="Czech" class="interlanguage-link-target"><span>Čeština</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Anexo:Integrales_de_funciones_racionales" title="Anexo:Integrales de funciones racionales – Spanish" lang="es" hreflang="es" data-title="Anexo:Integrales de funciones racionales" data-language-autonym="Español" data-language-local-name="Spanish" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-eo mw-list-item"><a href="https://eo.wikipedia.org/wiki/Listo_de_integraloj_de_racionalaj_funkcioj" title="Listo de integraloj de racionalaj funkcioj – Esperanto" lang="eo" hreflang="eo" data-title="Listo de integraloj de racionalaj funkcioj" data-language-autonym="Esperanto" data-language-local-name="Esperanto" class="interlanguage-link-target"><span>Esperanto</span></a></li><li class="interlanguage-link interwiki-eu mw-list-item"><a href="https://eu.wikipedia.org/wiki/Zerrenda:Funtzio_arrazionalen_integralak" title="Zerrenda:Funtzio arrazionalen integralak – Basque" lang="eu" hreflang="eu" data-title="Zerrenda:Funtzio arrazionalen integralak" data-language-autonym="Euskara" data-language-local-name="Basque" class="interlanguage-link-target"><span>Euskara</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D9%81%D9%87%D8%B1%D8%B3%D8%AA_%D8%A7%D9%86%D8%AA%DA%AF%D8%B1%D8%A7%D9%84_%D8%AA%D9%88%D8%A7%D8%A8%D8%B9_%DA%AF%D9%88%DB%8C%D8%A7" title="فهرست انتگرال توابع گویا – Persian" lang="fa" hreflang="fa" data-title="فهرست انتگرال توابع گویا" data-language-autonym="فارسی" data-language-local-name="Persian" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Primitives_de_fonctions_rationnelles" title="Primitives de fonctions rationnelles – French" lang="fr" hreflang="fr" data-title="Primitives de fonctions rationnelles" data-language-autonym="Français" data-language-local-name="French" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-gl mw-list-item"><a href="https://gl.wikipedia.org/wiki/Lista_de_integrais_de_funci%C3%B3ns_racionais" title="Lista de integrais de funcións racionais – Galician" lang="gl" hreflang="gl" data-title="Lista de integrais de funcións racionais" data-language-autonym="Galego" data-language-local-name="Galician" class="interlanguage-link-target"><span>Galego</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%EC%9C%A0%EB%A6%AC%ED%95%A8%EC%88%98_%EC%A0%81%EB%B6%84%ED%91%9C" title="유리함수 적분표 – Korean" lang="ko" hreflang="ko" data-title="유리함수 적분표" data-language-autonym="한국어" data-language-local-name="Korean" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-hy mw-list-item"><a href="https://hy.wikipedia.org/wiki/%D5%8C%D5%A1%D6%81%D5%AB%D5%B8%D5%B6%D5%A1%D5%AC_%D6%86%D5%B8%D6%82%D5%B6%D5%AF%D6%81%D5%AB%D5%A1%D5%B6%D5%A5%D6%80%D5%AB_%D5%AB%D5%B6%D5%BF%D5%A5%D5%A3%D6%80%D5%A1%D5%AC%D5%B6%D5%A5%D6%80%D5%AB_%D6%81%D5%A1%D5%B6%D5%AF" title="Ռացիոնալ ֆունկցիաների ինտեգրալների ցանկ – Armenian" lang="hy" hreflang="hy" data-title="Ռացիոնալ ֆունկցիաների ինտեգրալների ցանկ" data-language-autonym="Հայերեն" data-language-local-name="Armenian" class="interlanguage-link-target"><span>Հայերեն</span></a></li><li class="interlanguage-link interwiki-hi mw-list-item"><a href="https://hi.wikipedia.org/wiki/%E0%A4%AA%E0%A4%B0%E0%A4%BF%E0%A4%AE%E0%A5%87%E0%A4%AF_%E0%A4%AB%E0%A4%B2%E0%A4%A8%E0%A5%8B%E0%A4%82_%E0%A4%95%E0%A5%87_%E0%A4%B8%E0%A4%AE%E0%A4%BE%E0%A4%95%E0%A4%B2_%E0%A4%95%E0%A5%80_%E0%A4%B8%E0%A5%82%E0%A4%9A%E0%A5%80" title="परिमेय फलनों के समाकल की सूची – Hindi" lang="hi" hreflang="hi" data-title="परिमेय फलनों के समाकल की सूची" data-language-autonym="हिन्दी" data-language-local-name="Hindi" class="interlanguage-link-target"><span>हिन्दी</span></a></li><li class="interlanguage-link interwiki-hr mw-list-item"><a href="https://hr.wikipedia.org/wiki/Popis_integrala_racionalnih_funkcija" title="Popis integrala racionalnih funkcija – Croatian" lang="hr" hreflang="hr" data-title="Popis integrala racionalnih funkcija" data-language-autonym="Hrvatski" data-language-local-name="Croatian" class="interlanguage-link-target"><span>Hrvatski</span></a></li><li class="interlanguage-link interwiki-id mw-list-item"><a href="https://id.wikipedia.org/wiki/Daftar_integral_dari_fungsi_rasional" title="Daftar integral dari fungsi rasional – Indonesian" lang="id" hreflang="id" data-title="Daftar integral dari fungsi rasional" data-language-autonym="Bahasa Indonesia" data-language-local-name="Indonesian" class="interlanguage-link-target"><span>Bahasa Indonesia</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Tavola_degli_integrali_indefiniti_di_funzioni_razionali" title="Tavola degli integrali indefiniti di funzioni razionali – Italian" lang="it" hreflang="it" data-title="Tavola degli integrali indefiniti di funzioni razionali" data-language-autonym="Italiano" data-language-local-name="Italian" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-mk mw-list-item"><a href="https://mk.wikipedia.org/wiki/%D0%A1%D0%BF%D0%B8%D1%81%D0%BE%D0%BA_%D0%BD%D0%B0_%D0%B8%D0%BD%D1%82%D0%B5%D0%B3%D1%80%D0%B0%D0%BB%D0%B8_%D0%BD%D0%B0_%D1%80%D0%B0%D1%86%D0%B8%D0%BE%D0%BD%D0%B0%D0%BB%D0%BD%D0%B8_%D1%84%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D0%B8" title="Список на интеграли на рационални функции – Macedonian" lang="mk" hreflang="mk" data-title="Список на интеграли на рационални функции" data-language-autonym="Македонски" data-language-local-name="Macedonian" class="interlanguage-link-target"><span>Македонски</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Lijst_van_integralen_van_rationale_functies" title="Lijst van integralen van rationale functies – Dutch" lang="nl" hreflang="nl" data-title="Lijst van integralen van rationale functies" data-language-autonym="Nederlands" data-language-local-name="Dutch" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E6%9C%89%E7%90%86%E9%96%A2%E6%95%B0%E3%81%AE%E5%8E%9F%E5%A7%8B%E9%96%A2%E6%95%B0%E3%81%AE%E4%B8%80%E8%A6%A7" title="有理関数の原始関数の一覧 – Japanese" lang="ja" hreflang="ja" data-title="有理関数の原始関数の一覧" data-language-autonym="日本語" data-language-local-name="Japanese" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-km mw-list-item"><a href="https://km.wikipedia.org/wiki/%E1%9E%8F%E1%9E%B6%E1%9E%9A%E1%9E%B6%E1%9E%84%E1%9E%A2%E1%9E%B6%E1%9F%86%E1%9E%84%E1%9E%8F%E1%9F%81%E1%9E%80%E1%9F%92%E1%9E%9A%E1%9E%B6%E1%9E%9B%E1%9E%93%E1%9F%83%E1%9E%A2%E1%9E%93%E1%9E%BB%E1%9E%82%E1%9E%98%E1%9E%93%E1%9F%8D%E1%9E%9F%E1%9E%93%E1%9E%B7%E1%9E%91%E1%9E%B6%E1%9E%93" title="តារាងអាំងតេក្រាលនៃអនុគមន៍សនិទាន – Khmer" lang="km" hreflang="km" data-title="តារាងអាំងតេក្រាលនៃអនុគមន៍សនិទាន" data-language-autonym="ភាសាខ្មែរ" data-language-local-name="Khmer" class="interlanguage-link-target"><span>ភាសាខ្មែរ</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/Lista_de_integrais_de_fun%C3%A7%C3%B5es_racionais" title="Lista de integrais de funções racionais – Portuguese" lang="pt" hreflang="pt" data-title="Lista de integrais de funções racionais" data-language-autonym="Português" data-language-local-name="Portuguese" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-ro mw-list-item"><a href="https://ro.wikipedia.org/wiki/Primitivele_func%C8%9Biilor_ra%C8%9Bionale" title="Primitivele funcțiilor raționale – Romanian" lang="ro" hreflang="ro" data-title="Primitivele funcțiilor raționale" data-language-autonym="Română" data-language-local-name="Romanian" class="interlanguage-link-target"><span>Română</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%A1%D0%BF%D0%B8%D1%81%D0%BE%D0%BA_%D0%B8%D0%BD%D1%82%D0%B5%D0%B3%D1%80%D0%B0%D0%BB%D0%BE%D0%B2_%D0%BE%D1%82_%D1%80%D0%B0%D1%86%D0%B8%D0%BE%D0%BD%D0%B0%D0%BB%D1%8C%D0%BD%D1%8B%D1%85_%D1%84%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D0%B9" title="Список интегралов от рациональных функций – Russian" lang="ru" hreflang="ru" data-title="Список интегралов от рациональных функций" data-language-autonym="Русский" data-language-local-name="Russian" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-sl mw-list-item"><a href="https://sl.wikipedia.org/wiki/Seznam_integralov_racionalnih_funkcij" title="Seznam integralov racionalnih funkcij – Slovenian" lang="sl" hreflang="sl" data-title="Seznam integralov racionalnih funkcij" data-language-autonym="Slovenščina" data-language-local-name="Slovenian" class="interlanguage-link-target"><span>Slovenščina</span></a></li><li class="interlanguage-link interwiki-ckb mw-list-item"><a href="https://ckb.wikipedia.org/wiki/%D9%BE%DB%8E%D8%B1%D8%B3%D8%AA%DB%8C_%D8%AA%DB%95%D9%88%D8%A7%D9%88%DA%A9%D8%A7%D8%B1%DB%8C_%D9%86%DB%95%D8%AE%D8%B4%DB%95_%DA%95%DB%8E%DA%98%DB%95%DB%8C%DB%8C%DB%95%DA%A9%D8%A7%D9%86" title="پێرستی تەواوکاری نەخشە ڕێژەییەکان – Central Kurdish" lang="ckb" hreflang="ckb" data-title="پێرستی تەواوکاری نەخشە ڕێژەییەکان" data-language-autonym="کوردی" data-language-local-name="Central Kurdish" class="interlanguage-link-target"><span>کوردی</span></a></li><li class="interlanguage-link interwiki-sr mw-list-item"><a href="https://sr.wikipedia.org/wiki/%D0%A1%D0%BF%D0%B8%D1%81%D0%B0%D0%BA_%D0%B8%D0%BD%D1%82%D0%B5%D0%B3%D1%80%D0%B0%D0%BB%D0%B0_%D1%80%D0%B0%D1%86%D0%B8%D0%BE%D0%BD%D0%B0%D0%BB%D0%BD%D0%B8%D1%85_%D1%84%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D1%98%D0%B0" title="Списак интеграла рационалних функција – Serbian" lang="sr" hreflang="sr" data-title="Списак интеграла рационалних функција" data-language-autonym="Српски / srpski" data-language-local-name="Serbian" class="interlanguage-link-target"><span>Српски / srpski</span></a></li><li class="interlanguage-link interwiki-sh mw-list-item"><a href="https://sh.wikipedia.org/wiki/Lista_integrala_racionalnih_funkcija" title="Lista integrala racionalnih funkcija – Serbo-Croatian" lang="sh" hreflang="sh" data-title="Lista integrala racionalnih funkcija" data-language-autonym="Srpskohrvatski / српскохрватски" data-language-local-name="Serbo-Croatian" class="interlanguage-link-target"><span>Srpskohrvatski / српскохрватски</span></a></li><li class="interlanguage-link interwiki-ta mw-list-item"><a href="https://ta.wikipedia.org/wiki/%E0%AE%B5%E0%AE%BF%E0%AE%95%E0%AE%BF%E0%AE%A4%E0%AE%AE%E0%AF%81%E0%AE%B1%E0%AF%81_%E0%AE%9A%E0%AE%BE%E0%AE%B0%E0%AF%8D%E0%AE%AA%E0%AF%81%E0%AE%95%E0%AE%B3%E0%AE%BF%E0%AE%A9%E0%AF%8D_%E0%AE%A4%E0%AF%8A%E0%AE%95%E0%AF%88%E0%AE%AF%E0%AF%80%E0%AE%9F%E0%AF%81%E0%AE%95%E0%AE%B3%E0%AE%BF%E0%AE%A9%E0%AF%8D_%E0%AE%AA%E0%AE%9F%E0%AF%8D%E0%AE%9F%E0%AE%BF%E0%AE%AF%E0%AE%B2%E0%AF%8D" title="விகிதமுறு சார்புகளின் தொகையீடுகளின் பட்டியல் – Tamil" lang="ta" hreflang="ta" data-title="விகிதமுறு சார்புகளின் தொகையீடுகளின் பட்டியல்" data-language-autonym="தமிழ்" data-language-local-name="Tamil" class="interlanguage-link-target"><span>தமிழ்</span></a></li><li class="interlanguage-link interwiki-tr mw-list-item"><a href="https://tr.wikipedia.org/wiki/Rasyonel_fonksiyonlar%C4%B1n_integralleri" title="Rasyonel fonksiyonların integralleri – Turkish" lang="tr" hreflang="tr" data-title="Rasyonel fonksiyonların integralleri" data-language-autonym="Türkçe" data-language-local-name="Turkish" class="interlanguage-link-target"><span>Türkçe</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%A2%D0%B0%D0%B1%D0%BB%D0%B8%D1%86%D1%8F_%D1%96%D0%BD%D1%82%D0%B5%D0%B3%D1%80%D0%B0%D0%BB%D1%96%D0%B2_%D1%80%D0%B0%D1%86%D1%96%D0%BE%D0%BD%D0%B0%D0%BB%D1%8C%D0%BD%D0%B8%D1%85_%D1%84%D1%83%D0%BD%D0%BA%D1%86%D1%96%D0%B9" title="Таблиця інтегралів раціональних функцій – Ukrainian" lang="uk" hreflang="uk" data-title="Таблиця інтегралів раціональних функцій" data-language-autonym="Українська" data-language-local-name="Ukrainian" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-vi mw-list-item"><a href="https://vi.wikipedia.org/wiki/Danh_s%C3%A1ch_t%C3%ADch_ph%C3%A2n_v%E1%BB%9Bi_ph%C3%A2n_th%E1%BB%A9c" title="Danh sách tích phân với phân thức – Vietnamese" lang="vi" hreflang="vi" data-title="Danh sách tích phân với phân thức" data-language-autonym="Tiếng Việt" data-language-local-name="Vietnamese" class="interlanguage-link-target"><span>Tiếng Việt</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E6%9C%89%E7%90%86%E5%87%BD%E6%95%B0%E7%A7%AF%E5%88%86%E8%A1%A8" title="有理函数积分表 – Chinese" lang="zh" hreflang="zh" data-title="有理函数积分表" data-language-autonym="中文" data-language-local-name="Chinese" class="interlanguage-link-target"><span>中文</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q484623#sitelinks-wikipedia" title="Edit interlanguage links" class="wbc-editpage">Edit links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/List_of_integrals_of_rational_functions" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:List_of_integrals_of_rational_functions" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/List_of_integrals_of_rational_functions"><span>Read</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=List_of_integrals_of_rational_functions&action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=List_of_integrals_of_rational_functions&action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/List_of_integrals_of_rational_functions"><span>Read</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=List_of_integrals_of_rational_functions&action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=List_of_integrals_of_rational_functions&action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/List_of_integrals_of_rational_functions" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/List_of_integrals_of_rational_functions" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages" title="A list of all special pages [q]" accesskey="q"><span>Special pages</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=List_of_integrals_of_rational_functions&oldid=1258567263" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=List_of_integrals_of_rational_functions&action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&page=List_of_integrals_of_rational_functions&id=1258567263&wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FList_of_integrals_of_rational_functions"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FList_of_integrals_of_rational_functions"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&page=List_of_integrals_of_rational_functions&action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=List_of_integrals_of_rational_functions&printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q484623" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><p class="mw-empty-elt"> </p> <style data-mw-deduplicate="TemplateStyles:r1251242444">.mw-parser-output .ambox{border:1px solid #a2a9b1;border-left:10px solid #36c;background-color:#fbfbfb;box-sizing:border-box}.mw-parser-output .ambox+link+.ambox,.mw-parser-output .ambox+link+style+.ambox,.mw-parser-output .ambox+link+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+style+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+link+.ambox{margin-top:-1px}html body.mediawiki .mw-parser-output .ambox.mbox-small-left{margin:4px 1em 4px 0;overflow:hidden;width:238px;border-collapse:collapse;font-size:88%;line-height:1.25em}.mw-parser-output .ambox-speedy{border-left:10px solid #b32424;background-color:#fee7e6}.mw-parser-output .ambox-delete{border-left:10px solid #b32424}.mw-parser-output .ambox-content{border-left:10px solid #f28500}.mw-parser-output .ambox-style{border-left:10px solid #fc3}.mw-parser-output .ambox-move{border-left:10px solid #9932cc}.mw-parser-output .ambox-protection{border-left:10px solid #a2a9b1}.mw-parser-output .ambox .mbox-text{border:none;padding:0.25em 0.5em;width:100%}.mw-parser-output .ambox .mbox-image{border:none;padding:2px 0 2px 0.5em;text-align:center}.mw-parser-output .ambox .mbox-imageright{border:none;padding:2px 0.5em 2px 0;text-align:center}.mw-parser-output .ambox .mbox-empty-cell{border:none;padding:0;width:1px}.mw-parser-output .ambox .mbox-image-div{width:52px}@media(min-width:720px){.mw-parser-output .ambox{margin:0 10%}}@media print{body.ns-0 .mw-parser-output .ambox{display:none!important}}</style><table class="box-One_source plainlinks metadata ambox ambox-content ambox-one_source" role="presentation"><tbody><tr><td class="mbox-image"><div class="mbox-image-div"><span typeof="mw:File"><a href="/wiki/File:Question_book-new.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/en/thumb/9/99/Question_book-new.svg/50px-Question_book-new.svg.png" decoding="async" width="50" height="39" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/9/99/Question_book-new.svg/75px-Question_book-new.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/9/99/Question_book-new.svg/100px-Question_book-new.svg.png 2x" data-file-width="512" data-file-height="399" /></a></span></div></td><td class="mbox-text"><div class="mbox-text-span">This article <b>relies largely or entirely on a <a href="/wiki/Wikipedia:Articles_with_a_single_source" title="Wikipedia:Articles with a single source">single source</a></b>.<span class="hide-when-compact"> Relevant discussion may be found on the <a href="/wiki/Talk:List_of_integrals_of_rational_functions##" title="Talk:List of integrals of rational functions">talk page</a>. Please help <a class="external text" href="https://en.wikipedia.org/w/index.php?title=List_of_integrals_of_rational_functions&action=edit">improve this article</a> by <a href="/wiki/Help:Referencing_for_beginners" title="Help:Referencing for beginners">introducing citations to additional sources</a>.<br /><small><span class="plainlinks"><i>Find sources:</i> <a rel="nofollow" class="external text" href="https://www.google.com/search?as_eq=wikipedia&q=%22List+of+integrals+of+rational+functions%22">"List of integrals of rational functions"</a> – <a rel="nofollow" class="external text" href="https://www.google.com/search?tbm=nws&q=%22List+of+integrals+of+rational+functions%22+-wikipedia&tbs=ar:1">news</a> <b>·</b> <a rel="nofollow" class="external text" href="https://www.google.com/search?&q=%22List+of+integrals+of+rational+functions%22&tbs=bkt:s&tbm=bks">newspapers</a> <b>·</b> <a rel="nofollow" class="external text" href="https://www.google.com/search?tbs=bks:1&q=%22List+of+integrals+of+rational+functions%22+-wikipedia">books</a> <b>·</b> <a rel="nofollow" class="external text" href="https://scholar.google.com/scholar?q=%22List+of+integrals+of+rational+functions%22">scholar</a> <b>·</b> <a rel="nofollow" class="external text" href="https://www.jstor.org/action/doBasicSearch?Query=%22List+of+integrals+of+rational+functions%22&acc=on&wc=on">JSTOR</a></span></small></span> <span class="date-container"><i>(<span class="date">November 2024</span>)</i></span></div></td></tr></tbody></table> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1251242444"><table class="box-Verifiability plainlinks metadata ambox ambox-content" role="presentation"><tbody><tr><td class="mbox-image"><div class="mbox-image-div"><span typeof="mw:File"><a href="/wiki/File:Question_book-new.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/en/thumb/9/99/Question_book-new.svg/50px-Question_book-new.svg.png" decoding="async" width="50" height="39" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/9/99/Question_book-new.svg/75px-Question_book-new.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/9/99/Question_book-new.svg/100px-Question_book-new.svg.png 2x" data-file-width="512" data-file-height="399" /></a></span></div></td><td class="mbox-text"><div class="mbox-text-span"><b>The <a href="/wiki/Wikipedia:V" class="mw-redirect" title="Wikipedia:V">verifiability</a> of the claims made in this article is disputed.</b><span class="hide-when-compact"> Please help <a class="external text" href="https://en.wikipedia.org/w/index.php?title=List_of_integrals_of_rational_functions&action=edit">improve this article</a> by <a href="/wiki/Wikipedia:Verifiability" title="Wikipedia:Verifiability">verifying</a> its references and <a href="/wiki/Template:Citation_needed" title="Template:Citation needed">removing</a> any that are not <a href="/wiki/Wikipedia:Reliable_sources" title="Wikipedia:Reliable sources">reliable</a> or do not <a href="/wiki/Wikipedia:Verifiability#Burden_of_evidence" title="Wikipedia:Verifiability">support the article</a>. Relevant discussion may be found on the <a href="/wiki/Talk:List_of_integrals_of_rational_functions" title="Talk:List of integrals of rational functions">talk page</a>.</span> <span class="date-container"><i>(<span class="date">February 2021</span>)</i></span><span class="hide-when-compact"><i> (<small><a href="/wiki/Help:Maintenance_template_removal" title="Help:Maintenance template removal">Learn how and when to remove this message</a></small>)</i></span></div></td></tr></tbody></table> <p>The following is a list of <a href="/wiki/Integral" title="Integral">integrals</a> (<a href="/wiki/Antiderivative" title="Antiderivative">antiderivative</a> functions) of <a href="/wiki/Rational_function" title="Rational function">rational functions</a>. Any rational function can be integrated by <a href="/wiki/Partial_fraction_decomposition" title="Partial fraction decomposition">partial fraction decomposition</a> of the function into a sum of functions of the form: </p> <style data-mw-deduplicate="TemplateStyles:r996643573">.mw-parser-output .block-indent{padding-left:3em;padding-right:0;overflow:hidden}</style><div class="block-indent"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {a}{(x-b)^{n}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>a</mi> <mrow> <mo stretchy="false">(</mo> <mi>x</mi> <mo>−<!-- − --></mo> <mi>b</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {a}{(x-b)^{n}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/da948f1f4e347058d6e34eac1bfb6617a70f1428" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:9.032ex; height:5.509ex;" alt="{\displaystyle {\frac {a}{(x-b)^{n}}}}"></span>, and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {ax+b}{\left((x-c)^{2}+d^{2}\right)^{n}}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>a</mi> <mi>x</mi> <mo>+</mo> <mi>b</mi> </mrow> <msup> <mrow> <mo>(</mo> <mrow> <mo stretchy="false">(</mo> <mi>x</mi> <mo>−<!-- − --></mo> <mi>c</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {ax+b}{\left((x-c)^{2}+d^{2}\right)^{n}}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/277e9eff8e906c97a0ea9b8d3dcf69566a5aa4d7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:17.664ex; height:6.176ex;" alt="{\displaystyle {\frac {ax+b}{\left((x-c)^{2}+d^{2}\right)^{n}}}.}"></span></div> <p>which can then be integrated term by term. </p><p>For other types of functions, see <a href="/wiki/Lists_of_integrals" title="Lists of integrals">lists of integrals</a>. </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Miscellaneous_integrands">Miscellaneous integrands</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=List_of_integrals_of_rational_functions&action=edit&section=1" title="Edit section: Miscellaneous integrands"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1126788409">.mw-parser-output .plainlist ol,.mw-parser-output .plainlist ul{line-height:inherit;list-style:none;margin:0;padding:0}.mw-parser-output .plainlist ol li,.mw-parser-output .plainlist ul li{margin-bottom:0}</style><div class="plainlist" style="margin-left: 1.6em;"> <ul><li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int {\frac {f'(x)}{f(x)}}\,dx=\ln \left|f(x)\right|+C}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>f</mi> <mo>′</mo> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> <mo>=</mo> <mi>ln</mi> <mo>⁡<!-- --></mo> <mrow> <mo>|</mo> <mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <mo>|</mo> </mrow> <mo>+</mo> <mi>C</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int {\frac {f'(x)}{f(x)}}\,dx=\ln \left|f(x)\right|+C}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68ff9dbfd7660c62e29ea8147600248c4ff07238" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:26.85ex; height:6.509ex;" alt="{\displaystyle \int {\frac {f'(x)}{f(x)}}\,dx=\ln \left|f(x)\right|+C}"></span></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int {\frac {1}{x^{2}+a^{2}}}\,dx={\frac {1}{a}}\arctan {\frac {x}{a}}\,\!+C}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>a</mi> </mfrac> </mrow> <mi>arctan</mi> <mo>⁡<!-- --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>x</mi> <mi>a</mi> </mfrac> </mrow> <mspace width="thinmathspace" /> <mspace width="negativethinmathspace" /> <mo>+</mo> <mi>C</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int {\frac {1}{x^{2}+a^{2}}}\,dx={\frac {1}{a}}\arctan {\frac {x}{a}}\,\!+C}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e1acafa96f0cd8a2d9f05b62f34fef88a73225d3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:33.035ex; height:5.676ex;" alt="{\displaystyle \int {\frac {1}{x^{2}+a^{2}}}\,dx={\frac {1}{a}}\arctan {\frac {x}{a}}\,\!+C}"></span></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int {\frac {1}{x^{2}-a^{2}}}\,dx={\frac {1}{2a}}\ln \left|{\frac {x-a}{x+a}}\right|+C={\begin{cases}\displaystyle -{\frac {1}{a}}\,\operatorname {artanh} {\frac {x}{a}}+C={\frac {1}{2a}}\ln {\frac {a-x}{a+x}}+C&{\text{(for }}|x|<|a|{\mbox{)}}\\[12pt]\displaystyle -{\frac {1}{a}}\,\operatorname {arcoth} {\frac {x}{a}}+C={\frac {1}{2a}}\ln {\frac {x-a}{x+a}}+C&{\text{(for }}|x|>|a|{\mbox{)}}\end{cases}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>−<!-- − --></mo> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>a</mi> </mrow> </mfrac> </mrow> <mi>ln</mi> <mo>⁡<!-- --></mo> <mrow> <mo>|</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>x</mi> <mo>−<!-- − --></mo> <mi>a</mi> </mrow> <mrow> <mi>x</mi> <mo>+</mo> <mi>a</mi> </mrow> </mfrac> </mrow> <mo>|</mo> </mrow> <mo>+</mo> <mi>C</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>{</mo> <mtable columnalign="left left" rowspacing="1.4em 0.2em" columnspacing="1em" displaystyle="false"> <mtr> <mtd> <mstyle displaystyle="true" scriptlevel="0"> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>a</mi> </mfrac> </mrow> <mspace width="thinmathspace" /> <mi>artanh</mi> <mo>⁡<!-- --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>x</mi> <mi>a</mi> </mfrac> </mrow> <mo>+</mo> <mi>C</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>a</mi> </mrow> </mfrac> </mrow> <mi>ln</mi> <mo>⁡<!-- --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>a</mi> <mo>−<!-- − --></mo> <mi>x</mi> </mrow> <mrow> <mi>a</mi> <mo>+</mo> <mi>x</mi> </mrow> </mfrac> </mrow> <mo>+</mo> <mi>C</mi> </mstyle> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext>(for </mtext> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo><</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mtext>)</mtext> </mstyle> </mrow> </mtd> </mtr> <mtr> <mtd> <mstyle displaystyle="true" scriptlevel="0"> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>a</mi> </mfrac> </mrow> <mspace width="thinmathspace" /> <mi>arcoth</mi> <mo>⁡<!-- --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>x</mi> <mi>a</mi> </mfrac> </mrow> <mo>+</mo> <mi>C</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>a</mi> </mrow> </mfrac> </mrow> <mi>ln</mi> <mo>⁡<!-- --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>x</mi> <mo>−<!-- − --></mo> <mi>a</mi> </mrow> <mrow> <mi>x</mi> <mo>+</mo> <mi>a</mi> </mrow> </mfrac> </mrow> <mo>+</mo> <mi>C</mi> </mstyle> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext>(for </mtext> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>></mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mtext>)</mtext> </mstyle> </mrow> </mtd> </mtr> </mtable> <mo fence="true" stretchy="true" symmetric="true"></mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int {\frac {1}{x^{2}-a^{2}}}\,dx={\frac {1}{2a}}\ln \left|{\frac {x-a}{x+a}}\right|+C={\begin{cases}\displaystyle -{\frac {1}{a}}\,\operatorname {artanh} {\frac {x}{a}}+C={\frac {1}{2a}}\ln {\frac {a-x}{a+x}}+C&{\text{(for }}|x|<|a|{\mbox{)}}\\[12pt]\displaystyle -{\frac {1}{a}}\,\operatorname {arcoth} {\frac {x}{a}}+C={\frac {1}{2a}}\ln {\frac {x-a}{x+a}}+C&{\text{(for }}|x|>|a|{\mbox{)}}\end{cases}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f707d02dbc04ceb2d02ddb5bfd60ab31f45b6b55" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -6.171ex; width:94.725ex; height:13.509ex;" alt="{\displaystyle \int {\frac {1}{x^{2}-a^{2}}}\,dx={\frac {1}{2a}}\ln \left|{\frac {x-a}{x+a}}\right|+C={\begin{cases}\displaystyle -{\frac {1}{a}}\,\operatorname {artanh} {\frac {x}{a}}+C={\frac {1}{2a}}\ln {\frac {a-x}{a+x}}+C&{\text{(for }}|x|<|a|{\mbox{)}}\\[12pt]\displaystyle -{\frac {1}{a}}\,\operatorname {arcoth} {\frac {x}{a}}+C={\frac {1}{2a}}\ln {\frac {x-a}{x+a}}+C&{\text{(for }}|x|>|a|{\mbox{)}}\end{cases}}}"></span></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int {\frac {1}{a^{2}-x^{2}}}\,dx={\frac {1}{2a}}\ln \left|{\frac {a+x}{a-x}}\right|+C={\begin{cases}\displaystyle {\frac {1}{a}}\,\operatorname {artanh} {\frac {x}{a}}+C={\frac {1}{2a}}\ln {\frac {a+x}{a-x}}+C&{\text{(for }}|x|<|a|{\mbox{)}}\\[12pt]\displaystyle {\frac {1}{a}}\,\operatorname {arcoth} {\frac {x}{a}}+C={\frac {1}{2a}}\ln {\frac {x+a}{x-a}}+C&{\text{(for }}|x|>|a|{\mbox{)}}\end{cases}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>−<!-- − --></mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>a</mi> </mrow> </mfrac> </mrow> <mi>ln</mi> <mo>⁡<!-- --></mo> <mrow> <mo>|</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>a</mi> <mo>+</mo> <mi>x</mi> </mrow> <mrow> <mi>a</mi> <mo>−<!-- − --></mo> <mi>x</mi> </mrow> </mfrac> </mrow> <mo>|</mo> </mrow> <mo>+</mo> <mi>C</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>{</mo> <mtable columnalign="left left" rowspacing="1.4em 0.2em" columnspacing="1em" displaystyle="false"> <mtr> <mtd> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>a</mi> </mfrac> </mrow> <mspace width="thinmathspace" /> <mi>artanh</mi> <mo>⁡<!-- --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>x</mi> <mi>a</mi> </mfrac> </mrow> <mo>+</mo> <mi>C</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>a</mi> </mrow> </mfrac> </mrow> <mi>ln</mi> <mo>⁡<!-- --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>a</mi> <mo>+</mo> <mi>x</mi> </mrow> <mrow> <mi>a</mi> <mo>−<!-- − --></mo> <mi>x</mi> </mrow> </mfrac> </mrow> <mo>+</mo> <mi>C</mi> </mstyle> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext>(for </mtext> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo><</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mtext>)</mtext> </mstyle> </mrow> </mtd> </mtr> <mtr> <mtd> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>a</mi> </mfrac> </mrow> <mspace width="thinmathspace" /> <mi>arcoth</mi> <mo>⁡<!-- --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>x</mi> <mi>a</mi> </mfrac> </mrow> <mo>+</mo> <mi>C</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>a</mi> </mrow> </mfrac> </mrow> <mi>ln</mi> <mo>⁡<!-- --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>x</mi> <mo>+</mo> <mi>a</mi> </mrow> <mrow> <mi>x</mi> <mo>−<!-- − --></mo> <mi>a</mi> </mrow> </mfrac> </mrow> <mo>+</mo> <mi>C</mi> </mstyle> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext>(for </mtext> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>></mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mtext>)</mtext> </mstyle> </mrow> </mtd> </mtr> </mtable> <mo fence="true" stretchy="true" symmetric="true"></mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int {\frac {1}{a^{2}-x^{2}}}\,dx={\frac {1}{2a}}\ln \left|{\frac {a+x}{a-x}}\right|+C={\begin{cases}\displaystyle {\frac {1}{a}}\,\operatorname {artanh} {\frac {x}{a}}+C={\frac {1}{2a}}\ln {\frac {a+x}{a-x}}+C&{\text{(for }}|x|<|a|{\mbox{)}}\\[12pt]\displaystyle {\frac {1}{a}}\,\operatorname {arcoth} {\frac {x}{a}}+C={\frac {1}{2a}}\ln {\frac {x+a}{x-a}}+C&{\text{(for }}|x|>|a|{\mbox{)}}\end{cases}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5d41f30fbfce8f00f5e1503b29b5e0b8415fadec" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -6.171ex; width:92.917ex; height:13.509ex;" alt="{\displaystyle \int {\frac {1}{a^{2}-x^{2}}}\,dx={\frac {1}{2a}}\ln \left|{\frac {a+x}{a-x}}\right|+C={\begin{cases}\displaystyle {\frac {1}{a}}\,\operatorname {artanh} {\frac {x}{a}}+C={\frac {1}{2a}}\ln {\frac {a+x}{a-x}}+C&{\text{(for }}|x|<|a|{\mbox{)}}\\[12pt]\displaystyle {\frac {1}{a}}\,\operatorname {arcoth} {\frac {x}{a}}+C={\frac {1}{2a}}\ln {\frac {x+a}{x-a}}+C&{\text{(for }}|x|>|a|{\mbox{)}}\end{cases}}}"></span></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int {\frac {dx}{x^{2^{n}}+1}}={\frac {1}{2^{n-1}}}\sum _{k=1}^{2^{n-1}}\sin \left({\frac {2k-1}{2^{n}}}\pi \right)\arctan \left[\left(x-\cos \left({\frac {2k-1}{2^{n}}}\pi \right)\right)\csc \left({\frac {2k-1}{2^{n}}}\pi \right)\right]-{\frac {1}{2}}\cos \left({\frac {2k-1}{2^{n}}}\pi \right)\ln \left|x^{2}-2x\cos \left({\frac {2k-1}{2^{n}}}\pi \right)+1\right|+C}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mi>x</mi> </mrow> <mrow> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> </msup> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> </mfrac> </mrow> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> </mrow> </munderover> <mi>sin</mi> <mo>⁡<!-- --></mo> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>2</mn> <mi>k</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mfrac> </mrow> <mi>π<!-- π --></mi> </mrow> <mo>)</mo> </mrow> <mi>arctan</mi> <mo>⁡<!-- --></mo> <mrow> <mo>[</mo> <mrow> <mrow> <mo>(</mo> <mrow> <mi>x</mi> <mo>−<!-- − --></mo> <mi>cos</mi> <mo>⁡<!-- --></mo> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>2</mn> <mi>k</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mfrac> </mrow> <mi>π<!-- π --></mi> </mrow> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> <mi>csc</mi> <mo>⁡<!-- --></mo> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>2</mn> <mi>k</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mfrac> </mrow> <mi>π<!-- π --></mi> </mrow> <mo>)</mo> </mrow> </mrow> <mo>]</mo> </mrow> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mi>cos</mi> <mo>⁡<!-- --></mo> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>2</mn> <mi>k</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mfrac> </mrow> <mi>π<!-- π --></mi> </mrow> <mo>)</mo> </mrow> <mi>ln</mi> <mo>⁡<!-- --></mo> <mrow> <mo>|</mo> <mrow> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>−<!-- − --></mo> <mn>2</mn> <mi>x</mi> <mi>cos</mi> <mo>⁡<!-- --></mo> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>2</mn> <mi>k</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mfrac> </mrow> <mi>π<!-- π --></mi> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mn>1</mn> </mrow> <mo>|</mo> </mrow> <mo>+</mo> <mi>C</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int {\frac {dx}{x^{2^{n}}+1}}={\frac {1}{2^{n-1}}}\sum _{k=1}^{2^{n-1}}\sin \left({\frac {2k-1}{2^{n}}}\pi \right)\arctan \left[\left(x-\cos \left({\frac {2k-1}{2^{n}}}\pi \right)\right)\csc \left({\frac {2k-1}{2^{n}}}\pi \right)\right]-{\frac {1}{2}}\cos \left({\frac {2k-1}{2^{n}}}\pi \right)\ln \left|x^{2}-2x\cos \left({\frac {2k-1}{2^{n}}}\pi \right)+1\right|+C}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5086de865f6047c3f115bfbc3bd5ffde147a645c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:141.296ex; height:7.676ex;" alt="{\displaystyle \int {\frac {dx}{x^{2^{n}}+1}}={\frac {1}{2^{n-1}}}\sum _{k=1}^{2^{n-1}}\sin \left({\frac {2k-1}{2^{n}}}\pi \right)\arctan \left[\left(x-\cos \left({\frac {2k-1}{2^{n}}}\pi \right)\right)\csc \left({\frac {2k-1}{2^{n}}}\pi \right)\right]-{\frac {1}{2}}\cos \left({\frac {2k-1}{2^{n}}}\pi \right)\ln \left|x^{2}-2x\cos \left({\frac {2k-1}{2^{n}}}\pi \right)+1\right|+C}"></span></li></ul> </div> <div class="mw-heading mw-heading2"><h2 id="Integrands_of_the_form_xm(a_x_+_b)n"><span id="Integrands_of_the_form_xm.28a_x_.2B_b.29n"></span>Integrands of the form <i>x</i><sup><i>m</i></sup>(<i>a x</i> + <i>b</i>)<sup><i>n</i></sup></h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=List_of_integrals_of_rational_functions&action=edit&section=2" title="Edit section: Integrands of the form xm(a x + b)n"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Many of the following antiderivatives have a term of the form ln |<i>ax</i> + <i>b</i>|. Because this is undefined when <i>x</i> = −<i>b</i> / <i>a</i>, the most general form of the antiderivative replaces the <a href="/wiki/Constant_of_integration" title="Constant of integration">constant of integration</a> with a <a href="/wiki/Locally_constant_function" title="Locally constant function">locally constant function</a>.<sup id="cite_ref-1" class="reference"><a href="#cite_note-1"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup> However, it is conventional to omit this from the notation. For example, <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int {\frac {1}{ax+b}}\,dx={\begin{cases}{\dfrac {1}{a}}\ln(-(ax+b))+C^{-}&ax+b<0\\{\dfrac {1}{a}}\ln(ax+b)+C^{+}&ax+b>0\end{cases}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi>a</mi> <mi>x</mi> <mo>+</mo> <mi>b</mi> </mrow> </mfrac> </mrow> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>{</mo> <mtable columnalign="left left" rowspacing=".2em" columnspacing="1em" displaystyle="false"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mfrac> <mn>1</mn> <mi>a</mi> </mfrac> </mstyle> </mrow> <mi>ln</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mo>−<!-- − --></mo> <mo stretchy="false">(</mo> <mi>a</mi> <mi>x</mi> <mo>+</mo> <mi>b</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>+</mo> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> </mrow> </msup> </mtd> <mtd> <mi>a</mi> <mi>x</mi> <mo>+</mo> <mi>b</mi> <mo><</mo> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mfrac> <mn>1</mn> <mi>a</mi> </mfrac> </mstyle> </mrow> <mi>ln</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>a</mi> <mi>x</mi> <mo>+</mo> <mi>b</mi> <mo stretchy="false">)</mo> <mo>+</mo> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msup> </mtd> <mtd> <mi>a</mi> <mi>x</mi> <mo>+</mo> <mi>b</mi> <mo>></mo> <mn>0</mn> </mtd> </mtr> </mtable> <mo fence="true" stretchy="true" symmetric="true"></mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int {\frac {1}{ax+b}}\,dx={\begin{cases}{\dfrac {1}{a}}\ln(-(ax+b))+C^{-}&ax+b<0\\{\dfrac {1}{a}}\ln(ax+b)+C^{+}&ax+b>0\end{cases}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/23c6fcc9f6ed4c40dbb0c816510eb6b56c4f2689" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.391ex; margin-bottom: -0.281ex; width:54.009ex; height:10.509ex;" alt="{\displaystyle \int {\frac {1}{ax+b}}\,dx={\begin{cases}{\dfrac {1}{a}}\ln(-(ax+b))+C^{-}&ax+b<0\\{\dfrac {1}{a}}\ln(ax+b)+C^{+}&ax+b>0\end{cases}}}"></span> is usually abbreviated as <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int {\frac {1}{ax+b}}\,dx={\frac {1}{a}}\ln \left|ax+b\right|+C,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi>a</mi> <mi>x</mi> <mo>+</mo> <mi>b</mi> </mrow> </mfrac> </mrow> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>a</mi> </mfrac> </mrow> <mi>ln</mi> <mo>⁡<!-- --></mo> <mrow> <mo>|</mo> <mrow> <mi>a</mi> <mi>x</mi> <mo>+</mo> <mi>b</mi> </mrow> <mo>|</mo> </mrow> <mo>+</mo> <mi>C</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int {\frac {1}{ax+b}}\,dx={\frac {1}{a}}\ln \left|ax+b\right|+C,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/39dbfed3cadfe902b99fe8d1450a31a84b8ecf5a" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:33.183ex; height:5.676ex;" alt="{\displaystyle \int {\frac {1}{ax+b}}\,dx={\frac {1}{a}}\ln \left|ax+b\right|+C,}"></span> where <i>C</i> is to be understood as notation for a locally constant function of <i>x</i>. This convention will be adhered to in the following. </p> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1126788409"><div class="plainlist" style="margin-left: 1.6em;"> <ul><li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int (ax+b)^{n}\,dx={\frac {(ax+b)^{n+1}}{a(n+1)}}+C\qquad {\text{(for }}n\neq -1{\mbox{)}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>∫<!-- ∫ --></mo> <mo stretchy="false">(</mo> <mi>a</mi> <mi>x</mi> <mo>+</mo> <mi>b</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mi>a</mi> <mi>x</mi> <mo>+</mo> <mi>b</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> </mrow> <mrow> <mi>a</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mo>+</mo> <mi>C</mi> <mspace width="2em" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>(for </mtext> </mrow> <mi>n</mi> <mo>≠<!-- ≠ --></mo> <mo>−<!-- − --></mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mtext>)</mtext> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int (ax+b)^{n}\,dx={\frac {(ax+b)^{n+1}}{a(n+1)}}+C\qquad {\text{(for }}n\neq -1{\mbox{)}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ba0f4651b989db2f644735fe29ab78de9249dabd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:51.903ex; height:6.676ex;" alt="{\displaystyle \int (ax+b)^{n}\,dx={\frac {(ax+b)^{n+1}}{a(n+1)}}+C\qquad {\text{(for }}n\neq -1{\mbox{)}}}"></span> (<a href="/wiki/Cavalieri%27s_quadrature_formula" title="Cavalieri's quadrature formula">Cavalieri's quadrature formula</a>)</li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int {\frac {x}{ax+b}}\,dx={\frac {x}{a}}-{\frac {b}{a^{2}}}\ln \left|ax+b\right|+C}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>x</mi> <mrow> <mi>a</mi> <mi>x</mi> <mo>+</mo> <mi>b</mi> </mrow> </mfrac> </mrow> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>x</mi> <mi>a</mi> </mfrac> </mrow> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>b</mi> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mi>ln</mi> <mo>⁡<!-- --></mo> <mrow> <mo>|</mo> <mrow> <mi>a</mi> <mi>x</mi> <mo>+</mo> <mi>b</mi> </mrow> <mo>|</mo> </mrow> <mo>+</mo> <mi>C</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int {\frac {x}{ax+b}}\,dx={\frac {x}{a}}-{\frac {b}{a^{2}}}\ln \left|ax+b\right|+C}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0044cf33077ed2838244a1f49755bfda52d1b5c2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:38.596ex; height:5.843ex;" alt="{\displaystyle \int {\frac {x}{ax+b}}\,dx={\frac {x}{a}}-{\frac {b}{a^{2}}}\ln \left|ax+b\right|+C}"></span></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int {\frac {mx+n}{ax+b}}\,dx={\frac {m}{a}}x+{\frac {an-bm}{a^{2}}}\ln \left|ax+b\right|+C}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>m</mi> <mi>x</mi> <mo>+</mo> <mi>n</mi> </mrow> <mrow> <mi>a</mi> <mi>x</mi> <mo>+</mo> <mi>b</mi> </mrow> </mfrac> </mrow> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>m</mi> <mi>a</mi> </mfrac> </mrow> <mi>x</mi> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>a</mi> <mi>n</mi> <mo>−<!-- − --></mo> <mi>b</mi> <mi>m</mi> </mrow> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mi>ln</mi> <mo>⁡<!-- --></mo> <mrow> <mo>|</mo> <mrow> <mi>a</mi> <mi>x</mi> <mo>+</mo> <mi>b</mi> </mrow> <mo>|</mo> </mrow> <mo>+</mo> <mi>C</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int {\frac {mx+n}{ax+b}}\,dx={\frac {m}{a}}x+{\frac {an-bm}{a^{2}}}\ln \left|ax+b\right|+C}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b191362b12ea43318e6bec514eeea3b80dd1d9eb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:48.063ex; height:5.843ex;" alt="{\displaystyle \int {\frac {mx+n}{ax+b}}\,dx={\frac {m}{a}}x+{\frac {an-bm}{a^{2}}}\ln \left|ax+b\right|+C}"></span></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int {\frac {x}{(ax+b)^{2}}}\,dx={\frac {b}{a^{2}(ax+b)}}+{\frac {1}{a^{2}}}\ln \left|ax+b\right|+C}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>x</mi> <mrow> <mo stretchy="false">(</mo> <mi>a</mi> <mi>x</mi> <mo>+</mo> <mi>b</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>b</mi> <mrow> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mi>a</mi> <mi>x</mi> <mo>+</mo> <mi>b</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mi>ln</mi> <mo>⁡<!-- --></mo> <mrow> <mo>|</mo> <mrow> <mi>a</mi> <mi>x</mi> <mo>+</mo> <mi>b</mi> </mrow> <mo>|</mo> </mrow> <mo>+</mo> <mi>C</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int {\frac {x}{(ax+b)^{2}}}\,dx={\frac {b}{a^{2}(ax+b)}}+{\frac {1}{a^{2}}}\ln \left|ax+b\right|+C}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fca8db2b5e2c57c5991f42012f3fe019e82d6db8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:50.621ex; height:6.176ex;" alt="{\displaystyle \int {\frac {x}{(ax+b)^{2}}}\,dx={\frac {b}{a^{2}(ax+b)}}+{\frac {1}{a^{2}}}\ln \left|ax+b\right|+C}"></span></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int {\frac {x}{(ax+b)^{n}}}\,dx={\frac {a(1-n)x-b}{a^{2}(n-1)(n-2)(ax+b)^{n-1}}}+C\qquad {\text{(for }}n\not \in \{1,2\}{\mbox{)}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>x</mi> <mrow> <mo stretchy="false">(</mo> <mi>a</mi> <mi>x</mi> <mo>+</mo> <mi>b</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> </mfrac> </mrow> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>a</mi> <mo stretchy="false">(</mo> <mn>1</mn> <mo>−<!-- − --></mo> <mi>n</mi> <mo stretchy="false">)</mo> <mi>x</mi> <mo>−<!-- − --></mo> <mi>b</mi> </mrow> <mrow> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>n</mi> <mo>−<!-- − --></mo> <mn>2</mn> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>a</mi> <mi>x</mi> <mo>+</mo> <mi>b</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>+</mo> <mi>C</mi> <mspace width="2em" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>(for </mtext> </mrow> <mi>n</mi> <mo>∉</mo> <mo fence="false" stretchy="false">{</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo fence="false" stretchy="false">}</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mtext>)</mtext> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int {\frac {x}{(ax+b)^{n}}}\,dx={\frac {a(1-n)x-b}{a^{2}(n-1)(n-2)(ax+b)^{n-1}}}+C\qquad {\text{(for }}n\not \in \{1,2\}{\mbox{)}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f6c32c87074e94fd830bbf325284f542fd4ab0f3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:72.28ex; height:6.509ex;" alt="{\displaystyle \int {\frac {x}{(ax+b)^{n}}}\,dx={\frac {a(1-n)x-b}{a^{2}(n-1)(n-2)(ax+b)^{n-1}}}+C\qquad {\text{(for }}n\not \in \{1,2\}{\mbox{)}}}"></span></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int x(ax+b)^{n}\,dx={\frac {a(n+1)x-b}{a^{2}(n+1)(n+2)}}(ax+b)^{n+1}+C\qquad {\text{(for }}n\not \in \{-1,-2\}{\mbox{)}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>∫<!-- ∫ --></mo> <mi>x</mi> <mo stretchy="false">(</mo> <mi>a</mi> <mi>x</mi> <mo>+</mo> <mi>b</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>a</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mi>x</mi> <mo>−<!-- − --></mo> <mi>b</mi> </mrow> <mrow> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mi>n</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>n</mi> <mo>+</mo> <mn>2</mn> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mo stretchy="false">(</mo> <mi>a</mi> <mi>x</mi> <mo>+</mo> <mi>b</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> <mo>+</mo> <mi>C</mi> <mspace width="2em" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>(for </mtext> </mrow> <mi>n</mi> <mo>∉</mo> <mo fence="false" stretchy="false">{</mo> <mo>−<!-- − --></mo> <mn>1</mn> <mo>,</mo> <mo>−<!-- − --></mo> <mn>2</mn> <mo fence="false" stretchy="false">}</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mtext>)</mtext> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int x(ax+b)^{n}\,dx={\frac {a(n+1)x-b}{a^{2}(n+1)(n+2)}}(ax+b)^{n+1}+C\qquad {\text{(for }}n\not \in \{-1,-2\}{\mbox{)}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3005bc8299d9e0f8b4de337c934017d6e6353064" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:76.39ex; height:6.509ex;" alt="{\displaystyle \int x(ax+b)^{n}\,dx={\frac {a(n+1)x-b}{a^{2}(n+1)(n+2)}}(ax+b)^{n+1}+C\qquad {\text{(for }}n\not \in \{-1,-2\}{\mbox{)}}}"></span></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int {\frac {x^{2}}{ax+b}}\,dx={\frac {b^{2}\ln(\left|ax+b\right|)}{a^{3}}}+{\frac {ax^{2}-2bx}{2a^{2}}}+C}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow> <mi>a</mi> <mi>x</mi> <mo>+</mo> <mi>b</mi> </mrow> </mfrac> </mrow> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi>ln</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mrow> <mo>|</mo> <mrow> <mi>a</mi> <mi>x</mi> <mo>+</mo> <mi>b</mi> </mrow> <mo>|</mo> </mrow> <mo stretchy="false">)</mo> </mrow> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>a</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>−<!-- − --></mo> <mn>2</mn> <mi>b</mi> <mi>x</mi> </mrow> <mrow> <mn>2</mn> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>+</mo> <mi>C</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int {\frac {x^{2}}{ax+b}}\,dx={\frac {b^{2}\ln(\left|ax+b\right|)}{a^{3}}}+{\frac {ax^{2}-2bx}{2a^{2}}}+C}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/52efc74406ece758b265c368e08dd9ee16c8a8fc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:48.787ex; height:6.343ex;" alt="{\displaystyle \int {\frac {x^{2}}{ax+b}}\,dx={\frac {b^{2}\ln(\left|ax+b\right|)}{a^{3}}}+{\frac {ax^{2}-2bx}{2a^{2}}}+C}"></span></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int {\frac {x^{2}}{(ax+b)^{2}}}\,dx={\frac {1}{a^{3}}}\left(ax-2b\ln \left|ax+b\right|-{\frac {b^{2}}{ax+b}}\right)+C}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow> <mo stretchy="false">(</mo> <mi>a</mi> <mi>x</mi> <mo>+</mo> <mi>b</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> </mfrac> </mrow> <mrow> <mo>(</mo> <mrow> <mi>a</mi> <mi>x</mi> <mo>−<!-- − --></mo> <mn>2</mn> <mi>b</mi> <mi>ln</mi> <mo>⁡<!-- --></mo> <mrow> <mo>|</mo> <mrow> <mi>a</mi> <mi>x</mi> <mo>+</mo> <mi>b</mi> </mrow> <mo>|</mo> </mrow> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow> <mi>a</mi> <mi>x</mi> <mo>+</mo> <mi>b</mi> </mrow> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mi>C</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int {\frac {x^{2}}{(ax+b)^{2}}}\,dx={\frac {1}{a^{3}}}\left(ax-2b\ln \left|ax+b\right|-{\frac {b^{2}}{ax+b}}\right)+C}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9bbcfb06f106d8fe208d68fc69d74c426a18ce8c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:57.896ex; height:6.509ex;" alt="{\displaystyle \int {\frac {x^{2}}{(ax+b)^{2}}}\,dx={\frac {1}{a^{3}}}\left(ax-2b\ln \left|ax+b\right|-{\frac {b^{2}}{ax+b}}\right)+C}"></span></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int {\frac {x^{2}}{(ax+b)^{3}}}\,dx={\frac {1}{a^{3}}}\left(\ln \left|ax+b\right|+{\frac {2b}{ax+b}}-{\frac {b^{2}}{2(ax+b)^{2}}}\right)+C}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow> <mo stretchy="false">(</mo> <mi>a</mi> <mi>x</mi> <mo>+</mo> <mi>b</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> </mfrac> </mrow> <mrow> <mo>(</mo> <mrow> <mi>ln</mi> <mo>⁡<!-- --></mo> <mrow> <mo>|</mo> <mrow> <mi>a</mi> <mi>x</mi> <mo>+</mo> <mi>b</mi> </mrow> <mo>|</mo> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>2</mn> <mi>b</mi> </mrow> <mrow> <mi>a</mi> <mi>x</mi> <mo>+</mo> <mi>b</mi> </mrow> </mfrac> </mrow> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow> <mn>2</mn> <mo stretchy="false">(</mo> <mi>a</mi> <mi>x</mi> <mo>+</mo> <mi>b</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mi>C</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int {\frac {x^{2}}{(ax+b)^{3}}}\,dx={\frac {1}{a^{3}}}\left(\ln \left|ax+b\right|+{\frac {2b}{ax+b}}-{\frac {b^{2}}{2(ax+b)^{2}}}\right)+C}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c8d9738490df1b57b94860a05b22b0ff7c61237d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:64.049ex; height:6.509ex;" alt="{\displaystyle \int {\frac {x^{2}}{(ax+b)^{3}}}\,dx={\frac {1}{a^{3}}}\left(\ln \left|ax+b\right|+{\frac {2b}{ax+b}}-{\frac {b^{2}}{2(ax+b)^{2}}}\right)+C}"></span></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int {\frac {x^{2}}{(ax+b)^{n}}}\,dx={\frac {1}{a^{3}}}\left(-{\frac {(ax+b)^{3-n}}{(n-3)}}+{\frac {2b(ax+b)^{2-n}}{(n-2)}}-{\frac {b^{2}(ax+b)^{1-n}}{(n-1)}}\right)+C\qquad {\text{(for }}n\not \in \{1,2,3\}{\mbox{)}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow> <mo stretchy="false">(</mo> <mi>a</mi> <mi>x</mi> <mo>+</mo> <mi>b</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> </mfrac> </mrow> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> </mfrac> </mrow> <mrow> <mo>(</mo> <mrow> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mi>a</mi> <mi>x</mi> <mo>+</mo> <mi>b</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> <mo>−<!-- − --></mo> <mi>n</mi> </mrow> </msup> </mrow> <mrow> <mo stretchy="false">(</mo> <mi>n</mi> <mo>−<!-- − --></mo> <mn>3</mn> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>2</mn> <mi>b</mi> <mo stretchy="false">(</mo> <mi>a</mi> <mi>x</mi> <mo>+</mo> <mi>b</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mo>−<!-- − --></mo> <mi>n</mi> </mrow> </msup> </mrow> <mrow> <mo stretchy="false">(</mo> <mi>n</mi> <mo>−<!-- − --></mo> <mn>2</mn> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mi>a</mi> <mi>x</mi> <mo>+</mo> <mi>b</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mo>−<!-- − --></mo> <mi>n</mi> </mrow> </msup> </mrow> <mrow> <mo stretchy="false">(</mo> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mi>C</mi> <mspace width="2em" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>(for </mtext> </mrow> <mi>n</mi> <mo>∉</mo> <mo fence="false" stretchy="false">{</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mn>3</mn> <mo fence="false" stretchy="false">}</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mtext>)</mtext> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int {\frac {x^{2}}{(ax+b)^{n}}}\,dx={\frac {1}{a^{3}}}\left(-{\frac {(ax+b)^{3-n}}{(n-3)}}+{\frac {2b(ax+b)^{2-n}}{(n-2)}}-{\frac {b^{2}(ax+b)^{1-n}}{(n-1)}}\right)+C\qquad {\text{(for }}n\not \in \{1,2,3\}{\mbox{)}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4814f0ed2c13d5860225e30b78c3b08044d11551" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:101.391ex; height:7.509ex;" alt="{\displaystyle \int {\frac {x^{2}}{(ax+b)^{n}}}\,dx={\frac {1}{a^{3}}}\left(-{\frac {(ax+b)^{3-n}}{(n-3)}}+{\frac {2b(ax+b)^{2-n}}{(n-2)}}-{\frac {b^{2}(ax+b)^{1-n}}{(n-1)}}\right)+C\qquad {\text{(for }}n\not \in \{1,2,3\}{\mbox{)}}}"></span></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int {\frac {1}{x(ax+b)}}\,dx=-{\frac {1}{b}}\ln \left|{\frac {ax+b}{x}}\right|+C}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi>x</mi> <mo stretchy="false">(</mo> <mi>a</mi> <mi>x</mi> <mo>+</mo> <mi>b</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> <mo>=</mo> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>b</mi> </mfrac> </mrow> <mi>ln</mi> <mo>⁡<!-- --></mo> <mrow> <mo>|</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>a</mi> <mi>x</mi> <mo>+</mo> <mi>b</mi> </mrow> <mi>x</mi> </mfrac> </mrow> <mo>|</mo> </mrow> <mo>+</mo> <mi>C</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int {\frac {1}{x(ax+b)}}\,dx=-{\frac {1}{b}}\ln \left|{\frac {ax+b}{x}}\right|+C}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0eb20d2f8f53fa28110b76a629615131429bbdea" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:38.252ex; height:6.176ex;" alt="{\displaystyle \int {\frac {1}{x(ax+b)}}\,dx=-{\frac {1}{b}}\ln \left|{\frac {ax+b}{x}}\right|+C}"></span></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int {\frac {1}{x^{2}(ax+b)}}\,dx=-{\frac {1}{bx}}+{\frac {a}{b^{2}}}\ln \left|{\frac {ax+b}{x}}\right|+C}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mi>a</mi> <mi>x</mi> <mo>+</mo> <mi>b</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> <mo>=</mo> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi>b</mi> <mi>x</mi> </mrow> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>a</mi> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mi>ln</mi> <mo>⁡<!-- --></mo> <mrow> <mo>|</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>a</mi> <mi>x</mi> <mo>+</mo> <mi>b</mi> </mrow> <mi>x</mi> </mfrac> </mrow> <mo>|</mo> </mrow> <mo>+</mo> <mi>C</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int {\frac {1}{x^{2}(ax+b)}}\,dx=-{\frac {1}{bx}}+{\frac {a}{b^{2}}}\ln \left|{\frac {ax+b}{x}}\right|+C}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6d446865683df020ec83ce8838cdcae2f1d2bd5f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:46.199ex; height:6.176ex;" alt="{\displaystyle \int {\frac {1}{x^{2}(ax+b)}}\,dx=-{\frac {1}{bx}}+{\frac {a}{b^{2}}}\ln \left|{\frac {ax+b}{x}}\right|+C}"></span></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int {\frac {1}{x^{2}(ax+b)^{2}}}\,dx=-a\left({\frac {1}{b^{2}(ax+b)}}+{\frac {1}{ab^{2}x}}-{\frac {2}{b^{3}}}\ln \left|{\frac {ax+b}{x}}\right|\right)+C}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mi>a</mi> <mi>x</mi> <mo>+</mo> <mi>b</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> <mo>=</mo> <mo>−<!-- − --></mo> <mi>a</mi> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mi>a</mi> <mi>x</mi> <mo>+</mo> <mi>b</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi>a</mi> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi>x</mi> </mrow> </mfrac> </mrow> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>2</mn> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> </mfrac> </mrow> <mi>ln</mi> <mo>⁡<!-- --></mo> <mrow> <mo>|</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>a</mi> <mi>x</mi> <mo>+</mo> <mi>b</mi> </mrow> <mi>x</mi> </mfrac> </mrow> <mo>|</mo> </mrow> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mi>C</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int {\frac {1}{x^{2}(ax+b)^{2}}}\,dx=-a\left({\frac {1}{b^{2}(ax+b)}}+{\frac {1}{ab^{2}x}}-{\frac {2}{b^{3}}}\ln \left|{\frac {ax+b}{x}}\right|\right)+C}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4e03e60c23681f5186b4a95a5e9ea921732e122a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:68.51ex; height:6.343ex;" alt="{\displaystyle \int {\frac {1}{x^{2}(ax+b)^{2}}}\,dx=-a\left({\frac {1}{b^{2}(ax+b)}}+{\frac {1}{ab^{2}x}}-{\frac {2}{b^{3}}}\ln \left|{\frac {ax+b}{x}}\right|\right)+C}"></span></li></ul> </div> <div class="mw-heading mw-heading2"><h2 id="Integrands_of_the_form_xm_/_(a_x2_+_b_x_+_c)n"><span id="Integrands_of_the_form_xm_.2F_.28a_x2_.2B_b_x_.2B_c.29n"></span>Integrands of the form <i>x</i><sup><i>m</i></sup> / (<i>a x</i><sup>2</sup> + <i>b x</i> + <i>c</i>)<sup><i>n</i></sup></h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=List_of_integrals_of_rational_functions&action=edit&section=3" title="Edit section: Integrands of the form xm / (a x2 + b x + c)n"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>For <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a\neq 0:}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>≠<!-- ≠ --></mo> <mn>0</mn> <mo>:</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a\neq 0:}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/049619a07290579b346d6aa61b1b7eb817d02252" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.783ex; height:2.676ex;" alt="{\displaystyle a\neq 0:}"></span> </p> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1126788409"><div class="plainlist" style="margin-left: 1.6em;"> <ul><li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int {\frac {1}{ax^{2}+bx+c}}dx={\begin{cases}\displaystyle {\frac {2}{\sqrt {4ac-b^{2}}}}\arctan {\frac {2ax+b}{\sqrt {4ac-b^{2}}}}+C&{\text{(for }}4ac-b^{2}>0{\mbox{)}}\\[12pt]\displaystyle {\frac {1}{\sqrt {b^{2}-4ac}}}\ln \left|{\frac {2ax+b-{\sqrt {b^{2}-4ac}}}{2ax+b+{\sqrt {b^{2}-4ac}}}}\right|+C={\begin{cases}\displaystyle -{\frac {2}{\sqrt {b^{2}-4ac}}}\,\operatorname {artanh} {\frac {2ax+b}{\sqrt {b^{2}-4ac}}}+C&{\text{(for }}|2ax+b|<{\sqrt {b^{2}-4ac}}{\mbox{)}}\\[6pt]\displaystyle -{\frac {2}{\sqrt {b^{2}-4ac}}}\,\operatorname {arcoth} {\frac {2ax+b}{\sqrt {b^{2}-4ac}}}+C&{\text{(else)}}\end{cases}}&{\text{(for }}4ac-b^{2}<0{\mbox{)}}\\[12pt]\displaystyle -{\frac {2}{2ax+b}}+C&{\text{(for }}4ac-b^{2}=0{\mbox{)}}\end{cases}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi>a</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mi>b</mi> <mi>x</mi> <mo>+</mo> <mi>c</mi> </mrow> </mfrac> </mrow> <mi>d</mi> <mi>x</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>{</mo> <mtable columnalign="left left" rowspacing="1.4em 1.4em 0.2em" columnspacing="1em" displaystyle="false"> <mtr> <mtd> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>2</mn> <msqrt> <mn>4</mn> <mi>a</mi> <mi>c</mi> <mo>−<!-- − --></mo> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mfrac> </mrow> <mi>arctan</mi> <mo>⁡<!-- --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>2</mn> <mi>a</mi> <mi>x</mi> <mo>+</mo> <mi>b</mi> </mrow> <msqrt> <mn>4</mn> <mi>a</mi> <mi>c</mi> <mo>−<!-- − --></mo> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mfrac> </mrow> <mo>+</mo> <mi>C</mi> </mstyle> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext>(for </mtext> </mrow> <mn>4</mn> <mi>a</mi> <mi>c</mi> <mo>−<!-- − --></mo> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>></mo> <mn>0</mn> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mtext>)</mtext> </mstyle> </mrow> </mtd> </mtr> <mtr> <mtd> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msqrt> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>−<!-- − --></mo> <mn>4</mn> <mi>a</mi> <mi>c</mi> </msqrt> </mfrac> </mrow> <mi>ln</mi> <mo>⁡<!-- --></mo> <mrow> <mo>|</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>2</mn> <mi>a</mi> <mi>x</mi> <mo>+</mo> <mi>b</mi> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>−<!-- − --></mo> <mn>4</mn> <mi>a</mi> <mi>c</mi> </msqrt> </mrow> </mrow> <mrow> <mn>2</mn> <mi>a</mi> <mi>x</mi> <mo>+</mo> <mi>b</mi> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>−<!-- − --></mo> <mn>4</mn> <mi>a</mi> <mi>c</mi> </msqrt> </mrow> </mrow> </mfrac> </mrow> <mo>|</mo> </mrow> <mo>+</mo> <mi>C</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>{</mo> <mtable columnalign="left left" rowspacing="0.8em 0.2em" columnspacing="1em" displaystyle="false"> <mtr> <mtd> <mstyle displaystyle="true" scriptlevel="0"> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>2</mn> <msqrt> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>−<!-- − --></mo> <mn>4</mn> <mi>a</mi> <mi>c</mi> </msqrt> </mfrac> </mrow> <mspace width="thinmathspace" /> <mi>artanh</mi> <mo>⁡<!-- --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>2</mn> <mi>a</mi> <mi>x</mi> <mo>+</mo> <mi>b</mi> </mrow> <msqrt> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>−<!-- − --></mo> <mn>4</mn> <mi>a</mi> <mi>c</mi> </msqrt> </mfrac> </mrow> <mo>+</mo> <mi>C</mi> </mstyle> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext>(for </mtext> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>2</mn> <mi>a</mi> <mi>x</mi> <mo>+</mo> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo><</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>−<!-- − --></mo> <mn>4</mn> <mi>a</mi> <mi>c</mi> </msqrt> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mtext>)</mtext> </mstyle> </mrow> </mtd> </mtr> <mtr> <mtd> <mstyle displaystyle="true" scriptlevel="0"> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>2</mn> <msqrt> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>−<!-- − --></mo> <mn>4</mn> <mi>a</mi> <mi>c</mi> </msqrt> </mfrac> </mrow> <mspace width="thinmathspace" /> <mi>arcoth</mi> <mo>⁡<!-- --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>2</mn> <mi>a</mi> <mi>x</mi> <mo>+</mo> <mi>b</mi> </mrow> <msqrt> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>−<!-- − --></mo> <mn>4</mn> <mi>a</mi> <mi>c</mi> </msqrt> </mfrac> </mrow> <mo>+</mo> <mi>C</mi> </mstyle> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext>(else)</mtext> </mrow> </mtd> </mtr> </mtable> <mo fence="true" stretchy="true" symmetric="true"></mo> </mrow> </mrow> </mstyle> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext>(for </mtext> </mrow> <mn>4</mn> <mi>a</mi> <mi>c</mi> <mo>−<!-- − --></mo> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo><</mo> <mn>0</mn> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mtext>)</mtext> </mstyle> </mrow> </mtd> </mtr> <mtr> <mtd> <mstyle displaystyle="true" scriptlevel="0"> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>2</mn> <mrow> <mn>2</mn> <mi>a</mi> <mi>x</mi> <mo>+</mo> <mi>b</mi> </mrow> </mfrac> </mrow> <mo>+</mo> <mi>C</mi> </mstyle> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext>(for </mtext> </mrow> <mn>4</mn> <mi>a</mi> <mi>c</mi> <mo>−<!-- − --></mo> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mn>0</mn> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mtext>)</mtext> </mstyle> </mrow> </mtd> </mtr> </mtable> <mo fence="true" stretchy="true" symmetric="true"></mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int {\frac {1}{ax^{2}+bx+c}}dx={\begin{cases}\displaystyle {\frac {2}{\sqrt {4ac-b^{2}}}}\arctan {\frac {2ax+b}{\sqrt {4ac-b^{2}}}}+C&{\text{(for }}4ac-b^{2}>0{\mbox{)}}\\[12pt]\displaystyle {\frac {1}{\sqrt {b^{2}-4ac}}}\ln \left|{\frac {2ax+b-{\sqrt {b^{2}-4ac}}}{2ax+b+{\sqrt {b^{2}-4ac}}}}\right|+C={\begin{cases}\displaystyle -{\frac {2}{\sqrt {b^{2}-4ac}}}\,\operatorname {artanh} {\frac {2ax+b}{\sqrt {b^{2}-4ac}}}+C&{\text{(for }}|2ax+b|<{\sqrt {b^{2}-4ac}}{\mbox{)}}\\[6pt]\displaystyle -{\frac {2}{\sqrt {b^{2}-4ac}}}\,\operatorname {arcoth} {\frac {2ax+b}{\sqrt {b^{2}-4ac}}}+C&{\text{(else)}}\end{cases}}&{\text{(for }}4ac-b^{2}<0{\mbox{)}}\\[12pt]\displaystyle -{\frac {2}{2ax+b}}+C&{\text{(for }}4ac-b^{2}=0{\mbox{)}}\end{cases}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8c6e45e8f485cc92285459242e5edc389b0a4b3c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -15.505ex; width:159.273ex; height:32.176ex;" alt="{\displaystyle \int {\frac {1}{ax^{2}+bx+c}}dx={\begin{cases}\displaystyle {\frac {2}{\sqrt {4ac-b^{2}}}}\arctan {\frac {2ax+b}{\sqrt {4ac-b^{2}}}}+C&{\text{(for }}4ac-b^{2}>0{\mbox{)}}\\[12pt]\displaystyle {\frac {1}{\sqrt {b^{2}-4ac}}}\ln \left|{\frac {2ax+b-{\sqrt {b^{2}-4ac}}}{2ax+b+{\sqrt {b^{2}-4ac}}}}\right|+C={\begin{cases}\displaystyle -{\frac {2}{\sqrt {b^{2}-4ac}}}\,\operatorname {artanh} {\frac {2ax+b}{\sqrt {b^{2}-4ac}}}+C&{\text{(for }}|2ax+b|<{\sqrt {b^{2}-4ac}}{\mbox{)}}\\[6pt]\displaystyle -{\frac {2}{\sqrt {b^{2}-4ac}}}\,\operatorname {arcoth} {\frac {2ax+b}{\sqrt {b^{2}-4ac}}}+C&{\text{(else)}}\end{cases}}&{\text{(for }}4ac-b^{2}<0{\mbox{)}}\\[12pt]\displaystyle -{\frac {2}{2ax+b}}+C&{\text{(for }}4ac-b^{2}=0{\mbox{)}}\end{cases}}}"></span></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int {\frac {x}{ax^{2}+bx+c}}\,dx={\frac {1}{2a}}\ln \left|ax^{2}+bx+c\right|-{\frac {b}{2a}}\int {\frac {dx}{ax^{2}+bx+c}}+C}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>x</mi> <mrow> <mi>a</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mi>b</mi> <mi>x</mi> <mo>+</mo> <mi>c</mi> </mrow> </mfrac> </mrow> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>a</mi> </mrow> </mfrac> </mrow> <mi>ln</mi> <mo>⁡<!-- --></mo> <mrow> <mo>|</mo> <mrow> <mi>a</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mi>b</mi> <mi>x</mi> <mo>+</mo> <mi>c</mi> </mrow> <mo>|</mo> </mrow> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>b</mi> <mrow> <mn>2</mn> <mi>a</mi> </mrow> </mfrac> </mrow> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mi>x</mi> </mrow> <mrow> <mi>a</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mi>b</mi> <mi>x</mi> <mo>+</mo> <mi>c</mi> </mrow> </mfrac> </mrow> <mo>+</mo> <mi>C</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int {\frac {x}{ax^{2}+bx+c}}\,dx={\frac {1}{2a}}\ln \left|ax^{2}+bx+c\right|-{\frac {b}{2a}}\int {\frac {dx}{ax^{2}+bx+c}}+C}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a2741cb28c134c0cfe27162393974e3c56475461" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:68.662ex; height:5.843ex;" alt="{\displaystyle \int {\frac {x}{ax^{2}+bx+c}}\,dx={\frac {1}{2a}}\ln \left|ax^{2}+bx+c\right|-{\frac {b}{2a}}\int {\frac {dx}{ax^{2}+bx+c}}+C}"></span></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int {\frac {mx+n}{ax^{2}+bx+c}}\,dx={\begin{cases}\displaystyle {\frac {m}{2a}}\ln \left|ax^{2}+bx+c\right|+{\frac {2an-bm}{a{\sqrt {4ac-b^{2}}}}}\arctan {\frac {2ax+b}{\sqrt {4ac-b^{2}}}}+C&{\text{(for }}4ac-b^{2}>0{\mbox{)}}\\[12pt]\displaystyle {\frac {m}{2a}}\ln \left|ax^{2}+bx+c\right|+{\frac {2an-bm}{2a{\sqrt {b^{2}-4ac}}}}\ln \left|{\frac {2ax+b-{\sqrt {b^{2}-4ac}}}{2ax+b+{\sqrt {b^{2}-4ac}}}}\right|+C={\begin{cases}\displaystyle {\frac {m}{2a}}\ln \left|ax^{2}+bx+c\right|-{\frac {2an-bm}{a{\sqrt {b^{2}-4ac}}}}\,\operatorname {artanh} {\frac {2ax+b}{\sqrt {b^{2}-4ac}}}+C&{\text{(for }}|2ax+b|<{\sqrt {b^{2}-4ac}}{\mbox{)}}\\[6pt]\displaystyle {\frac {m}{2a}}\ln \left|ax^{2}+bx+c\right|-{\frac {2an-bm}{a{\sqrt {b^{2}-4ac}}}}\,\operatorname {arcoth} {\frac {2ax+b}{\sqrt {b^{2}-4ac}}}+C&{\text{(else)}}\end{cases}}&{\text{(for }}4ac-b^{2}<0{\mbox{)}}\\[12pt]\displaystyle {\frac {m}{2a}}\ln \left|ax^{2}+bx+c\right|-{\frac {2an-bm}{a(2ax+b)}}+C={\frac {m}{a}}\ln \left|x+{\frac {b}{2a}}\right|-{\frac {2an-bm}{a(2ax+b)}}+C&{\text{(for }}4ac-b^{2}=0{\mbox{)}}\end{cases}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>m</mi> <mi>x</mi> <mo>+</mo> <mi>n</mi> </mrow> <mrow> <mi>a</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mi>b</mi> <mi>x</mi> <mo>+</mo> <mi>c</mi> </mrow> </mfrac> </mrow> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>{</mo> <mtable columnalign="left left" rowspacing="1.4em 1.4em 0.2em" columnspacing="1em" displaystyle="false"> <mtr> <mtd> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>m</mi> <mrow> <mn>2</mn> <mi>a</mi> </mrow> </mfrac> </mrow> <mi>ln</mi> <mo>⁡<!-- --></mo> <mrow> <mo>|</mo> <mrow> <mi>a</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mi>b</mi> <mi>x</mi> <mo>+</mo> <mi>c</mi> </mrow> <mo>|</mo> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>2</mn> <mi>a</mi> <mi>n</mi> <mo>−<!-- − --></mo> <mi>b</mi> <mi>m</mi> </mrow> <mrow> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>4</mn> <mi>a</mi> <mi>c</mi> <mo>−<!-- − --></mo> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mrow> </mrow> </mfrac> </mrow> <mi>arctan</mi> <mo>⁡<!-- --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>2</mn> <mi>a</mi> <mi>x</mi> <mo>+</mo> <mi>b</mi> </mrow> <msqrt> <mn>4</mn> <mi>a</mi> <mi>c</mi> <mo>−<!-- − --></mo> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mfrac> </mrow> <mo>+</mo> <mi>C</mi> </mstyle> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext>(for </mtext> </mrow> <mn>4</mn> <mi>a</mi> <mi>c</mi> <mo>−<!-- − --></mo> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>></mo> <mn>0</mn> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mtext>)</mtext> </mstyle> </mrow> </mtd> </mtr> <mtr> <mtd> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>m</mi> <mrow> <mn>2</mn> <mi>a</mi> </mrow> </mfrac> </mrow> <mi>ln</mi> <mo>⁡<!-- --></mo> <mrow> <mo>|</mo> <mrow> <mi>a</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mi>b</mi> <mi>x</mi> <mo>+</mo> <mi>c</mi> </mrow> <mo>|</mo> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>2</mn> <mi>a</mi> <mi>n</mi> <mo>−<!-- − --></mo> <mi>b</mi> <mi>m</mi> </mrow> <mrow> <mn>2</mn> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>−<!-- − --></mo> <mn>4</mn> <mi>a</mi> <mi>c</mi> </msqrt> </mrow> </mrow> </mfrac> </mrow> <mi>ln</mi> <mo>⁡<!-- --></mo> <mrow> <mo>|</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>2</mn> <mi>a</mi> <mi>x</mi> <mo>+</mo> <mi>b</mi> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>−<!-- − --></mo> <mn>4</mn> <mi>a</mi> <mi>c</mi> </msqrt> </mrow> </mrow> <mrow> <mn>2</mn> <mi>a</mi> <mi>x</mi> <mo>+</mo> <mi>b</mi> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>−<!-- − --></mo> <mn>4</mn> <mi>a</mi> <mi>c</mi> </msqrt> </mrow> </mrow> </mfrac> </mrow> <mo>|</mo> </mrow> <mo>+</mo> <mi>C</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>{</mo> <mtable columnalign="left left" rowspacing="0.8em 0.2em" columnspacing="1em" displaystyle="false"> <mtr> <mtd> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>m</mi> <mrow> <mn>2</mn> <mi>a</mi> </mrow> </mfrac> </mrow> <mi>ln</mi> <mo>⁡<!-- --></mo> <mrow> <mo>|</mo> <mrow> <mi>a</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mi>b</mi> <mi>x</mi> <mo>+</mo> <mi>c</mi> </mrow> <mo>|</mo> </mrow> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>2</mn> <mi>a</mi> <mi>n</mi> <mo>−<!-- − --></mo> <mi>b</mi> <mi>m</mi> </mrow> <mrow> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>−<!-- − --></mo> <mn>4</mn> <mi>a</mi> <mi>c</mi> </msqrt> </mrow> </mrow> </mfrac> </mrow> <mspace width="thinmathspace" /> <mi>artanh</mi> <mo>⁡<!-- --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>2</mn> <mi>a</mi> <mi>x</mi> <mo>+</mo> <mi>b</mi> </mrow> <msqrt> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>−<!-- − --></mo> <mn>4</mn> <mi>a</mi> <mi>c</mi> </msqrt> </mfrac> </mrow> <mo>+</mo> <mi>C</mi> </mstyle> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext>(for </mtext> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>2</mn> <mi>a</mi> <mi>x</mi> <mo>+</mo> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo><</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>−<!-- − --></mo> <mn>4</mn> <mi>a</mi> <mi>c</mi> </msqrt> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mtext>)</mtext> </mstyle> </mrow> </mtd> </mtr> <mtr> <mtd> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>m</mi> <mrow> <mn>2</mn> <mi>a</mi> </mrow> </mfrac> </mrow> <mi>ln</mi> <mo>⁡<!-- --></mo> <mrow> <mo>|</mo> <mrow> <mi>a</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mi>b</mi> <mi>x</mi> <mo>+</mo> <mi>c</mi> </mrow> <mo>|</mo> </mrow> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>2</mn> <mi>a</mi> <mi>n</mi> <mo>−<!-- − --></mo> <mi>b</mi> <mi>m</mi> </mrow> <mrow> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>−<!-- − --></mo> <mn>4</mn> <mi>a</mi> <mi>c</mi> </msqrt> </mrow> </mrow> </mfrac> </mrow> <mspace width="thinmathspace" /> <mi>arcoth</mi> <mo>⁡<!-- --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>2</mn> <mi>a</mi> <mi>x</mi> <mo>+</mo> <mi>b</mi> </mrow> <msqrt> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>−<!-- − --></mo> <mn>4</mn> <mi>a</mi> <mi>c</mi> </msqrt> </mfrac> </mrow> <mo>+</mo> <mi>C</mi> </mstyle> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext>(else)</mtext> </mrow> </mtd> </mtr> </mtable> <mo fence="true" stretchy="true" symmetric="true"></mo> </mrow> </mrow> </mstyle> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext>(for </mtext> </mrow> <mn>4</mn> <mi>a</mi> <mi>c</mi> <mo>−<!-- − --></mo> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo><</mo> <mn>0</mn> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mtext>)</mtext> </mstyle> </mrow> </mtd> </mtr> <mtr> <mtd> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>m</mi> <mrow> <mn>2</mn> <mi>a</mi> </mrow> </mfrac> </mrow> <mi>ln</mi> <mo>⁡<!-- --></mo> <mrow> <mo>|</mo> <mrow> <mi>a</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mi>b</mi> <mi>x</mi> <mo>+</mo> <mi>c</mi> </mrow> <mo>|</mo> </mrow> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>2</mn> <mi>a</mi> <mi>n</mi> <mo>−<!-- − --></mo> <mi>b</mi> <mi>m</mi> </mrow> <mrow> <mi>a</mi> <mo stretchy="false">(</mo> <mn>2</mn> <mi>a</mi> <mi>x</mi> <mo>+</mo> <mi>b</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mo>+</mo> <mi>C</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>m</mi> <mi>a</mi> </mfrac> </mrow> <mi>ln</mi> <mo>⁡<!-- --></mo> <mrow> <mo>|</mo> <mrow> <mi>x</mi> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>b</mi> <mrow> <mn>2</mn> <mi>a</mi> </mrow> </mfrac> </mrow> </mrow> <mo>|</mo> </mrow> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>2</mn> <mi>a</mi> <mi>n</mi> <mo>−<!-- − --></mo> <mi>b</mi> <mi>m</mi> </mrow> <mrow> <mi>a</mi> <mo stretchy="false">(</mo> <mn>2</mn> <mi>a</mi> <mi>x</mi> <mo>+</mo> <mi>b</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mo>+</mo> <mi>C</mi> </mstyle> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext>(for </mtext> </mrow> <mn>4</mn> <mi>a</mi> <mi>c</mi> <mo>−<!-- − --></mo> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mn>0</mn> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mtext>)</mtext> </mstyle> </mrow> </mtd> </mtr> </mtable> <mo fence="true" stretchy="true" symmetric="true"></mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int {\frac {mx+n}{ax^{2}+bx+c}}\,dx={\begin{cases}\displaystyle {\frac {m}{2a}}\ln \left|ax^{2}+bx+c\right|+{\frac {2an-bm}{a{\sqrt {4ac-b^{2}}}}}\arctan {\frac {2ax+b}{\sqrt {4ac-b^{2}}}}+C&{\text{(for }}4ac-b^{2}>0{\mbox{)}}\\[12pt]\displaystyle {\frac {m}{2a}}\ln \left|ax^{2}+bx+c\right|+{\frac {2an-bm}{2a{\sqrt {b^{2}-4ac}}}}\ln \left|{\frac {2ax+b-{\sqrt {b^{2}-4ac}}}{2ax+b+{\sqrt {b^{2}-4ac}}}}\right|+C={\begin{cases}\displaystyle {\frac {m}{2a}}\ln \left|ax^{2}+bx+c\right|-{\frac {2an-bm}{a{\sqrt {b^{2}-4ac}}}}\,\operatorname {artanh} {\frac {2ax+b}{\sqrt {b^{2}-4ac}}}+C&{\text{(for }}|2ax+b|<{\sqrt {b^{2}-4ac}}{\mbox{)}}\\[6pt]\displaystyle {\frac {m}{2a}}\ln \left|ax^{2}+bx+c\right|-{\frac {2an-bm}{a{\sqrt {b^{2}-4ac}}}}\,\operatorname {arcoth} {\frac {2ax+b}{\sqrt {b^{2}-4ac}}}+C&{\text{(else)}}\end{cases}}&{\text{(for }}4ac-b^{2}<0{\mbox{)}}\\[12pt]\displaystyle {\frac {m}{2a}}\ln \left|ax^{2}+bx+c\right|-{\frac {2an-bm}{a(2ax+b)}}+C={\frac {m}{a}}\ln \left|x+{\frac {b}{2a}}\right|-{\frac {2an-bm}{a(2ax+b)}}+C&{\text{(for }}4ac-b^{2}=0{\mbox{)}}\end{cases}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/137aeb719faa0d412412ce2afb21f694747e79af" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -15.838ex; width:206.109ex; height:32.843ex;" alt="{\displaystyle \int {\frac {mx+n}{ax^{2}+bx+c}}\,dx={\begin{cases}\displaystyle {\frac {m}{2a}}\ln \left|ax^{2}+bx+c\right|+{\frac {2an-bm}{a{\sqrt {4ac-b^{2}}}}}\arctan {\frac {2ax+b}{\sqrt {4ac-b^{2}}}}+C&{\text{(for }}4ac-b^{2}>0{\mbox{)}}\\[12pt]\displaystyle {\frac {m}{2a}}\ln \left|ax^{2}+bx+c\right|+{\frac {2an-bm}{2a{\sqrt {b^{2}-4ac}}}}\ln \left|{\frac {2ax+b-{\sqrt {b^{2}-4ac}}}{2ax+b+{\sqrt {b^{2}-4ac}}}}\right|+C={\begin{cases}\displaystyle {\frac {m}{2a}}\ln \left|ax^{2}+bx+c\right|-{\frac {2an-bm}{a{\sqrt {b^{2}-4ac}}}}\,\operatorname {artanh} {\frac {2ax+b}{\sqrt {b^{2}-4ac}}}+C&{\text{(for }}|2ax+b|<{\sqrt {b^{2}-4ac}}{\mbox{)}}\\[6pt]\displaystyle {\frac {m}{2a}}\ln \left|ax^{2}+bx+c\right|-{\frac {2an-bm}{a{\sqrt {b^{2}-4ac}}}}\,\operatorname {arcoth} {\frac {2ax+b}{\sqrt {b^{2}-4ac}}}+C&{\text{(else)}}\end{cases}}&{\text{(for }}4ac-b^{2}<0{\mbox{)}}\\[12pt]\displaystyle {\frac {m}{2a}}\ln \left|ax^{2}+bx+c\right|-{\frac {2an-bm}{a(2ax+b)}}+C={\frac {m}{a}}\ln \left|x+{\frac {b}{2a}}\right|-{\frac {2an-bm}{a(2ax+b)}}+C&{\text{(for }}4ac-b^{2}=0{\mbox{)}}\end{cases}}}"></span></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int {\frac {1}{(ax^{2}+bx+c)^{n}}}\,dx={\frac {2ax+b}{(n-1)(4ac-b^{2})(ax^{2}+bx+c)^{n-1}}}+{\frac {(2n-3)2a}{(n-1)(4ac-b^{2})}}\int {\frac {1}{(ax^{2}+bx+c)^{n-1}}}\,dx+C}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mo stretchy="false">(</mo> <mi>a</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mi>b</mi> <mi>x</mi> <mo>+</mo> <mi>c</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> </mfrac> </mrow> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>2</mn> <mi>a</mi> <mi>x</mi> <mo>+</mo> <mi>b</mi> </mrow> <mrow> <mo stretchy="false">(</mo> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mn>4</mn> <mi>a</mi> <mi>c</mi> <mo>−<!-- − --></mo> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>a</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mi>b</mi> <mi>x</mi> <mo>+</mo> <mi>c</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mn>2</mn> <mi>n</mi> <mo>−<!-- − --></mo> <mn>3</mn> <mo stretchy="false">)</mo> <mn>2</mn> <mi>a</mi> </mrow> <mrow> <mo stretchy="false">(</mo> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mn>4</mn> <mi>a</mi> <mi>c</mi> <mo>−<!-- − --></mo> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mo stretchy="false">(</mo> <mi>a</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mi>b</mi> <mi>x</mi> <mo>+</mo> <mi>c</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> <mo>+</mo> <mi>C</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int {\frac {1}{(ax^{2}+bx+c)^{n}}}\,dx={\frac {2ax+b}{(n-1)(4ac-b^{2})(ax^{2}+bx+c)^{n-1}}}+{\frac {(2n-3)2a}{(n-1)(4ac-b^{2})}}\int {\frac {1}{(ax^{2}+bx+c)^{n-1}}}\,dx+C}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/70aa274c4d40db21d09cced28142d167f4fd1aab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:111.089ex; height:6.509ex;" alt="{\displaystyle \int {\frac {1}{(ax^{2}+bx+c)^{n}}}\,dx={\frac {2ax+b}{(n-1)(4ac-b^{2})(ax^{2}+bx+c)^{n-1}}}+{\frac {(2n-3)2a}{(n-1)(4ac-b^{2})}}\int {\frac {1}{(ax^{2}+bx+c)^{n-1}}}\,dx+C}"></span></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int {\frac {x}{(ax^{2}+bx+c)^{n}}}\,dx=-{\frac {bx+2c}{(n-1)(4ac-b^{2})(ax^{2}+bx+c)^{n-1}}}-{\frac {b(2n-3)}{(n-1)(4ac-b^{2})}}\int {\frac {1}{(ax^{2}+bx+c)^{n-1}}}\,dx+C}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>x</mi> <mrow> <mo stretchy="false">(</mo> <mi>a</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mi>b</mi> <mi>x</mi> <mo>+</mo> <mi>c</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> </mfrac> </mrow> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> <mo>=</mo> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>b</mi> <mi>x</mi> <mo>+</mo> <mn>2</mn> <mi>c</mi> </mrow> <mrow> <mo stretchy="false">(</mo> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mn>4</mn> <mi>a</mi> <mi>c</mi> <mo>−<!-- − --></mo> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>a</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mi>b</mi> <mi>x</mi> <mo>+</mo> <mi>c</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>b</mi> <mo stretchy="false">(</mo> <mn>2</mn> <mi>n</mi> <mo>−<!-- − --></mo> <mn>3</mn> <mo stretchy="false">)</mo> </mrow> <mrow> <mo stretchy="false">(</mo> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mn>4</mn> <mi>a</mi> <mi>c</mi> <mo>−<!-- − --></mo> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mo stretchy="false">(</mo> <mi>a</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mi>b</mi> <mi>x</mi> <mo>+</mo> <mi>c</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> <mo>+</mo> <mi>C</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int {\frac {x}{(ax^{2}+bx+c)^{n}}}\,dx=-{\frac {bx+2c}{(n-1)(4ac-b^{2})(ax^{2}+bx+c)^{n-1}}}-{\frac {b(2n-3)}{(n-1)(4ac-b^{2})}}\int {\frac {1}{(ax^{2}+bx+c)^{n-1}}}\,dx+C}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c9596eeb7ecf42279db0fe8ddbff66b7aa5ffca3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:112.897ex; height:6.509ex;" alt="{\displaystyle \int {\frac {x}{(ax^{2}+bx+c)^{n}}}\,dx=-{\frac {bx+2c}{(n-1)(4ac-b^{2})(ax^{2}+bx+c)^{n-1}}}-{\frac {b(2n-3)}{(n-1)(4ac-b^{2})}}\int {\frac {1}{(ax^{2}+bx+c)^{n-1}}}\,dx+C}"></span></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int {\frac {1}{x(ax^{2}+bx+c)}}\,dx={\frac {1}{2c}}\ln \left|{\frac {x^{2}}{ax^{2}+bx+c}}\right|-{\frac {b}{2c}}\int {\frac {1}{ax^{2}+bx+c}}\,dx+C}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi>x</mi> <mo stretchy="false">(</mo> <mi>a</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mi>b</mi> <mi>x</mi> <mo>+</mo> <mi>c</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>c</mi> </mrow> </mfrac> </mrow> <mi>ln</mi> <mo>⁡<!-- --></mo> <mrow> <mo>|</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow> <mi>a</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mi>b</mi> <mi>x</mi> <mo>+</mo> <mi>c</mi> </mrow> </mfrac> </mrow> <mo>|</mo> </mrow> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>b</mi> <mrow> <mn>2</mn> <mi>c</mi> </mrow> </mfrac> </mrow> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi>a</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mi>b</mi> <mi>x</mi> <mo>+</mo> <mi>c</mi> </mrow> </mfrac> </mrow> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> <mo>+</mo> <mi>C</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int {\frac {1}{x(ax^{2}+bx+c)}}\,dx={\frac {1}{2c}}\ln \left|{\frac {x^{2}}{ax^{2}+bx+c}}\right|-{\frac {b}{2c}}\int {\frac {1}{ax^{2}+bx+c}}\,dx+C}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ce3a0fffb5a4379f6c63480665bb09f9d6d1f61b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:75.124ex; height:6.509ex;" alt="{\displaystyle \int {\frac {1}{x(ax^{2}+bx+c)}}\,dx={\frac {1}{2c}}\ln \left|{\frac {x^{2}}{ax^{2}+bx+c}}\right|-{\frac {b}{2c}}\int {\frac {1}{ax^{2}+bx+c}}\,dx+C}"></span></li></ul> </div> <div class="mw-heading mw-heading2"><h2 id="Integrands_of_the_form_xm_(a_+_b_xn)p"><span id="Integrands_of_the_form_xm_.28a_.2B_b_xn.29p"></span>Integrands of the form <i>x</i><sup><i>m</i></sup> (<i>a</i> + <i>b x</i><sup><i>n</i></sup>)<sup><i>p</i></sup></h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=List_of_integrals_of_rational_functions&action=edit&section=4" title="Edit section: Integrands of the form xm (a + b xn)p"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li>The resulting integrands are of the same form as the original integrand, so these reduction formulas can be repeatedly applied to drive the exponents <i>m</i> and <i>p</i> toward 0.</li> <li>These reduction formulas can be used for integrands having integer and/or fractional exponents.</li></ul> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1126788409"><div class="plainlist" style="margin-left: 1.6em;"> <ul><li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int x^{m}\left(a+b\,x^{n}\right)^{p}dx={\frac {x^{m+1}\left(a+b\,x^{n}\right)^{p}}{m+n\,p+1}}\,+\,{\frac {a\,n\,p}{m+n\,p+1}}\int x^{m}\left(a+b\,x^{n}\right)^{p-1}dx}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>∫<!-- ∫ --></mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> <msup> <mrow> <mo>(</mo> <mrow> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <mi>d</mi> <mi>x</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> <msup> <mrow> <mo>(</mo> <mrow> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> </mrow> <mrow> <mi>m</mi> <mo>+</mo> <mi>n</mi> <mspace width="thinmathspace" /> <mi>p</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> </mrow> <mspace width="thinmathspace" /> <mo>+</mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>a</mi> <mspace width="thinmathspace" /> <mi>n</mi> <mspace width="thinmathspace" /> <mi>p</mi> </mrow> <mrow> <mi>m</mi> <mo>+</mo> <mi>n</mi> <mspace width="thinmathspace" /> <mi>p</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> </mrow> <mo>∫<!-- ∫ --></mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> <msup> <mrow> <mo>(</mo> <mrow> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mi>d</mi> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int x^{m}\left(a+b\,x^{n}\right)^{p}dx={\frac {x^{m+1}\left(a+b\,x^{n}\right)^{p}}{m+n\,p+1}}\,+\,{\frac {a\,n\,p}{m+n\,p+1}}\int x^{m}\left(a+b\,x^{n}\right)^{p-1}dx}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4790301459e72262aafa18b525a4f5e3bdf47c07" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:76.69ex; height:6.343ex;" alt="{\displaystyle \int x^{m}\left(a+b\,x^{n}\right)^{p}dx={\frac {x^{m+1}\left(a+b\,x^{n}\right)^{p}}{m+n\,p+1}}\,+\,{\frac {a\,n\,p}{m+n\,p+1}}\int x^{m}\left(a+b\,x^{n}\right)^{p-1}dx}"></span></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int x^{m}\left(a+b\,x^{n}\right)^{p}dx=-{\frac {x^{m+1}\left(a+b\,x^{n}\right)^{p+1}}{a\,n(p+1)}}\,+\,{\frac {m+n(p+1)+1}{a\,n(p+1)}}\int x^{m}\left(a+b\,x^{n}\right)^{p+1}dx}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>∫<!-- ∫ --></mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> <msup> <mrow> <mo>(</mo> <mrow> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <mi>d</mi> <mi>x</mi> <mo>=</mo> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> <msup> <mrow> <mo>(</mo> <mrow> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> </mrow> <mrow> <mi>a</mi> <mspace width="thinmathspace" /> <mi>n</mi> <mo stretchy="false">(</mo> <mi>p</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mspace width="thinmathspace" /> <mo>+</mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>m</mi> <mo>+</mo> <mi>n</mi> <mo stretchy="false">(</mo> <mi>p</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>+</mo> <mn>1</mn> </mrow> <mrow> <mi>a</mi> <mspace width="thinmathspace" /> <mi>n</mi> <mo stretchy="false">(</mo> <mi>p</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mo>∫<!-- ∫ --></mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> <msup> <mrow> <mo>(</mo> <mrow> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> <mi>d</mi> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int x^{m}\left(a+b\,x^{n}\right)^{p}dx=-{\frac {x^{m+1}\left(a+b\,x^{n}\right)^{p+1}}{a\,n(p+1)}}\,+\,{\frac {m+n(p+1)+1}{a\,n(p+1)}}\int x^{m}\left(a+b\,x^{n}\right)^{p+1}dx}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e2c8816cb99165f737c15e4d99c66d493f720137" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:86.023ex; height:6.843ex;" alt="{\displaystyle \int x^{m}\left(a+b\,x^{n}\right)^{p}dx=-{\frac {x^{m+1}\left(a+b\,x^{n}\right)^{p+1}}{a\,n(p+1)}}\,+\,{\frac {m+n(p+1)+1}{a\,n(p+1)}}\int x^{m}\left(a+b\,x^{n}\right)^{p+1}dx}"></span></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int x^{m}\left(a+b\,x^{n}\right)^{p}dx={\frac {x^{m+1}\left(a+b\,x^{n}\right)^{p}}{m+1}}\,-\,{\frac {b\,n\,p}{m+1}}\int x^{m+n}\left(a+b\,x^{n}\right)^{p-1}dx}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>∫<!-- ∫ --></mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> <msup> <mrow> <mo>(</mo> <mrow> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <mi>d</mi> <mi>x</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> <msup> <mrow> <mo>(</mo> <mrow> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> </mrow> <mrow> <mi>m</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> </mrow> <mspace width="thinmathspace" /> <mo>−<!-- − --></mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>b</mi> <mspace width="thinmathspace" /> <mi>n</mi> <mspace width="thinmathspace" /> <mi>p</mi> </mrow> <mrow> <mi>m</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> </mrow> <mo>∫<!-- ∫ --></mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>+</mo> <mi>n</mi> </mrow> </msup> <msup> <mrow> <mo>(</mo> <mrow> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mi>d</mi> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int x^{m}\left(a+b\,x^{n}\right)^{p}dx={\frac {x^{m+1}\left(a+b\,x^{n}\right)^{p}}{m+1}}\,-\,{\frac {b\,n\,p}{m+1}}\int x^{m+n}\left(a+b\,x^{n}\right)^{p-1}dx}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/96bba069ebcdb45e98e0062bb4b07008b0d35fc2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:73.163ex; height:6.343ex;" alt="{\displaystyle \int x^{m}\left(a+b\,x^{n}\right)^{p}dx={\frac {x^{m+1}\left(a+b\,x^{n}\right)^{p}}{m+1}}\,-\,{\frac {b\,n\,p}{m+1}}\int x^{m+n}\left(a+b\,x^{n}\right)^{p-1}dx}"></span></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int x^{m}\left(a+b\,x^{n}\right)^{p}dx={\frac {x^{m-n+1}\left(a+b\,x^{n}\right)^{p+1}}{b\,n(p+1)}}\,-\,{\frac {m-n+1}{b\,n(p+1)}}\int x^{m-n}\left(a+b\,x^{n}\right)^{p+1}dx}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>∫<!-- ∫ --></mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> <msup> <mrow> <mo>(</mo> <mrow> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <mi>d</mi> <mi>x</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>−<!-- − --></mo> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> <msup> <mrow> <mo>(</mo> <mrow> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> </mrow> <mrow> <mi>b</mi> <mspace width="thinmathspace" /> <mi>n</mi> <mo stretchy="false">(</mo> <mi>p</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mspace width="thinmathspace" /> <mo>−<!-- − --></mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>m</mi> <mo>−<!-- − --></mo> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> <mrow> <mi>b</mi> <mspace width="thinmathspace" /> <mi>n</mi> <mo stretchy="false">(</mo> <mi>p</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mo>∫<!-- ∫ --></mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>−<!-- − --></mo> <mi>n</mi> </mrow> </msup> <msup> <mrow> <mo>(</mo> <mrow> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> <mi>d</mi> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int x^{m}\left(a+b\,x^{n}\right)^{p}dx={\frac {x^{m-n+1}\left(a+b\,x^{n}\right)^{p+1}}{b\,n(p+1)}}\,-\,{\frac {m-n+1}{b\,n(p+1)}}\int x^{m-n}\left(a+b\,x^{n}\right)^{p+1}dx}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b3422de38d52f4da42c1bf9968ce5768120c7086" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:81.763ex; height:6.843ex;" alt="{\displaystyle \int x^{m}\left(a+b\,x^{n}\right)^{p}dx={\frac {x^{m-n+1}\left(a+b\,x^{n}\right)^{p+1}}{b\,n(p+1)}}\,-\,{\frac {m-n+1}{b\,n(p+1)}}\int x^{m-n}\left(a+b\,x^{n}\right)^{p+1}dx}"></span></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int x^{m}\left(a+b\,x^{n}\right)^{p}dx={\frac {x^{m-n+1}\left(a+b\,x^{n}\right)^{p+1}}{b(m+n\,p+1)}}\,-\,{\frac {a(m-n+1)}{b(m+n\,p+1)}}\int x^{m-n}\left(a+b\,x^{n}\right)^{p}dx}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>∫<!-- ∫ --></mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> <msup> <mrow> <mo>(</mo> <mrow> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <mi>d</mi> <mi>x</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>−<!-- − --></mo> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> <msup> <mrow> <mo>(</mo> <mrow> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> </mrow> <mrow> <mi>b</mi> <mo stretchy="false">(</mo> <mi>m</mi> <mo>+</mo> <mi>n</mi> <mspace width="thinmathspace" /> <mi>p</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mspace width="thinmathspace" /> <mo>−<!-- − --></mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>a</mi> <mo stretchy="false">(</mo> <mi>m</mi> <mo>−<!-- − --></mo> <mi>n</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>b</mi> <mo stretchy="false">(</mo> <mi>m</mi> <mo>+</mo> <mi>n</mi> <mspace width="thinmathspace" /> <mi>p</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mo>∫<!-- ∫ --></mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>−<!-- − --></mo> <mi>n</mi> </mrow> </msup> <msup> <mrow> <mo>(</mo> <mrow> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <mi>d</mi> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int x^{m}\left(a+b\,x^{n}\right)^{p}dx={\frac {x^{m-n+1}\left(a+b\,x^{n}\right)^{p+1}}{b(m+n\,p+1)}}\,-\,{\frac {a(m-n+1)}{b(m+n\,p+1)}}\int x^{m-n}\left(a+b\,x^{n}\right)^{p}dx}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/26dfd412da178d54770054a6acc2eb5bfe05fa4e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:84.026ex; height:6.843ex;" alt="{\displaystyle \int x^{m}\left(a+b\,x^{n}\right)^{p}dx={\frac {x^{m-n+1}\left(a+b\,x^{n}\right)^{p+1}}{b(m+n\,p+1)}}\,-\,{\frac {a(m-n+1)}{b(m+n\,p+1)}}\int x^{m-n}\left(a+b\,x^{n}\right)^{p}dx}"></span></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int x^{m}\left(a+b\,x^{n}\right)^{p}dx={\frac {x^{m+1}\left(a+b\,x^{n}\right)^{p+1}}{a(m+1)}}\,-\,{\frac {b(m+n(p+1)+1)}{a(m+1)}}\int x^{m+n}\left(a+b\,x^{n}\right)^{p}dx}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>∫<!-- ∫ --></mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> <msup> <mrow> <mo>(</mo> <mrow> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <mi>d</mi> <mi>x</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> <msup> <mrow> <mo>(</mo> <mrow> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> </mrow> <mrow> <mi>a</mi> <mo stretchy="false">(</mo> <mi>m</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mspace width="thinmathspace" /> <mo>−<!-- − --></mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>b</mi> <mo stretchy="false">(</mo> <mi>m</mi> <mo>+</mo> <mi>n</mi> <mo stretchy="false">(</mo> <mi>p</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>a</mi> <mo stretchy="false">(</mo> <mi>m</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mo>∫<!-- ∫ --></mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>+</mo> <mi>n</mi> </mrow> </msup> <msup> <mrow> <mo>(</mo> <mrow> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <mi>d</mi> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int x^{m}\left(a+b\,x^{n}\right)^{p}dx={\frac {x^{m+1}\left(a+b\,x^{n}\right)^{p+1}}{a(m+1)}}\,-\,{\frac {b(m+n(p+1)+1)}{a(m+1)}}\int x^{m+n}\left(a+b\,x^{n}\right)^{p}dx}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/853386481e1c31cde5b48c5df4f22b78d7b39324" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:87.186ex; height:6.843ex;" alt="{\displaystyle \int x^{m}\left(a+b\,x^{n}\right)^{p}dx={\frac {x^{m+1}\left(a+b\,x^{n}\right)^{p+1}}{a(m+1)}}\,-\,{\frac {b(m+n(p+1)+1)}{a(m+1)}}\int x^{m+n}\left(a+b\,x^{n}\right)^{p}dx}"></span></li></ul> </div> <div class="mw-heading mw-heading2"><h2 id="Integrands_of_the_form_(A_+_B_x)_(a_+_b_x)m_(c_+_d_x)n_(e_+_f_x)p"><span id="Integrands_of_the_form_.28A_.2B_B_x.29_.28a_.2B_b_x.29m_.28c_.2B_d_x.29n_.28e_.2B_f_x.29p"></span>Integrands of the form (<i>A</i> + <i>B x</i>) (<i>a</i> + <i>b x</i>)<sup><i>m</i></sup> (<i>c</i> + <i>d x</i>)<sup><i>n</i></sup> (<i>e</i> + <i>f x</i>)<sup><i>p</i></sup></h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=List_of_integrals_of_rational_functions&action=edit&section=5" title="Edit section: Integrands of the form (A + B x) (a + b x)m (c + d x)n (e + f x)p"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li>The resulting integrands are of the same form as the original integrand, so these reduction formulas can be repeatedly applied to drive the exponents <i>m</i>, <i>n</i> and <i>p</i> toward 0.</li> <li>These reduction formulas can be used for integrands having integer and/or fractional exponents.</li> <li>Special cases of these reductions formulas can be used for integrands of the form <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (a+b\,x)^{m}(c+d\,x)^{n}(e+f\,x)^{p}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mspace width="thinmathspace" /> <mi>x</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>c</mi> <mo>+</mo> <mi>d</mi> <mspace width="thinmathspace" /> <mi>x</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>e</mi> <mo>+</mo> <mi>f</mi> <mspace width="thinmathspace" /> <mi>x</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (a+b\,x)^{m}(c+d\,x)^{n}(e+f\,x)^{p}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ed77b34ca02e59ce60f3133a2f29bdf5a137d6a7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:29.864ex; height:2.843ex;" alt="{\displaystyle (a+b\,x)^{m}(c+d\,x)^{n}(e+f\,x)^{p}}"></span> by setting <i>B</i> to 0.</li></ul> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1126788409"><div class="plainlist" style="margin-left: 1.6em;"> <ul><li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}&\int (A+B\,x)(a+b\,x)^{m}(c+d\,x)^{n}(e+f\,x)^{p}dx=-{\frac {(A\,b-a\,B)(a+b\,x)^{m+1}(c+d\,x)^{n}(e+f\,x)^{p+1}}{b(m+1)(a\,f-b\,e)}}\,+\,{\frac {1}{b(m+1)(a\,f-b\,e)}}\,\cdot \\&\qquad \int (b\,c(m+1)(A\,f-B\,e)+(A\,b-a\,B)(n\,d\,e+c\,f(p+1))+d(b(m+1)(A\,f-B\,e)+f(n+p+1)(A\,b-a\,B))x)(a+b\,x)^{m+1}(c+d\,x)^{n-1}(e+f\,x)^{p}dx\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd /> <mtd> <mi></mi> <mo>∫<!-- ∫ --></mo> <mo stretchy="false">(</mo> <mi>A</mi> <mo>+</mo> <mi>B</mi> <mspace width="thinmathspace" /> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mspace width="thinmathspace" /> <mi>x</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>c</mi> <mo>+</mo> <mi>d</mi> <mspace width="thinmathspace" /> <mi>x</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>e</mi> <mo>+</mo> <mi>f</mi> <mspace width="thinmathspace" /> <mi>x</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <mi>d</mi> <mi>x</mi> <mo>=</mo> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mi>A</mi> <mspace width="thinmathspace" /> <mi>b</mi> <mo>−<!-- − --></mo> <mi>a</mi> <mspace width="thinmathspace" /> <mi>B</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mspace width="thinmathspace" /> <mi>x</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mi>c</mi> <mo>+</mo> <mi>d</mi> <mspace width="thinmathspace" /> <mi>x</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>e</mi> <mo>+</mo> <mi>f</mi> <mspace width="thinmathspace" /> <mi>x</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> </mrow> <mrow> <mi>b</mi> <mo stretchy="false">(</mo> <mi>m</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>a</mi> <mspace width="thinmathspace" /> <mi>f</mi> <mo>−<!-- − --></mo> <mi>b</mi> <mspace width="thinmathspace" /> <mi>e</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mspace width="thinmathspace" /> <mo>+</mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi>b</mi> <mo stretchy="false">(</mo> <mi>m</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>a</mi> <mspace width="thinmathspace" /> <mi>f</mi> <mo>−<!-- − --></mo> <mi>b</mi> <mspace width="thinmathspace" /> <mi>e</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mspace width="thinmathspace" /> <mo>⋅<!-- ⋅ --></mo> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mspace width="2em" /> <mo>∫<!-- ∫ --></mo> <mo stretchy="false">(</mo> <mi>b</mi> <mspace width="thinmathspace" /> <mi>c</mi> <mo stretchy="false">(</mo> <mi>m</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>A</mi> <mspace width="thinmathspace" /> <mi>f</mi> <mo>−<!-- − --></mo> <mi>B</mi> <mspace width="thinmathspace" /> <mi>e</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mo stretchy="false">(</mo> <mi>A</mi> <mspace width="thinmathspace" /> <mi>b</mi> <mo>−<!-- − --></mo> <mi>a</mi> <mspace width="thinmathspace" /> <mi>B</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>n</mi> <mspace width="thinmathspace" /> <mi>d</mi> <mspace width="thinmathspace" /> <mi>e</mi> <mo>+</mo> <mi>c</mi> <mspace width="thinmathspace" /> <mi>f</mi> <mo stretchy="false">(</mo> <mi>p</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>+</mo> <mi>d</mi> <mo stretchy="false">(</mo> <mi>b</mi> <mo stretchy="false">(</mo> <mi>m</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>A</mi> <mspace width="thinmathspace" /> <mi>f</mi> <mo>−<!-- − --></mo> <mi>B</mi> <mspace width="thinmathspace" /> <mi>e</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo>+</mo> <mi>p</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>A</mi> <mspace width="thinmathspace" /> <mi>b</mi> <mo>−<!-- − --></mo> <mi>a</mi> <mspace width="thinmathspace" /> <mi>B</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mspace width="thinmathspace" /> <mi>x</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mi>c</mi> <mo>+</mo> <mi>d</mi> <mspace width="thinmathspace" /> <mi>x</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mi>e</mi> <mo>+</mo> <mi>f</mi> <mspace width="thinmathspace" /> <mi>x</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <mi>d</mi> <mi>x</mi> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}&\int (A+B\,x)(a+b\,x)^{m}(c+d\,x)^{n}(e+f\,x)^{p}dx=-{\frac {(A\,b-a\,B)(a+b\,x)^{m+1}(c+d\,x)^{n}(e+f\,x)^{p+1}}{b(m+1)(a\,f-b\,e)}}\,+\,{\frac {1}{b(m+1)(a\,f-b\,e)}}\,\cdot \\&\qquad \int (b\,c(m+1)(A\,f-B\,e)+(A\,b-a\,B)(n\,d\,e+c\,f(p+1))+d(b(m+1)(A\,f-B\,e)+f(n+p+1)(A\,b-a\,B))x)(a+b\,x)^{m+1}(c+d\,x)^{n-1}(e+f\,x)^{p}dx\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a656bfa04081bcc75754b278a90aaa126c6979f0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -5.671ex; width:154.538ex; height:12.509ex;" alt="{\displaystyle {\begin{aligned}&\int (A+B\,x)(a+b\,x)^{m}(c+d\,x)^{n}(e+f\,x)^{p}dx=-{\frac {(A\,b-a\,B)(a+b\,x)^{m+1}(c+d\,x)^{n}(e+f\,x)^{p+1}}{b(m+1)(a\,f-b\,e)}}\,+\,{\frac {1}{b(m+1)(a\,f-b\,e)}}\,\cdot \\&\qquad \int (b\,c(m+1)(A\,f-B\,e)+(A\,b-a\,B)(n\,d\,e+c\,f(p+1))+d(b(m+1)(A\,f-B\,e)+f(n+p+1)(A\,b-a\,B))x)(a+b\,x)^{m+1}(c+d\,x)^{n-1}(e+f\,x)^{p}dx\end{aligned}}}"></span></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}&\int (A+B\,x)(a+b\,x)^{m}(c+d\,x)^{n}(e+f\,x)^{p}dx={\frac {B(a+b\,x)^{m}(c+d\,x)^{n+1}(e+f\,x)^{p+1}}{d\,f(m+n+p+2)}}\,+\,{\frac {1}{d\,f(m+n+p+2)}}\,\cdot \\&\qquad \int (A\,a\,d\,f(m+n+p+2)-B(b\,c\,e\,m+a(d\,e(n+1)+c\,f(p+1)))+(A\,b\,d\,f(m+n+p+2)+B(a\,d\,f\,m-b(d\,e(m+n+1)+c\,f(m+p+1))))x)(a+b\,x)^{m-1}(c+d\,x)^{n}(e+f\,x)^{p}dx\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd /> <mtd> <mi></mi> <mo>∫<!-- ∫ --></mo> <mo stretchy="false">(</mo> <mi>A</mi> <mo>+</mo> <mi>B</mi> <mspace width="thinmathspace" /> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mspace width="thinmathspace" /> <mi>x</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>c</mi> <mo>+</mo> <mi>d</mi> <mspace width="thinmathspace" /> <mi>x</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>e</mi> <mo>+</mo> <mi>f</mi> <mspace width="thinmathspace" /> <mi>x</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <mi>d</mi> <mi>x</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>B</mi> <mo stretchy="false">(</mo> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mspace width="thinmathspace" /> <mi>x</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>c</mi> <mo>+</mo> <mi>d</mi> <mspace width="thinmathspace" /> <mi>x</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mi>e</mi> <mo>+</mo> <mi>f</mi> <mspace width="thinmathspace" /> <mi>x</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> </mrow> <mrow> <mi>d</mi> <mspace width="thinmathspace" /> <mi>f</mi> <mo stretchy="false">(</mo> <mi>m</mi> <mo>+</mo> <mi>n</mi> <mo>+</mo> <mi>p</mi> <mo>+</mo> <mn>2</mn> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mspace width="thinmathspace" /> <mo>+</mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi>d</mi> <mspace width="thinmathspace" /> <mi>f</mi> <mo stretchy="false">(</mo> <mi>m</mi> <mo>+</mo> <mi>n</mi> <mo>+</mo> <mi>p</mi> <mo>+</mo> <mn>2</mn> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mspace width="thinmathspace" /> <mo>⋅<!-- ⋅ --></mo> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mspace width="2em" /> <mo>∫<!-- ∫ --></mo> <mo stretchy="false">(</mo> <mi>A</mi> <mspace width="thinmathspace" /> <mi>a</mi> <mspace width="thinmathspace" /> <mi>d</mi> <mspace width="thinmathspace" /> <mi>f</mi> <mo stretchy="false">(</mo> <mi>m</mi> <mo>+</mo> <mi>n</mi> <mo>+</mo> <mi>p</mi> <mo>+</mo> <mn>2</mn> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <mi>B</mi> <mo stretchy="false">(</mo> <mi>b</mi> <mspace width="thinmathspace" /> <mi>c</mi> <mspace width="thinmathspace" /> <mi>e</mi> <mspace width="thinmathspace" /> <mi>m</mi> <mo>+</mo> <mi>a</mi> <mo stretchy="false">(</mo> <mi>d</mi> <mspace width="thinmathspace" /> <mi>e</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>+</mo> <mi>c</mi> <mspace width="thinmathspace" /> <mi>f</mi> <mo stretchy="false">(</mo> <mi>p</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>+</mo> <mo stretchy="false">(</mo> <mi>A</mi> <mspace width="thinmathspace" /> <mi>b</mi> <mspace width="thinmathspace" /> <mi>d</mi> <mspace width="thinmathspace" /> <mi>f</mi> <mo stretchy="false">(</mo> <mi>m</mi> <mo>+</mo> <mi>n</mi> <mo>+</mo> <mi>p</mi> <mo>+</mo> <mn>2</mn> <mo stretchy="false">)</mo> <mo>+</mo> <mi>B</mi> <mo stretchy="false">(</mo> <mi>a</mi> <mspace width="thinmathspace" /> <mi>d</mi> <mspace width="thinmathspace" /> <mi>f</mi> <mspace width="thinmathspace" /> <mi>m</mi> <mo>−<!-- − --></mo> <mi>b</mi> <mo stretchy="false">(</mo> <mi>d</mi> <mspace width="thinmathspace" /> <mi>e</mi> <mo stretchy="false">(</mo> <mi>m</mi> <mo>+</mo> <mi>n</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>+</mo> <mi>c</mi> <mspace width="thinmathspace" /> <mi>f</mi> <mo stretchy="false">(</mo> <mi>m</mi> <mo>+</mo> <mi>p</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mspace width="thinmathspace" /> <mi>x</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mi>c</mi> <mo>+</mo> <mi>d</mi> <mspace width="thinmathspace" /> <mi>x</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>e</mi> <mo>+</mo> <mi>f</mi> <mspace width="thinmathspace" /> <mi>x</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <mi>d</mi> <mi>x</mi> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}&\int (A+B\,x)(a+b\,x)^{m}(c+d\,x)^{n}(e+f\,x)^{p}dx={\frac {B(a+b\,x)^{m}(c+d\,x)^{n+1}(e+f\,x)^{p+1}}{d\,f(m+n+p+2)}}\,+\,{\frac {1}{d\,f(m+n+p+2)}}\,\cdot \\&\qquad \int (A\,a\,d\,f(m+n+p+2)-B(b\,c\,e\,m+a(d\,e(n+1)+c\,f(p+1)))+(A\,b\,d\,f(m+n+p+2)+B(a\,d\,f\,m-b(d\,e(m+n+1)+c\,f(m+p+1))))x)(a+b\,x)^{m-1}(c+d\,x)^{n}(e+f\,x)^{p}dx\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/691ba1b24823df8e3d20a2d1df3cb6bb3f183a15" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -5.671ex; width:187.603ex; height:12.509ex;" alt="{\displaystyle {\begin{aligned}&\int (A+B\,x)(a+b\,x)^{m}(c+d\,x)^{n}(e+f\,x)^{p}dx={\frac {B(a+b\,x)^{m}(c+d\,x)^{n+1}(e+f\,x)^{p+1}}{d\,f(m+n+p+2)}}\,+\,{\frac {1}{d\,f(m+n+p+2)}}\,\cdot \\&\qquad \int (A\,a\,d\,f(m+n+p+2)-B(b\,c\,e\,m+a(d\,e(n+1)+c\,f(p+1)))+(A\,b\,d\,f(m+n+p+2)+B(a\,d\,f\,m-b(d\,e(m+n+1)+c\,f(m+p+1))))x)(a+b\,x)^{m-1}(c+d\,x)^{n}(e+f\,x)^{p}dx\end{aligned}}}"></span></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}&\int (A+B\,x)(a+b\,x)^{m}(c+d\,x)^{n}(e+f\,x)^{p}dx={\frac {(A\,b-a\,B)(a+b\,x)^{m+1}(c+d\,x)^{n+1}(e+f\,x)^{p+1}}{(m+1)(a\,d-b\,c)(a\,f-b\,e)}}\,+\,{\frac {1}{(m+1)(a\,d-b\,c)(a\,f-b\,e)}}\,\cdot \\&\qquad \int ((m+1)(A(a\,d\,f-b(c\,f+d\,e))+B\,b\,c\,e)-(A\,b-a\,B)(d\,e(n+1)+c\,f(p+1))-d\,f(m+n+p+3)(A\,b-a\,B)x)(a+b\,x)^{m+1}(c+d\,x)^{n}(e+f\,x)^{p}dx\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd /> <mtd> <mi></mi> <mo>∫<!-- ∫ --></mo> <mo stretchy="false">(</mo> <mi>A</mi> <mo>+</mo> <mi>B</mi> <mspace width="thinmathspace" /> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mspace width="thinmathspace" /> <mi>x</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>c</mi> <mo>+</mo> <mi>d</mi> <mspace width="thinmathspace" /> <mi>x</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>e</mi> <mo>+</mo> <mi>f</mi> <mspace width="thinmathspace" /> <mi>x</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <mi>d</mi> <mi>x</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mi>A</mi> <mspace width="thinmathspace" /> <mi>b</mi> <mo>−<!-- − --></mo> <mi>a</mi> <mspace width="thinmathspace" /> <mi>B</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mspace width="thinmathspace" /> <mi>x</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mi>c</mi> <mo>+</mo> <mi>d</mi> <mspace width="thinmathspace" /> <mi>x</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mi>e</mi> <mo>+</mo> <mi>f</mi> <mspace width="thinmathspace" /> <mi>x</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> </mrow> <mrow> <mo stretchy="false">(</mo> <mi>m</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>a</mi> <mspace width="thinmathspace" /> <mi>d</mi> <mo>−<!-- − --></mo> <mi>b</mi> <mspace width="thinmathspace" /> <mi>c</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>a</mi> <mspace width="thinmathspace" /> <mi>f</mi> <mo>−<!-- − --></mo> <mi>b</mi> <mspace width="thinmathspace" /> <mi>e</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mspace width="thinmathspace" /> <mo>+</mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mo stretchy="false">(</mo> <mi>m</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>a</mi> <mspace width="thinmathspace" /> <mi>d</mi> <mo>−<!-- − --></mo> <mi>b</mi> <mspace width="thinmathspace" /> <mi>c</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>a</mi> <mspace width="thinmathspace" /> <mi>f</mi> <mo>−<!-- − --></mo> <mi>b</mi> <mspace width="thinmathspace" /> <mi>e</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mspace width="thinmathspace" /> <mo>⋅<!-- ⋅ --></mo> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mspace width="2em" /> <mo>∫<!-- ∫ --></mo> <mo stretchy="false">(</mo> <mo stretchy="false">(</mo> <mi>m</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>A</mi> <mo stretchy="false">(</mo> <mi>a</mi> <mspace width="thinmathspace" /> <mi>d</mi> <mspace width="thinmathspace" /> <mi>f</mi> <mo>−<!-- − --></mo> <mi>b</mi> <mo stretchy="false">(</mo> <mi>c</mi> <mspace width="thinmathspace" /> <mi>f</mi> <mo>+</mo> <mi>d</mi> <mspace width="thinmathspace" /> <mi>e</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>+</mo> <mi>B</mi> <mspace width="thinmathspace" /> <mi>b</mi> <mspace width="thinmathspace" /> <mi>c</mi> <mspace width="thinmathspace" /> <mi>e</mi> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <mo stretchy="false">(</mo> <mi>A</mi> <mspace width="thinmathspace" /> <mi>b</mi> <mo>−<!-- − --></mo> <mi>a</mi> <mspace width="thinmathspace" /> <mi>B</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>d</mi> <mspace width="thinmathspace" /> <mi>e</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>+</mo> <mi>c</mi> <mspace width="thinmathspace" /> <mi>f</mi> <mo stretchy="false">(</mo> <mi>p</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <mi>d</mi> <mspace width="thinmathspace" /> <mi>f</mi> <mo stretchy="false">(</mo> <mi>m</mi> <mo>+</mo> <mi>n</mi> <mo>+</mo> <mi>p</mi> <mo>+</mo> <mn>3</mn> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>A</mi> <mspace width="thinmathspace" /> <mi>b</mi> <mo>−<!-- − --></mo> <mi>a</mi> <mspace width="thinmathspace" /> <mi>B</mi> <mo stretchy="false">)</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mspace width="thinmathspace" /> <mi>x</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mi>c</mi> <mo>+</mo> <mi>d</mi> <mspace width="thinmathspace" /> <mi>x</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>e</mi> <mo>+</mo> <mi>f</mi> <mspace width="thinmathspace" /> <mi>x</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <mi>d</mi> <mi>x</mi> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}&\int (A+B\,x)(a+b\,x)^{m}(c+d\,x)^{n}(e+f\,x)^{p}dx={\frac {(A\,b-a\,B)(a+b\,x)^{m+1}(c+d\,x)^{n+1}(e+f\,x)^{p+1}}{(m+1)(a\,d-b\,c)(a\,f-b\,e)}}\,+\,{\frac {1}{(m+1)(a\,d-b\,c)(a\,f-b\,e)}}\,\cdot \\&\qquad \int ((m+1)(A(a\,d\,f-b(c\,f+d\,e))+B\,b\,c\,e)-(A\,b-a\,B)(d\,e(n+1)+c\,f(p+1))-d\,f(m+n+p+3)(A\,b-a\,B)x)(a+b\,x)^{m+1}(c+d\,x)^{n}(e+f\,x)^{p}dx\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a289e2385b566eef40cfb38b33e21459512699e7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -5.671ex; width:157.213ex; height:12.509ex;" alt="{\displaystyle {\begin{aligned}&\int (A+B\,x)(a+b\,x)^{m}(c+d\,x)^{n}(e+f\,x)^{p}dx={\frac {(A\,b-a\,B)(a+b\,x)^{m+1}(c+d\,x)^{n+1}(e+f\,x)^{p+1}}{(m+1)(a\,d-b\,c)(a\,f-b\,e)}}\,+\,{\frac {1}{(m+1)(a\,d-b\,c)(a\,f-b\,e)}}\,\cdot \\&\qquad \int ((m+1)(A(a\,d\,f-b(c\,f+d\,e))+B\,b\,c\,e)-(A\,b-a\,B)(d\,e(n+1)+c\,f(p+1))-d\,f(m+n+p+3)(A\,b-a\,B)x)(a+b\,x)^{m+1}(c+d\,x)^{n}(e+f\,x)^{p}dx\end{aligned}}}"></span></li></ul> </div> <div class="mw-heading mw-heading2"><h2 id="Integrands_of_the_form_xm_(A_+_B_xn)_(a_+_b_xn)p_(c_+_d_xn)q"><span id="Integrands_of_the_form_xm_.28A_.2B_B_xn.29_.28a_.2B_b_xn.29p_.28c_.2B_d_xn.29q"></span>Integrands of the form <i>x</i><sup><i>m</i></sup> (<i>A</i> + <i>B x</i><sup><i>n</i></sup>) (<i>a</i> + <i>b x</i><sup><i>n</i></sup>)<sup><i>p</i></sup> (<i>c</i> + <i>d x</i><sup><i>n</i></sup>)<sup><i>q</i></sup></h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=List_of_integrals_of_rational_functions&action=edit&section=6" title="Edit section: Integrands of the form xm (A + B xn) (a + b xn)p (c + d xn)q"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li>The resulting integrands are of the same form as the original integrand, so these reduction formulas can be repeatedly applied to drive the exponents <i>m</i>, <i>p</i> and <i>q</i> toward 0.</li> <li>These reduction formulas can be used for integrands having integer and/or fractional exponents.</li> <li>Special cases of these reductions formulas can be used for integrands of the form <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left(a+b\,x^{n}\right)^{p}\left(c+d\,x^{n}\right)^{q}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow> <mo>(</mo> <mrow> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <msup> <mrow> <mo>(</mo> <mrow> <mi>c</mi> <mo>+</mo> <mi>d</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left(a+b\,x^{n}\right)^{p}\left(c+d\,x^{n}\right)^{q}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/50f762063f9a34abeba79ca8842348788969eee3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:21.668ex; height:3.009ex;" alt="{\displaystyle \left(a+b\,x^{n}\right)^{p}\left(c+d\,x^{n}\right)^{q}}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x^{m}\left(a+b\,x^{n}\right)^{p}\left(c+d\,x^{n}\right)^{q}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> <msup> <mrow> <mo>(</mo> <mrow> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <msup> <mrow> <mo>(</mo> <mrow> <mi>c</mi> <mo>+</mo> <mi>d</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x^{m}\left(a+b\,x^{n}\right)^{p}\left(c+d\,x^{n}\right)^{q}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f99eeff236dea46575b44e7493ab00efe4b8f1ff" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:24.672ex; height:3.009ex;" alt="{\displaystyle x^{m}\left(a+b\,x^{n}\right)^{p}\left(c+d\,x^{n}\right)^{q}}"></span> by setting <i>m</i> and/or <i>B</i> to 0.</li></ul> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1126788409"><div class="plainlist" style="margin-left: 1.6em;"> <ul><li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}&\int x^{m}\left(A+B\,x^{n}\right)\left(a+b\,x^{n}\right)^{p}\left(c+d\,x^{n}\right)^{q}dx=-{\frac {(A\,b-a\,B)x^{m+1}\left(a+b\,x^{n}\right)^{p+1}\left(c+d\,x^{n}\right)^{q}}{a\,b\,n(p+1)}}\,+\,{\frac {1}{a\,b\,n(p+1)}}\,\cdot \\&\qquad \int x^{m}\left(c(A\,b\,n(p+1)+(A\,b-a\,B)(m+1))+d(A\,b\,n(p+1)+(A\,b-a\,B)(m+n\,q+1))x^{n}\right)\left(a+b\,x^{n}\right)^{p+1}\left(c+d\,x^{n}\right)^{q-1}dx\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd /> <mtd> <mi></mi> <mo>∫<!-- ∫ --></mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> <mrow> <mo>(</mo> <mrow> <mi>A</mi> <mo>+</mo> <mi>B</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <msup> <mrow> <mo>(</mo> <mrow> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <msup> <mrow> <mo>(</mo> <mrow> <mi>c</mi> <mo>+</mo> <mi>d</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> </mrow> </msup> <mi>d</mi> <mi>x</mi> <mo>=</mo> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mi>A</mi> <mspace width="thinmathspace" /> <mi>b</mi> <mo>−<!-- − --></mo> <mi>a</mi> <mspace width="thinmathspace" /> <mi>B</mi> <mo stretchy="false">)</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> <msup> <mrow> <mo>(</mo> <mrow> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> <msup> <mrow> <mo>(</mo> <mrow> <mi>c</mi> <mo>+</mo> <mi>d</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> </mrow> </msup> </mrow> <mrow> <mi>a</mi> <mspace width="thinmathspace" /> <mi>b</mi> <mspace width="thinmathspace" /> <mi>n</mi> <mo stretchy="false">(</mo> <mi>p</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mspace width="thinmathspace" /> <mo>+</mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi>a</mi> <mspace width="thinmathspace" /> <mi>b</mi> <mspace width="thinmathspace" /> <mi>n</mi> <mo stretchy="false">(</mo> <mi>p</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mspace width="thinmathspace" /> <mo>⋅<!-- ⋅ --></mo> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mspace width="2em" /> <mo>∫<!-- ∫ --></mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> <mrow> <mo>(</mo> <mrow> <mi>c</mi> <mo stretchy="false">(</mo> <mi>A</mi> <mspace width="thinmathspace" /> <mi>b</mi> <mspace width="thinmathspace" /> <mi>n</mi> <mo stretchy="false">(</mo> <mi>p</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>+</mo> <mo stretchy="false">(</mo> <mi>A</mi> <mspace width="thinmathspace" /> <mi>b</mi> <mo>−<!-- − --></mo> <mi>a</mi> <mspace width="thinmathspace" /> <mi>B</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>m</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>+</mo> <mi>d</mi> <mo stretchy="false">(</mo> <mi>A</mi> <mspace width="thinmathspace" /> <mi>b</mi> <mspace width="thinmathspace" /> <mi>n</mi> <mo stretchy="false">(</mo> <mi>p</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>+</mo> <mo stretchy="false">(</mo> <mi>A</mi> <mspace width="thinmathspace" /> <mi>b</mi> <mo>−<!-- − --></mo> <mi>a</mi> <mspace width="thinmathspace" /> <mi>B</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>m</mi> <mo>+</mo> <mi>n</mi> <mspace width="thinmathspace" /> <mi>q</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <msup> <mrow> <mo>(</mo> <mrow> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> <msup> <mrow> <mo>(</mo> <mrow> <mi>c</mi> <mo>+</mo> <mi>d</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mi>d</mi> <mi>x</mi> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}&\int x^{m}\left(A+B\,x^{n}\right)\left(a+b\,x^{n}\right)^{p}\left(c+d\,x^{n}\right)^{q}dx=-{\frac {(A\,b-a\,B)x^{m+1}\left(a+b\,x^{n}\right)^{p+1}\left(c+d\,x^{n}\right)^{q}}{a\,b\,n(p+1)}}\,+\,{\frac {1}{a\,b\,n(p+1)}}\,\cdot \\&\qquad \int x^{m}\left(c(A\,b\,n(p+1)+(A\,b-a\,B)(m+1))+d(A\,b\,n(p+1)+(A\,b-a\,B)(m+n\,q+1))x^{n}\right)\left(a+b\,x^{n}\right)^{p+1}\left(c+d\,x^{n}\right)^{q-1}dx\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5d879f60ce2644ee846af896e0e8958aaee47fac" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -5.838ex; width:126.774ex; height:12.843ex;" alt="{\displaystyle {\begin{aligned}&\int x^{m}\left(A+B\,x^{n}\right)\left(a+b\,x^{n}\right)^{p}\left(c+d\,x^{n}\right)^{q}dx=-{\frac {(A\,b-a\,B)x^{m+1}\left(a+b\,x^{n}\right)^{p+1}\left(c+d\,x^{n}\right)^{q}}{a\,b\,n(p+1)}}\,+\,{\frac {1}{a\,b\,n(p+1)}}\,\cdot \\&\qquad \int x^{m}\left(c(A\,b\,n(p+1)+(A\,b-a\,B)(m+1))+d(A\,b\,n(p+1)+(A\,b-a\,B)(m+n\,q+1))x^{n}\right)\left(a+b\,x^{n}\right)^{p+1}\left(c+d\,x^{n}\right)^{q-1}dx\end{aligned}}}"></span></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}&\int x^{m}\left(A+B\,x^{n}\right)\left(a+b\,x^{n}\right)^{p}\left(c+d\,x^{n}\right)^{q}dx={\frac {B\,x^{m+1}\left(a+b\,x^{n}\right)^{p+1}\left(c+d\,x^{n}\right)^{q}}{b(m+n(p+q+1)+1)}}\,+\,{\frac {1}{b(m+n(p+q+1)+1)}}\,\cdot \\&\qquad \int x^{m}\left(c((A\,b-a\,B)(1+m)+A\,b\,n(1+p+q))+(d(A\,b-a\,B)(1+m)+B\,n\,q(b\,c-a\,d)+A\,b\,d\,n(1+p+q))\,x^{n}\right)\left(a+b\,x^{n}\right)^{p}\left(c+d\,x^{n}\right)^{q-1}dx\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd /> <mtd> <mi></mi> <mo>∫<!-- ∫ --></mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> <mrow> <mo>(</mo> <mrow> <mi>A</mi> <mo>+</mo> <mi>B</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <msup> <mrow> <mo>(</mo> <mrow> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <msup> <mrow> <mo>(</mo> <mrow> <mi>c</mi> <mo>+</mo> <mi>d</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> </mrow> </msup> <mi>d</mi> <mi>x</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>B</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> <msup> <mrow> <mo>(</mo> <mrow> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> <msup> <mrow> <mo>(</mo> <mrow> <mi>c</mi> <mo>+</mo> <mi>d</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> </mrow> </msup> </mrow> <mrow> <mi>b</mi> <mo stretchy="false">(</mo> <mi>m</mi> <mo>+</mo> <mi>n</mi> <mo stretchy="false">(</mo> <mi>p</mi> <mo>+</mo> <mi>q</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mspace width="thinmathspace" /> <mo>+</mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi>b</mi> <mo stretchy="false">(</mo> <mi>m</mi> <mo>+</mo> <mi>n</mi> <mo stretchy="false">(</mo> <mi>p</mi> <mo>+</mo> <mi>q</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mspace width="thinmathspace" /> <mo>⋅<!-- ⋅ --></mo> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mspace width="2em" /> <mo>∫<!-- ∫ --></mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> <mrow> <mo>(</mo> <mrow> <mi>c</mi> <mo stretchy="false">(</mo> <mo stretchy="false">(</mo> <mi>A</mi> <mspace width="thinmathspace" /> <mi>b</mi> <mo>−<!-- − --></mo> <mi>a</mi> <mspace width="thinmathspace" /> <mi>B</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo>+</mo> <mi>m</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mi>A</mi> <mspace width="thinmathspace" /> <mi>b</mi> <mspace width="thinmathspace" /> <mi>n</mi> <mo stretchy="false">(</mo> <mn>1</mn> <mo>+</mo> <mi>p</mi> <mo>+</mo> <mi>q</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>+</mo> <mo stretchy="false">(</mo> <mi>d</mi> <mo stretchy="false">(</mo> <mi>A</mi> <mspace width="thinmathspace" /> <mi>b</mi> <mo>−<!-- − --></mo> <mi>a</mi> <mspace width="thinmathspace" /> <mi>B</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo>+</mo> <mi>m</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mi>B</mi> <mspace width="thinmathspace" /> <mi>n</mi> <mspace width="thinmathspace" /> <mi>q</mi> <mo stretchy="false">(</mo> <mi>b</mi> <mspace width="thinmathspace" /> <mi>c</mi> <mo>−<!-- − --></mo> <mi>a</mi> <mspace width="thinmathspace" /> <mi>d</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mi>A</mi> <mspace width="thinmathspace" /> <mi>b</mi> <mspace width="thinmathspace" /> <mi>d</mi> <mspace width="thinmathspace" /> <mi>n</mi> <mo stretchy="false">(</mo> <mn>1</mn> <mo>+</mo> <mi>p</mi> <mo>+</mo> <mi>q</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <msup> <mrow> <mo>(</mo> <mrow> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <msup> <mrow> <mo>(</mo> <mrow> <mi>c</mi> <mo>+</mo> <mi>d</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mi>d</mi> <mi>x</mi> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}&\int x^{m}\left(A+B\,x^{n}\right)\left(a+b\,x^{n}\right)^{p}\left(c+d\,x^{n}\right)^{q}dx={\frac {B\,x^{m+1}\left(a+b\,x^{n}\right)^{p+1}\left(c+d\,x^{n}\right)^{q}}{b(m+n(p+q+1)+1)}}\,+\,{\frac {1}{b(m+n(p+q+1)+1)}}\,\cdot \\&\qquad \int x^{m}\left(c((A\,b-a\,B)(1+m)+A\,b\,n(1+p+q))+(d(A\,b-a\,B)(1+m)+B\,n\,q(b\,c-a\,d)+A\,b\,d\,n(1+p+q))\,x^{n}\right)\left(a+b\,x^{n}\right)^{p}\left(c+d\,x^{n}\right)^{q-1}dx\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6e4c59cd60abc07ec0902e6aeb407a623413d84a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -5.838ex; width:146.508ex; height:12.843ex;" alt="{\displaystyle {\begin{aligned}&\int x^{m}\left(A+B\,x^{n}\right)\left(a+b\,x^{n}\right)^{p}\left(c+d\,x^{n}\right)^{q}dx={\frac {B\,x^{m+1}\left(a+b\,x^{n}\right)^{p+1}\left(c+d\,x^{n}\right)^{q}}{b(m+n(p+q+1)+1)}}\,+\,{\frac {1}{b(m+n(p+q+1)+1)}}\,\cdot \\&\qquad \int x^{m}\left(c((A\,b-a\,B)(1+m)+A\,b\,n(1+p+q))+(d(A\,b-a\,B)(1+m)+B\,n\,q(b\,c-a\,d)+A\,b\,d\,n(1+p+q))\,x^{n}\right)\left(a+b\,x^{n}\right)^{p}\left(c+d\,x^{n}\right)^{q-1}dx\end{aligned}}}"></span></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}&\int x^{m}\left(A+B\,x^{n}\right)\left(a+b\,x^{n}\right)^{p}\left(c+d\,x^{n}\right)^{q}dx=-{\frac {(A\,b-a\,B)x^{m+1}\left(a+b\,x^{n}\right)^{p+1}\left(c+d\,x^{n}\right)^{q+1}}{a\,n(b\,c-a\,d)(p+1)}}\,+\,{\frac {1}{a\,n(b\,c-a\,d)(p+1)}}\,\cdot \\&\qquad \int x^{m}\left(c(A\,b-a\,B)(m+1)+A\,n(b\,c-a\,d)(p+1)+d(A\,b-a\,B)(m+n(p+q+2)+1)x^{n}\right)\left(a+b\,x^{n}\right)^{p+1}\left(c+d\,x^{n}\right)^{q}dx\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd /> <mtd> <mi></mi> <mo>∫<!-- ∫ --></mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> <mrow> <mo>(</mo> <mrow> <mi>A</mi> <mo>+</mo> <mi>B</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <msup> <mrow> <mo>(</mo> <mrow> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <msup> <mrow> <mo>(</mo> <mrow> <mi>c</mi> <mo>+</mo> <mi>d</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> </mrow> </msup> <mi>d</mi> <mi>x</mi> <mo>=</mo> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mi>A</mi> <mspace width="thinmathspace" /> <mi>b</mi> <mo>−<!-- − --></mo> <mi>a</mi> <mspace width="thinmathspace" /> <mi>B</mi> <mo stretchy="false">)</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> <msup> <mrow> <mo>(</mo> <mrow> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> <msup> <mrow> <mo>(</mo> <mrow> <mi>c</mi> <mo>+</mo> <mi>d</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> </mrow> <mrow> <mi>a</mi> <mspace width="thinmathspace" /> <mi>n</mi> <mo stretchy="false">(</mo> <mi>b</mi> <mspace width="thinmathspace" /> <mi>c</mi> <mo>−<!-- − --></mo> <mi>a</mi> <mspace width="thinmathspace" /> <mi>d</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>p</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mspace width="thinmathspace" /> <mo>+</mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi>a</mi> <mspace width="thinmathspace" /> <mi>n</mi> <mo stretchy="false">(</mo> <mi>b</mi> <mspace width="thinmathspace" /> <mi>c</mi> <mo>−<!-- − --></mo> <mi>a</mi> <mspace width="thinmathspace" /> <mi>d</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>p</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mspace width="thinmathspace" /> <mo>⋅<!-- ⋅ --></mo> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mspace width="2em" /> <mo>∫<!-- ∫ --></mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> <mrow> <mo>(</mo> <mrow> <mi>c</mi> <mo stretchy="false">(</mo> <mi>A</mi> <mspace width="thinmathspace" /> <mi>b</mi> <mo>−<!-- − --></mo> <mi>a</mi> <mspace width="thinmathspace" /> <mi>B</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>m</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>+</mo> <mi>A</mi> <mspace width="thinmathspace" /> <mi>n</mi> <mo stretchy="false">(</mo> <mi>b</mi> <mspace width="thinmathspace" /> <mi>c</mi> <mo>−<!-- − --></mo> <mi>a</mi> <mspace width="thinmathspace" /> <mi>d</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>p</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>+</mo> <mi>d</mi> <mo stretchy="false">(</mo> <mi>A</mi> <mspace width="thinmathspace" /> <mi>b</mi> <mo>−<!-- − --></mo> <mi>a</mi> <mspace width="thinmathspace" /> <mi>B</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>m</mi> <mo>+</mo> <mi>n</mi> <mo stretchy="false">(</mo> <mi>p</mi> <mo>+</mo> <mi>q</mi> <mo>+</mo> <mn>2</mn> <mo stretchy="false">)</mo> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <msup> <mrow> <mo>(</mo> <mrow> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> <msup> <mrow> <mo>(</mo> <mrow> <mi>c</mi> <mo>+</mo> <mi>d</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> </mrow> </msup> <mi>d</mi> <mi>x</mi> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}&\int x^{m}\left(A+B\,x^{n}\right)\left(a+b\,x^{n}\right)^{p}\left(c+d\,x^{n}\right)^{q}dx=-{\frac {(A\,b-a\,B)x^{m+1}\left(a+b\,x^{n}\right)^{p+1}\left(c+d\,x^{n}\right)^{q+1}}{a\,n(b\,c-a\,d)(p+1)}}\,+\,{\frac {1}{a\,n(b\,c-a\,d)(p+1)}}\,\cdot \\&\qquad \int x^{m}\left(c(A\,b-a\,B)(m+1)+A\,n(b\,c-a\,d)(p+1)+d(A\,b-a\,B)(m+n(p+q+2)+1)x^{n}\right)\left(a+b\,x^{n}\right)^{p+1}\left(c+d\,x^{n}\right)^{q}dx\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/baef71373d1818f465b45ecb06da846ae8811997" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -5.838ex; width:124.247ex; height:12.843ex;" alt="{\displaystyle {\begin{aligned}&\int x^{m}\left(A+B\,x^{n}\right)\left(a+b\,x^{n}\right)^{p}\left(c+d\,x^{n}\right)^{q}dx=-{\frac {(A\,b-a\,B)x^{m+1}\left(a+b\,x^{n}\right)^{p+1}\left(c+d\,x^{n}\right)^{q+1}}{a\,n(b\,c-a\,d)(p+1)}}\,+\,{\frac {1}{a\,n(b\,c-a\,d)(p+1)}}\,\cdot \\&\qquad \int x^{m}\left(c(A\,b-a\,B)(m+1)+A\,n(b\,c-a\,d)(p+1)+d(A\,b-a\,B)(m+n(p+q+2)+1)x^{n}\right)\left(a+b\,x^{n}\right)^{p+1}\left(c+d\,x^{n}\right)^{q}dx\end{aligned}}}"></span></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}&\int x^{m}\left(A+B\,x^{n}\right)\left(a+b\,x^{n}\right)^{p}\left(c+d\,x^{n}\right)^{q}dx={\frac {B\,x^{m-n+1}\left(a+b\,x^{n}\right)^{p+1}\left(c+d\,x^{n}\right)^{q+1}}{b\,d(m+n(p+q+1)+1)}}\,-\,{\frac {1}{b\,d(m+n(p+q+1)+1)}}\,\cdot \\&\qquad \int x^{m-n}\left(a\,B\,c(m-n+1)+(a\,B\,d(m+n\,q+1)-b(-B\,c(m+n\,p+1)+A\,d(m+n(p+q+1)+1)))x^{n}\right)\left(a+b\,x^{n}\right)^{p}\left(c+d\,x^{n}\right)^{q}dx\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd /> <mtd> <mi></mi> <mo>∫<!-- ∫ --></mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> <mrow> <mo>(</mo> <mrow> <mi>A</mi> <mo>+</mo> <mi>B</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <msup> <mrow> <mo>(</mo> <mrow> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <msup> <mrow> <mo>(</mo> <mrow> <mi>c</mi> <mo>+</mo> <mi>d</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> </mrow> </msup> <mi>d</mi> <mi>x</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>B</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>−<!-- − --></mo> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> <msup> <mrow> <mo>(</mo> <mrow> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> <msup> <mrow> <mo>(</mo> <mrow> <mi>c</mi> <mo>+</mo> <mi>d</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> </mrow> <mrow> <mi>b</mi> <mspace width="thinmathspace" /> <mi>d</mi> <mo stretchy="false">(</mo> <mi>m</mi> <mo>+</mo> <mi>n</mi> <mo stretchy="false">(</mo> <mi>p</mi> <mo>+</mo> <mi>q</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mspace width="thinmathspace" /> <mo>−<!-- − --></mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi>b</mi> <mspace width="thinmathspace" /> <mi>d</mi> <mo stretchy="false">(</mo> <mi>m</mi> <mo>+</mo> <mi>n</mi> <mo stretchy="false">(</mo> <mi>p</mi> <mo>+</mo> <mi>q</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mspace width="thinmathspace" /> <mo>⋅<!-- ⋅ --></mo> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mspace width="2em" /> <mo>∫<!-- ∫ --></mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>−<!-- − --></mo> <mi>n</mi> </mrow> </msup> <mrow> <mo>(</mo> <mrow> <mi>a</mi> <mspace width="thinmathspace" /> <mi>B</mi> <mspace width="thinmathspace" /> <mi>c</mi> <mo stretchy="false">(</mo> <mi>m</mi> <mo>−<!-- − --></mo> <mi>n</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>+</mo> <mo stretchy="false">(</mo> <mi>a</mi> <mspace width="thinmathspace" /> <mi>B</mi> <mspace width="thinmathspace" /> <mi>d</mi> <mo stretchy="false">(</mo> <mi>m</mi> <mo>+</mo> <mi>n</mi> <mspace width="thinmathspace" /> <mi>q</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <mi>b</mi> <mo stretchy="false">(</mo> <mo>−<!-- − --></mo> <mi>B</mi> <mspace width="thinmathspace" /> <mi>c</mi> <mo stretchy="false">(</mo> <mi>m</mi> <mo>+</mo> <mi>n</mi> <mspace width="thinmathspace" /> <mi>p</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>+</mo> <mi>A</mi> <mspace width="thinmathspace" /> <mi>d</mi> <mo stretchy="false">(</mo> <mi>m</mi> <mo>+</mo> <mi>n</mi> <mo stretchy="false">(</mo> <mi>p</mi> <mo>+</mo> <mi>q</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <msup> <mrow> <mo>(</mo> <mrow> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <msup> <mrow> <mo>(</mo> <mrow> <mi>c</mi> <mo>+</mo> <mi>d</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> </mrow> </msup> <mi>d</mi> <mi>x</mi> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}&\int x^{m}\left(A+B\,x^{n}\right)\left(a+b\,x^{n}\right)^{p}\left(c+d\,x^{n}\right)^{q}dx={\frac {B\,x^{m-n+1}\left(a+b\,x^{n}\right)^{p+1}\left(c+d\,x^{n}\right)^{q+1}}{b\,d(m+n(p+q+1)+1)}}\,-\,{\frac {1}{b\,d(m+n(p+q+1)+1)}}\,\cdot \\&\qquad \int x^{m-n}\left(a\,B\,c(m-n+1)+(a\,B\,d(m+n\,q+1)-b(-B\,c(m+n\,p+1)+A\,d(m+n(p+q+1)+1)))x^{n}\right)\left(a+b\,x^{n}\right)^{p}\left(c+d\,x^{n}\right)^{q}dx\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a985b092ec350d39f68f9cef5d82749f13e333c0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -5.838ex; width:136.442ex; height:12.843ex;" alt="{\displaystyle {\begin{aligned}&\int x^{m}\left(A+B\,x^{n}\right)\left(a+b\,x^{n}\right)^{p}\left(c+d\,x^{n}\right)^{q}dx={\frac {B\,x^{m-n+1}\left(a+b\,x^{n}\right)^{p+1}\left(c+d\,x^{n}\right)^{q+1}}{b\,d(m+n(p+q+1)+1)}}\,-\,{\frac {1}{b\,d(m+n(p+q+1)+1)}}\,\cdot \\&\qquad \int x^{m-n}\left(a\,B\,c(m-n+1)+(a\,B\,d(m+n\,q+1)-b(-B\,c(m+n\,p+1)+A\,d(m+n(p+q+1)+1)))x^{n}\right)\left(a+b\,x^{n}\right)^{p}\left(c+d\,x^{n}\right)^{q}dx\end{aligned}}}"></span></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}&\int x^{m}\left(A+B\,x^{n}\right)\left(a+b\,x^{n}\right)^{p}\left(c+d\,x^{n}\right)^{q}dx={\frac {A\,x^{m+1}\left(a+b\,x^{n}\right)^{p+1}\left(c+d\,x^{n}\right)^{q+1}}{a\,c(m+1)}}\,+\,{\frac {1}{a\,c(m+1)}}\,\cdot \\&\qquad \int x^{m+n}\left(a\,B\,c(m+1)-A(b\,c+a\,d)(m+n+1)-A\,n(b\,c\,p+a\,d\,q)-A\,b\,d(m+n(p+q+2)+1)x^{n}\right)\left(a+b\,x^{n}\right)^{p}\left(c+d\,x^{n}\right)^{q}dx\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd /> <mtd> <mi></mi> <mo>∫<!-- ∫ --></mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> <mrow> <mo>(</mo> <mrow> <mi>A</mi> <mo>+</mo> <mi>B</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <msup> <mrow> <mo>(</mo> <mrow> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <msup> <mrow> <mo>(</mo> <mrow> <mi>c</mi> <mo>+</mo> <mi>d</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> </mrow> </msup> <mi>d</mi> <mi>x</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>A</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> <msup> <mrow> <mo>(</mo> <mrow> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> <msup> <mrow> <mo>(</mo> <mrow> <mi>c</mi> <mo>+</mo> <mi>d</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> </mrow> <mrow> <mi>a</mi> <mspace width="thinmathspace" /> <mi>c</mi> <mo stretchy="false">(</mo> <mi>m</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mspace width="thinmathspace" /> <mo>+</mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi>a</mi> <mspace width="thinmathspace" /> <mi>c</mi> <mo stretchy="false">(</mo> <mi>m</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mspace width="thinmathspace" /> <mo>⋅<!-- ⋅ --></mo> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mspace width="2em" /> <mo>∫<!-- ∫ --></mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>+</mo> <mi>n</mi> </mrow> </msup> <mrow> <mo>(</mo> <mrow> <mi>a</mi> <mspace width="thinmathspace" /> <mi>B</mi> <mspace width="thinmathspace" /> <mi>c</mi> <mo stretchy="false">(</mo> <mi>m</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <mi>A</mi> <mo stretchy="false">(</mo> <mi>b</mi> <mspace width="thinmathspace" /> <mi>c</mi> <mo>+</mo> <mi>a</mi> <mspace width="thinmathspace" /> <mi>d</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>m</mi> <mo>+</mo> <mi>n</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <mi>A</mi> <mspace width="thinmathspace" /> <mi>n</mi> <mo stretchy="false">(</mo> <mi>b</mi> <mspace width="thinmathspace" /> <mi>c</mi> <mspace width="thinmathspace" /> <mi>p</mi> <mo>+</mo> <mi>a</mi> <mspace width="thinmathspace" /> <mi>d</mi> <mspace width="thinmathspace" /> <mi>q</mi> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <mi>A</mi> <mspace width="thinmathspace" /> <mi>b</mi> <mspace width="thinmathspace" /> <mi>d</mi> <mo stretchy="false">(</mo> <mi>m</mi> <mo>+</mo> <mi>n</mi> <mo stretchy="false">(</mo> <mi>p</mi> <mo>+</mo> <mi>q</mi> <mo>+</mo> <mn>2</mn> <mo stretchy="false">)</mo> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <msup> <mrow> <mo>(</mo> <mrow> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <msup> <mrow> <mo>(</mo> <mrow> <mi>c</mi> <mo>+</mo> <mi>d</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> </mrow> </msup> <mi>d</mi> <mi>x</mi> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}&\int x^{m}\left(A+B\,x^{n}\right)\left(a+b\,x^{n}\right)^{p}\left(c+d\,x^{n}\right)^{q}dx={\frac {A\,x^{m+1}\left(a+b\,x^{n}\right)^{p+1}\left(c+d\,x^{n}\right)^{q+1}}{a\,c(m+1)}}\,+\,{\frac {1}{a\,c(m+1)}}\,\cdot \\&\qquad \int x^{m+n}\left(a\,B\,c(m+1)-A(b\,c+a\,d)(m+n+1)-A\,n(b\,c\,p+a\,d\,q)-A\,b\,d(m+n(p+q+2)+1)x^{n}\right)\left(a+b\,x^{n}\right)^{p}\left(c+d\,x^{n}\right)^{q}dx\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/77654f111b0e2002f94c9c4058abb79897ff344c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -5.838ex; width:131.954ex; height:12.843ex;" alt="{\displaystyle {\begin{aligned}&\int x^{m}\left(A+B\,x^{n}\right)\left(a+b\,x^{n}\right)^{p}\left(c+d\,x^{n}\right)^{q}dx={\frac {A\,x^{m+1}\left(a+b\,x^{n}\right)^{p+1}\left(c+d\,x^{n}\right)^{q+1}}{a\,c(m+1)}}\,+\,{\frac {1}{a\,c(m+1)}}\,\cdot \\&\qquad \int x^{m+n}\left(a\,B\,c(m+1)-A(b\,c+a\,d)(m+n+1)-A\,n(b\,c\,p+a\,d\,q)-A\,b\,d(m+n(p+q+2)+1)x^{n}\right)\left(a+b\,x^{n}\right)^{p}\left(c+d\,x^{n}\right)^{q}dx\end{aligned}}}"></span></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}&\int x^{m}\left(A+B\,x^{n}\right)\left(a+b\,x^{n}\right)^{p}\left(c+d\,x^{n}\right)^{q}dx={\frac {A\,x^{m+1}\left(a+b\,x^{n}\right)^{p+1}\left(c+d\,x^{n}\right)^{q}}{a(m+1)}}\,-\,{\frac {1}{a(m+1)}}\,\cdot \\&\qquad \int x^{m+n}\left(c(A\,b-a\,B)(m+1)+A\,n(b\,c(p+1)+a\,d\,q)+d((A\,b-a\,B)(m+1)+A\,b\,n(p+q+1))x^{n}\right)\left(a+b\,x^{n}\right)^{p}\left(c+d\,x^{n}\right)^{q-1}dx\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd /> <mtd> <mi></mi> <mo>∫<!-- ∫ --></mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> <mrow> <mo>(</mo> <mrow> <mi>A</mi> <mo>+</mo> <mi>B</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <msup> <mrow> <mo>(</mo> <mrow> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <msup> <mrow> <mo>(</mo> <mrow> <mi>c</mi> <mo>+</mo> <mi>d</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> </mrow> </msup> <mi>d</mi> <mi>x</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>A</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> <msup> <mrow> <mo>(</mo> <mrow> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> <msup> <mrow> <mo>(</mo> <mrow> <mi>c</mi> <mo>+</mo> <mi>d</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> </mrow> </msup> </mrow> <mrow> <mi>a</mi> <mo stretchy="false">(</mo> <mi>m</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mspace width="thinmathspace" /> <mo>−<!-- − --></mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi>a</mi> <mo stretchy="false">(</mo> <mi>m</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mspace width="thinmathspace" /> <mo>⋅<!-- ⋅ --></mo> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mspace width="2em" /> <mo>∫<!-- ∫ --></mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>+</mo> <mi>n</mi> </mrow> </msup> <mrow> <mo>(</mo> <mrow> <mi>c</mi> <mo stretchy="false">(</mo> <mi>A</mi> <mspace width="thinmathspace" /> <mi>b</mi> <mo>−<!-- − --></mo> <mi>a</mi> <mspace width="thinmathspace" /> <mi>B</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>m</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>+</mo> <mi>A</mi> <mspace width="thinmathspace" /> <mi>n</mi> <mo stretchy="false">(</mo> <mi>b</mi> <mspace width="thinmathspace" /> <mi>c</mi> <mo stretchy="false">(</mo> <mi>p</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>+</mo> <mi>a</mi> <mspace width="thinmathspace" /> <mi>d</mi> <mspace width="thinmathspace" /> <mi>q</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mi>d</mi> <mo stretchy="false">(</mo> <mo stretchy="false">(</mo> <mi>A</mi> <mspace width="thinmathspace" /> <mi>b</mi> <mo>−<!-- − --></mo> <mi>a</mi> <mspace width="thinmathspace" /> <mi>B</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>m</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>+</mo> <mi>A</mi> <mspace width="thinmathspace" /> <mi>b</mi> <mspace width="thinmathspace" /> <mi>n</mi> <mo stretchy="false">(</mo> <mi>p</mi> <mo>+</mo> <mi>q</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <msup> <mrow> <mo>(</mo> <mrow> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <msup> <mrow> <mo>(</mo> <mrow> <mi>c</mi> <mo>+</mo> <mi>d</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mi>d</mi> <mi>x</mi> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}&\int x^{m}\left(A+B\,x^{n}\right)\left(a+b\,x^{n}\right)^{p}\left(c+d\,x^{n}\right)^{q}dx={\frac {A\,x^{m+1}\left(a+b\,x^{n}\right)^{p+1}\left(c+d\,x^{n}\right)^{q}}{a(m+1)}}\,-\,{\frac {1}{a(m+1)}}\,\cdot \\&\qquad \int x^{m+n}\left(c(A\,b-a\,B)(m+1)+A\,n(b\,c(p+1)+a\,d\,q)+d((A\,b-a\,B)(m+1)+A\,b\,n(p+q+1))x^{n}\right)\left(a+b\,x^{n}\right)^{p}\left(c+d\,x^{n}\right)^{q-1}dx\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/95017c34adb3b380849bd99e1b5989e0efbc0d78" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -5.838ex; width:133.293ex; height:12.843ex;" alt="{\displaystyle {\begin{aligned}&\int x^{m}\left(A+B\,x^{n}\right)\left(a+b\,x^{n}\right)^{p}\left(c+d\,x^{n}\right)^{q}dx={\frac {A\,x^{m+1}\left(a+b\,x^{n}\right)^{p+1}\left(c+d\,x^{n}\right)^{q}}{a(m+1)}}\,-\,{\frac {1}{a(m+1)}}\,\cdot \\&\qquad \int x^{m+n}\left(c(A\,b-a\,B)(m+1)+A\,n(b\,c(p+1)+a\,d\,q)+d((A\,b-a\,B)(m+1)+A\,b\,n(p+q+1))x^{n}\right)\left(a+b\,x^{n}\right)^{p}\left(c+d\,x^{n}\right)^{q-1}dx\end{aligned}}}"></span></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}&\int x^{m}\left(A+B\,x^{n}\right)\left(a+b\,x^{n}\right)^{p}\left(c+d\,x^{n}\right)^{q}dx={\frac {(A\,b-a\,B)x^{m-n+1}\left(a+b\,x^{n}\right)^{p+1}\left(c+d\,x^{n}\right)^{q+1}}{b\,n(b\,c-a\,d)(p+1)}}\,-\,{\frac {1}{b\,n(b\,c-a\,d)(p+1)}}\,\cdot \\&\qquad \int x^{m-n}\left(c(A\,b-a\,B)(m-n+1)+(d(A\,b-a\,B)(m+n\,q+1)-b\,n(B\,c-A\,d)(p+1))x^{n}\right)\left(a+b\,x^{n}\right)^{p+1}\left(c+d\,x^{n}\right)^{q}dx\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd /> <mtd> <mi></mi> <mo>∫<!-- ∫ --></mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> <mrow> <mo>(</mo> <mrow> <mi>A</mi> <mo>+</mo> <mi>B</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <msup> <mrow> <mo>(</mo> <mrow> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <msup> <mrow> <mo>(</mo> <mrow> <mi>c</mi> <mo>+</mo> <mi>d</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> </mrow> </msup> <mi>d</mi> <mi>x</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mi>A</mi> <mspace width="thinmathspace" /> <mi>b</mi> <mo>−<!-- − --></mo> <mi>a</mi> <mspace width="thinmathspace" /> <mi>B</mi> <mo stretchy="false">)</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>−<!-- − --></mo> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> <msup> <mrow> <mo>(</mo> <mrow> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> <msup> <mrow> <mo>(</mo> <mrow> <mi>c</mi> <mo>+</mo> <mi>d</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> </mrow> <mrow> <mi>b</mi> <mspace width="thinmathspace" /> <mi>n</mi> <mo stretchy="false">(</mo> <mi>b</mi> <mspace width="thinmathspace" /> <mi>c</mi> <mo>−<!-- − --></mo> <mi>a</mi> <mspace width="thinmathspace" /> <mi>d</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>p</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mspace width="thinmathspace" /> <mo>−<!-- − --></mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi>b</mi> <mspace width="thinmathspace" /> <mi>n</mi> <mo stretchy="false">(</mo> <mi>b</mi> <mspace width="thinmathspace" /> <mi>c</mi> <mo>−<!-- − --></mo> <mi>a</mi> <mspace width="thinmathspace" /> <mi>d</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>p</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mspace width="thinmathspace" /> <mo>⋅<!-- ⋅ --></mo> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mspace width="2em" /> <mo>∫<!-- ∫ --></mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>−<!-- − --></mo> <mi>n</mi> </mrow> </msup> <mrow> <mo>(</mo> <mrow> <mi>c</mi> <mo stretchy="false">(</mo> <mi>A</mi> <mspace width="thinmathspace" /> <mi>b</mi> <mo>−<!-- − --></mo> <mi>a</mi> <mspace width="thinmathspace" /> <mi>B</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>m</mi> <mo>−<!-- − --></mo> <mi>n</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>+</mo> <mo stretchy="false">(</mo> <mi>d</mi> <mo stretchy="false">(</mo> <mi>A</mi> <mspace width="thinmathspace" /> <mi>b</mi> <mo>−<!-- − --></mo> <mi>a</mi> <mspace width="thinmathspace" /> <mi>B</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>m</mi> <mo>+</mo> <mi>n</mi> <mspace width="thinmathspace" /> <mi>q</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <mi>b</mi> <mspace width="thinmathspace" /> <mi>n</mi> <mo stretchy="false">(</mo> <mi>B</mi> <mspace width="thinmathspace" /> <mi>c</mi> <mo>−<!-- − --></mo> <mi>A</mi> <mspace width="thinmathspace" /> <mi>d</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>p</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <msup> <mrow> <mo>(</mo> <mrow> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> <msup> <mrow> <mo>(</mo> <mrow> <mi>c</mi> <mo>+</mo> <mi>d</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> </mrow> </msup> <mi>d</mi> <mi>x</mi> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}&\int x^{m}\left(A+B\,x^{n}\right)\left(a+b\,x^{n}\right)^{p}\left(c+d\,x^{n}\right)^{q}dx={\frac {(A\,b-a\,B)x^{m-n+1}\left(a+b\,x^{n}\right)^{p+1}\left(c+d\,x^{n}\right)^{q+1}}{b\,n(b\,c-a\,d)(p+1)}}\,-\,{\frac {1}{b\,n(b\,c-a\,d)(p+1)}}\,\cdot \\&\qquad \int x^{m-n}\left(c(A\,b-a\,B)(m-n+1)+(d(A\,b-a\,B)(m+n\,q+1)-b\,n(B\,c-A\,d)(p+1))x^{n}\right)\left(a+b\,x^{n}\right)^{p+1}\left(c+d\,x^{n}\right)^{q}dx\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f5522c5813f569e417b3311767af9043f019b615" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -5.838ex; width:123.656ex; height:12.843ex;" alt="{\displaystyle {\begin{aligned}&\int x^{m}\left(A+B\,x^{n}\right)\left(a+b\,x^{n}\right)^{p}\left(c+d\,x^{n}\right)^{q}dx={\frac {(A\,b-a\,B)x^{m-n+1}\left(a+b\,x^{n}\right)^{p+1}\left(c+d\,x^{n}\right)^{q+1}}{b\,n(b\,c-a\,d)(p+1)}}\,-\,{\frac {1}{b\,n(b\,c-a\,d)(p+1)}}\,\cdot \\&\qquad \int x^{m-n}\left(c(A\,b-a\,B)(m-n+1)+(d(A\,b-a\,B)(m+n\,q+1)-b\,n(B\,c-A\,d)(p+1))x^{n}\right)\left(a+b\,x^{n}\right)^{p+1}\left(c+d\,x^{n}\right)^{q}dx\end{aligned}}}"></span></li></ul> </div> <div class="mw-heading mw-heading2"><h2 id="Integrands_of_the_form_(d_+_e_x)m_(a_+_b_x_+_c_x2)p_when_b2_−_4_a_c_=_0"><span id="Integrands_of_the_form_.28d_.2B_e_x.29m_.28a_.2B_b_x_.2B_c_x2.29p_when_b2_.E2.88.92_4_a_c_.3D_0"></span>Integrands of the form (<i>d</i> + <i>e x</i>)<sup><i>m</i></sup> (<i>a</i> + <i>b x</i> + <i>c x</i><sup>2</sup>)<sup><i>p</i></sup> when <i>b</i><sup>2</sup> − 4 <i>a c</i> = 0</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=List_of_integrals_of_rational_functions&action=edit&section=7" title="Edit section: Integrands of the form (d + e x)m (a + b x + c x2)p when b2 − 4 a c = 0"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li>The resulting integrands are of the same form as the original integrand, so these reduction formulas can be repeatedly applied to drive the exponents <i>m</i> and <i>p</i> toward 0.</li> <li>These reduction formulas can be used for integrands having integer and/or fractional exponents.</li> <li>Special cases of these reductions formulas can be used for integrands of the form <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left(a+b\,x+c\,x^{2}\right)^{p}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow> <mo>(</mo> <mrow> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mspace width="thinmathspace" /> <mi>x</mi> <mo>+</mo> <mi>c</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left(a+b\,x+c\,x^{2}\right)^{p}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f510c2115d94a63151f6e06611ca5d71d18fb82a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:16.592ex; height:3.343ex;" alt="{\displaystyle \left(a+b\,x+c\,x^{2}\right)^{p}}"></span> when <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b^{2}-4\,a\,c=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>−<!-- − --></mo> <mn>4</mn> <mspace width="thinmathspace" /> <mi>a</mi> <mspace width="thinmathspace" /> <mi>c</mi> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b^{2}-4\,a\,c=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/160ce497ad311a4c36ebd525cb50ef4bc4972758" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:13.326ex; height:2.843ex;" alt="{\displaystyle b^{2}-4\,a\,c=0}"></span> by setting <i>m</i> to 0.</li></ul> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1126788409"><div class="plainlist" style="margin-left: 1.6em;"> <ul><li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int (d+e\,x)^{m}\left(a+b\,x+c\,x^{2}\right)^{p}dx={\frac {(d+e\,x)^{m+1}\left(a+b\,x+c\,x^{2}\right)^{p}}{e(m+1)}}\,-\,{\frac {p(d+e\,x)^{m+2}(b+2c\,x)\left(a+b\,x+c\,x^{2}\right)^{p-1}}{e^{2}(m+1)(m+2p+1)}}\,+\,{\frac {p(2p-1)(2c\,d-b\,e)}{e^{2}(m+1)(m+2p+1)}}\int (d+e\,x)^{m+1}\left(a+b\,x+c\,x^{2}\right)^{p-1}dx}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>∫<!-- ∫ --></mo> <mo stretchy="false">(</mo> <mi>d</mi> <mo>+</mo> <mi>e</mi> <mspace width="thinmathspace" /> <mi>x</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> <msup> <mrow> <mo>(</mo> <mrow> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mspace width="thinmathspace" /> <mi>x</mi> <mo>+</mo> <mi>c</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <mi>d</mi> <mi>x</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mi>d</mi> <mo>+</mo> <mi>e</mi> <mspace width="thinmathspace" /> <mi>x</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> <msup> <mrow> <mo>(</mo> <mrow> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mspace width="thinmathspace" /> <mi>x</mi> <mo>+</mo> <mi>c</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> </mrow> <mrow> <mi>e</mi> <mo stretchy="false">(</mo> <mi>m</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mspace width="thinmathspace" /> <mo>−<!-- − --></mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>p</mi> <mo stretchy="false">(</mo> <mi>d</mi> <mo>+</mo> <mi>e</mi> <mspace width="thinmathspace" /> <mi>x</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>+</mo> <mn>2</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mi>b</mi> <mo>+</mo> <mn>2</mn> <mi>c</mi> <mspace width="thinmathspace" /> <mi>x</mi> <mo stretchy="false">)</mo> <msup> <mrow> <mo>(</mo> <mrow> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mspace width="thinmathspace" /> <mi>x</mi> <mo>+</mo> <mi>c</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> </mrow> <mrow> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mi>m</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>m</mi> <mo>+</mo> <mn>2</mn> <mi>p</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mspace width="thinmathspace" /> <mo>+</mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>p</mi> <mo stretchy="false">(</mo> <mn>2</mn> <mi>p</mi> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mn>2</mn> <mi>c</mi> <mspace width="thinmathspace" /> <mi>d</mi> <mo>−<!-- − --></mo> <mi>b</mi> <mspace width="thinmathspace" /> <mi>e</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mi>m</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>m</mi> <mo>+</mo> <mn>2</mn> <mi>p</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mo>∫<!-- ∫ --></mo> <mo stretchy="false">(</mo> <mi>d</mi> <mo>+</mo> <mi>e</mi> <mspace width="thinmathspace" /> <mi>x</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> <msup> <mrow> <mo>(</mo> <mrow> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mspace width="thinmathspace" /> <mi>x</mi> <mo>+</mo> <mi>c</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mi>d</mi> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int (d+e\,x)^{m}\left(a+b\,x+c\,x^{2}\right)^{p}dx={\frac {(d+e\,x)^{m+1}\left(a+b\,x+c\,x^{2}\right)^{p}}{e(m+1)}}\,-\,{\frac {p(d+e\,x)^{m+2}(b+2c\,x)\left(a+b\,x+c\,x^{2}\right)^{p-1}}{e^{2}(m+1)(m+2p+1)}}\,+\,{\frac {p(2p-1)(2c\,d-b\,e)}{e^{2}(m+1)(m+2p+1)}}\int (d+e\,x)^{m+1}\left(a+b\,x+c\,x^{2}\right)^{p-1}dx}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81d4c261f463293ee05481519bb1634bf765009b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:174.653ex; height:7.343ex;" alt="{\displaystyle \int (d+e\,x)^{m}\left(a+b\,x+c\,x^{2}\right)^{p}dx={\frac {(d+e\,x)^{m+1}\left(a+b\,x+c\,x^{2}\right)^{p}}{e(m+1)}}\,-\,{\frac {p(d+e\,x)^{m+2}(b+2c\,x)\left(a+b\,x+c\,x^{2}\right)^{p-1}}{e^{2}(m+1)(m+2p+1)}}\,+\,{\frac {p(2p-1)(2c\,d-b\,e)}{e^{2}(m+1)(m+2p+1)}}\int (d+e\,x)^{m+1}\left(a+b\,x+c\,x^{2}\right)^{p-1}dx}"></span></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int (d+e\,x)^{m}\left(a+b\,x+c\,x^{2}\right)^{p}dx={\frac {(d+e\,x)^{m+1}\left(a+b\,x+c\,x^{2}\right)^{p}}{e(m+1)}}\,-\,{\frac {p(d+e\,x)^{m+2}(b+2\,c\,x)\left(a+b\,x+c\,x^{2}\right)^{p-1}}{e^{2}(m+1)(m+2)}}\,+\,{\frac {2\,c\,p\,(2\,p-1)}{e^{2}(m+1)(m+2)}}\int (d+e\,x)^{m+2}\left(a+b\,x+c\,x^{2}\right)^{p-1}dx}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>∫<!-- ∫ --></mo> <mo stretchy="false">(</mo> <mi>d</mi> <mo>+</mo> <mi>e</mi> <mspace width="thinmathspace" /> <mi>x</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> <msup> <mrow> <mo>(</mo> <mrow> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mspace width="thinmathspace" /> <mi>x</mi> <mo>+</mo> <mi>c</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <mi>d</mi> <mi>x</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mi>d</mi> <mo>+</mo> <mi>e</mi> <mspace width="thinmathspace" /> <mi>x</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> <msup> <mrow> <mo>(</mo> <mrow> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mspace width="thinmathspace" /> <mi>x</mi> <mo>+</mo> <mi>c</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> </mrow> <mrow> <mi>e</mi> <mo stretchy="false">(</mo> <mi>m</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mspace width="thinmathspace" /> <mo>−<!-- − --></mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>p</mi> <mo stretchy="false">(</mo> <mi>d</mi> <mo>+</mo> <mi>e</mi> <mspace width="thinmathspace" /> <mi>x</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>+</mo> <mn>2</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mi>b</mi> <mo>+</mo> <mn>2</mn> <mspace width="thinmathspace" /> <mi>c</mi> <mspace width="thinmathspace" /> <mi>x</mi> <mo stretchy="false">)</mo> <msup> <mrow> <mo>(</mo> <mrow> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mspace width="thinmathspace" /> <mi>x</mi> <mo>+</mo> <mi>c</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> </mrow> <mrow> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mi>m</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>m</mi> <mo>+</mo> <mn>2</mn> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mspace width="thinmathspace" /> <mo>+</mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>2</mn> <mspace width="thinmathspace" /> <mi>c</mi> <mspace width="thinmathspace" /> <mi>p</mi> <mspace width="thinmathspace" /> <mo stretchy="false">(</mo> <mn>2</mn> <mspace width="thinmathspace" /> <mi>p</mi> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> <mrow> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mi>m</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>m</mi> <mo>+</mo> <mn>2</mn> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mo>∫<!-- ∫ --></mo> <mo stretchy="false">(</mo> <mi>d</mi> <mo>+</mo> <mi>e</mi> <mspace width="thinmathspace" /> <mi>x</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>+</mo> <mn>2</mn> </mrow> </msup> <msup> <mrow> <mo>(</mo> <mrow> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mspace width="thinmathspace" /> <mi>x</mi> <mo>+</mo> <mi>c</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mi>d</mi> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int (d+e\,x)^{m}\left(a+b\,x+c\,x^{2}\right)^{p}dx={\frac {(d+e\,x)^{m+1}\left(a+b\,x+c\,x^{2}\right)^{p}}{e(m+1)}}\,-\,{\frac {p(d+e\,x)^{m+2}(b+2\,c\,x)\left(a+b\,x+c\,x^{2}\right)^{p-1}}{e^{2}(m+1)(m+2)}}\,+\,{\frac {2\,c\,p\,(2\,p-1)}{e^{2}(m+1)(m+2)}}\int (d+e\,x)^{m+2}\left(a+b\,x+c\,x^{2}\right)^{p-1}dx}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/52be3971d00f1b06cbb659d213cb6e875c7beb23" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:169.868ex; height:7.343ex;" alt="{\displaystyle \int (d+e\,x)^{m}\left(a+b\,x+c\,x^{2}\right)^{p}dx={\frac {(d+e\,x)^{m+1}\left(a+b\,x+c\,x^{2}\right)^{p}}{e(m+1)}}\,-\,{\frac {p(d+e\,x)^{m+2}(b+2\,c\,x)\left(a+b\,x+c\,x^{2}\right)^{p-1}}{e^{2}(m+1)(m+2)}}\,+\,{\frac {2\,c\,p\,(2\,p-1)}{e^{2}(m+1)(m+2)}}\int (d+e\,x)^{m+2}\left(a+b\,x+c\,x^{2}\right)^{p-1}dx}"></span></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int (d+e\,x)^{m}\left(a+b\,x+c\,x^{2}\right)^{p}dx=-{\frac {e(m+2p+2)(d+e\,x)^{m}\left(a+b\,x+c\,x^{2}\right)^{p+1}}{(p+1)(2p+1)(2c\,d-b\,e)}}\,+\,{\frac {(d+e\,x)^{m+1}(b+2c\,x)\left(a+b\,x+c\,x^{2}\right)^{p}}{(2p+1)(2c\,d-b\,e)}}\,+\,{\frac {e^{2}m(m+2p+2)}{(p+1)(2p+1)(2c\,d-b\,e)}}\int (d+e\,x)^{m-1}\left(a+b\,x+c\,x^{2}\right)^{p+1}dx}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>∫<!-- ∫ --></mo> <mo stretchy="false">(</mo> <mi>d</mi> <mo>+</mo> <mi>e</mi> <mspace width="thinmathspace" /> <mi>x</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> <msup> <mrow> <mo>(</mo> <mrow> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mspace width="thinmathspace" /> <mi>x</mi> <mo>+</mo> <mi>c</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <mi>d</mi> <mi>x</mi> <mo>=</mo> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>e</mi> <mo stretchy="false">(</mo> <mi>m</mi> <mo>+</mo> <mn>2</mn> <mi>p</mi> <mo>+</mo> <mn>2</mn> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>d</mi> <mo>+</mo> <mi>e</mi> <mspace width="thinmathspace" /> <mi>x</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> <msup> <mrow> <mo>(</mo> <mrow> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mspace width="thinmathspace" /> <mi>x</mi> <mo>+</mo> <mi>c</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> </mrow> <mrow> <mo stretchy="false">(</mo> <mi>p</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mn>2</mn> <mi>p</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mn>2</mn> <mi>c</mi> <mspace width="thinmathspace" /> <mi>d</mi> <mo>−<!-- − --></mo> <mi>b</mi> <mspace width="thinmathspace" /> <mi>e</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mspace width="thinmathspace" /> <mo>+</mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mi>d</mi> <mo>+</mo> <mi>e</mi> <mspace width="thinmathspace" /> <mi>x</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mi>b</mi> <mo>+</mo> <mn>2</mn> <mi>c</mi> <mspace width="thinmathspace" /> <mi>x</mi> <mo stretchy="false">)</mo> <msup> <mrow> <mo>(</mo> <mrow> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mspace width="thinmathspace" /> <mi>x</mi> <mo>+</mo> <mi>c</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> </mrow> <mrow> <mo stretchy="false">(</mo> <mn>2</mn> <mi>p</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mn>2</mn> <mi>c</mi> <mspace width="thinmathspace" /> <mi>d</mi> <mo>−<!-- − --></mo> <mi>b</mi> <mspace width="thinmathspace" /> <mi>e</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mspace width="thinmathspace" /> <mo>+</mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi>m</mi> <mo stretchy="false">(</mo> <mi>m</mi> <mo>+</mo> <mn>2</mn> <mi>p</mi> <mo>+</mo> <mn>2</mn> <mo stretchy="false">)</mo> </mrow> <mrow> <mo stretchy="false">(</mo> <mi>p</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mn>2</mn> <mi>p</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mn>2</mn> <mi>c</mi> <mspace width="thinmathspace" /> <mi>d</mi> <mo>−<!-- − --></mo> <mi>b</mi> <mspace width="thinmathspace" /> <mi>e</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mo>∫<!-- ∫ --></mo> <mo stretchy="false">(</mo> <mi>d</mi> <mo>+</mo> <mi>e</mi> <mspace width="thinmathspace" /> <mi>x</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <msup> <mrow> <mo>(</mo> <mrow> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mspace width="thinmathspace" /> <mi>x</mi> <mo>+</mo> <mi>c</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> <mi>d</mi> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int (d+e\,x)^{m}\left(a+b\,x+c\,x^{2}\right)^{p}dx=-{\frac {e(m+2p+2)(d+e\,x)^{m}\left(a+b\,x+c\,x^{2}\right)^{p+1}}{(p+1)(2p+1)(2c\,d-b\,e)}}\,+\,{\frac {(d+e\,x)^{m+1}(b+2c\,x)\left(a+b\,x+c\,x^{2}\right)^{p}}{(2p+1)(2c\,d-b\,e)}}\,+\,{\frac {e^{2}m(m+2p+2)}{(p+1)(2p+1)(2c\,d-b\,e)}}\int (d+e\,x)^{m-1}\left(a+b\,x+c\,x^{2}\right)^{p+1}dx}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dd7c90e7a6da4a559c53a66731a2d51e3533e7af" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:190.3ex; height:7.343ex;" alt="{\displaystyle \int (d+e\,x)^{m}\left(a+b\,x+c\,x^{2}\right)^{p}dx=-{\frac {e(m+2p+2)(d+e\,x)^{m}\left(a+b\,x+c\,x^{2}\right)^{p+1}}{(p+1)(2p+1)(2c\,d-b\,e)}}\,+\,{\frac {(d+e\,x)^{m+1}(b+2c\,x)\left(a+b\,x+c\,x^{2}\right)^{p}}{(2p+1)(2c\,d-b\,e)}}\,+\,{\frac {e^{2}m(m+2p+2)}{(p+1)(2p+1)(2c\,d-b\,e)}}\int (d+e\,x)^{m-1}\left(a+b\,x+c\,x^{2}\right)^{p+1}dx}"></span></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int (d+e\,x)^{m}\left(a+b\,x+c\,x^{2}\right)^{p}dx=-{\frac {e\,m(d+e\,x)^{m-1}\left(a+b\,x+c\,x^{2}\right)^{p+1}}{2c(p+1)(2p+1)}}\,+\,{\frac {(d+e\,x)^{m}(b+2c\,x)\left(a+b\,x+c\,x^{2}\right)^{p}}{2c(2p+1)}}\,+\,{\frac {e^{2}m(m-1)}{2c(p+1)(2p+1)}}\int (d+e\,x)^{m-2}\left(a+b\,x+c\,x^{2}\right)^{p+1}dx}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>∫<!-- ∫ --></mo> <mo stretchy="false">(</mo> <mi>d</mi> <mo>+</mo> <mi>e</mi> <mspace width="thinmathspace" /> <mi>x</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> <msup> <mrow> <mo>(</mo> <mrow> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mspace width="thinmathspace" /> <mi>x</mi> <mo>+</mo> <mi>c</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <mi>d</mi> <mi>x</mi> <mo>=</mo> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>e</mi> <mspace width="thinmathspace" /> <mi>m</mi> <mo stretchy="false">(</mo> <mi>d</mi> <mo>+</mo> <mi>e</mi> <mspace width="thinmathspace" /> <mi>x</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <msup> <mrow> <mo>(</mo> <mrow> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mspace width="thinmathspace" /> <mi>x</mi> <mo>+</mo> <mi>c</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> </mrow> <mrow> <mn>2</mn> <mi>c</mi> <mo stretchy="false">(</mo> <mi>p</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mn>2</mn> <mi>p</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mspace width="thinmathspace" /> <mo>+</mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mi>d</mi> <mo>+</mo> <mi>e</mi> <mspace width="thinmathspace" /> <mi>x</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>b</mi> <mo>+</mo> <mn>2</mn> <mi>c</mi> <mspace width="thinmathspace" /> <mi>x</mi> <mo stretchy="false">)</mo> <msup> <mrow> <mo>(</mo> <mrow> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mspace width="thinmathspace" /> <mi>x</mi> <mo>+</mo> <mi>c</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> </mrow> <mrow> <mn>2</mn> <mi>c</mi> <mo stretchy="false">(</mo> <mn>2</mn> <mi>p</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mspace width="thinmathspace" /> <mo>+</mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi>m</mi> <mo stretchy="false">(</mo> <mi>m</mi> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> <mrow> <mn>2</mn> <mi>c</mi> <mo stretchy="false">(</mo> <mi>p</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mn>2</mn> <mi>p</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mo>∫<!-- ∫ --></mo> <mo stretchy="false">(</mo> <mi>d</mi> <mo>+</mo> <mi>e</mi> <mspace width="thinmathspace" /> <mi>x</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>−<!-- − --></mo> <mn>2</mn> </mrow> </msup> <msup> <mrow> <mo>(</mo> <mrow> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mspace width="thinmathspace" /> <mi>x</mi> <mo>+</mo> <mi>c</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> <mi>d</mi> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int (d+e\,x)^{m}\left(a+b\,x+c\,x^{2}\right)^{p}dx=-{\frac {e\,m(d+e\,x)^{m-1}\left(a+b\,x+c\,x^{2}\right)^{p+1}}{2c(p+1)(2p+1)}}\,+\,{\frac {(d+e\,x)^{m}(b+2c\,x)\left(a+b\,x+c\,x^{2}\right)^{p}}{2c(2p+1)}}\,+\,{\frac {e^{2}m(m-1)}{2c(p+1)(2p+1)}}\int (d+e\,x)^{m-2}\left(a+b\,x+c\,x^{2}\right)^{p+1}dx}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/48f0d694e4cffcb65184a89244a10abaf0b9b346" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:170.982ex; height:7.343ex;" alt="{\displaystyle \int (d+e\,x)^{m}\left(a+b\,x+c\,x^{2}\right)^{p}dx=-{\frac {e\,m(d+e\,x)^{m-1}\left(a+b\,x+c\,x^{2}\right)^{p+1}}{2c(p+1)(2p+1)}}\,+\,{\frac {(d+e\,x)^{m}(b+2c\,x)\left(a+b\,x+c\,x^{2}\right)^{p}}{2c(2p+1)}}\,+\,{\frac {e^{2}m(m-1)}{2c(p+1)(2p+1)}}\int (d+e\,x)^{m-2}\left(a+b\,x+c\,x^{2}\right)^{p+1}dx}"></span></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int (d+e\,x)^{m}\left(a+b\,x+c\,x^{2}\right)^{p}dx={\frac {(d+e\,x)^{m+1}\left(a+b\,x+c\,x^{2}\right)^{p}}{e(m+2p+1)}}\,-\,{\frac {p(2c\,d-b\,e)(d+e\,x)^{m+1}(b+2c\,x)\left(a+b\,x+c\,x^{2}\right)^{p-1}}{2c\,e^{2}(m+2p)(m+2p+1)}}\,+\,{\frac {p(2p-1)(2c\,d-b\,e)^{2}}{2c\,e^{2}(m+2p)(m+2p+1)}}\int (d+e\,x)^{m}\left(a+b\,x+c\,x^{2}\right)^{p-1}dx}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>∫<!-- ∫ --></mo> <mo stretchy="false">(</mo> <mi>d</mi> <mo>+</mo> <mi>e</mi> <mspace width="thinmathspace" /> <mi>x</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> <msup> <mrow> <mo>(</mo> <mrow> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mspace width="thinmathspace" /> <mi>x</mi> <mo>+</mo> <mi>c</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <mi>d</mi> <mi>x</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mi>d</mi> <mo>+</mo> <mi>e</mi> <mspace width="thinmathspace" /> <mi>x</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> <msup> <mrow> <mo>(</mo> <mrow> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mspace width="thinmathspace" /> <mi>x</mi> <mo>+</mo> <mi>c</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> </mrow> <mrow> <mi>e</mi> <mo stretchy="false">(</mo> <mi>m</mi> <mo>+</mo> <mn>2</mn> <mi>p</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mspace width="thinmathspace" /> <mo>−<!-- − --></mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>p</mi> <mo stretchy="false">(</mo> <mn>2</mn> <mi>c</mi> <mspace width="thinmathspace" /> <mi>d</mi> <mo>−<!-- − --></mo> <mi>b</mi> <mspace width="thinmathspace" /> <mi>e</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>d</mi> <mo>+</mo> <mi>e</mi> <mspace width="thinmathspace" /> <mi>x</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mi>b</mi> <mo>+</mo> <mn>2</mn> <mi>c</mi> <mspace width="thinmathspace" /> <mi>x</mi> <mo stretchy="false">)</mo> <msup> <mrow> <mo>(</mo> <mrow> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mspace width="thinmathspace" /> <mi>x</mi> <mo>+</mo> <mi>c</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> </mrow> <mrow> <mn>2</mn> <mi>c</mi> <mspace width="thinmathspace" /> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mi>m</mi> <mo>+</mo> <mn>2</mn> <mi>p</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>m</mi> <mo>+</mo> <mn>2</mn> <mi>p</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mspace width="thinmathspace" /> <mo>+</mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>p</mi> <mo stretchy="false">(</mo> <mn>2</mn> <mi>p</mi> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mn>2</mn> <mi>c</mi> <mspace width="thinmathspace" /> <mi>d</mi> <mo>−<!-- − --></mo> <mi>b</mi> <mspace width="thinmathspace" /> <mi>e</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mrow> <mn>2</mn> <mi>c</mi> <mspace width="thinmathspace" /> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mi>m</mi> <mo>+</mo> <mn>2</mn> <mi>p</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>m</mi> <mo>+</mo> <mn>2</mn> <mi>p</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mo>∫<!-- ∫ --></mo> <mo stretchy="false">(</mo> <mi>d</mi> <mo>+</mo> <mi>e</mi> <mspace width="thinmathspace" /> <mi>x</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> <msup> <mrow> <mo>(</mo> <mrow> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mspace width="thinmathspace" /> <mi>x</mi> <mo>+</mo> <mi>c</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mi>d</mi> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int (d+e\,x)^{m}\left(a+b\,x+c\,x^{2}\right)^{p}dx={\frac {(d+e\,x)^{m+1}\left(a+b\,x+c\,x^{2}\right)^{p}}{e(m+2p+1)}}\,-\,{\frac {p(2c\,d-b\,e)(d+e\,x)^{m+1}(b+2c\,x)\left(a+b\,x+c\,x^{2}\right)^{p-1}}{2c\,e^{2}(m+2p)(m+2p+1)}}\,+\,{\frac {p(2p-1)(2c\,d-b\,e)^{2}}{2c\,e^{2}(m+2p)(m+2p+1)}}\int (d+e\,x)^{m}\left(a+b\,x+c\,x^{2}\right)^{p-1}dx}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5639f373ae3a1cbf3900954d75e024c850b57be5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:187.168ex; height:7.343ex;" alt="{\displaystyle \int (d+e\,x)^{m}\left(a+b\,x+c\,x^{2}\right)^{p}dx={\frac {(d+e\,x)^{m+1}\left(a+b\,x+c\,x^{2}\right)^{p}}{e(m+2p+1)}}\,-\,{\frac {p(2c\,d-b\,e)(d+e\,x)^{m+1}(b+2c\,x)\left(a+b\,x+c\,x^{2}\right)^{p-1}}{2c\,e^{2}(m+2p)(m+2p+1)}}\,+\,{\frac {p(2p-1)(2c\,d-b\,e)^{2}}{2c\,e^{2}(m+2p)(m+2p+1)}}\int (d+e\,x)^{m}\left(a+b\,x+c\,x^{2}\right)^{p-1}dx}"></span></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int (d+e\,x)^{m}\left(a+b\,x+c\,x^{2}\right)^{p}dx=-{\frac {2c\,e(m+2p+2)(d+e\,x)^{m+1}\left(a+b\,x+c\,x^{2}\right)^{p+1}}{(p+1)(2p+1)(2c\,d-b\,e)^{2}}}\,+\,{\frac {(d+e\,x)^{m+1}(b+2c\,x)\left(a+b\,x+c\,x^{2}\right)^{p}}{(2p+1)(2c\,d-b\,e)}}\,+\,{\frac {2c\,e^{2}(m+2p+2)(m+2p+3)}{(p+1)(2p+1)(2c\,d-b\,e)^{2}}}\int (d+e\,x)^{m}\left(a+b\,x+c\,x^{2}\right)^{p+1}dx}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>∫<!-- ∫ --></mo> <mo stretchy="false">(</mo> <mi>d</mi> <mo>+</mo> <mi>e</mi> <mspace width="thinmathspace" /> <mi>x</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> <msup> <mrow> <mo>(</mo> <mrow> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mspace width="thinmathspace" /> <mi>x</mi> <mo>+</mo> <mi>c</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <mi>d</mi> <mi>x</mi> <mo>=</mo> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>2</mn> <mi>c</mi> <mspace width="thinmathspace" /> <mi>e</mi> <mo stretchy="false">(</mo> <mi>m</mi> <mo>+</mo> <mn>2</mn> <mi>p</mi> <mo>+</mo> <mn>2</mn> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>d</mi> <mo>+</mo> <mi>e</mi> <mspace width="thinmathspace" /> <mi>x</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> <msup> <mrow> <mo>(</mo> <mrow> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mspace width="thinmathspace" /> <mi>x</mi> <mo>+</mo> <mi>c</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> </mrow> <mrow> <mo stretchy="false">(</mo> <mi>p</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mn>2</mn> <mi>p</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mn>2</mn> <mi>c</mi> <mspace width="thinmathspace" /> <mi>d</mi> <mo>−<!-- − --></mo> <mi>b</mi> <mspace width="thinmathspace" /> <mi>e</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mspace width="thinmathspace" /> <mo>+</mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mi>d</mi> <mo>+</mo> <mi>e</mi> <mspace width="thinmathspace" /> <mi>x</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mi>b</mi> <mo>+</mo> <mn>2</mn> <mi>c</mi> <mspace width="thinmathspace" /> <mi>x</mi> <mo stretchy="false">)</mo> <msup> <mrow> <mo>(</mo> <mrow> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mspace width="thinmathspace" /> <mi>x</mi> <mo>+</mo> <mi>c</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> </mrow> <mrow> <mo stretchy="false">(</mo> <mn>2</mn> <mi>p</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mn>2</mn> <mi>c</mi> <mspace width="thinmathspace" /> <mi>d</mi> <mo>−<!-- − --></mo> <mi>b</mi> <mspace width="thinmathspace" /> <mi>e</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mspace width="thinmathspace" /> <mo>+</mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>2</mn> <mi>c</mi> <mspace width="thinmathspace" /> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mi>m</mi> <mo>+</mo> <mn>2</mn> <mi>p</mi> <mo>+</mo> <mn>2</mn> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>m</mi> <mo>+</mo> <mn>2</mn> <mi>p</mi> <mo>+</mo> <mn>3</mn> <mo stretchy="false">)</mo> </mrow> <mrow> <mo stretchy="false">(</mo> <mi>p</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mn>2</mn> <mi>p</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mn>2</mn> <mi>c</mi> <mspace width="thinmathspace" /> <mi>d</mi> <mo>−<!-- − --></mo> <mi>b</mi> <mspace width="thinmathspace" /> <mi>e</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>∫<!-- ∫ --></mo> <mo stretchy="false">(</mo> <mi>d</mi> <mo>+</mo> <mi>e</mi> <mspace width="thinmathspace" /> <mi>x</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> <msup> <mrow> <mo>(</mo> <mrow> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mspace width="thinmathspace" /> <mi>x</mi> <mo>+</mo> <mi>c</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> <mi>d</mi> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int (d+e\,x)^{m}\left(a+b\,x+c\,x^{2}\right)^{p}dx=-{\frac {2c\,e(m+2p+2)(d+e\,x)^{m+1}\left(a+b\,x+c\,x^{2}\right)^{p+1}}{(p+1)(2p+1)(2c\,d-b\,e)^{2}}}\,+\,{\frac {(d+e\,x)^{m+1}(b+2c\,x)\left(a+b\,x+c\,x^{2}\right)^{p}}{(2p+1)(2c\,d-b\,e)}}\,+\,{\frac {2c\,e^{2}(m+2p+2)(m+2p+3)}{(p+1)(2p+1)(2c\,d-b\,e)^{2}}}\int (d+e\,x)^{m}\left(a+b\,x+c\,x^{2}\right)^{p+1}dx}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5cfc86b744b2f318e9e0a51ec13b7576e7b53917" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:197.584ex; height:7.343ex;" alt="{\displaystyle \int (d+e\,x)^{m}\left(a+b\,x+c\,x^{2}\right)^{p}dx=-{\frac {2c\,e(m+2p+2)(d+e\,x)^{m+1}\left(a+b\,x+c\,x^{2}\right)^{p+1}}{(p+1)(2p+1)(2c\,d-b\,e)^{2}}}\,+\,{\frac {(d+e\,x)^{m+1}(b+2c\,x)\left(a+b\,x+c\,x^{2}\right)^{p}}{(2p+1)(2c\,d-b\,e)}}\,+\,{\frac {2c\,e^{2}(m+2p+2)(m+2p+3)}{(p+1)(2p+1)(2c\,d-b\,e)^{2}}}\int (d+e\,x)^{m}\left(a+b\,x+c\,x^{2}\right)^{p+1}dx}"></span></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int (d+e\,x)^{m}\left(a+b\,x+c\,x^{2}\right)^{p}dx={\frac {(d+e\,x)^{m}(b+2c\,x)\left(a+b\,x+c\,x^{2}\right)^{p}}{2c(m+2p+1)}}\,+\,{\frac {m(2c\,d-b\,e)}{2c(m+2p+1)}}\int (d+e\,x)^{m-1}\left(a+b\,x+c\,x^{2}\right)^{p}dx}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>∫<!-- ∫ --></mo> <mo stretchy="false">(</mo> <mi>d</mi> <mo>+</mo> <mi>e</mi> <mspace width="thinmathspace" /> <mi>x</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> <msup> <mrow> <mo>(</mo> <mrow> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mspace width="thinmathspace" /> <mi>x</mi> <mo>+</mo> <mi>c</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <mi>d</mi> <mi>x</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mi>d</mi> <mo>+</mo> <mi>e</mi> <mspace width="thinmathspace" /> <mi>x</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>b</mi> <mo>+</mo> <mn>2</mn> <mi>c</mi> <mspace width="thinmathspace" /> <mi>x</mi> <mo stretchy="false">)</mo> <msup> <mrow> <mo>(</mo> <mrow> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mspace width="thinmathspace" /> <mi>x</mi> <mo>+</mo> <mi>c</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> </mrow> <mrow> <mn>2</mn> <mi>c</mi> <mo stretchy="false">(</mo> <mi>m</mi> <mo>+</mo> <mn>2</mn> <mi>p</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mspace width="thinmathspace" /> <mo>+</mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>m</mi> <mo stretchy="false">(</mo> <mn>2</mn> <mi>c</mi> <mspace width="thinmathspace" /> <mi>d</mi> <mo>−<!-- − --></mo> <mi>b</mi> <mspace width="thinmathspace" /> <mi>e</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mn>2</mn> <mi>c</mi> <mo stretchy="false">(</mo> <mi>m</mi> <mo>+</mo> <mn>2</mn> <mi>p</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mo>∫<!-- ∫ --></mo> <mo stretchy="false">(</mo> <mi>d</mi> <mo>+</mo> <mi>e</mi> <mspace width="thinmathspace" /> <mi>x</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <msup> <mrow> <mo>(</mo> <mrow> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mspace width="thinmathspace" /> <mi>x</mi> <mo>+</mo> <mi>c</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <mi>d</mi> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int (d+e\,x)^{m}\left(a+b\,x+c\,x^{2}\right)^{p}dx={\frac {(d+e\,x)^{m}(b+2c\,x)\left(a+b\,x+c\,x^{2}\right)^{p}}{2c(m+2p+1)}}\,+\,{\frac {m(2c\,d-b\,e)}{2c(m+2p+1)}}\int (d+e\,x)^{m-1}\left(a+b\,x+c\,x^{2}\right)^{p}dx}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b9a0ad7c5a71f6bcb324373ed772deb8ec0a6e1a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:125.877ex; height:7.009ex;" alt="{\displaystyle \int (d+e\,x)^{m}\left(a+b\,x+c\,x^{2}\right)^{p}dx={\frac {(d+e\,x)^{m}(b+2c\,x)\left(a+b\,x+c\,x^{2}\right)^{p}}{2c(m+2p+1)}}\,+\,{\frac {m(2c\,d-b\,e)}{2c(m+2p+1)}}\int (d+e\,x)^{m-1}\left(a+b\,x+c\,x^{2}\right)^{p}dx}"></span></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int (d+e\,x)^{m}\left(a+b\,x+c\,x^{2}\right)^{p}dx=-{\frac {(d+e\,x)^{m+1}(b+2c\,x)\left(a+b\,x+c\,x^{2}\right)^{p}}{(m+1)(2c\,d-b\,e)}}\,+\,{\frac {2c(m+2p+2)}{(m+1)(2c\,d-b\,e)}}\int (d+e\,x)^{m+1}\left(a+b\,x+c\,x^{2}\right)^{p}dx}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>∫<!-- ∫ --></mo> <mo stretchy="false">(</mo> <mi>d</mi> <mo>+</mo> <mi>e</mi> <mspace width="thinmathspace" /> <mi>x</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> <msup> <mrow> <mo>(</mo> <mrow> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mspace width="thinmathspace" /> <mi>x</mi> <mo>+</mo> <mi>c</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <mi>d</mi> <mi>x</mi> <mo>=</mo> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mi>d</mi> <mo>+</mo> <mi>e</mi> <mspace width="thinmathspace" /> <mi>x</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mi>b</mi> <mo>+</mo> <mn>2</mn> <mi>c</mi> <mspace width="thinmathspace" /> <mi>x</mi> <mo stretchy="false">)</mo> <msup> <mrow> <mo>(</mo> <mrow> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mspace width="thinmathspace" /> <mi>x</mi> <mo>+</mo> <mi>c</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> </mrow> <mrow> <mo stretchy="false">(</mo> <mi>m</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mn>2</mn> <mi>c</mi> <mspace width="thinmathspace" /> <mi>d</mi> <mo>−<!-- − --></mo> <mi>b</mi> <mspace width="thinmathspace" /> <mi>e</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mspace width="thinmathspace" /> <mo>+</mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>2</mn> <mi>c</mi> <mo stretchy="false">(</mo> <mi>m</mi> <mo>+</mo> <mn>2</mn> <mi>p</mi> <mo>+</mo> <mn>2</mn> <mo stretchy="false">)</mo> </mrow> <mrow> <mo stretchy="false">(</mo> <mi>m</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mn>2</mn> <mi>c</mi> <mspace width="thinmathspace" /> <mi>d</mi> <mo>−<!-- − --></mo> <mi>b</mi> <mspace width="thinmathspace" /> <mi>e</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mo>∫<!-- ∫ --></mo> <mo stretchy="false">(</mo> <mi>d</mi> <mo>+</mo> <mi>e</mi> <mspace width="thinmathspace" /> <mi>x</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> <msup> <mrow> <mo>(</mo> <mrow> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mspace width="thinmathspace" /> <mi>x</mi> <mo>+</mo> <mi>c</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <mi>d</mi> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int (d+e\,x)^{m}\left(a+b\,x+c\,x^{2}\right)^{p}dx=-{\frac {(d+e\,x)^{m+1}(b+2c\,x)\left(a+b\,x+c\,x^{2}\right)^{p}}{(m+1)(2c\,d-b\,e)}}\,+\,{\frac {2c(m+2p+2)}{(m+1)(2c\,d-b\,e)}}\int (d+e\,x)^{m+1}\left(a+b\,x+c\,x^{2}\right)^{p}dx}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8f81c419c1332e643d09afb2f927a42c10c468bb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:133.334ex; height:7.009ex;" alt="{\displaystyle \int (d+e\,x)^{m}\left(a+b\,x+c\,x^{2}\right)^{p}dx=-{\frac {(d+e\,x)^{m+1}(b+2c\,x)\left(a+b\,x+c\,x^{2}\right)^{p}}{(m+1)(2c\,d-b\,e)}}\,+\,{\frac {2c(m+2p+2)}{(m+1)(2c\,d-b\,e)}}\int (d+e\,x)^{m+1}\left(a+b\,x+c\,x^{2}\right)^{p}dx}"></span></li></ul> </div> <div class="mw-heading mw-heading2"><h2 id="Integrands_of_the_form_(d_+_e_x)m_(A_+_B_x)_(a_+_b_x_+_c_x2)p"><span id="Integrands_of_the_form_.28d_.2B_e_x.29m_.28A_.2B_B_x.29_.28a_.2B_b_x_.2B_c_x2.29p"></span>Integrands of the form (<i>d</i> + <i>e x</i>)<sup><i>m</i></sup> (<i>A</i> + <i>B x</i>) (<i>a</i> + <i>b x</i> + <i>c x</i><sup>2</sup>)<sup><i>p</i></sup></h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=List_of_integrals_of_rational_functions&action=edit&section=8" title="Edit section: Integrands of the form (d + e x)m (A + B x) (a + b x + c x2)p"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li>The resulting integrands are of the same form as the original integrand, so these reduction formulas can be repeatedly applied to drive the exponents <i>m</i> and <i>p</i> toward 0.</li> <li>These reduction formulas can be used for integrands having integer and/or fractional exponents.</li> <li>Special cases of these reductions formulas can be used for integrands of the form <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left(a+b\,x+c\,x^{2}\right)^{p}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow> <mo>(</mo> <mrow> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mspace width="thinmathspace" /> <mi>x</mi> <mo>+</mo> <mi>c</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left(a+b\,x+c\,x^{2}\right)^{p}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f510c2115d94a63151f6e06611ca5d71d18fb82a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:16.592ex; height:3.343ex;" alt="{\displaystyle \left(a+b\,x+c\,x^{2}\right)^{p}}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (d+e\,x)^{m}\left(a+b\,x+c\,x^{2}\right)^{p}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>d</mi> <mo>+</mo> <mi>e</mi> <mspace width="thinmathspace" /> <mi>x</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> <msup> <mrow> <mo>(</mo> <mrow> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mspace width="thinmathspace" /> <mi>x</mi> <mo>+</mo> <mi>c</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (d+e\,x)^{m}\left(a+b\,x+c\,x^{2}\right)^{p}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f89c5dcf876adfc4c2cfd16d2ead89380d1c8246" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:26.933ex; height:3.343ex;" alt="{\displaystyle (d+e\,x)^{m}\left(a+b\,x+c\,x^{2}\right)^{p}}"></span> by setting <i>m</i> and/or <i>B</i> to 0.</li></ul> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1126788409"><div class="plainlist" style="margin-left: 1.6em;"> <ul><li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}&\int (d+e\,x)^{m}(A+B\,x)\left(a+b\,x+c\,x^{2}\right)^{p}dx={\frac {(d+e\,x)^{m+1}(A\,e(m+2p+2)-B\,d(2p+1)+e\,B(m+1)x)\left(a+b\,x+c\,x^{2}\right)^{p}}{e^{2}(m+1)(m+2p+2)}}\,+\,{\frac {1}{e^{2}(m+1)(m+2p+2)}}p\,\cdot \\&\qquad \int (d+e\,x)^{m+1}(B(b\,d+2a\,e+2a\,e\,m+2b\,d\,p)-A\,b\,e(m+2p+2)+(B(2c\,d+b\,e+b\,em+4c\,d\,p)-2A\,c\,e(m+2p+2))x)\left(a+b\,x+c\,x^{2}\right)^{p-1}dx\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd /> <mtd> <mi></mi> <mo>∫<!-- ∫ --></mo> <mo stretchy="false">(</mo> <mi>d</mi> <mo>+</mo> <mi>e</mi> <mspace width="thinmathspace" /> <mi>x</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>A</mi> <mo>+</mo> <mi>B</mi> <mspace width="thinmathspace" /> <mi>x</mi> <mo stretchy="false">)</mo> <msup> <mrow> <mo>(</mo> <mrow> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mspace width="thinmathspace" /> <mi>x</mi> <mo>+</mo> <mi>c</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <mi>d</mi> <mi>x</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mi>d</mi> <mo>+</mo> <mi>e</mi> <mspace width="thinmathspace" /> <mi>x</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mi>A</mi> <mspace width="thinmathspace" /> <mi>e</mi> <mo stretchy="false">(</mo> <mi>m</mi> <mo>+</mo> <mn>2</mn> <mi>p</mi> <mo>+</mo> <mn>2</mn> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <mi>B</mi> <mspace width="thinmathspace" /> <mi>d</mi> <mo stretchy="false">(</mo> <mn>2</mn> <mi>p</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>+</mo> <mi>e</mi> <mspace width="thinmathspace" /> <mi>B</mi> <mo stretchy="false">(</mo> <mi>m</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mi>x</mi> <mo stretchy="false">)</mo> <msup> <mrow> <mo>(</mo> <mrow> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mspace width="thinmathspace" /> <mi>x</mi> <mo>+</mo> <mi>c</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> </mrow> <mrow> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mi>m</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>m</mi> <mo>+</mo> <mn>2</mn> <mi>p</mi> <mo>+</mo> <mn>2</mn> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mspace width="thinmathspace" /> <mo>+</mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mi>m</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>m</mi> <mo>+</mo> <mn>2</mn> <mi>p</mi> <mo>+</mo> <mn>2</mn> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mi>p</mi> <mspace width="thinmathspace" /> <mo>⋅<!-- ⋅ --></mo> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mspace width="2em" /> <mo>∫<!-- ∫ --></mo> <mo stretchy="false">(</mo> <mi>d</mi> <mo>+</mo> <mi>e</mi> <mspace width="thinmathspace" /> <mi>x</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mi>B</mi> <mo stretchy="false">(</mo> <mi>b</mi> <mspace width="thinmathspace" /> <mi>d</mi> <mo>+</mo> <mn>2</mn> <mi>a</mi> <mspace width="thinmathspace" /> <mi>e</mi> <mo>+</mo> <mn>2</mn> <mi>a</mi> <mspace width="thinmathspace" /> <mi>e</mi> <mspace width="thinmathspace" /> <mi>m</mi> <mo>+</mo> <mn>2</mn> <mi>b</mi> <mspace width="thinmathspace" /> <mi>d</mi> <mspace width="thinmathspace" /> <mi>p</mi> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <mi>A</mi> <mspace width="thinmathspace" /> <mi>b</mi> <mspace width="thinmathspace" /> <mi>e</mi> <mo stretchy="false">(</mo> <mi>m</mi> <mo>+</mo> <mn>2</mn> <mi>p</mi> <mo>+</mo> <mn>2</mn> <mo stretchy="false">)</mo> <mo>+</mo> <mo stretchy="false">(</mo> <mi>B</mi> <mo stretchy="false">(</mo> <mn>2</mn> <mi>c</mi> <mspace width="thinmathspace" /> <mi>d</mi> <mo>+</mo> <mi>b</mi> <mspace width="thinmathspace" /> <mi>e</mi> <mo>+</mo> <mi>b</mi> <mspace width="thinmathspace" /> <mi>e</mi> <mi>m</mi> <mo>+</mo> <mn>4</mn> <mi>c</mi> <mspace width="thinmathspace" /> <mi>d</mi> <mspace width="thinmathspace" /> <mi>p</mi> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <mn>2</mn> <mi>A</mi> <mspace width="thinmathspace" /> <mi>c</mi> <mspace width="thinmathspace" /> <mi>e</mi> <mo stretchy="false">(</mo> <mi>m</mi> <mo>+</mo> <mn>2</mn> <mi>p</mi> <mo>+</mo> <mn>2</mn> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mi>x</mi> <mo stretchy="false">)</mo> <msup> <mrow> <mo>(</mo> <mrow> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mspace width="thinmathspace" /> <mi>x</mi> <mo>+</mo> <mi>c</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mi>d</mi> <mi>x</mi> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}&\int (d+e\,x)^{m}(A+B\,x)\left(a+b\,x+c\,x^{2}\right)^{p}dx={\frac {(d+e\,x)^{m+1}(A\,e(m+2p+2)-B\,d(2p+1)+e\,B(m+1)x)\left(a+b\,x+c\,x^{2}\right)^{p}}{e^{2}(m+1)(m+2p+2)}}\,+\,{\frac {1}{e^{2}(m+1)(m+2p+2)}}p\,\cdot \\&\qquad \int (d+e\,x)^{m+1}(B(b\,d+2a\,e+2a\,e\,m+2b\,d\,p)-A\,b\,e(m+2p+2)+(B(2c\,d+b\,e+b\,em+4c\,d\,p)-2A\,c\,e(m+2p+2))x)\left(a+b\,x+c\,x^{2}\right)^{p-1}dx\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0956840d0dd30a387bcab57ab22725c26002bc9d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -5.594ex; margin-bottom: -0.244ex; width:152.977ex; height:12.843ex;" alt="{\displaystyle {\begin{aligned}&\int (d+e\,x)^{m}(A+B\,x)\left(a+b\,x+c\,x^{2}\right)^{p}dx={\frac {(d+e\,x)^{m+1}(A\,e(m+2p+2)-B\,d(2p+1)+e\,B(m+1)x)\left(a+b\,x+c\,x^{2}\right)^{p}}{e^{2}(m+1)(m+2p+2)}}\,+\,{\frac {1}{e^{2}(m+1)(m+2p+2)}}p\,\cdot \\&\qquad \int (d+e\,x)^{m+1}(B(b\,d+2a\,e+2a\,e\,m+2b\,d\,p)-A\,b\,e(m+2p+2)+(B(2c\,d+b\,e+b\,em+4c\,d\,p)-2A\,c\,e(m+2p+2))x)\left(a+b\,x+c\,x^{2}\right)^{p-1}dx\end{aligned}}}"></span></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}&\int (d+e\,x)^{m}(A+B\,x)\left(a+b\,x+c\,x^{2}\right)^{p}dx={\frac {(d+e\,x)^{m}(A\,b-2a\,B-(b\,B-2A\,c)x)\left(a+b\,x+c\,x^{2}\right)^{p+1}}{(p+1)\left(b^{2}-4a\,c\right)}}\,+\,{\frac {1}{(p+1)\left(b^{2}-4a\,c\right)}}\,\cdot \\&\qquad \int (d+e\,x)^{m-1}(B(2a\,e\,m+b\,d(2p+3))-A(b\,e\,m+2c\,d(2p+3))+e(b\,B-2A\,c)(m+2p+3)x)\left(a+b\,x+c\,x^{2}\right)^{p+1}dx\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd /> <mtd> <mi></mi> <mo>∫<!-- ∫ --></mo> <mo stretchy="false">(</mo> <mi>d</mi> <mo>+</mo> <mi>e</mi> <mspace width="thinmathspace" /> <mi>x</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>A</mi> <mo>+</mo> <mi>B</mi> <mspace width="thinmathspace" /> <mi>x</mi> <mo stretchy="false">)</mo> <msup> <mrow> <mo>(</mo> <mrow> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mspace width="thinmathspace" /> <mi>x</mi> <mo>+</mo> <mi>c</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <mi>d</mi> <mi>x</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mi>d</mi> <mo>+</mo> <mi>e</mi> <mspace width="thinmathspace" /> <mi>x</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>A</mi> <mspace width="thinmathspace" /> <mi>b</mi> <mo>−<!-- − --></mo> <mn>2</mn> <mi>a</mi> <mspace width="thinmathspace" /> <mi>B</mi> <mo>−<!-- − --></mo> <mo stretchy="false">(</mo> <mi>b</mi> <mspace width="thinmathspace" /> <mi>B</mi> <mo>−<!-- − --></mo> <mn>2</mn> <mi>A</mi> <mspace width="thinmathspace" /> <mi>c</mi> <mo stretchy="false">)</mo> <mi>x</mi> <mo stretchy="false">)</mo> <msup> <mrow> <mo>(</mo> <mrow> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mspace width="thinmathspace" /> <mi>x</mi> <mo>+</mo> <mi>c</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> </mrow> <mrow> <mo stretchy="false">(</mo> <mi>p</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mrow> <mo>(</mo> <mrow> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>−<!-- − --></mo> <mn>4</mn> <mi>a</mi> <mspace width="thinmathspace" /> <mi>c</mi> </mrow> <mo>)</mo> </mrow> </mrow> </mfrac> </mrow> <mspace width="thinmathspace" /> <mo>+</mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mo stretchy="false">(</mo> <mi>p</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mrow> <mo>(</mo> <mrow> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>−<!-- − --></mo> <mn>4</mn> <mi>a</mi> <mspace width="thinmathspace" /> <mi>c</mi> </mrow> <mo>)</mo> </mrow> </mrow> </mfrac> </mrow> <mspace width="thinmathspace" /> <mo>⋅<!-- ⋅ --></mo> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mspace width="2em" /> <mo>∫<!-- ∫ --></mo> <mo stretchy="false">(</mo> <mi>d</mi> <mo>+</mo> <mi>e</mi> <mspace width="thinmathspace" /> <mi>x</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mi>B</mi> <mo stretchy="false">(</mo> <mn>2</mn> <mi>a</mi> <mspace width="thinmathspace" /> <mi>e</mi> <mspace width="thinmathspace" /> <mi>m</mi> <mo>+</mo> <mi>b</mi> <mspace width="thinmathspace" /> <mi>d</mi> <mo stretchy="false">(</mo> <mn>2</mn> <mi>p</mi> <mo>+</mo> <mn>3</mn> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <mi>A</mi> <mo stretchy="false">(</mo> <mi>b</mi> <mspace width="thinmathspace" /> <mi>e</mi> <mspace width="thinmathspace" /> <mi>m</mi> <mo>+</mo> <mn>2</mn> <mi>c</mi> <mspace width="thinmathspace" /> <mi>d</mi> <mo stretchy="false">(</mo> <mn>2</mn> <mi>p</mi> <mo>+</mo> <mn>3</mn> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>+</mo> <mi>e</mi> <mo stretchy="false">(</mo> <mi>b</mi> <mspace width="thinmathspace" /> <mi>B</mi> <mo>−<!-- − --></mo> <mn>2</mn> <mi>A</mi> <mspace width="thinmathspace" /> <mi>c</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>m</mi> <mo>+</mo> <mn>2</mn> <mi>p</mi> <mo>+</mo> <mn>3</mn> <mo stretchy="false">)</mo> <mi>x</mi> <mo stretchy="false">)</mo> <msup> <mrow> <mo>(</mo> <mrow> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mspace width="thinmathspace" /> <mi>x</mi> <mo>+</mo> <mi>c</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> <mi>d</mi> <mi>x</mi> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}&\int (d+e\,x)^{m}(A+B\,x)\left(a+b\,x+c\,x^{2}\right)^{p}dx={\frac {(d+e\,x)^{m}(A\,b-2a\,B-(b\,B-2A\,c)x)\left(a+b\,x+c\,x^{2}\right)^{p+1}}{(p+1)\left(b^{2}-4a\,c\right)}}\,+\,{\frac {1}{(p+1)\left(b^{2}-4a\,c\right)}}\,\cdot \\&\qquad \int (d+e\,x)^{m-1}(B(2a\,e\,m+b\,d(2p+3))-A(b\,e\,m+2c\,d(2p+3))+e(b\,B-2A\,c)(m+2p+3)x)\left(a+b\,x+c\,x^{2}\right)^{p+1}dx\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7e7e950b265895e208e449680e4f5f33b5002141" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -6.005ex; width:127.582ex; height:13.176ex;" alt="{\displaystyle {\begin{aligned}&\int (d+e\,x)^{m}(A+B\,x)\left(a+b\,x+c\,x^{2}\right)^{p}dx={\frac {(d+e\,x)^{m}(A\,b-2a\,B-(b\,B-2A\,c)x)\left(a+b\,x+c\,x^{2}\right)^{p+1}}{(p+1)\left(b^{2}-4a\,c\right)}}\,+\,{\frac {1}{(p+1)\left(b^{2}-4a\,c\right)}}\,\cdot \\&\qquad \int (d+e\,x)^{m-1}(B(2a\,e\,m+b\,d(2p+3))-A(b\,e\,m+2c\,d(2p+3))+e(b\,B-2A\,c)(m+2p+3)x)\left(a+b\,x+c\,x^{2}\right)^{p+1}dx\end{aligned}}}"></span></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}&\int (d+e\,x)^{m}(A+B\,x)\left(a+b\,x+c\,x^{2}\right)^{p}dx={\frac {(d+e\,x)^{m+1}(A\,c\,e(m+2p+2)-B(c\,d+2c\,d\,p-b\,e\,p)+B\,c\,e(m+2p+1)x)\left(a+b\,x+c\,x^{2}\right)^{p}}{c\,e^{2}(m+2p+1)(m+2p+2)}}\,-\,{\frac {p}{c\,e^{2}(m+2p+1)(m+2p+2)}}\,\cdot \\&\qquad \int (d+e\,x)^{m}(A\,c\,e(b\,d-2a\,e)(m+2p+2)+B(a\,e(b\,e-2c\,d\,m+b\,e\,m)+b\,d(b\,e\,p-c\,d-2c\,d\,p))+\\&\qquad \qquad \left(A\,c\,e(2c\,d-b\,e)(m+2p+2)-B\left(-b^{2}e^{2}(m+p+1)+2c^{2}d^{2}(1+2p)+c\,e(b\,d(m-2p)+2a\,e(m+2p+1))\right)\right)x)\left(a+b\,x+c\,x^{2}\right)^{p-1}dx\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd /> <mtd> <mi></mi> <mo>∫<!-- ∫ --></mo> <mo stretchy="false">(</mo> <mi>d</mi> <mo>+</mo> <mi>e</mi> <mspace width="thinmathspace" /> <mi>x</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>A</mi> <mo>+</mo> <mi>B</mi> <mspace width="thinmathspace" /> <mi>x</mi> <mo stretchy="false">)</mo> <msup> <mrow> <mo>(</mo> <mrow> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mspace width="thinmathspace" /> <mi>x</mi> <mo>+</mo> <mi>c</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <mi>d</mi> <mi>x</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mi>d</mi> <mo>+</mo> <mi>e</mi> <mspace width="thinmathspace" /> <mi>x</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mi>A</mi> <mspace width="thinmathspace" /> <mi>c</mi> <mspace width="thinmathspace" /> <mi>e</mi> <mo stretchy="false">(</mo> <mi>m</mi> <mo>+</mo> <mn>2</mn> <mi>p</mi> <mo>+</mo> <mn>2</mn> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <mi>B</mi> <mo stretchy="false">(</mo> <mi>c</mi> <mspace width="thinmathspace" /> <mi>d</mi> <mo>+</mo> <mn>2</mn> <mi>c</mi> <mspace width="thinmathspace" /> <mi>d</mi> <mspace width="thinmathspace" /> <mi>p</mi> <mo>−<!-- − --></mo> <mi>b</mi> <mspace width="thinmathspace" /> <mi>e</mi> <mspace width="thinmathspace" /> <mi>p</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mi>B</mi> <mspace width="thinmathspace" /> <mi>c</mi> <mspace width="thinmathspace" /> <mi>e</mi> <mo stretchy="false">(</mo> <mi>m</mi> <mo>+</mo> <mn>2</mn> <mi>p</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mi>x</mi> <mo stretchy="false">)</mo> <msup> <mrow> <mo>(</mo> <mrow> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mspace width="thinmathspace" /> <mi>x</mi> <mo>+</mo> <mi>c</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> </mrow> <mrow> <mi>c</mi> <mspace width="thinmathspace" /> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mi>m</mi> <mo>+</mo> <mn>2</mn> <mi>p</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>m</mi> <mo>+</mo> <mn>2</mn> <mi>p</mi> <mo>+</mo> <mn>2</mn> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mspace width="thinmathspace" /> <mo>−<!-- − --></mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>p</mi> <mrow> <mi>c</mi> <mspace width="thinmathspace" /> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mi>m</mi> <mo>+</mo> <mn>2</mn> <mi>p</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>m</mi> <mo>+</mo> <mn>2</mn> <mi>p</mi> <mo>+</mo> <mn>2</mn> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mspace width="thinmathspace" /> <mo>⋅<!-- ⋅ --></mo> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mspace width="2em" /> <mo>∫<!-- ∫ --></mo> <mo stretchy="false">(</mo> <mi>d</mi> <mo>+</mo> <mi>e</mi> <mspace width="thinmathspace" /> <mi>x</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>A</mi> <mspace width="thinmathspace" /> <mi>c</mi> <mspace width="thinmathspace" /> <mi>e</mi> <mo stretchy="false">(</mo> <mi>b</mi> <mspace width="thinmathspace" /> <mi>d</mi> <mo>−<!-- − --></mo> <mn>2</mn> <mi>a</mi> <mspace width="thinmathspace" /> <mi>e</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>m</mi> <mo>+</mo> <mn>2</mn> <mi>p</mi> <mo>+</mo> <mn>2</mn> <mo stretchy="false">)</mo> <mo>+</mo> <mi>B</mi> <mo stretchy="false">(</mo> <mi>a</mi> <mspace width="thinmathspace" /> <mi>e</mi> <mo stretchy="false">(</mo> <mi>b</mi> <mspace width="thinmathspace" /> <mi>e</mi> <mo>−<!-- − --></mo> <mn>2</mn> <mi>c</mi> <mspace width="thinmathspace" /> <mi>d</mi> <mspace width="thinmathspace" /> <mi>m</mi> <mo>+</mo> <mi>b</mi> <mspace width="thinmathspace" /> <mi>e</mi> <mspace width="thinmathspace" /> <mi>m</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mi>b</mi> <mspace width="thinmathspace" /> <mi>d</mi> <mo stretchy="false">(</mo> <mi>b</mi> <mspace width="thinmathspace" /> <mi>e</mi> <mspace width="thinmathspace" /> <mi>p</mi> <mo>−<!-- − --></mo> <mi>c</mi> <mspace width="thinmathspace" /> <mi>d</mi> <mo>−<!-- − --></mo> <mn>2</mn> <mi>c</mi> <mspace width="thinmathspace" /> <mi>d</mi> <mspace width="thinmathspace" /> <mi>p</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>+</mo> </mtd> </mtr> <mtr> <mtd /> <mtd> <mspace width="2em" /> <mspace width="2em" /> <mrow> <mo>(</mo> <mrow> <mi>A</mi> <mspace width="thinmathspace" /> <mi>c</mi> <mspace width="thinmathspace" /> <mi>e</mi> <mo stretchy="false">(</mo> <mn>2</mn> <mi>c</mi> <mspace width="thinmathspace" /> <mi>d</mi> <mo>−<!-- − --></mo> <mi>b</mi> <mspace width="thinmathspace" /> <mi>e</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>m</mi> <mo>+</mo> <mn>2</mn> <mi>p</mi> <mo>+</mo> <mn>2</mn> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <mi>B</mi> <mrow> <mo>(</mo> <mrow> <mo>−<!-- − --></mo> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mi>m</mi> <mo>+</mo> <mi>p</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>+</mo> <mn>2</mn> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mn>1</mn> <mo>+</mo> <mn>2</mn> <mi>p</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mi>c</mi> <mspace width="thinmathspace" /> <mi>e</mi> <mo stretchy="false">(</mo> <mi>b</mi> <mspace width="thinmathspace" /> <mi>d</mi> <mo stretchy="false">(</mo> <mi>m</mi> <mo>−<!-- − --></mo> <mn>2</mn> <mi>p</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mn>2</mn> <mi>a</mi> <mspace width="thinmathspace" /> <mi>e</mi> <mo stretchy="false">(</mo> <mi>m</mi> <mo>+</mo> <mn>2</mn> <mi>p</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mrow> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> <mi>x</mi> <mo stretchy="false">)</mo> <msup> <mrow> <mo>(</mo> <mrow> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mspace width="thinmathspace" /> <mi>x</mi> <mo>+</mo> <mi>c</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mi>d</mi> <mi>x</mi> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}&\int (d+e\,x)^{m}(A+B\,x)\left(a+b\,x+c\,x^{2}\right)^{p}dx={\frac {(d+e\,x)^{m+1}(A\,c\,e(m+2p+2)-B(c\,d+2c\,d\,p-b\,e\,p)+B\,c\,e(m+2p+1)x)\left(a+b\,x+c\,x^{2}\right)^{p}}{c\,e^{2}(m+2p+1)(m+2p+2)}}\,-\,{\frac {p}{c\,e^{2}(m+2p+1)(m+2p+2)}}\,\cdot \\&\qquad \int (d+e\,x)^{m}(A\,c\,e(b\,d-2a\,e)(m+2p+2)+B(a\,e(b\,e-2c\,d\,m+b\,e\,m)+b\,d(b\,e\,p-c\,d-2c\,d\,p))+\\&\qquad \qquad \left(A\,c\,e(2c\,d-b\,e)(m+2p+2)-B\left(-b^{2}e^{2}(m+p+1)+2c^{2}d^{2}(1+2p)+c\,e(b\,d(m-2p)+2a\,e(m+2p+1))\right)\right)x)\left(a+b\,x+c\,x^{2}\right)^{p-1}dx\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c33436c8438bd88f632412429060a9773eae514c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -7.608ex; margin-bottom: -0.23ex; width:176.041ex; height:16.843ex;" alt="{\displaystyle {\begin{aligned}&\int (d+e\,x)^{m}(A+B\,x)\left(a+b\,x+c\,x^{2}\right)^{p}dx={\frac {(d+e\,x)^{m+1}(A\,c\,e(m+2p+2)-B(c\,d+2c\,d\,p-b\,e\,p)+B\,c\,e(m+2p+1)x)\left(a+b\,x+c\,x^{2}\right)^{p}}{c\,e^{2}(m+2p+1)(m+2p+2)}}\,-\,{\frac {p}{c\,e^{2}(m+2p+1)(m+2p+2)}}\,\cdot \\&\qquad \int (d+e\,x)^{m}(A\,c\,e(b\,d-2a\,e)(m+2p+2)+B(a\,e(b\,e-2c\,d\,m+b\,e\,m)+b\,d(b\,e\,p-c\,d-2c\,d\,p))+\\&\qquad \qquad \left(A\,c\,e(2c\,d-b\,e)(m+2p+2)-B\left(-b^{2}e^{2}(m+p+1)+2c^{2}d^{2}(1+2p)+c\,e(b\,d(m-2p)+2a\,e(m+2p+1))\right)\right)x)\left(a+b\,x+c\,x^{2}\right)^{p-1}dx\end{aligned}}}"></span></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}&\int (d+e\,x)^{m}(A+B\,x)\left(a+b\,x+c\,x^{2}\right)^{p}dx={\frac {(d+e\,x)^{m+1}\left(A\left(b\,c\,d-b^{2}e+2a\,c\,e\right)-a\,B(2c\,d-b\,e)+c(A(2c\,d-b\,e)-B(b\,d-2a\,e))x\right)\left(a+b\,x+c\,x^{2}\right)^{p+1}}{(p+1)\left(b^{2}-4a\,c\right)\left(c\,d^{2}-b\,d\,e+a\,e^{2}\right)}}\,+\\&\qquad {\frac {1}{(p+1)\left(b^{2}-4a\,c\right)\left(c\,d^{2}-b\,d\,e+a\,e^{2}\right)}}\,\cdot \\&\qquad \qquad \int (d+e\,x)^{m}(A\left(b\,c\,d\,e(2p-m+2)+b^{2}e^{2}(m+p+2)-2c^{2}d^{2}(3+2p)-2a\,c\,e^{2}(m+2p+3)\right)-\\&\qquad \qquad \qquad B(a\,e(b\,e-2c\,dm+b\,e\,m)+b\,d(-3c\,d+b\,e-2c\,d\,p+b\,e\,p))+c\,e(B(b\,d-2a\,e)-A(2c\,d-b\,e))(m+2p+4)x)\left(a+b\,x+c\,x^{2}\right)^{p+1}dx\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd /> <mtd> <mi></mi> <mo>∫<!-- ∫ --></mo> <mo stretchy="false">(</mo> <mi>d</mi> <mo>+</mo> <mi>e</mi> <mspace width="thinmathspace" /> <mi>x</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>A</mi> <mo>+</mo> <mi>B</mi> <mspace width="thinmathspace" /> <mi>x</mi> <mo stretchy="false">)</mo> <msup> <mrow> <mo>(</mo> <mrow> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mspace width="thinmathspace" /> <mi>x</mi> <mo>+</mo> <mi>c</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <mi>d</mi> <mi>x</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mi>d</mi> <mo>+</mo> <mi>e</mi> <mspace width="thinmathspace" /> <mi>x</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> <mrow> <mo>(</mo> <mrow> <mi>A</mi> <mrow> <mo>(</mo> <mrow> <mi>b</mi> <mspace width="thinmathspace" /> <mi>c</mi> <mspace width="thinmathspace" /> <mi>d</mi> <mo>−<!-- − --></mo> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi>e</mi> <mo>+</mo> <mn>2</mn> <mi>a</mi> <mspace width="thinmathspace" /> <mi>c</mi> <mspace width="thinmathspace" /> <mi>e</mi> </mrow> <mo>)</mo> </mrow> <mo>−<!-- − --></mo> <mi>a</mi> <mspace width="thinmathspace" /> <mi>B</mi> <mo stretchy="false">(</mo> <mn>2</mn> <mi>c</mi> <mspace width="thinmathspace" /> <mi>d</mi> <mo>−<!-- − --></mo> <mi>b</mi> <mspace width="thinmathspace" /> <mi>e</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mi>c</mi> <mo stretchy="false">(</mo> <mi>A</mi> <mo stretchy="false">(</mo> <mn>2</mn> <mi>c</mi> <mspace width="thinmathspace" /> <mi>d</mi> <mo>−<!-- − --></mo> <mi>b</mi> <mspace width="thinmathspace" /> <mi>e</mi> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <mi>B</mi> <mo stretchy="false">(</mo> <mi>b</mi> <mspace width="thinmathspace" /> <mi>d</mi> <mo>−<!-- − --></mo> <mn>2</mn> <mi>a</mi> <mspace width="thinmathspace" /> <mi>e</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mi>x</mi> </mrow> <mo>)</mo> </mrow> <msup> <mrow> <mo>(</mo> <mrow> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mspace width="thinmathspace" /> <mi>x</mi> <mo>+</mo> <mi>c</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> </mrow> <mrow> <mo stretchy="false">(</mo> <mi>p</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mrow> <mo>(</mo> <mrow> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>−<!-- − --></mo> <mn>4</mn> <mi>a</mi> <mspace width="thinmathspace" /> <mi>c</mi> </mrow> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mrow> <mi>c</mi> <mspace width="thinmathspace" /> <msup> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>−<!-- − --></mo> <mi>b</mi> <mspace width="thinmathspace" /> <mi>d</mi> <mspace width="thinmathspace" /> <mi>e</mi> <mo>+</mo> <mi>a</mi> <mspace width="thinmathspace" /> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> </mrow> </mfrac> </mrow> <mspace width="thinmathspace" /> <mo>+</mo> </mtd> </mtr> <mtr> <mtd /> <mtd> <mspace width="2em" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mo stretchy="false">(</mo> <mi>p</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mrow> <mo>(</mo> <mrow> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>−<!-- − --></mo> <mn>4</mn> <mi>a</mi> <mspace width="thinmathspace" /> <mi>c</mi> </mrow> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mrow> <mi>c</mi> <mspace width="thinmathspace" /> <msup> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>−<!-- − --></mo> <mi>b</mi> <mspace width="thinmathspace" /> <mi>d</mi> <mspace width="thinmathspace" /> <mi>e</mi> <mo>+</mo> <mi>a</mi> <mspace width="thinmathspace" /> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> </mrow> </mfrac> </mrow> <mspace width="thinmathspace" /> <mo>⋅<!-- ⋅ --></mo> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mspace width="2em" /> <mspace width="2em" /> <mo>∫<!-- ∫ --></mo> <mo stretchy="false">(</mo> <mi>d</mi> <mo>+</mo> <mi>e</mi> <mspace width="thinmathspace" /> <mi>x</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>A</mi> <mrow> <mo>(</mo> <mrow> <mi>b</mi> <mspace width="thinmathspace" /> <mi>c</mi> <mspace width="thinmathspace" /> <mi>d</mi> <mspace width="thinmathspace" /> <mi>e</mi> <mo stretchy="false">(</mo> <mn>2</mn> <mi>p</mi> <mo>−<!-- − --></mo> <mi>m</mi> <mo>+</mo> <mn>2</mn> <mo stretchy="false">)</mo> <mo>+</mo> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mi>m</mi> <mo>+</mo> <mi>p</mi> <mo>+</mo> <mn>2</mn> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <mn>2</mn> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mn>3</mn> <mo>+</mo> <mn>2</mn> <mi>p</mi> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <mn>2</mn> <mi>a</mi> <mspace width="thinmathspace" /> <mi>c</mi> <mspace width="thinmathspace" /> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mi>m</mi> <mo>+</mo> <mn>2</mn> <mi>p</mi> <mo>+</mo> <mn>3</mn> <mo stretchy="false">)</mo> </mrow> <mo>)</mo> </mrow> <mo>−<!-- − --></mo> </mtd> </mtr> <mtr> <mtd /> <mtd> <mspace width="2em" /> <mspace width="2em" /> <mspace width="2em" /> <mi>B</mi> <mo stretchy="false">(</mo> <mi>a</mi> <mspace width="thinmathspace" /> <mi>e</mi> <mo stretchy="false">(</mo> <mi>b</mi> <mspace width="thinmathspace" /> <mi>e</mi> <mo>−<!-- − --></mo> <mn>2</mn> <mi>c</mi> <mspace width="thinmathspace" /> <mi>d</mi> <mi>m</mi> <mo>+</mo> <mi>b</mi> <mspace width="thinmathspace" /> <mi>e</mi> <mspace width="thinmathspace" /> <mi>m</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mi>b</mi> <mspace width="thinmathspace" /> <mi>d</mi> <mo stretchy="false">(</mo> <mo>−<!-- − --></mo> <mn>3</mn> <mi>c</mi> <mspace width="thinmathspace" /> <mi>d</mi> <mo>+</mo> <mi>b</mi> <mspace width="thinmathspace" /> <mi>e</mi> <mo>−<!-- − --></mo> <mn>2</mn> <mi>c</mi> <mspace width="thinmathspace" /> <mi>d</mi> <mspace width="thinmathspace" /> <mi>p</mi> <mo>+</mo> <mi>b</mi> <mspace width="thinmathspace" /> <mi>e</mi> <mspace width="thinmathspace" /> <mi>p</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>+</mo> <mi>c</mi> <mspace width="thinmathspace" /> <mi>e</mi> <mo stretchy="false">(</mo> <mi>B</mi> <mo stretchy="false">(</mo> <mi>b</mi> <mspace width="thinmathspace" /> <mi>d</mi> <mo>−<!-- − --></mo> <mn>2</mn> <mi>a</mi> <mspace width="thinmathspace" /> <mi>e</mi> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <mi>A</mi> <mo stretchy="false">(</mo> <mn>2</mn> <mi>c</mi> <mspace width="thinmathspace" /> <mi>d</mi> <mo>−<!-- − --></mo> <mi>b</mi> <mspace width="thinmathspace" /> <mi>e</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>m</mi> <mo>+</mo> <mn>2</mn> <mi>p</mi> <mo>+</mo> <mn>4</mn> <mo stretchy="false">)</mo> <mi>x</mi> <mo stretchy="false">)</mo> <msup> <mrow> <mo>(</mo> <mrow> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mspace width="thinmathspace" /> <mi>x</mi> <mo>+</mo> <mi>c</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> <mi>d</mi> <mi>x</mi> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}&\int (d+e\,x)^{m}(A+B\,x)\left(a+b\,x+c\,x^{2}\right)^{p}dx={\frac {(d+e\,x)^{m+1}\left(A\left(b\,c\,d-b^{2}e+2a\,c\,e\right)-a\,B(2c\,d-b\,e)+c(A(2c\,d-b\,e)-B(b\,d-2a\,e))x\right)\left(a+b\,x+c\,x^{2}\right)^{p+1}}{(p+1)\left(b^{2}-4a\,c\right)\left(c\,d^{2}-b\,d\,e+a\,e^{2}\right)}}\,+\\&\qquad {\frac {1}{(p+1)\left(b^{2}-4a\,c\right)\left(c\,d^{2}-b\,d\,e+a\,e^{2}\right)}}\,\cdot \\&\qquad \qquad \int (d+e\,x)^{m}(A\left(b\,c\,d\,e(2p-m+2)+b^{2}e^{2}(m+p+2)-2c^{2}d^{2}(3+2p)-2a\,c\,e^{2}(m+2p+3)\right)-\\&\qquad \qquad \qquad B(a\,e(b\,e-2c\,dm+b\,e\,m)+b\,d(-3c\,d+b\,e-2c\,d\,p+b\,e\,p))+c\,e(B(b\,d-2a\,e)-A(2c\,d-b\,e))(m+2p+4)x)\left(a+b\,x+c\,x^{2}\right)^{p+1}dx\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/35c6fec327101fa7948382930075e2e0d79c8e18" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -10.896ex; margin-bottom: -0.275ex; width:157.627ex; height:23.509ex;" alt="{\displaystyle {\begin{aligned}&\int (d+e\,x)^{m}(A+B\,x)\left(a+b\,x+c\,x^{2}\right)^{p}dx={\frac {(d+e\,x)^{m+1}\left(A\left(b\,c\,d-b^{2}e+2a\,c\,e\right)-a\,B(2c\,d-b\,e)+c(A(2c\,d-b\,e)-B(b\,d-2a\,e))x\right)\left(a+b\,x+c\,x^{2}\right)^{p+1}}{(p+1)\left(b^{2}-4a\,c\right)\left(c\,d^{2}-b\,d\,e+a\,e^{2}\right)}}\,+\\&\qquad {\frac {1}{(p+1)\left(b^{2}-4a\,c\right)\left(c\,d^{2}-b\,d\,e+a\,e^{2}\right)}}\,\cdot \\&\qquad \qquad \int (d+e\,x)^{m}(A\left(b\,c\,d\,e(2p-m+2)+b^{2}e^{2}(m+p+2)-2c^{2}d^{2}(3+2p)-2a\,c\,e^{2}(m+2p+3)\right)-\\&\qquad \qquad \qquad B(a\,e(b\,e-2c\,dm+b\,e\,m)+b\,d(-3c\,d+b\,e-2c\,d\,p+b\,e\,p))+c\,e(B(b\,d-2a\,e)-A(2c\,d-b\,e))(m+2p+4)x)\left(a+b\,x+c\,x^{2}\right)^{p+1}dx\end{aligned}}}"></span></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}&\int (d+e\,x)^{m}(A+B\,x)\left(a+b\,x+c\,x^{2}\right)^{p}dx={\frac {B(d+e\,x)^{m}\left(a+b\,x+c\,x^{2}\right)^{p+1}}{c(m+2p+2)}}\,+\,{\frac {1}{c(m+2p+2)}}\,\cdot \\&\qquad \int (d+e\,x)^{m-1}(m(A\,c\,d-a\,B\,e)-d(b\,B-2A\,c)(p+1)+((B\,c\,d-b\,B\,e+A\,c\,e)m-e(b\,B-2A\,c)(p+1))x)\left(a+b\,x+c\,x^{2}\right)^{p}dx\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd /> <mtd> <mi></mi> <mo>∫<!-- ∫ --></mo> <mo stretchy="false">(</mo> <mi>d</mi> <mo>+</mo> <mi>e</mi> <mspace width="thinmathspace" /> <mi>x</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>A</mi> <mo>+</mo> <mi>B</mi> <mspace width="thinmathspace" /> <mi>x</mi> <mo stretchy="false">)</mo> <msup> <mrow> <mo>(</mo> <mrow> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mspace width="thinmathspace" /> <mi>x</mi> <mo>+</mo> <mi>c</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <mi>d</mi> <mi>x</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>B</mi> <mo stretchy="false">(</mo> <mi>d</mi> <mo>+</mo> <mi>e</mi> <mspace width="thinmathspace" /> <mi>x</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> <msup> <mrow> <mo>(</mo> <mrow> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mspace width="thinmathspace" /> <mi>x</mi> <mo>+</mo> <mi>c</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> </mrow> <mrow> <mi>c</mi> <mo stretchy="false">(</mo> <mi>m</mi> <mo>+</mo> <mn>2</mn> <mi>p</mi> <mo>+</mo> <mn>2</mn> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mspace width="thinmathspace" /> <mo>+</mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi>c</mi> <mo stretchy="false">(</mo> <mi>m</mi> <mo>+</mo> <mn>2</mn> <mi>p</mi> <mo>+</mo> <mn>2</mn> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mspace width="thinmathspace" /> <mo>⋅<!-- ⋅ --></mo> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mspace width="2em" /> <mo>∫<!-- ∫ --></mo> <mo stretchy="false">(</mo> <mi>d</mi> <mo>+</mo> <mi>e</mi> <mspace width="thinmathspace" /> <mi>x</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mi>m</mi> <mo stretchy="false">(</mo> <mi>A</mi> <mspace width="thinmathspace" /> <mi>c</mi> <mspace width="thinmathspace" /> <mi>d</mi> <mo>−<!-- − --></mo> <mi>a</mi> <mspace width="thinmathspace" /> <mi>B</mi> <mspace width="thinmathspace" /> <mi>e</mi> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <mi>d</mi> <mo stretchy="false">(</mo> <mi>b</mi> <mspace width="thinmathspace" /> <mi>B</mi> <mo>−<!-- − --></mo> <mn>2</mn> <mi>A</mi> <mspace width="thinmathspace" /> <mi>c</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>p</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>+</mo> <mo stretchy="false">(</mo> <mo stretchy="false">(</mo> <mi>B</mi> <mspace width="thinmathspace" /> <mi>c</mi> <mspace width="thinmathspace" /> <mi>d</mi> <mo>−<!-- − --></mo> <mi>b</mi> <mspace width="thinmathspace" /> <mi>B</mi> <mspace width="thinmathspace" /> <mi>e</mi> <mo>+</mo> <mi>A</mi> <mspace width="thinmathspace" /> <mi>c</mi> <mspace width="thinmathspace" /> <mi>e</mi> <mo stretchy="false">)</mo> <mi>m</mi> <mo>−<!-- − --></mo> <mi>e</mi> <mo stretchy="false">(</mo> <mi>b</mi> <mspace width="thinmathspace" /> <mi>B</mi> <mo>−<!-- − --></mo> <mn>2</mn> <mi>A</mi> <mspace width="thinmathspace" /> <mi>c</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>p</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mi>x</mi> <mo stretchy="false">)</mo> <msup> <mrow> <mo>(</mo> <mrow> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mspace width="thinmathspace" /> <mi>x</mi> <mo>+</mo> <mi>c</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <mi>d</mi> <mi>x</mi> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}&\int (d+e\,x)^{m}(A+B\,x)\left(a+b\,x+c\,x^{2}\right)^{p}dx={\frac {B(d+e\,x)^{m}\left(a+b\,x+c\,x^{2}\right)^{p+1}}{c(m+2p+2)}}\,+\,{\frac {1}{c(m+2p+2)}}\,\cdot \\&\qquad \int (d+e\,x)^{m-1}(m(A\,c\,d-a\,B\,e)-d(b\,B-2A\,c)(p+1)+((B\,c\,d-b\,B\,e+A\,c\,e)m-e(b\,B-2A\,c)(p+1))x)\left(a+b\,x+c\,x^{2}\right)^{p}dx\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ee370ed6be53099c2bd7594087a26ef9348656b5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -6.005ex; width:133.284ex; height:13.176ex;" alt="{\displaystyle {\begin{aligned}&\int (d+e\,x)^{m}(A+B\,x)\left(a+b\,x+c\,x^{2}\right)^{p}dx={\frac {B(d+e\,x)^{m}\left(a+b\,x+c\,x^{2}\right)^{p+1}}{c(m+2p+2)}}\,+\,{\frac {1}{c(m+2p+2)}}\,\cdot \\&\qquad \int (d+e\,x)^{m-1}(m(A\,c\,d-a\,B\,e)-d(b\,B-2A\,c)(p+1)+((B\,c\,d-b\,B\,e+A\,c\,e)m-e(b\,B-2A\,c)(p+1))x)\left(a+b\,x+c\,x^{2}\right)^{p}dx\end{aligned}}}"></span></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}&\int (d+e\,x)^{m}(A+B\,x)\left(a+b\,x+c\,x^{2}\right)^{p}dx=-{\frac {(B\,d-A\,e)(d+e\,x)^{m+1}\left(a+b\,x+c\,x^{2}\right)^{p+1}}{(m+1)\left(c\,d^{2}-b\,d\,e+a\,e^{2}\right)}}\,+\,{\frac {1}{(m+1)\left(c\,d^{2}-b\,d\,e+a\,e^{2}\right)}}\,\cdot \\&\qquad \int (d+e\,x)^{m+1}((A\,c\,d-A\,b\,e+a\,B\,e)(m+1)+b(B\,d-A\,e)(p+1)+c(B\,d-A\,e)(m+2p+3)x)\left(a+b\,x+c\,x^{2}\right)^{p}dx\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd /> <mtd> <mi></mi> <mo>∫<!-- ∫ --></mo> <mo stretchy="false">(</mo> <mi>d</mi> <mo>+</mo> <mi>e</mi> <mspace width="thinmathspace" /> <mi>x</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>A</mi> <mo>+</mo> <mi>B</mi> <mspace width="thinmathspace" /> <mi>x</mi> <mo stretchy="false">)</mo> <msup> <mrow> <mo>(</mo> <mrow> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mspace width="thinmathspace" /> <mi>x</mi> <mo>+</mo> <mi>c</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <mi>d</mi> <mi>x</mi> <mo>=</mo> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mi>B</mi> <mspace width="thinmathspace" /> <mi>d</mi> <mo>−<!-- − --></mo> <mi>A</mi> <mspace width="thinmathspace" /> <mi>e</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>d</mi> <mo>+</mo> <mi>e</mi> <mspace width="thinmathspace" /> <mi>x</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> <msup> <mrow> <mo>(</mo> <mrow> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mspace width="thinmathspace" /> <mi>x</mi> <mo>+</mo> <mi>c</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> </mrow> <mrow> <mo stretchy="false">(</mo> <mi>m</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mrow> <mo>(</mo> <mrow> <mi>c</mi> <mspace width="thinmathspace" /> <msup> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>−<!-- − --></mo> <mi>b</mi> <mspace width="thinmathspace" /> <mi>d</mi> <mspace width="thinmathspace" /> <mi>e</mi> <mo>+</mo> <mi>a</mi> <mspace width="thinmathspace" /> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> </mrow> </mfrac> </mrow> <mspace width="thinmathspace" /> <mo>+</mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mo stretchy="false">(</mo> <mi>m</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mrow> <mo>(</mo> <mrow> <mi>c</mi> <mspace width="thinmathspace" /> <msup> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>−<!-- − --></mo> <mi>b</mi> <mspace width="thinmathspace" /> <mi>d</mi> <mspace width="thinmathspace" /> <mi>e</mi> <mo>+</mo> <mi>a</mi> <mspace width="thinmathspace" /> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> </mrow> </mfrac> </mrow> <mspace width="thinmathspace" /> <mo>⋅<!-- ⋅ --></mo> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mspace width="2em" /> <mo>∫<!-- ∫ --></mo> <mo stretchy="false">(</mo> <mi>d</mi> <mo>+</mo> <mi>e</mi> <mspace width="thinmathspace" /> <mi>x</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mo stretchy="false">(</mo> <mi>A</mi> <mspace width="thinmathspace" /> <mi>c</mi> <mspace width="thinmathspace" /> <mi>d</mi> <mo>−<!-- − --></mo> <mi>A</mi> <mspace width="thinmathspace" /> <mi>b</mi> <mspace width="thinmathspace" /> <mi>e</mi> <mo>+</mo> <mi>a</mi> <mspace width="thinmathspace" /> <mi>B</mi> <mspace width="thinmathspace" /> <mi>e</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>m</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>+</mo> <mi>b</mi> <mo stretchy="false">(</mo> <mi>B</mi> <mspace width="thinmathspace" /> <mi>d</mi> <mo>−<!-- − --></mo> <mi>A</mi> <mspace width="thinmathspace" /> <mi>e</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>p</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>+</mo> <mi>c</mi> <mo stretchy="false">(</mo> <mi>B</mi> <mspace width="thinmathspace" /> <mi>d</mi> <mo>−<!-- − --></mo> <mi>A</mi> <mspace width="thinmathspace" /> <mi>e</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>m</mi> <mo>+</mo> <mn>2</mn> <mi>p</mi> <mo>+</mo> <mn>3</mn> <mo stretchy="false">)</mo> <mi>x</mi> <mo stretchy="false">)</mo> <msup> <mrow> <mo>(</mo> <mrow> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mspace width="thinmathspace" /> <mi>x</mi> <mo>+</mo> <mi>c</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <mi>d</mi> <mi>x</mi> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}&\int (d+e\,x)^{m}(A+B\,x)\left(a+b\,x+c\,x^{2}\right)^{p}dx=-{\frac {(B\,d-A\,e)(d+e\,x)^{m+1}\left(a+b\,x+c\,x^{2}\right)^{p+1}}{(m+1)\left(c\,d^{2}-b\,d\,e+a\,e^{2}\right)}}\,+\,{\frac {1}{(m+1)\left(c\,d^{2}-b\,d\,e+a\,e^{2}\right)}}\,\cdot \\&\qquad \int (d+e\,x)^{m+1}((A\,c\,d-A\,b\,e+a\,B\,e)(m+1)+b(B\,d-A\,e)(p+1)+c(B\,d-A\,e)(m+2p+3)x)\left(a+b\,x+c\,x^{2}\right)^{p}dx\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/52808a2af103a45429e2363edced3c5a83733ea2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -6.005ex; width:123.497ex; height:13.176ex;" alt="{\displaystyle {\begin{aligned}&\int (d+e\,x)^{m}(A+B\,x)\left(a+b\,x+c\,x^{2}\right)^{p}dx=-{\frac {(B\,d-A\,e)(d+e\,x)^{m+1}\left(a+b\,x+c\,x^{2}\right)^{p+1}}{(m+1)\left(c\,d^{2}-b\,d\,e+a\,e^{2}\right)}}\,+\,{\frac {1}{(m+1)\left(c\,d^{2}-b\,d\,e+a\,e^{2}\right)}}\,\cdot \\&\qquad \int (d+e\,x)^{m+1}((A\,c\,d-A\,b\,e+a\,B\,e)(m+1)+b(B\,d-A\,e)(p+1)+c(B\,d-A\,e)(m+2p+3)x)\left(a+b\,x+c\,x^{2}\right)^{p}dx\end{aligned}}}"></span></li></ul> </div> <div class="mw-heading mw-heading2"><h2 id="Integrands_of_the_form_xm_(a_+_b_xn_+_c_x2n)p_when_b2_−_4_a_c_=_0"><span id="Integrands_of_the_form_xm_.28a_.2B_b_xn_.2B_c_x2n.29p_when_b2_.E2.88.92_4_a_c_.3D_0"></span>Integrands of the form <i>x</i><sup><i>m</i></sup> (<i>a</i> + <i>b x</i><sup><i>n</i></sup> + <i>c x</i><sup>2<i>n</i></sup>)<sup><i>p</i></sup> when <i>b</i><sup>2</sup> − 4 <i>a c</i> = 0</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=List_of_integrals_of_rational_functions&action=edit&section=9" title="Edit section: Integrands of the form xm (a + b xn + c x2n)p when b2 − 4 a c = 0"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li>The resulting integrands are of the same form as the original integrand, so these reduction formulas can be repeatedly applied to drive the exponents <i>m</i> and <i>p</i> toward 0.</li> <li>These reduction formulas can be used for integrands having integer and/or fractional exponents.</li> <li>Special cases of these reductions formulas can be used for integrands of the form <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left(a+b\,x^{n}+c\,x^{2n}\right)^{p}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow> <mo>(</mo> <mrow> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>+</mo> <mi>c</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>n</mi> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left(a+b\,x^{n}+c\,x^{2n}\right)^{p}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/938b6cfdb80a7b69236ce84ddbb3550e6a66bd82" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:18.796ex; height:3.343ex;" alt="{\displaystyle \left(a+b\,x^{n}+c\,x^{2n}\right)^{p}}"></span> when <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b^{2}-4\,a\,c=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>−<!-- − --></mo> <mn>4</mn> <mspace width="thinmathspace" /> <mi>a</mi> <mspace width="thinmathspace" /> <mi>c</mi> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b^{2}-4\,a\,c=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/160ce497ad311a4c36ebd525cb50ef4bc4972758" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:13.326ex; height:2.843ex;" alt="{\displaystyle b^{2}-4\,a\,c=0}"></span> by setting <i>m</i> to 0.</li></ul> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1126788409"><div class="plainlist" style="margin-left: 1.6em;"> <ul><li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int x^{m}\left(a+b\,x^{n}+c\,x^{2n}\right)^{p}dx={\frac {x^{m+1}\left(a+b\,x^{n}+c\,x^{2n}\right)^{p}}{m+2n\,p+1}}\,+\,{\frac {n\,p\,x^{m+1}\left(2a+b\,x^{n}\right)\left(a+b\,x^{n}+c\,x^{2n}\right)^{p-1}}{(m+1)(m+2n\,p+1)}}\,-\,{\frac {b\,n^{2}p(2p-1)}{(m+1)(m+2n\,p+1)}}\int x^{m+n}\left(a+b\,x^{n}+c\,x^{2n}\right)^{p-1}dx}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>∫<!-- ∫ --></mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> <msup> <mrow> <mo>(</mo> <mrow> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>+</mo> <mi>c</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>n</mi> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <mi>d</mi> <mi>x</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> <msup> <mrow> <mo>(</mo> <mrow> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>+</mo> <mi>c</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>n</mi> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> </mrow> <mrow> <mi>m</mi> <mo>+</mo> <mn>2</mn> <mi>n</mi> <mspace width="thinmathspace" /> <mi>p</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> </mrow> <mspace width="thinmathspace" /> <mo>+</mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>n</mi> <mspace width="thinmathspace" /> <mi>p</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> <mrow> <mo>(</mo> <mrow> <mn>2</mn> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <msup> <mrow> <mo>(</mo> <mrow> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>+</mo> <mi>c</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>n</mi> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> </mrow> <mrow> <mo stretchy="false">(</mo> <mi>m</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>m</mi> <mo>+</mo> <mn>2</mn> <mi>n</mi> <mspace width="thinmathspace" /> <mi>p</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mspace width="thinmathspace" /> <mo>−<!-- − --></mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>b</mi> <mspace width="thinmathspace" /> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi>p</mi> <mo stretchy="false">(</mo> <mn>2</mn> <mi>p</mi> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> <mrow> <mo stretchy="false">(</mo> <mi>m</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>m</mi> <mo>+</mo> <mn>2</mn> <mi>n</mi> <mspace width="thinmathspace" /> <mi>p</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mo>∫<!-- ∫ --></mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>+</mo> <mi>n</mi> </mrow> </msup> <msup> <mrow> <mo>(</mo> <mrow> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>+</mo> <mi>c</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>n</mi> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mi>d</mi> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int x^{m}\left(a+b\,x^{n}+c\,x^{2n}\right)^{p}dx={\frac {x^{m+1}\left(a+b\,x^{n}+c\,x^{2n}\right)^{p}}{m+2n\,p+1}}\,+\,{\frac {n\,p\,x^{m+1}\left(2a+b\,x^{n}\right)\left(a+b\,x^{n}+c\,x^{2n}\right)^{p-1}}{(m+1)(m+2n\,p+1)}}\,-\,{\frac {b\,n^{2}p(2p-1)}{(m+1)(m+2n\,p+1)}}\int x^{m+n}\left(a+b\,x^{n}+c\,x^{2n}\right)^{p-1}dx}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d8b1f53bf9a1baa716e5af791b71798ab7c7409d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:159.094ex; height:7.343ex;" alt="{\displaystyle \int x^{m}\left(a+b\,x^{n}+c\,x^{2n}\right)^{p}dx={\frac {x^{m+1}\left(a+b\,x^{n}+c\,x^{2n}\right)^{p}}{m+2n\,p+1}}\,+\,{\frac {n\,p\,x^{m+1}\left(2a+b\,x^{n}\right)\left(a+b\,x^{n}+c\,x^{2n}\right)^{p-1}}{(m+1)(m+2n\,p+1)}}\,-\,{\frac {b\,n^{2}p(2p-1)}{(m+1)(m+2n\,p+1)}}\int x^{m+n}\left(a+b\,x^{n}+c\,x^{2n}\right)^{p-1}dx}"></span></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int x^{m}\left(a+b\,x^{n}+c\,x^{2n}\right)^{p}dx={\frac {(m+n(2p-1)+1)x^{m+1}\left(a+b\,x^{n}+c\,x^{2n}\right)^{p}}{(m+1)(m+n+1)}}\,+\,{\frac {n\,p\,x^{m+1}\left(2a+b\,x^{n}\right)\left(a+b\,x^{n}+c\,x^{2n}\right)^{p-1}}{(m+1)(m+n+1)}}\,+\,{\frac {2c\,p\,n^{2}(2p-1)}{(m+1)(m+n+1)}}\int x^{m+2n}\left(a+b\,x^{n}+c\,x^{2n}\right)^{p-1}dx}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>∫<!-- ∫ --></mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> <msup> <mrow> <mo>(</mo> <mrow> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>+</mo> <mi>c</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>n</mi> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <mi>d</mi> <mi>x</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mi>m</mi> <mo>+</mo> <mi>n</mi> <mo stretchy="false">(</mo> <mn>2</mn> <mi>p</mi> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> <msup> <mrow> <mo>(</mo> <mrow> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>+</mo> <mi>c</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>n</mi> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> </mrow> <mrow> <mo stretchy="false">(</mo> <mi>m</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>m</mi> <mo>+</mo> <mi>n</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mspace width="thinmathspace" /> <mo>+</mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>n</mi> <mspace width="thinmathspace" /> <mi>p</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> <mrow> <mo>(</mo> <mrow> <mn>2</mn> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <msup> <mrow> <mo>(</mo> <mrow> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>+</mo> <mi>c</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>n</mi> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> </mrow> <mrow> <mo stretchy="false">(</mo> <mi>m</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>m</mi> <mo>+</mo> <mi>n</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mspace width="thinmathspace" /> <mo>+</mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>2</mn> <mi>c</mi> <mspace width="thinmathspace" /> <mi>p</mi> <mspace width="thinmathspace" /> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mn>2</mn> <mi>p</mi> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> <mrow> <mo stretchy="false">(</mo> <mi>m</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>m</mi> <mo>+</mo> <mi>n</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mo>∫<!-- ∫ --></mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>+</mo> <mn>2</mn> <mi>n</mi> </mrow> </msup> <msup> <mrow> <mo>(</mo> <mrow> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>+</mo> <mi>c</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>n</mi> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mi>d</mi> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int x^{m}\left(a+b\,x^{n}+c\,x^{2n}\right)^{p}dx={\frac {(m+n(2p-1)+1)x^{m+1}\left(a+b\,x^{n}+c\,x^{2n}\right)^{p}}{(m+1)(m+n+1)}}\,+\,{\frac {n\,p\,x^{m+1}\left(2a+b\,x^{n}\right)\left(a+b\,x^{n}+c\,x^{2n}\right)^{p-1}}{(m+1)(m+n+1)}}\,+\,{\frac {2c\,p\,n^{2}(2p-1)}{(m+1)(m+n+1)}}\int x^{m+2n}\left(a+b\,x^{n}+c\,x^{2n}\right)^{p-1}dx}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/daf94843c8208eb4a740395f5c20467bd18f7890" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:177.429ex; height:7.343ex;" alt="{\displaystyle \int x^{m}\left(a+b\,x^{n}+c\,x^{2n}\right)^{p}dx={\frac {(m+n(2p-1)+1)x^{m+1}\left(a+b\,x^{n}+c\,x^{2n}\right)^{p}}{(m+1)(m+n+1)}}\,+\,{\frac {n\,p\,x^{m+1}\left(2a+b\,x^{n}\right)\left(a+b\,x^{n}+c\,x^{2n}\right)^{p-1}}{(m+1)(m+n+1)}}\,+\,{\frac {2c\,p\,n^{2}(2p-1)}{(m+1)(m+n+1)}}\int x^{m+2n}\left(a+b\,x^{n}+c\,x^{2n}\right)^{p-1}dx}"></span></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int x^{m}\left(a+b\,x^{n}+c\,x^{2n}\right)^{p}dx={\frac {(m+n(2p+1)+1)x^{m-n+1}\left(a+b\,x^{n}+c\,x^{2n}\right)^{p+1}}{b\,n^{2}(p+1)(2p+1)}}\,-\,{\frac {x^{m+1}\left(b+2c\,x^{n}\right)\left(a+b\,x^{n}+c\,x^{2n}\right)^{p}}{b\,n(2p+1)}}\,-\,{\frac {(m-n+1)(m+n(2p+1)+1)}{b\,n^{2}(p+1)(2p+1)}}\int x^{m-n}\left(a+b\,x^{n}+c\,x^{2n}\right)^{p+1}dx}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>∫<!-- ∫ --></mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> <msup> <mrow> <mo>(</mo> <mrow> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>+</mo> <mi>c</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>n</mi> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <mi>d</mi> <mi>x</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mi>m</mi> <mo>+</mo> <mi>n</mi> <mo stretchy="false">(</mo> <mn>2</mn> <mi>p</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>−<!-- − --></mo> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> <msup> <mrow> <mo>(</mo> <mrow> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>+</mo> <mi>c</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>n</mi> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> </mrow> <mrow> <mi>b</mi> <mspace width="thinmathspace" /> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mi>p</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mn>2</mn> <mi>p</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mspace width="thinmathspace" /> <mo>−<!-- − --></mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> <mrow> <mo>(</mo> <mrow> <mi>b</mi> <mo>+</mo> <mn>2</mn> <mi>c</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <msup> <mrow> <mo>(</mo> <mrow> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>+</mo> <mi>c</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>n</mi> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> </mrow> <mrow> <mi>b</mi> <mspace width="thinmathspace" /> <mi>n</mi> <mo stretchy="false">(</mo> <mn>2</mn> <mi>p</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mspace width="thinmathspace" /> <mo>−<!-- − --></mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mi>m</mi> <mo>−<!-- − --></mo> <mi>n</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>m</mi> <mo>+</mo> <mi>n</mi> <mo stretchy="false">(</mo> <mn>2</mn> <mi>p</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>b</mi> <mspace width="thinmathspace" /> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mi>p</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mn>2</mn> <mi>p</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mo>∫<!-- ∫ --></mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>−<!-- − --></mo> <mi>n</mi> </mrow> </msup> <msup> <mrow> <mo>(</mo> <mrow> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>+</mo> <mi>c</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>n</mi> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> <mi>d</mi> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int x^{m}\left(a+b\,x^{n}+c\,x^{2n}\right)^{p}dx={\frac {(m+n(2p+1)+1)x^{m-n+1}\left(a+b\,x^{n}+c\,x^{2n}\right)^{p+1}}{b\,n^{2}(p+1)(2p+1)}}\,-\,{\frac {x^{m+1}\left(b+2c\,x^{n}\right)\left(a+b\,x^{n}+c\,x^{2n}\right)^{p}}{b\,n(2p+1)}}\,-\,{\frac {(m-n+1)(m+n(2p+1)+1)}{b\,n^{2}(p+1)(2p+1)}}\int x^{m-n}\left(a+b\,x^{n}+c\,x^{2n}\right)^{p+1}dx}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/021f1e8e9598be88cfa1607774fcee9206cf2e6c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:187.689ex; height:7.343ex;" alt="{\displaystyle \int x^{m}\left(a+b\,x^{n}+c\,x^{2n}\right)^{p}dx={\frac {(m+n(2p+1)+1)x^{m-n+1}\left(a+b\,x^{n}+c\,x^{2n}\right)^{p+1}}{b\,n^{2}(p+1)(2p+1)}}\,-\,{\frac {x^{m+1}\left(b+2c\,x^{n}\right)\left(a+b\,x^{n}+c\,x^{2n}\right)^{p}}{b\,n(2p+1)}}\,-\,{\frac {(m-n+1)(m+n(2p+1)+1)}{b\,n^{2}(p+1)(2p+1)}}\int x^{m-n}\left(a+b\,x^{n}+c\,x^{2n}\right)^{p+1}dx}"></span></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int x^{m}\left(a+b\,x^{n}+c\,x^{2n}\right)^{p}dx=-{\frac {(m-3n-2n\,p+1)x^{m-2n+1}\left(a+b\,x^{n}+c\,x^{2n}\right)^{p+1}}{2c\,n^{2}(p+1)(2p+1)}}\,-\,{\frac {x^{m-2n+1}\left(2a+b\,x^{n}\right)\left(a+b\,x^{n}+c\,x^{2n}\right)^{p}}{2c\,n(2p+1)}}\,+\,{\frac {(m-n+1)(m-2n+1)}{2c\,n^{2}(p+1)(2p+1)}}\int x^{m-2n}\left(a+b\,x^{n}+c\,x^{2n}\right)^{p+1}dx}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>∫<!-- ∫ --></mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> <msup> <mrow> <mo>(</mo> <mrow> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>+</mo> <mi>c</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>n</mi> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <mi>d</mi> <mi>x</mi> <mo>=</mo> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mi>m</mi> <mo>−<!-- − --></mo> <mn>3</mn> <mi>n</mi> <mo>−<!-- − --></mo> <mn>2</mn> <mi>n</mi> <mspace width="thinmathspace" /> <mi>p</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>−<!-- − --></mo> <mn>2</mn> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> <msup> <mrow> <mo>(</mo> <mrow> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>+</mo> <mi>c</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>n</mi> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> </mrow> <mrow> <mn>2</mn> <mi>c</mi> <mspace width="thinmathspace" /> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mi>p</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mn>2</mn> <mi>p</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mspace width="thinmathspace" /> <mo>−<!-- − --></mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>−<!-- − --></mo> <mn>2</mn> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> <mrow> <mo>(</mo> <mrow> <mn>2</mn> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <msup> <mrow> <mo>(</mo> <mrow> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>+</mo> <mi>c</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>n</mi> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> </mrow> <mrow> <mn>2</mn> <mi>c</mi> <mspace width="thinmathspace" /> <mi>n</mi> <mo stretchy="false">(</mo> <mn>2</mn> <mi>p</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mspace width="thinmathspace" /> <mo>+</mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mi>m</mi> <mo>−<!-- − --></mo> <mi>n</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>m</mi> <mo>−<!-- − --></mo> <mn>2</mn> <mi>n</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> <mrow> <mn>2</mn> <mi>c</mi> <mspace width="thinmathspace" /> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mi>p</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mn>2</mn> <mi>p</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mo>∫<!-- ∫ --></mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>−<!-- − --></mo> <mn>2</mn> <mi>n</mi> </mrow> </msup> <msup> <mrow> <mo>(</mo> <mrow> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>+</mo> <mi>c</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>n</mi> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> <mi>d</mi> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int x^{m}\left(a+b\,x^{n}+c\,x^{2n}\right)^{p}dx=-{\frac {(m-3n-2n\,p+1)x^{m-2n+1}\left(a+b\,x^{n}+c\,x^{2n}\right)^{p+1}}{2c\,n^{2}(p+1)(2p+1)}}\,-\,{\frac {x^{m-2n+1}\left(2a+b\,x^{n}\right)\left(a+b\,x^{n}+c\,x^{2n}\right)^{p}}{2c\,n(2p+1)}}\,+\,{\frac {(m-n+1)(m-2n+1)}{2c\,n^{2}(p+1)(2p+1)}}\int x^{m-2n}\left(a+b\,x^{n}+c\,x^{2n}\right)^{p+1}dx}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5519f9ce654c5b38b15c36e913ab34ed398b7a4e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:187.442ex; height:7.343ex;" alt="{\displaystyle \int x^{m}\left(a+b\,x^{n}+c\,x^{2n}\right)^{p}dx=-{\frac {(m-3n-2n\,p+1)x^{m-2n+1}\left(a+b\,x^{n}+c\,x^{2n}\right)^{p+1}}{2c\,n^{2}(p+1)(2p+1)}}\,-\,{\frac {x^{m-2n+1}\left(2a+b\,x^{n}\right)\left(a+b\,x^{n}+c\,x^{2n}\right)^{p}}{2c\,n(2p+1)}}\,+\,{\frac {(m-n+1)(m-2n+1)}{2c\,n^{2}(p+1)(2p+1)}}\int x^{m-2n}\left(a+b\,x^{n}+c\,x^{2n}\right)^{p+1}dx}"></span></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int x^{m}\left(a+b\,x^{n}+c\,x^{2n}\right)^{p}dx={\frac {x^{m+1}\left(a+b\,x^{n}+c\,x^{2n}\right)^{p}}{m+2n\,p+1}}\,+\,{\frac {n\,p\,x^{m+1}\left(2a+b\,x^{n}\right)\left(a+b\,x^{n}+c\,x^{2n}\right)^{p-1}}{(m+2n\,p+1)(m+n(2p-1)+1)}}\,+\,{\frac {2a\,n^{2}p(2p-1)}{(m+2n\,p+1)(m+n(2p-1)+1)}}\int x^{m}\left(a+b\,x^{n}+c\,x^{2n}\right)^{p-1}dx}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>∫<!-- ∫ --></mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> <msup> <mrow> <mo>(</mo> <mrow> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>+</mo> <mi>c</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>n</mi> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <mi>d</mi> <mi>x</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> <msup> <mrow> <mo>(</mo> <mrow> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>+</mo> <mi>c</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>n</mi> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> </mrow> <mrow> <mi>m</mi> <mo>+</mo> <mn>2</mn> <mi>n</mi> <mspace width="thinmathspace" /> <mi>p</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> </mrow> <mspace width="thinmathspace" /> <mo>+</mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>n</mi> <mspace width="thinmathspace" /> <mi>p</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> <mrow> <mo>(</mo> <mrow> <mn>2</mn> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <msup> <mrow> <mo>(</mo> <mrow> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>+</mo> <mi>c</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>n</mi> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> </mrow> <mrow> <mo stretchy="false">(</mo> <mi>m</mi> <mo>+</mo> <mn>2</mn> <mi>n</mi> <mspace width="thinmathspace" /> <mi>p</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>m</mi> <mo>+</mo> <mi>n</mi> <mo stretchy="false">(</mo> <mn>2</mn> <mi>p</mi> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mspace width="thinmathspace" /> <mo>+</mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>2</mn> <mi>a</mi> <mspace width="thinmathspace" /> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi>p</mi> <mo stretchy="false">(</mo> <mn>2</mn> <mi>p</mi> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> <mrow> <mo stretchy="false">(</mo> <mi>m</mi> <mo>+</mo> <mn>2</mn> <mi>n</mi> <mspace width="thinmathspace" /> <mi>p</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>m</mi> <mo>+</mo> <mi>n</mi> <mo stretchy="false">(</mo> <mn>2</mn> <mi>p</mi> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mo>∫<!-- ∫ --></mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> <msup> <mrow> <mo>(</mo> <mrow> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>+</mo> <mi>c</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>n</mi> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mi>d</mi> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int x^{m}\left(a+b\,x^{n}+c\,x^{2n}\right)^{p}dx={\frac {x^{m+1}\left(a+b\,x^{n}+c\,x^{2n}\right)^{p}}{m+2n\,p+1}}\,+\,{\frac {n\,p\,x^{m+1}\left(2a+b\,x^{n}\right)\left(a+b\,x^{n}+c\,x^{2n}\right)^{p-1}}{(m+2n\,p+1)(m+n(2p-1)+1)}}\,+\,{\frac {2a\,n^{2}p(2p-1)}{(m+2n\,p+1)(m+n(2p-1)+1)}}\int x^{m}\left(a+b\,x^{n}+c\,x^{2n}\right)^{p-1}dx}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f56db1ed0a596ae938014d966e70cec21caf6147" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:169.208ex; height:7.343ex;" alt="{\displaystyle \int x^{m}\left(a+b\,x^{n}+c\,x^{2n}\right)^{p}dx={\frac {x^{m+1}\left(a+b\,x^{n}+c\,x^{2n}\right)^{p}}{m+2n\,p+1}}\,+\,{\frac {n\,p\,x^{m+1}\left(2a+b\,x^{n}\right)\left(a+b\,x^{n}+c\,x^{2n}\right)^{p-1}}{(m+2n\,p+1)(m+n(2p-1)+1)}}\,+\,{\frac {2a\,n^{2}p(2p-1)}{(m+2n\,p+1)(m+n(2p-1)+1)}}\int x^{m}\left(a+b\,x^{n}+c\,x^{2n}\right)^{p-1}dx}"></span></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int x^{m}\left(a+b\,x^{n}+c\,x^{2n}\right)^{p}dx=-{\frac {(m+n+2n\,p+1)x^{m+1}\left(a+b\,x^{n}+c\,x^{2n}\right)^{p+1}}{2a\,n^{2}(p+1)(2p+1)}}\,-\,{\frac {x^{m+1}\left(2a+b\,x^{n}\right)\left(a+b\,x^{n}+c\,x^{2n}\right)^{p}}{2a\,n(2p+1)}}\,+\,{\frac {(m+n(2p+1)+1)(m+2n(p+1)+1)}{2a\,n^{2}(p+1)(2p+1)}}\int x^{m}\left(a+b\,x^{n}+c\,x^{2n}\right)^{p+1}dx}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>∫<!-- ∫ --></mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> <msup> <mrow> <mo>(</mo> <mrow> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>+</mo> <mi>c</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>n</mi> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <mi>d</mi> <mi>x</mi> <mo>=</mo> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mi>m</mi> <mo>+</mo> <mi>n</mi> <mo>+</mo> <mn>2</mn> <mi>n</mi> <mspace width="thinmathspace" /> <mi>p</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> <msup> <mrow> <mo>(</mo> <mrow> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>+</mo> <mi>c</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>n</mi> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> </mrow> <mrow> <mn>2</mn> <mi>a</mi> <mspace width="thinmathspace" /> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mi>p</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mn>2</mn> <mi>p</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mspace width="thinmathspace" /> <mo>−<!-- − --></mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> <mrow> <mo>(</mo> <mrow> <mn>2</mn> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <msup> <mrow> <mo>(</mo> <mrow> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>+</mo> <mi>c</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>n</mi> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> </mrow> <mrow> <mn>2</mn> <mi>a</mi> <mspace width="thinmathspace" /> <mi>n</mi> <mo stretchy="false">(</mo> <mn>2</mn> <mi>p</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mspace width="thinmathspace" /> <mo>+</mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mi>m</mi> <mo>+</mo> <mi>n</mi> <mo stretchy="false">(</mo> <mn>2</mn> <mi>p</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>m</mi> <mo>+</mo> <mn>2</mn> <mi>n</mi> <mo stretchy="false">(</mo> <mi>p</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> <mrow> <mn>2</mn> <mi>a</mi> <mspace width="thinmathspace" /> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mi>p</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mn>2</mn> <mi>p</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mo>∫<!-- ∫ --></mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> <msup> <mrow> <mo>(</mo> <mrow> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>+</mo> <mi>c</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>n</mi> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> <mi>d</mi> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int x^{m}\left(a+b\,x^{n}+c\,x^{2n}\right)^{p}dx=-{\frac {(m+n+2n\,p+1)x^{m+1}\left(a+b\,x^{n}+c\,x^{2n}\right)^{p+1}}{2a\,n^{2}(p+1)(2p+1)}}\,-\,{\frac {x^{m+1}\left(2a+b\,x^{n}\right)\left(a+b\,x^{n}+c\,x^{2n}\right)^{p}}{2a\,n(2p+1)}}\,+\,{\frac {(m+n(2p+1)+1)(m+2n(p+1)+1)}{2a\,n^{2}(p+1)(2p+1)}}\int x^{m}\left(a+b\,x^{n}+c\,x^{2n}\right)^{p+1}dx}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/38eababe79b99a4cd22d8a14cd9c524f14bd2c1d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:192.145ex; height:7.343ex;" alt="{\displaystyle \int x^{m}\left(a+b\,x^{n}+c\,x^{2n}\right)^{p}dx=-{\frac {(m+n+2n\,p+1)x^{m+1}\left(a+b\,x^{n}+c\,x^{2n}\right)^{p+1}}{2a\,n^{2}(p+1)(2p+1)}}\,-\,{\frac {x^{m+1}\left(2a+b\,x^{n}\right)\left(a+b\,x^{n}+c\,x^{2n}\right)^{p}}{2a\,n(2p+1)}}\,+\,{\frac {(m+n(2p+1)+1)(m+2n(p+1)+1)}{2a\,n^{2}(p+1)(2p+1)}}\int x^{m}\left(a+b\,x^{n}+c\,x^{2n}\right)^{p+1}dx}"></span></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int x^{m}\left(a+b\,x^{n}+c\,x^{2n}\right)^{p}dx={\frac {x^{m-n+1}\left(b+2c\,x^{n}\right)\left(a+b\,x^{n}+c\,x^{2n}\right)^{p}}{2c(m+2n\,p+1)}}\,-\,{\frac {b(m-n+1)}{2c(m+2n\,p+1)}}\int x^{m-n}\left(a+b\,x^{n}+c\,x^{2n}\right)^{p}dx}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>∫<!-- ∫ --></mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> <msup> <mrow> <mo>(</mo> <mrow> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>+</mo> <mi>c</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>n</mi> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <mi>d</mi> <mi>x</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>−<!-- − --></mo> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> <mrow> <mo>(</mo> <mrow> <mi>b</mi> <mo>+</mo> <mn>2</mn> <mi>c</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <msup> <mrow> <mo>(</mo> <mrow> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>+</mo> <mi>c</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>n</mi> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> </mrow> <mrow> <mn>2</mn> <mi>c</mi> <mo stretchy="false">(</mo> <mi>m</mi> <mo>+</mo> <mn>2</mn> <mi>n</mi> <mspace width="thinmathspace" /> <mi>p</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mspace width="thinmathspace" /> <mo>−<!-- − --></mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>b</mi> <mo stretchy="false">(</mo> <mi>m</mi> <mo>−<!-- − --></mo> <mi>n</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> <mrow> <mn>2</mn> <mi>c</mi> <mo stretchy="false">(</mo> <mi>m</mi> <mo>+</mo> <mn>2</mn> <mi>n</mi> <mspace width="thinmathspace" /> <mi>p</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mo>∫<!-- ∫ --></mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>−<!-- − --></mo> <mi>n</mi> </mrow> </msup> <msup> <mrow> <mo>(</mo> <mrow> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>+</mo> <mi>c</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>n</mi> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <mi>d</mi> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int x^{m}\left(a+b\,x^{n}+c\,x^{2n}\right)^{p}dx={\frac {x^{m-n+1}\left(b+2c\,x^{n}\right)\left(a+b\,x^{n}+c\,x^{2n}\right)^{p}}{2c(m+2n\,p+1)}}\,-\,{\frac {b(m-n+1)}{2c(m+2n\,p+1)}}\int x^{m-n}\left(a+b\,x^{n}+c\,x^{2n}\right)^{p}dx}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/25d28b779eace5a71ad73fb2672f516197d71004" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:119.561ex; height:7.009ex;" alt="{\displaystyle \int x^{m}\left(a+b\,x^{n}+c\,x^{2n}\right)^{p}dx={\frac {x^{m-n+1}\left(b+2c\,x^{n}\right)\left(a+b\,x^{n}+c\,x^{2n}\right)^{p}}{2c(m+2n\,p+1)}}\,-\,{\frac {b(m-n+1)}{2c(m+2n\,p+1)}}\int x^{m-n}\left(a+b\,x^{n}+c\,x^{2n}\right)^{p}dx}"></span></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int x^{m}\left(a+b\,x^{n}+c\,x^{2n}\right)^{p}dx={\frac {x^{m+1}\left(b+2c\,x^{n}\right)\left(a+b\,x^{n}+c\,x^{2n}\right)^{p}}{b(m+1)}}\,-\,{\frac {2c(m+n(2p+1)+1)}{b(m+1)}}\int x^{m+n}\left(a+b\,x^{n}+c\,x^{2n}\right)^{p}dx}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>∫<!-- ∫ --></mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> <msup> <mrow> <mo>(</mo> <mrow> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>+</mo> <mi>c</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>n</mi> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <mi>d</mi> <mi>x</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> <mrow> <mo>(</mo> <mrow> <mi>b</mi> <mo>+</mo> <mn>2</mn> <mi>c</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <msup> <mrow> <mo>(</mo> <mrow> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>+</mo> <mi>c</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>n</mi> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> </mrow> <mrow> <mi>b</mi> <mo stretchy="false">(</mo> <mi>m</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mspace width="thinmathspace" /> <mo>−<!-- − --></mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>2</mn> <mi>c</mi> <mo stretchy="false">(</mo> <mi>m</mi> <mo>+</mo> <mi>n</mi> <mo stretchy="false">(</mo> <mn>2</mn> <mi>p</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>b</mi> <mo stretchy="false">(</mo> <mi>m</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mo>∫<!-- ∫ --></mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>+</mo> <mi>n</mi> </mrow> </msup> <msup> <mrow> <mo>(</mo> <mrow> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>+</mo> <mi>c</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>n</mi> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <mi>d</mi> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int x^{m}\left(a+b\,x^{n}+c\,x^{2n}\right)^{p}dx={\frac {x^{m+1}\left(b+2c\,x^{n}\right)\left(a+b\,x^{n}+c\,x^{2n}\right)^{p}}{b(m+1)}}\,-\,{\frac {2c(m+n(2p+1)+1)}{b(m+1)}}\int x^{m+n}\left(a+b\,x^{n}+c\,x^{2n}\right)^{p}dx}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/08f3bc0cc9c22df9b31c927fae0a91b906d41216" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:122.721ex; height:7.009ex;" alt="{\displaystyle \int x^{m}\left(a+b\,x^{n}+c\,x^{2n}\right)^{p}dx={\frac {x^{m+1}\left(b+2c\,x^{n}\right)\left(a+b\,x^{n}+c\,x^{2n}\right)^{p}}{b(m+1)}}\,-\,{\frac {2c(m+n(2p+1)+1)}{b(m+1)}}\int x^{m+n}\left(a+b\,x^{n}+c\,x^{2n}\right)^{p}dx}"></span></li></ul> </div> <div class="mw-heading mw-heading2"><h2 id="Integrands_of_the_form_xm_(A_+_B_xn)_(a_+_b_xn_+_c_x2n)p"><span id="Integrands_of_the_form_xm_.28A_.2B_B_xn.29_.28a_.2B_b_xn_.2B_c_x2n.29p"></span>Integrands of the form <i>x</i><sup><i>m</i></sup> (<i>A</i> + <i>B x</i><sup><i>n</i></sup>) (<i>a</i> + <i>b x</i><sup><i>n</i></sup> + <i>c x</i><sup>2<i>n</i></sup>)<sup><i>p</i></sup></h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=List_of_integrals_of_rational_functions&action=edit&section=10" title="Edit section: Integrands of the form xm (A + B xn) (a + b xn + c x2n)p"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li>The resulting integrands are of the same form as the original integrand, so these reduction formulas can be repeatedly applied to drive the exponents <i>m</i> and <i>p</i> toward 0.</li> <li>These reduction formulas can be used for integrands having integer and/or fractional exponents.</li> <li>Special cases of these reductions formulas can be used for integrands of the form <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left(a+b\,x^{n}+c\,x^{2n}\right)^{p}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow> <mo>(</mo> <mrow> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>+</mo> <mi>c</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>n</mi> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left(a+b\,x^{n}+c\,x^{2n}\right)^{p}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/938b6cfdb80a7b69236ce84ddbb3550e6a66bd82" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:18.796ex; height:3.343ex;" alt="{\displaystyle \left(a+b\,x^{n}+c\,x^{2n}\right)^{p}}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x^{m}\left(a+b\,x^{n}+c\,x^{2n}\right)^{p}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> <msup> <mrow> <mo>(</mo> <mrow> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>+</mo> <mi>c</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>n</mi> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x^{m}\left(a+b\,x^{n}+c\,x^{2n}\right)^{p}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/96bfeb33b3783b184b48318193b760fc16bfcd63" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:21.801ex; height:3.343ex;" alt="{\displaystyle x^{m}\left(a+b\,x^{n}+c\,x^{2n}\right)^{p}}"></span> by setting <i>m</i> and/or <i>B</i> to 0.</li></ul> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1126788409"><div class="plainlist" style="margin-left: 1.6em;"> <ul><li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}&\int x^{m}\left(A+B\,x^{n}\right)\left(a+b\,x^{n}+c\,x^{2n}\right)^{p}dx={\frac {x^{m+1}\left(A(m+n(2p+1)+1)+B(m+1)x^{n}\right)\left(a+b\,x^{n}+c\,x^{2n}\right)^{p}}{(m+1)(m+n(2p+1)+1)}}\,+\,{\frac {n\,p}{(m+1)(m+n(2p+1)+1)}}\,\cdot \\&\qquad \int x^{m+n}\left(2a\,B(m+1)-A\,b(m+n(2p+1)+1)+(b\,B(m+1)-2\,A\,c(m+n(2p+1)+1))x^{n}\right)\left(a+b\,x^{n}+c\,x^{2n}\right)^{p-1}dx\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd /> <mtd> <mi></mi> <mo>∫<!-- ∫ --></mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> <mrow> <mo>(</mo> <mrow> <mi>A</mi> <mo>+</mo> <mi>B</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <msup> <mrow> <mo>(</mo> <mrow> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>+</mo> <mi>c</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>n</mi> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <mi>d</mi> <mi>x</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> <mrow> <mo>(</mo> <mrow> <mi>A</mi> <mo stretchy="false">(</mo> <mi>m</mi> <mo>+</mo> <mi>n</mi> <mo stretchy="false">(</mo> <mn>2</mn> <mi>p</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>+</mo> <mi>B</mi> <mo stretchy="false">(</mo> <mi>m</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <msup> <mrow> <mo>(</mo> <mrow> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>+</mo> <mi>c</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>n</mi> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> </mrow> <mrow> <mo stretchy="false">(</mo> <mi>m</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>m</mi> <mo>+</mo> <mi>n</mi> <mo stretchy="false">(</mo> <mn>2</mn> <mi>p</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mspace width="thinmathspace" /> <mo>+</mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>n</mi> <mspace width="thinmathspace" /> <mi>p</mi> </mrow> <mrow> <mo stretchy="false">(</mo> <mi>m</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>m</mi> <mo>+</mo> <mi>n</mi> <mo stretchy="false">(</mo> <mn>2</mn> <mi>p</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mspace width="thinmathspace" /> <mo>⋅<!-- ⋅ --></mo> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mspace width="2em" /> <mo>∫<!-- ∫ --></mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>+</mo> <mi>n</mi> </mrow> </msup> <mrow> <mo>(</mo> <mrow> <mn>2</mn> <mi>a</mi> <mspace width="thinmathspace" /> <mi>B</mi> <mo stretchy="false">(</mo> <mi>m</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <mi>A</mi> <mspace width="thinmathspace" /> <mi>b</mi> <mo stretchy="false">(</mo> <mi>m</mi> <mo>+</mo> <mi>n</mi> <mo stretchy="false">(</mo> <mn>2</mn> <mi>p</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>+</mo> <mo stretchy="false">(</mo> <mi>b</mi> <mspace width="thinmathspace" /> <mi>B</mi> <mo stretchy="false">(</mo> <mi>m</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <mn>2</mn> <mspace width="thinmathspace" /> <mi>A</mi> <mspace width="thinmathspace" /> <mi>c</mi> <mo stretchy="false">(</mo> <mi>m</mi> <mo>+</mo> <mi>n</mi> <mo stretchy="false">(</mo> <mn>2</mn> <mi>p</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <msup> <mrow> <mo>(</mo> <mrow> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>+</mo> <mi>c</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>n</mi> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mi>d</mi> <mi>x</mi> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}&\int x^{m}\left(A+B\,x^{n}\right)\left(a+b\,x^{n}+c\,x^{2n}\right)^{p}dx={\frac {x^{m+1}\left(A(m+n(2p+1)+1)+B(m+1)x^{n}\right)\left(a+b\,x^{n}+c\,x^{2n}\right)^{p}}{(m+1)(m+n(2p+1)+1)}}\,+\,{\frac {n\,p}{(m+1)(m+n(2p+1)+1)}}\,\cdot \\&\qquad \int x^{m+n}\left(2a\,B(m+1)-A\,b(m+n(2p+1)+1)+(b\,B(m+1)-2\,A\,c(m+n(2p+1)+1))x^{n}\right)\left(a+b\,x^{n}+c\,x^{2n}\right)^{p-1}dx\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ea81d2fb0c4d264a7382e987e7f0e5f4be69c556" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -5.838ex; width:140.901ex; height:12.843ex;" alt="{\displaystyle {\begin{aligned}&\int x^{m}\left(A+B\,x^{n}\right)\left(a+b\,x^{n}+c\,x^{2n}\right)^{p}dx={\frac {x^{m+1}\left(A(m+n(2p+1)+1)+B(m+1)x^{n}\right)\left(a+b\,x^{n}+c\,x^{2n}\right)^{p}}{(m+1)(m+n(2p+1)+1)}}\,+\,{\frac {n\,p}{(m+1)(m+n(2p+1)+1)}}\,\cdot \\&\qquad \int x^{m+n}\left(2a\,B(m+1)-A\,b(m+n(2p+1)+1)+(b\,B(m+1)-2\,A\,c(m+n(2p+1)+1))x^{n}\right)\left(a+b\,x^{n}+c\,x^{2n}\right)^{p-1}dx\end{aligned}}}"></span></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}&\int x^{m}\left(A+B\,x^{n}\right)\left(a+b\,x^{n}+c\,x^{2n}\right)^{p}dx={\frac {x^{m-n+1}\left(A\,b-2a\,B-(b\,B-2A\,c)x^{n}\right)\left(a+b\,x^{n}+c\,x^{2n}\right)^{p+1}}{n(p+1)\left(b^{2}-4a\,c\right)}}\,+\,{\frac {1}{n(p+1)\left(b^{2}-4a\,c\right)}}\,\cdot \\&\qquad \int x^{m-n}\left((m-n+1)(2a\,B-A\,b)+(m+2n(p+1)+1)(b\,B-2A\,c)x^{n}\right)\left(a+b\,x^{n}+c\,x^{2n}\right)^{p+1}dx\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd /> <mtd> <mi></mi> <mo>∫<!-- ∫ --></mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> <mrow> <mo>(</mo> <mrow> <mi>A</mi> <mo>+</mo> <mi>B</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <msup> <mrow> <mo>(</mo> <mrow> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>+</mo> <mi>c</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>n</mi> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <mi>d</mi> <mi>x</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>−<!-- − --></mo> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> <mrow> <mo>(</mo> <mrow> <mi>A</mi> <mspace width="thinmathspace" /> <mi>b</mi> <mo>−<!-- − --></mo> <mn>2</mn> <mi>a</mi> <mspace width="thinmathspace" /> <mi>B</mi> <mo>−<!-- − --></mo> <mo stretchy="false">(</mo> <mi>b</mi> <mspace width="thinmathspace" /> <mi>B</mi> <mo>−<!-- − --></mo> <mn>2</mn> <mi>A</mi> <mspace width="thinmathspace" /> <mi>c</mi> <mo stretchy="false">)</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <msup> <mrow> <mo>(</mo> <mrow> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>+</mo> <mi>c</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>n</mi> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> </mrow> <mrow> <mi>n</mi> <mo stretchy="false">(</mo> <mi>p</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mrow> <mo>(</mo> <mrow> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>−<!-- − --></mo> <mn>4</mn> <mi>a</mi> <mspace width="thinmathspace" /> <mi>c</mi> </mrow> <mo>)</mo> </mrow> </mrow> </mfrac> </mrow> <mspace width="thinmathspace" /> <mo>+</mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi>n</mi> <mo stretchy="false">(</mo> <mi>p</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mrow> <mo>(</mo> <mrow> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>−<!-- − --></mo> <mn>4</mn> <mi>a</mi> <mspace width="thinmathspace" /> <mi>c</mi> </mrow> <mo>)</mo> </mrow> </mrow> </mfrac> </mrow> <mspace width="thinmathspace" /> <mo>⋅<!-- ⋅ --></mo> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mspace width="2em" /> <mo>∫<!-- ∫ --></mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>−<!-- − --></mo> <mi>n</mi> </mrow> </msup> <mrow> <mo>(</mo> <mrow> <mo stretchy="false">(</mo> <mi>m</mi> <mo>−<!-- − --></mo> <mi>n</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mn>2</mn> <mi>a</mi> <mspace width="thinmathspace" /> <mi>B</mi> <mo>−<!-- − --></mo> <mi>A</mi> <mspace width="thinmathspace" /> <mi>b</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mo stretchy="false">(</mo> <mi>m</mi> <mo>+</mo> <mn>2</mn> <mi>n</mi> <mo stretchy="false">(</mo> <mi>p</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>b</mi> <mspace width="thinmathspace" /> <mi>B</mi> <mo>−<!-- − --></mo> <mn>2</mn> <mi>A</mi> <mspace width="thinmathspace" /> <mi>c</mi> <mo stretchy="false">)</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <msup> <mrow> <mo>(</mo> <mrow> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>+</mo> <mi>c</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>n</mi> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> <mi>d</mi> <mi>x</mi> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}&\int x^{m}\left(A+B\,x^{n}\right)\left(a+b\,x^{n}+c\,x^{2n}\right)^{p}dx={\frac {x^{m-n+1}\left(A\,b-2a\,B-(b\,B-2A\,c)x^{n}\right)\left(a+b\,x^{n}+c\,x^{2n}\right)^{p+1}}{n(p+1)\left(b^{2}-4a\,c\right)}}\,+\,{\frac {1}{n(p+1)\left(b^{2}-4a\,c\right)}}\,\cdot \\&\qquad \int x^{m-n}\left((m-n+1)(2a\,B-A\,b)+(m+2n(p+1)+1)(b\,B-2A\,c)x^{n}\right)\left(a+b\,x^{n}+c\,x^{2n}\right)^{p+1}dx\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/705cc3ecfaeec2f85d5a019ed635bad265ffd03c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -6.005ex; width:127.451ex; height:13.176ex;" alt="{\displaystyle {\begin{aligned}&\int x^{m}\left(A+B\,x^{n}\right)\left(a+b\,x^{n}+c\,x^{2n}\right)^{p}dx={\frac {x^{m-n+1}\left(A\,b-2a\,B-(b\,B-2A\,c)x^{n}\right)\left(a+b\,x^{n}+c\,x^{2n}\right)^{p+1}}{n(p+1)\left(b^{2}-4a\,c\right)}}\,+\,{\frac {1}{n(p+1)\left(b^{2}-4a\,c\right)}}\,\cdot \\&\qquad \int x^{m-n}\left((m-n+1)(2a\,B-A\,b)+(m+2n(p+1)+1)(b\,B-2A\,c)x^{n}\right)\left(a+b\,x^{n}+c\,x^{2n}\right)^{p+1}dx\end{aligned}}}"></span></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}&\int x^{m}\left(A+B\,x^{n}\right)\left(a+b\,x^{n}+c\,x^{2n}\right)^{p}dx={\frac {x^{m+1}\left(b\,B\,n\,p+A\,c(m+n(2p+1)+1)+B\,c(m+2n\,p+1)x^{n}\right)\left(a+b\,x^{n}+c\,x^{2n}\right)^{p}}{c(m+2n\,p+1)(m+n(2p+1)+1)}}\,+\,{\frac {n\,p}{c(m+2n\,p+1)(m+n(2p+1)+1)}}\,\cdot \\&\qquad \int x^{m}\left(2a\,A\,c(m+n(2p+1)+1)-a\,b\,B(m+1)+\left(2a\,B\,c(m+2n\,p+1)+A\,b\,c(m+n(2p+1)+1)-b^{2}B(m+n\,p+1)\right)x^{n}\right)\left(a+b\,x^{n}+c\,x^{2n}\right)^{p-1}dx\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd /> <mtd> <mi></mi> <mo>∫<!-- ∫ --></mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> <mrow> <mo>(</mo> <mrow> <mi>A</mi> <mo>+</mo> <mi>B</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <msup> <mrow> <mo>(</mo> <mrow> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>+</mo> <mi>c</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>n</mi> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <mi>d</mi> <mi>x</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> <mrow> <mo>(</mo> <mrow> <mi>b</mi> <mspace width="thinmathspace" /> <mi>B</mi> <mspace width="thinmathspace" /> <mi>n</mi> <mspace width="thinmathspace" /> <mi>p</mi> <mo>+</mo> <mi>A</mi> <mspace width="thinmathspace" /> <mi>c</mi> <mo stretchy="false">(</mo> <mi>m</mi> <mo>+</mo> <mi>n</mi> <mo stretchy="false">(</mo> <mn>2</mn> <mi>p</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>+</mo> <mi>B</mi> <mspace width="thinmathspace" /> <mi>c</mi> <mo stretchy="false">(</mo> <mi>m</mi> <mo>+</mo> <mn>2</mn> <mi>n</mi> <mspace width="thinmathspace" /> <mi>p</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <msup> <mrow> <mo>(</mo> <mrow> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>+</mo> <mi>c</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>n</mi> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> </mrow> <mrow> <mi>c</mi> <mo stretchy="false">(</mo> <mi>m</mi> <mo>+</mo> <mn>2</mn> <mi>n</mi> <mspace width="thinmathspace" /> <mi>p</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>m</mi> <mo>+</mo> <mi>n</mi> <mo stretchy="false">(</mo> <mn>2</mn> <mi>p</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mspace width="thinmathspace" /> <mo>+</mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>n</mi> <mspace width="thinmathspace" /> <mi>p</mi> </mrow> <mrow> <mi>c</mi> <mo stretchy="false">(</mo> <mi>m</mi> <mo>+</mo> <mn>2</mn> <mi>n</mi> <mspace width="thinmathspace" /> <mi>p</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>m</mi> <mo>+</mo> <mi>n</mi> <mo stretchy="false">(</mo> <mn>2</mn> <mi>p</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mspace width="thinmathspace" /> <mo>⋅<!-- ⋅ --></mo> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mspace width="2em" /> <mo>∫<!-- ∫ --></mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> <mrow> <mo>(</mo> <mrow> <mn>2</mn> <mi>a</mi> <mspace width="thinmathspace" /> <mi>A</mi> <mspace width="thinmathspace" /> <mi>c</mi> <mo stretchy="false">(</mo> <mi>m</mi> <mo>+</mo> <mi>n</mi> <mo stretchy="false">(</mo> <mn>2</mn> <mi>p</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <mi>a</mi> <mspace width="thinmathspace" /> <mi>b</mi> <mspace width="thinmathspace" /> <mi>B</mi> <mo stretchy="false">(</mo> <mi>m</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>+</mo> <mrow> <mo>(</mo> <mrow> <mn>2</mn> <mi>a</mi> <mspace width="thinmathspace" /> <mi>B</mi> <mspace width="thinmathspace" /> <mi>c</mi> <mo stretchy="false">(</mo> <mi>m</mi> <mo>+</mo> <mn>2</mn> <mi>n</mi> <mspace width="thinmathspace" /> <mi>p</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>+</mo> <mi>A</mi> <mspace width="thinmathspace" /> <mi>b</mi> <mspace width="thinmathspace" /> <mi>c</mi> <mo stretchy="false">(</mo> <mi>m</mi> <mo>+</mo> <mi>n</mi> <mo stretchy="false">(</mo> <mn>2</mn> <mi>p</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi>B</mi> <mo stretchy="false">(</mo> <mi>m</mi> <mo>+</mo> <mi>n</mi> <mspace width="thinmathspace" /> <mi>p</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> <mo>)</mo> </mrow> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <msup> <mrow> <mo>(</mo> <mrow> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>+</mo> <mi>c</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>n</mi> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mi>d</mi> <mi>x</mi> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}&\int x^{m}\left(A+B\,x^{n}\right)\left(a+b\,x^{n}+c\,x^{2n}\right)^{p}dx={\frac {x^{m+1}\left(b\,B\,n\,p+A\,c(m+n(2p+1)+1)+B\,c(m+2n\,p+1)x^{n}\right)\left(a+b\,x^{n}+c\,x^{2n}\right)^{p}}{c(m+2n\,p+1)(m+n(2p+1)+1)}}\,+\,{\frac {n\,p}{c(m+2n\,p+1)(m+n(2p+1)+1)}}\,\cdot \\&\qquad \int x^{m}\left(2a\,A\,c(m+n(2p+1)+1)-a\,b\,B(m+1)+\left(2a\,B\,c(m+2n\,p+1)+A\,b\,c(m+n(2p+1)+1)-b^{2}B(m+n\,p+1)\right)x^{n}\right)\left(a+b\,x^{n}+c\,x^{2n}\right)^{p-1}dx\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bb90ba92d73dfd52ad585180d75324bdfa970525" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -5.838ex; width:167.931ex; height:12.843ex;" alt="{\displaystyle {\begin{aligned}&\int x^{m}\left(A+B\,x^{n}\right)\left(a+b\,x^{n}+c\,x^{2n}\right)^{p}dx={\frac {x^{m+1}\left(b\,B\,n\,p+A\,c(m+n(2p+1)+1)+B\,c(m+2n\,p+1)x^{n}\right)\left(a+b\,x^{n}+c\,x^{2n}\right)^{p}}{c(m+2n\,p+1)(m+n(2p+1)+1)}}\,+\,{\frac {n\,p}{c(m+2n\,p+1)(m+n(2p+1)+1)}}\,\cdot \\&\qquad \int x^{m}\left(2a\,A\,c(m+n(2p+1)+1)-a\,b\,B(m+1)+\left(2a\,B\,c(m+2n\,p+1)+A\,b\,c(m+n(2p+1)+1)-b^{2}B(m+n\,p+1)\right)x^{n}\right)\left(a+b\,x^{n}+c\,x^{2n}\right)^{p-1}dx\end{aligned}}}"></span></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}&\int x^{m}\left(A+B\,x^{n}\right)\left(a+b\,x^{n}+c\,x^{2n}\right)^{p}dx=-{\frac {x^{m+1}\left(A\,b^{2}-a\,b\,B-2a\,A\,c+(A\,b-2a\,B)c\,x^{n}\right)\left(a+b\,x^{n}+c\,x^{2n}\right)^{p+1}}{a\,n(p+1)\left(b^{2}-4a\,c\right)}}\,+\,{\frac {1}{a\,n(p+1)\left(b^{2}-4a\,c\right)}}\,\cdot \\&\qquad \int x^{m}\left((m+n(p+1)+1)A\,b^{2}-a\,b\,B(m+1)-2(m+2n(p+1)+1)a\,A\,c+(m+n(2p+3)+1)(A\,b-2a\,B)c\,x^{n}\right)\left(a+b\,x^{n}+c\,x^{2n}\right)^{p+1}dx\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd /> <mtd> <mi></mi> <mo>∫<!-- ∫ --></mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> <mrow> <mo>(</mo> <mrow> <mi>A</mi> <mo>+</mo> <mi>B</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <msup> <mrow> <mo>(</mo> <mrow> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>+</mo> <mi>c</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>n</mi> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <mi>d</mi> <mi>x</mi> <mo>=</mo> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> <mrow> <mo>(</mo> <mrow> <mi>A</mi> <mspace width="thinmathspace" /> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>−<!-- − --></mo> <mi>a</mi> <mspace width="thinmathspace" /> <mi>b</mi> <mspace width="thinmathspace" /> <mi>B</mi> <mo>−<!-- − --></mo> <mn>2</mn> <mi>a</mi> <mspace width="thinmathspace" /> <mi>A</mi> <mspace width="thinmathspace" /> <mi>c</mi> <mo>+</mo> <mo stretchy="false">(</mo> <mi>A</mi> <mspace width="thinmathspace" /> <mi>b</mi> <mo>−<!-- − --></mo> <mn>2</mn> <mi>a</mi> <mspace width="thinmathspace" /> <mi>B</mi> <mo stretchy="false">)</mo> <mi>c</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <msup> <mrow> <mo>(</mo> <mrow> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>+</mo> <mi>c</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>n</mi> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> </mrow> <mrow> <mi>a</mi> <mspace width="thinmathspace" /> <mi>n</mi> <mo stretchy="false">(</mo> <mi>p</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mrow> <mo>(</mo> <mrow> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>−<!-- − --></mo> <mn>4</mn> <mi>a</mi> <mspace width="thinmathspace" /> <mi>c</mi> </mrow> <mo>)</mo> </mrow> </mrow> </mfrac> </mrow> <mspace width="thinmathspace" /> <mo>+</mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi>a</mi> <mspace width="thinmathspace" /> <mi>n</mi> <mo stretchy="false">(</mo> <mi>p</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mrow> <mo>(</mo> <mrow> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>−<!-- − --></mo> <mn>4</mn> <mi>a</mi> <mspace width="thinmathspace" /> <mi>c</mi> </mrow> <mo>)</mo> </mrow> </mrow> </mfrac> </mrow> <mspace width="thinmathspace" /> <mo>⋅<!-- ⋅ --></mo> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mspace width="2em" /> <mo>∫<!-- ∫ --></mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> <mrow> <mo>(</mo> <mrow> <mo stretchy="false">(</mo> <mi>m</mi> <mo>+</mo> <mi>n</mi> <mo stretchy="false">(</mo> <mi>p</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mi>A</mi> <mspace width="thinmathspace" /> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>−<!-- − --></mo> <mi>a</mi> <mspace width="thinmathspace" /> <mi>b</mi> <mspace width="thinmathspace" /> <mi>B</mi> <mo stretchy="false">(</mo> <mi>m</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <mn>2</mn> <mo stretchy="false">(</mo> <mi>m</mi> <mo>+</mo> <mn>2</mn> <mi>n</mi> <mo stretchy="false">(</mo> <mi>p</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mi>a</mi> <mspace width="thinmathspace" /> <mi>A</mi> <mspace width="thinmathspace" /> <mi>c</mi> <mo>+</mo> <mo stretchy="false">(</mo> <mi>m</mi> <mo>+</mo> <mi>n</mi> <mo stretchy="false">(</mo> <mn>2</mn> <mi>p</mi> <mo>+</mo> <mn>3</mn> <mo stretchy="false">)</mo> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>A</mi> <mspace width="thinmathspace" /> <mi>b</mi> <mo>−<!-- − --></mo> <mn>2</mn> <mi>a</mi> <mspace width="thinmathspace" /> <mi>B</mi> <mo stretchy="false">)</mo> <mi>c</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <msup> <mrow> <mo>(</mo> <mrow> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>+</mo> <mi>c</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>n</mi> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> <mi>d</mi> <mi>x</mi> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}&\int x^{m}\left(A+B\,x^{n}\right)\left(a+b\,x^{n}+c\,x^{2n}\right)^{p}dx=-{\frac {x^{m+1}\left(A\,b^{2}-a\,b\,B-2a\,A\,c+(A\,b-2a\,B)c\,x^{n}\right)\left(a+b\,x^{n}+c\,x^{2n}\right)^{p+1}}{a\,n(p+1)\left(b^{2}-4a\,c\right)}}\,+\,{\frac {1}{a\,n(p+1)\left(b^{2}-4a\,c\right)}}\,\cdot \\&\qquad \int x^{m}\left((m+n(p+1)+1)A\,b^{2}-a\,b\,B(m+1)-2(m+2n(p+1)+1)a\,A\,c+(m+n(2p+3)+1)(A\,b-2a\,B)c\,x^{n}\right)\left(a+b\,x^{n}+c\,x^{2n}\right)^{p+1}dx\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6fa5c5301bea384110229218bf5a9be1713db74b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -6.005ex; width:144.749ex; height:13.176ex;" alt="{\displaystyle {\begin{aligned}&\int x^{m}\left(A+B\,x^{n}\right)\left(a+b\,x^{n}+c\,x^{2n}\right)^{p}dx=-{\frac {x^{m+1}\left(A\,b^{2}-a\,b\,B-2a\,A\,c+(A\,b-2a\,B)c\,x^{n}\right)\left(a+b\,x^{n}+c\,x^{2n}\right)^{p+1}}{a\,n(p+1)\left(b^{2}-4a\,c\right)}}\,+\,{\frac {1}{a\,n(p+1)\left(b^{2}-4a\,c\right)}}\,\cdot \\&\qquad \int x^{m}\left((m+n(p+1)+1)A\,b^{2}-a\,b\,B(m+1)-2(m+2n(p+1)+1)a\,A\,c+(m+n(2p+3)+1)(A\,b-2a\,B)c\,x^{n}\right)\left(a+b\,x^{n}+c\,x^{2n}\right)^{p+1}dx\end{aligned}}}"></span></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}&\int x^{m}\left(A+B\,x^{n}\right)\left(a+b\,x^{n}+c\,x^{2n}\right)^{p}dx={\frac {B\,x^{m-n+1}\left(a+b\,x^{n}+c\,x^{2n}\right)^{p+1}}{c(m+n(2p+1)+1)}}\,-\,{\frac {1}{c(m+n(2p+1)+1)}}\,\cdot \\&\qquad \int x^{m-n}\left(a\,B(m-n+1)+(b\,B(m+n\,p+1)-A\,c(m+n(2p+1)+1))x^{n}\right)\left(a+b\,x^{n}+c\,x^{2n}\right)^{p}dx\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd /> <mtd> <mi></mi> <mo>∫<!-- ∫ --></mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> <mrow> <mo>(</mo> <mrow> <mi>A</mi> <mo>+</mo> <mi>B</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <msup> <mrow> <mo>(</mo> <mrow> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>+</mo> <mi>c</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>n</mi> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <mi>d</mi> <mi>x</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>B</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>−<!-- − --></mo> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> <msup> <mrow> <mo>(</mo> <mrow> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>+</mo> <mi>c</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>n</mi> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> </mrow> <mrow> <mi>c</mi> <mo stretchy="false">(</mo> <mi>m</mi> <mo>+</mo> <mi>n</mi> <mo stretchy="false">(</mo> <mn>2</mn> <mi>p</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mspace width="thinmathspace" /> <mo>−<!-- − --></mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi>c</mi> <mo stretchy="false">(</mo> <mi>m</mi> <mo>+</mo> <mi>n</mi> <mo stretchy="false">(</mo> <mn>2</mn> <mi>p</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mspace width="thinmathspace" /> <mo>⋅<!-- ⋅ --></mo> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mspace width="2em" /> <mo>∫<!-- ∫ --></mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>−<!-- − --></mo> <mi>n</mi> </mrow> </msup> <mrow> <mo>(</mo> <mrow> <mi>a</mi> <mspace width="thinmathspace" /> <mi>B</mi> <mo stretchy="false">(</mo> <mi>m</mi> <mo>−<!-- − --></mo> <mi>n</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>+</mo> <mo stretchy="false">(</mo> <mi>b</mi> <mspace width="thinmathspace" /> <mi>B</mi> <mo stretchy="false">(</mo> <mi>m</mi> <mo>+</mo> <mi>n</mi> <mspace width="thinmathspace" /> <mi>p</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <mi>A</mi> <mspace width="thinmathspace" /> <mi>c</mi> <mo stretchy="false">(</mo> <mi>m</mi> <mo>+</mo> <mi>n</mi> <mo stretchy="false">(</mo> <mn>2</mn> <mi>p</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <msup> <mrow> <mo>(</mo> <mrow> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>+</mo> <mi>c</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>n</mi> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <mi>d</mi> <mi>x</mi> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}&\int x^{m}\left(A+B\,x^{n}\right)\left(a+b\,x^{n}+c\,x^{2n}\right)^{p}dx={\frac {B\,x^{m-n+1}\left(a+b\,x^{n}+c\,x^{2n}\right)^{p+1}}{c(m+n(2p+1)+1)}}\,-\,{\frac {1}{c(m+n(2p+1)+1)}}\,\cdot \\&\qquad \int x^{m-n}\left(a\,B(m-n+1)+(b\,B(m+n\,p+1)-A\,c(m+n(2p+1)+1))x^{n}\right)\left(a+b\,x^{n}+c\,x^{2n}\right)^{p}dx\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/48e6ee601195e9a8ec6ee3bbfec7fae0aab8206e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -6.005ex; width:103.228ex; height:13.176ex;" alt="{\displaystyle {\begin{aligned}&\int x^{m}\left(A+B\,x^{n}\right)\left(a+b\,x^{n}+c\,x^{2n}\right)^{p}dx={\frac {B\,x^{m-n+1}\left(a+b\,x^{n}+c\,x^{2n}\right)^{p+1}}{c(m+n(2p+1)+1)}}\,-\,{\frac {1}{c(m+n(2p+1)+1)}}\,\cdot \\&\qquad \int x^{m-n}\left(a\,B(m-n+1)+(b\,B(m+n\,p+1)-A\,c(m+n(2p+1)+1))x^{n}\right)\left(a+b\,x^{n}+c\,x^{2n}\right)^{p}dx\end{aligned}}}"></span></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}&\int x^{m}\left(A+B\,x^{n}\right)\left(a+b\,x^{n}+c\,x^{2n}\right)^{p}dx={\frac {A\,x^{m+1}\left(a+b\,x^{n}+c\,x^{2n}\right)^{p+1}}{a(m+1)}}\,+\,{\frac {1}{a(m+1)}}\,\cdot \\&\qquad \int x^{m+n}\left(a\,B(m+1)-A\,b(m+n(p+1)+1)-A\,c(m+2n(p+1)+1)x^{n}\right)\left(a+b\,x^{n}+c\,x^{2n}\right)^{p}dx\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd /> <mtd> <mi></mi> <mo>∫<!-- ∫ --></mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> <mrow> <mo>(</mo> <mrow> <mi>A</mi> <mo>+</mo> <mi>B</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <msup> <mrow> <mo>(</mo> <mrow> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>+</mo> <mi>c</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>n</mi> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <mi>d</mi> <mi>x</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>A</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> <msup> <mrow> <mo>(</mo> <mrow> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>+</mo> <mi>c</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>n</mi> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> </mrow> <mrow> <mi>a</mi> <mo stretchy="false">(</mo> <mi>m</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mspace width="thinmathspace" /> <mo>+</mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi>a</mi> <mo stretchy="false">(</mo> <mi>m</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mspace width="thinmathspace" /> <mo>⋅<!-- ⋅ --></mo> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mspace width="2em" /> <mo>∫<!-- ∫ --></mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>+</mo> <mi>n</mi> </mrow> </msup> <mrow> <mo>(</mo> <mrow> <mi>a</mi> <mspace width="thinmathspace" /> <mi>B</mi> <mo stretchy="false">(</mo> <mi>m</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <mi>A</mi> <mspace width="thinmathspace" /> <mi>b</mi> <mo stretchy="false">(</mo> <mi>m</mi> <mo>+</mo> <mi>n</mi> <mo stretchy="false">(</mo> <mi>p</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <mi>A</mi> <mspace width="thinmathspace" /> <mi>c</mi> <mo stretchy="false">(</mo> <mi>m</mi> <mo>+</mo> <mn>2</mn> <mi>n</mi> <mo stretchy="false">(</mo> <mi>p</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <msup> <mrow> <mo>(</mo> <mrow> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>+</mo> <mi>c</mi> <mspace width="thinmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>n</mi> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <mi>d</mi> <mi>x</mi> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}&\int x^{m}\left(A+B\,x^{n}\right)\left(a+b\,x^{n}+c\,x^{2n}\right)^{p}dx={\frac {A\,x^{m+1}\left(a+b\,x^{n}+c\,x^{2n}\right)^{p+1}}{a(m+1)}}\,+\,{\frac {1}{a(m+1)}}\,\cdot \\&\qquad \int x^{m+n}\left(a\,B(m+1)-A\,b(m+n(p+1)+1)-A\,c(m+2n(p+1)+1)x^{n}\right)\left(a+b\,x^{n}+c\,x^{2n}\right)^{p}dx\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c27f89e406a34f04f4dd70bb1196076d1dadbf04" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -6.005ex; width:102.588ex; height:13.176ex;" alt="{\displaystyle {\begin{aligned}&\int x^{m}\left(A+B\,x^{n}\right)\left(a+b\,x^{n}+c\,x^{2n}\right)^{p}dx={\frac {A\,x^{m+1}\left(a+b\,x^{n}+c\,x^{2n}\right)^{p+1}}{a(m+1)}}\,+\,{\frac {1}{a(m+1)}}\,\cdot \\&\qquad \int x^{m+n}\left(a\,B(m+1)-A\,b(m+n(p+1)+1)-A\,c(m+2n(p+1)+1)x^{n}\right)\left(a+b\,x^{n}+c\,x^{2n}\right)^{p}dx\end{aligned}}}"></span></li></ul> </div> <div class="mw-heading mw-heading2"><h2 id="References">References</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=List_of_integrals_of_rational_functions&action=edit&section=11" title="Edit section: References"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist"> <div class="mw-references-wrap"><ol class="references"> <li id="cite_note-1"><span class="mw-cite-backlink"><b><a href="#cite_ref-1">^</a></b></span> <span class="reference-text">"<a rel="nofollow" class="external text" href="http://golem.ph.utexas.edu/category/2012/03/reader_survey_logx_c.html">Reader Survey: log|<i>x</i>| + <i>C</i></a>", Tom Leinster, <i>The </i>n<i>-category Café</i>, March 19, 2012</span> </li> </ol></div></div> <div class="navbox-styles"><style data-mw-deduplicate="TemplateStyles:r1129693374">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><style data-mw-deduplicate="TemplateStyles:r1236075235">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{line-height:1.5em;border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}body.skin--responsive .mw-parser-output .navbox-image img{max-width:none!important}@media print{body.ns-0 .mw-parser-output .navbox{display:none!important}}</style></div><div role="navigation" class="navbox" aria-labelledby="Lists_of_integrals" style="padding:3px"><table class="nowraplinks mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1239400231">.mw-parser-output .navbar{display:inline;font-size:88%;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar a>span,.mw-parser-output .navbar a>abbr{text-decoration:inherit}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}html.skin-theme-clientpref-night .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}@media(prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}}@media print{.mw-parser-output .navbar{display:none!important}}</style><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Lists_of_integrals" title="Template:Lists of integrals"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Lists_of_integrals" title="Template talk:Lists of integrals"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Lists_of_integrals" title="Special:EditPage/Template:Lists of integrals"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Lists_of_integrals" style="font-size:114%;margin:0 4em"><a href="/wiki/Lists_of_integrals" title="Lists of integrals">Lists of integrals</a></div></th></tr><tr><td colspan="2" class="navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a class="mw-selflink selflink">Rational functions</a></li> <li><a href="/wiki/List_of_integrals_of_irrational_functions" title="List of integrals of irrational functions">Irrational functions</a></li> <li><a href="/wiki/List_of_integrals_of_trigonometric_functions" title="List of integrals of trigonometric functions">Trigonometric functions</a></li> <li><a href="/wiki/List_of_integrals_of_inverse_trigonometric_functions" title="List of integrals of inverse trigonometric functions">Inverse trigonometric functions</a></li> <li><a href="/wiki/List_of_integrals_of_hyperbolic_functions" title="List of integrals of hyperbolic functions">Hyperbolic functions</a></li> <li><a href="/wiki/List_of_integrals_of_inverse_hyperbolic_functions" title="List of integrals of inverse hyperbolic functions">Inverse hyperbolic functions</a></li> <li><a href="/wiki/List_of_integrals_of_exponential_functions" title="List of integrals of exponential functions">Exponential functions</a></li> <li><a href="/wiki/List_of_integrals_of_logarithmic_functions" title="List of integrals of logarithmic functions">Logarithmic functions</a></li> <li><a href="/wiki/List_of_integrals_of_Gaussian_functions" title="List of integrals of Gaussian functions">Gaussian functions</a></li> <li><a href="/wiki/List_of_definite_integrals" title="List of definite integrals">Definite integrals</a></li></ul> </div></td></tr></tbody></table></div> <!-- NewPP limit report Parsed by mw‐web.eqiad.main‐5dc468848‐jgnr8 Cached time: 20241122145848 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 0.368 seconds Real time usage: 0.607 seconds Preprocessor visited node count: 1099/1000000 Post‐expand include size: 24053/2097152 bytes Template argument size: 424/2097152 bytes Highest expansion depth: 9/100 Expensive parser function count: 3/500 Unstrip recursion depth: 0/20 Unstrip post‐expand size: 19378/5000000 bytes Lua time usage: 0.180/10.000 seconds Lua memory usage: 2369059/52428800 bytes Number of Wikibase entities loaded: 0/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 368.459 1 -total 38.66% 142.433 1 Template:Short_description 26.30% 96.906 1 Template:Lists_of_integrals 25.34% 93.371 1 Template:Navbox 24.63% 90.741 2 Template:Pagetype 18.55% 68.340 1 Template:One_source 17.80% 65.583 2 Template:Ambox 10.71% 39.471 3 Template:Main_other 10.14% 37.375 1 Template:SDcat 6.85% 25.239 1 Template:Verifiability --> <!-- Saved in parser cache with key enwiki:pcache:idhash:234854-0!canonical and timestamp 20241122145848 and revision id 1258567263. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=List_of_integrals_of_rational_functions&oldid=1258567263">https://en.wikipedia.org/w/index.php?title=List_of_integrals_of_rational_functions&oldid=1258567263</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Category</a>: <ul><li><a href="/wiki/Category:Lists_of_integrals" title="Category:Lists of integrals">Lists of integrals</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Hidden categories: <ul><li><a href="/wiki/Category:Articles_with_short_description" title="Category:Articles with short description">Articles with short description</a></li><li><a href="/wiki/Category:Short_description_is_different_from_Wikidata" title="Category:Short description is different from Wikidata">Short description is different from Wikidata</a></li><li><a href="/wiki/Category:Articles_needing_additional_references_from_November_2024" title="Category:Articles needing additional references from November 2024">Articles needing additional references from November 2024</a></li><li><a href="/wiki/Category:All_articles_needing_additional_references" title="Category:All articles needing additional references">All articles needing additional references</a></li><li><a href="/wiki/Category:Articles_lacking_reliable_references_from_February_2021" title="Category:Articles lacking reliable references from February 2021">Articles lacking reliable references from February 2021</a></li><li><a href="/wiki/Category:All_articles_lacking_reliable_references" title="Category:All articles lacking reliable references">All articles lacking reliable references</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 20 November 2024, at 12:03<span class="anonymous-show"> (UTC)</span>.</li> <li id="footer-info-copyright">Text is available under the <a href="/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" title="Wikipedia:Text of the Creative Commons Attribution-ShareAlike 4.0 International License">Creative Commons Attribution-ShareAlike 4.0 License</a>; additional terms may apply. By using this site, you agree to the <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use" class="extiw" title="foundation:Special:MyLanguage/Policy:Terms of Use">Terms of Use</a> and <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy" class="extiw" title="foundation:Special:MyLanguage/Policy:Privacy policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=List_of_integrals_of_rational_functions&mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-f69cdc8f6-4xwft","wgBackendResponseTime":188,"wgPageParseReport":{"limitreport":{"cputime":"0.368","walltime":"0.607","ppvisitednodes":{"value":1099,"limit":1000000},"postexpandincludesize":{"value":24053,"limit":2097152},"templateargumentsize":{"value":424,"limit":2097152},"expansiondepth":{"value":9,"limit":100},"expensivefunctioncount":{"value":3,"limit":500},"unstrip-depth":{"value":0,"limit":20},"unstrip-size":{"value":19378,"limit":5000000},"entityaccesscount":{"value":0,"limit":400},"timingprofile":["100.00% 368.459 1 -total"," 38.66% 142.433 1 Template:Short_description"," 26.30% 96.906 1 Template:Lists_of_integrals"," 25.34% 93.371 1 Template:Navbox"," 24.63% 90.741 2 Template:Pagetype"," 18.55% 68.340 1 Template:One_source"," 17.80% 65.583 2 Template:Ambox"," 10.71% 39.471 3 Template:Main_other"," 10.14% 37.375 1 Template:SDcat"," 6.85% 25.239 1 Template:Verifiability"]},"scribunto":{"limitreport-timeusage":{"value":"0.180","limit":"10.000"},"limitreport-memusage":{"value":2369059,"limit":52428800}},"cachereport":{"origin":"mw-web.eqiad.main-5dc468848-jgnr8","timestamp":"20241122145848","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"List of integrals of rational functions","url":"https:\/\/en.wikipedia.org\/wiki\/List_of_integrals_of_rational_functions","sameAs":"http:\/\/www.wikidata.org\/entity\/Q484623","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q484623","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2003-05-27T11:34:14Z","dateModified":"2024-11-20T12:03:49Z","headline":"Wikimedia list article"}</script> </body> </html>