CINXE.COM
Search results for: acid buffering capacity
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: acid buffering capacity</title> <meta name="description" content="Search results for: acid buffering capacity"> <meta name="keywords" content="acid buffering capacity"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="acid buffering capacity" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="acid buffering capacity"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 7279</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: acid buffering capacity</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7279</span> Evaluating Acid Buffering Capacity of Sewage Sludge Barrier for Inhibiting Remobilization of Heavy Metals in Tailing Impoundment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Huyuan%20Zhang">Huyuan Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yi%20Chen"> Yi Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Compacted sewage sludge has been proved to be feasible as a barrier material for tailing impoundment because of its low permeability and retardation of heavy metals. The long-term penetration of acid mine drainage, however, would acidify the barrier system and result in remobilization of previously immobilized heavy metal pollutants. In this study, the effect of decreasing pH on the mobility of three typical heavy metals (Zn, Pb, and Cu) is investigated by acid titration test on sewage sludge under various conditions. The remobilization of heavy metals is discussed based on the acid buffering capacity of sewage sludge-leachate system. Test results indicate that heavy metals are dramatically released out when pH is decreased below 6.2, and their amounts take the order of Zn > Cu > Pb. The acid buffering capacity of sewage sludge decreases with the solid-liquid ratio but increases with the anaerobic incubation time, and it is mainly governed by dissolution of contained carbonate and organics. These results reveal that the sewage sludge possesses enough acid buffering capacity to consume protons within the acid mine drainage. Thus, this study suggests that an explosive remobilization of heavy metals is not expected in a long-term perspective. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acid%20buffering%20capacity" title="acid buffering capacity">acid buffering capacity</a>, <a href="https://publications.waset.org/abstracts/search?q=barrier" title=" barrier"> barrier</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20metals" title=" heavy metals"> heavy metals</a>, <a href="https://publications.waset.org/abstracts/search?q=remobilization" title=" remobilization"> remobilization</a>, <a href="https://publications.waset.org/abstracts/search?q=sewage%20sludge" title=" sewage sludge"> sewage sludge</a> </p> <a href="https://publications.waset.org/abstracts/64033/evaluating-acid-buffering-capacity-of-sewage-sludge-barrier-for-inhibiting-remobilization-of-heavy-metals-in-tailing-impoundment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64033.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">320</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7278</span> CO₂ Capture by Clay and Its Adsorption Mechanism</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jedli%20Hedi">Jedli Hedi</a>, <a href="https://publications.waset.org/abstracts/search?q=Hedfi%20Hachem"> Hedfi Hachem</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdessalem%20Jbara"> Abdessalem Jbara</a>, <a href="https://publications.waset.org/abstracts/search?q=Slimi%20Khalifa"> Slimi Khalifa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Natural and modified clay were used as an adsorbent for CO2 capture. Sample of clay was subjected to acid treatments to improve their textural properties, namely, its surface area and pore volume. The modifications were carried out by heating the clays at 120 °C and then by acid treatment with 3M sulphuric acid solution at boiling temperature for 10 h. The CO2 adsorption capacities of the acid-treated clay were performed out in a batch reactor. It was found that the clay sample treated with 3M H2SO4 exhibited the highest Brunauer–Emmett–Teller (BET) surface area (16.29–24.68 m2/g) and pore volume (0.056–0.064 cm3/g). After the acid treatment, the CO2 adsorption capacity of clay increased. The CO2 adsorption capacity of clay increased after the acid treatment. The CO2 adsorption by clay, were characterized by SEM, FTIR, ATD-ATG and BET method. For describing the phenomenon of CO2 adsorption for these materials, the adsorption isotherms were modeled using the Freundlich and Langmuir models. CO2 adsorption isotherm was found attributable to physical adsorption. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=clay" title="clay">clay</a>, <a href="https://publications.waset.org/abstracts/search?q=acid%20treatment" title=" acid treatment"> acid treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=CO2%20capture" title=" CO2 capture"> CO2 capture</a>, <a href="https://publications.waset.org/abstracts/search?q=adsorption%20mechanism" title=" adsorption mechanism"> adsorption mechanism</a> </p> <a href="https://publications.waset.org/abstracts/72338/co2-capture-by-clay-and-its-adsorption-mechanism" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72338.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">211</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7277</span> Mitigation Measures for the Acid Mine Drainage Emanating from the Sabie Goldfield: Case Study of the Nestor Mine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rudzani%20Lusunzi">Rudzani Lusunzi</a>, <a href="https://publications.waset.org/abstracts/search?q=Frans%20Waanders"> Frans Waanders</a>, <a href="https://publications.waset.org/abstracts/search?q=Elvis%20Fosso-Kankeu"> Elvis Fosso-Kankeu</a>, <a href="https://publications.waset.org/abstracts/search?q=Robert%20Khashane%20Netshitungulwana"> Robert Khashane Netshitungulwana</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Sabie Goldfield has a history of gold mining dating back more than a century. Acid mine drainage (AMD) from the Nestor mine tailings storage facility (MTSF) poses a serious threat to the nearby ecosystem, specifically the Sabie River system. This study aims at developing mitigation measures for the AMD emanating from the Nestor MTSF using materials from the Glynns Lydenburg MTSF. The Nestor MTSF (NM) and the Glynns Lydenburg MTSF (GM) each provided about 20 kg of bulk composite samples. Using samples from the Nestor MTSF and the Glynns Lydenburg MTSF, two mixtures were created. MIX-A is a mixture that contains 25% weight percent (GM) and 75% weight percent (NM). MIX-B is the name given to the second mixture, which contains 50% AN and 50% AG. The same static test, i.e., acid–base accounting (ABA), net acid generation (NAG), and acid buffering characteristics curve (ABCC) was used to estimate the acid-generating probabilities of samples NM and GM for MIX-A and MIX-B. Furthermore, the mineralogy of the Nestor MTSF samples consists of the primary acid-producing mineral pyrite as well as the secondary minerals ferricopiapite and jarosite, which are common in acidic conditions. The Glynns Lydenburg MTSF samples, on the other hand, contain primary acid-neutralizing minerals calcite and dolomite. Based on the assessment conducted, materials from the Glynns Lydenburg are capable of neutralizing AMD from Nestor MTSF. Therefore, the alkaline tailings materials from the Glynns Lydenburg MTSF can be used to rehabilitate the acidic Nestor MTSF. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nestor%20Mine" title="Nestor Mine">Nestor Mine</a>, <a href="https://publications.waset.org/abstracts/search?q=acid%20mine%20drainage" title=" acid mine drainage"> acid mine drainage</a>, <a href="https://publications.waset.org/abstracts/search?q=mitigation" title=" mitigation"> mitigation</a>, <a href="https://publications.waset.org/abstracts/search?q=Sabie%20River%20system" title=" Sabie River system"> Sabie River system</a> </p> <a href="https://publications.waset.org/abstracts/165950/mitigation-measures-for-the-acid-mine-drainage-emanating-from-the-sabie-goldfield-case-study-of-the-nestor-mine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165950.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">86</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7276</span> Assessing and Managing the Risk of Inland Acid Sulfate Soil Drainage via Column Leach Tests and 1D Modelling: A Case Study from South East Australia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nicolaas%20Unland">Nicolaas Unland</a>, <a href="https://publications.waset.org/abstracts/search?q=John%20Webb"> John Webb</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The acidification and mobilisation of metals during the oxidation of acid sulfate soils exposed during lake bed drying is an increasingly common phenomenon under climate scenarios with reduced rainfall. In order to assess the risk of generating high concentrations of acidity and dissolved metals, chromium suite analysis are fundamental, but sometimes limited in characterising the potential risks they pose. This study combines such fundamental test work, along with incubation tests and 1D modelling to investigate the risks associated with the drying of Third Reedy Lake in South East Australia. Core samples were collected from a variable depth of 0.5 m below the lake bed, at 19 locations across the lake’s footprint, using a boat platform. Samples were subjected to a chromium suite of analysis, including titratable actual acidity, chromium reducible sulfur and acid neutralising capacity. Concentrations of reduced sulfur up to 0.08 %S and net acidities up to 0.15 %S indicate that acid sulfate soils have formed on the lake bed during permanent inundation over the last century. A further sub-set of samples were prepared in 7 columns and subject to accelerated heating, drying and wetting over a period of 64 days in laboratory. Results from the incubation trial indicate that while pyrite oxidation proceeded, minimal change to soil pH or the acidity of leachate occurred, suggesting that the internal buffering capacity of lake bed sediments was sufficient to neutralise a large proportion of the acidity produced. A 1D mass balance model was developed to assess potential changes in lake water quality during drying based on the results of chromium suite and incubation tests. Results from the above test work and modelling suggest that acid sulfate soils pose a moderate to low risk to the Third Reedy Lake system. Further, the risks can be effectively managed during the initial stages of lake drying via flushing with available mildly alkaline water. The study finds that while test work such as chromium suite analysis are fundamental in characterizing acid sulfate soil environments, they can the overestimate risks associated with the soils. Subsequent incubation test work may more accurately characterise such soils and lead to better-informed management strategies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acid%20sulfate%20soil" title="acid sulfate soil">acid sulfate soil</a>, <a href="https://publications.waset.org/abstracts/search?q=incubation" title=" incubation"> incubation</a>, <a href="https://publications.waset.org/abstracts/search?q=management" title=" management"> management</a>, <a href="https://publications.waset.org/abstracts/search?q=model" title=" model"> model</a>, <a href="https://publications.waset.org/abstracts/search?q=risk" title=" risk"> risk</a> </p> <a href="https://publications.waset.org/abstracts/84610/assessing-and-managing-the-risk-of-inland-acid-sulfate-soil-drainage-via-column-leach-tests-and-1d-modelling-a-case-study-from-south-east-australia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84610.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">358</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7275</span> Acanthopanax koreanum and Major Ingredient, Impressic Acid, Possess Matrix Metalloproteinase-13 Down-Regulating Capacity and Protect Cartilage Destruction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hyun%20Lim">Hyun Lim</a>, <a href="https://publications.waset.org/abstracts/search?q=Dong%20Sook%20Min"> Dong Sook Min</a>, <a href="https://publications.waset.org/abstracts/search?q=Han%20Eul%20Yun"> Han Eul Yun</a>, <a href="https://publications.waset.org/abstracts/search?q=Kil%20Tae%20Kim"> Kil Tae Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Ya%20Nan%20Sun"> Ya Nan Sun</a>, <a href="https://publications.waset.org/abstracts/search?q=Young%20Ho%20Kim"> Young Ho Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyun%20Pyo%20Kim"> Hyun Pyo Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Matrix metalloproteinase (MMP)-13 has an important role for degrading cartilage materials under inflammatory conditions such as arthritis. Since the 70% ethanol extract of Acanthopanax koreanum inhibited MMP-13 expression in IL-1β-treated human chondrocyte cell line, SW1353, two major constituents including acanthoic acid and impressic acid were initially isolated from the same plant materials and their MMP-13 down-regulating capacity was examined. In IL-1β-treated SW1353 cells, acanthoic acid and impressic acid significantly and concentration-dependently inhibited MMP-13 expression at 10 – 100 μM and 0.5 – 10 μM, respectively. The potent one, impressic acid, was found to inhibit MMP-13 expression by blocking the phosphorylation of signal transducer and activator of transcription-1/-2 (STAT-1/-2) and activation of c-Jun and c-Fos among cellular signaling pathway involved, but did not affect the activation of mitogen-activated protein kinases (MAPKs) and nuclear transcription factor-κB (NF-κB). Further, impressic acid was also found to inhibit the expression of MMP-13 mRNA (47.7% inhibition at 10 μM), the glycosaminoglycan release (42.2% reduction at 10 μM) and proteoglycan loss in IL-1-treated rabbit cartilage explants culture. For a further study, 21 impressic acid derivatives were isolated from the same plant materials and their suppressive activities against MMP-13 expression were examined. Among the derivatives, 3α-hydroxy-lup-20(29)-en-23-oxo,28-oic acid, (20R)-3α-hydroxy-29-dimethoxylupan-23,28-dioic acid, acankoreoside F and acantrifoside A clearly down-regulated MMP-13 expression, but impressic acid being most potent. All these results suggest that impressic acid, 3α-hydroxy-lup-20(29)-en-23-oxo,28-oic acid, (20R)-3α-hydroxy-29-dimethoxylupan-23,28-dioic acid, acankoreoside F, acantrifoside A and A. koreanum may have a potential for therapeutic agents to prevent cartilage degradation possibly by inhibiting matrix protein degradation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acanthoic%20acid" title="acanthoic acid">acanthoic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=Acanthopanax%20koreanum" title=" Acanthopanax koreanum"> Acanthopanax koreanum</a>, <a href="https://publications.waset.org/abstracts/search?q=cartilage" title=" cartilage"> cartilage</a>, <a href="https://publications.waset.org/abstracts/search?q=impressic%20acid" title=" impressic acid"> impressic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=matrix%20metalloproteinase" title=" matrix metalloproteinase"> matrix metalloproteinase</a> </p> <a href="https://publications.waset.org/abstracts/57571/acanthopanax-koreanum-and-major-ingredient-impressic-acid-possess-matrix-metalloproteinase-13-down-regulating-capacity-and-protect-cartilage-destruction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57571.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">361</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7274</span> Determination of Performances of Some Mulberry (Morus spp.) Species Selected from Different Places of Turkey under Kahramanmaras Conditions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muruvvet%20Ilgin">Muruvvet Ilgin</a>, <a href="https://publications.waset.org/abstracts/search?q=Ilknur%20Agca"> Ilknur Agca</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Common mulberry (Morus levigate Wall.) and purple mulberry (Morus rubra L.) species which were selected from different regions of Turkey were used as material in order to determine their performance. Therefore, phenological observations, pomological analysis (fruit size, fruit weight, fruit stalk length, acidity and TSS (Total Soluble Solids) and phytochemical properties organic acids (oxalic acid, succinic acid, citric acid, fumaric acid and malic acid) and vitamin C (ascorbic acid) total phenolics and antioxidant capacity values of mulberries) were determined. Phenological observations of seven different periods were also identified. Fruit weight values varied between 3.48 to 4.26 g. TSS contents value were from 14.36 to 21.30%, and fruit acidity was determined between 0.29 to 2.02%. The amount of ascorbic acid of Finger mulberry (Morus levigate Wall.) and purple mulberry (Morus rubra L.) species were identified as 35.60% and 363.28%. The highest value of total phenolic contents belonged to with a finger mulberry genotypes P1 934.80 mg/100g whereas the lowest one was of purple mulberry genotypes 278.70 mg/100g. FRAP and TEAC methods were used for determination of antioxidant capacity of the values of 0.58-22.65 micromol TE/kg and 20.34-31.6 micromol TE/kg. Total phenolics contents and antioxidant capacity strongly depends on fruit color intensity with a positive correlation. The obtained results have been found to be important as a source of future pharmacological studies and pomological and breeding programs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mulberry" title="mulberry">mulberry</a>, <a href="https://publications.waset.org/abstracts/search?q=phenology" title=" phenology"> phenology</a>, <a href="https://publications.waset.org/abstracts/search?q=phytochemical%20property" title=" phytochemical property"> phytochemical property</a>, <a href="https://publications.waset.org/abstracts/search?q=pomology" title=" pomology"> pomology</a> </p> <a href="https://publications.waset.org/abstracts/75910/determination-of-performances-of-some-mulberry-morus-spp-species-selected-from-different-places-of-turkey-under-kahramanmaras-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75910.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">231</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7273</span> Adsorption of Phenol and 4-Hydroxybenzoic Acid onto Functional Materials </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mourad%20Makhlouf">Mourad Makhlouf</a>, <a href="https://publications.waset.org/abstracts/search?q=Omar%20Bouchher"> Omar Bouchher</a>, <a href="https://publications.waset.org/abstracts/search?q=Messabih%20Sidi%20Mohamed"> Messabih Sidi Mohamed</a>, <a href="https://publications.waset.org/abstracts/search?q=Benrachedi%20Khaled"> Benrachedi Khaled</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this study was to investigate the removal of two organic pollutants; 4-hydroxybenzoic acid (p-hydroxybenzoic acid) and phenol from synthetic wastewater by the adsorption on mesoporous materials. In this context, the aim of this work is to study the adsorption of organic compounds phenol and 4AHB on MCM-41 and FSM-16 non-grafted (NG) and other grafted (G) by trimethylchlorosilane (TMCS). The results of phenol and 4AHB adsorption in aqueous solution show that the adsorption capacity tends to increase after grafting in relation to the increase in hydrophobicity. The materials are distinguished by a higher adsorption capacity to the other NG materials. The difference in the phenol is 14.43% (MCM-41), 14.55% (FSM-16), and 16.72% (MCM-41), 13.57% (FSM-16) in the 4AHB. Our adsorption results show that the grafted materials by TMCS are good adsorbent at 25 °C. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=MCM-41" title="MCM-41">MCM-41</a>, <a href="https://publications.waset.org/abstracts/search?q=FSM-16" title=" FSM-16"> FSM-16</a>, <a href="https://publications.waset.org/abstracts/search?q=TMCS" title=" TMCS"> TMCS</a>, <a href="https://publications.waset.org/abstracts/search?q=phenol" title=" phenol"> phenol</a>, <a href="https://publications.waset.org/abstracts/search?q=4AHB" title=" 4AHB"> 4AHB</a> </p> <a href="https://publications.waset.org/abstracts/57425/adsorption-of-phenol-and-4-hydroxybenzoic-acid-onto-functional-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57425.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">274</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7272</span> Bioproduction of L(+)-Lactic Acid and Purification by Ion Exchange Mechanism </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zelal%20Polat">Zelal Polat</a>, <a href="https://publications.waset.org/abstracts/search?q=%C5%9Eebnem%20Harsa"> Şebnem Harsa</a>, <a href="https://publications.waset.org/abstracts/search?q=Semra%20%C3%9Clk%C3%BC"> Semra Ülkü</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lactic acid exists in nature optically in two forms, L(+), D(-)-lactic acid, and has been used in food, leather, textile, pharmaceutical and cosmetic industries. Moreover, L(+)-lactic acid constitutes the raw material for the production of poly-L-lactic acid which is used in biomedical applications. Microbially produced lactic acid was aimed to be recovered from the fermentation media efficiently and economically. Among the various downstream operations, ion exchange chromatography is highly selective and yields a low cost product recovery within a short period of time. In this project, Lactobacillus casei NRRL B-441 was used for the production of L(+)-lactic acid from whey by fermentation at pH 5.5 and 37°C that took 12 hours. The product concentration was 50 g/l with 100% L(+)-lactic acid content. Next, the suitable resin was selected due to its high sorption capacity with rapid equilibrium behavior. Dowex marathon WBA, weakly basic anion exchanger in OH form reached the equilibrium in 15 minutes. The batch adsorption experiments were done approximately at pH 7.0 and 30°C and sampling was continued for 20 hours. Furthermore, the effect of temperature and pH was investigated and their influence was found to be unimportant. All the adsorption/desorption experiments were applied to both model lactic acid and biomass free fermentation broth. The ion exchange equilibria of lactic acid and L(+)-lactic acid in fermentation broth on Dowex marathon WBA was explained by Langmuir isotherm. The maximum exchange capacity (qm) for model lactic acid was 0.25 g La/g wet resin and for fermentation broth 0.04 g La/g wet resin. The equilibrium loading and exchange efficiency of L(+)-lactic acid in fermentation broth were reduced as a result of competition by other ionic species. The competing ions inhibit the binding of L(+)-lactic acid to the free sites of ion exchanger. Moreover, column operations were applied to recover adsorbed lactic acid from the ion exchanger. 2.0 M HCl was the suitable eluting agent to recover the bound L(+)-lactic acid with a flowrate of 1 ml/min at ambient temperature. About 95% of bound L(+)-lactic acid was recovered from Dowex marathon WBA. The equilibrium was reached within 15 minutes. The aim of this project was to investigate the purification of L(+)-lactic acid with ion exchange method from fermentation broth. The additional goals were to investigate the end product purity, to obtain new data on the adsorption/desorption behaviours of lactic acid and applicability of the system in industrial usage. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fermentation" title="fermentation">fermentation</a>, <a href="https://publications.waset.org/abstracts/search?q=ion%20exchange" title=" ion exchange"> ion exchange</a>, <a href="https://publications.waset.org/abstracts/search?q=lactic%20acid" title=" lactic acid"> lactic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=purification" title=" purification"> purification</a>, <a href="https://publications.waset.org/abstracts/search?q=whey" title=" whey"> whey</a> </p> <a href="https://publications.waset.org/abstracts/11305/bioproduction-of-l-lactic-acid-and-purification-by-ion-exchange-mechanism" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11305.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">503</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7271</span> Effect of the Addition of Additives on the Improvement of the Performances of Lead–Acid Batteries</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Malika%20Foudia">Malika Foudia</a>, <a href="https://publications.waset.org/abstracts/search?q=Larbi%20Zerroual"> Larbi Zerroual </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this work is to improve the electrical proprieties of lead-acid battery with the addition of additives in electrolyte and in the cured plates before oxidation. The results showed that the addition of surfactant in sulfuric acid and 3% mineral additive in the cured plates change the morphology and the crystallite size of PAM after oxidation. The discharge capacity increases with the decrease of the crystallite size and the resistance of the active mass. This shows that the addition of mineral additive and the surfactant additive to the PAM, the electrical performance and the cycle life of lead- acid battery are significantly increases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lead-acid%20battery" title="lead-acid battery">lead-acid battery</a>, <a href="https://publications.waset.org/abstracts/search?q=additives" title=" additives"> additives</a>, <a href="https://publications.waset.org/abstracts/search?q=positive%20plate" title=" positive plate"> positive plate</a>, <a href="https://publications.waset.org/abstracts/search?q=impedance%20%28EIS%29." title=" impedance (EIS). "> impedance (EIS). </a> </p> <a href="https://publications.waset.org/abstracts/23332/effect-of-the-addition-of-additives-on-the-improvement-of-the-performances-of-lead-acid-batteries" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23332.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">418</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7270</span> Comparative Performance Analysis of Fiber Delay Line Based Buffer Architectures for Contention Resolution in Optical WDM Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Manoj%20Kumar%20Dutta">Manoj Kumar Dutta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Wavelength division multiplexing (WDM) technology is the most promising technology for the proper utilization of huge raw bandwidth provided by an optical fiber. One of the key problems in implementing the all-optical WDM network is the packet contention. This problem can be solved by several different techniques. In time domain approach the packet contention can be reduced by incorporating fiber delay lines (FDLs) as optical buffer in the switch architecture. Different types of buffering architectures are reported in literatures. In the present paper a comparative performance analysis of three most popular FDL architectures are presented in order to obtain the best contention resolution performance. The analysis is further extended to consider the effect of different fiber non-linearities on the network performance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=WDM%20network" title="WDM network">WDM network</a>, <a href="https://publications.waset.org/abstracts/search?q=contention%20resolution" title=" contention resolution"> contention resolution</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20buffering" title=" optical buffering"> optical buffering</a>, <a href="https://publications.waset.org/abstracts/search?q=non-linearity" title=" non-linearity"> non-linearity</a>, <a href="https://publications.waset.org/abstracts/search?q=throughput" title=" throughput"> throughput</a> </p> <a href="https://publications.waset.org/abstracts/38257/comparative-performance-analysis-of-fiber-delay-line-based-buffer-architectures-for-contention-resolution-in-optical-wdm-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38257.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">451</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7269</span> The Effect of Porous Alkali Activated Material Composition on Buffer Capacity in Bioreactors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Girts%20Bumanis">Girts Bumanis</a>, <a href="https://publications.waset.org/abstracts/search?q=Diana%20Bajare"> Diana Bajare</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With demand for primary energy continuously growing, search for renewable and efficient energy sources has been high on agenda of our society. One of the most promising energy sources is biogas technology. Residues coming from dairy industry and milk processing could be used in biogas production; however, low efficiency and high cost impede wide application of such technology. One of the main problems is management and conversion of organic residues through the anaerobic digestion process which is characterized by acidic environment due to the low whey pH (<6) whereas additional pH control system is required. Low buffering capacity of whey is responsible for the rapid acidification in biological treatments; therefore alkali activated material is a promising solution of this problem. Alkali activated material is formed using SiO2 and Al2O3 rich materials under highly alkaline solution. After material structure forming process is completed, free alkalis remain in the structure of materials which are available for leaching and could provide buffer capacity potential. In this research porous alkali activated material was investigated. Highly porous material structure ensures gradual leaching of alkalis during time which is important in biogas digestion process. Research of mixture composition and SiO2/Na2O and SiO2/Al2O ratio was studied to test the buffer capacity potential of alkali activated material. This research has proved that by changing molar ratio of components it is possible to obtain a material with different buffer capacity, and this novel material was seen to have considerable potential for using it in processes where buffer capacity and pH control is vitally important. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alkaline%20material" title="alkaline material">alkaline material</a>, <a href="https://publications.waset.org/abstracts/search?q=buffer%20capacity" title=" buffer capacity"> buffer capacity</a>, <a href="https://publications.waset.org/abstracts/search?q=biogas%20production" title=" biogas production"> biogas production</a>, <a href="https://publications.waset.org/abstracts/search?q=bioreactors" title=" bioreactors"> bioreactors</a> </p> <a href="https://publications.waset.org/abstracts/9251/the-effect-of-porous-alkali-activated-material-composition-on-buffer-capacity-in-bioreactors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9251.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">242</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7268</span> Fatty Acid and Amino Acid Composition in Mene maculata in The Sea of Maluku</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Semuel%20Unwakoly">Semuel Unwakoly</a>, <a href="https://publications.waset.org/abstracts/search?q=Reinner%20Puppela"> Reinner Puppela</a>, <a href="https://publications.waset.org/abstracts/search?q=Maresthy%20Rumalean"> Maresthy Rumalean</a>, <a href="https://publications.waset.org/abstracts/search?q=Healthy%20Kainama"> Healthy Kainama</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fish is a kind of food that contains many nutritions, one of those is the long chain of unsaturated fatty acids as omega-3 and omega-6 fatty acids and essential amino acid in enough amount for the necessity of our body. Like pelagic fish that found in the sea of Maluku. This research was done to identify fatty acids and amino acids composition in Moonfish (<em>M. maculata</em>) using transesterification reaction steps and Gas Chromatograph-Mass Spectrophotometer (GC-MS) and High-Performance Liquid Chromatography (HPLC). The result showed that fatty acids composition in Moonfish (<em>M. maculata</em>) contained tridecanoic acid (2.84%); palmitoleic acid (2.65%); palmitic acid (35.24%); oleic acid (6.2%); stearic acid (14.20%); and 5,8,11,14-eicosatetraenoic acid (1.29%) and 12 amino acids composition that consist of 7 essential amino acids, were leucine, isoleucine, valine, phenylalanine, methionine, lysine, and histidine, and also 5 non-essential amino acid, were tyrosine, glycine, alanine, glutamic acid, and arginine.Thus, these fishes can be used by the people to complete the necessity of essential fatty acid and amino acid. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Moonfish%20%28M.%20maculata%29" title="Moonfish (M. maculata)">Moonfish (M. maculata)</a>, <a href="https://publications.waset.org/abstracts/search?q=fatty%20acid" title=" fatty acid"> fatty acid</a>, <a href="https://publications.waset.org/abstracts/search?q=amino%20acid" title=" amino acid"> amino acid</a>, <a href="https://publications.waset.org/abstracts/search?q=GC-MS" title=" GC-MS"> GC-MS</a>, <a href="https://publications.waset.org/abstracts/search?q=HPLC" title=" HPLC"> HPLC</a> </p> <a href="https://publications.waset.org/abstracts/75018/fatty-acid-and-amino-acid-composition-in-mene-maculata-in-the-sea-of-maluku" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75018.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">249</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7267</span> Optimization of Chitosan Membrane Production Parameters for Zinc Ion Adsorption</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Peter%20O.%20Osifo">Peter O. Osifo</a>, <a href="https://publications.waset.org/abstracts/search?q=Hein%20W.%20J.%20P.%20Neomagus"> Hein W. J. P. Neomagus</a>, <a href="https://publications.waset.org/abstracts/search?q=Hein%20V.%20D.%20Merwe"> Hein V. D. Merwe</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Chitosan materials from different sources of raw materials were characterized in order to determine optimal preparation conditions and parameters for membrane production. The membrane parameters such as molecular weight, viscosity, and degree of deacetylation were used to evaluate the membrane performance for zinc ion adsorption. The molecular weight of the chitosan was found to influence the viscosity of the chitosan/acetic acid solution. An increase in molecular weight (60000-400000 kg.kmol-1) of the chitosan resulted in a higher viscosity (0.05-0.65 Pa.s) of the chitosan/acetic acid solution. The effect of the degree of deacetylation on the viscosity is not significant. The effect of the membrane production parameters (chitosan- and acetic acid concentration) on the viscosity is mainly determined by the chitosan concentration. For higher chitosan concentrations, a membrane with a better adsorption capacity was obtained. The membrane adsorption capacity increases from 20-130 mg Zn per gram of wet membrane for an increase in chitosan concentration from 2-7 mass %. Chitosan concentrations below 2 and above 7.5 mass % produced membranes that lack good mechanical properties. The optimum manufacturing conditions including chitosan concentration, acetic acid concentration, sodium hydroxide concentration and crosslinking for chitosan membranes within the workable range were defined by the criteria of adsorption capacity and flux. The adsorption increases (50-120 mg.g-1) as the acetic acid concentration increases (1-7 mass %). The sodium hydroxide concentration seems not to have a large effect on the adsorption characteristics of the membrane however, a maximum was reached at a concentration of 5 mass %. The adsorption capacity per gram of wet membrane strongly increases with the chitosan concentration in the acetic acid solution but remains constant per gram of dry chitosan. The optimum solution for membrane production consists of 7 mass % chitosan and 4 mass % acetic acid in de-ionised water. The sodium hydroxide concentration for phase inversion is at optimum at 5 mass %. The optimum cross-linking time was determined to be 6 hours (Percentage crosslinking of 18%). As the cross-linking time increases the adsorption of the zinc decreases (150-50 mg.g-1) in the time range of 0 to 12 hours. After a crosslinking time of 12 hours, the adsorption capacity remains constant. This trend is comparable to the effect on flux through the membrane. The flux decreases (10-3 L.m-2.hr-1) with an increase in crosslinking time range of 0 to 12 hours and reaches a constant minimum after 12 hours. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chitosan" title="chitosan">chitosan</a>, <a href="https://publications.waset.org/abstracts/search?q=membrane" title=" membrane"> membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20water" title=" waste water"> waste water</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20metal%20ions" title=" heavy metal ions"> heavy metal ions</a>, <a href="https://publications.waset.org/abstracts/search?q=adsorption" title=" adsorption"> adsorption</a> </p> <a href="https://publications.waset.org/abstracts/42027/optimization-of-chitosan-membrane-production-parameters-for-zinc-ion-adsorption" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42027.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">387</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7266</span> Evaluation of the Total Antioxidant Capacity and Total Phenol Content of the Wild and Cultivated Variety of Aegle Marmelos (L) Correa Leaves Used in the Treatment of Diabetes </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=V.%20Nigam">V. Nigam</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Nambiar"> V. Nambiar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aegle Marmelos leaf has been used as a remedy for various gastrointestinal infections and lowering blood sugar level in traditional system of medicine in India due to the presence of various constituents such as flavonoids, tannins and alkaloids (eg. Aegelin, Marmelosin, Luvangetin).The objective of the present study was to evaluate the total antioxidant activity, total and individual phenol content of the wild and cultivated variety of Aegle marmelos leaves to assess the role of this plant in ethanomedicine in India. The methanolic extracts of the leaves were screened for total antioxidant capacity through Ferric Reducing Antioxidant Potential (FRAP) and 1, 1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging assay; Total Phenol content (TPC) through spectrophotometric technique based on Folin Ciocalteau assay and for qualitative estimation of phenols, High performance Liquid Chromatography was used. The TPC of wild and cultivated variety was 7.6% and 6.5% respectively whereas HPLC analysis for quantification of individual polyphenol revealed the presence of gallic acid, chlorogenic acid and Ferullic acid in wild variety whereas gallic acid, Ferullic acid and pyrocatechol in cultivated variety. FRAP values and IC 50 value (DPPH) for wild and cultivated variety was 14.65 μmol/l and 11.80μmol/l; 437 μg/ml and 620μg/ml respectively and thus it can be used as potential inhibitor of free radicals. The wild variety was having more antioxidant capacity than the cultivated one it can be exploited further for its therapeutic application. As Aegle marmelos is rich in antioxidant, it can be used as food additives to delay the oxidative deterioration of foods and as nutraceutical in medicinal formulation against degenerative diseases like diabetes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antioxidant%20activity" title="antioxidant activity">antioxidant activity</a>, <a href="https://publications.waset.org/abstracts/search?q=aegle%20marmelos" title=" aegle marmelos"> aegle marmelos</a>, <a href="https://publications.waset.org/abstracts/search?q=antidiabetic" title=" antidiabetic"> antidiabetic</a>, <a href="https://publications.waset.org/abstracts/search?q=nutraceutical" title=" nutraceutical"> nutraceutical</a> </p> <a href="https://publications.waset.org/abstracts/21443/evaluation-of-the-total-antioxidant-capacity-and-total-phenol-content-of-the-wild-and-cultivated-variety-of-aegle-marmelos-l-correa-leaves-used-in-the-treatment-of-diabetes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21443.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">373</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7265</span> A Review on Bearing Capacity Factor Nγ of Foundations with Different Shapes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Ziaie%20Moayed">R. Ziaie Moayed</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Taghvamanesh"> S. Taghvamanesh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> So far several methods by different researchers have been developed in order to calculate the bearing capacity factors of foundations and retaining walls. In this paper, the bearing capacity factor Ny (shape factor) for different types of foundation have been investigated. The formula for bearing capacity on c–φ–γ soil can still be expressed by Terzaghi’s equation except that the bearing capacity factor Ny depends on the surcharge ratio, and friction angle φ. Many empirical definitions have been used for measurement of the bearing capacity factors N <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bearing%20capacity" title="bearing capacity">bearing capacity</a>, <a href="https://publications.waset.org/abstracts/search?q=bearing%20capacity%20factor%20N%CE%B3" title=" bearing capacity factor Nγ"> bearing capacity factor Nγ</a>, <a href="https://publications.waset.org/abstracts/search?q=irregular%20foundations" title=" irregular foundations"> irregular foundations</a>, <a href="https://publications.waset.org/abstracts/search?q=shape%20factor" title=" shape factor"> shape factor</a> </p> <a href="https://publications.waset.org/abstracts/134905/a-review-on-bearing-capacity-factor-ngh-of-foundations-with-different-shapes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/134905.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">150</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7264</span> Characterization of Sunflower Oil for Illustration of Its Components</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mehwish%20Shahzadi">Mehwish Shahzadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sunflower is cultivated all over the world not only as an ornament plant but also for the purpose of getting oil. It is the third most cultivated plant in the history because its oil considered best for health. The present study deals with the preparation of sunflower oil from commercial seed sample which was obtained from local market. The physicochemical properties of the oil were determined which included saponification value, acid value and ester value. Results showed that saponification value of the oil was 191.675, acid value was 0.64 and ester value to be 191.035 for the sample under observation. GC-MS analysis of sunflower oil was carried out to check its composition. Oleic acid was determined with linoleic acid and isopropyl palmitate. It represents the presence of three major components of sunflower oil. Other compounds detected were, p-toluylic acid, butylated hydroxytoluene, 1,2-benzenedicarboxylic acid, benzoic acid, 2,4,6-trimethyl-, 2,4,6-trimethylphenyl ester and 2,4-decadienal, (E,E). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=GC-MS" title="GC-MS">GC-MS</a>, <a href="https://publications.waset.org/abstracts/search?q=oleic%20acid" title=" oleic acid"> oleic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=saponification%20value" title=" saponification value"> saponification value</a>, <a href="https://publications.waset.org/abstracts/search?q=sunflower%20oil" title=" sunflower oil"> sunflower oil</a> </p> <a href="https://publications.waset.org/abstracts/42725/characterization-of-sunflower-oil-for-illustration-of-its-components" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42725.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">318</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7263</span> Comparison of Punicic Acid Amounts in Abdominal Fat Farm Feeding Hy-Line Chickens</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ozcan%20Baris%20Citil">Ozcan Baris Citil</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehmet%20Akoz"> Mehmet Akoz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Effects of fatty acid composition and punicic acid contents of abdominal fat of Hy-line hens were investigated by the gas chromatographic method. Total 30 different fatty acids were determined in fatty acid compositions of eggs. These fatty acids were varied between C 8 to C 22. The punicic acid content of abdominal fats analysed was found to be higher percentages in the 90th day than those of 30th and 60th day. At the end of the experiment, total punicic acid contents of abdominal fats were significantly increased. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fatty%20acids" title="fatty acids">fatty acids</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20chromatography" title=" gas chromatography"> gas chromatography</a>, <a href="https://publications.waset.org/abstracts/search?q=punicic%20acid" title=" punicic acid"> punicic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=abdominal%20fats" title=" abdominal fats "> abdominal fats </a> </p> <a href="https://publications.waset.org/abstracts/47496/comparison-of-punicic-acid-amounts-in-abdominal-fat-farm-feeding-hy-line-chickens" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47496.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">347</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7262</span> Delivery of Positively Charged Proteins Using Hyaluronic Acid Microgels</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Elaheh%20Jooybar">Elaheh Jooybar</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20J.%20Abdekhodaie"> Mohammad J. Abdekhodaie</a>, <a href="https://publications.waset.org/abstracts/search?q=Marcel%20Karperien"> Marcel Karperien</a>, <a href="https://publications.waset.org/abstracts/search?q=Pieter%20J.%20Dijkstra"> Pieter J. Dijkstra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, hyaluronic acid (HA) microgels were developed for the goal of protein delivery. First, a hyaluronic acid-tyramine conjugate (HA-TA) was synthesized with a degree of substitution of 13 TA moieties per 100 disaccharide units. Then, HA-TA microdroplets were produced using a water in oil emulsion method and crosslinked in the presence of horseradish peroxidase (HRP) and hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>). Loading capacity and the release kinetics of lysozyme and BSA, as model proteins, were investigated. It was shown that lysozyme, a cationic protein, can be incorporated efficiently in the HA microgels, while the loading efficiency for BSA, as a negatively charged protein, is low. The release profile of lysozyme showed a sustained release over a period of one month. The results demonstrated that the HA-TA microgels are a good carrier for spatial delivery of cationic proteins for biomedical applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microgel" title="microgel">microgel</a>, <a href="https://publications.waset.org/abstracts/search?q=inverse%20emulsion" title=" inverse emulsion"> inverse emulsion</a>, <a href="https://publications.waset.org/abstracts/search?q=protein%20delivery" title=" protein delivery"> protein delivery</a>, <a href="https://publications.waset.org/abstracts/search?q=hyaluronic%20acid" title=" hyaluronic acid"> hyaluronic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=crosslinking" title=" crosslinking"> crosslinking</a> </p> <a href="https://publications.waset.org/abstracts/94342/delivery-of-positively-charged-proteins-using-hyaluronic-acid-microgels" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/94342.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">169</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7261</span> Quality Evaluation of Grape Seed Oils of the Ionian Islands Based on GC-MS and Other Spectroscopic Techniques </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=I.%20Oikonomou">I. Oikonomou</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Lappa"> I. Lappa</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Daferera"> D. Daferera</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Kanakis"> C. Kanakis</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Kiokakis"> L. Kiokakis</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Skordilis"> K. Skordilis</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Avramouli"> A. Avramouli</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Kalli"> E. Kalli</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Pappas"> C. Pappas</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20A.%20Tarantilis"> P. A. Tarantilis</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Skotti"> E. Skotti</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Grape seeds are waste products of wineries and often referred to as an important agricultural and industrial waste product with the potential to be used in pharmaceutical, food, and cosmetic applications. In this study, grape seed oil from traditional Ionian varieties was examined for the determination of the quality and the characteristics of each variety. Initially, the fatty acid methyl ester (FAME) profiles were analyzed using Gas Chromatography-Mass Spectrometry, after transesterification. Furthermore, other quality parameters of the grape seed oils were determined by Spectroscopy techniques, UV-Vis and Raman included. Moreover, the antioxidant capacity of the oil was measured by 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) and 2,2-Diphenyl-1-picrylhydrazyl (DPPH) assays and their antioxidant capacity expressed in Trolox equivalents. K and ΔΚ indices were measured in 232, 268, 270 nm, as an oil quality index. The results indicate that the air-dried grape seed total oil content ranged from 5.26 to 8.77% w/w, which is in accordance with the other grape seed varieties tested in similar studies. The composition of grape seed oil is predominated with linoleic and oleic fatty acids, with the linoleic fatty acid ranging from 53.68 to 69.95% and both the linoleic and oleic fatty acids totaling 78-82% of FAMEs, which is analogous to the fatty acid composition of safflower oil. The antioxidant assays ABTS and DPPH scored high, exhibiting that the oils have potential in the cosmetic and culinary businesses. Above that, our results demonstrate that Ionian grape seed oils have prospects that can go further than cosmetic or culinary use, into the pharmaceuticals industry. Finally, the reclamation of grape seeds from wineries waste stream is in accordance with the bio-economy strategic framework and contributes to environmental protection. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antioxidant%20capacity" title="antioxidant capacity">antioxidant capacity</a>, <a href="https://publications.waset.org/abstracts/search?q=fatty%20acid%20methyl%20esters" title=" fatty acid methyl esters"> fatty acid methyl esters</a>, <a href="https://publications.waset.org/abstracts/search?q=grape%20seed%20oil" title=" grape seed oil"> grape seed oil</a>, <a href="https://publications.waset.org/abstracts/search?q=GC-MS" title=" GC-MS"> GC-MS</a> </p> <a href="https://publications.waset.org/abstracts/96975/quality-evaluation-of-grape-seed-oils-of-the-ionian-islands-based-on-gc-ms-and-other-spectroscopic-techniques" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/96975.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">204</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7260</span> Proximate Analysis of Muscle of Helix aspersa Living in Konya, Turkey</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ozcan%20Baris%20Citil">Ozcan Baris Citil</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of the present study is the determination of the effects of variations in the proximate analysis, cholesterol content and fatty acid compositions of Helix aspersa. Garden snails (Helix aspersa) were picked up by hand from the Central Anatolia Region of Turkey, in autumn (November) in 2015. Fatty acid methyl esters (FAMEs) and cholesterol analysis were analyzed by gas chromatography (GC). The protein contents of snail muscle were determined with Kjeldahl distillation units. Statistical comparisons were made by using SPSS Software (version 16.0). Thirty different fatty acids of different saturation levels were detected. As the predominant fatty acids, stearic acid (C18:0), oleic acid (C18:1ω9), linoleic acid (C18:2ω6), palmitic acid (C16:0), arachidonic acid (C20:4ω6), eicosadienoic acid (C20:2) and linolenic acid (C18:3ω3) were found in Helix aspersa. Palmitic acid (C16:0) was identified as the major SFA in autumn. Linoleic acid (C18:2ω6), eicosadienoic acid (C20:2) and arachidonic acid (C20:4ω6) have the highest levels among the PUFAs. In the present study, ω3 were found 5.48% in autumn. Linolenic acid and omega-3 fatty acid amounts in the autumn decreased significantly but cholesterol content was not affected in Helix aspersa in autumn (November) in 2015. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Helix%20aspersa" title="Helix aspersa">Helix aspersa</a>, <a href="https://publications.waset.org/abstracts/search?q=fatty%20acid" title=" fatty acid"> fatty acid</a>, <a href="https://publications.waset.org/abstracts/search?q=SFA" title=" SFA"> SFA</a>, <a href="https://publications.waset.org/abstracts/search?q=PUFA" title=" PUFA"> PUFA</a>, <a href="https://publications.waset.org/abstracts/search?q=cholesterol" title=" cholesterol"> cholesterol</a> </p> <a href="https://publications.waset.org/abstracts/47347/proximate-analysis-of-muscle-of-helix-aspersa-living-in-konya-turkey" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47347.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">338</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7259</span> An Integrated Mathematical Approach to Measure the Capacity of MMTS </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bayan%20Bevrani">Bayan Bevrani</a>, <a href="https://publications.waset.org/abstracts/search?q=Robert%20L.%20Burdett"> Robert L. Burdett</a>, <a href="https://publications.waset.org/abstracts/search?q=Prasad%20K.%20D.%20V.%20Yarlagadda"> Prasad K. D. V. Yarlagadda</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This article focuses upon multi-modal transportation systems (MMTS) and the issues surrounding the determination of system capacity. For that purpose a multi-objective framework is advocated that integrates all the different modes and many different competing capacity objectives. This framework is analytical in nature and facilitates a variety of capacity querying and capacity expansion planning. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=analytical%20model" title="analytical model">analytical model</a>, <a href="https://publications.waset.org/abstracts/search?q=capacity%20analysis" title=" capacity analysis"> capacity analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=capacity%20query" title=" capacity query"> capacity query</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-modal%20transportation%20system%20%28MMTS%29" title=" multi-modal transportation system (MMTS)"> multi-modal transportation system (MMTS)</a> </p> <a href="https://publications.waset.org/abstracts/40444/an-integrated-mathematical-approach-to-measure-the-capacity-of-mmts" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40444.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">359</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7258</span> Determination of Physicochemical Properties, Bioaccessibility of Phenolics and Antioxidant Capacity of Mineral Enriched Linden Herbal Tea Beverage</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Senem%20Suna">Senem Suna</a>, <a href="https://publications.waset.org/abstracts/search?q=Canan%20Ece%20Tamer"> Canan Ece Tamer</a>, <a href="https://publications.waset.org/abstracts/search?q=%C3%96mer%20Utku%20%C3%87opur"> Ömer Utku Çopur</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this research, dried linden (<em>Tilia argentea</em>) leaves and blossoms were used as a raw material for mineral enriched herbal tea beverage production. For this aim, %1 dried linden was infused with boiling water (100 °C) for 5 minutes. After cooling, sucrose, citric acid, ascorbic acid, natural lemon flavor and natural mineral water were added. Beverage samples were plate filtered, filled into 200-mL glass bottles, capped then pasteurized at 98 °C for 15 minutes. Water soluble dry matter, titratable acidity, ascorbic acid, pH, minerals (Fe, Ca, Mg, K, Na), color (L*, a*, b*), turbidity, bioaccessible phenolics and antioxidant capacity were analyzed. Water soluble dry matter, titratable acidity, and ascorbic were determined as 7.66±0.28 g/100 g, 0.13±0.00 g/100 mL, and 19.42±0.62 mg/100 mL, respectively. pH was measured as 3.69. Fe, Ca, Mg, K and Na contents of the beverage were determined as 0.12±0.00, 115.48±0.05, 34.72±0.14, 48.67±0.43 and 85.72±1.01 mg/L, respectively. Color was measured as 13.63±0.05, -4.33±0.05, and 3.06±0.05 for <em>L*, a*,</em> and <em>b*</em> values. Turbidity was determined as 0.69±0.07 NTU. Bioaccessible phenolics were determined as 312.82±5.91 mg GAE/100 mL. Antioxidant capacities of chemical (MetOH:H<sub>2</sub>O:HCl) and physiological extracts (in vitro digestive enzymatic extraction) with DPPH (27.59±0.53 and 0.17±0.02 μmol trolox/mL), FRAP (21.01±0.97 and 13.27±0.19 μmol trolox/mL) and CUPRAC (44.71±9.42 and 2.80±0.64 μmol trolox/mL) methods were also evaluated. As a result, enrichment with natural mineral water was proposed for the development of functional and nutritional values together with a good potential for commercialization. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=linden" title="linden">linden</a>, <a href="https://publications.waset.org/abstracts/search?q=herbal%20tea%20beverage" title=" herbal tea beverage"> herbal tea beverage</a>, <a href="https://publications.waset.org/abstracts/search?q=bioaccessibility" title=" bioaccessibility"> bioaccessibility</a>, <a href="https://publications.waset.org/abstracts/search?q=antioxidant%20capacity" title=" antioxidant capacity"> antioxidant capacity</a> </p> <a href="https://publications.waset.org/abstracts/85375/determination-of-physicochemical-properties-bioaccessibility-of-phenolics-and-antioxidant-capacity-of-mineral-enriched-linden-herbal-tea-beverage" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85375.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">174</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7257</span> Insight into Enhancement of CO2 Capture by Clay Minerals </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mardin%20Abdalqadir">Mardin Abdalqadir</a>, <a href="https://publications.waset.org/abstracts/search?q=Paul%20Adzakro"> Paul Adzakro</a>, <a href="https://publications.waset.org/abstracts/search?q=Tannaz%20Pak"> Tannaz Pak</a>, <a href="https://publications.waset.org/abstracts/search?q=Sina%20%20Rezaei%20Gomari"> Sina Rezaei Gomari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Climate change and global warming recently became significant concerns due to the massive emissions of greenhouse gases into the atmosphere, predominantly CO2 gases. Therefore, it is necessary to find sustainable and inexpensive methods to capture the greenhouse gasses and protect the environment for live species. The application of naturally available and cheap adsorbents of carbon such as clay minerals became a great interest. However, the minerals prone to low storage capacity despite their high affinity to adsorb carbon. This paper aims to explore ways to improve the pore volume and surface area of two selected clay minerals, ‘montmorillonite and kaolinite’ by acid treatment to overcome their low storage capacity. Montmorillonite and kaolinite samples were treated with different sulfuric acid concentrations (0.5, 1.2 and 2.5 M) at 40 °C for 8 hours to achieve the above aim. The grain size distribution and morphology of clay minerals before and after acid treatment were explored with Scanning Electron Microscope to evaluate surface area improvement. The ImageJ software was used to find the porosity and pore volume of treated and untreated clay samples. The structure of the clay minerals was also analyzed using an X-ray Diffraction machine. The results showed that the pore volume and surface area were increased substantially through acid treatment, which speeded up the rate of carbon dioxide adsorption. XRD pattern of kaolinite did not change after sulfuric acid treatment, which indicates that acid treatment would not affect the structure of kaolinite. It was also discovered that kaolinite had a higher pore volume and porosity than montmorillonite before and after acid treatment. For example, the pore volume of untreated kaolinite was equal to 30.498 um3 with a porosity of 23.49%. Raising the concentration of acid from 0.5 M to 2.5 M in 8 hours’ time reaction led to increased pore volume from 30.498 um3 to 34.73 um3. The pore volume of raw montmorillonite was equal to 15.610 um3 with a porosity of 12.7%. When the acid concentration was raised from 0.5 M to 2.5 M for the same reaction time, pore volume also increased from 15.610 um3 to 20.538 um3. However, montmorillonite had a higher specific surface area than kaolinite. This study concludes that clay minerals are inexpensive and available material sources to model the realistic conditions and apply the results of carbon capture to prevent global warming, which is one of the most critical and urgent problems in the world. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acid%20treatment" title="acid treatment">acid treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=kaolinite" title=" kaolinite"> kaolinite</a>, <a href="https://publications.waset.org/abstracts/search?q=montmorillonite" title=" montmorillonite"> montmorillonite</a>, <a href="https://publications.waset.org/abstracts/search?q=pore%20volume" title=" pore volume"> pore volume</a>, <a href="https://publications.waset.org/abstracts/search?q=porosity" title=" porosity"> porosity</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20area" title=" surface area"> surface area</a> </p> <a href="https://publications.waset.org/abstracts/136993/insight-into-enhancement-of-co2-capture-by-clay-minerals" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/136993.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">169</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7256</span> Amino Acid Profile, Protein Digestibility, Antioxidant and Functional Properties of Protein Concentrate of Local Varieties (Kwandala, Yardass, Jeep, and Jamila) of Rice Brands from Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=C.%20E.%20Chinma">C. E. Chinma</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20O.%20Azeez"> S. O. Azeez</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20C.%20Anuonye"> J. C. Anuonye</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20B.%20Ocheme"> O. B. Ocheme</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20M.%20Yakubu"> C. M. Yakubu</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20James"> S. James</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20U.%20Ohuoba"> E. U. Ohuoba</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20A.%20Baba"> I. A. Baba </a> </p> <p class="card-text"><strong>Abstract:</strong></p> There is growing interest in the use of rice bran protein in food formulation due to its hypoallergenic protein, high nutritional value and health promoting potentials. For the first time, the amino acid profile, protein digestibility, antioxidant, and functional properties of protein concentrate from some local varieties of rice bran from Nigeria were studied for possible food applications. Protein concentrates were prepared from rice bran and analysed using standard methods. Results showed that protein content of Kwandala, Yardass, Jeep, and Jamila were 69.24%, 69.97%, 68.73%, and 71.62%, respectively while total essential amino acid were 52.71, 53.03, 51.86, and 55.75g/100g protein, respectively. In vitro protein digestibility of protein concentrate from Kwandala, Yardass, Jeep and Jamila were 90.70%, 91.39%, 90.57% and 91.63% respectively. DPPH radical inhibition of protein from Kwandala, Yardass, Jeep, and Jamila were 48.15%, 48.90%, 47.56%, and 53.29%, respectively while ferric reducing ability power were 0.52, 0.55, 0.47 and 0.67mmol TE per gram, respectively. Protein concentrate from Jamila had higher onset (92.57oC) and denaturation temperature (102.13oC), and enthalpy (0.72J/g) than Jeep (91.46oC, 101.76oC, and 0.68J/g, respectively), Kwandala (90.32oC, 100.54oC and 0.57J/g, respectively), and Yardass (88.94oC, 99.45oC, and 0.51J/g, respectively). In vitro digestibility of protein from Kwandala, Yardas, Jeep, and Jamila were 90.70%, 91.39%, 90.57% and 91.63% respectively. Oil absorption capacity of Kwandala, Yardass, Jeep, and Jamila were 3.61, 3.73, 3.40, and 4.23g oil/g sample respectively, while water absorption capacity were 4.19, 4.32, 3.55 and 4.48g water/g sample, respectively. Protein concentrates had low bulk density (0.37-0.43g/ml). Protein concentrate from Jamila rice bran had the highest foam capacity (37.25%), followed by Yardass (34.20%), Kwandala (30.14%) and Jeep (28.90%). Protein concentrates showed low emulsifying and gelling capacities. In conclusion, protein concentrate prepared from these local rice bran varieties could serve as functional ingredients in food formulations and for enriching low protein foods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rice%20bran%20protein" title="rice bran protein">rice bran protein</a>, <a href="https://publications.waset.org/abstracts/search?q=amino%20acid%20profile" title=" amino acid profile"> amino acid profile</a>, <a href="https://publications.waset.org/abstracts/search?q=protein%20digestibility" title=" protein digestibility"> protein digestibility</a>, <a href="https://publications.waset.org/abstracts/search?q=antioxidant%20and%20functional%20properties" title=" antioxidant and functional properties"> antioxidant and functional properties</a> </p> <a href="https://publications.waset.org/abstracts/17730/amino-acid-profile-protein-digestibility-antioxidant-and-functional-properties-of-protein-concentrate-of-local-varieties-kwandala-yardass-jeep-and-jamila-of-rice-brands-from-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17730.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">372</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7255</span> Cardioprotective Effect of Oleanolic Acid and Urosolic Acid against Doxorubicin-Induced Cardiotoxicity in Rats</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sameer%20N.%20Goyal">Sameer N. Goyal</a>, <a href="https://publications.waset.org/abstracts/search?q=Chandragauda%20R.%20Patil"> Chandragauda R. Patil</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Oleanolic acid (3/3-hydroxy-olea-12-en-28-oic acid) and its isomer, Ursolic acid (38-hydroxy-urs-12-en-28-oic acid) are triterpenoids compounds which exist widely in plant kingdom in the free acid form or as glycosidic triterpenoids saponins. The aim of the study is to evaluate intravenously administered oleanolic acid and ursolic acid in doxorubicin induced cardiotoxicity. Cardiotoxicity was induced in albino wistar rat with single intravenous injection of doxorubicin at dose of 67.75mg/kg i.v for 48 hrs at 12 hrs interval following doxorubicin administration in the same model cardioprotective effect of amifostine (90 mg/kg i.v, single dose prior 30 min before doxorubicin administration) was evaluated as standard treatment. Induction of cardiotoxicity was confirmed by rise in cardiac markers in serum such as CK–MB, LDH and also by electrocardiographically. The doxorubicin treated group significantly increased in QT interval, serum CK-MB, serum LDH, SGOT, SGPT and antioxidant parameter. Both the treatment group showed significant protective effect on Hemodynamic, electrocardiographic, biochemical, and antioxidant parameters. The oleanolic acid showed slight protective effect in histological lesions in doxorubicin induced cardiotoxicity. Hence, the results indicate that Oleanolic acid has more cardioprotective potential than ursolic acid against doxorubicin induced cardiotoxicity in rats. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cardioprotection" title="cardioprotection">cardioprotection</a>, <a href="https://publications.waset.org/abstracts/search?q=doxorubicin" title=" doxorubicin"> doxorubicin</a>, <a href="https://publications.waset.org/abstracts/search?q=oleanolic%20acid" title=" oleanolic acid"> oleanolic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=ursolic%20acid" title=" ursolic acid"> ursolic acid</a> </p> <a href="https://publications.waset.org/abstracts/23229/cardioprotective-effect-of-oleanolic-acid-and-urosolic-acid-against-doxorubicin-induced-cardiotoxicity-in-rats" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23229.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">528</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7254</span> The Catalytic Properties of PtSn/Al2O3 for Acetic Acid Hydrogenation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mingchuan%20Zhou">Mingchuan Zhou</a>, <a href="https://publications.waset.org/abstracts/search?q=Haitao%20Zhang"> Haitao Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Hongfang%20Ma"> Hongfang Ma</a>, <a href="https://publications.waset.org/abstracts/search?q=Weiyong%20Ying"> Weiyong Ying</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Alumina supported platinum and tin catalysts with different loadings of Pt and Sn were prepared and characterized by low temperature N<sub>2</sub> adsorption/desorption, H<sub>2</sub>-temperature programed reduction and CO pulse chemisorption. Pt and Sn below 1% loading were suitable for acetic acid hydrogenation. The best performance over 0.75Pt1Sn/Al<sub>2</sub>O<sub>3</sub> can reach 87.55% conversion of acetic acid and 47.39% selectivity of ethanol. The operating conditions of acetic acid hydrogenation over 1Pt1Sn/Al<sub>2</sub>O<sub>3</sub> were investigated. High reaction temperature can enhance the conversion of acetic acid, but it decreased total selectivity of ethanol and acetyl acetate. High pressure and low weight hourly space velocity were beneficial to both conversion of acetic acid and selectivity to ethanol. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acetic%20acid" title="acetic acid">acetic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogenation" title=" hydrogenation"> hydrogenation</a>, <a href="https://publications.waset.org/abstracts/search?q=operating%20condition" title=" operating condition"> operating condition</a>, <a href="https://publications.waset.org/abstracts/search?q=PtSn" title=" PtSn"> PtSn</a> </p> <a href="https://publications.waset.org/abstracts/46773/the-catalytic-properties-of-ptsnal2o3-for-acetic-acid-hydrogenation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46773.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">356</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7253</span> Irrigation and Thermal Buffering Mathematical Modeling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yara%20Elborolosy">Yara Elborolosy</a>, <a href="https://publications.waset.org/abstracts/search?q=Harsho%20Sanyal"> Harsho Sanyal</a>, <a href="https://publications.waset.org/abstracts/search?q=Joseph%20Cataldo"> Joseph Cataldo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Two methods of irrigation, drip and sprinkler, were studied to determine the response of the Javits green roof to irrigation. The control study were dry unirrigated plots. Drip irrigation consisted of irrigation tubes running through the green roof that would water the soil throughout, and sprinkler irrigation used a sprinkler system to irrigate the green roof from above. In all cases, the irrigated roofs had increased the soil moisture, reduced temperatures of both the upper and lower surfaces, reduced growing medium temperatures and reduced air temperatures above the green roof relative to the unirrigated roof. The buffered temperature fluctuations were also studied via air conditioner energy consumption. There was a 28% reductionin air conditioner energy consumption and 33% reduction in overall energy consumption between dry and irrigated plots. Values of thermal resistance or S were determined for accuracy, and for this study, there was little change which is ideal. A series of infra-red and thermal probe measurements were used to determine temperatures in the air and sedum. It was determined that the sprinkler irrigation did a better job than the drip irrigation in keeping cooler temperatures within the green roof. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=green%20infrastructure" title="green infrastructure">green infrastructure</a>, <a href="https://publications.waset.org/abstracts/search?q=black%20roof" title=" black roof"> black roof</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20buffering" title=" thermal buffering"> thermal buffering</a>, <a href="https://publications.waset.org/abstracts/search?q=irrigation" title=" irrigation"> irrigation</a> </p> <a href="https://publications.waset.org/abstracts/169589/irrigation-and-thermal-buffering-mathematical-modeling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/169589.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">70</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7252</span> Fatty Acid Composition and Therapeutic Effects of Beebread</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sibel%20Silici">Sibel Silici</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Palynological spectrum, proximate and fatty acids composition of eight beebread samples obtained from different geographical origins were determined. Beebread moisture contents varied between 11.4-15.9 %, ash 1.9-2.54 %, fat 5.9-11.5 %, and protein between 14.8-24.3 %. To our knowledge, this is the first study investigating fatty acids (FAs) composition of the selected monofloral beebreads. A total of thirty-seven FAs were identified. Of these (9Z, 12Z, 15Z)-octadeca-9, 12, 15-trienoic acid, (9Z, 12Z)-octadeca-9, 12-dienoic acid, hexadecanoic acid, (Z)-octadec-9-enoic acid, (Z)-icos-11-enoic acid and octadecanoic acid were the most abundant in all the samples. Cotton beebread contained the highest level of ω-3 FAs, 41.3 %. Unsaturated/saturated FAs ratios ranged between 1.38 and 2.39 indicating that beebread is a good source of unsaturated FAs. The pollen, proximate and FAs composition of beebread samples of different botanical and geographical origins varied significantly. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bee%20bread" title="bee bread">bee bread</a>, <a href="https://publications.waset.org/abstracts/search?q=fatty%20acid%20composition" title=" fatty acid composition"> fatty acid composition</a>, <a href="https://publications.waset.org/abstracts/search?q=proximate%20composition" title=" proximate composition"> proximate composition</a>, <a href="https://publications.waset.org/abstracts/search?q=pollen%20analysis" title=" pollen analysis"> pollen analysis</a> </p> <a href="https://publications.waset.org/abstracts/52901/fatty-acid-composition-and-therapeutic-effects-of-beebread" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52901.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">260</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7251</span> Optimization of Diluted Organic Acid Pretreatment on Rice Straw Using Response Surface Methodology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rotchanaphan%20Hengaroonprasan">Rotchanaphan Hengaroonprasan</a>, <a href="https://publications.waset.org/abstracts/search?q=Malinee%20Sriariyanun"> Malinee Sriariyanun</a>, <a href="https://publications.waset.org/abstracts/search?q=Prapakorn%20Tantayotai"> Prapakorn Tantayotai</a>, <a href="https://publications.waset.org/abstracts/search?q=Supacharee%20Roddecha"> Supacharee Roddecha</a>, <a href="https://publications.waset.org/abstracts/search?q=Kraipat%20Cheenkachorn"> Kraipat Cheenkachorn</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lignocellolusic material is a substance that is resistant to be degraded by microorganisms or hydrolysis enzymes. To be used as materials for biofuel production, it needs pretreatment process to improve efficiency of hydrolysis. In this work, chemical pretreatments on rice straw using three diluted organic acids, including acetic acid, citric acid, oxalic acid, were optimized. Using Response Surface Methodology (RSM), the effect of three pretreatment parameters, acid concentration, treatment time, and reaction temperature, on pretreatment efficiency were statistically evaluated. The results indicated that dilute oxalic acid pretreatment led to the highest enhancement of enzymatic saccharification by commercial cellulase and yielded sugar up to 10.67 mg/ml when using 5.04% oxalic acid at 137.11 oC for 30.01 min. Compared to other acid pretreatment by acetic acid, citric acid, and hydrochloric acid, the maximum sugar yields are 7.07, 6.30, and 8.53 mg/ml, respectively. Here, it was demonstrated that organic acids can be used for pretreatment of lignocellulosic materials to enhance of hydrolysis process, which could be integrated to other applications for various biorefinery processes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lignocellolusic%20biomass" title="lignocellolusic biomass">lignocellolusic biomass</a>, <a href="https://publications.waset.org/abstracts/search?q=pretreatment" title=" pretreatment"> pretreatment</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20acid%20response%20surface%20methodology" title=" organic acid response surface methodology"> organic acid response surface methodology</a>, <a href="https://publications.waset.org/abstracts/search?q=biorefinery" title=" biorefinery"> biorefinery</a> </p> <a href="https://publications.waset.org/abstracts/21515/optimization-of-diluted-organic-acid-pretreatment-on-rice-straw-using-response-surface-methodology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21515.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">654</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7250</span> Network Coding with Buffer Scheme in Multicast for Broadband Wireless Network</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gunasekaran%20Raja">Gunasekaran Raja</a>, <a href="https://publications.waset.org/abstracts/search?q=Ramkumar%20Jayaraman"> Ramkumar Jayaraman</a>, <a href="https://publications.waset.org/abstracts/search?q=Rajakumar%20Arul"> Rajakumar Arul</a>, <a href="https://publications.waset.org/abstracts/search?q=Kottilingam%20Kottursamy"> Kottilingam Kottursamy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Broadband Wireless Network (BWN) is the promising technology nowadays due to the increased number of smartphones. Buffering scheme using network coding considers the reliability and proper degree distribution in Worldwide interoperability for Microwave Access (WiMAX) multi-hop network. Using network coding, a secure way of transmission is performed which helps in improving throughput and reduces the packet loss in the multicast network. At the outset, improved network coding is proposed in multicast wireless mesh network. Considering the problem of performance overhead, degree distribution makes a decision while performing buffer in the encoding / decoding process. Consequently, BuS (Buffer Scheme) based on network coding is proposed in the multi-hop network. Here the encoding process introduces buffer for temporary storage to transmit packets with proper degree distribution. The simulation results depend on the number of packets received in the encoding/decoding with proper degree distribution using buffering scheme. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=encoding%20and%20decoding" title="encoding and decoding">encoding and decoding</a>, <a href="https://publications.waset.org/abstracts/search?q=buffer" title=" buffer"> buffer</a>, <a href="https://publications.waset.org/abstracts/search?q=network%20coding" title=" network coding"> network coding</a>, <a href="https://publications.waset.org/abstracts/search?q=degree%20distribution" title=" degree distribution"> degree distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=broadband%20wireless%20networks" title=" broadband wireless networks"> broadband wireless networks</a>, <a href="https://publications.waset.org/abstracts/search?q=multicast" title=" multicast"> multicast</a> </p> <a href="https://publications.waset.org/abstracts/48856/network-coding-with-buffer-scheme-in-multicast-for-broadband-wireless-network" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48856.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">410</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=acid%20buffering%20capacity&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=acid%20buffering%20capacity&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=acid%20buffering%20capacity&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=acid%20buffering%20capacity&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=acid%20buffering%20capacity&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=acid%20buffering%20capacity&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=acid%20buffering%20capacity&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=acid%20buffering%20capacity&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=acid%20buffering%20capacity&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=acid%20buffering%20capacity&page=242">242</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=acid%20buffering%20capacity&page=243">243</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=acid%20buffering%20capacity&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>