CINXE.COM
Search results for: AgNPs-SA nanocomposite
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: AgNPs-SA nanocomposite</title> <meta name="description" content="Search results for: AgNPs-SA nanocomposite"> <meta name="keywords" content="AgNPs-SA nanocomposite"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="AgNPs-SA nanocomposite" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="AgNPs-SA nanocomposite"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 357</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: AgNPs-SA nanocomposite</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">357</span> Effect of Carbon Nanotubes on Nanocomposite from Nanofibrillated Cellulose</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Z.%20Shazana">M. Z. Shazana</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Rosazley"> R. Rosazley</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Izzati"> M. A. Izzati</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20W.%20Fareezal"> A. W. Fareezal</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Rushdan"> I. Rushdan</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20B.%20Suriani"> A. B. Suriani</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Zakaria"> S. Zakaria</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There is an increasing interest in the development of flexible energy storage for application of Carbon Nanotubes and nanofibrillated cellulose (NFC). In this study, nanocomposite is consisting of Carbon Nanotube (CNT) mixed with suspension of nanofibrillated cellulose (NFC) from Oil Palm Empty Fruit Bunch (OPEFB). The use of Carbon Nanotube (CNT) as additive nanocomposite was improved the conductivity and mechanical properties of nanocomposite from nanofibrillated cellulose (NFC). The nanocomposite were characterized for electrical conductivity and mechanical properties in uniaxial tension, which were tensile to measure the bond of fibers in nanocomposite. The processing route is environmental friendly which leads to well-mixed structures and good results as well. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20nanotube%20%28CNT%29" title="carbon nanotube (CNT)">carbon nanotube (CNT)</a>, <a href="https://publications.waset.org/abstracts/search?q=nanofibrillated%20cellulose%20%28NFC%29" title=" nanofibrillated cellulose (NFC)"> nanofibrillated cellulose (NFC)</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=electrical%20conductivity" title=" electrical conductivity"> electrical conductivity</a> </p> <a href="https://publications.waset.org/abstracts/16843/effect-of-carbon-nanotubes-on-nanocomposite-from-nanofibrillated-cellulose" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16843.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">334</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">356</span> Starch Incorporated Hydroxyapatite/Chitin Nanocomposite as a Novel Bone Construct</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Reshma%20Jolly">Reshma Jolly</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Shakir"> Mohammad Shakir</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Shoeb%20Khan"> Mohammad Shoeb Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Noor%20E.%20Iram"> Noor E. Iram</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A nanocomposite system integrating hydroxyapatite, chitin and starch (n-HA/CT/ST) has been synthesized via co-precipitation approach at room temperature, addressing the issues of biocompatibility, mechanical strength and cytotoxicity required for Bone tissue engineering. The interactions, crystallite size and surface morphology against n-HA/CT (nano-hydroxyapatite/chitin) nanocomposite have been obtained by correlating and comparing the results of FTIR, SEM, TEM and XRD. The comparative study of the bioactivity of n-HA/CT and n-HA/CT/ST nanocomposites revealed that the incorporation of starch as templating agent improved these properties in n-HA/CT/ST nanocomposite. The rise in thermal stability in n-HA/CT/ST nanocomposite as compared to n-HA/CT has been observed by comparing the TGA results. The comparison of SEM images of both the scaffolds indicated that the addition of ST influenced the surface morphology of n-HA/CT scaffold which appeared to be rougher and porous. The MTT assay on murine fibroblast L929 cells and in-vitro bioactivity of n-HA/CT/ST matrix referred superior non-toxic property of n-HA/CT/ST nanocomposite and higher possibility of osteo-integration in-vivo, respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bioactive" title="bioactive">bioactive</a>, <a href="https://publications.waset.org/abstracts/search?q=chitin" title=" chitin"> chitin</a>, <a href="https://publications.waset.org/abstracts/search?q=hyroxyapatite" title=" hyroxyapatite"> hyroxyapatite</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocomposite" title=" nanocomposite"> nanocomposite</a> </p> <a href="https://publications.waset.org/abstracts/29631/starch-incorporated-hydroxyapatitechitin-nanocomposite-as-a-novel-bone-construct" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29631.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">493</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">355</span> Thermal Properties of Polyhedral Oligomeric Silsesquioxanes/Polyimide Nanocomposite</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seyfullah%20Madakbas">Seyfullah Madakbas</a>, <a href="https://publications.waset.org/abstracts/search?q=Hatice%20Birtane"> Hatice Birtane</a>, <a href="https://publications.waset.org/abstracts/search?q=Memet%20Vezir%20Kahraman"> Memet Vezir Kahraman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, we aimed to synthesize and characterize polyhedral oligomeric silsesquioxanes containing polyimide nanocomposite. Polyimide nanocomposites widely have been used in membranes in fuel cell, solar cell, gas filtration, sensors, aerospace components, printed circuit boards. Firstly, polyamic acid was synthesized and characterized by Fourier Transform Infrared. Then, polyhedral oligomeric silsesquioxanes containing polyimide nanocomposite was prepared with thermal imidization method. The obtained polyimide nanocomposite was characterized by Fourier Transform Infrared, Scanning Electron Microscope, Thermal Gravimetric Analysis and Differential Scanning Calorimetry. Thermal stability of polyimide nanocomposite was evaluated by thermal gravimetric analysis and differential scanning calorimetry. Surface morphology of composite samples was investigated by scanning electron microscope. The obtained results prove that successfully prepared polyhedral oligomeric silsesquioxanes are containing polyimide nanocomposite. The obtained nanocomposite can be used in many industries such as electronics, automotive, aerospace, etc. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=polyimide" title="polyimide">polyimide</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocomposite" title=" nanocomposite"> nanocomposite</a>, <a href="https://publications.waset.org/abstracts/search?q=polyhedral%20oligomeric%20silsesquioxanes" title=" polyhedral oligomeric silsesquioxanes"> polyhedral oligomeric silsesquioxanes</a> </p> <a href="https://publications.waset.org/abstracts/93175/thermal-properties-of-polyhedral-oligomeric-silsesquioxanespolyimide-nanocomposite" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93175.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">178</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">354</span> Biodegradability and Thermal Properties of Polycaprolactone/Starch Nanocomposite as a Biopolymer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Emad%20A.%20Jaffar%20Al-Mulla">Emad A. Jaffar Al-Mulla</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, a biopolymer-based nanocomposite was successfully prepared through melt blending technique. Two biodegradable polymers, polycaprolactone and starch, environmental friendly and obtained from renewable, easily available raw materials, have been chosen. Fatty hydrazide, synthesized from palm oil, has been used as a surfactant to modify montmorillonite (natural clay) for preparation of polycaprolactone/starch nanocomposite. X-ray diffraction and transmission electron microscopy were used to characterize nanocomposite formation. Compatibility of the blend was improved by adding 3% weight modified clay. Higher biodegradability and thermal stability of nanocomopeite were also observed compared to those of the polycaprolactone/starch blend. This product will solve the problem of plastic waste, especially disposable packaging, and reduce the dependence on petroleum-based polymers and surfactants. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=polycaprolactone" title="polycaprolactone">polycaprolactone</a>, <a href="https://publications.waset.org/abstracts/search?q=starch" title=" starch"> starch</a>, <a href="https://publications.waset.org/abstracts/search?q=biodegradable" title=" biodegradable"> biodegradable</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocomposite" title=" nanocomposite"> nanocomposite</a> </p> <a href="https://publications.waset.org/abstracts/6713/biodegradability-and-thermal-properties-of-polycaprolactonestarch-nanocomposite-as-a-biopolymer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6713.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">357</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">353</span> Graphene/ZnO/Polymer Nanocomposite Thin Film for Separation of Oil-Water Mixture</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Suboohi%20Shervani">Suboohi Shervani</a>, <a href="https://publications.waset.org/abstracts/search?q=Jingjing%20Ling"> Jingjing Ling</a>, <a href="https://publications.waset.org/abstracts/search?q=Jiabin%20Liu"> Jiabin Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Tahir%20Husain"> Tahir Husain</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Offshore oil-spill has become the most emerging problem in the world. In the current paper, a graphene/ZnO/polymer nanocomposite thin film is coated on stainless steel mesh via layer by layer deposition method. The structural characterization of materials is determined by Scanning Electron Microscopy (SEM) and X-ray diffraction (XRD). The total petroleum hydrocarbons (TPHs) and separation efficiency have been measured via gas chromatography – flame ionization detector (GC-FID). TPHs are reduced to 2 ppm and separation efficiency of the nanocomposite coated mesh is reached ≥ 99% for the final sample. The nanocomposite coated mesh acts as a promising candidate for the separation of oil- water mixture. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=oil%20spill" title="oil spill">oil spill</a>, <a href="https://publications.waset.org/abstracts/search?q=graphene" title=" graphene"> graphene</a>, <a href="https://publications.waset.org/abstracts/search?q=oil-water%20separation" title=" oil-water separation"> oil-water separation</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocomposite" title=" nanocomposite"> nanocomposite</a> </p> <a href="https://publications.waset.org/abstracts/112190/grapheneznopolymer-nanocomposite-thin-film-for-separation-of-oil-water-mixture" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/112190.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">173</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">352</span> Graphitic Carbon Nitride-CeO₂ Nanocomposite for Photocatalytic Degradation of Methyl Red</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khansaa%20Al-Essa">Khansaa Al-Essa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nanosized ceria (CeO₂) and graphitic carbon nitride-loaded ceria (CeO₂/GCN) nanocomposite have been synthesized by the coprecipitation method and studied its photocatalytic activity for methyl red degradation under Visible type radiation. A phase formation study was carried out by using an x-ray diffraction technique, and it revealed that ceria (CeO₂) is properly supported on the surface of GCN. Ceria nanoparticles and CeO₂/GCN nanocomposite were confirmed by transmission electron microscopy technique. The particle size of the CeO₂, CeO₂/GCN nanocomposite is in the range of 10-15 nm. Photocatalytic activity of the CeO₂/g-C3N4 composite was improved as compared to CeO₂. The enhanced photocatalytic activity is attributed to the increased visible light absorption and improved adsorption of the dye on the surface of the composite catalyst. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=photodegradation" title="photodegradation">photodegradation</a>, <a href="https://publications.waset.org/abstracts/search?q=dye" title=" dye"> dye</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocomposite" title=" nanocomposite"> nanocomposite</a>, <a href="https://publications.waset.org/abstracts/search?q=graphitic%20carbon%20nitride-CeO%E2%82%82" title=" graphitic carbon nitride-CeO₂"> graphitic carbon nitride-CeO₂</a> </p> <a href="https://publications.waset.org/abstracts/189432/graphitic-carbon-nitride-ceo2-nanocomposite-for-photocatalytic-degradation-of-methyl-red" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/189432.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">20</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">351</span> Structural and Optical Properties of Silver Sulfide/Reduced Graphene Oxide Nanocomposite</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Oyugi%20Ngure%20Robert">Oyugi Ngure Robert</a>, <a href="https://publications.waset.org/abstracts/search?q=Kallen%20Mulilo%20Nalyanya"> Kallen Mulilo Nalyanya</a>, <a href="https://publications.waset.org/abstracts/search?q=Tabitha%20A.%20Amollo"> Tabitha A. Amollo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nanomaterials have attracted significant attention in research because of their exemplary properties, making them suitable for diverse applications. This paper reports the successful synthesis as well as the structural properties of silver sulfide/reduced graphene oxide (Ag_2 S-rGO) nanocomposite. The nanocomposite was synthesized by the chemical reduction method. Scanning electron microscopy (SEM) showed that the reduced graphene oxide (rGO) sheets were intercalated within the Ag_2 S nanoparticles during the chemical reduction process. The SEM images also showed that Ag_2 S had the shape of nanowires. Further, SEM energy dispersive X-ray (SEM EDX) showed that Ag_2 S-rGO is mainly composed of C, Ag, O, and S. X-ray diffraction analysis manifested a high crystallinity for the nanowire-shaped Ag2S nanoparticles with a d-spacing ranging between 1.0 Å and 5.2 Å. Thermal gravimetric analysis (TGA) showed that rGO enhances the thermal stability of the nanocomposite. Ag_2 S-rGO nanocomposite exhibited strong optical absorption in the UV region. The formed nanocomposite is dispersible in polar and non-polar solvents, qualifying it for solution-based device processing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=silver%20sulfide" title="silver sulfide">silver sulfide</a>, <a href="https://publications.waset.org/abstracts/search?q=reduced%20graphene%20oxide" title=" reduced graphene oxide"> reduced graphene oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocomposite" title=" nanocomposite"> nanocomposite</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20properties" title=" structural properties"> structural properties</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20properties" title=" optical properties"> optical properties</a> </p> <a href="https://publications.waset.org/abstracts/167465/structural-and-optical-properties-of-silver-sulfidereduced-graphene-oxide-nanocomposite" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167465.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">98</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">350</span> Rapid Biosynthesis of Silver-Montmorillonite Nanocomposite Using Water Extract of Satureja hortensis L. and Evaluation of the Antibacterial Capacities</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sajjad%20Sedaghat">Sajjad Sedaghat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, facile and green biosynthesis and characterization of silver–montmorillonite (MMT) nanocomposite is reported at room temperature. Silver nanoparticles (Ag–NPs) were synthesized into the interlamellar space of (MMT) by using water extract of Satureja hortensis L as reducing agent. The MMT was suspended in the aqueous AgNO₃ solution, and after the absorption of silver ions, Ag⁺ was reduced using water extract of Satureja hortensis L to Ag°. Evaluation of the antibacterial properties are also reported. The nanocomposite was characterized by ultraviolet-visible spectroscopy (UV–Vis), powder X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). TEM study showed the formation of nanocomposite using water extract of Satureja hortensis L in the 4.88 – 26.70 nm range and average particles size were 15.79 nm also the XRD study showed that the particles have a face-centered cubic (fcc) structure. The nanocomposite showed the antibacterial properties against Gram-positive and Gram-negative bacteria. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antibacterial%20effects" title="antibacterial effects">antibacterial effects</a>, <a href="https://publications.waset.org/abstracts/search?q=montmorillonite" title=" montmorillonite"> montmorillonite</a>, <a href="https://publications.waset.org/abstracts/search?q=Satureja%20hortensis%20l" title=" Satureja hortensis l"> Satureja hortensis l</a>, <a href="https://publications.waset.org/abstracts/search?q=transmission%20electron%20microscopy" title=" transmission electron microscopy"> transmission electron microscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocomposite" title=" nanocomposite"> nanocomposite</a> </p> <a href="https://publications.waset.org/abstracts/96619/rapid-biosynthesis-of-silver-montmorillonite-nanocomposite-using-water-extract-of-satureja-hortensis-l-and-evaluation-of-the-antibacterial-capacities" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/96619.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">169</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">349</span> Synthesis and Characterization of Zeolite/Fe3O4 Nanocomposite Material and Investigation of Its Catalytic Reaction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mojgan%20Zendehdel">Mojgan Zendehdel</a>, <a href="https://publications.waset.org/abstracts/search?q=Safura%20Molla%20Mohammad%20Zamani"> Safura Molla Mohammad Zamani </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, Fe3O4/NaY zeolite nanocomposite with different molar ratio were successfully synthesized and characterized using FT-IR, XRD, TGA, SEM and VSM techniques. The SEM graphs showed that much of Fe3O4 was successfully coated by the NaY zeolite layer. Also, the results show that the magnetism of the products is stable with added zeolite. The catalytic effect of nanocomposite investigated for esterification reaction under solvent-free conditions. Hence, the effect of the catalyst amount, reaction time, reaction temperature and reusability of catalyst were considered and nanocomposite that created from zeolite and 16.6 percent of Fe3O4 showed the highest yield. The catalyst can be easily separated from reaction with the magnet and it can also be used for several times. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=zeolite" title="zeolite">zeolite</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic" title=" magnetic"> magnetic</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocompsite" title=" nanocompsite"> nanocompsite</a>, <a href="https://publications.waset.org/abstracts/search?q=esterification" title=" esterification"> esterification</a> </p> <a href="https://publications.waset.org/abstracts/10139/synthesis-and-characterization-of-zeolitefe3o4-nanocomposite-material-and-investigation-of-its-catalytic-reaction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10139.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">461</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">348</span> Mechanochemical Synthesis of Al2O3/Mo Nanocomposite Powders from Molybdenum Oxide</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Behrooz%20Ghasemi">Behrooz Ghasemi</a>, <a href="https://publications.waset.org/abstracts/search?q=Bahram%20Sharijian"> Bahram Sharijian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Al2O3/Mo nanocomposite powders were successfully synthesized by mechanical milling through mechanochemical reaction between MoO3 and Al. The structural evolutions of powder particles during mechanical milling were studied by X-ray diffractometry (XRD), energy dispersive X-ray spectroscopy(EDX) and scanning electron microscopy (SEM). Results show that Al2O3-Mo was completely obtained after 5 hr of milling. The crystallite sizes of Al2O3 and Mo after milling for 20 hr were about 45 nm and 23 nm, respectively. With longer milling time, the intensities of Al2O3 and Mo peaks decreased and became broad due to the decrease in crystallite size. Morphological features of powders were influenced by the milling time. The resulting Al2O3- Mo nanocomposite powder exhibited an average particle size of 200 nm after 20 hr of milling. Also nanocomposite powder after 10 hr milling had relatively equiaxed shape with uniformly distributed Mo phase in Al2O3 matrix. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Al2O3%2FMo" title="Al2O3/Mo">Al2O3/Mo</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocomposites" title=" nanocomposites"> nanocomposites</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanochemical" title=" mechanochemical"> mechanochemical</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20milling" title=" mechanical milling"> mechanical milling</a> </p> <a href="https://publications.waset.org/abstracts/11618/mechanochemical-synthesis-of-al2o3mo-nanocomposite-powders-from-molybdenum-oxide" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11618.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">368</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">347</span> Electrochemical Sensing of L-Histidine Based on Fullerene-C60 Mediated Gold Nanocomposite</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sanjeeb%20Sutradhar">Sanjeeb Sutradhar</a>, <a href="https://publications.waset.org/abstracts/search?q=Archita%20Patnaik"> Archita Patnaik</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Histidine is one of the twenty-two naturally occurring essential amino acids exhibiting two conformations, L-histidine and D-histidine. D-Histidine is biologically inert, while L-histidine is bioactive because of its conversion to neurotransmitter or neuromodulator histamine in both brain as well as central nervous system. The deficiency of L-histidine causes serious diseases like Parkinson’s disease, epilepsy and the failure of normal erythropoiesis development. Gold nanocomposites are attractive materials due to their excellent biocompatibility and are easy to adsorb on the electrode surface. In the present investigation, hydrophobic fullerene-C60 was functionalized with homocysteine via nucleophilic addition reaction to make it hydrophilic and to successively make the nanocomposite with in-situ prepared gold nanoparticles with ascorbic acid as reducing agent. The electronic structure calculations of the AuNPs@Hcys-C60 nanocomposite showed a drastic reduction of HOMO-LUMO gap compared to the corresponding molecules of interest, indicating enhanced electron transportability to the electrode surface. In addition, the electrostatic potential map of the nanocomposite showed the charge was distributed over either end of the nanocomposite, evidencing faster direct electron transfer from nanocomposite to the electrode surface. This nanocomposite showed catalytic activity; the nanocomposite modified glassy carbon electrode showed a tenfold higher kₑt, the electron transfer rate constant than the bare glassy carbon electrode. Significant improvement in its sensing behavior by square wave voltammetry was noted. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fullerene-C60" title="fullerene-C60">fullerene-C60</a>, <a href="https://publications.waset.org/abstracts/search?q=gold%20nanocomposites" title=" gold nanocomposites"> gold nanocomposites</a>, <a href="https://publications.waset.org/abstracts/search?q=L-Histidine" title=" L-Histidine"> L-Histidine</a>, <a href="https://publications.waset.org/abstracts/search?q=square%20wave%20voltammetry" title=" square wave voltammetry"> square wave voltammetry</a> </p> <a href="https://publications.waset.org/abstracts/63166/electrochemical-sensing-of-l-histidine-based-on-fullerene-c60-mediated-gold-nanocomposite" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63166.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">250</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">346</span> Conductive Clay Nanocomposite Using Smectite and Poly(O-Anisidine)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20%C5%9Eahi%CC%87n">M. Şahi̇n</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Erdem"> E. Erdem</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Sa%C3%A7ak"> M. Saçak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, Na-smectite crystals purificated of bentonite were used after being swelling with benzyltributylammonium bromide (BTBAB) as alkyl ammonium salt. Swelling process was carried out using 0.2 g of BTBAB for smectite of 0.8 g with 4 h of mixing time after investigated conditions such as mixing time, the swelling agent amount. Then, the conductive poly(o-anisidine) (POA)/smectite nanocomposite was prepared in the presence of swollen Na-smectite using ammonium persulfate (APS) as oxidant in aqueous acidic medium. The POA content and conductivity of the prepared nanocomposite were systematically investigated as a function of polymerization conditions such as the treatment time of swollen smectite in monomer solution and o-anisidine/APS mol ratio. POA/smectite nanocomposite was characterized by XRD, FTIR and SEM techniques and was compared separately with components of composite. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=clay" title="clay">clay</a>, <a href="https://publications.waset.org/abstracts/search?q=composite" title=" composite"> composite</a>, <a href="https://publications.waset.org/abstracts/search?q=conducting%20polymer" title=" conducting polymer"> conducting polymer</a>, <a href="https://publications.waset.org/abstracts/search?q=poly%28o-anisidine%29" title=" poly(o-anisidine) "> poly(o-anisidine) </a> </p> <a href="https://publications.waset.org/abstracts/37132/conductive-clay-nanocomposite-using-smectite-and-polyo-anisidine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37132.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">325</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">345</span> Synthesis and Characterization of CNPs Coated Carbon Nanorods for Cd2+ Ion Adsorption from Industrial Waste Water and Reusable for Latent Fingerprint Detection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bienvenu%20Gael%20Fouda%20Mbanga">Bienvenu Gael Fouda Mbanga</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study reports a new approach of preparation of carbon nanoparticles coated cerium oxide nanorods (CNPs/CeONRs) nanocomposite and reusing the spent adsorbent of Cd2+- CNPs/CeONRs nanocomposite for latent fingerprint detection (LFP) after removing Cd2+ ions from aqueous solution. CNPs/CeONRs nanocomposite was prepared by using CNPs and CeONRs with adsorption processes. The prepared nanocomposite was then characterized by using UV-visible spectroscopy (UV-visible), Fourier transforms infrared spectroscopy (FTIR), X-ray diffraction pattern (XRD), scanning electron microscope (SEM), Transmission electron microscopy (TEM), Energy-dispersive X-ray spectroscopy (EDS), Zeta potential, X-ray photoelectron spectroscopy (XPS). The average size of the CNPs was 7.84nm. The synthesized CNPs/CeONRs nanocomposite has proven to be a good adsorbent for Cd2+ removal from water with optimum pH 8, dosage 0. 5 g / L. The results were best described by the Langmuir model, which indicated a linear fit (R2 = 0.8539-0.9969). The adsorption capacity of CNPs/CeONRs nanocomposite showed the best removal of Cd2+ ions with qm = (32.28-59.92 mg/g), when compared to previous reports. This adsorption followed pseudo-second order kinetics and intra particle diffusion processes. ∆G and ∆H values indicated spontaneity at high temperature (40oC) and the endothermic nature of the adsorption process. CNPs/CeONRs nanocomposite therefore showed potential as an effective adsorbent. Furthermore, the metal loaded on the adsorbent Cd2+- CNPs/CeONRs has proven to be sensitive and selective for LFP detection on various porous substrates. Hence Cd2+-CNPs/CeONRs nanocomposite can be reused as a good fingerprint labelling agent in LFP detection so as to avoid secondary environmental pollution by disposal of the spent adsorbent. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cd2%2B-CNPs%2FCeONRs%20nanocomposite" title="Cd2+-CNPs/CeONRs nanocomposite">Cd2+-CNPs/CeONRs nanocomposite</a>, <a href="https://publications.waset.org/abstracts/search?q=cadmium%20adsorption" title=" cadmium adsorption"> cadmium adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=isotherm" title=" isotherm"> isotherm</a>, <a href="https://publications.waset.org/abstracts/search?q=kinetics" title=" kinetics"> kinetics</a>, <a href="https://publications.waset.org/abstracts/search?q=thermodynamics" title=" thermodynamics"> thermodynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=reusable%20for%20latent%20fingerprint%20detection" title=" reusable for latent fingerprint detection"> reusable for latent fingerprint detection</a> </p> <a href="https://publications.waset.org/abstracts/123637/synthesis-and-characterization-of-cnps-coated-carbon-nanorods-for-cd2-ion-adsorption-from-industrial-waste-water-and-reusable-for-latent-fingerprint-detection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/123637.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">121</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">344</span> Enhanced Thermal, Mechanical and Morphological Properties of CNT/HDPE Nanocomposite Using MMT as Secondary Filler</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20E.%20Ali%20Mohsin">M. E. Ali Mohsin</a>, <a href="https://publications.waset.org/abstracts/search?q=Agus%20Arsad"> Agus Arsad</a>, <a href="https://publications.waset.org/abstracts/search?q=Othman%20Y.%20Alothman"> Othman Y. Alothman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study explains the influence of secondary filler on the dispersion of carbon nanotube (CNT) reinforced high density polyethylene (HDPE) nanocomposites (CNT/HDPE). In order to understand the mixed-fillers system, Montmorillonite (MMT) was added to CNT/HDPE nanocomposites. It was followed by investigating their effect on the thermal, mechanical and morphological properties of the aforesaid nanocomposite. Incorporation of 3 wt% each of MMT into CNT/HDPE nanocomposite resulted to the increased values for the tensile and flexural strength, as compared to the pure HDPE matrix. The thermal analysis result showed improved thermal stability of the formulated nanocomposites. Transmission electron microscopy (TEM) images revealed that larger aggregates of CNTs were disappeared upon addition of these two components leading to the enhancement of thermo-mechanical properties for such composites. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=secondary%20filler" title="secondary filler">secondary filler</a>, <a href="https://publications.waset.org/abstracts/search?q=montmorillonite" title=" montmorillonite"> montmorillonite</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20nanotube" title=" carbon nanotube"> carbon nanotube</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocomposite" title=" nanocomposite"> nanocomposite</a> </p> <a href="https://publications.waset.org/abstracts/4150/enhanced-thermal-mechanical-and-morphological-properties-of-cnthdpe-nanocomposite-using-mmt-as-secondary-filler" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4150.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">363</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">343</span> MWCNT/CuFe10Al2O19/Polyanilie Nanocomposite for Microwave Absorbing Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pallab%20Bhattacharya">Pallab Bhattacharya</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20K.%20Das"> C. K. Das</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Development of microwave absorbing material is a growing field of research in both the commercial and defense sector, and also to enrich the field of stealth technology. The recent work is attentive to the preparation of nanocomposite based on acid modified MWCNT, hexagonal shaped magnetic M-type hexaferrite (CuFe10Al2O19) and polyaniline. CuFe10Al2O19 was prepared by a facile chemical co-precipitation method. An in-situ approach was employed for the coating of polyaniline on MWCNT/CuFe10Al2O19 nanocomposite. The final fabrication of this nanocomposite for microwave measurements was done suitably in the matrix of thermoplastic polyurethane with 10% filler content. The nanocomposites showed the maximum reflection loss of -60.2 dB (in X-band) at the thickness of 2.5 mm with a broad absorption range in contrast to the pristine MWCNT and CuFe10Al2O19. Addition of PANI improves the microwave absorption property of the nanocomposites. The thermal stability of the prepared nanocomposites is also very high. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=magnetic%20materials" title="magnetic materials">magnetic materials</a>, <a href="https://publications.waset.org/abstracts/search?q=microwave%20absorption" title=" microwave absorption"> microwave absorption</a>, <a href="https://publications.waset.org/abstracts/search?q=MWCNT" title=" MWCNT"> MWCNT</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocomposites" title=" nanocomposites"> nanocomposites</a> </p> <a href="https://publications.waset.org/abstracts/13923/mwcntcufe10al2o19polyanilie-nanocomposite-for-microwave-absorbing-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13923.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">299</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">342</span> Investigation of Microstructure, Mechanical Properties and Anti-Corrosive Behavior of Al2O3/Cr2O3 Nanocomposite on Zn Rich Bath</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Malatji">N. Malatji</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20P.%20I.%20Popoola"> A. P. I. Popoola</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Zn-Al2O3 and Cr2O3 nanocomposite coatings were successfully produced by electrodeposition technique from chloride acidic bath. Particle loading of Al2O3 (50nm) particles were varied from 5-10 g/L and for Cr2O3(100nm) was 10-20 g/L. Scanning electron microscope (SEM) affixed with energy dispersive spectrometry was used to study the surface morphology and content of the nanoparticles incorporated into the coatings. Microhardness, thermal stability, wear and corrosion behavior of the coatings were also evaluated to study the effect of these nanoparticles on these properties. Zn-Al2O3 nanocomposite was found to exhibit good surface properties especially corrosion resistance. On the other side, Cr2O3 incorporation resulted in the improvement of only mechanical properties. Therefore, Zn-Al2O3 proved to be a better coating for most industrial applications where both chemical and mechanical properties are required. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrodeposition" title="electrodeposition">electrodeposition</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocomposite%20coatings" title=" nanocomposite coatings"> nanocomposite coatings</a>, <a href="https://publications.waset.org/abstracts/search?q=corrosion" title=" corrosion"> corrosion</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20stability" title=" thermal stability"> thermal stability</a>, <a href="https://publications.waset.org/abstracts/search?q=tribology" title=" tribology"> tribology</a> </p> <a href="https://publications.waset.org/abstracts/11749/investigation-of-microstructure-mechanical-properties-and-anti-corrosive-behavior-of-al2o3cr2o3-nanocomposite-on-zn-rich-bath" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11749.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">389</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">341</span> The Preparation and Characterization of Conductive Poly(O-Toluidine)/Smectite Clay Nanocomposite</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=E.%20Erdem">E. Erdem</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20%C5%9Eahin"> M. Şahin</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Sa%C3%A7ak"> M. Saçak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Smectite is a layered silicate and modified with alkyl ammonium salts to make both the hydrophilic silicate surfaces organophilic, and to expand the clay layers. Thus, a nanocomposite structure can be formed enabling to enter various types of polymers between the layers. In this study, Na-smectite crystals were prepared by purification of bentonite. Benzyltributylammonium bromide (BTBAB) was used as a swelling agent. The mixing time and additive concentration were changed during the swelling process. It was determined that the 4 h of mixing time and 0.2 g of BTBAB were sufficient and the usage of higher amounts of salt did not increase the interlayer space between the clay layers. Then, the conductive poly(o-toluidine) (POT)/smectite nanocomposite was prepared in the presence of swollen Na-smectite using ammonium persulfate (APS) as oxidant in aqueous acidic medium. The POT content and conductivity of the prepared nanocomposite were systematically investigated as a function of polymerization conditions such as the treatment time of swollen smectite in monomer solution and o-toluidine/APS mol ratio. The POT content and conductivity of nanocomposite increased with increasing monomer/oxidant mol ratio up to 1 and did not change at higher ratios. The maximum polymer yield and the highest conductivity value of the composite were 26.0% and 4.0×10-5 S/cm, respectively. The structural and morphological analyses of the POT/smectite nanocomposite were carried out by XRD, FTIR and SEM techniques, respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=clay" title="clay">clay</a>, <a href="https://publications.waset.org/abstracts/search?q=composite" title=" composite"> composite</a>, <a href="https://publications.waset.org/abstracts/search?q=conducting%20polymer" title=" conducting polymer"> conducting polymer</a>, <a href="https://publications.waset.org/abstracts/search?q=poly%28o-anisidine%29" title=" poly(o-anisidine)"> poly(o-anisidine)</a> </p> <a href="https://publications.waset.org/abstracts/37134/the-preparation-and-characterization-of-conductive-polyo-toluidinesmectite-clay-nanocomposite" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37134.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">288</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">340</span> Synthesis and Charaterization of Nanocomposite Poly (4,4' Methylenedianiline) Catalyzed by Maghnite-H+</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Belmokhtar">A. Belmokhtar</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Yahiaoui"> A. Yahiaoui</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Benyoucef"> A. Benyoucef</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Belbachir"> M. Belbachir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We reported the synthesis and characterization of nanocomposite poly (4,4’ methylenedianiline) via chemical polymerization of monomers 4,4’ methylenedianiline by ammonium persulfate (APS) at room temperature catalyzed by Maghnite-H+. A facile method was demonstrated to grow poly (4,4’ methylenedianiline) nanocomposite, which was carried out by mixing Ammonium Persulfate (APS) aqueous and 4,4’ methylenedianiline solution in the presence of Maghnite-H+ at room temperature The effect of amount of catalyst and time on the polymerization yield of the polymers was studied. Structure was confirmed by elemental analysis, UV vis, RMN-1H, and voltammetry cyclique. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=charaterization" title="charaterization">charaterization</a>, <a href="https://publications.waset.org/abstracts/search?q=maghnite-h%2B" title=" maghnite-h+"> maghnite-h+</a>, <a href="https://publications.waset.org/abstracts/search?q=polymerization" title=" polymerization"> polymerization</a>, <a href="https://publications.waset.org/abstracts/search?q=poly%20%284" title=" poly (4"> poly (4</a>, <a href="https://publications.waset.org/abstracts/search?q=4%E2%80%99%20methylenedianiline%29" title="4’ methylenedianiline)">4’ methylenedianiline)</a> </p> <a href="https://publications.waset.org/abstracts/30737/synthesis-and-charaterization-of-nanocomposite-poly-44-methylenedianiline-catalyzed-by-maghnite-h" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30737.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">289</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">339</span> Photocatalytic Degradation of Toxic Phenols Using Zinc Oxide Doped Prussian Blue Nanocomposite</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rachna">Rachna</a>, <a href="https://publications.waset.org/abstracts/search?q=Uma%20Shanker"> Uma Shanker</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aromatic phenols, being priority pollutants, are found in various industrial effluents and seeking the attention of environmentalists worldwide, owing to their life-threatening effects. In the present study, the coupling of zinc oxide with Prussian blue was achieved involving co-precipitation synthesis process using Azadirachta indica plant extract. The fabricated nanocatalyst was employed for the sunlight mediated photodegradation of various phenols (Phenol, 3-Aminophenol, and 2,4-Dinitrophenol). Doping of zinc oxide with Prussian blue caused an increase in the surface area to value 80.109 m²g⁻¹ and also enhanced the semiconducting tendency of the nanocomposite with band gap energy 1.101 eV. The experiment was performed at different parameters of phenols concentration, catalyst amount, pH, time, and exposure of sunlight. The obtained results showed a lower elimination of 2,4-DNP (93%) than 3-AP (97%) and phenol (95%) owing to their molecular weight and basicity differences. In comparison to the starting material (zinc oxide and Prussian blue), nanocomposite was more capable in degrading the phenols and lowered the t1/2 value of phenol (4.405 h), 3-AP (4.04 h) and 2,4-DNP (4.68 h) to a greater extent. Effect of different foreign anions was also studied to check nanocomposite’s liability under natural conditions. The extent of charge recombination being the most limiting factor in the photodegradation of pollutants was determined through the photoluminescence. Sunlight active ZnO@FeHCF nanocomposite was proven to exhibit good catalytic ability up to 10 cycles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanocomposite" title="nanocomposite">nanocomposite</a>, <a href="https://publications.waset.org/abstracts/search?q=phenols" title=" phenols"> phenols</a>, <a href="https://publications.waset.org/abstracts/search?q=photodegradation" title=" photodegradation"> photodegradation</a>, <a href="https://publications.waset.org/abstracts/search?q=sunlight" title=" sunlight"> sunlight</a>, <a href="https://publications.waset.org/abstracts/search?q=water" title=" water"> water</a> </p> <a href="https://publications.waset.org/abstracts/112289/photocatalytic-degradation-of-toxic-phenols-using-zinc-oxide-doped-prussian-blue-nanocomposite" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/112289.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">126</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">338</span> Photocatalytic Degradation of Methylene Blue Dye Using Cuprous Oxide/Graphene Nanocomposite</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bekan%20Bogale">Bekan Bogale</a>, <a href="https://publications.waset.org/abstracts/search?q=Tsegaye%20Girma%20Asere"> Tsegaye Girma Asere</a>, <a href="https://publications.waset.org/abstracts/search?q=Tilahun%20Yai"> Tilahun Yai</a>, <a href="https://publications.waset.org/abstracts/search?q=Fekadu%20Melak"> Fekadu Melak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aims: To study photocatalytic degradation of methylene blue dye on cuprous oxide/graphene nanocomposite. Background: Cuprous oxide (Cu2O) nanoparticles are among the metal oxides that demonstrated photocatalytic activity. However, the stability of Cu2O nanoparticles due to the fast recombination rate of electron/hole pairs remains a significant challenge in their photocatalytic applications. This, in turn, leads to mismatching of the effective bandgap separation, tending to reduce the photocatalytic activity of the desired organic waste (MB). To overcome these limitations, graphene has been combined with cuprous oxides, resulting in cuprous oxide/graphene nanocomposite as a promising photocatalyst. Objective: In this study, Cu2O/graphene nanocomposite was synthesized and evaluated for its photocatalytic performance of methylene blue (MB) dye degradation. Method: Cu2O/graphene nanocomposites were synthesized from graphite powder and copper nitrate using the facile sol-gel method. Batch experiments have been conducted to assess the applications of the nanocomposites for MB degradation. Parameters such as contact time, catalyst dosage, and pH of the solution were optimized for maximum MB degradation. The prepared nanocomposites were characterized by using UV-Vis, FTIR, XRD, and SEM. The photocatalytic performance of Cu2O/graphene nanocomposites was compared against Cu2O nanoparticles for cationic MB dye degradation. Results: Cu2O/graphene nanocomposite exhibits higher photocatalytic activity for MB degradation (with a degradation efficiency of 94%) than pure Cu2O nanoparticles (67%). This has been accomplished after 180 min of irradiation under visible light. The kinetics of MB degradation by Cu2O/graphene composites can be demonstrated by the second-order kinetic model. The synthesized nanocomposite can be used for more than three cycles of photocatalytic MB degradation. Conclusion: This work indicated new insights into Cu2O/graphene nanocomposite as high-performance in photocatalysis to degrade MB, playing a great role in environmental protection in relation to MB dye. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=methylene%20blue" title="methylene blue">methylene blue</a>, <a href="https://publications.waset.org/abstracts/search?q=photocatalysis" title=" photocatalysis"> photocatalysis</a>, <a href="https://publications.waset.org/abstracts/search?q=cuprous%20oxide" title=" cuprous oxide"> cuprous oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=graphene%20nanocomposite" title=" graphene nanocomposite"> graphene nanocomposite</a> </p> <a href="https://publications.waset.org/abstracts/149875/photocatalytic-degradation-of-methylene-blue-dye-using-cuprous-oxidegraphene-nanocomposite" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/149875.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">189</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">337</span> Evaluation of Corrosion Property of Aluminium-Zirconium Dioxide (AlZrO2) Nanocomposites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Ramachandra">M. Ramachandra</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Dilip%20Maruthi"> G. Dilip Maruthi</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Rashmi"> R. Rashmi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper aims to study the corrosion property of aluminum matrix nanocomposite of an aluminum alloy (Al-6061) reinforced with zirconium dioxide (ZrO<sub>2</sub>) particles. The zirconium dioxide particles are synthesized by solution combustion method. The nanocomposite materials are prepared by mechanical stir casting method, varying the percentage of n-ZrO<sub>2</sub> (2.5%, 5% and 7.5% by weight). The corrosion behavior of base metal (Al-6061) and Al/ZrO<sub>2</sub> nanocomposite in seawater (3.5% NaCl solution) is measured using the potential control method. The corrosion rate is evaluated by Tafel extrapolation technique. The corrosion potential increases with the increase in wt.% of n-ZrO<sub>2</sub> in the nanocomposite which means the decrease in corrosion rate. It is found that on addition of n-ZrO2 particles to the aluminum matrix, the corrosion rate has decreased compared to the base metal. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Al6061%20alloy" title="Al6061 alloy">Al6061 alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=corrosion" title=" corrosion"> corrosion</a>, <a href="https://publications.waset.org/abstracts/search?q=solution" title=" solution"> solution</a>, <a href="https://publications.waset.org/abstracts/search?q=stir%20casting" title=" stir casting"> stir casting</a>, <a href="https://publications.waset.org/abstracts/search?q=combustion" title=" combustion"> combustion</a>, <a href="https://publications.waset.org/abstracts/search?q=potentiostat" title=" potentiostat"> potentiostat</a>, <a href="https://publications.waset.org/abstracts/search?q=zirconium%20dioxide" title=" zirconium dioxide"> zirconium dioxide</a> </p> <a href="https://publications.waset.org/abstracts/56412/evaluation-of-corrosion-property-of-aluminium-zirconium-dioxide-alzro2-nanocomposites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56412.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">406</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">336</span> Durability Assessment of Nanocomposite-Based Bone Fixation Device Consisting of Bioabsorbable Polymer and Ceramic Nanoparticles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jisoo%20Kim">Jisoo Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Jin-Young%20Choi"> Jin-Young Choi</a>, <a href="https://publications.waset.org/abstracts/search?q=MinSu%20Lee"> MinSu Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Sunmook%20Lee"> Sunmook Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Effects of ceramic nanoparticles on the improvement of durability of bone fixation devices have been investigated by assessing the durability of nanocomposite materials consisting of bioabsorbable polymer and ceramic nanoparticles, which could be applied for bone fixation devices such as plates and screws. Various composite ratios were used for the synthesis of nanocomposite materials by blending polylactic acid (PLA) and polyglycolic acid (PGA) as bioabsorbable polymer, and hydroxyapatite (HA) and tri-calcium phosphate (TCP) as ceramic nanoparticles. It was found that the addition of ceramic nanoparticles significantly enhanced the mechanical properties of the bone fixation devices compared to those fabricated with pure biopolymers. Particularly, the layer-by-layer approach for the fabrication of nanocomposites also had an effect on the improvement of bending strength. Durability tests were performed by measuring the changes in the bending strength of nanocomposite samples under varied temperature conditions for the accelerated degradation tests. It was found that Weibull distribution was the most proper one for describing the life distribution of devices in the present study. The mean lifetime was predicted by adopting Arrhenius Eq. Model for Stress-Life relationship. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bioabsorbable" title="bioabsorbable">bioabsorbable</a>, <a href="https://publications.waset.org/abstracts/search?q=bone%20fixation%20device" title=" bone fixation device"> bone fixation device</a>, <a href="https://publications.waset.org/abstracts/search?q=ceramic%20nanoparticles" title=" ceramic nanoparticles"> ceramic nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=durability%20assessment" title=" durability assessment"> durability assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocomposite" title=" nanocomposite"> nanocomposite</a> </p> <a href="https://publications.waset.org/abstracts/53095/durability-assessment-of-nanocomposite-based-bone-fixation-device-consisting-of-bioabsorbable-polymer-and-ceramic-nanoparticles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53095.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">326</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">335</span> Synthesis of Nanosized Amorphous Alumina Particles and Their Use in Electroless Ni-P Coatings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Preeti%20Makkar">Preeti Makkar</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20C.%20Agarwala"> R. C. Agarwala</a>, <a href="https://publications.waset.org/abstracts/search?q=Vijaya%20Agarwala"> Vijaya Agarwala</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study focuses on the preparation of Al2O3 nanoparticles by top down approach i.e. mechanical milling using high energy planetary ball mill at 250 rpm for 40h. The milled Al2O3 nanoparticles are then used as the second phase to develop electroless (EL) Ni-P- Al2O3 nanocomposite coatings on mild steel substrate. An alkaline bath was used with a suspension of Al2O3 particles (4 g/L) for the synthesis of Ni-P-Al2O3 nanocomposite coating. The surface morphology, size range and phase analysis of as-prepared Al2O3 particles and the coatings were characterized using X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM). The coatings were heat treated at 400°C for 1h in argon atmosphere and the hardness of the nanocomposite coatings was investigated with respect to Ni-P before and after heat treatment. The results showed that as milled Al2O3 nanoparticles exhibit irregular shaped and size ranges around 40-45 nm. The Al2O3 particles are uniformly distributed in Ni-P matrix. The microhardness of the coatings is found to be significantly improved after heat treatment (1126 VHN). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Electroless%20%28EL%29" title="Electroless (EL)">Electroless (EL)</a>, <a href="https://publications.waset.org/abstracts/search?q=Ni-P-Al2O3" title=" Ni-P-Al2O3"> Ni-P-Al2O3</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocomposite" title=" nanocomposite"> nanocomposite</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20milling" title=" mechanical milling"> mechanical milling</a>, <a href="https://publications.waset.org/abstracts/search?q=microhardness" title=" microhardness "> microhardness </a> </p> <a href="https://publications.waset.org/abstracts/17528/synthesis-of-nanosized-amorphous-alumina-particles-and-their-use-in-electroless-ni-p-coatings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17528.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">286</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">334</span> Experimental Study on Hardness and Impact Strength of Polyethylene/Carbon Composites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Armin%20Najipour">Armin Najipour</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20M.%20Fattahi"> A. M. Fattahi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this research was to investigate the effect of the addition of multi walled carbon nanotubes on the mechanical properties of polyethylene/carbon nanotube nanocomposites. To do so, polyethylene and carbon nanotube were mixed in different weight percentages containing 0, 0.5, 1, and 1.5% carbon nanotube in two screw extruder apparatus by fusion. Then the nanocomposite samples were molded in injection apparatus according to ASTM: D6110 standard. The effects of carbon nanotube addition in 4 different levels and injection pressure in 2 levels on the hardness and impact strength of the nanocomposite samples were investigated. The results showed that the addition of carbon nanotube had a significant effect on improving hardness and impact strength of the nanocomposite samples such that by adding 1% w/w carbon nanotube, the impact strength and hardness of the samples improved to 74% and 46.7% respectively. Also, according to the results, the effect of injection pressure on the results was much less than that of carbon nanotube weight percentage. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20nanotube" title="carbon nanotube">carbon nanotube</a>, <a href="https://publications.waset.org/abstracts/search?q=injection%20molding" title=" injection molding"> injection molding</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocomposite" title=" nanocomposite"> nanocomposite</a>, <a href="https://publications.waset.org/abstracts/search?q=polyethylene" title=" polyethylene"> polyethylene</a> </p> <a href="https://publications.waset.org/abstracts/39189/experimental-study-on-hardness-and-impact-strength-of-polyethylenecarbon-composites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39189.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">321</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">333</span> Influence of Annealing Temperature on Optical, Anticandidal, Photocatalytic and Dielectric Properties of ZnO/TiO2 Nanocomposites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wasi%20Khan">Wasi Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Suboohi%20Shervani"> Suboohi Shervani</a>, <a href="https://publications.waset.org/abstracts/search?q=Swaleha%20Naseem"> Swaleha Naseem</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohd.%20Shoeb"> Mohd. Shoeb</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20A.%20Khan"> J. A. Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20R.%20Singh"> B. R. Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20H.%20Naqvi"> A. H. Naqvi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We have successfully synthesized ZnO/TiO2 nanocomposite using a two-step solochemical synthesis method. The influence of annealing temperature on microstructural, optical, anticandidal, photocatalytic activities and dielectric properties were investigated. X-ray diffraction (XRD) and scanning electron microscopy (SEM) show the formation of nanocomposite and uniform surface morphology of all samples. The UV-Vis spectra indicate decrease in band gap energy with increase in annealing temperature. The anticandidal activity of ZnO/TiO2 nanocomposite was evaluated against MDR C. albicans 077. The in-vitro killing assay revealed that the ZnO/TiO2 nanocomposite efficiently inhibit the growth of the C. albicans 077. The nanocomposite also exhibited the photocatalytic activity for the degradation of methyl orange as a function of time at 465 nm wavelength. The electrical behaviour of composite has been studied over a wide range of frequencies at room temperature using complex impedance spectroscopy. The dielectric constants, dielectric loss and ac conductivity (σac) were studied as the function of frequency, which have been explained by ‘Maxwell Wagner Model’. The data reveals that the dielectric constant and loss (tanδ) exhibit the normal dielectric behavior and decreases with the increase in frequency. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ZnO%2FTiO2%20nanocomposites" title="ZnO/TiO2 nanocomposites">ZnO/TiO2 nanocomposites</a>, <a href="https://publications.waset.org/abstracts/search?q=SEM" title=" SEM"> SEM</a>, <a href="https://publications.waset.org/abstracts/search?q=photocatalytic%20activity" title=" photocatalytic activity"> photocatalytic activity</a>, <a href="https://publications.waset.org/abstracts/search?q=dielectric%20properties" title=" dielectric properties"> dielectric properties</a> </p> <a href="https://publications.waset.org/abstracts/39657/influence-of-annealing-temperature-on-optical-anticandidal-photocatalytic-and-dielectric-properties-of-znotio2-nanocomposites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39657.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">406</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">332</span> Fatigue Test and Stress-Life Analysis of Nanocomposite-Based Bone Fixation Device</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jisoo%20Kim">Jisoo Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Min%20Su%20Lee"> Min Su Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Sunmook%20Lee"> Sunmook Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Durability assessment of nanocomposite-based bone fixation device was performed by flexural fatigue tests, for which the changes in the life cycles of nanocomposite samples synthesized by blending bioabsorbable polymer (PLGA) and ceramic nanoparticles (β-TCP) with different ratios were monitored. The nanocomposite samples were kept in a constant temperature/humidity chamber at 37°C/50%RH for varied incubation periods for the degradation of nanocomposite samples under the temperature/humidity stress. It was found that the life cycles were increasing as the incubation time in the chamber were increasing in the initial stage irrespective of sample compositions, which was due to the annealing effect of the polymer. However, the life cycle was getting shorter as the incubation time increased afterward, which was due to the overall degradation of nanocomposites. It was found that the life cycle of the nanocomposite sample with high ceramic content was shorter than the one with low ceramic content, which was attributed to the increased brittleness of the composite with high ceramic content. The changes in chemical properties were also monitored by FT-IR, which indicated that the degradation of the biodegradable polymer could be confirmed by the increased intensities of carboxyl groups and hydroxyl groups since the hydrolysis of ester bonds connecting two successive monomers yielded carboxyl end groups and hydroxyl groups. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bioabsorbable%20polymer" title="bioabsorbable polymer">bioabsorbable polymer</a>, <a href="https://publications.waset.org/abstracts/search?q=bone%20fixation%20device" title=" bone fixation device"> bone fixation device</a>, <a href="https://publications.waset.org/abstracts/search?q=ceramic%20nanoparticles" title=" ceramic nanoparticles"> ceramic nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=durability%20assessment" title=" durability assessment"> durability assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=fatigue%20test" title=" fatigue test"> fatigue test</a> </p> <a href="https://publications.waset.org/abstracts/64677/fatigue-test-and-stress-life-analysis-of-nanocomposite-based-bone-fixation-device" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64677.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">402</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">331</span> Facile Fabrication of TiO₂NT/Fe₂O₃@Ag₂CO₃ Nanocomposite and Its Highly Efficient Visible Light Photocatalytic and Antibacterial Activity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amal%20A.%20Al-Kahlawy">Amal A. Al-Kahlawy</a>, <a href="https://publications.waset.org/abstracts/search?q=Heba%20H.%20El-Maghrabi"> Heba H. El-Maghrabi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to the increasing need to environment protection in real time need to energize new materials are under extensive investigations. Between others, TiO2 nanotubes (TNTs) nanocomposite with iron oxide and silver carbonate, are promising alternatives as high-efficiency visible light photocatalyst due to their unique properties and their superior charge transport properties. Our efforts in this domain aim the construction of novel nanocomposite of TiO2NT/Fe2O3@Ag2CO3. The structure, surface morphology, chemical composition and optical properties were characterized by X-ray diffraction (XRD), Raman, Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy dispersive X-ray spectrometer (EDS), transmission electron microscopy (TEM), selected area electron diffraction (SAED) and UV–vis diffuse reflectance spectroscopy (DRS). XRD results confirm the interaction of TiO2-NT with iron oxide. This novel nanocomposite shows remarkably enhanced performance for phenol compounds photodegradation. The experimental data shows a promising photocatalytic activity. In particular, a maximum value of 450 mg/g was removed within 60 min at solar light irradiation with degradation efficiency of 99.5%. The high photocatalytic activity of the nanocomposite is found to be related to the increased adsorption toward chemical species, enhanced light absorption and efficient charge separation and transfer. Finally, the designed TiO2NT/Fe2O3@Ag2CO3 nanocomposite has a great degree of sustainability and could has a potential application for the industrial treatment of wastewater containing toxic organic materials. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanocomposite" title="nanocomposite">nanocomposite</a>, <a href="https://publications.waset.org/abstracts/search?q=photocatalyst" title=" photocatalyst"> photocatalyst</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20energy" title=" solar energy"> solar energy</a>, <a href="https://publications.waset.org/abstracts/search?q=titanium%20dioxide%20nanotubes" title=" titanium dioxide nanotubes"> titanium dioxide nanotubes</a> </p> <a href="https://publications.waset.org/abstracts/63073/facile-fabrication-of-tio2ntfe2o3-at-ag2co3-nanocomposite-and-its-highly-efficient-visible-light-photocatalytic-and-antibacterial-activity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63073.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">247</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">330</span> Nano-Hydroxyapatite/Dextrin/Chitin Nanocomposite System for Bone Tissue Engineering</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Shakir">Mohammad Shakir</a>, <a href="https://publications.waset.org/abstracts/search?q=Reshma%20Jolly"> Reshma Jolly</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Shoeb%20Khan"> Mohammad Shoeb Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Noor-E-Iram"> Noor-E-Iram</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A nanocomposite system incorporating dextrin into nano-hydroxyapatite/chitin matrix (n-HA/DX/CT) has been successfully synthesized via co-precipitation route at room temperature for the application in bone tissue engineering by investigating biocompatibility, cytotoxicity and mechanical properties. The FTIR spectra of n-HA/DX/CT nanocomposite indicated a considerable intermolecular interaction between the various components of the system. The results of XRD, TEM and TGA/DTA revealed that the crystallinity, size and thermal stability of the n-HA/DX/CT scaffold has decreased and increased respectively. The result of SEM image of the n-HA/DX/CT scaffold indicated that the incorporation of dextrin affected the surface morphology while considerable in-vitro bioactivity has been observed in n-HA/DX/CT based on SBF study, referring a step towards possibility of making direct bond to living bone if implanted. Moreover, MTT assay suggested the non-toxic nature of n-HA/DX/CT to murine fibroblast L929 cells. The swelling study of n-HA/DX/CT scaffold indicated the low swelling rate for n-HADX/CT. All these results have paved the way for n-HA/DX/CT to be used as a competent material for bone tissue engineering. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=autograft" title="autograft">autograft</a>, <a href="https://publications.waset.org/abstracts/search?q=chitin" title=" chitin"> chitin</a>, <a href="https://publications.waset.org/abstracts/search?q=dextrin" title=" dextrin"> dextrin</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocomposite" title=" nanocomposite"> nanocomposite</a> </p> <a href="https://publications.waset.org/abstracts/29663/nano-hydroxyapatitedextrinchitin-nanocomposite-system-for-bone-tissue-engineering" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29663.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">534</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">329</span> Separation of CO2 Using MFI-Alumina Nanocomposite Hollow Fiber Ion-Exchanged with Alkali Metal Cation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Alshebani">A. Alshebani</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Swesi"> Y. Swesi</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Mrayed"> S. Mrayed</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Altaher"> F. Altaher</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Musbah"> I. Musbah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cs-type nanocomposite zeolite membrane was successfully synthesized on an alumina ceramic hollow fibre with a mean outer diameter of 1.7 mm; cesium cationic exchange test was carried out inside test module with mean wall thickness of 230 μm and an average crossing pore size smaller than 0.2 μm. Separation factor of n-butane/H2 obtained indicate that a relatively high quality closed to 20. Maxwell-Stefan modeling provides an equivalent thickness lower than 1 µm. To compare the difference an application to CO2/N2 separation has been achieved, reaching separation factors close to (4,18) before and after cation exchange on H-zeolite membrane formed within the pores of a ceramic alumina substrate. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=MFI%20membrane" title="MFI membrane">MFI membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocomposite" title=" nanocomposite"> nanocomposite</a>, <a href="https://publications.waset.org/abstracts/search?q=ceramic%20hollow%20fibre" title=" ceramic hollow fibre"> ceramic hollow fibre</a>, <a href="https://publications.waset.org/abstracts/search?q=CO2" title=" CO2"> CO2</a>, <a href="https://publications.waset.org/abstracts/search?q=ion-exchange" title=" ion-exchange"> ion-exchange</a> </p> <a href="https://publications.waset.org/abstracts/12639/separation-of-co2-using-mfi-alumina-nanocomposite-hollow-fiber-ion-exchanged-with-alkali-metal-cation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12639.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">299</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">328</span> Experimental Study on Tensile Strength of Polyethylene/Carbon Injected Composites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Armin%20Najipour">Armin Najipour</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20M.%20Fattahi"> A. M. Fattahi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this research was to investigate the effect of the addition of multi walled carbon nanotubes on the mechanical properties of polyethylene/carbon nanotube nanocomposites. To do so, polyethylene and carbon nanotube were mixed in different weight percentages containing 0, 0.5, 1, and 1.5% carbon nanotube in two screw extruder apparatus by fusion. Then the nanocomposite samples were molded in injection apparatus according to ASTM:D638 standard. The effects of carbon nanotube addition in 4 different levels on the tensile strength, elastic modulus and elongation of the nanocomposite samples were investigated. The results showed that the addition of carbon nanotube had a significant effect on improving tensile strength of the nanocomposite samples such that by adding 1% w/w carbon nanotube, the tensile strength 23.4%,elastic modulus 60.4%and elongation 29.7% of the samples improved. Also, according to the results, Manera approximation model at percentages about 0.5% weight and modified Halpin-Tsai at percentages about 1% weight lead to favorite and reliable results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20nanotube" title="carbon nanotube">carbon nanotube</a>, <a href="https://publications.waset.org/abstracts/search?q=injection%20molding" title="injection molding">injection molding</a>, <a href="https://publications.waset.org/abstracts/search?q=Mechanical%20properties" title=" Mechanical properties"> Mechanical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=Nanocomposite" title=" Nanocomposite"> Nanocomposite</a>, <a href="https://publications.waset.org/abstracts/search?q=polyethylene" title=" polyethylene"> polyethylene</a> </p> <a href="https://publications.waset.org/abstracts/38741/experimental-study-on-tensile-strength-of-polyethylenecarbon-injected-composites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38741.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">270</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=AgNPs-SA%20nanocomposite&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=AgNPs-SA%20nanocomposite&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=AgNPs-SA%20nanocomposite&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=AgNPs-SA%20nanocomposite&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=AgNPs-SA%20nanocomposite&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=AgNPs-SA%20nanocomposite&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=AgNPs-SA%20nanocomposite&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=AgNPs-SA%20nanocomposite&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=AgNPs-SA%20nanocomposite&page=10">10</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=AgNPs-SA%20nanocomposite&page=11">11</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=AgNPs-SA%20nanocomposite&page=12">12</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=AgNPs-SA%20nanocomposite&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>