CINXE.COM

Mètrica FLRW - Viquipèdia, l'enciclopèdia lliure

<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available" lang="ca" dir="ltr"> <head> <meta charset="UTF-8"> <title>Mètrica FLRW - Viquipèdia, l'enciclopèdia lliure</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )cawikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":[",\t.",".\t,"],"wgDigitTransformTable":["",""], "wgDefaultDateFormat":"dmy","wgMonthNames":["","gener","febrer","març","abril","maig","juny","juliol","agost","setembre","octubre","novembre","desembre"],"wgRequestId":"a6a66b8f-4deb-47bf-9184-5692fb27d40a","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Mètrica_FLRW","wgTitle":"Mètrica FLRW","wgCurRevisionId":34216083,"wgRevisionId":34216083,"wgArticleId":67311,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["Pàgines amb arguments duplicats en utilització de plantilles","Control d'autoritats","Cosmologia","Models de la física","Relativitat general"],"wgPageViewLanguage":"ca","wgPageContentLanguage":"ca","wgPageContentModel":"wikitext","wgRelevantPageName":"Mètrica_FLRW","wgRelevantArticleId":67311,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia", "wgCiteReferencePreviewsActive":true,"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"ca","pageLanguageDir":"ltr","pageVariantFallbacks":"ca"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":true,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":30000,"wgRelatedArticlesCompat":[],"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q742982","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready", "user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.cite.styles":"ready","ext.math.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","wikibase.client.data-bridge.externalModifiers":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","site","mediawiki.page.ready","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.UkensKonkurranse","ext.gadget.refToolbar","ext.gadget.charinsert","ext.gadget.AltresViccionari","ext.gadget.purgetab","ext.gadget.DocTabs","ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader", "ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","wikibase.client.data-bridge.init","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","oojs-ui.styles.icons-media","oojs-ui-core.icons","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=ca&amp;modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.data-bridge.externalModifiers%7Cwikibase.client.init&amp;only=styles&amp;skin=vector-2022"> <script async="" src="/w/load.php?lang=ca&amp;modules=startup&amp;only=scripts&amp;raw=1&amp;skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=ca&amp;modules=site.styles&amp;only=styles&amp;skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.5"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Mètrica FLRW - Viquipèdia, l&#039;enciclopèdia lliure"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//ca.m.wikipedia.org/wiki/M%C3%A8trica_FLRW"> <link rel="alternate" type="application/x-wiki" title="Modifica" href="/w/index.php?title=M%C3%A8trica_FLRW&amp;action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Viquipèdia (ca)"> <link rel="EditURI" type="application/rsd+xml" href="//ca.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://ca.wikipedia.org/wiki/M%C3%A8trica_FLRW"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.ca"> <link rel="alternate" type="application/atom+xml" title="Canal de sindicació Atom Viquipèdia" href="/w/index.php?title=Especial:Canvis_recents&amp;feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Mètrica_FLRW rootpage-Mètrica_FLRW skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Vés al contingut</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Lloc"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Menú principal" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Menú principal</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Menú principal</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">mou a la barra lateral</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">amaga</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navegació </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Portada" title="Visiteu la pàgina principal [z]" accesskey="z"><span>Portada</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Especial:Article_aleatori" title="Carrega una pàgina a l’atzar [x]" accesskey="x"><span>Article a l'atzar</span></a></li><li id="n-Articles-de-qualitat" class="mw-list-item"><a href="/wiki/Viquip%C3%A8dia:Articles_de_qualitat"><span>Articles de qualitat</span></a></li> </ul> </div> </div> <div id="p-Comunitat" class="vector-menu mw-portlet mw-portlet-Comunitat" > <div class="vector-menu-heading"> Comunitat </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-portal" class="mw-list-item"><a href="/wiki/Viquip%C3%A8dia:Portal" title="Sobre el projecte, què podeu fer, on trobareu les coses"><span>Portal viquipedista</span></a></li><li id="n-Agenda-d&#039;actes" class="mw-list-item"><a href="/wiki/Viquip%C3%A8dia:Trobades"><span>Agenda d'actes</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Especial:Canvis_recents" title="Una llista dels canvis recents al wiki [r]" accesskey="r"><span>Canvis recents</span></a></li><li id="n-La-taverna" class="mw-list-item"><a href="/wiki/Viquip%C3%A8dia:La_taverna"><span>La taverna</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="/wiki/Viquip%C3%A8dia:Contacte"><span>Contacte</span></a></li><li id="n-Xat" class="mw-list-item"><a href="/wiki/Viquip%C3%A8dia:Canals_IRC"><span>Xat</span></a></li><li id="n-help" class="mw-list-item"><a href="/wiki/Viquip%C3%A8dia:Ajuda" title="El lloc per a saber més coses"><span>Ajuda</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Portada" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Viquipèdia" src="/static/images/mobile/copyright/wikipedia-wordmark-ca.svg" style="width: 7.5em; height: 1.4375em;"> <img class="mw-logo-tagline" alt="l&#039;Enciclopèdia Lliure" src="/static/images/mobile/copyright/wikipedia-tagline-ca.svg" width="120" height="14" style="width: 7.5em; height: 0.875em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Especial:Cerca" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Cerca a la Viquipèdia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Cerca</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Cerca a Viquipèdia" aria-label="Cerca a Viquipèdia" autocapitalize="sentences" title="Cerca a la Viquipèdia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Especial:Cerca"> </div> <button class="cdx-button cdx-search-input__end-button">Cerca</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Eines personals"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Aparença"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page&#039;s font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Aparença" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Aparença</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="//donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_ca.wikipedia.org&amp;uselang=ca" class=""><span>Donatius</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Especial:Crea_compte&amp;returnto=M%C3%A8trica+FLRW" title="Us animem a crear un compte i iniciar una sessió, encara que no és obligatori" class=""><span>Crea un compte</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Especial:Registre_i_entrada&amp;returnto=M%C3%A8trica+FLRW" title="Us animem a registrar-vos, però no és obligatori [o]" accesskey="o" class=""><span>Inicia la sessió</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Més opcions" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Eines personals" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Eines personals</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="Menú d&#039;usuari" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="//donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_ca.wikipedia.org&amp;uselang=ca"><span>Donatius</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Especial:Crea_compte&amp;returnto=M%C3%A8trica+FLRW" title="Us animem a crear un compte i iniciar una sessió, encara que no és obligatori"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Crea un compte</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Especial:Registre_i_entrada&amp;returnto=M%C3%A8trica+FLRW" title="Us animem a registrar-vos, però no és obligatori [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Inicia la sessió</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pàgines per a editors no registrats <a href="/wiki/Ajuda:Introducci%C3%B3" aria-label="Vegeu més informació sobre l&#039;edició"><span>més informació</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Especial:Contribucions_pr%C3%B2pies" title="Una llista de les modificacions fetes des d&#039;aquesta adreça IP [y]" accesskey="y"><span>Contribucions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Especial:Discussi%C3%B3_personal" title="Discussió sobre les edicions per aquesta adreça ip. [n]" accesskey="n"><span>Discussió per aquest IP</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Lloc"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contingut" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contingut</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">mou a la barra lateral</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">amaga</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">Inici</div> </a> </li> <li id="toc-Mètrica_general" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Mètrica_general"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Mètrica general</span> </div> </a> <button aria-controls="toc-Mètrica_general-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Commuta la subsecció Mètrica general</span> </button> <ul id="toc-Mètrica_general-sublist" class="vector-toc-list"> <li id="toc-Coordenades_polars_de_circumferència_reduïda" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Coordenades_polars_de_circumferència_reduïda"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.1</span> <span>Coordenades polars de circumferència reduïda</span> </div> </a> <ul id="toc-Coordenades_polars_de_circumferència_reduïda-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Coordenades_hiperesfèriques" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Coordenades_hiperesfèriques"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.2</span> <span>Coordenades hiperesfèriques</span> </div> </a> <ul id="toc-Coordenades_hiperesfèriques-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Coordenades_cartesianes" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Coordenades_cartesianes"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.3</span> <span>Coordenades cartesianes</span> </div> </a> <ul id="toc-Coordenades_cartesianes-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Curvatura" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Curvatura"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Curvatura</span> </div> </a> <button aria-controls="toc-Curvatura-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Commuta la subsecció Curvatura</span> </button> <ul id="toc-Curvatura-sublist" class="vector-toc-list"> <li id="toc-Coordenades_cartesianes_2" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Coordenades_cartesianes_2"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.1</span> <span>Coordenades cartesianes</span> </div> </a> <ul id="toc-Coordenades_cartesianes_2-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Coordenades_esfèriques" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Coordenades_esfèriques"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.2</span> <span>Coordenades esfèriques</span> </div> </a> <ul id="toc-Coordenades_esfèriques-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Solucions" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Solucions"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Solucions</span> </div> </a> <button aria-controls="toc-Solucions-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Commuta la subsecció Solucions</span> </button> <ul id="toc-Solucions-sublist" class="vector-toc-list"> <li id="toc-Interpretació" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Interpretació"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.1</span> <span>Interpretació</span> </div> </a> <ul id="toc-Interpretació-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Constant_cosmològica" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Constant_cosmològica"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.2</span> <span>Constant cosmològica</span> </div> </a> <ul id="toc-Constant_cosmològica-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Interpretació_newtoniana" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Interpretació_newtoniana"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.3</span> <span>Interpretació newtoniana</span> </div> </a> <ul id="toc-Interpretació_newtoniana-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Nom_i_història" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Nom_i_història"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Nom i història</span> </div> </a> <ul id="toc-Nom_i_història-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-El_radi_de_l&#039;univers_d&#039;Einstein" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#El_radi_de_l&#039;univers_d&#039;Einstein"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>El radi de l'univers d'Einstein</span> </div> </a> <ul id="toc-El_radi_de_l&#039;univers_d&#039;Einstein-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Estat_actual" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Estat_actual"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>Estat actual</span> </div> </a> <ul id="toc-Estat_actual-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Notes" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Notes"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>Notes</span> </div> </a> <ul id="toc-Notes-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Referències" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Referències"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>Referències</span> </div> </a> <ul id="toc-Referències-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Bibliografia" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Bibliografia"> <div class="vector-toc-text"> <span class="vector-toc-numb">9</span> <span>Bibliografia</span> </div> </a> <ul id="toc-Bibliografia-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contingut" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Commuta la taula de continguts." > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Commuta la taula de continguts.</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Mètrica FLRW</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Vés a un article en una altra llengua. Disponible en 28 llengües" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-28" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">28 llengües</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D9%85%D8%AA%D8%B1%D9%8A%D8%A9_%D9%81%D8%B1%D9%8A%D8%AF%D9%85%D8%A7%D9%86-%D9%84%D9%88%D9%85%D9%8A%D8%AA%D8%B1-%D8%B1%D9%88%D8%A8%D8%B1%D8%AA%D8%B3%D9%88%D9%86-%D9%88%D9%88%D9%83%D8%B1" title="مترية فريدمان-لوميتر-روبرتسون-ووكر - àrab" lang="ar" hreflang="ar" data-title="مترية فريدمان-لوميتر-روبرتسون-ووكر" data-language-autonym="العربية" data-language-local-name="àrab" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-bn mw-list-item"><a href="https://bn.wikipedia.org/wiki/%E0%A6%AB%E0%A7%8D%E0%A6%B0%E0%A6%BF%E0%A6%A6%E0%A6%AE%E0%A6%BE%E0%A6%A8-%E0%A6%B2%E0%A7%8D%E0%A6%AF%E0%A6%AE%E0%A7%87%E0%A6%A4%E0%A7%8D%E0%A6%B0%E0%A7%8D%E2%80%8C-%E0%A6%B0%E0%A6%AC%E0%A6%BE%E0%A6%B0%E0%A7%8D%E0%A6%9F%E0%A6%B8%E0%A6%A8-%E0%A6%93%E0%A6%AF%E0%A6%BC%E0%A6%BE%E0%A6%95%E0%A6%BE%E0%A6%B0_%E0%A6%AE%E0%A7%87%E0%A6%9F%E0%A7%8D%E0%A6%B0%E0%A6%BF%E0%A6%95" title="ফ্রিদমান-ল্যমেত্র্‌-রবার্টসন-ওয়াকার মেট্রিক - bengalí" lang="bn" hreflang="bn" data-title="ফ্রিদমান-ল্যমেত্র্‌-রবার্টসন-ওয়াকার মেট্রিক" data-language-autonym="বাংলা" data-language-local-name="bengalí" class="interlanguage-link-target"><span>বাংলা</span></a></li><li class="interlanguage-link interwiki-cv mw-list-item"><a href="https://cv.wikipedia.org/wiki/%D0%A4%D1%80%D0%B8%D0%B4%D0%BC%D0%B0%D0%BD_%C3%87%D1%83%D1%82_%D0%A2%C4%95%D0%BD%D1%87%D0%B8" title="Фридман Çут Тĕнчи - txuvaix" lang="cv" hreflang="cv" data-title="Фридман Çут Тĕнчи" data-language-autonym="Чӑвашла" data-language-local-name="txuvaix" class="interlanguage-link-target"><span>Чӑвашла</span></a></li><li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Friedmann-Lema%C3%AEtre-Robertson-Walker-Metrik" title="Friedmann-Lemaître-Robertson-Walker-Metrik - alemany" lang="de" hreflang="de" data-title="Friedmann-Lemaître-Robertson-Walker-Metrik" data-language-autonym="Deutsch" data-language-local-name="alemany" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-en mw-list-item"><a href="https://en.wikipedia.org/wiki/Friedmann%E2%80%93Lema%C3%AEtre%E2%80%93Robertson%E2%80%93Walker_metric" title="Friedmann–Lemaître–Robertson–Walker metric - anglès" lang="en" hreflang="en" data-title="Friedmann–Lemaître–Robertson–Walker metric" data-language-autonym="English" data-language-local-name="anglès" class="interlanguage-link-target"><span>English</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/M%C3%A9trica_de_Friedman-Lema%C3%AEtre-Robertson-Walker" title="Métrica de Friedman-Lemaître-Robertson-Walker - espanyol" lang="es" hreflang="es" data-title="Métrica de Friedman-Lemaître-Robertson-Walker" data-language-autonym="Español" data-language-local-name="espanyol" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-eu mw-list-item"><a href="https://eu.wikipedia.org/wiki/Friedmann-Lema%C3%AEtre-Robertson-Walker_metrika" title="Friedmann-Lemaître-Robertson-Walker metrika - basc" lang="eu" hreflang="eu" data-title="Friedmann-Lemaître-Robertson-Walker metrika" data-language-autonym="Euskara" data-language-local-name="basc" class="interlanguage-link-target"><span>Euskara</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D9%85%D8%AA%D8%B1%DB%8C%DA%A9_%D9%81%D8%B1%DB%8C%D8%AF%D9%85%D8%A7%D9%86-%D9%84%D9%88%D9%85%D8%AA%D8%B1-%D8%B1%D8%A7%D8%A8%D8%B1%D8%AA%D8%B3%D9%88%D9%86-%D9%88%D8%A7%DA%A9%D8%B1" title="متریک فریدمان-لومتر-رابرتسون-واکر - persa" lang="fa" hreflang="fa" data-title="متریک فریدمان-لومتر-رابرتسون-واکر" data-language-autonym="فارسی" data-language-local-name="persa" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-fi mw-list-item"><a href="https://fi.wikipedia.org/wiki/Fridmanin%E2%80%93Lema%C3%AEtren%E2%80%93Robertsonin%E2%80%93Walkerin_metriikka" title="Fridmanin–Lemaîtren–Robertsonin–Walkerin metriikka - finès" lang="fi" hreflang="fi" data-title="Fridmanin–Lemaîtren–Robertsonin–Walkerin metriikka" data-language-autonym="Suomi" data-language-local-name="finès" class="interlanguage-link-target"><span>Suomi</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/M%C3%A9trique_de_Friedmann-Lema%C3%AEtre-Robertson-Walker" title="Métrique de Friedmann-Lemaître-Robertson-Walker - francès" lang="fr" hreflang="fr" data-title="Métrique de Friedmann-Lemaître-Robertson-Walker" data-language-autonym="Français" data-language-local-name="francès" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-he mw-list-item"><a href="https://he.wikipedia.org/wiki/%D7%9E%D7%98%D7%A8%D7%99%D7%A7%D7%AA_%D7%A4%D7%A8%D7%99%D7%93%D7%9E%D7%9F-%D7%9C%D7%9E%D7%98%D7%A8-%D7%A8%D7%95%D7%91%D7%A8%D7%98%D7%A1%D7%95%D7%9F-%D7%95%D7%95%D7%A7%D7%A8" title="מטריקת פרידמן-למטר-רוברטסון-ווקר - hebreu" lang="he" hreflang="he" data-title="מטריקת פרידמן-למטר-רוברטסון-ווקר" data-language-autonym="עברית" data-language-local-name="hebreu" class="interlanguage-link-target"><span>עברית</span></a></li><li class="interlanguage-link interwiki-hu mw-list-item"><a href="https://hu.wikipedia.org/wiki/Friedmann%E2%80%93Lema%C3%AEtre%E2%80%93Robertson%E2%80%93Walker-metrika" title="Friedmann–Lemaître–Robertson–Walker-metrika - hongarès" lang="hu" hreflang="hu" data-title="Friedmann–Lemaître–Robertson–Walker-metrika" data-language-autonym="Magyar" data-language-local-name="hongarès" class="interlanguage-link-target"><span>Magyar</span></a></li><li class="interlanguage-link interwiki-hy mw-list-item"><a href="https://hy.wikipedia.org/wiki/%D5%96%D6%80%D5%AB%D5%A4%D5%B4%D5%A1%D5%B6%D5%AB_%D5%BF%D5%AB%D5%A5%D5%A6%D5%A5%D6%80%D6%84" title="Ֆրիդմանի տիեզերք - armeni" lang="hy" hreflang="hy" data-title="Ֆրիդմանի տիեզերք" data-language-autonym="Հայերեն" data-language-local-name="armeni" class="interlanguage-link-target"><span>Հայերեն</span></a></li><li class="interlanguage-link interwiki-ia mw-list-item"><a href="https://ia.wikipedia.org/wiki/Metrica_de_Friedmann-Lema%C3%AEtre-Robertson-Walker" title="Metrica de Friedmann-Lemaître-Robertson-Walker - interlingua" lang="ia" hreflang="ia" data-title="Metrica de Friedmann-Lemaître-Robertson-Walker" data-language-autonym="Interlingua" data-language-local-name="interlingua" class="interlanguage-link-target"><span>Interlingua</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Metrica_di_Friedmann-Lema%C3%AEtre-Robertson-Walker" title="Metrica di Friedmann-Lemaître-Robertson-Walker - italià" lang="it" hreflang="it" data-title="Metrica di Friedmann-Lemaître-Robertson-Walker" data-language-autonym="Italiano" data-language-local-name="italià" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E3%83%95%E3%83%AA%E3%83%BC%E3%83%89%E3%83%9E%E3%83%B3%E3%83%BB%E3%83%AB%E3%83%A1%E3%83%BC%E3%83%88%E3%83%AB%E3%83%BB%E3%83%AD%E3%83%90%E3%83%BC%E3%83%88%E3%82%BD%E3%83%B3%E3%83%BB%E3%82%A6%E3%82%A9%E3%83%BC%E3%82%AB%E3%83%BC%E8%A8%88%E9%87%8F" title="フリードマン・ルメートル・ロバートソン・ウォーカー計量 - japonès" lang="ja" hreflang="ja" data-title="フリードマン・ルメートル・ロバートソン・ウォーカー計量" data-language-autonym="日本語" data-language-local-name="japonès" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%ED%94%84%EB%A6%AC%EB%93%9C%EB%A7%8C-%EB%A5%B4%EB%A9%94%ED%8A%B8%EB%A5%B4-%EB%A1%9C%EB%B2%84%ED%8A%B8%EC%8A%A8-%EC%9B%8C%EC%BB%A4_%EA%B3%84%EB%9F%89" title="프리드만-르메트르-로버트슨-워커 계량 - coreà" lang="ko" hreflang="ko" data-title="프리드만-르메트르-로버트슨-워커 계량" data-language-autonym="한국어" data-language-local-name="coreà" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Friedmann-Lema%C3%AEtre-Robertson-Walker-metriek" title="Friedmann-Lemaître-Robertson-Walker-metriek - neerlandès" lang="nl" hreflang="nl" data-title="Friedmann-Lemaître-Robertson-Walker-metriek" data-language-autonym="Nederlands" data-language-local-name="neerlandès" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/Metryka_Friedmana-Lema%C3%AEtre%E2%80%99a-Robertsona-Walkera" title="Metryka Friedmana-Lemaître’a-Robertsona-Walkera - polonès" lang="pl" hreflang="pl" data-title="Metryka Friedmana-Lemaître’a-Robertsona-Walkera" data-language-autonym="Polski" data-language-local-name="polonès" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/M%C3%A9trica_de_Friedmann-Lema%C3%AEtre-Robertson-Walker" title="Métrica de Friedmann-Lemaître-Robertson-Walker - portuguès" lang="pt" hreflang="pt" data-title="Métrica de Friedmann-Lemaître-Robertson-Walker" data-language-autonym="Português" data-language-local-name="portuguès" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%92%D1%81%D0%B5%D0%BB%D0%B5%D0%BD%D0%BD%D0%B0%D1%8F_%D0%A4%D1%80%D0%B8%D0%B4%D0%BC%D0%B0%D0%BD%D0%B0" title="Вселенная Фридмана - rus" lang="ru" hreflang="ru" data-title="Вселенная Фридмана" data-language-autonym="Русский" data-language-local-name="rus" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-sl mw-list-item"><a href="https://sl.wikipedia.org/wiki/Metrika_FLRW" title="Metrika FLRW - eslovè" lang="sl" hreflang="sl" data-title="Metrika FLRW" data-language-autonym="Slovenščina" data-language-local-name="eslovè" class="interlanguage-link-target"><span>Slovenščina</span></a></li><li class="interlanguage-link interwiki-th mw-list-item"><a href="https://th.wikipedia.org/wiki/%E0%B8%A1%E0%B8%B2%E0%B8%95%E0%B8%A3%E0%B8%A7%E0%B8%B1%E0%B8%94%E0%B8%9F%E0%B8%A3%E0%B8%B5%E0%B8%94%E0%B9%81%E0%B8%A1%E0%B8%99%E2%80%93%E0%B9%80%E0%B8%A5%E0%B8%AD%E0%B9%81%E0%B8%A1%E0%B8%95%E0%B8%A3%E0%B9%8C%E2%80%93%E0%B9%82%E0%B8%A3%E0%B9%80%E0%B8%9A%E0%B8%B4%E0%B8%A3%E0%B9%8C%E0%B8%95%E0%B8%AA%E0%B8%B1%E0%B8%99%E2%80%93%E0%B8%A7%E0%B8%AD%E0%B8%A5%E0%B9%8C%E0%B8%81%E0%B9%80%E0%B8%81%E0%B8%AD%E0%B8%A3%E0%B9%8C" title="มาตรวัดฟรีดแมน–เลอแมตร์–โรเบิร์ตสัน–วอล์กเกอร์ - tai" lang="th" hreflang="th" data-title="มาตรวัดฟรีดแมน–เลอแมตร์–โรเบิร์ตสัน–วอล์กเกอร์" data-language-autonym="ไทย" data-language-local-name="tai" class="interlanguage-link-target"><span>ไทย</span></a></li><li class="interlanguage-link interwiki-tt mw-list-item"><a href="https://tt.wikipedia.org/wiki/Fridman_%C4%9E%C3%A4l%C3%A4me" title="Fridman Ğäläme - tàtar" lang="tt" hreflang="tt" data-title="Fridman Ğäläme" data-language-autonym="Татарча / tatarça" data-language-local-name="tàtar" class="interlanguage-link-target"><span>Татарча / tatarça</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%9C%D0%B5%D1%82%D1%80%D0%B8%D0%BA%D0%B0_%D0%A4%D1%80%D1%96%D0%B4%D0%BC%D0%B0%D0%BD%D0%B0_%E2%80%94_%D0%9B%D0%B5%D0%BC%D0%B5%D1%82%D1%80%D0%B0_%E2%80%94_%D0%A0%D0%BE%D0%B1%D0%B5%D1%80%D1%82%D1%81%D0%BE%D0%BD%D0%B0_%E2%80%94_%D0%92%D0%BE%D0%BA%D0%B5%D1%80%D0%B0" title="Метрика Фрідмана — Леметра — Робертсона — Вокера - ucraïnès" lang="uk" hreflang="uk" data-title="Метрика Фрідмана — Леметра — Робертсона — Вокера" data-language-autonym="Українська" data-language-local-name="ucraïnès" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-ur mw-list-item"><a href="https://ur.wikipedia.org/wiki/%D8%B1%D8%A7%D8%A8%D8%B1%D9%B9%D8%B3%D9%86_%D9%88%D8%A7%D9%84%DA%A9%D8%B1_%D9%85%D8%AA%D9%86%D8%A7%D8%B3%D9%82%D8%A7%D8%AA" title="رابرٹسن والکر متناسقات - urdú" lang="ur" hreflang="ur" data-title="رابرٹسن والکر متناسقات" data-language-autonym="اردو" data-language-local-name="urdú" class="interlanguage-link-target"><span>اردو</span></a></li><li class="interlanguage-link interwiki-vi mw-list-item"><a href="https://vi.wikipedia.org/wiki/M%C3%AAtric_Friedmann%E2%80%93Lema%C3%AEtre%E2%80%93Robertson%E2%80%93Walker" title="Mêtric Friedmann–Lemaître–Robertson–Walker - vietnamita" lang="vi" hreflang="vi" data-title="Mêtric Friedmann–Lemaître–Robertson–Walker" data-language-autonym="Tiếng Việt" data-language-local-name="vietnamita" class="interlanguage-link-target"><span>Tiếng Việt</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E5%BC%97%E9%87%8C%E5%BE%B7%E6%9B%BC-%E5%8B%92%E6%A2%85%E7%89%B9-%E7%BD%97%E4%BC%AF%E9%80%8A-%E6%B2%83%E5%B0%94%E5%85%8B%E5%BA%A6%E8%A7%84" title="弗里德曼-勒梅特-罗伯逊-沃尔克度规 - xinès" lang="zh" hreflang="zh" data-title="弗里德曼-勒梅特-罗伯逊-沃尔克度规" data-language-autonym="中文" data-language-local-name="xinès" class="interlanguage-link-target"><span>中文</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q742982#sitelinks-wikipedia" title="Modifica enllaços interlingües" class="wbc-editpage">Modifica els enllaços</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Espais de noms"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/M%C3%A8trica_FLRW" title="Vegeu el contingut de la pàgina [c]" accesskey="c"><span>Pàgina</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Discussi%C3%B3:M%C3%A8trica_FLRW" rel="discussion" title="Discussió sobre el contingut d&#039;aquesta pàgina [t]" accesskey="t"><span>Discussió</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Canvia la variant de llengua" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">català</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Vistes"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/M%C3%A8trica_FLRW"><span>Mostra</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=M%C3%A8trica_FLRW&amp;action=edit" title="Modifica el codi font d&#039;aquesta pàgina [e]" accesskey="e"><span>Modifica</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=M%C3%A8trica_FLRW&amp;action=history" title="Versions antigues d&#039;aquesta pàgina [h]" accesskey="h"><span>Mostra l'historial</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Eines de la pàgina"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Eines" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Eines</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Eines</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">mou a la barra lateral</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">amaga</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="Més opcions" > <div class="vector-menu-heading"> Accions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/M%C3%A8trica_FLRW"><span>Mostra</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=M%C3%A8trica_FLRW&amp;action=edit" title="Modifica el codi font d&#039;aquesta pàgina [e]" accesskey="e"><span>Modifica</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=M%C3%A8trica_FLRW&amp;action=history"><span>Mostra l'historial</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Especial:Enlla%C3%A7os/M%C3%A8trica_FLRW" title="Una llista de totes les pàgines wiki que enllacen amb aquesta [j]" accesskey="j"><span>Què hi enllaça</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Especial:Seguiment/M%C3%A8trica_FLRW" rel="nofollow" title="Canvis recents a pàgines enllaçades des d&#039;aquesta pàgina [k]" accesskey="k"><span>Canvis relacionats</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Especial:P%C3%A0gines_especials" title="Llista totes les pàgines especials [q]" accesskey="q"><span>Pàgines especials</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=M%C3%A8trica_FLRW&amp;oldid=34216083" title="Enllaç permanent a aquesta revisió de la pàgina"><span>Enllaç permanent</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=M%C3%A8trica_FLRW&amp;action=info" title="Més informació sobre aquesta pàgina"><span>Informació de la pàgina</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Especial:Citau&amp;page=M%C3%A8trica_FLRW&amp;id=34216083&amp;wpFormIdentifier=titleform" title="Informació sobre com citar aquesta pàgina"><span>Citau aquest article</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Especial:UrlShortener&amp;url=https%3A%2F%2Fca.wikipedia.org%2Fwiki%2FM%25C3%25A8trica_FLRW"><span>Obtén una URL abreujada</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Especial:QrCode&amp;url=https%3A%2F%2Fca.wikipedia.org%2Fwiki%2FM%25C3%25A8trica_FLRW"><span>Descarrega el codi QR</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Imprimeix/exporta </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-create_a_book" class="mw-list-item"><a href="/w/index.php?title=Especial:Llibre&amp;bookcmd=book_creator&amp;referer=M%C3%A8trica+FLRW"><span>Crea un llibre</span></a></li><li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Especial:DownloadAsPdf&amp;page=M%C3%A8trica_FLRW&amp;action=show-download-screen"><span>Baixa com a PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=M%C3%A8trica_FLRW&amp;printable=yes" title="Versió per a impressió d&#039;aquesta pàgina [p]" accesskey="p"><span>Versió per a impressora</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> En altres projectes </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q742982" title="Enllaç a l&#039;element del repositori de dades connectat [g]" accesskey="g"><span>Element a Wikidata</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Eines de la pàgina"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Aparença"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Aparença</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">mou a la barra lateral</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">amaga</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">De la Viquipèdia, l&#039;enciclopèdia lliure</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="ca" dir="ltr"><table align="right" id="general_relativity" style="margin: 0 0 1em 1em; font-size:90%; border: 1px solid gray"> <tbody><tr style="background:#f2f2f2" align="center"> <td style="border-bottom: 2px solid #ccf"><b><a href="/wiki/Relativitat_general" title="Relativitat general">Relativitat general</a></b> </td></tr> <tr style="background:#f2f2f2"> <td style="border-bottom: 2px solid #ccf"><center><span typeof="mw:File"><a href="/wiki/Fitxer:Neutronstar_Light_Deflection.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/4/4a/Neutronstar_Light_Deflection.png/105px-Neutronstar_Light_Deflection.png" decoding="async" width="105" height="79" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/4a/Neutronstar_Light_Deflection.png/158px-Neutronstar_Light_Deflection.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/4a/Neutronstar_Light_Deflection.png/210px-Neutronstar_Light_Deflection.png 2x" data-file-width="1024" data-file-height="768" /></a></span></center> <ul><li><a href="/wiki/Equacions_de_camp_d%27Einstein" title="Equacions de camp d&#39;Einstein">Equacions de camp d'Einstein</a></li> <li><a href="/wiki/Equacions_de_Friedmann" title="Equacions de Friedmann">Equacions de Friedmann</a></li> <li><a href="/wiki/Forat_negre" title="Forat negre">Forat negre</a></li> <li><a href="/wiki/Gravetat_qu%C3%A0ntica" class="mw-redirect" title="Gravetat quàntica">Gravetat quàntica</a></li> <li><a href="/wiki/Horitz%C3%B3_d%27esdeveniments" title="Horitzó d&#39;esdeveniments">Horitzó d'esdeveniments</a></li> <li><a href="/wiki/Lent_gravitat%C3%B2ria" title="Lent gravitatòria">Lent gravitatòria</a></li> <li><a href="/wiki/M%C3%A8trica_de_Schwarzschild" title="Mètrica de Schwarzschild">Mètrica de Schwarzschild</a></li> <li><a href="/wiki/M%C3%A8trica_de_Kerr" title="Mètrica de Kerr">Mètrica de Kerr</a></li> <li><a class="mw-selflink selflink">Mètrica FLRW</a></li> <li><a href="/wiki/Ona_gravitat%C3%B2ria" class="mw-redirect" title="Ona gravitatòria">Ona gravitatòria</a></li> <li><a href="/wiki/Principi_d%27equival%C3%A8ncia" title="Principi d&#39;equivalència">Principi d'equivalència</a></li> <li><a href="/wiki/Relativitat_general" title="Relativitat general">Relativitat general</a></li> <li><a href="/w/index.php?title=Solucions_exactes_de_la_relativitat_general&amp;action=edit&amp;redlink=1" class="new" title="Solucions exactes de la relativitat general (encara no existeix)">Solucions exactes de la RG</a></li> <li><a href="/wiki/Univers_d%27Einstein%E2%80%93de_Sitter" title="Univers d&#39;Einstein–de Sitter">Univers d'Einstein–de Sitter</a></li></ul> </td></tr> <tr style="background:#f2f2f2" align="center"> <td><b>Temes relacionats</b> </td></tr> <tr align="left" style="background:#f2f2f2"> <td style="border-bottom: 2px solid #ccf"> <ul><li><a href="/wiki/Albert_Einstein" title="Albert Einstein">Albert Einstein</a></li> <li><a href="/wiki/Astrof%C3%ADsica" title="Astrofísica">Astrofísica</a></li> <li><a href="/wiki/Cosmologia" title="Cosmologia">Cosmologia</a></li> <li><a href="/wiki/Geometria_riemanniana" title="Geometria riemanniana">Geometria riemanniana</a></li> <li><a href="/wiki/Gravetat" title="Gravetat">Gravetat</a></li></ul> </td></tr> <tr align="right" style="background:#f2f2f2"> <td><small><a class="external text" href="https://ca.wikipedia.org/w/index.php?title=Template:RG&amp;action=edit">modifica</a></small> </td></tr></tbody></table> <p>La <b>mètrica de Friedmann-Lemaître-Robertson-Walker</b> (o <b>mètrica FLRW</b>) és una <a href="/wiki/Varietat_pseudoriemanniana" title="Varietat pseudoriemanniana">mètrica</a> basada en la solució exacta de les <a href="/wiki/Equacions_de_camp_d%27Einstein" title="Equacions de camp d&#39;Einstein">equacions de camp</a> de la <a href="/wiki/Relativitat_general" title="Relativitat general">relativitat general</a> d'<a href="/wiki/Albert_Einstein" title="Albert Einstein">Einstein</a>; descriu un <a href="/wiki/Univers" title="Univers">Univers</a> <a href="/wiki/Homogene%C3%AFtat" title="Homogeneïtat">homogeni</a>, <a href="/wiki/Isotropia" title="Isotropia">isòtrop</a>, en <a href="/wiki/Expansi%C3%B3_de_l%27Univers" title="Expansió de l&#39;Univers">expansió</a> (o en contracció) que està <a href="/wiki/Conjunt_connex" title="Conjunt connex">connectat per camins</a>, però no necessàriament <a href="/wiki/Conjunt_simplement_connex" title="Conjunt simplement connex">simplement connectat</a>.<sup id="cite_ref-1" class="reference"><a href="#cite_note-1"><span class="cite-bracket">&#91;</span>Nota 1<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-FOOTNOTELachieze-ReyLuminet1995135-214_2-0" class="reference"><a href="#cite_note-FOOTNOTELachieze-ReyLuminet1995135-214-2"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-FOOTNOTEEllisElst19991-116_3-0" class="reference"><a href="#cite_note-FOOTNOTEEllisElst19991-116-3"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup> La forma general de la mètrica es desprèn de les propietats geomètriques d'homogeneïtat i isotropia; les <a href="/wiki/Equacions_de_camp_d%27Einstein" title="Equacions de camp d&#39;Einstein">equacions de camp d'Einstein</a> només són necessàries per <a href="/wiki/Derivada" title="Derivada">derivar</a> el <a href="/wiki/Factor_d%27escala" title="Factor d&#39;escala">factor d'escala</a> de l'Univers en funció del <a href="/wiki/Temps" title="Temps">temps</a>. </p><p>Segons les preferències geogràfiques o històriques, el conjunt dels quatre científics <a href="/wiki/Aleksandr_Fr%C3%ADdman" title="Aleksandr Frídman">(Alexander Friedmann</a>, <a href="/wiki/Georges_Lema%C3%AEtre" title="Georges Lemaître">Georges Lemaître</a>, <a href="/wiki/Howard_P._Robertson" title="Howard P. Robertson">Howard P. Robertson</a> i <a href="/wiki/Arthur_Geoffrey_Walker" title="Arthur Geoffrey Walker">Arthur Geoffrey Walker</a>) s'agrupen habitualment com a <i>Friedmann o Friedmann–Robertson–Walker</i> (FRW) o <i>Robertson–Walker</i> (RW) o <i>Friedmann–Lemaître</i> (FL). Aquest model de vegades s'anomena <i>Model Estàndard</i> de la <a href="/wiki/Cosmologia" title="Cosmologia">cosmologia</a> moderna,<sup id="cite_ref-FOOTNOTEBergströmGoobar200661_4-0" class="reference"><a href="#cite_note-FOOTNOTEBergströmGoobar200661-4"><span class="cite-bracket">&#91;</span>3<span class="cite-bracket">&#93;</span></a></sup> encara que aquesta descripció també s'associa amb el <a href="/wiki/Model_Lambda-CDM" title="Model Lambda-CDM">model Lambda-CDM</a> més desenvolupat. El <i>model FLRW</i> va ser desenvolupat de manera independent pels autors esmentats durant les dècades de 1920 i 1930. </p><p>La mètrica FLRW s'utilitza actualment com a primera aproximació estàndard per al model cosmològic de l'univers a partir del <a href="/wiki/Big-bang" title="Big-bang">big-bang</a>. Atès que la mètrica FLRW assumeix homogeneïtat, s'ha especulat erròniament que aquest model del big-bang no pot explicar les variacions de <a href="/wiki/Temperatura" title="Temperatura">temperatura</a> de l'univers a diferents escales. Actualment, la FLRW s'utilitza com a primera aproximació per a l'<a href="/w/index.php?title=Cronologia_de_l%27Univers&amp;action=edit&amp;redlink=1" class="new" title="Cronologia de l&#39;Univers (encara no existeix)">evolució de l'univers</a> perquè és simple de calcular i es pot ampliar de manera que modeli les variacions de temperatura de l'univers a diferents escales. Des del 2003, es comprenen bé les implicacions teòriques de les diferents extensions de la mètrica FLRW i es treballa per fer-les consistents amb l'evidència observacional obtinguda a partir dels satèl·lits <a href="/wiki/COBE" title="COBE">COBE</a> i <a href="/wiki/WMAP" title="WMAP">WMAP</a>. </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Mètrica_general"><span id="M.C3.A8trica_general"></span>Mètrica general</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=M%C3%A8trica_FLRW&amp;action=edit&amp;section=1" title="Modifica la secció: Mètrica general"><span>modifica</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>La mètrica FLRW comença amb el supòsit d'<a href="/wiki/Homogene%C3%AFtat" title="Homogeneïtat">homogeneïtat</a> i <a href="/wiki/Isotropia" title="Isotropia">isotropia</a> de l'espai. També assumeix que el component espacial de la mètrica pot dependre del <a href="/wiki/Temps" title="Temps">temps</a>. La mètrica general que compleix aquestes condicions és </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle -c^{2}\mathrm {d} \tau ^{2}=-c^{2}\mathrm {d} t^{2}+{a(t)}^{2}\mathrm {d} \mathbf {\Sigma } ^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x2212;<!-- − --></mo> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <msup> <mi>&#x03C4;<!-- τ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">&#x03A3;<!-- Σ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle -c^{2}\mathrm {d} \tau ^{2}=-c^{2}\mathrm {d} t^{2}+{a(t)}^{2}\mathrm {d} \mathbf {\Sigma } ^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ecd73ca29d0caf8372c5f641075b655e035e9dc9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:29.679ex; height:3.343ex;" alt="{\displaystyle -c^{2}\mathrm {d} \tau ^{2}=-c^{2}\mathrm {d} t^{2}+{a(t)}^{2}\mathrm {d} \mathbf {\Sigma } ^{2}}"></span></dd></dl> <p>on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {\Sigma } }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">&#x03A3;<!-- Σ --></mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {\Sigma } }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/90f99b56fe6ada781ecd0f8a45b6e787b6dfed56" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.931ex; height:2.176ex;" alt="{\displaystyle \mathbf {\Sigma } }"></span>&#160;abasta un <a href="/wiki/Espai_tridimensional" title="Espai tridimensional">espai tridimensional</a> de <a href="/wiki/Curvatura" title="Curvatura">curvatura</a> uniforme, és a dir, <a href="/wiki/Geometria_el%C2%B7l%C3%ADptica" title="Geometria el·líptica">espai el·líptic</a>, <a href="/wiki/Espai_euclidi%C3%A0" title="Espai euclidià">espai euclidià</a> o <a href="/wiki/Espai_hiperb%C3%B2lic" title="Espai hiperbòlic">espai hiperbòlic</a>. Normalment s'escriu en funció de tres <a href="/wiki/Sistema_de_coordenades" title="Sistema de coordenades">coordenades</a> espacials, però hi ha diverses convencions per fer-ho, que es detallen a continuació. <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {d} \mathbf {\Sigma } }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">&#x03A3;<!-- Σ --></mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathrm {d} \mathbf {\Sigma } }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/44a34bc6951ff107bcf4fff0cc3da1d2302285a5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.224ex; height:2.176ex;" alt="{\displaystyle \mathrm {d} \mathbf {\Sigma } }"></span>&#160;no depèn de <i>t</i>; tota la dependència del temps està en la funció <i>a(t)</i>, coneguda com el <i>«<a href="/w/index.php?title=Factor_d%27escala_(cosmologia)&amp;action=edit&amp;redlink=1" class="new" title="Factor d&#39;escala (cosmologia) (encara no existeix)">factor d'escala</a>»</i>. </p> <div class="mw-heading mw-heading3"><h3 id="Coordenades_polars_de_circumferència_reduïda"><span id="Coordenades_polars_de_circumfer.C3.A8ncia_redu.C3.AFda"></span>Coordenades polars de circumferència reduïda</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=M%C3%A8trica_FLRW&amp;action=edit&amp;section=2" title="Modifica la secció: Coordenades polars de circumferència reduïda"><span>modifica</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>En <a href="/wiki/Coordenades_polars" title="Coordenades polars">coordenades polars</a> de circumferència reduïda la mètrica espacial té la forma </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {d} \mathbf {\Sigma } ^{2}={\frac {\mathrm {d} r^{2}}{1-kr^{2}}}+r^{2}\mathrm {d} \mathbf {\Omega } ^{2},\quad {\text{on }}\mathrm {d} \mathbf {\Omega } ^{2}=\mathrm {d} \theta ^{2}+\sin ^{2}\theta \,\mathrm {d} \phi ^{2}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">&#x03A3;<!-- Σ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <msup> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>k</mi> <msup> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>+</mo> <msup> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">&#x03A9;<!-- Ω --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>,</mo> <mspace width="1em" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>on&#xA0;</mtext> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">&#x03A9;<!-- Ω --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <msup> <mi>&#x03B8;<!-- θ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>sin</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03B8;<!-- θ --></mi> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <msup> <mi>&#x03D5;<!-- ϕ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathrm {d} \mathbf {\Sigma } ^{2}={\frac {\mathrm {d} r^{2}}{1-kr^{2}}}+r^{2}\mathrm {d} \mathbf {\Omega } ^{2},\quad {\text{on }}\mathrm {d} \mathbf {\Omega } ^{2}=\mathrm {d} \theta ^{2}+\sin ^{2}\theta \,\mathrm {d} \phi ^{2}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6d82c2c49bcbab7a30aacb96370712e59cb020d3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:54.951ex; height:6.176ex;" alt="{\displaystyle \mathrm {d} \mathbf {\Sigma } ^{2}={\frac {\mathrm {d} r^{2}}{1-kr^{2}}}+r^{2}\mathrm {d} \mathbf {\Omega } ^{2},\quad {\text{on }}\mathrm {d} \mathbf {\Omega } ^{2}=\mathrm {d} \theta ^{2}+\sin ^{2}\theta \,\mathrm {d} \phi ^{2}.}"></span></dd></dl> <p><i>k</i> és una <a href="/wiki/Constant_(matem%C3%A0tiques)" title="Constant (matemàtiques)">constant</a> que representa la <a href="/wiki/Forma_de_l%27Univers" title="Forma de l&#39;Univers">curvatura de l'espai</a>. Hi ha dues convencions comunes d'unitats: </p> <ul><li><i>k</i> es pot considerar que té unitats de longitud<sup>−2</sup>. En aquest cas <i>r</i> té unitats de longitud i <i>a(t)</i> no té unitats. <i>k</i> és aleshores la <a href="/wiki/Curvatura_gaussiana" title="Curvatura gaussiana">curvatura gaussiana</a> de l'espai en el moment en què <i>a(t) = 1</i>. <i>r</i> de vegades s'anomena <a href="/wiki/Circumfer%C3%A8ncia" title="Circumferència">circumferència</a> reduïda perquè és igual a la circumferència mesurada d'un <a href="/wiki/Cercle" title="Cercle">cercle</a> (a aquest valor de <i>r</i>), centrat a l'origen, dividit per 2π (com el <i>r</i> de les <a href="/w/index.php?title=Coordenades_de_Schwarzschild&amp;action=edit&amp;redlink=1" class="new" title="Coordenades de Schwarzschild (encara no existeix)">coordenades de Schwarzschild</a>). Si escau, sovint s'escull <i>a(t)</i> per igual a 1 en l'era cosmològica actual, de manera que <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {d} \mathbf {\Sigma } }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">&#x03A3;<!-- Σ --></mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathrm {d} \mathbf {\Sigma } }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/44a34bc6951ff107bcf4fff0cc3da1d2302285a5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.224ex; height:2.176ex;" alt="{\displaystyle \mathrm {d} \mathbf {\Sigma } }"></span>&#160;mesura la <a href="/wiki/Dist%C3%A0ncia_com%C3%B2bil" title="Distància comòbil">distància comòbil</a>.</li> <li>Alternativament, es pot considerar que <i>k</i> pertany al conjunt {−1,0,+1} (per a curvatura negativa, zero i positiva respectivament). Aleshores <i>r</i> no té unitats i <i>a(t)</i> té unitats de <a href="/wiki/Longitud" title="Longitud">longitud</a>. Quan <i>k = ±1</i>, <i>a(t)</i> és el <a href="/wiki/Radi_de_curvatura" class="mw-redirect" title="Radi de curvatura">radi de curvatura</a> de l'espai, i també es pot escriure <i>R(t)</i>.</li></ul> <p>Un desavantatge de les coordenades de circumferència reduïdes és que cobreixen només la meitat de la <a href="/wiki/Esfera" title="Esfera">3-esfera</a> en el cas de curvatura positiva; les circumferències més enllà d'aquest punt comencen a disminuir, donant lloc a la degeneració. (Això no és un problema si l'espai és <a href="/wiki/Geometria_el%C2%B7l%C3%ADptica" title="Geometria el·líptica">el·líptic</a>, és a dir, una 3-esfera amb punts oposats identificats.) </p> <div class="mw-heading mw-heading3"><h3 id="Coordenades_hiperesfèriques"><span id="Coordenades_hiperesf.C3.A8riques"></span>Coordenades hiperesfèriques</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=M%C3%A8trica_FLRW&amp;action=edit&amp;section=3" title="Modifica la secció: Coordenades hiperesfèriques"><span>modifica</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>En <i>coordenades hiperesfèriques</i> o <i>normalitzades per curvatura</i>, la <a href="/wiki/Sistema_de_coordenades" title="Sistema de coordenades">coordenada</a> <i>r</i> és proporcional a la distància radial; això dona </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {d} \mathbf {\Sigma } ^{2}=\mathrm {d} r^{2}+S_{k}(r)^{2}\,\mathrm {d} \mathbf {\Omega } ^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">&#x03A3;<!-- Σ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <msup> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msub> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>r</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">&#x03A9;<!-- Ω --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathrm {d} \mathbf {\Sigma } ^{2}=\mathrm {d} r^{2}+S_{k}(r)^{2}\,\mathrm {d} \mathbf {\Omega } ^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c9558e72cb397a2536cf38b6f92ca94b9e39c252" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:24.703ex; height:3.176ex;" alt="{\displaystyle \mathrm {d} \mathbf {\Sigma } ^{2}=\mathrm {d} r^{2}+S_{k}(r)^{2}\,\mathrm {d} \mathbf {\Omega } ^{2}}"></span></dd></dl> <p>on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {d} \mathbf {\Omega } }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">&#x03A9;<!-- Ω --></mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathrm {d} \mathbf {\Omega } }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4c6c61b82491f1767e8fe74c7f15a3fee38ceb26" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.224ex; height:2.176ex;" alt="{\displaystyle \mathrm {d} \mathbf {\Omega } }"></span> és com abans i </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S_{k}(r)={\begin{cases}{\sqrt {k}}^{\,-1}\sin(r{\sqrt {k}}),&amp;k&gt;0\\r,&amp;k=0\\{\sqrt {|k|}}^{\,-1}\sinh(r{\sqrt {|k|}}),&amp;k&lt;0.\end{cases}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>r</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>{</mo> <mtable columnalign="left left" rowspacing=".2em" columnspacing="1em" displaystyle="false"> <mtr> <mtd> <msup> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi>k</mi> </msqrt> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mspace width="thinmathspace" /> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi>k</mi> </msqrt> </mrow> <mo stretchy="false">)</mo> <mo>,</mo> </mtd> <mtd> <mi>k</mi> <mo>&gt;</mo> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mi>r</mi> <mo>,</mo> </mtd> <mtd> <mi>k</mi> <mo>=</mo> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <msup> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </msqrt> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mspace width="thinmathspace" /> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mi>sinh</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </msqrt> </mrow> <mo stretchy="false">)</mo> <mo>,</mo> </mtd> <mtd> <mi>k</mi> <mo>&lt;</mo> <mn>0.</mn> </mtd> </mtr> </mtable> <mo fence="true" stretchy="true" symmetric="true"></mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S_{k}(r)={\begin{cases}{\sqrt {k}}^{\,-1}\sin(r{\sqrt {k}}),&amp;k&gt;0\\r,&amp;k=0\\{\sqrt {|k|}}^{\,-1}\sinh(r{\sqrt {|k|}}),&amp;k&lt;0.\end{cases}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/63a5bc8590c44c8e42951b1c4f2b3fc45c087616" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.505ex; width:40.146ex; height:10.176ex;" alt="{\displaystyle S_{k}(r)={\begin{cases}{\sqrt {k}}^{\,-1}\sin(r{\sqrt {k}}),&amp;k&gt;0\\r,&amp;k=0\\{\sqrt {|k|}}^{\,-1}\sinh(r{\sqrt {|k|}}),&amp;k&lt;0.\end{cases}}}"></span></dd></dl> <p>Com abans, hi ha dues convencions comunes d'unitats: </p> <ul><li><i>k</i> es pot considerar que té unitats de longitud<sup>−2</sup>. En aquest cas <i>r</i> té unitats de longitud i <i>a(t)</i> no té unitats. <i>k</i> és aleshores la <a href="/wiki/Curvatura_gaussiana" title="Curvatura gaussiana">curvatura gaussiana</a> de l'espai en el moment en què <i>a(t) = 1</i>. Si escau, sovint s'escull <i>a(t)</i> per igual a 1 en l'era cosmològica actual, de manera que <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {d} \mathbf {\Sigma } }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">&#x03A3;<!-- Σ --></mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathrm {d} \mathbf {\Sigma } }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/44a34bc6951ff107bcf4fff0cc3da1d2302285a5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.224ex; height:2.176ex;" alt="{\displaystyle \mathrm {d} \mathbf {\Sigma } }"></span>&#160;mesura la <a href="/wiki/Dist%C3%A0ncia_com%C3%B2bil" title="Distància comòbil">distància comòbil</a>.</li> <li>Alternativament, es pot considerar que <i>k</i> pertany al conjunt {−1,0,+1} (per a curvatura negativa, zero i positiva respectivament). Quan <i>k = ±1</i>, <i>a(t)</i> és el <a href="/wiki/Radi_de_curvatura" class="mw-redirect" title="Radi de curvatura">radi de curvatura</a> de l'espai, i també es pot escriure <i>R(t)</i>. Tingueu en compte que quan <i>k = +1</i>, <i>r</i> és essencialment un tercer angle juntament amb <i>θ</i> i φ. La lletra <i>χ</i> es pot utilitzar en lloc de <i>r</i>.</li></ul> <p>Tot i que normalment es defineix per parts com anteriorment, <i>S</i> és una <a href="/wiki/Funci%C3%B3_anal%C3%ADtica" title="Funció analítica">funció analítica</a> tant de <i>k</i> com de <i>r</i>. També es pot escriure com una <a href="/wiki/S%C3%A8rie_de_pot%C3%A8ncies_enteres" title="Sèrie de potències enteres">sèrie de potències</a> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S_{k}(r)=\sum _{n=0}^{\infty }{\frac {(-1)^{n}k^{n}r^{2n+1}}{(2n+1)!}}=r-{\frac {kr^{3}}{6}}+{\frac {k^{2}r^{5}}{120}}-\cdots }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>r</mi> <mo stretchy="false">)</mo> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <msup> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <msup> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> </mrow> <mrow> <mo stretchy="false">(</mo> <mn>2</mn> <mi>n</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>!</mo> </mrow> </mfrac> </mrow> <mo>=</mo> <mi>r</mi> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>k</mi> <msup> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> </mrow> <mn>6</mn> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>5</mn> </mrow> </msup> </mrow> <mn>120</mn> </mfrac> </mrow> <mo>&#x2212;<!-- − --></mo> <mo>&#x22EF;<!-- ⋯ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S_{k}(r)=\sum _{n=0}^{\infty }{\frac {(-1)^{n}k^{n}r^{2n+1}}{(2n+1)!}}=r-{\frac {kr^{3}}{6}}+{\frac {k^{2}r^{5}}{120}}-\cdots }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ec41559e713b4b64e2032172dd6b8caaa881504f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:51.412ex; height:7.009ex;" alt="{\displaystyle S_{k}(r)=\sum _{n=0}^{\infty }{\frac {(-1)^{n}k^{n}r^{2n+1}}{(2n+1)!}}=r-{\frac {kr^{3}}{6}}+{\frac {k^{2}r^{5}}{120}}-\cdots }"></span></dd></dl> <p>o com </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S_{k}(r)=r\;\mathrm {sinc} \,(r{\sqrt {k}}),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>r</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>r</mi> <mspace width="thickmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">s</mi> <mi mathvariant="normal">i</mi> <mi mathvariant="normal">n</mi> <mi mathvariant="normal">c</mi> </mrow> <mspace width="thinmathspace" /> <mo stretchy="false">(</mo> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi>k</mi> </msqrt> </mrow> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S_{k}(r)=r\;\mathrm {sinc} \,(r{\sqrt {k}}),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d6cf61d494c359e09deb789d1193fb9adac672db" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:21.091ex; height:3.176ex;" alt="{\displaystyle S_{k}(r)=r\;\mathrm {sinc} \,(r{\sqrt {k}}),}"></span></dd></dl> <p>on <i>sinc</i> és la <a href="/wiki/Funci%C3%B3_sinc" title="Funció sinc">funció sinc</a> no normalitzada i <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\sqrt {k}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi>k</mi> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\sqrt {k}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/de05da7afd02cfd22d059bf17a0c165e3079d5d4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.147ex; height:3.009ex;" alt="{\displaystyle {\sqrt {k}}}"></span> és una de les <a href="/wiki/Arrel_quadrada" title="Arrel quadrada">arrels quadrades</a> <a href="/wiki/Nombre_imaginari" title="Nombre imaginari">imaginàries</a>, zero o <a href="/wiki/Nombre_real" title="Nombre real">reals</a> de <i>k</i>. Aquestes definicions són vàlides per a tots els <i>k</i>. </p> <div class="mw-heading mw-heading3"><h3 id="Coordenades_cartesianes">Coordenades cartesianes</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=M%C3%A8trica_FLRW&amp;action=edit&amp;section=4" title="Modifica la secció: Coordenades cartesianes"><span>modifica</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Quan <i>k = 0</i> es pot escriure simplement </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {d} \mathbf {\Sigma } ^{2}=\mathrm {d} x^{2}+\mathrm {d} y^{2}+\mathrm {d} z^{2}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">&#x03A3;<!-- Σ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathrm {d} \mathbf {\Sigma } ^{2}=\mathrm {d} x^{2}+\mathrm {d} y^{2}+\mathrm {d} z^{2}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5d86378e17b58903abd97af3d3920478f0843853" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:24.325ex; height:3.009ex;" alt="{\displaystyle \mathrm {d} \mathbf {\Sigma } ^{2}=\mathrm {d} x^{2}+\mathrm {d} y^{2}+\mathrm {d} z^{2}.}"></span></dd></dl> <p>Això es pot estendre a <i>k ≠ 0</i> mitjançant la definició </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x=r\cos \theta \,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>=</mo> <mi>r</mi> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03B8;<!-- θ --></mi> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x=r\cos \theta \,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/23993ddd802801b85640fc6a6df4328f79c16954" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:10.84ex; height:2.176ex;" alt="{\displaystyle x=r\cos \theta \,}"></span>,</dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y=r\sin \theta \cos \phi \,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> <mo>=</mo> <mi>r</mi> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03B8;<!-- θ --></mi> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03D5;<!-- ϕ --></mi> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y=r\sin \theta \cos \phi \,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7b32d8a22499c31b6229961bf2c9f48841241205" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:15.681ex; height:2.509ex;" alt="{\displaystyle y=r\sin \theta \cos \phi \,}"></span>, i</dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z=r\sin \theta \sin \phi \,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>z</mi> <mo>=</mo> <mi>r</mi> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03B8;<!-- θ --></mi> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03D5;<!-- ϕ --></mi> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle z=r\sin \theta \sin \phi \,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7671397b4c9fb427754c6017033f2ed63ca90065" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:15.358ex; height:2.509ex;" alt="{\displaystyle z=r\sin \theta \sin \phi \,}"></span>,</dd></dl> <p>on <i>r</i> és una de les coordenades radials definides anteriorment, però això és rar. </p> <div class="mw-heading mw-heading2"><h2 id="Curvatura">Curvatura</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=M%C3%A8trica_FLRW&amp;action=edit&amp;section=5" title="Modifica la secció: Curvatura"><span>modifica</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Coordenades_cartesianes_2">Coordenades cartesianes</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=M%C3%A8trica_FLRW&amp;action=edit&amp;section=6" title="Modifica la secció: Coordenades cartesianes"><span>modifica</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>En pla <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (k=0)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>k</mi> <mo>=</mo> <mn>0</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (k=0)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/835dfd6fbaf246634f1101ba69dee6f83dd01634" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.281ex; height:2.843ex;" alt="{\displaystyle (k=0)}"></span>, l'espai FLRW utilitza <a href="/wiki/Sistema_de_coordenades_cartesianes" title="Sistema de coordenades cartesianes">coordenades cartesianes</a>, els components supervivents del <a href="/wiki/Tensor_de_Ricci" title="Tensor de Ricci">tensor de Ricci</a> són<sup id="cite_ref-FOOTNOTEWald1984_5-0" class="reference"><a href="#cite_note-FOOTNOTEWald1984-5"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R_{tt}=-3{\frac {\ddot {a}}{a}},\quad R_{xx}=R_{yy}=R_{zz}=c^{-2}(a{\ddot {a}}+2{\dot {a}}^{2})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> <mi>t</mi> </mrow> </msub> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mn>3</mn> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>a</mi> <mo>&#x00A8;<!-- ¨ --></mo> </mover> </mrow> <mi>a</mi> </mfrac> </mrow> <mo>,</mo> <mspace width="1em" /> <msub> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> <mi>x</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> <mi>y</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> <mi>z</mi> </mrow> </msub> <mo>=</mo> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>a</mi> <mo>&#x00A8;<!-- ¨ --></mo> </mover> </mrow> </mrow> <mo>+</mo> <mn>2</mn> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>a</mi> <mo>&#x02D9;<!-- ˙ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R_{tt}=-3{\frac {\ddot {a}}{a}},\quad R_{xx}=R_{yy}=R_{zz}=c^{-2}(a{\ddot {a}}+2{\dot {a}}^{2})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cf76c1268820770444c4fcee2f117e6be14b81ed" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:48.908ex; height:5.176ex;" alt="{\displaystyle R_{tt}=-3{\frac {\ddot {a}}{a}},\quad R_{xx}=R_{yy}=R_{zz}=c^{-2}(a{\ddot {a}}+2{\dot {a}}^{2})}"></span></dd></dl> <p>i l'escalar de Ricci és </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R=6c^{-2}\left({\frac {{\ddot {a}}(t)}{a(t)}}+{\frac {{\dot {a}}^{2}(t)}{a^{2}(t)}}\right).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> <mo>=</mo> <mn>6</mn> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> </mrow> </msup> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>a</mi> <mo>&#x00A8;<!-- ¨ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>a</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>a</mi> <mo>&#x02D9;<!-- ˙ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R=6c^{-2}\left({\frac {{\ddot {a}}(t)}{a(t)}}+{\frac {{\dot {a}}^{2}(t)}{a^{2}(t)}}\right).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1ffc20aabb2339262b4211a6f0223c0240ad0195" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:27.791ex; height:7.509ex;" alt="{\displaystyle R=6c^{-2}\left({\frac {{\ddot {a}}(t)}{a(t)}}+{\frac {{\dot {a}}^{2}(t)}{a^{2}(t)}}\right).}"></span></dd></dl> <div class="mw-heading mw-heading3"><h3 id="Coordenades_esfèriques"><span id="Coordenades_esf.C3.A8riques"></span>Coordenades esfèriques</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=M%C3%A8trica_FLRW&amp;action=edit&amp;section=7" title="Modifica la secció: Coordenades esfèriques"><span>modifica</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>En més general, l'espai FLRW utilitza <a href="/wiki/Sistema_de_coordenades_esf%C3%A8riques" title="Sistema de coordenades esfèriques">coordenades esfèriques</a> (anomenades <i>«coordenades polars de circumferència reduïda»</i>), els components supervivents del tensor de Ricci són<sup id="cite_ref-6" class="reference"><a href="#cite_note-6"><span class="cite-bracket">&#91;</span>5<span class="cite-bracket">&#93;</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R_{tt}=-3{\frac {\ddot {a}}{a}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> <mi>t</mi> </mrow> </msub> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mn>3</mn> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>a</mi> <mo>&#x00A8;<!-- ¨ --></mo> </mover> </mrow> <mi>a</mi> </mfrac> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R_{tt}=-3{\frac {\ddot {a}}{a}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f09fed36b19a1b771981ab963b1147f218b3474f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:11.965ex; height:5.176ex;" alt="{\displaystyle R_{tt}=-3{\frac {\ddot {a}}{a}},}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R_{rr}={\frac {c^{-2}(a(t){\ddot {a}}(t)+2{\dot {a}}^{2}(t))+2k}{1-kr^{2}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> <mi>r</mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mi>a</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>a</mi> <mo>&#x00A8;<!-- ¨ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mn>2</mn> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>a</mi> <mo>&#x02D9;<!-- ˙ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>+</mo> <mn>2</mn> <mi>k</mi> </mrow> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>k</mi> <msup> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R_{rr}={\frac {c^{-2}(a(t){\ddot {a}}(t)+2{\dot {a}}^{2}(t))+2k}{1-kr^{2}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9f3458529ef1ac42d843f65f2f2835d9f4e0788f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:34.47ex; height:6.343ex;" alt="{\displaystyle R_{rr}={\frac {c^{-2}(a(t){\ddot {a}}(t)+2{\dot {a}}^{2}(t))+2k}{1-kr^{2}}}}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R_{\theta \theta }=r^{2}(c^{-2}(a(t){\ddot {a}}(t)+2{\dot {a}}^{2}(t))+2k)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B8;<!-- θ --></mi> <mi>&#x03B8;<!-- θ --></mi> </mrow> </msub> <mo>=</mo> <msup> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">(</mo> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mi>a</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>a</mi> <mo>&#x00A8;<!-- ¨ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mn>2</mn> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>a</mi> <mo>&#x02D9;<!-- ˙ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>+</mo> <mn>2</mn> <mi>k</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R_{\theta \theta }=r^{2}(c^{-2}(a(t){\ddot {a}}(t)+2{\dot {a}}^{2}(t))+2k)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8de4165c72f3e07a9c7dd31804b295cd180c9ee3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:37.605ex; height:3.176ex;" alt="{\displaystyle R_{\theta \theta }=r^{2}(c^{-2}(a(t){\ddot {a}}(t)+2{\dot {a}}^{2}(t))+2k)}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R_{\phi \phi }=r^{2}(c^{-2}(a(t){\ddot {a}}(t)+2{\dot {a}}^{2}(t))+2k)\sin ^{2}(\theta )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03D5;<!-- ϕ --></mi> <mi>&#x03D5;<!-- ϕ --></mi> </mrow> </msub> <mo>=</mo> <msup> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">(</mo> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mi>a</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>a</mi> <mo>&#x00A8;<!-- ¨ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mn>2</mn> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>a</mi> <mo>&#x02D9;<!-- ˙ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>+</mo> <mn>2</mn> <mi>k</mi> <mo stretchy="false">)</mo> <msup> <mi>sin</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>&#x03B8;<!-- θ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R_{\phi \phi }=r^{2}(c^{-2}(a(t){\ddot {a}}(t)+2{\dot {a}}^{2}(t))+2k)\sin ^{2}(\theta )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/30c853cbc34fa9f6cf5e33d2f4b55578df9a243b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:45.219ex; height:3.343ex;" alt="{\displaystyle R_{\phi \phi }=r^{2}(c^{-2}(a(t){\ddot {a}}(t)+2{\dot {a}}^{2}(t))+2k)\sin ^{2}(\theta )}"></span></dd></dl> <p>i l'escalar de Ricci és </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R=6\left({\frac {{\ddot {a}}(t)}{c^{2}a(t)}}+{\frac {{\dot {a}}^{2}(t)}{c^{2}a^{2}(t)}}+{\frac {k}{a^{2}(t)}}\right).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> <mo>=</mo> <mn>6</mn> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>a</mi> <mo>&#x00A8;<!-- ¨ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi>a</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>a</mi> <mo>&#x02D9;<!-- ˙ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>k</mi> <mrow> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R=6\left({\frac {{\ddot {a}}(t)}{c^{2}a(t)}}+{\frac {{\dot {a}}^{2}(t)}{c^{2}a^{2}(t)}}+{\frac {k}{a^{2}(t)}}\right).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ac7edb5055d6ab4e3472f0ac03a20601df1686dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:37.183ex; height:7.509ex;" alt="{\displaystyle R=6\left({\frac {{\ddot {a}}(t)}{c^{2}a(t)}}+{\frac {{\dot {a}}^{2}(t)}{c^{2}a^{2}(t)}}+{\frac {k}{a^{2}(t)}}\right).}"></span></dd></dl> <div class="mw-heading mw-heading2"><h2 id="Solucions">Solucions</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=M%C3%A8trica_FLRW&amp;action=edit&amp;section=8" title="Modifica la secció: Solucions"><span>modifica</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r30997230">.mw-parser-output .hatnote{font-style:italic}.mw-parser-output div.hatnote{padding-left:1.6em;margin-bottom:0.5em}.mw-parser-output .hatnote i{font-style:normal}.mw-parser-output .hatnote+link+.hatnote{margin-top:-0.5em}</style><div role="note" class="hatnote navigation-not-searchable">Article principal: <a href="/wiki/Equacions_de_Friedmann" title="Equacions de Friedmann">Equacions de Friedmann</a></div> <p>Les <a href="/wiki/Equacions_de_camp_d%27Einstein" title="Equacions de camp d&#39;Einstein">equacions de camp d'Einstein</a> no s'utilitzen per derivar la forma general de la mètrica; es desprèn de les propietats geomètriques d'homogeneïtat i isotropia. Tanmateix, determinant l'evolució temporal de <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a(t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a(t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bb7931a26b0d360eaf90aa45247d2de5c984d5d8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.879ex; height:2.843ex;" alt="{\displaystyle a(t)}"></span>&#160;requereix les equacions de camp d'Einstein juntament amb una manera de calcular la densitat, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \rho (t),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C1;<!-- ρ --></mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \rho (t),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/64f5768bfbf495e05e1924da43fb9aebd1b727bb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.498ex; height:2.843ex;" alt="{\displaystyle \rho (t),}"></span>&#160;com una <a href="/wiki/Equaci%C3%B3_d%27estat_(cosmologia)" title="Equació d&#39;estat (cosmologia)">equació d'estat cosmològica</a>. </p><p>Aquesta mètrica té una solució analítica a les equacions de camp d'Einstein <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G_{\mu \nu }+\Lambda g_{\mu \nu }={\frac {8\pi G}{c^{4}}}T_{\mu \nu }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>G</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BC;<!-- μ --></mi> <mi>&#x03BD;<!-- ν --></mi> </mrow> </msub> <mo>+</mo> <mi mathvariant="normal">&#x039B;<!-- Λ --></mi> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BC;<!-- μ --></mi> <mi>&#x03BD;<!-- ν --></mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>8</mn> <mi>&#x03C0;<!-- π --></mi> <mi>G</mi> </mrow> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msup> </mfrac> </mrow> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BC;<!-- μ --></mi> <mi>&#x03BD;<!-- ν --></mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle G_{\mu \nu }+\Lambda g_{\mu \nu }={\frac {8\pi G}{c^{4}}}T_{\mu \nu }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3aaaefcd08410d58661d5318fddfc0b33ee1d9fd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:23.286ex; height:5.676ex;" alt="{\displaystyle G_{\mu \nu }+\Lambda g_{\mu \nu }={\frac {8\pi G}{c^{4}}}T_{\mu \nu }}"></span>&#160;donant les <a href="/wiki/Equacions_de_Friedmann" title="Equacions de Friedmann">equacions de Friedmann</a> quan s'assumeix que el <a href="/wiki/Tensor_d%27energia-moment" title="Tensor d&#39;energia-moment">tensor energia-moment</a> és isotròpic i homogeni. Les equacions resultants són:<sup id="cite_ref-FOOTNOTEOjedaRosu20061191-1196_7-0" class="reference"><a href="#cite_note-FOOTNOTEOjedaRosu20061191-1196-7"><span class="cite-bracket">&#91;</span>6<span class="cite-bracket">&#93;</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left({\frac {\dot {a}}{a}}\right)^{2}+{\frac {kc^{2}}{a^{2}}}-{\frac {\Lambda c^{2}}{3}}={\frac {8\pi G}{3}}\rho }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>a</mi> <mo>&#x02D9;<!-- ˙ --></mo> </mover> </mrow> <mi>a</mi> </mfrac> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>k</mi> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x039B;<!-- Λ --></mi> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mn>3</mn> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>8</mn> <mi>&#x03C0;<!-- π --></mi> <mi>G</mi> </mrow> <mn>3</mn> </mfrac> </mrow> <mi>&#x03C1;<!-- ρ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left({\frac {\dot {a}}{a}}\right)^{2}+{\frac {kc^{2}}{a^{2}}}-{\frac {\Lambda c^{2}}{3}}={\frac {8\pi G}{3}}\rho }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/180d8a38955daa7c81423e0007c3f1fb37dfc746" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:30.299ex; height:6.509ex;" alt="{\displaystyle \left({\frac {\dot {a}}{a}}\right)^{2}+{\frac {kc^{2}}{a^{2}}}-{\frac {\Lambda c^{2}}{3}}={\frac {8\pi G}{3}}\rho }"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2{\frac {\ddot {a}}{a}}+\left({\frac {\dot {a}}{a}}\right)^{2}+{\frac {kc^{2}}{a^{2}}}-\Lambda c^{2}=-{\frac {8\pi G}{c^{2}}}p.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>a</mi> <mo>&#x00A8;<!-- ¨ --></mo> </mover> </mrow> <mi>a</mi> </mfrac> </mrow> <mo>+</mo> <msup> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>a</mi> <mo>&#x02D9;<!-- ˙ --></mo> </mover> </mrow> <mi>a</mi> </mfrac> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>k</mi> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mo>&#x2212;<!-- − --></mo> <mi mathvariant="normal">&#x039B;<!-- Λ --></mi> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>8</mn> <mi>&#x03C0;<!-- π --></mi> <mi>G</mi> </mrow> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mi>p</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2{\frac {\ddot {a}}{a}}+\left({\frac {\dot {a}}{a}}\right)^{2}+{\frac {kc^{2}}{a^{2}}}-\Lambda c^{2}=-{\frac {8\pi G}{c^{2}}}p.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9fc39acd77ab302071a156081bf2eeee51ba5a85" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:37.954ex; height:6.509ex;" alt="{\displaystyle 2{\frac {\ddot {a}}{a}}+\left({\frac {\dot {a}}{a}}\right)^{2}+{\frac {kc^{2}}{a^{2}}}-\Lambda c^{2}=-{\frac {8\pi G}{c^{2}}}p.}"></span></dd></dl> <p>Aquestes equacions són la base del <a href="/wiki/Cosmologia_f%C3%ADsica" title="Cosmologia física">model cosmològic</a> estàndard del <a href="/wiki/Big-bang" title="Big-bang">big-bang</a>, inclòs el <a href="/wiki/Model_Lambda-CDM" title="Model Lambda-CDM">model ΛCDM</a> actual.<sup id="cite_ref-8" class="reference"><a href="#cite_note-8"><span class="cite-bracket">&#91;</span>Nota 2<span class="cite-bracket">&#93;</span></a></sup> Com que el model FLRW assumeix homogeneïtat, alguns relats populars afirmen erròniament que el model del big-bang no pot explicar la grumollitat observada de l'univers. En un model estrictament FLRW, no hi ha <a href="/wiki/C%C3%BAmul_de_gal%C3%A0xies" title="Cúmul de galàxies">cúmuls de galàxies</a>, <a href="/wiki/Estel" title="Estel">estrelles</a> o persones, ja que es tracta d'objectes molt més densos que una part típica de l'univers. No obstant això, el model FLRW s'utilitza com a primera aproximació per a l'evolució de l'univers real i grumós perquè és senzill de calcular, i els models que calculen la grumositat de l'univers s'afegeixen als models FLRW com a extensions. La majoria dels <a href="/wiki/Cosmologia" title="Cosmologia">cosmòlegs</a> coincideixen que l'<a href="/wiki/Univers_observable" title="Univers observable">univers observable</a> està ben aproximat per un <i>model gairebé FLRW</i>, és a dir, un model que segueix la mètrica FLRW a part de les <a href="/wiki/Fluctuacions_primordials" title="Fluctuacions primordials">fluctuacions de densitat primordials</a>. Les implicacions teòriques de les diverses extensions del model FLRW semblen estar ben enteses, i l'objectiu és fer-les coherents amb les observacions de <a href="/wiki/COBE" title="COBE">COBE</a> i <a href="/wiki/WMAP" title="WMAP">WMAP</a>. </p><p>Si l'<a href="/wiki/Espaitemps" title="Espaitemps">espaitemps</a> està <a href="/w/index.php?title=Topologia_de_l%27espaitemps&amp;action=edit&amp;redlink=1" class="new" title="Topologia de l&#39;espaitemps (encara no existeix)">connectat de manera múltiple</a>, aleshores cada esdeveniment estarà representat per més d'una <a href="/wiki/N-pla" title="N-pla">tupla</a> de coordenades. </p> <div class="mw-heading mw-heading3"><h3 id="Interpretació"><span id="Interpretaci.C3.B3"></span>Interpretació</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=M%C3%A8trica_FLRW&amp;action=edit&amp;section=9" title="Modifica la secció: Interpretació"><span>modifica</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>El parell d'equacions donat anteriorment és equivalent al parell d'equacions següent </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\dot {\rho }}=-3{\frac {\dot {a}}{a}}\left(\rho +{\frac {p}{c^{2}}}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x03C1;<!-- ρ --></mi> <mo>&#x02D9;<!-- ˙ --></mo> </mover> </mrow> </mrow> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mn>3</mn> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>a</mi> <mo>&#x02D9;<!-- ˙ --></mo> </mover> </mrow> <mi>a</mi> </mfrac> </mrow> <mrow> <mo>(</mo> <mrow> <mi>&#x03C1;<!-- ρ --></mi> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>p</mi> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\dot {\rho }}=-3{\frac {\dot {a}}{a}}\left(\rho +{\frac {p}{c^{2}}}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9277f9453e43a8040a0b54f4aa3649fcff2adf73" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:20.258ex; height:6.176ex;" alt="{\displaystyle {\dot {\rho }}=-3{\frac {\dot {a}}{a}}\left(\rho +{\frac {p}{c^{2}}}\right)}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {\ddot {a}}{a}}=-{\frac {kc^{4}}{6}}\left(\rho +{\frac {3p}{c^{2}}}\right)+{\frac {\Lambda c^{2}}{3}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>a</mi> <mo>&#x00A8;<!-- ¨ --></mo> </mover> </mrow> <mi>a</mi> </mfrac> </mrow> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>k</mi> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msup> </mrow> <mn>6</mn> </mfrac> </mrow> <mrow> <mo>(</mo> <mrow> <mi>&#x03C1;<!-- ρ --></mi> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>3</mn> <mi>p</mi> </mrow> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x039B;<!-- Λ --></mi> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mn>3</mn> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {\ddot {a}}{a}}=-{\frac {kc^{4}}{6}}\left(\rho +{\frac {3p}{c^{2}}}\right)+{\frac {\Lambda c^{2}}{3}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cca4ca86859848ead873a16ff5596e1fc1b088f3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:29.45ex; height:6.343ex;" alt="{\displaystyle {\frac {\ddot {a}}{a}}=-{\frac {kc^{4}}{6}}\left(\rho +{\frac {3p}{c^{2}}}\right)+{\frac {\Lambda c^{2}}{3}}}"></span></dd></dl> <p>amb <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c3c9a2c7b599b37105512c5d570edc034056dd40" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.211ex; height:2.176ex;" alt="{\displaystyle k}"></span>, l'índex de curvatura espacial, que serveix com a <a href="/wiki/Constant_d%27integraci%C3%B3" title="Constant d&#39;integració">constant d'integració</a> per a la primera equació. </p><p>La primera equació es pot derivar també de consideracions <a href="/wiki/Termodin%C3%A0mica" title="Termodinàmica">termodinàmiques</a> i és equivalent a la <a href="/wiki/Primer_principi_de_la_termodin%C3%A0mica" title="Primer principi de la termodinàmica">primera llei de la termodinàmica</a>, assumint que l'<a href="/wiki/Expansi%C3%B3_de_l%27Univers" title="Expansió de l&#39;Univers">expansió de l'univers</a> és un <a href="/wiki/Proc%C3%A9s_adiab%C3%A0tic" title="Procés adiabàtic">procés adiabàtic</a> (que s'assumeix implícitament en la derivació de la mètrica de Friedmann-Lemaître-Robertson-Walker). </p><p>La segona equació afirma que tant la densitat d'energia com la pressió provoquen la velocitat d'expansió de l'univers <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\dot {a}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>a</mi> <mo>&#x02D9;<!-- ˙ --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\dot {a}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c9167337d4bf7b72b9099d7d5714497cda8643ca" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.23ex; height:2.176ex;" alt="{\displaystyle {\dot {a}}}"></span>&#160;disminueixi, és a dir, tots dos provoquen una desacceleració en l'expansió de l'univers. Aquesta és una conseqüència de la <a href="/wiki/Gravetat" title="Gravetat">gravitació</a>, amb la pressió que té un paper similar al de la densitat d'energia (o massa), segons els principis de la <a href="/wiki/Relativitat_general" title="Relativitat general">relativitat general</a>. La <a href="/wiki/Constant_cosmol%C3%B2gica" title="Constant cosmològica">constant cosmològica</a>, en canvi, <a href="/wiki/Energia_fosca" title="Energia fosca">provoca una acceleració en l'expansió</a> de l'univers. </p> <div class="mw-heading mw-heading3"><h3 id="Constant_cosmològica"><span id="Constant_cosmol.C3.B2gica"></span>Constant cosmològica</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=M%C3%A8trica_FLRW&amp;action=edit&amp;section=10" title="Modifica la secció: Constant cosmològica"><span>modifica</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>El terme <a href="/wiki/Constant_cosmol%C3%B2gica" title="Constant cosmològica">constant cosmològica</a> es pot ometre si fem les substitucions següents </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \rho \rightarrow \rho -{\frac {\Lambda c^{2}}{8\pi G}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C1;<!-- ρ --></mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>&#x03C1;<!-- ρ --></mi> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x039B;<!-- Λ --></mi> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mrow> <mn>8</mn> <mi>&#x03C0;<!-- π --></mi> <mi>G</mi> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \rho \rightarrow \rho -{\frac {\Lambda c^{2}}{8\pi G}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/082be7d8b047793e895a29d4a9455919ceff375b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:14.016ex; height:5.843ex;" alt="{\displaystyle \rho \rightarrow \rho -{\frac {\Lambda c^{2}}{8\pi G}}}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p\rightarrow p+{\frac {\Lambda c^{4}}{8\pi G}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>p</mi> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x039B;<!-- Λ --></mi> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msup> </mrow> <mrow> <mn>8</mn> <mi>&#x03C0;<!-- π --></mi> <mi>G</mi> </mrow> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p\rightarrow p+{\frac {\Lambda c^{4}}{8\pi G}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/35f153a8dd7f98b2fbcc59626438dca15f9eceef" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; margin-left: -0.089ex; width:14.687ex; height:5.843ex;" alt="{\displaystyle p\rightarrow p+{\frac {\Lambda c^{4}}{8\pi G}}.}"></span></dd></dl> <p>Per tant, la constant cosmològica es pot interpretar com que sorgeix d'una forma d'energia que té pressió negativa, igual en magnitud a la seva densitat d'energia (positiva): </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p=-\rho c^{2}\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mi>&#x03C1;<!-- ρ --></mi> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p=-\rho c^{2}\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0f3f8b19b4bf8183fb120c4c408c7b2a90081470" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; margin-left: -0.089ex; width:9.816ex; height:3.176ex;" alt="{\displaystyle p=-\rho c^{2}\,}"></span></dd></dl> <p>que és una equació de l'estat del <a href="/wiki/Buit_(astronomia)" title="Buit (astronomia)">buit</a> amb l'<a href="/wiki/Energia_fosca" title="Energia fosca">energia fosca</a>. </p><p>Un intent de generalitzar-ho </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p=w\rho c^{2}\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> <mo>=</mo> <mi>w</mi> <mi>&#x03C1;<!-- ρ --></mi> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p=w\rho c^{2}\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e532c62956f72af8d0d0a72da45ddc81dd67d0be" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; margin-left: -0.089ex; width:9.672ex; height:3.176ex;" alt="{\displaystyle p=w\rho c^{2}\,}"></span></dd></dl> <p>no tindria <a href="/w/index.php?title=Covaria%C3%A7a_general&amp;action=edit&amp;redlink=1" class="new" title="Covariaça general (encara no existeix)">invariància general</a> sense més modificacions. </p><p>De fet, per obtenir un terme que provoqui una acceleració de l'<a href="/wiki/Expansi%C3%B3_de_l%27Univers" title="Expansió de l&#39;Univers">expansió de l'univers</a>, n'hi ha prou amb tenir un <a href="/wiki/Camp_escalar" title="Camp escalar">camp escalar</a> que satisfaci </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p&lt;-{\frac {\rho c^{2}}{3}}.\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> <mo>&lt;</mo> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>&#x03C1;<!-- ρ --></mi> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mn>3</mn> </mfrac> </mrow> <mo>.</mo> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p&lt;-{\frac {\rho c^{2}}{3}}.\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/48bdaa3819a7cb77e9ec65380f09915ba0fa0610" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; margin-left: -0.089ex; width:11.299ex; height:5.676ex;" alt="{\displaystyle p&lt;-{\frac {\rho c^{2}}{3}}.\,}"></span></dd></dl> <p>Aquest camp de vegades s'anomena <i><a href="/w/index.php?title=Quintaess%C3%A8ncia_(f%C3%ADsica)&amp;action=edit&amp;redlink=1" class="new" title="Quintaessència (física) (encara no existeix)">quintaessència</a></i>. </p> <div class="mw-heading mw-heading3"><h3 id="Interpretació_newtoniana"><span id="Interpretaci.C3.B3_newtoniana"></span>Interpretació newtoniana</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=M%C3%A8trica_FLRW&amp;action=edit&amp;section=11" title="Modifica la secció: Interpretació newtoniana"><span>modifica</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Això es deu a McCrea i Milne,<sup id="cite_ref-FOOTNOTEMcCreaMilne193473-80_9-0" class="reference"><a href="#cite_note-FOOTNOTEMcCreaMilne193473-80-9"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup> encara que de vegades s'atribueix incorrectament a Friedmann. Les equacions de Friedmann són equivalents a aquest parell d'equacions: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle -a^{3}{\dot {\rho }}=3a^{2}{\dot {a}}\rho +{\frac {3a^{2}p{\dot {a}}}{c^{2}}}\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x2212;<!-- − --></mo> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x03C1;<!-- ρ --></mi> <mo>&#x02D9;<!-- ˙ --></mo> </mover> </mrow> </mrow> <mo>=</mo> <mn>3</mn> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>a</mi> <mo>&#x02D9;<!-- ˙ --></mo> </mover> </mrow> </mrow> <mi>&#x03C1;<!-- ρ --></mi> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>3</mn> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>a</mi> <mo>&#x02D9;<!-- ˙ --></mo> </mover> </mrow> </mrow> </mrow> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle -a^{3}{\dot {\rho }}=3a^{2}{\dot {a}}\rho +{\frac {3a^{2}p{\dot {a}}}{c^{2}}}\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b3e4cb1457206cd4e862aa299d3797cb1bf481b7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:24.354ex; height:6.009ex;" alt="{\displaystyle -a^{3}{\dot {\rho }}=3a^{2}{\dot {a}}\rho +{\frac {3a^{2}p{\dot {a}}}{c^{2}}}\,}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {{\dot {a}}^{2}}{2}}-{\frac {G{\frac {4\pi a^{3}}{3}}\rho }{a}}=-{\frac {kc^{2}}{2}}\,.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>a</mi> <mo>&#x02D9;<!-- ˙ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mn>2</mn> </mfrac> </mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>G</mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>4</mn> <mi>&#x03C0;<!-- π --></mi> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> </mrow> <mn>3</mn> </mfrac> </mrow> <mi>&#x03C1;<!-- ρ --></mi> </mrow> <mi>a</mi> </mfrac> </mrow> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>k</mi> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mn>2</mn> </mfrac> </mrow> <mspace width="thinmathspace" /> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {{\dot {a}}^{2}}{2}}-{\frac {G{\frac {4\pi a^{3}}{3}}\rho }{a}}=-{\frac {kc^{2}}{2}}\,.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2e8f5703d66edb34cf234ed4873bdf0c47aae41b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:24.176ex; height:6.843ex;" alt="{\displaystyle {\frac {{\dot {a}}^{2}}{2}}-{\frac {G{\frac {4\pi a^{3}}{3}}\rho }{a}}=-{\frac {kc^{2}}{2}}\,.}"></span></dd></dl> <p>La primera equació diu que la disminució de la massa continguda en un <a href="/wiki/Cuba" title="Cuba">cub</a> fix (l'<a href="/wiki/Aresta_(geometria)" title="Aresta (geometria)">aresta</a> del qual és momentàniament <i>a</i>) és la quantitat que surt pels costats a causa de l'<a href="/wiki/Expansi%C3%B3_de_l%27Univers" title="Expansió de l&#39;Univers">expansió de l'univers</a> més l'equivalent en massa del <a href="/wiki/Treball_(f%C3%ADsica)" title="Treball (física)">treball</a> realitzat per la <a href="/wiki/Pressi%C3%B3" title="Pressió">pressió</a> contra el material sent expulsat. Aquesta és la conservació de la massa-energia (<a href="/wiki/Primer_principi_de_la_termodin%C3%A0mica" title="Primer principi de la termodinàmica">primera llei de la termodinàmica</a>) continguda dins d'una part de l'univers. </p><p>La segona equació diu que l'<a href="/wiki/Energia_cin%C3%A8tica" title="Energia cinètica">energia cinètica</a> (vista des de l'origen) d'una <a href="/wiki/Part%C3%ADcula" title="Partícula">partícula</a> de massa unitària que es mou amb l'expansió més la seva <a href="/wiki/Energia_potencial_gravitat%C3%B2ria" title="Energia potencial gravitatòria">energia potencial gravitatòria</a> (negativa) (relativa a la massa continguda en l'esfera de matèria més propera a l'origen) és igual. a una constant relacionada amb la <a href="/wiki/Forma_de_l%27Univers" title="Forma de l&#39;Univers">curvatura de l'univers</a>. En altres paraules, es conserva l'energia (relativa a l'origen) d'una partícula que es mou en caiguda lliure. La <a href="/wiki/Relativitat_general" title="Relativitat general">relativitat general</a> només afegeix una connexió entre la curvatura espacial de l'univers i l'energia d'aquesta partícula: l'energia total positiva implica curvatura negativa i l'energia total negativa implica curvatura positiva. </p><p>Se suposa que el terme <i><a href="/wiki/Constant_cosmol%C3%B2gica" title="Constant cosmològica">constant cosmològica</a></i> es tracta com a <a href="/wiki/Energia_fosca" title="Energia fosca">energia fosca</a> i, per tant, es fusiona amb els termes de <a href="/wiki/Densitat" title="Densitat">densitat</a> i <a href="/wiki/Pressi%C3%B3" title="Pressió">pressió</a>. </p><p>Durant l'<a href="/wiki/%C3%88poca_de_Planck" title="Època de Planck">època de Planck</a>, no es poden descuidar els <a href="/wiki/Mec%C3%A0nica_qu%C3%A0ntica" title="Mecànica quàntica">efectes quàntics</a>. Per tant, poden provocar una desviació de les equacions de Friedmann. </p> <div class="mw-heading mw-heading2"><h2 id="Nom_i_història"><span id="Nom_i_hist.C3.B2ria"></span>Nom i història</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=M%C3%A8trica_FLRW&amp;action=edit&amp;section=12" title="Modifica la secció: Nom i història"><span>modifica</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>El <a href="/wiki/Matem%C3%A0tic" title="Matemàtic">matemàtic</a> <a href="/wiki/Uni%C3%B3_de_Rep%C3%BAbliques_Socialistes_Sovi%C3%A8tiques" title="Unió de Repúbliques Socialistes Soviètiques">soviètic</a> <a href="/wiki/Aleksandr_Fr%C3%ADdman" title="Aleksandr Frídman">Alexander Friedmann</a> va derivar per primera vegada els principals resultats del model FLRW el 1922 i el 1924.<sup id="cite_ref-FOOTNOTEFriedmann1922377-386_10-0" class="reference"><a href="#cite_note-FOOTNOTEFriedmann1922377-386-10"><span class="cite-bracket">&#91;</span>8<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-FOOTNOTEFriedmann1924326-332_11-0" class="reference"><a href="#cite_note-FOOTNOTEFriedmann1924326-332-11"><span class="cite-bracket">&#91;</span>9<span class="cite-bracket">&#93;</span></a></sup> Tot i que la prestigiosa revista de física <i>Zeitschrift für Physik</i> va publicar el seu treball, va passar relativament desapercebut pels seus contemporanis. Friedmann estava en comunicació directa amb <a href="/wiki/Albert_Einstein" title="Albert Einstein">Albert Einstein</a>, qui, en nom de <i>Zeitschrift für Physik</i>, va actuar com a àrbitre científic del treball de Friedmann. Finalment, Einstein va reconèixer la correcció dels càlculs de Friedmann, però no va poder apreciar la importància física de les prediccions de Friedmann. Friedmann va morir el 1925. </p><p>El 1927, <a href="/wiki/Georges_Lema%C3%AEtre" title="Georges Lemaître">Georges Lemaître</a>, un <a href="/wiki/Sacerdot" title="Sacerdot">sacerdot</a> <a href="/wiki/B%C3%A8lgica" title="Bèlgica">belga</a>, <a href="/wiki/Astrof%C3%ADsica" title="Astrofísica">astròfísic</a> i <a href="/wiki/Professor" title="Professor">professor</a> periòdic de <a href="/wiki/F%C3%ADsica" title="Física">física</a> a la <a href="/wiki/Universitat_cat%C3%B2lica_de_Lovaina_(1834-1968)" title="Universitat catòlica de Lovaina (1834-1968)">Universitat Catòlica de Lovaina</a>, va arribar de manera independent a resultats semblants als de Friedmann i els va publicar als <i>Annales de la Société Scientifique de Bruxelles</i>.<sup id="cite_ref-12" class="reference"><a href="#cite_note-12"><span class="cite-bracket">&#91;</span>10<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-FOOTNOTELemaître193351-85_13-0" class="reference"><a href="#cite_note-FOOTNOTELemaître193351-85-13"><span class="cite-bracket">&#91;</span>11<span class="cite-bracket">&#93;</span></a></sup> Davant l'evidència observacional de l'<a href="/wiki/Expansi%C3%B3_de_l%27Univers" title="Expansió de l&#39;Univers">expansió de l'univers</a> obtinguda per <a href="/wiki/Edwin_Hubble" title="Edwin Hubble">Edwin Hubble</a> a finals de la <a href="/wiki/D%C3%A8cada_del_1920" title="Dècada del 1920">dècada del 1920</a>, els resultats de Lemaître van ser notats en particular per <a href="/wiki/Arthur_Eddington" title="Arthur Eddington">Arthur Eddington</a>, i el 1930-1931 el document de Lemaître va ser traduït a l'<a href="/wiki/Angl%C3%A8s" title="Anglès">anglès</a> i publicat al <i><a href="/wiki/Monthly_Notices_of_the_Royal_Astronomical_Society" title="Monthly Notices of the Royal Astronomical Society">Monthly Notices of the Royal Astronomical Society</a></i>. </p><p><a href="/wiki/Howard_P._Robertson" title="Howard P. Robertson">Howard P. Robertson</a> (dels <a href="/wiki/Estats_Units_d%27Am%C3%A8rica" title="Estats Units d&#39;Amèrica">Estats Units d'Amèrica</a>) i <a href="/wiki/Arthur_Geoffrey_Walker" title="Arthur Geoffrey Walker">Arthur Geoffrey Walker</a> (del <a href="/wiki/Regne_Unit" title="Regne Unit">Regne Unit</a>) van explorar més el problema durant la <a href="/wiki/D%C3%A8cada_del_1930" title="Dècada del 1930">dècada del 1930</a>. El 1935, Robertson i Walker van demostrar rigorosament que la mètrica FLRW és l'única en un <a href="/wiki/Espaitemps" title="Espaitemps">espaitemps</a> que és espacialment homogeni i isòtrop (com s'ha indicat anteriorment, aquest és un resultat geomètric i no està lligat específicament a les equacions de la relativitat general, que sempre es van suposar) de Friedmann i Lemaître). </p><p>Aquesta solució, sovint anomenada <i>mètrica de Robertson-Walker,</i> ja que van demostrar les seves propietats genèriques, és diferent dels <i>models dinàmics Friedmann-Lemaître</i>, que són solucions específiques per a a(t) que suposen que les úniques contribucions a l'estrès-energia són matèria freda («pols»), <a href="/wiki/Radiaci%C3%B3" title="Radiació">radiació</a> i una <a href="/wiki/Constant_cosmol%C3%B2gica" title="Constant cosmològica">constant cosmològica</a>. </p> <div class="mw-heading mw-heading2"><h2 id="El_radi_de_l'univers_d'Einstein"><span id="El_radi_de_l.27univers_d.27Einstein"></span>El radi de l'univers d'Einstein</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=M%C3%A8trica_FLRW&amp;action=edit&amp;section=13" title="Modifica la secció: El radi de l&#039;univers d&#039;Einstein"><span>modifica</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>El <a href="/wiki/Radi_(geometria)" title="Radi (geometria)">radi</a> de l'<a href="/wiki/Univers_d%27Einstein%E2%80%93de_Sitter" title="Univers d&#39;Einstein–de Sitter">univers d'Einstein</a> és el <a href="/wiki/Curvatura" title="Curvatura">radi de curvatura</a> de l'espai de l'univers d'Einstein, un <a href="/w/index.php?title=Espai-temps_est%C3%A0tic&amp;action=edit&amp;redlink=1" class="new" title="Espai-temps estàtic (encara no existeix)">model estàtic</a> abandonat durant molt de temps que se suposa que representava el nostre univers en forma idealitzada. Posant </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\dot {a}}={\ddot {a}}=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>a</mi> <mo>&#x02D9;<!-- ˙ --></mo> </mover> </mrow> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>a</mi> <mo>&#x00A8;<!-- ¨ --></mo> </mover> </mrow> </mrow> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\dot {a}}={\ddot {a}}=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bfecadf440adab9424ca9de74a41abb5caf93d10" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:9.819ex; height:2.176ex;" alt="{\displaystyle {\dot {a}}={\ddot {a}}=0}"></span></dd></dl> <p>a l'<a href="/wiki/Equacions_de_Friedmann" title="Equacions de Friedmann">equació de Friedmann</a>, el radi de curvatura de l'espai d'aquest univers (radi d'Einstein) és </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R_{E}=c/{\sqrt {4\pi G\rho }}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>E</mi> </mrow> </msub> <mo>=</mo> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>4</mn> <mi>&#x03C0;<!-- π --></mi> <mi>G</mi> <mi>&#x03C1;<!-- ρ --></mi> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R_{E}=c/{\sqrt {4\pi G\rho }}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fd9585323b6d8819dd4752dcbf52ddf7a896f67c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:16.366ex; height:3.509ex;" alt="{\displaystyle R_{E}=c/{\sqrt {4\pi G\rho }}}"></span>,</dd></dl> <p>on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>c</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/86a67b81c2de995bd608d5b2df50cd8cd7d92455" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.007ex; height:1.676ex;" alt="{\displaystyle c}"></span>&#160;és la <a href="/wiki/Velocitat_de_la_llum" title="Velocitat de la llum">velocitat de la llum</a>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>G</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle G}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f5f3c8921a3b352de45446a6789b104458c9f90b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.827ex; height:2.176ex;" alt="{\displaystyle G}"></span>&#160;és la <a href="/wiki/Constant_de_la_gravitaci%C3%B3" title="Constant de la gravitació">constant gravitatòria newtoniana</a>, i <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \rho }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C1;<!-- ρ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \rho }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1f7d439671d1289b6a816e6af7a304be40608d64" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.202ex; height:2.176ex;" alt="{\displaystyle \rho }"></span>&#160;és la <a href="/wiki/Densitat" title="Densitat">densitat</a> de l'espai d'aquest univers. El valor numèric del radi d'Einstein és de l'ordre de 10¹⁰ <a href="/wiki/Anys_llum" class="mw-redirect" title="Anys llum">anys llum</a>. </p> <div class="mw-heading mw-heading2"><h2 id="Estat_actual">Estat actual</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=M%C3%A8trica_FLRW&amp;action=edit&amp;section=14" title="Modifica la secció: Estat actual"><span>modifica</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="quotebox" style="float: right; clear: right; margin: 0.5em 0 0.8em 1.4em; width: 450px; padding: 6px; border: 5 solid #aaa; font-size: 80%; background-color: #F0F0FF;"> <div style="background: #E0E0FF; color:black; text-align: center; font-size: larger; font-weight: bold;"><i>Problema no resolt en física:</i></div> <div style="position: relative; text-align: left;"> <div> <p>És l'univers homogeni i isòtrop a escales prou grans, tal com afirma el <a href="/wiki/Principi_cosmol%C3%B2gic" title="Principi cosmològic">principi cosmològic</a> i assumit per tots els models que utilitzen la mètrica de Friedmann–Lemaître–Robertson–Walker, inclosa la versió actual de ΛCDM, o és l'univers <a href="/w/index.php?title=Cosmologia_no_homog%C3%A8nia&amp;action=edit&amp;redlink=1" class="new" title="Cosmologia no homogènia (encara no existeix)">no homogèni</a> o anisòtrop?<sup id="cite_ref-Snowmass21_14-0" class="reference"><a href="#cite_note-Snowmass21-14"><span class="cite-bracket">&#91;</span>12<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-15" class="reference"><a href="#cite_note-15"><span class="cite-bracket">&#91;</span>13<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-16" class="reference"><a href="#cite_note-16"><span class="cite-bracket">&#91;</span>14<span class="cite-bracket">&#93;</span></a></sup> </p><p>El dipol CMB és purament cinemàtic o indica una possible ruptura de la mètrica FLRW?<sup id="cite_ref-Snowmass21_14-1" class="reference"><a href="#cite_note-Snowmass21-14"><span class="cite-bracket">&#91;</span>12<span class="cite-bracket">&#93;</span></a></sup> </p><p>Fins i tot si el principi cosmològic és correcte, és vàlida la mètrica de Friedmann–Lemaître–Robertson–Walker a l'univers tardà?<sup id="cite_ref-Snowmass21_14-2" class="reference"><a href="#cite_note-Snowmass21-14"><span class="cite-bracket">&#91;</span>12<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-FLRW_breakdown_17-0" class="reference"><a href="#cite_note-FLRW_breakdown-17"><span class="cite-bracket">&#91;</span>15<span class="cite-bracket">&#93;</span></a></sup> </p><p><i>(vegeu també <a href="/wiki/Llista_de_problemes_no_resolts_de_f%C3%ADsica" title="Llista de problemes no resolts de física">Llista de problemes no resolts de física</a>)</i> </p> </div> </div></div> <p>El model estàndard actual de cosmologia, el <a href="/wiki/Model_Lambda-CDM" title="Model Lambda-CDM">model Lambda-CDM</a>, utilitza la mètrica FLRW. En combinar les dades d'observació d'alguns experiments com <a href="/wiki/WMAP" title="WMAP">WMAP</a> i <a href="/wiki/Planck_(sat%C3%A8l%C2%B7lit)" title="Planck (satèl·lit)">Planck</a> amb els resultats teòrics del <a href="/w/index.php?title=Teorema_d%27Ehlers-Geren-Sachs&amp;action=edit&amp;redlink=1" class="new" title="Teorema d&#39;Ehlers-Geren-Sachs (encara no existeix)">teorema d'Ehlers-Geren-Sachs</a> i la seva generalització,<sup id="cite_ref-18" class="reference"><a href="#cite_note-18"><span class="cite-bracket">&#91;</span>16<span class="cite-bracket">&#93;</span></a></sup> els <a href="/wiki/Astrof%C3%ADsica" title="Astrofísica">astrofísics</a> estan d'acord que l'univers primerenc és gairebé <a href="/wiki/Homogene%C3%AFtat" title="Homogeneïtat">homogeni</a> i <a href="/wiki/Isotropia" title="Isotropia">isòtrop</a> (quan es fa una mitjana a una escala molt gran) i per tant gairebé un <a href="/wiki/Espaitemps" title="Espaitemps">espai-temps</a> FLRW. Dit això, els intents de confirmar la interpretació purament <a href="/wiki/Cinem%C3%A0tica" title="Cinemàtica">cinemàtica</a> del dipol de <a href="/wiki/Radiaci%C3%B3_c%C3%B2smica_de_fons" title="Radiació còsmica de fons">fons de microones còsmics</a> (CMB) mitjançant estudis de <a href="/wiki/Radiogal%C3%A0xia" title="Radiogalàxia">radiogalàxies</a><sup id="cite_ref-FOOTNOTESiewertSchmidt-RubartSchwarz2021A9_19-0" class="reference"><a href="#cite_note-FOOTNOTESiewertSchmidt-RubartSchwarz2021A9-19"><span class="cite-bracket">&#91;</span>17<span class="cite-bracket">&#93;</span></a></sup> i <a href="/wiki/Qu%C3%A0sar" title="Quàsar">quàsars</a><sup id="cite_ref-20" class="reference"><a href="#cite_note-20"><span class="cite-bracket">&#91;</span>18<span class="cite-bracket">&#93;</span></a></sup> mostren un desacord en la magnitud. Preses al seu valor nominal, aquestes observacions estan en desacord amb l'<a href="/wiki/Univers" title="Univers">Univers</a> descrit per la mètrica FLRW. A més, es pot argumentar que hi ha un valor màxim per a la <a href="/wiki/Constant_de_Hubble" title="Constant de Hubble">constant de Hubble</a> dins d'una cosmologia FLRW tolerada per les observacions actuals, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle H_{0}=71\pm 1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>H</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>=</mo> <mn>71</mn> <mo>&#x00B1;<!-- ± --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle H_{0}=71\pm 1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e26e599d72978737a42abd4182f37e25084cb5e7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:12.412ex; height:2.509ex;" alt="{\displaystyle H_{0}=71\pm 1}"></span> km/s/<a href="/wiki/Parsec" title="Parsec">Mpc</a>, i depenent de com convergeixen les determinacions locals, això pot apuntar a un desglossament de la mètrica FLRW a l'univers tardà, la qual cosa requereix una explicació més enllà de la mètrica FLRW.<sup id="cite_ref-21" class="reference"><a href="#cite_note-21"><span class="cite-bracket">&#91;</span>19<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Snowmass21_14-3" class="reference"><a href="#cite_note-Snowmass21-14"><span class="cite-bracket">&#91;</span>12<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Notes">Notes</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=M%C3%A8trica_FLRW&amp;action=edit&amp;section=15" title="Modifica la secció: Notes"><span>modifica</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-references-wrap"><ol class="references"> <li id="cite_note-1"><span class="mw-cite-backlink"><a href="#cite_ref-1">↑</a></span> <span class="reference-text">Per a una referència primerenca, vegeu [Robertson, 1935]; Robertson <i>«assumeix»</i> una connexió múltiple en el cas de curvatura positiva i diu que <i>«encara som lliures de restaurar»</i> la connexió simple.</span> </li> <li id="cite_note-8"><span class="mw-cite-backlink"><a href="#cite_ref-8">↑</a></span> <span class="reference-text">Les seves solucions es poden trobar a <span class="citation" style="font-style:normal" id="CITEREFRosuMancasChen2015"><span style="font-variant: small-caps;">Rosu</span>, Haret C.;&#32;<span style="font-variant: small-caps;">Mancas</span>, Stefan C.;&#32;<span style="font-variant: small-caps;">Chen</span>, Pisin&#32;«Barotropic FRW cosmologies with Chiellini damping in comoving time»&#32;(en angles).&#32;<i>Modern Physics Letters A</i>,&#32;30(20),&#32;05-05-2015,&#32;pàg.&#160;1550100. <a href="/wiki/ArXiv" title="ArXiv">arXiv</a>: <a rel="nofollow" class="external text" href="http://arxiv.org/abs/1502.07033">1502.07033</a>. <a href="/wiki/Bibcode" title="Bibcode">Bibcode</a>: <a rel="nofollow" class="external text" href="http://adsabs.harvard.edu/abs/2015MPLA...3050100R">2015MPLA...3050100R</a>. <a href="/wiki/DOI" title="DOI">DOI</a>: <a rel="nofollow" class="external text" href="https://dx.doi.org/10.1142%2FS021773231550100x">10.1142/S021773231550100x</a>. <a href="/wiki/ISSN" title="ISSN">ISSN</a>: <a rel="nofollow" class="external text" href="//www.worldcat.org/issn/0217-7323">0217-7323</a>.</span></span> </li> </ol></div> <div class="mw-heading mw-heading2"><h2 id="Referències"><span id="Refer.C3.A8ncies"></span>Referències</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=M%C3%A8trica_FLRW&amp;action=edit&amp;section=16" title="Modifica la secció: Referències"><span>modifica</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="reflist &#123;&#123;#if: &#124; references-column-count references-column-count-&#123;&#123;&#123;col&#125;&#125;&#125;" style="list-style-type: decimal;"> <div class="mw-references-wrap mw-references-columns"><ol class="references"> <li id="cite_note-FOOTNOTELachieze-ReyLuminet1995135-214-2"><span class="mw-cite-backlink"><a href="#cite_ref-FOOTNOTELachieze-ReyLuminet1995135-214_2-0">↑</a></span> <span class="reference-text"><a href="#CITEREFLachieze-ReyLuminet1995">Lachieze-Rey i Luminet, 1995</a>, p.&#160;135-214.</span> </li> <li id="cite_note-FOOTNOTEEllisElst19991-116-3"><span class="mw-cite-backlink"><a href="#cite_ref-FOOTNOTEEllisElst19991-116_3-0">↑</a></span> <span class="reference-text"><a href="#CITEREFEllisElst1999">Ellis i Elst, 1999</a>, p.&#160;1-116.</span> </li> <li id="cite_note-FOOTNOTEBergströmGoobar200661-4"><span class="mw-cite-backlink"><a href="#cite_ref-FOOTNOTEBergströmGoobar200661_4-0">↑</a></span> <span class="reference-text"><a href="#CITEREFBergströmGoobar2006">Bergström i Goobar, 2006</a>, p.&#160;61.</span> </li> <li id="cite_note-FOOTNOTEWald1984-5"><span class="mw-cite-backlink"><a href="#cite_ref-FOOTNOTEWald1984_5-0">↑</a></span> <span class="reference-text"><a href="#CITEREFWald1984">Wald, 1984</a>.</span> </li> <li id="cite_note-6"><span class="mw-cite-backlink"><a href="#cite_ref-6">↑</a></span> <span class="reference-text"><span class="citation" style="font-style:normal">«<a rel="nofollow" class="external text" href="http://icc.ub.edu/~liciaverde/Cosmology.pdf">Cosmology</a>»&#32;(<style data-mw-deduplicate="TemplateStyles:r33780657">.mw-parser-output .linkformat{position:relative;font-family:sans-serif;font-size:0.85em;font-weight:bold;cursor:default;color:#808080;background-color:inherit}@media screen{html.skin-theme-clientpref-night .mw-parser-output .linkformat{background-color:inherit;color:#009400}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .linkformat{background-color:inherit;color:#009400}}</style><span class="linkformat" title="És PDF"><span typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/thumb/5/53/PDF_icon_bold.svg/14px-PDF_icon_bold.svg.png" decoding="async" width="14" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/5/53/PDF_icon_bold.svg/21px-PDF_icon_bold.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/5/53/PDF_icon_bold.svg/28px-PDF_icon_bold.svg.png 2x" data-file-width="512" data-file-height="585" /></span></span>&#160;PDF</span>)&#32;(en anglès).&#32;<i>Institut de Ciències del Cosmos - <a href="/wiki/Universitat_de_Barcelona" title="Universitat de Barcelona">Universitat de Barcelona</a> (ICCUB)</i>&#32;p.&#160;23.</span></span> </li> <li id="cite_note-FOOTNOTEOjedaRosu20061191-1196-7"><span class="mw-cite-backlink"><a href="#cite_ref-FOOTNOTEOjedaRosu20061191-1196_7-0">↑</a></span> <span class="reference-text"><a href="#CITEREFOjedaRosu2006">Ojeda i Rosu, 2006</a>, p.&#160;1191-1196.</span> </li> <li id="cite_note-FOOTNOTEMcCreaMilne193473-80-9"><span class="mw-cite-backlink"><a href="#cite_ref-FOOTNOTEMcCreaMilne193473-80_9-0">↑</a></span> <span class="reference-text"><a href="#CITEREFMcCreaMilne1934">McCrea i Milne, 1934</a>, p.&#160;73-80.</span> </li> <li id="cite_note-FOOTNOTEFriedmann1922377-386-10"><span class="mw-cite-backlink"><a href="#cite_ref-FOOTNOTEFriedmann1922377-386_10-0">↑</a></span> <span class="reference-text"><a href="#CITEREFFriedmann1922">Friedmann, 1922</a>, p.&#160;377-386.</span> </li> <li id="cite_note-FOOTNOTEFriedmann1924326-332-11"><span class="mw-cite-backlink"><a href="#cite_ref-FOOTNOTEFriedmann1924326-332_11-0">↑</a></span> <span class="reference-text"><a href="#CITEREFFriedmann1924">Friedmann, 1924</a>, p.&#160;326-332.</span> </li> <li id="cite_note-12"><span class="mw-cite-backlink"><a href="#cite_ref-12">↑</a></span> <span class="reference-text"><span class="citation" style="font-style:normal" id="CITEREFLemaître1931"><a href="/wiki/Georges_Lema%C3%AEtre" title="Georges Lemaître"><span style="font-variant: small-caps;">Lemaître</span>, Georges</a>&#32;«Expansion of the universe, A homogeneous universe of constant mass and increasing radius accounting for the radial velocity of extra-galactic nebulæ»&#32;(en anglès).&#32;<i>Monthly Notices of the Royal Astronomical Society</i>,&#32;91(5),&#32;1931,&#32;pàg.&#160;483-490. <a href="/wiki/Bibcode" title="Bibcode">Bibcode</a>: <a rel="nofollow" class="external text" href="http://adsabs.harvard.edu/abs/1931MNRAS..91..483L">1931MNRAS..91..483L</a>. <a href="/wiki/DOI" title="DOI">DOI</a>: <a rel="nofollow" class="external text" href="https://dx.doi.org/10.1093%2Fmnras%2F91.5.483">10.1093/mnras/91.5.483</a>.</span> <i>traduït de</i> <span class="citation" style="font-style:normal" id="CITEREFLemaître1927"><a href="/wiki/Georges_Lema%C3%AEtre" title="Georges Lemaître"><span style="font-variant: small-caps;">Lemaître</span>, Georges</a>&#32;«Un univers homogène de masse constante et de rayon croissant rendant compte de la vitesse radiale des nébuleuses extra-galactiques»&#32;(en francès).&#32;<i>Annales de la Société Scientifique de Bruxelles</i>,&#32;A47,&#32;1927,&#32;pàg.&#160;49-56. <a href="/wiki/Bibcode" title="Bibcode">Bibcode</a>: <a rel="nofollow" class="external text" href="http://adsabs.harvard.edu/abs/1927ASSB...47...49L">1927ASSB...47...49L</a>.</span></span> </li> <li id="cite_note-FOOTNOTELemaître193351-85-13"><span class="mw-cite-backlink"><a href="#cite_ref-FOOTNOTELemaître193351-85_13-0">↑</a></span> <span class="reference-text"><a href="#CITEREFLemaître1933">Lemaître, 1933</a>, p.&#160;51-85.</span> </li> <li id="cite_note-Snowmass21-14"><span class="mw-cite-backlink">↑ <sup><a href="#cite_ref-Snowmass21_14-0">12,0</a></sup> <sup><a href="#cite_ref-Snowmass21_14-1">12,1</a></sup> <sup><a href="#cite_ref-Snowmass21_14-2">12,2</a></sup> <sup><a href="#cite_ref-Snowmass21_14-3">12,3</a></sup></span> <span class="reference-text"><span class="citation book" style="font-style:normal" id="CITEREFAbdallaFranco_AbellánAboubrahim2022"><span style="font-variant: small-caps;">Abdalla</span>, Elcio;&#32;<span style="font-variant: small-caps;">Franco Abellán</span>, Guillermo;&#32;<span style="font-variant: small-caps;">Aboubrahim</span>, Amin. <i>Cosmology Intertwined: A Review of the Particle Physics, Astrophysics, and Cosmology Associated with the Cosmological Tensions and Anomalies</i>&#32;(en anglès),&#32;11 de març de 2022.</span><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Cosmology+Intertwined%3A+A+Review+of+the+Particle+Physics%2C+Astrophysics%2C+and+Cosmology+Associated+with+the+Cosmological+Tensions+and+Anomalies&amp;rft.aulast=Abdalla&amp;rft.aufirst=Elcio&amp;rft.date=11+de+mar%C3%A7+de+2022"><span style="display: none;">&#160;</span></span></span> </li> <li id="cite_note-15"><span class="mw-cite-backlink"><a href="#cite_ref-15">↑</a></span> <span class="reference-text"><span class="citation" style="font-style:normal" id="CITEREFBillings2020"><span style="font-variant: small-caps;">Billings</span>, Lee&#32;«<a rel="nofollow" class="external text" href="https://www.scientificamerican.com/article/do-we-live-in-a-lopsided-universe1/">Do We Live in a Lopsided Universe?</a>»&#32;(en anglès).&#32;<i><a href="/wiki/Scientific_American" title="Scientific American">Scientific American</a></i>,&#32;15-04-2020.</span></span> </li> <li id="cite_note-16"><span class="mw-cite-backlink"><a href="#cite_ref-16">↑</a></span> <span class="reference-text"><span class="citation" style="font-style:normal" id="CITEREFMigkasSchellenbergerReiprichPacaud2020"><span style="font-variant: small-caps;">Migkas</span>, K;&#32;<span style="font-variant: small-caps;">Schellenberger</span>, G.;&#32;<span style="font-variant: small-caps;">Reiprich</span>, T. H.;&#32;<span style="font-variant: small-caps;">Pacaud</span>, F.;&#32;<span style="font-variant: small-caps;">Ramos-Ceja</span>, M. E.;&#32;<span style="font-variant: small-caps;">Lovisari</span>, L.&#32;«<a rel="nofollow" class="external text" href="https://www.aanda.org/articles/aa/full_html/2020/04/aa36602-19/aa36602-19.html">Probing cosmic isotropy with a new X-ray galaxy cluster sample through the LX-T scaling relation</a>»&#32;(en anglès).&#32;<i>Astronomy &amp; Astrophysics</i>,&#32;636,&#32;08-04-2020,&#32;pàg.&#160;42. <a href="/wiki/DOI" title="DOI">DOI</a>: <a rel="nofollow" class="external text" href="https://dx.doi.org/10.1051%2F0004-6361%2F201936602">10.1051/0004-6361/201936602</a>.</span></span> </li> <li id="cite_note-FLRW_breakdown-17"><span class="mw-cite-backlink"><a href="#cite_ref-FLRW_breakdown_17-0">↑</a></span> <span class="reference-text"><span class="citation" style="font-style:normal" id="CITEREFKrishnanMohayaeeColgáinSheikh-Jabbari2021"><span style="font-variant: small-caps;">Krishnan</span>, Chethan;&#32;<span style="font-variant: small-caps;">Mohayaee</span>, Roya;&#32;<span style="font-variant: small-caps;">Colgáin</span>, Eoin Ó.;&#32;<span style="font-variant: small-caps;">Sheikh-Jabbari</span>, M. M.;&#32;<span style="font-variant: small-caps;">Yin</span>, Lu&#32;«Does Hubble Tension Signal a Breakdown in FLRW Cosmology?»&#32;(en angles).&#32;<i>Classical and Quantum Gravity</i>,&#32;38(18),&#32;16-09-2021,&#32;pàg.&#160;184001. <a href="/wiki/ArXiv" title="ArXiv">arXiv</a>: <a rel="nofollow" class="external text" href="http://arxiv.org/abs/2105.09790">2105.09790</a>. <a href="/wiki/Bibcode" title="Bibcode">Bibcode</a>: <a rel="nofollow" class="external text" href="http://adsabs.harvard.edu/abs/2021CQGra..38r4001K">2021CQGra..38r4001K</a>. <a href="/wiki/DOI" title="DOI">DOI</a>: <a rel="nofollow" class="external text" href="https://dx.doi.org/10.1088%2F1361-6382%2Fac1a81">10.1088/1361-6382/ac1a81</a>. <a href="/wiki/ISSN" title="ISSN">ISSN</a>: <a rel="nofollow" class="external text" href="//www.worldcat.org/issn/0264-9381">0264-9381</a>.</span></span> </li> <li id="cite_note-18"><span class="mw-cite-backlink"><a href="#cite_ref-18">↑</a></span> <span class="reference-text"><i>Vegeu</i> <span class="citation book" style="font-style:normal" id="CITEREFHawkingEllis1973"><span style="font-variant: small-caps;">Hawking</span>, Stephen W.;&#32;<a href="/w/index.php?title=George_Francis_Rayner_Ellis&amp;action=edit&amp;redlink=1" class="new" title="George Francis Rayner Ellis (encara no existeix)"><span style="font-variant: small-caps;">Ellis</span>, George F. R.</a>. <i>The large scale structure of space-time</i>&#32;(en anglès).&#32; <a href="/wiki/Cambridge_University_Press" title="Cambridge University Press">Cambridge University Press</a>,&#32;1973,&#32;p.&#160;351ff. <span style="font-size:90%; white-space:nowrap;"><a href="/wiki/Especial:Fonts_bibliogr%C3%A0fiques/978-0-521-09906-6" title="Especial:Fonts bibliogràfiques/978-0-521-09906-6">ISBN 978-0-521-09906-6</a></span>.</span><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=The+large+scale+structure+of+space-time&amp;rft.aulast=Hawking&amp;rft.aufirst=Stephen+W.&amp;rft.date=1973&amp;rft.pub=%5B%5BCambridge+University+Press%5D%5D&amp;rft.pages=351ff&amp;rft.isbn=978-0-521-09906-6"><span style="display: none;">&#160;</span></span> <i>L'obra original és</i> <span class="citation" style="font-style:normal" id="CITEREFEhlersGerenSachs1968"><span style="font-variant: small-caps;">Ehlers</span>, J.;&#32;<span style="font-variant: small-caps;">Geren</span>, P.;&#32;<span style="font-variant: small-caps;">Sachs</span>, R.K.&#32;«Isotropic solutions of Einstein-Liouville equations»&#32;(en anglès).&#32;<i>J. Math. Phys.</i>,&#32;9,&#32;1968,&#32;pàg.&#160;1344.</span> <i>Per a la generalització, vegeu</i> <span class="citation" style="font-style:normal" id="CITEREFStoegerMaartensEllis2007"><span style="font-variant: small-caps;">Stoeger</span>, W. R.;&#32;<span style="font-variant: small-caps;">Maartens</span>, R.;&#32;<a href="/w/index.php?title=George_Francis_Rayner_Ellis&amp;action=edit&amp;redlink=1" class="new" title="George Francis Rayner Ellis (encara no existeix)"><span style="font-variant: small-caps;">Ellis</span>, George</a>&#32;«Proving Almost-Homogeneity of the Universe: An Almost Ehlers-Geren-Sachs Theorem»&#32;(en anglès).&#32;<i>Astrophys. J.</i>,&#32;39,&#32;2007,&#32;pàg.&#160;1–5. <a href="/wiki/Bibcode" title="Bibcode">Bibcode</a>: <a rel="nofollow" class="external text" href="http://adsabs.harvard.edu/abs/1995ApJ...443....1S">1995ApJ...443....1S</a>. <a href="/wiki/DOI" title="DOI">DOI</a>: <a rel="nofollow" class="external text" href="https://dx.doi.org/10.1086%2F175496">10.1086/175496</a>.</span></span> </li> <li id="cite_note-FOOTNOTESiewertSchmidt-RubartSchwarz2021A9-19"><span class="mw-cite-backlink"><a href="#cite_ref-FOOTNOTESiewertSchmidt-RubartSchwarz2021A9_19-0">↑</a></span> <span class="reference-text"><a href="#CITEREFSiewertSchmidt-RubartSchwarz2021">Siewert, Schmidt-Rubart i Schwarz, 2021</a>, p.&#160;A9.</span> </li> <li id="cite_note-20"><span class="mw-cite-backlink"><a href="#cite_ref-20">↑</a></span> <span class="reference-text"><span class="citation" style="font-style:normal" id="CITEREFSecrestHauseggerRameezMohayaee2021"><span style="font-variant: small-caps;">Secrest</span>, Nathan J.;&#32;<span style="font-variant: small-caps;">Hausegger</span>, Sebastian von;&#32;<span style="font-variant: small-caps;">Rameez</span>, Mohamed;&#32;<span style="font-variant: small-caps;">Mohayaee</span>, Roya;&#32;<span style="font-variant: small-caps;">Sarkar</span>, Subir;&#32;<span style="font-variant: small-caps;">Colin</span>, Jacques&#32;«A Test of the Cosmological Principle with Quasars»&#32;(en anglès).&#32;<i><a href="/wiki/Astrophysical_Journal" title="Astrophysical Journal">The Astrophysical Journal</a></i>,&#32;908(2),&#32;25-02-2021,&#32;pàg.&#160;L51. <a href="/wiki/ArXiv" title="ArXiv">arXiv</a>: <a rel="nofollow" class="external text" href="http://arxiv.org/abs/2009.14826">2009.14826</a>. <a href="/wiki/DOI" title="DOI">DOI</a>: <a rel="nofollow" class="external text" href="https://dx.doi.org/10.3847%2F2041-8213%2Fabdd40">10.3847/2041-8213/abdd40</a>.</span></span> </li> <li id="cite_note-21"><span class="mw-cite-backlink"><a href="#cite_ref-21">↑</a></span> <span class="reference-text"><span class="citation" style="font-style:normal" id="CITEREFKrishnanMohayaeeÓ_ColgáinSheikh-Jabbari2021"><span style="font-variant: small-caps;">Krishnan</span>, Chethan;&#32;<span style="font-variant: small-caps;">Mohayaee</span>, Roya;&#32;<span style="font-variant: small-caps;">Ó Colgáin</span>, Eoin;&#32;<span style="font-variant: small-caps;">Sheikh-Jabbari</span>, M. M.;&#32;<span style="font-variant: small-caps;">Yin</span>, Lu&#32;«Does Hubble tension signal a breakdown in FLRW cosmology?»&#32;(en anglès).&#32;<i>Classical and Quantum Gravity</i>,&#32;38(18),&#32;25-05-2021,&#32;pàg.&#160;184001. <a href="/wiki/ArXiv" title="ArXiv">arXiv</a>: <a rel="nofollow" class="external text" href="http://arxiv.org/abs/2105.09790">2105.09790</a>. <a href="/wiki/DOI" title="DOI">DOI</a>: <a rel="nofollow" class="external text" href="https://dx.doi.org/10.1088%2F1361-6382%2Fac1a81">10.1088/1361-6382/ac1a81</a>.</span></span> </li> </ol></div></div> <div class="mw-heading mw-heading2"><h2 id="Bibliografia">Bibliografia</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=M%C3%A8trica_FLRW&amp;action=edit&amp;section=17" title="Modifica la secció: Bibliografia"><span>modifica</span></a><span class="mw-editsection-bracket">]</span></span></div> <div style="-moz-column-count:2; -webkit-column-count:2; column-count:2;"> <ul><li><span class="citation book" style="font-style:normal"><span style="font-variant: small-caps;">Bergström</span>, L.;&#32;<span style="font-variant: small-caps;">Goobar</span>, A. <i>Cosmology and Particle Astrophysics</i>&#32;(en anglès).&#32; <a href="/wiki/Springer_Science%2BBusiness_Media" title="Springer Science+Business Media">Springer</a>. <span style="font-size:90%; white-space:nowrap;"><a href="/wiki/Especial:Fonts_bibliogr%C3%A0fiques/978-3-540-32924-4" title="Especial:Fonts bibliogràfiques/978-3-540-32924-4">ISBN 978-3-540-32924-4</a></span>.</span><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Cosmology+and+Particle+Astrophysics&amp;rft.aulast=Bergstr%C3%B6m&amp;rft.aufirst=L.&amp;rft.pub=%5B%5BSpringer+Science%2BBusiness+Media%7CSpringer%5D%5D&amp;rft.isbn=978-3-540-32924-4"><span style="display: none;">&#160;</span></span></li> <li><span class="citation book" style="font-style:normal" id="CITEREFd&#39;Inverno1992"><span style="font-variant: small-caps;">d'Inverno</span>, Ray. <i>Introducing Einstein's Relativity</i>&#32;(en anglès).&#32; Oxford:&#32;<a href="/wiki/Oxford_University_Press" title="Oxford University Press">Oxford University Press</a>,&#32;1992. <span style="font-size:90%; white-space:nowrap;"><a href="/wiki/Especial:Fonts_bibliogr%C3%A0fiques/978-0-19-859686-8" title="Especial:Fonts bibliogràfiques/978-0-19-859686-8">ISBN 978-0-19-859686-8</a></span>.</span><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Introducing+Einstein%27s+Relativity&amp;rft.aulast=d%27Inverno&amp;rft.aufirst=Ray&amp;rft.date=1992&amp;rft.pub=%5B%5BOxford+University+Press%5D%5D&amp;rft.place=Oxford&amp;rft.isbn=978-0-19-859686-8"><span style="display: none;">&#160;</span></span>. <i>Vegeu el capítol 23 per obtenir una introducció especialment clara i concisa als models FLRW.</i></li> <li><span class="citation book" style="font-style:normal" id="CITEREFEllisElst1999"><span style="font-variant: small-caps;">Ellis</span>, G. F. R.;&#32;<span style="font-variant: small-caps;">Elst</span>, H. van.&#32;«Cosmological models (Cargèse lectures 1998)». A: <i>Theoretical and Observational Cosmology</i>&#32;(en anglès). 541,&#32;1999,&#32;p.&#160;1-116&#32;(NATO Science Series C). <span style="font-size:90%; white-space:nowrap;"><a href="/wiki/Especial:Fonts_bibliogr%C3%A0fiques/978-0792359463" title="Especial:Fonts bibliogràfiques/978-0792359463">ISBN 978-0792359463</a></span>.</span><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Theoretical+and+Observational+Cosmology&amp;rft.atitle=Cosmological+models+%28Carg%C3%A8se+lectures+1998%29&amp;rft.aulast=Ellis&amp;rft.aufirst=G.+F.+R.&amp;rft.date=1999&amp;rft.pages=1-116&amp;rft.series=NATO+Science+Series+C&amp;rft.isbn=978-0792359463"><span style="display: none;">&#160;</span></span></li> <li><span class="citation" style="font-style:normal" id="CITEREFFriedmann1922"><a href="/wiki/Alexander_Friedmann" class="mw-redirect" title="Alexander Friedmann"><span style="font-variant: small-caps;">Friedmann</span>, Alexander</a>&#32;«Über die Krümmung des Raumes»&#32;(en alemany).&#32;<i>Zeitschrift für Physik A</i>,&#32;10(1),&#32;1922. <a href="/wiki/Bibcode" title="Bibcode">Bibcode</a>: <a rel="nofollow" class="external text" href="http://adsabs.harvard.edu/abs/1922ZPhy...10..377F">1922ZPhy...10..377F</a>. <a href="/wiki/DOI" title="DOI">DOI</a>: <a rel="nofollow" class="external text" href="https://dx.doi.org/10.1007%2FBF01332580">10.1007/BF01332580</a>.</span></li> <li><span class="citation" style="font-style:normal" id="CITEREFFriedmann1924"><span style="font-variant: small-caps;">Friedmann</span>, Alexander&#32;«Über die Möglichkeit einer Welt mit konstanter negativer Krümmung des Raumes»&#32;(en alemany).&#32;<i>Zeitschrift für Physik A</i>,&#32;21(1),&#32;1924. <a href="/wiki/Bibcode" title="Bibcode">Bibcode</a>: <a rel="nofollow" class="external text" href="http://adsabs.harvard.edu/abs/1924ZPhy...21..326F">1924ZPhy...21..326F</a>. <a href="/wiki/DOI" title="DOI">DOI</a>: <a rel="nofollow" class="external text" href="https://dx.doi.org/10.1007%2FBF01328280">10.1007/BF01328280</a>.</span></li> <li><span class="citation" style="font-style:normal" id="CITEREFHarrison1967"><span style="font-variant: small-caps;">Harrison</span>, E. R.&#32;«Classification of uniform cosmological models»&#32;(en anglès).&#32;<i>Monthly Notices of the Royal Astronomical Society</i>,&#32;137,&#32;1967,&#32;pàg.&#160;69-79. <a href="/wiki/Bibcode" title="Bibcode">Bibcode</a>: <a rel="nofollow" class="external text" href="http://adsabs.harvard.edu/abs/1967MNRAS.137...69H">1967MNRAS.137...69H</a>. <a href="/wiki/DOI" title="DOI">DOI</a>: <a rel="nofollow" class="external text" href="https://dx.doi.org/10.1093%2Fmnras%2F137.1.69">10.1093/mnras/137.1.69</a>.</span></li> <li><span class="citation" style="font-style:normal" id="CITEREFLachieze-ReyLuminet1995"><span style="font-variant: small-caps;">Lachieze-Rey</span>, M.;&#32;<span style="font-variant: small-caps;">Luminet</span>, J.P.&#32;«Cosmic Topology»&#32;(en anglès).&#32;<i>Physics Reports</i>,&#32;254(3),&#32;1995. <a href="/wiki/ArXiv" title="ArXiv">arXiv</a>: <a rel="nofollow" class="external text" href="http://arxiv.org/abs/gr-qc/9605010">gr-qc/9605010</a>. <a href="/wiki/Bibcode" title="Bibcode">Bibcode</a>: <a rel="nofollow" class="external text" href="http://adsabs.harvard.edu/abs/1995PhR...254..135L">1995PhR...254..135L</a>. <a href="/wiki/DOI" title="DOI">DOI</a>: <a rel="nofollow" class="external text" href="https://dx.doi.org/10.1016%2F0370-1573%2894%2900085-H">10.1016/0370-1573(94)00085-H</a>.</span></li> <li><span class="citation" style="font-style:normal" id="CITEREFLemaître1933"><a href="/wiki/Georges_Lema%C3%AEtre" title="Georges Lemaître"><span style="font-variant: small-caps;">Lemaître</span>, Georges</a>&#32;«L'Univers en expansion»&#32;(en francès).&#32;<i>Annales de la Société Scientifique de Bruxelles</i>,&#32;A53,&#32;1933,&#32;pàg.&#160;51–85. <a href="/wiki/Bibcode" title="Bibcode">Bibcode</a>: <a rel="nofollow" class="external text" href="http://adsabs.harvard.edu/abs/1933ASSB...53...51L">1933ASSB...53...51L</a>.</span></li> <li><span class="citation" style="font-style:normal" id="CITEREFMcCreaMilne1934"><span style="font-variant: small-caps;">McCrea</span>, W. H.;&#32;<span style="font-variant: small-caps;">Milne</span>, E. A.&#32;«Newtonian universes and the curvature of space»&#32;(en anglès).&#32;<i>Quarterly Journal of Mathematics</i>,&#32;5,&#32;1934. <a href="/wiki/Bibcode" title="Bibcode">Bibcode</a>: <a rel="nofollow" class="external text" href="http://adsabs.harvard.edu/abs/1934QJMat...5...73M">1934QJMat...5...73M</a>. <a href="/wiki/DOI" title="DOI">DOI</a>: <a rel="nofollow" class="external text" href="https://dx.doi.org/10.1093%2Fqmath%2Fos-5.1.73">10.1093/qmath/os-5.1.73</a>.</span></li> <li><span class="citation book" style="font-style:normal" id="CITEREFNorth1965"><span style="font-variant: small-caps;">North</span>, J. D.. <i>The Measure of the Universe. A history of modern cosmology</i>&#32;(en anglès).&#32; Dover:&#32;<a href="/wiki/Oxford_University_Press" title="Oxford University Press">Oxford University Press</a>,&#32;1965. <span style="font-size:90%; white-space:nowrap;"><a href="/wiki/Especial:Fonts_bibliogr%C3%A0fiques/0-486-66517-8" title="Especial:Fonts bibliogràfiques/0-486-66517-8">ISBN 0-486-66517-8</a></span>.</span><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=The+Measure+of+the+Universe.+A+history+of+modern+cosmology&amp;rft.aulast=North&amp;rft.aufirst=J.+D.&amp;rft.date=1965&amp;rft.pub=%5B%5BOxford+University+Press%5D%5D&amp;rft.place=Dover&amp;rft.isbn=0-486-66517-8"><span style="display: none;">&#160;</span></span></li> <li><span class="citation" style="font-style:normal" id="CITEREFOjedaRosu2006"><span style="font-variant: small-caps;">Ojeda</span>, P.;&#32;<span style="font-variant: small-caps;">Rosu</span>, H.&#32;«Supersymmetry of FRW barotropic cosmologies»&#32;(en anglès).&#32;<i>International Journal of Theoretical Physics</i>,&#32;45(6),&#32;2006. <a href="/wiki/ArXiv" title="ArXiv">arXiv</a>: <a rel="nofollow" class="external text" href="http://arxiv.org/abs/gr-qc/0510004">gr-qc/0510004</a>. <a href="/wiki/Bibcode" title="Bibcode">Bibcode</a>: <a rel="nofollow" class="external text" href="http://adsabs.harvard.edu/abs/2006IJTP...45.1152R">2006IJTP...45.1152R</a>. <a href="/wiki/DOI" title="DOI">DOI</a>: <a rel="nofollow" class="external text" href="https://dx.doi.org/10.1007%2Fs10773-006-9123-2">10.1007/s10773-006-9123-2</a>.</span></li> <li><span class="citation" style="font-style:normal" id="CITEREFSiewertSchmidt-RubartSchwarz2021"><span style="font-variant: small-caps;">Siewert</span>, Thilo M.;&#32;<span style="font-variant: small-caps;">Schmidt-Rubart</span>, Matthias;&#32;<span style="font-variant: small-caps;">Schwarz</span>, Dominik J.&#32;«Cosmic radio dipole: Estimators and frequency dependence»&#32;(en anglès).&#32;<i>Astronomy &amp; Astrophysics</i>,&#32;653,&#32;2021. <a href="/wiki/ArXiv" title="ArXiv">arXiv</a>: <a rel="nofollow" class="external text" href="http://arxiv.org/abs/2010.08366">2010.08366</a>. <a href="/wiki/DOI" title="DOI">DOI</a>: <a rel="nofollow" class="external text" href="https://dx.doi.org/10.1051%2F0004-6361%2F202039840">10.1051/0004-6361/202039840</a>.</span></li> <li><span class="citation book" style="font-style:normal" id="CITEREFWald1984"><span style="font-variant: small-caps;">Wald</span>, Robert M. <i>General Relativity</i>&#32;(en anglès).&#32; <a href="/wiki/University_of_Chicago_Press" title="University of Chicago Press">University of Chicago Press</a>,&#32;1984,&#32;p.&#160;97. <span style="font-size:90%; white-space:nowrap;"><a href="/wiki/Especial:Fonts_bibliogr%C3%A0fiques/978-0226870335" title="Especial:Fonts bibliogràfiques/978-0226870335">ISBN 978-0226870335</a></span>.</span><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=General+Relativity&amp;rft.aulast=Wald&amp;rft.aufirst=Robert+M.&amp;rft.date=1984&amp;rft.pub=%5B%5BUniversity+of+Chicago+Press%5D%5D&amp;rft.pages=97&amp;rft.isbn=978-0226870335"><span style="display: none;">&#160;</span></span></li> <li><span class="citation" style="font-style:normal" id="CITEREFWalker1937"><a href="/wiki/Arthur_Geoffrey_Walker" title="Arthur Geoffrey Walker"><span style="font-variant: small-caps;">Walker</span>, A. G.</a>&#32;«On Milne's theory of world-structure»&#32;(en anglès).&#32;<i>Proceedings of the London Mathematical Society</i>,&#32;42(1),&#32;1937. <a href="/wiki/Bibcode" title="Bibcode">Bibcode</a>: <a rel="nofollow" class="external text" href="http://adsabs.harvard.edu/abs/1937PLMS...42...90W">1937PLMS...42...90W</a>. <a href="/wiki/DOI" title="DOI">DOI</a>: <a rel="nofollow" class="external text" href="https://dx.doi.org/10.1112%2Fplms%2Fs2-42.1.90">10.1112/plms/s2-42.1.90</a>.</span></li></ul> </div> <div role="navigation" class="navbox" aria-labelledby="Cosmologia_física" style="padding:3px"><table class="nowraplinks collapsible collapsed navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><div class="plainlinks hlist navbar mini"><ul><li class="nv-view"><span typeof="mw:File"><a href="/wiki/Plantilla:Cosmologia_f%C3%ADsica" title="Plantilla:Cosmologia física"><img alt="Vegeu aquesta plantilla" src="//upload.wikimedia.org/wikipedia/commons/thumb/2/28/Commons-emblem-notice.svg/18px-Commons-emblem-notice.svg.png" decoding="async" width="18" height="18" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/2/28/Commons-emblem-notice.svg/27px-Commons-emblem-notice.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/2/28/Commons-emblem-notice.svg/36px-Commons-emblem-notice.svg.png 2x" data-file-width="48" data-file-height="48" /></a></span></li></ul></div><div id="Cosmologia_física" style="font-size:114%;margin:0 4em"><a href="/wiki/Cosmologia_f%C3%ADsica" title="Cosmologia física">Cosmologia física</a></div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%">Conceptes generals</th><td class="navbox-list navbox-odd" style="text-align:left;border-left-width:2px;border-left-style:solid;width:100%;padding:0px"><div style="padding:0em 0.25em"><a href="/wiki/Big-bang" title="Big-bang">Big-bang</a><span style="font-weight:bold;">&#160;·</span>&#32;<a href="/wiki/Univers" title="Univers">Univers</a><span style="font-weight:bold;">&#160;·</span>&#32;<a href="/wiki/Edat_de_l%27Univers" title="Edat de l&#39;Univers">Edat de l'Univers</a><span style="font-weight:bold;">&#160;·</span>&#32;<a href="/w/index.php?title=Cronologia_de_l%27Univers&amp;action=edit&amp;redlink=1" class="new" title="Cronologia de l&#39;Univers (encara no existeix)">Cronologia de l'Univers</a></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Univers primitiu</th><td class="navbox-list navbox-odd" style="text-align:left;border-left-width:2px;border-left-style:solid;width:100%;padding:0px"><div style="padding:0em 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:1%;padding-left:0em;padding-right:0em;"><div style="padding:0em 0.75em;"><a href="/wiki/Cronologia_del_big-bang" title="Cronologia del big-bang">Cronologia del big-bang</a></div></th><td class="navbox-list navbox-even" style="text-align:left;border-left-width:2px;border-left-style:solid;width:100%;padding:0px"><div style="padding:0em 0.25em"><a href="/wiki/%C3%88poca_de_Planck" title="Època de Planck">Època de Planck</a><span style="font-weight:bold;">&#160;·</span>&#32;<a href="/wiki/%C3%88poca_de_la_gran_unificaci%C3%B3" title="Època de la gran unificació">Època de la gran unificació</a><span style="font-weight:bold;">&#160;·</span>&#32;<a href="/wiki/%C3%88poca_electrofeble" title="Època electrofeble">Època electrofeble</a> (<i><a href="/wiki/Inflaci%C3%B3_c%C3%B2smica" title="Inflació còsmica">Època de la inflació</a><span style="font-weight:bold;">&#160;·</span>&#32;<a href="/wiki/Cronologia_del_big-bang" title="Cronologia del big-bang">Reescalfament</a><span style="font-weight:bold;">&#160;·</span>&#32;<a href="/wiki/Bariog%C3%A8nesi" title="Bariogènesi">Bariogènesi</a></i>)<span style="font-weight:bold;">&#160;·</span>&#32;<a href="/wiki/%C3%88poca_dels_quarks" title="Època dels quarks">Època dels quarks</a><span style="font-weight:bold;">&#160;·</span>&#32;<a href="/wiki/%C3%88poca_hadr%C3%B2nica" title="Època hadrònica">Època hadrònica</a><span style="font-weight:bold;">&#160;·</span>&#32;<a href="/wiki/%C3%88poca_lept%C3%B2nica" title="Època leptònica">Època leptònica</a><span style="font-weight:bold;">&#160;·</span>&#32;<a href="/wiki/%C3%88poca_fot%C3%B2nica" title="Època fotònica">Època fotònica</a> (<i><a href="/wiki/Nucleos%C3%ADntesi_primordial" title="Nucleosíntesi primordial">Nucleosíntesi primordial</a><span style="font-weight:bold;">&#160;·</span>&#32;<a href="/wiki/Cronologia_del_big-bang" title="Cronologia del big-bang">Domini de la matèria</a><span style="font-weight:bold;">&#160;·</span>&#32;<a href="/w/index.php?title=Recombinaci%C3%B3_(cosmologia)&amp;action=edit&amp;redlink=1" class="new" title="Recombinació (cosmologia) (encara no existeix)">Recombinació</a></i>)<span style="font-weight:bold;">&#160;·</span>&#32;<a href="/wiki/Cronologia_del_big-bang" title="Cronologia del big-bang">Edats fosques</a><span style="font-weight:bold;">&#160;·</span>&#32;<a href="/wiki/Cronologia_del_big-bang" title="Cronologia del big-bang">Época habitable</a><span style="font-weight:bold;">&#160;·</span>&#32;<a href="/w/index.php?title=Reionitzaci%C3%B3&amp;action=edit&amp;redlink=1" class="new" title="Reionització (encara no existeix)">Reionització</a></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;padding-left:0em;padding-right:0em;"><div style="padding:0em 0.75em;">Fons</div></th><td class="navbox-list navbox-odd" style="text-align:left;border-left-width:2px;border-left-style:solid;width:100%;padding:0px"><div style="padding:0em 0.25em"><a href="/wiki/Radiaci%C3%B3_c%C3%B2smica_de_fons" title="Radiació còsmica de fons">Radiació còsmica de fons</a> (CBR)<span style="font-weight:bold;">&#160;·</span>&#32;<a href="/wiki/Ona_gravitat%C3%B2ria_c%C3%B2smica_de_fons" title="Ona gravitatòria còsmica de fons">Ona gravitatòria còsmica de fons</a> (GWB)<span style="font-weight:bold;">&#160;·</span>&#32;<a href="/wiki/Fons_c%C3%B2smic_de_microones" class="mw-redirect" title="Fons còsmic de microones">Fons còsmic de microones</a> (CMB)<span style="font-weight:bold;">&#160;·</span>&#32;<a href="/wiki/Fons_c%C3%B2smic_de_neutrins" title="Fons còsmic de neutrins">Fons còsmic de neutrins</a> (CNB)<span style="font-weight:bold;">&#160;·</span>&#32;<a href="/w/index.php?title=Fons_c%C3%B2smic_d%27infraroig&amp;action=edit&amp;redlink=1" class="new" title="Fons còsmic d&#39;infraroig (encara no existeix)">Fons còsmic d'infraroig</a> (INB)</div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Expansió i futur</th><td class="navbox-list navbox-even" style="text-align:left;border-left-width:2px;border-left-style:solid;width:100%;padding:0px"><div style="padding:0em 0.25em"><a href="/wiki/Constant_de_Hubble" title="Constant de Hubble">Constant de Hubble</a><span style="font-weight:bold;">&#160;·</span>&#32;<a href="/wiki/Despla%C3%A7ament_cap_al_roig" title="Desplaçament cap al roig">Desplaçament cap al roig</a><span style="font-weight:bold;">&#160;·</span>&#32;<a href="/wiki/Expansi%C3%B3_de_l%27Univers" title="Expansió de l&#39;Univers">Expansió de l'Univers</a><span style="font-weight:bold;">&#160;·</span>&#32;<a href="/wiki/Expansi%C3%B3_accelerada_de_l%27Univers" title="Expansió accelerada de l&#39;Univers">Expansió accelerada de l'Univers</a><span style="font-weight:bold;">&#160;·</span>&#32;<a class="mw-selflink selflink">Mètrica FLRW</a><span style="font-weight:bold;">&#160;·</span>&#32;<a href="/wiki/Equacions_de_Friedmann" title="Equacions de Friedmann">Equacions de Friedmann</a><span style="font-weight:bold;">&#160;·</span>&#32;<a href="/w/index.php?title=Cosmologia_inhomog%C3%A8nia&amp;action=edit&amp;redlink=1" class="new" title="Cosmologia inhomogènia (encara no existeix)">Cosmologia inhomogènia</a><span style="font-weight:bold;">&#160;·</span>&#32;<a href="/w/index.php?title=Futur_d%27un_univers_en_expansi%C3%B3&amp;action=edit&amp;redlink=1" class="new" title="Futur d&#39;un univers en expansió (encara no existeix)">Futur d'un univers en expansió</a><span style="font-weight:bold;">&#160;·</span>&#32;<a href="/wiki/Dest%C3%AD_final_de_l%27Univers" title="Destí final de l&#39;Univers">Destí final de l'Univers</a><span style="font-weight:bold;">&#160;·</span>&#32;<a href="/w/index.php?title=Mort_t%C3%A8rmica_de_l%27Univers&amp;action=edit&amp;redlink=1" class="new" title="Mort tèrmica de l&#39;Univers (encara no existeix)">Mort tèrmica de l'Univers</a><span style="font-weight:bold;">&#160;·</span>&#32;<a href="/wiki/Big_Rip" title="Big Rip">Big Rip</a><span style="font-weight:bold;">&#160;·</span>&#32;<a href="/wiki/Big_Crunch" title="Big Crunch">Big Crunch</a><span style="font-weight:bold;">&#160;·</span>&#32;<a href="/w/index.php?title=Big_Bounce&amp;action=edit&amp;redlink=1" class="new" title="Big Bounce (encara no existeix)">Big Bounce</a></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Components</th><td class="navbox-list navbox-odd" style="text-align:left;border-left-width:2px;border-left-style:solid;width:100%;padding:0px"><div style="padding:0em 0.25em"><a href="/wiki/Energia" title="Energia">Energia</a> (<i><a href="/wiki/Energia_del_buit" title="Energia del buit">Energia del buit</a><span style="font-weight:bold;">&#160;·</span>&#32;<a href="/wiki/Energia_fantasma" title="Energia fantasma">Energia fantasma</a><span style="font-weight:bold;">&#160;·</span>&#32;<a href="/wiki/Energia_fosca" title="Energia fosca">Energia fosca</a></i>)<span style="font-weight:bold;">&#160;·</span>&#32;<a href="/wiki/Bari%C3%B3" title="Barió">Matèria bariònica</a><span style="font-weight:bold;">&#160;·</span>&#32;<a href="/wiki/Mat%C3%A8ria_fosca" title="Matèria fosca">Matèria fosca</a> (<i><a href="/wiki/Mat%C3%A8ria_fosca_freda" title="Matèria fosca freda">Matèria fosca freda</a><span style="font-weight:bold;">&#160;·</span>&#32;<a href="/wiki/Mat%C3%A8ria_fosca_t%C3%A8bia" title="Matèria fosca tèbia">Matèria fosca tèbia</a><span style="font-weight:bold;">&#160;·</span>&#32;<a href="/wiki/Mat%C3%A8ria_fosca_calenta" title="Matèria fosca calenta">Matèria fosca calenta</a></i>)<span style="font-weight:bold;">&#160;·</span>&#32;<a href="/wiki/Model_Lambda-CDM" title="Model Lambda-CDM">Model Lambda-CDM</a><span style="font-weight:bold;">&#160;·</span>&#32;<a href="/wiki/Quinta_ess%C3%A8ncia" title="Quinta essència">Quinta essència</a><span style="font-weight:bold;">&#160;·</span>&#32;<a href="/wiki/Radiaci%C3%B3" title="Radiació">Radiació</a><span style="font-weight:bold;">&#160;·</span>&#32;<a href="/w/index.php?title=Radiaci%C3%B3_fosca&amp;action=edit&amp;redlink=1" class="new" title="Radiació fosca (encara no existeix)">Radiació fosca</a></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Estructures</th><td class="navbox-list navbox-even" style="text-align:left;border-left-width:2px;border-left-style:solid;width:100%;padding:0px"><div style="padding:0em 0.25em"><a href="/wiki/Forma_de_l%27Univers" title="Forma de l&#39;Univers">Forma de l'Univers</a><span style="font-weight:bold;">&#160;·</span>&#32;<a href="/w/index.php?title=Reionitzaci%C3%B3&amp;action=edit&amp;redlink=1" class="new" title="Reionització (encara no existeix)">Reionització</a><span style="font-weight:bold;">&#160;·</span>&#32;<a href="/wiki/Formaci%C3%B3_d%27estructures" title="Formació d&#39;estructures">Formació d'estructures</a><span style="font-weight:bold;">&#160;·</span>&#32;<a href="/wiki/Formaci%C3%B3_i_evoluci%C3%B3_de_les_gal%C3%A0xies" title="Formació i evolució de les galàxies">Formació i evolució de les galàxies</a><span style="font-weight:bold;">&#160;·</span>&#32;<a href="/wiki/Univers_observable#Estructures_a_gran_escala" title="Univers observable">Estructures a gran escala</a><span style="font-weight:bold;">&#160;·</span>&#32;<a href="/wiki/C%C3%BAmul_de_qu%C3%A0sars" title="Cúmul de quàsars">Cúmul de quàsars</a><span style="font-weight:bold;">&#160;·</span>&#32;<a href="/wiki/Filament_gal%C3%A0ctic" title="Filament galàctic">Filament galàctic</a><span style="font-weight:bold;">&#160;·</span>&#32;<a href="/wiki/Grans_estructures_gal%C3%A0ctiques" title="Grans estructures galàctiques">Grans estructures galàctiques</a><span style="font-weight:bold;">&#160;·</span>&#32;<a href="/wiki/C%C3%BAmul_de_gal%C3%A0xies" title="Cúmul de galàxies">Cúmul de galàxies</a><span style="font-weight:bold;">&#160;·</span>&#32;<a href="/wiki/Grup_de_gal%C3%A0xies" title="Grup de galàxies">Grup de galàxies</a><span style="font-weight:bold;">&#160;·</span>&#32;<a href="/wiki/Grup_Local" title="Grup Local">Grup Local</a><span style="font-weight:bold;">&#160;·</span>&#32;<a href="/wiki/Buit_(astronomia)" title="Buit (astronomia)">Buit</a></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/w/index.php?title=Cosmologia_observacional&amp;action=edit&amp;redlink=1" class="new" title="Cosmologia observacional (encara no existeix)">Experiments</a></th><td class="navbox-list navbox-odd" style="text-align:left;border-left-width:2px;border-left-style:solid;width:100%;padding:0px"><div style="padding:0em 0.25em"><a href="/w/index.php?title=BOOMERanG&amp;action=edit&amp;redlink=1" class="new" title="BOOMERanG (encara no existeix)">BOOMERanG</a><span style="font-weight:bold;">&#160;·</span>&#32;<a href="/wiki/Cosmic_Background_Explorer" class="mw-redirect" title="Cosmic Background Explorer">Cosmic Background Explorer</a> (COBE)<span style="font-weight:bold;">&#160;·</span>&#32;<a href="/w/index.php?title=Projecte_Illustris&amp;action=edit&amp;redlink=1" class="new" title="Projecte Illustris (encara no existeix)">Projecte Illustris</a><span style="font-weight:bold;">&#160;·</span>&#32;<a href="/wiki/Planck_(sat%C3%A8l%C2%B7lit)" title="Planck (satèl·lit)">Planck</a><span style="font-weight:bold;">&#160;·</span>&#32;<a href="/w/index.php?title=Dark_Energy_Survey&amp;action=edit&amp;redlink=1" class="new" title="Dark Energy Survey (encara no existeix)">Dark Energy Survey</a> (DES)<span style="font-weight:bold;">&#160;·</span>&#32;<a href="/wiki/Euclid_(nau_espacial)" title="Euclid (nau espacial)">Euclid</a><span style="font-weight:bold;">&#160;·</span>&#32;<a href="/wiki/Large_Synoptic_Survey_Telescope" title="Large Synoptic Survey Telescope">Large Synoptic Survey Telescope</a> (LSST)<span style="font-weight:bold;">&#160;·</span>&#32;<a href="/wiki/Sloan_Digital_Sky_Survey" title="Sloan Digital Sky Survey">Sloan Digital Sky Survey</a> (SDSS)<span style="font-weight:bold;">&#160;·</span>&#32;<a href="/w/index.php?title=2dF_Galaxy_Redshift_Survey&amp;action=edit&amp;redlink=1" class="new" title="2dF Galaxy Redshift Survey (encara no existeix)">2dF Galaxy Redshift Survey</a> (2dFGRS)<span style="font-weight:bold;">&#160;·</span>&#32;<a href="/wiki/Wilkinson_Microwave_Anisotropy_Probe" class="mw-redirect" title="Wilkinson Microwave Anisotropy Probe">Wilkinson Microwave Anisotropy Probe</a> (WMAP)</div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/w/index.php?title=Llista_de_cosm%C3%B2legs&amp;action=edit&amp;redlink=1" class="new" title="Llista de cosmòlegs (encara no existeix)">Científics</a></th><td class="navbox-list navbox-even" style="text-align:left;border-left-width:2px;border-left-style:solid;width:100%;padding:0px"><div style="padding:0em 0.25em"><a href="/wiki/Marc_Aaronson" title="Marc Aaronson">Aaronson</a><span style="font-weight:bold;">&#160;·</span>&#32;<a href="/wiki/Hannes_Alfv%C3%A9n" title="Hannes Alfvén">Alfvén</a><span style="font-weight:bold;">&#160;·</span>&#32;<a href="/w/index.php?title=Raph_Asher_Alpher&amp;action=edit&amp;redlink=1" class="new" title="Raph Asher Alpher (encara no existeix)">Alpher</a><span style="font-weight:bold;">&#160;·</span>&#32;<a href="/w/index.php?title=Maharaja_Bharadwaj&amp;action=edit&amp;redlink=1" class="new" title="Maharaja Bharadwaj (encara no existeix)">Bharadwaj</a><span style="font-weight:bold;">&#160;·</span>&#32;<a href="/wiki/Nicolau_Cop%C3%A8rnic" title="Nicolau Copèrnic">Copèrnic</a><span style="font-weight:bold;">&#160;·</span>&#32;<a href="/wiki/Willem_de_Sitter" title="Willem de Sitter">de Sitter</a><span style="font-weight:bold;">&#160;·</span>&#32;<a href="/wiki/Robert_Henry_Dicke" title="Robert Henry Dicke">Dicke</a><span style="font-weight:bold;">&#160;·</span>&#32;<a href="/w/index.php?title=J%C3%BCrgen_Ehlers&amp;action=edit&amp;redlink=1" class="new" title="Jürgen Ehlers (encara no existeix)">Ehlers</a><span style="font-weight:bold;">&#160;·</span>&#32;<a href="/wiki/Albert_Einstein" title="Albert Einstein">Einstein</a><span style="font-weight:bold;">&#160;·</span>&#32;<a href="/w/index.php?title=George_F._R._Ellis&amp;action=edit&amp;redlink=1" class="new" title="George F. R. Ellis (encara no existeix)">Ellis</a><span style="font-weight:bold;">&#160;·</span>&#32;<a href="/wiki/Aleksandr_Fr%C3%ADdman" title="Aleksandr Frídman">Frídman</a><span style="font-weight:bold;">&#160;·</span>&#32;<a href="/wiki/Galileo_Galilei" title="Galileo Galilei">Galilei</a><span style="font-weight:bold;">&#160;·</span>&#32;<a href="/wiki/George_Gamow" title="George Gamow">Gamow</a><span style="font-weight:bold;">&#160;·</span>&#32;<a href="/wiki/Alan_Guth" title="Alan Guth">Guth</a><span style="font-weight:bold;">&#160;·</span>&#32;<a href="/wiki/Stephen_Hawking" title="Stephen Hawking">Hawking</a><span style="font-weight:bold;">&#160;·</span>&#32;<a href="/wiki/Edwin_Hubble" title="Edwin Hubble">Hubble</a><span style="font-weight:bold;">&#160;·</span>&#32;<a href="/wiki/Georges_Lema%C3%AEtre" title="Georges Lemaître">Lemaître</a><span style="font-weight:bold;">&#160;·</span>&#32;<a href="/wiki/Andrei_Linde" title="Andrei Linde">Linde</a><span style="font-weight:bold;">&#160;·</span>&#32;<a href="/wiki/John_C._Mather" title="John C. Mather">Mather</a><span style="font-weight:bold;">&#160;·</span>&#32;<a href="/wiki/Isaac_Newton" title="Isaac Newton">Newton</a><span style="font-weight:bold;">&#160;·</span>&#32;<a href="/wiki/Roger_Penrose" title="Roger Penrose">Penrose</a><span style="font-weight:bold;">&#160;·</span>&#32;<a href="/wiki/Arno_Allan_Penzias" title="Arno Allan Penzias">Penzias</a><span style="font-weight:bold;">&#160;·</span>&#32;<a href="/wiki/Vera_Rubin" title="Vera Rubin">Rubin</a><span style="font-weight:bold;">&#160;·</span>&#32;<a href="/wiki/Brian_Schmidt" title="Brian Schmidt">Schmidt</a><span style="font-weight:bold;">&#160;·</span>&#32;<a href="/wiki/Raixid_Siuni%C3%A0iev" title="Raixid Siuniàiev">Siuniàiev</a> <span style="font-weight:bold;">&#160;·</span>&#32; <a href="/wiki/George_Smoot" title="George Smoot">Smoot</a><span style="font-weight:bold;">&#160;·</span>&#32;<a href="/wiki/Aleksei_Starobinski" title="Aleksei Starobinski">Starobinski</a><span style="font-weight:bold;">&#160;·</span>&#32;<a href="/w/index.php?title=Paul_Steinhardt&amp;action=edit&amp;redlink=1" class="new" title="Paul Steinhardt (encara no existeix)">Steinhardt</a><span style="font-weight:bold;">&#160;·</span>&#32;<a href="/w/index.php?title=Nicholas_B._Suntzeff&amp;action=edit&amp;redlink=1" class="new" title="Nicholas B. Suntzeff (encara no existeix)">Suntzeff</a><span style="font-weight:bold;">&#160;·</span>&#32;<a href="/wiki/Richard_Tolman" title="Richard Tolman">Tolman</a><span style="font-weight:bold;">&#160;·</span>&#32;<a href="/wiki/Robert_Woodrow_Wilson" title="Robert Woodrow Wilson">Wilson</a><span style="font-weight:bold;">&#160;·</span>&#32;<a href="/wiki/I%C3%A0kov_Zeld%C3%B3vitx" title="Iàkov Zeldóvitx">Zeldóvitx</a></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Història de la cosmologia</th><td class="navbox-list navbox-odd" style="text-align:left;border-left-width:2px;border-left-style:solid;width:100%;padding:0px"><div style="padding:0em 0.25em"><a href="/w/index.php?title=Descobriment_de_la_radiaci%C3%B3_de_fons_de_microones&amp;action=edit&amp;redlink=1" class="new" title="Descobriment de la radiació de fons de microones (encara no existeix)">Descobriment de la radiació de fons de microones</a><span style="font-weight:bold;">&#160;·</span>&#32;<a href="/wiki/Hist%C3%B2ria_de_la_teoria_del_big-bang" title="Història de la teoria del big-bang">Història de la teoria del big-bang</a><span style="font-weight:bold;">&#160;·</span>&#32;<a href="/w/index.php?title=Interpretacions_religioses_de_la_teoria_del_big-bang&amp;action=edit&amp;redlink=1" class="new" title="Interpretacions religioses de la teoria del big-bang (encara no existeix)">Interpretacions religioses de la teoria del big-bang</a><span style="font-weight:bold;">&#160;·</span>&#32;<a href="/wiki/Cronologia_de_la_cosmologia" title="Cronologia de la cosmologia">Cronologia de la cosmologia</a></div></td></tr><tr><td class="navbox-abovebelow" colspan="2"><div><i>Vegeu també:</i> <a href="/wiki/Astrof%C3%ADsica" title="Astrofísica">Astrofísica</a><span style="font-weight:bold;">&#160;·</span>&#32;<a href="/wiki/Astronomia" title="Astronomia">Astronomia</a><span style="font-weight:bold;">&#160;·</span>&#32;<a href="/wiki/Astronomia_observacional" title="Astronomia observacional">Astronomia observacional</a><span style="font-weight:bold;">&#160;·</span>&#32;<a href="/wiki/Cosmogonia" title="Cosmogonia">Cosmogonia</a><span style="font-weight:bold;">&#160;·</span>&#32;<a href="/wiki/Cosmologia" title="Cosmologia">Cosmologia</a><span style="font-weight:bold;">&#160;·</span>&#32;<a href="/wiki/F%C3%ADsica_de_part%C3%ADcules" title="Física de partícules">Física de partícules</a><span style="font-weight:bold;">&#160;·</span>&#32;<a href="/wiki/Gravetat_qu%C3%A0ntica" class="mw-redirect" title="Gravetat quàntica">Gravetat quàntica</a><span style="font-weight:bold;">&#160;·</span>&#32;<a href="/wiki/Relativitat_general" title="Relativitat general">Relativitat general</a></div></td></tr></tbody></table></div> <!-- NewPP limit report Parsed by mw‐api‐ext.codfw.main‐568576b95‐gqc6h Cached time: 20241110071152 Cache expiry: 2592000 Reduced expiry: false Complications: [show‐toc] CPU time usage: 0.446 seconds Real time usage: 0.605 seconds Preprocessor visited node count: 9835/1000000 Post‐expand include size: 103058/2097152 bytes Template argument size: 17988/2097152 bytes Highest expansion depth: 12/100 Expensive parser function count: 1/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 24030/5000000 bytes Lua time usage: 0.105/10.000 seconds Lua memory usage: 2254963/52428800 bytes Number of Wikibase entities loaded: 1/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 379.377 1 -total 34.15% 129.555 19 Plantilla:Ref-publicació 29.26% 111.019 1 Plantilla:Referències 11.54% 43.780 7 Plantilla:Ref-llibre 11.14% 42.258 27 Plantilla:If_both 10.34% 39.218 2 Plantilla:Caixa_de_navegació 10.10% 38.326 1 Plantilla:Cosmologia_física 8.45% 32.057 10 Plantilla:Sfn 7.87% 29.857 1 Plantilla:Autoritat 7.63% 28.946 1 Plantilla:AP --> <!-- Saved in parser cache with key cawiki:pcache:idhash:67311-0!canonical and timestamp 20241110071151 and revision id 34216083. Rendering was triggered because: edit-page --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1&amp;useformat=desktop" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Obtingut de «<a dir="ltr" href="https://ca.wikipedia.org/w/index.php?title=Mètrica_FLRW&amp;oldid=34216083">https://ca.wikipedia.org/w/index.php?title=Mètrica_FLRW&amp;oldid=34216083</a>»</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Especial:Categorias" title="Especial:Categorias">Categories</a>: <ul><li><a href="/wiki/Categoria:Cosmologia" title="Categoria:Cosmologia">Cosmologia</a></li><li><a href="/wiki/Categoria:Models_de_la_f%C3%ADsica" title="Categoria:Models de la física">Models de la física</a></li><li><a href="/wiki/Categoria:Relativitat_general" title="Categoria:Relativitat general">Relativitat general</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Categories ocultes: <ul><li><a href="/wiki/Categoria:P%C3%A0gines_amb_arguments_duplicats_en_utilitzaci%C3%B3_de_plantilles" title="Categoria:Pàgines amb arguments duplicats en utilització de plantilles">Pàgines amb arguments duplicats en utilització de plantilles</a></li><li><a href="/wiki/Categoria:Control_d%27autoritats" title="Categoria:Control d&#039;autoritats">Control d'autoritats</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> La pàgina va ser modificada per darrera vegada el 10 nov 2024 a les 08:11.</li> <li id="footer-info-copyright">El text està disponible sota la <a href="/wiki/Viquip%C3%A8dia:Text_de_la_llic%C3%A8ncia_de_Creative_Commons_Reconeixement-Compartir_Igual_4.0_No_adaptada" title="Viquipèdia:Text de la llicència de Creative Commons Reconeixement-Compartir Igual 4.0 No adaptada"> Llicència de Creative Commons Reconeixement i Compartir-Igual</a>; es poden aplicar termes addicionals. Vegeu les <a class="external text" href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use/ca">Condicions d'ús</a>. Wikipedia&#174; (Viquipèdia™) és una <a href="/wiki/Marca_comercial" title="Marca comercial">marca registrada</a> de <a rel="nofollow" class="external text" href="https://www.wikimediafoundation.org">Wikimedia Foundation, Inc</a>.<br /></li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Política de privadesa</a></li> <li id="footer-places-about"><a href="/wiki/Viquip%C3%A8dia:Quant_a_la_Viquip%C3%A8dia">Quant al projecte Viquipèdia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Viquip%C3%A8dia:Av%C3%ADs_d%27exempci%C3%B3_de_responsabilitat">Descàrrec de responsabilitat</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Codi de conducta</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Desenvolupadors</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/ca.wikipedia.org">Estadístiques</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Declaració de cookies</a></li> <li id="footer-places-mobileview"><a href="//ca.m.wikipedia.org/w/index.php?title=M%C3%A8trica_FLRW&amp;mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Versió per a mòbils</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-7fc47fc68d-whdxt","wgBackendResponseTime":147,"wgPageParseReport":{"limitreport":{"cputime":"0.446","walltime":"0.605","ppvisitednodes":{"value":9835,"limit":1000000},"postexpandincludesize":{"value":103058,"limit":2097152},"templateargumentsize":{"value":17988,"limit":2097152},"expansiondepth":{"value":12,"limit":100},"expensivefunctioncount":{"value":1,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":24030,"limit":5000000},"entityaccesscount":{"value":1,"limit":400},"timingprofile":["100.00% 379.377 1 -total"," 34.15% 129.555 19 Plantilla:Ref-publicació"," 29.26% 111.019 1 Plantilla:Referències"," 11.54% 43.780 7 Plantilla:Ref-llibre"," 11.14% 42.258 27 Plantilla:If_both"," 10.34% 39.218 2 Plantilla:Caixa_de_navegació"," 10.10% 38.326 1 Plantilla:Cosmologia_física"," 8.45% 32.057 10 Plantilla:Sfn"," 7.87% 29.857 1 Plantilla:Autoritat"," 7.63% 28.946 1 Plantilla:AP"]},"scribunto":{"limitreport-timeusage":{"value":"0.105","limit":"10.000"},"limitreport-memusage":{"value":2254963,"limit":52428800}},"cachereport":{"origin":"mw-api-ext.codfw.main-568576b95-gqc6h","timestamp":"20241110071152","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"M\u00e8trica FLRW","url":"https:\/\/ca.wikipedia.org\/wiki\/M%C3%A8trica_FLRW","sameAs":"http:\/\/www.wikidata.org\/entity\/Q742982","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q742982","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2006-03-03T11:45:34Z","dateModified":"2024-11-10T07:11:51Z","headline":"propietats m\u00e8triques de l'espai-temps"}</script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10