CINXE.COM
Search results for: enteropathogenic Eschericia coli O157
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: enteropathogenic Eschericia coli O157</title> <meta name="description" content="Search results for: enteropathogenic Eschericia coli O157"> <meta name="keywords" content="enteropathogenic Eschericia coli O157"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="enteropathogenic Eschericia coli O157" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="enteropathogenic Eschericia coli O157"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 697</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: enteropathogenic Eschericia coli O157</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">697</span> Influence of Pediococcus Pentasaceus Isolate “Dadih” (Buffalo Milk Fermended in Bamboo) the Bowel Frequence, Secretory Immunoglobulin a Level and Height of Ileum Villi of the Mice EPEC Induced Diarrhea</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Endang%20Purwati%20Rahayuningsih">Endang Purwati Rahayuningsih</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this study is Enteropathogenic Eschericia coli O157 (EPEC) is one of the pathogen that can cause inflamation and damage intestinal mucosa, which is leading diarrhea. Inflamation in the intestinal mucosa proved by the presence of secretory Immunoglobulin A (sIgA) on the feces. Isolate dadih is Pediococcus pentosaceus (P. pentosaceus) as a probiotic lactic acid bacteria (LAB) is very usefull to improve sIgA and intestinal mucosa. The objective, to determine the dose and duration administration of P. pentosaceus for bowel frequence, sIgA level and height of illeum villi in mice EPEC-induced diarrhea. Method, using Complete Randomized design studies in mice EPEC-induced diarrhea. Mice was classified into 2 factors. A factor (dose of probiotic) and B factor (duration of probiotic observation) consisted of 0 hour, 12 hours, 24 hours and 36 hours. A factor consisted of negative control, positive control (mice induced by EPEC) and 3 different dose experimental mice. The results were a very significant interaction between dose and duration administration of P. pentosaceus. Mean of the most frequent defecation of mice EPEC-induced was 55 graetly reduced into 12 ,after 24 hours administration P. pentosaceus dose 2 x 1010 cfu/g, Mean of sIgA level of mice induced EPEC was 1,60 μg/ml, very significant different (p<0,01). Mean of sIgA level after 24 administration P. pentosaceus dose 2 x 1010cfu/g was 2,65 μg/ml. Mean of height of illeum villi after induced EPEC 53,04 μm with very significant different after 24 hours administration P. pentosaceus dose 2 x 1010cfu/g (142,881μm). This study concluded that P. pentosaceus dose 2 x 1010cfu/g after 24 hours is very beneficial to reduced bowel frequence, increase sIgA level and improve the height illeum villi of mice EPEC-induced diarrhea. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pediococcus%20pentosaceus" title="Pediococcus pentosaceus">Pediococcus pentosaceus</a>, <a href="https://publications.waset.org/abstracts/search?q=sIgA" title=" sIgA"> sIgA</a>, <a href="https://publications.waset.org/abstracts/search?q=enteropathogenic%20Eschericia%20coli%20O157" title=" enteropathogenic Eschericia coli O157"> enteropathogenic Eschericia coli O157</a>, <a href="https://publications.waset.org/abstracts/search?q=diarrhea" title=" diarrhea"> diarrhea</a>, <a href="https://publications.waset.org/abstracts/search?q=illeum%20villi" title=" illeum villi"> illeum villi</a> </p> <a href="https://publications.waset.org/abstracts/19388/influence-of-pediococcus-pentasaceus-isolate-dadih-buffalo-milk-fermended-in-bamboo-the-bowel-frequence-secretory-immunoglobulin-a-level-and-height-of-ileum-villi-of-the-mice-epec-induced-diarrhea" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19388.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">475</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">696</span> Identification and Isolation of E. Coli O₁₅₇:H₇ From Water and Wastewater of Shahrood and Neka Cities by PCR Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aliasghar%20%20Golmohammadian">Aliasghar Golmohammadian</a>, <a href="https://publications.waset.org/abstracts/search?q=Sona%20Rostampour%20Yasouri"> Sona Rostampour Yasouri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the most important intestinal pathogenic strains is E. coli O₁₅₇:H₇. This pathogenic bacterium is transmitted to humans through water and food. E. coli O₁₅₇:H₇ is the main cause of Hemorrhagic colitis (HC), Hemolytic Uremic Syndrome (HUS), Thrombotic Thrombocytopenic Purpura (TTP) and in some cases death. Since E. coli O₁₅₇:H₇ can be transmitted through the consumption of different foods, including vegetables, agricultural products, and fresh dairy products, this study aims to identify and isolate E. coli O₁₅₇:H₇ from wastewater by PCR technique. One hundred twenty samples of water and wastewater were collected by Falcom Sterile from Shahrood and Neka cities. The samples were checked for colony formation after appropriate centrifugation and cultivation in the specific medium of Sorbitol MacConkey Agar (SMAC) and other diagnostic media of E. coli O₁₅₇:H₇. Also, the plates were observed macroscopically and microscopically. Then, the necessary phenotypic tests were performed on the colonies, and finally, after DNA extraction, the PCR technique was performed with specific primers related to rfbE and stx2 genes. The number of 5 samples (6%) out of all the samples examined were determined positive by PCR technique with observing the bands related to the mentioned genes on the agarose gel electrophoresis. PCR is a fast and accurate method to identify the bacteria E. coli O₁₅₇:H₇. Considering that E. coli bacteria is a resistant bacteria and survives in water and food for weeks and months, the PCR technique can provide the possibility of quick detection of contaminated water. Moreover, it helps people in the community control and prevent the transfer of bacteria to healthy and underground water and agricultural and even dairy products. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=E.%20coli%20O%E2%82%81%E2%82%85%E2%82%87%3AH%E2%82%87" title="E. coli O₁₅₇:H₇">E. coli O₁₅₇:H₇</a>, <a href="https://publications.waset.org/abstracts/search?q=PCR" title=" PCR"> PCR</a>, <a href="https://publications.waset.org/abstracts/search?q=water" title=" water"> water</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewater" title=" wastewater"> wastewater</a> </p> <a href="https://publications.waset.org/abstracts/173832/identification-and-isolation-of-e-coli-o157h7-from-water-and-wastewater-of-shahrood-and-neka-cities-by-pcr-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/173832.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">65</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">695</span> The Prevalence of Verocytotoxin-Producing Escherichia Coli O157 (VTEC) in Dairy Cattle in Tripoli Area, Libya</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Imad%20Buishi">Imad Buishi</a>, <a href="https://publications.waset.org/abstracts/search?q=Almabrouk%20Fares"> Almabrouk Fares</a>, <a href="https://publications.waset.org/abstracts/search?q=Hallowma%20Helmi"> Hallowma Helmi </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Infection with verocytotoxin-producing Escherichia coli O157 in humans can lead to mild or bloody diarrhea with the hemolytic uremic syndrome (HUS) as a possible complication. Cattle appear to be important reservoirs for VTEC O157. Epidemiologic studies on the prevalence of VTEC O157 in dairy cattle in Libya have never been conducted. To investigate the prevalence and the risk factors associated with VTEC O157 on dairy farms in Tripoli region, fecal samples from 200 apparently healthy cows were collected once from 15 randomly selected dairy farms in the period July 2010 through September 2010. All fecal samples were examined for the prevalence of VTEC O157 by conventional plating using Sorbitol-MacConkey agar (SMAC). Isolated of E. coli were subjected to slide agglutination test using E. coli O157 antiserum. The results pointed out that the prevalence within-herd and among herds were 9% and 60% respectively. The prevalence of VTEC O157 in fecal samples of dairy cattle was significantly associated with husbandry practices on farm-level such as signs of diarrhoea (p=0.02, OR=3.2) and sharing water trough (p= 0.03, OR=3.0). It was concluded that dairy cattle in Tripoli area are important reservoirs of VTEC O157 strains that are potentially pathogenic for humans. When aiming at reducing risks for human by intervention at farm-level, it is of importance to reduce the number of positive animals and farms. For this, more research is needed to devise mitigation strategies that will reduce the on-farm contamination of VTEC O157. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=VTEC%20O157" title="VTEC O157">VTEC O157</a>, <a href="https://publications.waset.org/abstracts/search?q=prevalence" title=" prevalence"> prevalence</a>, <a href="https://publications.waset.org/abstracts/search?q=dairy%20cattle" title=" dairy cattle"> dairy cattle</a>, <a href="https://publications.waset.org/abstracts/search?q=tripoli" title=" tripoli"> tripoli</a> </p> <a href="https://publications.waset.org/abstracts/19092/the-prevalence-of-verocytotoxin-producing-escherichia-coli-o157-vtec-in-dairy-cattle-in-tripoli-area-libya" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19092.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">686</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">694</span> Open Reading Frame Marker-Based Capacitive DNA Sensor for Ultrasensitive Detection of Escherichia coli O157:H7 in Potable Water </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rehan%20Deshmukh">Rehan Deshmukh</a>, <a href="https://publications.waset.org/abstracts/search?q=Sunil%20Bhand"> Sunil Bhand</a>, <a href="https://publications.waset.org/abstracts/search?q=Utpal%20Roy"> Utpal Roy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We report the label-free electrochemical detection of Escherichia coli O157:H7 (ATCC 43895) in potable water using a DNA probe as a sensing molecule targeting the open reading frame marker. Indium tin oxide (ITO) surface was modified with organosilane and, glutaraldehyde was applied as a linker to fabricate the DNA sensor chip. Non-Faradic electrochemical impedance spectroscopy (EIS) behavior was investigated at each step of sensor fabrication using cyclic voltammetry, impedance, phase, relative permittivity, capacitance, and admittance. Atomic force microscopy (AFM) and scanning electron microscopy (SEM) revealed significant changes in surface topographies of DNA sensor chip fabrication. The decrease in the percentage of pinholes from 2.05 (Bare ITO) to 1.46 (after DNA hybridization) suggested the capacitive behavior of the DNA sensor chip. The results of non-Faradic EIS studies of DNA sensor chip showed a systematic declining trend of the capacitance as well as the relative permittivity upon DNA hybridization. DNA sensor chip exhibited linearity in 0.5 to 25 pg/10mL for E. coli O157:H7 (ATCC 43895). The limit of detection (LOD) at 95% confidence estimated by logistic regression was 0.1 pg DNA/10mL of E. coli O157:H7 (equivalent to 13.67 CFU/10mL) with a p-value of 0.0237. Moreover, the fabricated DNA sensor chip used for detection of E. coli O157:H7 showed no significant cross-reactivity with closely and distantly related bacteria such as Escherichia coli MTCC 3221, Escherichia coli O78:H11 MTCC 723 and Bacillus subtilis MTCC 736. Consequently, the results obtained in our study demonstrated the possible application of developed DNA sensor chips for E. coli O157:H7 ATCC 43895 in real water samples as well. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=capacitance" title="capacitance">capacitance</a>, <a href="https://publications.waset.org/abstracts/search?q=DNA%20sensor" title=" DNA sensor"> DNA sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=Escherichia%20coli%20O157%3AH7" title=" Escherichia coli O157:H7"> Escherichia coli O157:H7</a>, <a href="https://publications.waset.org/abstracts/search?q=open%20reading%20frame%20marker" title=" open reading frame marker"> open reading frame marker</a> </p> <a href="https://publications.waset.org/abstracts/112328/open-reading-frame-marker-based-capacitive-dna-sensor-for-ultrasensitive-detection-of-escherichia-coli-o157h7-in-potable-water" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/112328.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">144</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">693</span> Prevalence and Distribution of Verocytotoxigenic Escherichia coli (Vtec) Non-O157 Serotypes in Cattle in Abuja, Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20I.%20Enem">S. I. Enem</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20I.%20Oboegbulem"> S. I. Oboegbulem </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Objective: The most frequently implicated E. coli serotype causing haemorrhagic colitis and haemorrhagic uraemic syndrome (HUS) is VTEC 0157. However, non-O157 VTEC is now known to be as prevalent as VETC O157 infection (or even more) in most parts of the world. The objective of the study was to establish the occurrence of non-O157 VTEC serotypes in cattle in the Federal Capital Territory (FCT) Abuja, Nigeria. The level of significance of the infection with sex, age and season were also tested. Methods: The study was carried out in the FCT, Abuja, Nigeria which is located between latitude 8o and 90 25` North of the equator and longitude 60 45` and 7045` East of the Greenwich meridian. The cross sectional epidemiological method and multi-staged sampling technique were used in this study. Samples were collected from the freshly voided faeces of both apparently healthy and diarrhoeic cattle in selected abattoirs and cattle herds. Enriched samples were analyzed bacteriologically and biochemically after which they were characterised using commercially prepared latex agglutination test kits. Results: A total of 718 faecal samples from cattle were analyzed for the presence of VTEC non-O157. Thirty eight (5.23%) were positive for non-O157. There was no significant association (p > 0.05) between sex and infection with non-O157 VTEC in cattle. There was a significant association (P < 0.05) between age and infection with non-O157 VTEC in cattle. Calves were more associated than the adults. There was also a significant association (P < 0.05) between season and infection with non-O157 VTEC in cattle. The dry season was more associated than the wet season. Conclusion: The study established the occurrence and prevalence of non-O157 VTEC in cattle in FCT, Abuja, Nigeria. As a major food animal in Nigeria, infection in cattle provides an epidemiological causal association to the infection in humans. The result showed that warmer seasons (dry season) stimulate the presence of VTEC infection in animals and thus, as a consequence, increases the number of human cases. The prevalence was also higher in younger calves (< 6 months) probably as a result of undeveloped immune system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=prevalence" title="prevalence">prevalence</a>, <a href="https://publications.waset.org/abstracts/search?q=distribution" title=" distribution"> distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=Verocytotoxigenic%20escherichia%20coli%20%28VTEC%29" title=" Verocytotoxigenic escherichia coli (VTEC)"> Verocytotoxigenic escherichia coli (VTEC)</a>, <a href="https://publications.waset.org/abstracts/search?q=non-O157%20serotypes" title=" non-O157 serotypes"> non-O157 serotypes</a>, <a href="https://publications.waset.org/abstracts/search?q=cattle" title=" cattle"> cattle</a> </p> <a href="https://publications.waset.org/abstracts/31299/prevalence-and-distribution-of-verocytotoxigenic-escherichia-coli-vtec-non-o157-serotypes-in-cattle-in-abuja-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31299.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">579</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">692</span> Validation of Escherichia coli O157:H7 Inactivation on Apple-Carrot Juice Treated with Manothermosonication by Kinetic Models</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ozan%20Kahraman">Ozan Kahraman</a>, <a href="https://publications.waset.org/abstracts/search?q=Hao%20Feng"> Hao Feng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Several models such as Weibull, Modified Gompertz, Biphasic linear, and Log-logistic models have been proposed in order to describe non-linear inactivation kinetics and used to fit non-linear inactivation data of several microorganisms for inactivation by heat, high pressure processing or pulsed electric field. First-order kinetic parameters (D-values and z-values) have often been used in order to identify microbial inactivation by non-thermal processing methods such as ultrasound. Most ultrasonic inactivation studies employed first-order kinetic parameters (D-values and z-values) in order to describe the reduction on microbial survival count. This study was conducted to analyze the E. coli O157:H7 inactivation data by using five microbial survival models (First-order, Weibull, Modified Gompertz, Biphasic linear and Log-logistic). First-order, Weibull, Modified Gompertz, Biphasic linear and Log-logistic kinetic models were used for fitting inactivation curves of Escherichia coli O157:H7. The residual sum of squares and the total sum of squares criteria were used to evaluate the models. The statistical indices of the kinetic models were used to fit inactivation data for E. coli O157:H7 by MTS at three temperatures (40, 50, and 60 0C) and three pressures (100, 200, and 300 kPa). Based on the statistical indices and visual observations, the Weibull and Biphasic models were best fitting of the data for MTS treatment as shown by high R2 values. The non-linear kinetic models, including the Modified Gompertz, First-order, and Log-logistic models did not provide any better fit to data from MTS compared the Weibull and Biphasic models. It was observed that the data found in this study did not follow the first-order kinetics. It is possibly because of the cells which are sensitive to ultrasound treatment were inactivated first, resulting in a fast inactivation period, while those resistant to ultrasound were killed slowly. The Weibull and biphasic models were found as more flexible in order to determine the survival curves of E. coli O157:H7 treated by MTS on apple-carrot juice. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Weibull" title="Weibull">Weibull</a>, <a href="https://publications.waset.org/abstracts/search?q=Biphasic" title=" Biphasic"> Biphasic</a>, <a href="https://publications.waset.org/abstracts/search?q=MTS" title=" MTS"> MTS</a>, <a href="https://publications.waset.org/abstracts/search?q=kinetic%20models" title=" kinetic models"> kinetic models</a>, <a href="https://publications.waset.org/abstracts/search?q=E.coli%20O157%3AH7" title=" E.coli O157:H7"> E.coli O157:H7</a> </p> <a href="https://publications.waset.org/abstracts/57326/validation-of-escherichia-coli-o157h7-inactivation-on-apple-carrot-juice-treated-with-manothermosonication-by-kinetic-models" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57326.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">366</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">691</span> Characterization of Shiga Toxin Escherichia coli Recovered from a Beef Processing Facility within Southern Ontario and Comparative Performance of Molecular Diagnostic Platforms</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jessica%20C.%20Bannon">Jessica C. Bannon</a>, <a href="https://publications.waset.org/abstracts/search?q=Cleso%20M.%20Jordao%20Jr."> Cleso M. Jordao Jr.</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Melebari"> Mohammad Melebari</a>, <a href="https://publications.waset.org/abstracts/search?q=Carlos%20Leon-Velarde"> Carlos Leon-Velarde</a>, <a href="https://publications.waset.org/abstracts/search?q=Roger%20Johnson"> Roger Johnson</a>, <a href="https://publications.waset.org/abstracts/search?q=Keith%20Warriner"> Keith Warriner</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There has been an increased incidence of non-O157 Shiga Toxin Escherichia coli (STEC) with six serotypes (Top 6) being implicated in causing haemolytic uremic syndrome (HUS). Beef has been suggested to be a significant vehicle for non-O157 STEC although conclusive evidence has yet to be obtained. The following aimed to determine the prevalence of the Top 6 non-O157 STEC in beef processing using three different diagnostic platforms then characterize the recovered isolates. Hide, carcass and environmental swab samples (n = 60) were collected from a beef processing facility over a 12 month period. Enriched samples were screened using Biocontrol GDS, BAX or PALLgene molecular diagnostic tests. Presumptive non-O157 STEC positive samples were confirmed using conventional PCR and serology. STEC was detected by GDS (55% positive), BAX (85% positive), and PALLgene (93%). However, during confirmation testing only 8 of the 60 samples (13%) were found to harbour STEC. Interestingly, the presence of virulence factors in the recovered isolates was unstable and readily lost during subsequent sub-culturing. There is a low prevalence of Top 6 non-O157 STEC associated with beef although other serotypes are encountered. Yet, the instability of the virulence factors in recovered strains would question their clinical relevance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=beef" title="beef">beef</a>, <a href="https://publications.waset.org/abstracts/search?q=food%20microbiology" title=" food microbiology"> food microbiology</a>, <a href="https://publications.waset.org/abstracts/search?q=shiga%20toxin" title=" shiga toxin"> shiga toxin</a>, <a href="https://publications.waset.org/abstracts/search?q=STEC" title=" STEC"> STEC</a> </p> <a href="https://publications.waset.org/abstracts/28089/characterization-of-shiga-toxin-escherichia-coli-recovered-from-a-beef-processing-facility-within-southern-ontario-and-comparative-performance-of-molecular-diagnostic-platforms" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28089.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">461</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">690</span> Molecular Detection and Characterization of Shiga Toxogenic Escherichia coli Associated with Dairy Product</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Al-Hazmi">Mohamed Al-Hazmi</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdullah%20Al-Arfaj"> Abdullah Al-Arfaj</a>, <a href="https://publications.waset.org/abstracts/search?q=Moussa%20Ihab"> Moussa Ihab</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Raw, unpasteurized milk can carry dangerous bacteria such as Salmonella, E. coli, and Listeria, which are responsible for causing numerous foodborne illnesses. The objective of this study was molecular characterization of shiga toxogenic E. coli in raw milk collected from different Egyptian governorates by multiplex PCR. During the period of 25th May to 25th October 2012, a total of 320 bulk-tank milk samples were collected from 10 cow farms located in different Egyptian governorates. Bacteriological examination of milk samples revealed the presence of E. coli organisms in 65 samples (20.3%), serotyping of the E. coli isolates revealed, 35 strains (10.94%) O111, 15 strains (4.69%) O157: H7, 10 strains (3.13%) O128 and 5 strains (1.56%) O119. Multiplex PCR for detection of shiga toxin type 2 and intimin genes revealed positive amplification of 255 bp fragment of shiga toxin type 2 gene and 384 bp fragment of intimin gene from all E. coli serovar O157: H7, while from serovar O111 were 25 (71.43%), 20 (57.14%) and from serovar O128 were 6 (60%), 8 (80%), respectively. The results of multiplex PCR assay are useful for identification of STEC possessing the eaeA and stx2 genes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=raw%20milk" title="raw milk">raw milk</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20coli" title=" E. coli"> E. coli</a>, <a href="https://publications.waset.org/abstracts/search?q=multiplex%20PCR" title=" multiplex PCR"> multiplex PCR</a>, <a href="https://publications.waset.org/abstracts/search?q=Shiga%20toxin%20type%202" title=" Shiga toxin type 2"> Shiga toxin type 2</a>, <a href="https://publications.waset.org/abstracts/search?q=intimin%20gene" title=" intimin gene"> intimin gene</a> </p> <a href="https://publications.waset.org/abstracts/2617/molecular-detection-and-characterization-of-shiga-toxogenic-escherichia-coli-associated-with-dairy-product" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2617.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">306</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">689</span> Preparation of Novel Antimicrobial Meat Packaging Using Chitosan-Arginine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20A.%20Lahmer">R. A. Lahmer</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20P.%20Williams"> A. P. Williams</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Townsend"> S. Townsend</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Baker"> S. Baker</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20L.%20Jones"> D. L. Jones</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Chitosan-arginine (Ch-arg) has been proposed as an anti-microbial agent to reduce the proliferation of spoilage and pathogenic bacteria within meat products destined for human consumption. In the current experiment its use as an antimicrobial packaging material was examined. Two different concentrations of chitosan-arginine (0.05 and 0.15 % w/w) were blended into a cellulose film (Ch-arg film). When placed in contact with chicken and beef juice inoculated with a lux-marked strain of E. coli O157, the film incorporating the highest Ch-arg concentration resulted in a small reduction of E. coli O157 in chicken juice; however, there was no effect of the Ch-arg film on E. coli O157 in beef juice. The lack of observed effect in the beef juice experiment we ascribe to insufficient surface-to-surface contact between the film and the bacteria in the beef juice and the greater presence of other Ch-arg reactive components in the juice (e.g. fats, blood cells). Results suggest that, in combination with other anti microbials, Ch-arg packaging may offers some potential for limiting the growth of pathogenic bacteria in foodstuffs; however, further research is needed to enhance their anti-microbial performance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cross-contamination" title="cross-contamination">cross-contamination</a>, <a href="https://publications.waset.org/abstracts/search?q=foodborne%20pathogen" title=" foodborne pathogen"> foodborne pathogen</a>, <a href="https://publications.waset.org/abstracts/search?q=polymer%20film" title=" polymer film"> polymer film</a>, <a href="https://publications.waset.org/abstracts/search?q=shelf%20life" title=" shelf life"> shelf life</a> </p> <a href="https://publications.waset.org/abstracts/20974/preparation-of-novel-antimicrobial-meat-packaging-using-chitosan-arginine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20974.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">410</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">688</span> Emergence of Fluoroquinolone Resistance in Pigs, Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Igbakura%20I.%20Luga">Igbakura I. Luga</a>, <a href="https://publications.waset.org/abstracts/search?q=Alex%20A.%20Adikwu"> Alex A. Adikwu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A comparison of resistance to quinolones was carried out on isolates of Shiga toxin-producing <em>Escherichia coli</em>O157:H7 from cattle and <em>mecA</em> and <em>nuc</em> genes harbouring <em>Staphylococcus aureus</em> from pigs. The isolates were separately tested in the first and current decades of the 21<sup>st</sup> century. The objective was to demonstrate the dissemination of resistance to this frontline class of antibiotic by bacteria from food animals and bring to the limelight the spread of antibiotic resistance in Nigeria. A total of 10 isolates of the <em>E. coli </em>O157:H7 and 9 of <em>mecA</em> and <em>nuc</em> genes harbouring S. aureus were obtained following isolation, biochemical testing, and serological identification using the Remel Wellcolex <em>E. coli </em>O157:H7 test. Shiga toxin-production screening in the <em>E. coli </em>O157:H7 using the verotoxin <em>E. coli</em> reverse passive latex agglutination (VTEC-RPLA) test; and molecular identification of the <em>mecA</em> and <em>nuc</em> genes in <em>S. aureus</em>. Detection of the <em>mecA</em> and <em>nuc</em> genes were carried out using the protocol by the Danish Technical University (DTU) using the following primers <em>mecA</em>-1:5'-GGGATCATAGCGTCATTATTC-3', <em>mecA</em>-2: 5'-AACGATTGTGACACGATAGCC-3', <em>nuc</em>-1: 5'-TCAGCAAATGCATCACAAACAG-3', <em>nuc</em>-2: 5'-CGTAAATGCACTTGCTTCAGG-3' for the <em>mecA</em> and <em>nuc</em> genes, respectively. The <em>nuc</em> genes confirm the <em>S. aureus</em> isolates and the <em>mecA</em> genes as being methicillin-resistant and so pathogenic to man. The fluoroquinolones used in the antibiotic resistance testing were norfloxacin (10 µg) and ciprofloxacin (5 µg) in the <em>E. coli </em>O157:H7 isolates and ciprofloxacin (5 µg) in the <em>S. aureus </em>isolates. Susceptibility was tested using the disk diffusion method on Muller-Hinton agar. Fluoroquinolone resistance was not detected from isolates of <em>E. coli </em>O157:H7 from cattle. However, 44% (4/9) of the <em>S. aureus</em> were resistant to ciprofloxacin. Resistance of up to 44% in isolates of <em>mecA</em> and <em>nuc</em> genes harbouring <em>S. aureus</em> is a compelling evidence for the rapid spread of antibiotic resistance from bacteria in food animals from Nigeria. Ciprofloxacin is the drug of choice for the treatment of Typhoid fever, therefore widespread resistance to it in pathogenic bacteria is of great public health significance. The study concludes that antibiotic resistance in bacteria from food animals is on the increase in Nigeria. The National Food and Drug Administration and Control (NAFDAC) agency in Nigeria should implement the World Health Organization (WHO) global action plan on antimicrobial resistance. A good starting point can be coordinating the WHO, Office of International Epizootics (OIE), Food and Agricultural Organization (FAO) tripartite draft antimicrobial resistance monitoring and evaluation (M&E) framework in Nigeria. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fluoroquinolone" title="Fluoroquinolone">Fluoroquinolone</a>, <a href="https://publications.waset.org/abstracts/search?q=Nigeria" title=" Nigeria"> Nigeria</a>, <a href="https://publications.waset.org/abstracts/search?q=resistance" title=" resistance"> resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=Staphylococcus%20aureus" title=" Staphylococcus aureus"> Staphylococcus aureus</a> </p> <a href="https://publications.waset.org/abstracts/80778/emergence-of-fluoroquinolone-resistance-in-pigs-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80778.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">458</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">687</span> Comparative Efficacy of Gas Phase Sanitizers for Inactivating Salmonella, Escherichia coli O157:H7 and Listeria monocytogenes on Intact Lettuce Heads</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kayla%20Murray">Kayla Murray</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrew%20Green"> Andrew Green</a>, <a href="https://publications.waset.org/abstracts/search?q=Gopi%20Paliyath"> Gopi Paliyath</a>, <a href="https://publications.waset.org/abstracts/search?q=Keith%20Warriner"> Keith Warriner</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: It is now acknowledged that control of human pathogens associated with fresh produce requires an integrated approach of several interventions as opposed to relying on post-harvest washes to remove field acquired contamination. To this end, current research is directed towards identifying such interventions that can be applied at different points in leafy green processing. Purpose: In the following the efficacy of different gas phase treatments to decontaminate whole lettuce heads during pre-processing storage were evaluated. Methods: Whole Cos lettuce heads were spot inoculated with L. monocytogenes, E. coli O157:H7 or Salmonella spp. The inoculated lettuce heads were then placed in a treatment chamber and exposed to ozone, chlorine dioxide or hydroxyl radicals at different time periods under a range of relative humidity. Survivors of the treatments were enumerated along with sensory analysis performed on the treated lettuce. Results: Ozone gas reduced L. monocytogenes by 2-log10 after ten-minutes of exposure with Salmonella and E. coli O157:H7 being decreased by 0.66 and 0.56-log cfu respectively. Chlorine dioxide gas treatment reduced L. monocytogenes and Salmonella on lettuce heads by 4 log cfu but only supported a 0.8 log cfu reduction in E. coli O157:H7 numbers. In comparison, hydroxyl radicals supported a 2.9 – 4.8 log cfu reduction of model human pathogens inoculated onto lettuce heads but required extended exposure times and relative humidity < 0.8. Significance: From the gas phase sanitizers tested, chlorine dioxide and hydroxyl radicals are the most effective. The latter process holds most promise based on the ease of delivery, worker safety and preservation of lettuce sensory characteristics. Although expose times for hydroxyl radicles was relatively long (24h) this should not be considered a limitation given the intervention is applied in store rooms or in transport containers during transit. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gas%20phase%20sanitizers" title="gas phase sanitizers">gas phase sanitizers</a>, <a href="https://publications.waset.org/abstracts/search?q=iceberg%20lettuce%20heads" title=" iceberg lettuce heads"> iceberg lettuce heads</a>, <a href="https://publications.waset.org/abstracts/search?q=leafy%20green%20processing" title=" leafy green processing"> leafy green processing</a> </p> <a href="https://publications.waset.org/abstracts/29596/comparative-efficacy-of-gas-phase-sanitizers-for-inactivating-salmonella-escherichia-coli-o157h7-and-listeria-monocytogenes-on-intact-lettuce-heads" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29596.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">408</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">686</span> Mongolian Water Quality Problem and Health of Free-Grazing Sheep </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yu%20Yoshihara">Yu Yoshihara</a>, <a href="https://publications.waset.org/abstracts/search?q=Chika%20Tada"> Chika Tada</a>, <a href="https://publications.waset.org/abstracts/search?q=Moe%20Takada"> Moe Takada</a>, <a href="https://publications.waset.org/abstracts/search?q=Nyam-Osor%20Purevdorj"> Nyam-Osor Purevdorj</a>, <a href="https://publications.waset.org/abstracts/search?q=Khorolmaa%20Chimedtseren"> Khorolmaa Chimedtseren</a>, <a href="https://publications.waset.org/abstracts/search?q=Yutaka%20Nakai"> Yutaka Nakai </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Water pollution from animal waste and its influence on grazing animals is a current concern regarding Mongolian grazing lands. We allocated 32 free-grazing lambs to four groups and provided each with water from a different source (upper stream, lower stream, well, and pond) for 49 days. We recorded the amount of water consumed by the lambs, as well as their body weight, behavior, white blood cell count, acute phase (haptoglobin) protein level, and fecal condition. We measured the chemical and biological qualities of the four types of water, and we detected enteropathogenic and enterohemorrhagic Escherichia coli in fecal samples by using a genetic approach. Pond water contained high levels of nitrogen and minerals, and well water contained high levels of bacteria. The odor concentration index decreased in order from pond water to upper stream, lower stream, and well. On day 15 of the experiment, the following parameters were the highest in lambs drinking water from the following sources: water intake (pond or lower stream), body weight gain (pond), WBC count (lower stream), haptoglobin concentration (well), and enteropathogenic E. coli infection rate (lower stream). Lambs that drank well water spent more time lying down and less time grazing than the others, and lambs that drank pond water spent more time standing and less time lying down. Lambs given upper or lower stream water exhibited more severe diarrhea on day 15 of the experiment than before the experiment. Mongolian sheep seemed to adapt to chemically contaminated water: their productivity benefited the most from pond water, likely owing to its rich mineral content. Lambs that drank lower stream water showed increases in enteropathogenic E. coli infection, clinical diarrhea, and WBC count. Lambs that drank well water, which was bacteriologically contaminated, had increased serum acute phase protein levels and poor physical condition; they were thus at increased risk of negative health and production effects. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DNA" title="DNA">DNA</a>, <a href="https://publications.waset.org/abstracts/search?q=Escherichia%20coli" title=" Escherichia coli"> Escherichia coli</a>, <a href="https://publications.waset.org/abstracts/search?q=fecal%20sample" title=" fecal sample"> fecal sample</a>, <a href="https://publications.waset.org/abstracts/search?q=lower%20stream" title=" lower stream"> lower stream</a>, <a href="https://publications.waset.org/abstracts/search?q=well%20water" title=" well water"> well water</a> </p> <a href="https://publications.waset.org/abstracts/33379/mongolian-water-quality-problem-and-health-of-free-grazing-sheep" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33379.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">472</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">685</span> Paper-Based Colorimetric Sensor Utilizing Peroxidase-Mimicking Magnetic Nanoparticles Conjugated with Aptamers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Min-Ah%20Woo">Min-Ah Woo</a>, <a href="https://publications.waset.org/abstracts/search?q=Min-Cheol%20Lim"> Min-Cheol Lim</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyun-Joo%20Chang"> Hyun-Joo Chang</a>, <a href="https://publications.waset.org/abstracts/search?q=Sung-Wook%20Choi"> Sung-Wook Choi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We developed a paper-based colorimetric sensor utilizing magnetic nanoparticles conjugated with aptamers (MNP-Apts) against <em>E. coli</em> O157:H7. The MNP-Apts were applied to a test sample solution containing the target cells, and the solution was simply dropped onto PVDF (polyvinylidene difluoride) membrane. The membrane moves the sample radially to form the sample spots of different compounds as concentric rings, thus the MNP-Apts on the membrane enabled specific recognition of the target cells through a color ring generation by MNP-promoted colorimetric reaction of TMB (3,3',5,5'-tetramethylbenzidine) and H<sub>2</sub>O<sub>2</sub>. This method could be applied to rapidly and visually detect various bacterial pathogens in less than 1 h without cell culturing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aptamer" title="aptamer">aptamer</a>, <a href="https://publications.waset.org/abstracts/search?q=colorimetric%20sensor" title=" colorimetric sensor"> colorimetric sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20coli%20O157%3AH7" title=" E. coli O157:H7"> E. coli O157:H7</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20nanoparticle" title=" magnetic nanoparticle"> magnetic nanoparticle</a>, <a href="https://publications.waset.org/abstracts/search?q=polyvinylidene%20difluoride" title=" polyvinylidene difluoride"> polyvinylidene difluoride</a> </p> <a href="https://publications.waset.org/abstracts/51070/paper-based-colorimetric-sensor-utilizing-peroxidase-mimicking-magnetic-nanoparticles-conjugated-with-aptamers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51070.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">450</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">684</span> Effect of Environmental Conditions on E. Coli o157:h7 Atcc 43888 and L. Monocytogenes Atcc 7644 Cell Surface Hydrophobicity, Motility and Cell Attachment on Food-Contact Surfaces</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Stanley%20Dula">Stanley Dula</a>, <a href="https://publications.waset.org/abstracts/search?q=Oluwatosini%20A.%20Ijabadeniyi"> Oluwatosini A. Ijabadeniyi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Biofilm formation is a major source of materials and foodstuffs contamination, contributing to occurrence of pathogenic and spoilage microbes in food processing resulting in food spoilage, transmission of diseases and significant food hygiene and safety issues. This study elucidates biofilm formation of E. coli O157:H7 and L. monocytogenes ATCC 7644 grown under food related environmental stress conditions of varying pH (5.0;7.0; and 8.5) and temperature (15, 25 and 37 ℃). Both strains showed confluent biofilm formation at 25 ℃ and 37 ℃, at pH 8.5 after 5 days. E. coli showed curli fimbriae production at various temperatures, while L. monocytogenes did not show pronounced expression. Swarm, swimming and twitching plate assays were used to determine strain motilities. Characterization of cell hydrophobicity was done using the microbial adhesion to hydrocarbons (MATH) assay using n-hexadecane. Both strains showed hydrophilic characteristics as they fell within a < 20 % interval. FT-IR revealed COOH at 1622 cm-1, and a strong absorption band at 3650 cm-1 – 3200 cm-1 indicating the presence of both -OH and -NH groups. Both strains were hydrophilic and could form biofilm at different combinations of temperature and pH. EPS produced in both species proved to be an acidic hetero-polysaccharide. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biofilm" title="biofilm">biofilm</a>, <a href="https://publications.waset.org/abstracts/search?q=pathogens" title=" pathogens"> pathogens</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrophobicity" title=" hydrophobicity"> hydrophobicity</a>, <a href="https://publications.waset.org/abstracts/search?q=motility" title=" motility"> motility</a> </p> <a href="https://publications.waset.org/abstracts/92074/effect-of-environmental-conditions-on-e-coli-o157h7-atcc-43888-and-l-monocytogenes-atcc-7644-cell-surface-hydrophobicity-motility-and-cell-attachment-on-food-contact-surfaces" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92074.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">236</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">683</span> High Prevalence of Multi-drug Resistant Diarrheagenic Escherichia coli among Hospitalised Diarrheal Patients in Kolkata, India</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Debjani%20Ghosh">Debjani Ghosh</a>, <a href="https://publications.waset.org/abstracts/search?q=Goutam%20Chowdhury"> Goutam Chowdhury</a>, <a href="https://publications.waset.org/abstracts/search?q=Prosenjit%20Samanta"> Prosenjit Samanta</a>, <a href="https://publications.waset.org/abstracts/search?q=Asish%20Kumar%20Mukhopadhyay"> Asish Kumar Mukhopadhyay</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Acute diarrhoea caused by diarrheagenic Escherichia coli (DEC) is one of the major public health problem in developing countries, mainly in Asia and Africa. DEC consists of six pathogroups, but the majority of the cases were associated with the three pathogropus, enterotoxigenic E. coli (ETEC), enteroaggregative E. coli (EAEC), and enteropathogenic E. coli (EPEC). Hence, we studied the prevalence and antimicrobial resistance of these three major DEC pathogroups in hospitalized diarrheal patients in Kolkata, India, during 2012-2019 with a large sample size. 8,891 stool samples were processed, and 7.8% of them was identified as DEC infection screened by multiplex PCR, in which ETEC was most common (47.7%) followed by EAEC (38.4%) and EPEC (13.9%). Clinical patient history suggested that children <5 years of age were mostly affected with ETEC and EAEC, whereas people within >5-14 years of age were significantly associated with EPEC and ETEC infections. Antibiogram profile showed a high prevalence of multidrug resistant (MDR) isolates among DEC (56.9%), in which 9% were resistant to antibiotics of six different antimicrobial classes. Screening of the antibiotic resistance conferring genes in DEC showed the presence of blaCTX-M (30.2%) in highest number followed by blaTEM (27.5%), tetB (18%), sul2 (12.6%), strA (11.8%), aadA1 (9.8%), blaOXA-1 (9%), dfrA1 (1.6%) and blaSHV (1.2%) which indicates the existence of mobile genetic elements in those isolates. Therefore, the presence of MDR DEC strains in higher number alarms the public health authorities to take preventive measures before the upsurge of the DEC caused diarrhea cases in near future. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=diarrheagenic%20escherichia%20coli" title="diarrheagenic escherichia coli">diarrheagenic escherichia coli</a>, <a href="https://publications.waset.org/abstracts/search?q=ETEC" title=" ETEC"> ETEC</a>, <a href="https://publications.waset.org/abstracts/search?q=EAEC" title=" EAEC"> EAEC</a>, <a href="https://publications.waset.org/abstracts/search?q=EPEC" title=" EPEC"> EPEC</a> </p> <a href="https://publications.waset.org/abstracts/143560/high-prevalence-of-multi-drug-resistant-diarrheagenic-escherichia-coli-among-hospitalised-diarrheal-patients-in-kolkata-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/143560.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">161</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">682</span> Prevalence of Foodborne Pathogens in Pig and Cattle Carcass Samples Collected from Korean Slaughterhouses</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kichan%20Lee">Kichan Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Kwang-Ho%20Choi"> Kwang-Ho Choi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mi-Hye%20Hwang"> Mi-Hye Hwang</a>, <a href="https://publications.waset.org/abstracts/search?q=Young%20Min%20Son"> Young Min Son</a>, <a href="https://publications.waset.org/abstracts/search?q=Bang-Hun%20Hyun"> Bang-Hun Hyun</a>, <a href="https://publications.waset.org/abstracts/search?q=Byeong%20Yeal%20%20Jung"> Byeong Yeal Jung</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recently, worldwide food safety authorities have been strengthening food hygiene in order to curb foodborne illness outbreaks. The hygiene status of Korean slaughterhouses has been monitored annually by Animal and Plant Quarantine Agency and provincial governments through foodborne pathogens investigation using slaughtered pig and cattle meats. This study presented the prevalence of food-borne pathogens from 2014 to 2016 in Korean slaughterhouses. Sampling, microbiological examinations, and analysis of results were performed in accordance with ‘Processing Standards and Ingredient Specifications for Livestock Products’. In total, swab samples from 337 pig carcasses (100 samples in 2014, 135 samples in 2015, 102 samples in 2016) and 319 cattle carcasses (100 samples in 2014, 119 samples in 2015, 100 samples in 2016) from twenty slaughterhouses were examined for Listeria monocytogenes, Campylobacter jejuni, Campylobacter coli, Salmonella spp., Staphylococcus aureus, Clostridium perfringens, Yersinia enterocolitica, Escherichia coli O157:H7 and non-O157 enterohemorrhagic E. coli (EHEC, serotypes O26, O45, O103, O104, O111, O121, O128 and O145) as foodborne pathogens. The samples were analyzed using cultural and PCR-based methods. Foodborne pathogens were isolated in 78 (23.1%) out of 337 pig samples. In 2014, S. aureus (n=17) was predominant, followed by Y. enterocolitica (n=7), C. perfringens (n=2) and L. monocytogenes (n=2). In 2015, C. coli (n=14) was the most prevalent, followed by L. monocytogenes (n=4), S. aureus (n=3), and C. perfringens (n=2). In 2016, S. aureus (n=16) was the most prevalent, followed by C. coli (n=13), L. monocytogenes (n=2) and C. perfringens (n=1). In case of cattle carcasses, foodborne bacteria were detected in 41 (12.9%) out of 319 samples. In 2014, S. aureus (n=16) was the most prevalent, followed by Y. enterocolitica (n=3), C. perfringens (n=3) and L. monocytogenes (n=2). In 2015, L. monocytogenes was isolated from 4 samples, S. aureus from three, C. perfringens, Y. enterocolitica and Salmonella spp. from one, respectively. In 2016, L. monocytogenes (n=6) was the most prevalent, followed by C. perfringens (n=3) C. jejuni (n=1), respectively. It was found that 10 carcass samples (4 cattle and 6 pigs) were contaminated with two bacterial pathogen tested. Interestingly, foodborne pathogens were more detected from pig carcasses than cattle carcasses. Although S. aureus was predominantly detected in this study, other foodborne pathogens were also isolated in slaughtered meats. Results of this study alerted the risk of foodborne pathogen infection for humans from slaughtered meats. Therefore, the authors insisted that it was important to enhance hygiene level of slaughterhouses according to Hazard Analysis and Critical Control Point. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carcass" title="carcass">carcass</a>, <a href="https://publications.waset.org/abstracts/search?q=cattle" title=" cattle"> cattle</a>, <a href="https://publications.waset.org/abstracts/search?q=foodborne" title=" foodborne"> foodborne</a>, <a href="https://publications.waset.org/abstracts/search?q=Korea" title=" Korea"> Korea</a>, <a href="https://publications.waset.org/abstracts/search?q=pathogen" title=" pathogen"> pathogen</a>, <a href="https://publications.waset.org/abstracts/search?q=pig" title=" pig"> pig</a> </p> <a href="https://publications.waset.org/abstracts/80593/prevalence-of-foodborne-pathogens-in-pig-and-cattle-carcass-samples-collected-from-korean-slaughterhouses" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80593.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">344</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">681</span> Nanobiosensor System for Aptamer Based Pathogen Detection in Environmental Waters</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nimet%20Yildirim%20Tirgil">Nimet Yildirim Tirgil</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Busnaina"> Ahmed Busnaina</a>, <a href="https://publications.waset.org/abstracts/search?q=April%20Z.%20Gu"> April Z. Gu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Environmental waters are monitored worldwide to protect people from infectious diseases primarily caused by enteric pathogens. All long, Escherichia coli (E. coli) is a good indicator for potential enteric pathogens in waters. Thus, a rapid and simple detection method for E. coli is very important to predict the pathogen contamination. In this study, to the best of our knowledge, as the first time we developed a rapid, direct and reusable SWCNTs (single walled carbon nanotubes) based biosensor system for sensitive and selective E. coli detection in water samples. We use a novel and newly developed flexible biosensor device which was fabricated by high-rate nanoscale offset printing process using directed assembly and transfer of SWCNTs. By simple directed assembly and non-covalent functionalization, aptamer (biorecognition element that specifically distinguish the E. coli O157:H7 strain from other pathogens) based SWCNTs biosensor system was designed and was further evaluated for environmental applications with simple and cost-effective steps. The two gold electrode terminals and SWCNTs-bridge between them allow continuous resistance response monitoring for the E. coli detection. The detection procedure is based on competitive mode detection. A known concentration of aptamer and E. coli cells were mixed and after a certain time filtered. The rest of free aptamers injected to the system. With hybridization of the free aptamers and their SWCNTs surface immobilized probe DNA (complementary-DNA for E. coli aptamer), we can monitor the resistance difference which is proportional to the amount of the E. coli. Thus, we can detect the E. coli without injecting it directly onto the sensing surface, and we could protect the electrode surface from the aggregation of target bacteria or other pollutants that may come from real wastewater samples. After optimization experiments, the linear detection range was determined from 2 cfu/ml to 10⁵ cfu/ml with higher than 0.98 R² value. The system was regenerated successfully with 5 % SDS solution over 100 times without any significant deterioration of the sensor performance. The developed system had high specificity towards E. coli (less than 20 % signal with other pathogens), and it could be applied to real water samples with 86 to 101 % recovery and 3 to 18 % cv values (n=3). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aptamer" title="aptamer">aptamer</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20coli" title=" E. coli"> E. coli</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20detection" title=" environmental detection"> environmental detection</a>, <a href="https://publications.waset.org/abstracts/search?q=nanobiosensor" title=" nanobiosensor"> nanobiosensor</a>, <a href="https://publications.waset.org/abstracts/search?q=SWCTs" title=" SWCTs"> SWCTs</a> </p> <a href="https://publications.waset.org/abstracts/95243/nanobiosensor-system-for-aptamer-based-pathogen-detection-in-environmental-waters" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/95243.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">197</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">680</span> The Incidence of Prostate Cancer in Previous Infected E. Coli Population</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Andreea%20Molnar">Andreea Molnar</a>, <a href="https://publications.waset.org/abstracts/search?q=Amalia%20Ardeljan"> Amalia Ardeljan</a>, <a href="https://publications.waset.org/abstracts/search?q=Lexi%20Frankel"> Lexi Frankel</a>, <a href="https://publications.waset.org/abstracts/search?q=Marissa%20Dallara"> Marissa Dallara</a>, <a href="https://publications.waset.org/abstracts/search?q=Brittany%20Nagel"> Brittany Nagel</a>, <a href="https://publications.waset.org/abstracts/search?q=Omar%20Rashid"> Omar Rashid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Escherichia coli is a gram-negative, facultative anaerobic bacteria that belongs to the family Enterobacteriaceae and resides in the intestinal tracts of individuals. E.Coli has numerous strains grouped into serogroups and serotypes based on differences in antigens in their cell walls (somatic, or “O” antigens) and flagella (“H” antigens). More than 700 serotypes of E. coli have been identified. Although most strains of E. coli are harmless, a few strains, such as E. coli O157:H7 which produces Shiga toxin, can cause intestinal infection with symptoms of severe abdominal cramps, bloody diarrhea, and vomiting. Infection with E. Coli can lead to the development of systemic inflammation as the toxin exerts its effects. Chronic inflammation is now known to contribute to cancer development in several organs, including the prostate. The purpose of this study was to evaluate the correlation between E. Coli and the incidence of prostate cancer. Methods: Data collected in this cohort study was provided by a Health Insurance Portability and Accountability Act (HIPAA) compliant national database to evaluate patients infected with E.Coli infection and prostate cancer using the International Classification of Disease (ICD-10 and ICD-9 codes). Permission to use the database was granted by Holy Cross Health, Fort Lauderdale for the purpose of academic research. Data analysis was conducted through the use of standard statistical methods. Results: Between January 2010 and December 2019, the query was analyzed and resulted in 81, 037 patients after matching in both infected and control groups, respectively. The two groups were matched by Age Range and CCI score. The incidence of prostate cancer was 2.07% and 1,680 patients in the E. Coli group compared to 5.19% and 4,206 patients in the control group. The difference was statistically significant by a p-value p<2.2x10-16 with an Odds Ratio of 0.53 and a 95% CI. Based on the specific treatment for E.Coli, the infected group vs control group were matched again with a result of 31,696 patients in each group. 827 out of 31,696 (2.60%) patients with a prior E.coli infection and treated with antibiotics were compared to 1634 out of 31,696 (5.15%) patients with no history of E.coli infection (control) and received antibiotic treatment. Both populations subsequently developed prostate carcinoma. Results remained statistically significant (p<2.2x10-16), Odds Ratio=0.55 (95% CI 0.51-0.59). Conclusion: This retrospective study shows a statistically significant correlation between E.Coli infection and a decreased incidence of prostate cancer. Further evaluation is needed in order to identify the impact of E.Coli infection and prostate cancer development. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=E.%20Coli" title="E. Coli">E. Coli</a>, <a href="https://publications.waset.org/abstracts/search?q=prostate%20cancer" title=" prostate cancer"> prostate cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=protective" title=" protective"> protective</a>, <a href="https://publications.waset.org/abstracts/search?q=microbiology" title=" microbiology"> microbiology</a> </p> <a href="https://publications.waset.org/abstracts/140205/the-incidence-of-prostate-cancer-in-previous-infected-e-coli-population" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/140205.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">215</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">679</span> Microbial Quality of Traditional Qatari Foods Sold by Women Street Vendors in Doha, Qatar</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tahra%20El-Obeid">Tahra El-Obeid</a>, <a href="https://publications.waset.org/abstracts/search?q=Reham%20Mousa"> Reham Mousa</a>, <a href="https://publications.waset.org/abstracts/search?q=Amal%20Alzahiri"> Amal Alzahiri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> During the past few years the traditional market of Qatar has become an attraction to many customers who eat from the numerous women street vendors selling Qatari traditional dishes. To gain an understanding on the safety of these street vended foods, we designed the study to test microbiological quality of 14 different Qatari foods sold in Souk Wagif, the main traditional market in Qatar. This study was conducted to mainly identify presence or absence of microbial pathogens. A total of 56 samples were purchased from 10 different street vendors and the samples were collected randomly on different days. The samples were tested for microbial contaminants at Central Food Laboratories, Doha, Qatar. The qualitative study was conducted using Real Time-PCR to screen for; Salmonella spp., Listeria monocytogenes, Escherichia coli and E. coli 0157:H7. Out of the 56 samples, only two samples “Biryani” and “Khabess” contained E. coli. However, both samples tested negative for E. coli O157:H7. The microbial contamination of the Qatari traditional street vended foods was 3%. This result may be attributed to the food safety training requirement set by the regulatory authorities before issuing any license to food handlers in Qatar as well as the food inspection conducted by the food health inspectors on a regular basis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microbiological%20quality" title="microbiological quality">microbiological quality</a>, <a href="https://publications.waset.org/abstracts/search?q=street%20vended%20food" title=" street vended food"> street vended food</a>, <a href="https://publications.waset.org/abstracts/search?q=traditional%20dishes" title=" traditional dishes"> traditional dishes</a>, <a href="https://publications.waset.org/abstracts/search?q=Qatar" title=" Qatar"> Qatar</a> </p> <a href="https://publications.waset.org/abstracts/6893/microbial-quality-of-traditional-qatari-foods-sold-by-women-street-vendors-in-doha-qatar" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6893.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">313</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">678</span> Morphology Analysis of Apple-Carrot Juice Treated by Manothermosonication (MTS) and High Temperature Short Time (HTST) Processes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ozan%20Kahraman">Ozan Kahraman</a>, <a href="https://publications.waset.org/abstracts/search?q=Hao%20Feng"> Hao Feng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Manothermosonication (MTS), which consists of the simultaneous application of heat and ultrasound under moderate pressure (100-700 kPa), is one of the technologies which destroy microorganisms and inactivates enzymes. Transmission electron microscopy (TEM) is a microscopy technique in which a beam of electrons is transmitted through an ultra-thin specimen, interacting with the specimen as it passes through it. The environmental scanning electron microscope or ESEM is a scanning electron microscope (SEM) that allows for the option of collecting electron micrographs of specimens that are "wet," uncoated. These microscopy techniques allow us to observe the processing effects on the samples. This study was conducted to investigate the effects of MTS and HTST treatments on the morphology of apple-carrot juices by using TEM and ESEM microscopy. Apple-carrot juices treated with HTST (72 0C, 15 s), MTS 50 °C (60 s, 200 kPa), and MTS 60 °C (30 s, 200 kPa) were observed in both ESEM and TEM microscopy. For TEM analysis, a drop of the solution dispersed in fixative solution was put onto a Parafilm ® sheet. The copper coated side of the TEM sample holder grid was gently laid on top of the droplet and incubated for 15 min. A drop of a 7% uranyl acetate solution was added and held for 2 min. The grid was then removed from the droplet and allowed to dry at room temperature and presented into the TEM. For ESEM analysis, a critical point drying of the filters was performed using a critical point dryer (CPD) (Samdri PVT- 3D, Tousimis Research Corp., Rockville, MD, USA). After the CPD, each filter was mounted onto a stub and coated with gold/palladium with a sputter coater (Desk II TSC Denton Vacuum, Moorestown, NJ, USA). E.Coli O157:H7 cells on the filters were observed with an ESEM (Philips XL30 ESEM-FEG, FEI Co., Eindhoven, The Netherland). ESEM (Environmental Scanning Electron Microscopy) and TEM (Transmission Electron Microscopy) images showed extensive damage for the samples treated with MTS at 50 and 60 °C such as ruptured cells and breakage on cell membranes. The damage was increasing with increasing exposure time. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=MTS" title="MTS">MTS</a>, <a href="https://publications.waset.org/abstracts/search?q=HTST" title=" HTST"> HTST</a>, <a href="https://publications.waset.org/abstracts/search?q=ESEM" title=" ESEM"> ESEM</a>, <a href="https://publications.waset.org/abstracts/search?q=TEM" title=" TEM"> TEM</a>, <a href="https://publications.waset.org/abstracts/search?q=E.COLI%20O157%3AH7" title=" E.COLI O157:H7"> E.COLI O157:H7</a> </p> <a href="https://publications.waset.org/abstracts/57139/morphology-analysis-of-apple-carrot-juice-treated-by-manothermosonication-mts-and-high-temperature-short-time-htst-processes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57139.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">285</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">677</span> An Investigation of How Salad Rocket May Provide Its Own Defence Against Spoilage Bacteria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Huda%20Aldossari">Huda Aldossari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Members of the Brassicaceae family, such as rocket species, have high concentrations of glucosinolates (GLSs). GSLs and isothiocyanates (ITCs), the product of GLSs hydrolysis, are the most influential compounds that affect flavour in rocket species. Aside from their contribution to the flavour, GSLs and ITCs are of particular interest due to their potential ability to inhibit the growth of human pathogenic bacteria such as E. coli O157. Quantitative and qualitative analysis of glucosinolate compounds in rocket extracts was obtained by Liquid Chromatography-Mass Spectrometry (LC–MS).Each individual component of non-volatile GLSs and ITCs was isolated by High-Performance Liquid Chromatography (HPLC) fractionation. The identity and purity of each fraction were confirmed using Ultra High-Performance Liquid Chromatography (UPLC). The separation of glucosinolates in the complex rocket extractions was performed by optimizing a HPLC fractionation method through changing the mobile phase composition, solvent gradient, and the flow rate. As a result, six glucosinolates compounds (Glucosativin, 4-Methoxyglucobrassicin, Glucotropaeolin GTP, Glucoiberin GIB, Diglucothiobenin, and Sinigrin) have been isolated, identified and quantified in the complex samples. This step aims to evaluate the antibacterial activity of glucosinolates and their enzymatic hydrolysis against bacterial growth of E.coli k12. Therefore, fractions from this study will be used to determine the most active compounds by investigating the efficacy of each component of GLSs and ITCs at inhibiting bacterial growth. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rocket" title="rocket">rocket</a>, <a href="https://publications.waset.org/abstracts/search?q=glucosinolates" title=" glucosinolates"> glucosinolates</a>, <a href="https://publications.waset.org/abstracts/search?q=E.coli%20k12." title=" E.coli k12."> E.coli k12.</a>, <a href="https://publications.waset.org/abstracts/search?q=HPLC%20fractionatio" title=" HPLC fractionatio"> HPLC fractionatio</a> </p> <a href="https://publications.waset.org/abstracts/158926/an-investigation-of-how-salad-rocket-may-provide-its-own-defence-against-spoilage-bacteria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158926.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">96</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">676</span> Visual Detection of Escherichia coli (E. coli) through Formation of Beads Aggregation in Capillary Tube by Rolling Circle Amplification</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bo%20Ram%20Choi">Bo Ram Choi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ji%20Su%20Kim"> Ji Su Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Juyeon%20Cho"> Juyeon Cho</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyukjin%20Lee"> Hyukjin Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Food contaminated by bacteria (E.coli), causes food poisoning, which occurs to many patients worldwide annually. We have introduced an application of rolling circle amplification (RCA) as a versatile biosensor and developed a diagnostic platform composed of capillary tube and microbeads for rapid and easy detection of Escherichia coli (E. coli). When specific mRNA of E.coli is extracted from cell lysis, rolling circle amplification (RCA) of DNA template can be achieved and can be visualized by beads aggregation in capillary tube. In contrast, if there is no bacterial pathogen in sample, no beads aggregation can be seen. This assay is possible to detect visually target gene without specific equipment. It is likely to the development of a genetic kit for point of care testing (POCT) that can detect target gene using microbeads. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rolling%20circle%20amplification%20%28RCA%29" title="rolling circle amplification (RCA)">rolling circle amplification (RCA)</a>, <a href="https://publications.waset.org/abstracts/search?q=Escherichia%20coli%20%28E.%20coli%29" title=" Escherichia coli (E. coli)"> Escherichia coli (E. coli)</a>, <a href="https://publications.waset.org/abstracts/search?q=point%20of%20care%20testing%20%28POCT%29" title=" point of care testing (POCT)"> point of care testing (POCT)</a>, <a href="https://publications.waset.org/abstracts/search?q=beads%20aggregation" title=" beads aggregation"> beads aggregation</a>, <a href="https://publications.waset.org/abstracts/search?q=capillary%20tube" title=" capillary tube"> capillary tube</a> </p> <a href="https://publications.waset.org/abstracts/72639/visual-detection-of-escherichia-coli-e-coli-through-formation-of-beads-aggregation-in-capillary-tube-by-rolling-circle-amplification" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72639.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">365</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">675</span> Antibacterial and Anti-Biofilm Activity of Vaccinium meridionale S. Pomace Extract Against Staphylococcus aureus, Escherichia coli and Salmonella Enterica</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Carlos%20Y.%20Soto">Carlos Y. Soto</a>, <a href="https://publications.waset.org/abstracts/search?q=Camila%20A.%20Lota"> Camila A. Lota</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Astrid%20Garz%C3%B3n"> G. Astrid Garzón</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bacterial biofilms cause an ongoing problem for food safety. They are formed when microorganisms aggregate to form a community that attaches to solid surfaces. Biofilms increase the resistance of pathogens to cleaning, disinfection and antibacterial products. This resistance gives rise to problems for human health, industry, and agriculture. At present, plant extracts rich in polyphenolics are being investigated as natural alternatives to degrade bacterial biofilms. The pomace of the tropical Berry Vaccinium meridionale S. contains high amounts of phenolic compounds. Therefore, in the current study, the antimicrobial and antibiofilm effects of extracts from the pomace of Vaccinium meridionale S. were tested on three foodborne pathogens: Enterohaemorrhagic Escherichia coli O157:H7 (ATCC®700728TM), Staphylococcus aureus subsp. aureus (ATCC® 6538TM), and Salmonella enterica serovar Enteritidis (ATCC® 13076TM). Microwave-assisted extraction was used to extract polyphenols with aqueous methanol (80% v/v) at a solid to solvent ratio of 1:10 (w/v) for 20 min. The magnetic stirring was set at 400 rpm, and the microwave power was adjusted to 400 W. The antimicrobial effect of the extract was assessed by determining the half maximal inhibitory concentration (IC50) against the three food poisoning pathogens at concentrations ranging from 50 to 2,850 μg gallic acid equivalents (GAE)/mL of the extract. Biofilm inhibition was assessed using a crystal violet assay applying the same range of concentration. Three replications of the experiments were carried out, and all analyses were run in triplicate. IC50 values were determined using the GraphPad Prism8® program. Significant differences (P<0.05) among means were identified using one-factor analysis of variance (ANOVA) and the post-hoc least significant difference (LSD) test using the Statgraphics plus program, version 2.1.There was significant difference among the mean IC50 values for the tested bacteria. The IC50 for S. aureus was 48 ± 9 μg GAE/mL, followed by 123 ± 49 μg GAE/mL for Salmonella and 376 ± 32 μg GAE/mL for E. coli. The percent inhibition of the extract on biofilm formation was significantly higher for S. aureus (85.8 0.3), followed by E. coli (74.5 1.0) and Salmonella (53.6 9.7). These findings suggest that polyphenolic extracts obtained from the pomace of V. meridionale S. might be used as natural antimicrobial and anti-biofilm natural agents, effective against S. aureus, E. coli and Salmonella enterica. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antibiofilm" title="antibiofilm">antibiofilm</a>, <a href="https://publications.waset.org/abstracts/search?q=antimicrobial" title=" antimicrobial"> antimicrobial</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20coli" title=" E. coli"> E. coli</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20aureus" title=" S. aureus"> S. aureus</a>, <a href="https://publications.waset.org/abstracts/search?q=salmonella" title=" salmonella"> salmonella</a>, <a href="https://publications.waset.org/abstracts/search?q=IC50" title=" IC50"> IC50</a>, <a href="https://publications.waset.org/abstracts/search?q=pomace" title=" pomace"> pomace</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20meridionale" title=" V. meridionale"> V. meridionale</a> </p> <a href="https://publications.waset.org/abstracts/177951/antibacterial-and-anti-biofilm-activity-of-vaccinium-meridionale-s-pomace-extract-against-staphylococcus-aureus-escherichia-coli-and-salmonella-enterica" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/177951.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">63</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">674</span> Inhibition of Escherichia coli and Salmonella spp. By Traditional Phytomedicines That Are Commonly Used to Treat Gastroenteritis in Zimbabwe</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Constance%20Chivengwa">Constance Chivengwa</a>, <a href="https://publications.waset.org/abstracts/search?q=Tinashe%20Mandimutsira"> Tinashe Mandimutsira</a>, <a href="https://publications.waset.org/abstracts/search?q=Jephris%20Gere"> Jephris Gere</a>, <a href="https://publications.waset.org/abstracts/search?q=Charles%20Magogo"> Charles Magogo</a>, <a href="https://publications.waset.org/abstracts/search?q=Irene%20Chikanza"> Irene Chikanza</a>, <a href="https://publications.waset.org/abstracts/search?q=Jerneja%20Vidmar"> Jerneja Vidmar</a>, <a href="https://publications.waset.org/abstracts/search?q=Walter%20Chingwaru"> Walter Chingwaru</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The use of traditional methods in the management of diarrhoea has remained a common practice among the indigenous African tribes of Southern Africa. Despite the widespread use of traditional medicines in Zimbabwe, very little research validating the activities of phytomedicines against diarrhoea, as claimed by the Shona people of Zimbabwe, has been reported. This study sought to determine the efficacies of the plants that are frequently used to treat stomach complaints, namely Dicoma anomala, Cassia abbreviata, Lannea edulis and Peltophorum africanum against Escherichia coli (an indicator of faecal contamination of water, and whose strains such as EHEC (O157), ETEC and EPEC, are responsible for a number of outbreaks of diarrhoea) and Salmonella spp. Ethanol and aqueous extracts from these plants were obtained, evaporated, dried and stored. The dried extracts were reconstituted and diluted 10-fold in nutrient broth (from 100 to 0.1 microgram/mL) and tested for inhibition against the bacteria. L. edulis exhibited the best antimicrobial effect (minimum inhibition concentration = 10 microgram/mL for both extracts and microorganisms). Runners up to L. edulis were C. abbreviata (20 microgram/mL for both microorganisms) and P. africanum (20 and 30 microgram/mL respectively). Interestingly, D. anomala, which is widely considered panacea in African medicinal practices, showed low antimicrobial activity (60 and 100 microgram/mL respectively). The high antimicrobial activity of L. edulis can be explained by its content of flavonoids, tannins, alkylphenols (cardonol 7 and cardonol 13) and dihydroalkylhexenones. The antimicrobial activities of C. abbreviata can be linked to its content of anthraquinones and triterpenoids. P. africanum is known to contain benzenoids, flavanols, flavonols, terpenes, xanthone and coumarins. This study therefore demonstrated that, among the plants that are used against diarrhoea in African traditional medicine, L. edulis is a clear winner against E. coli and Salmonella spp. Activity guided extraction is encouraged to establish the complement of compounds that have antimicrobial activities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=diarrhoea" title="diarrhoea">diarrhoea</a>, <a href="https://publications.waset.org/abstracts/search?q=Escherichia%20coli" title=" Escherichia coli"> Escherichia coli</a>, <a href="https://publications.waset.org/abstracts/search?q=Salmonella" title=" Salmonella"> Salmonella</a>, <a href="https://publications.waset.org/abstracts/search?q=phytomedicine" title=" phytomedicine"> phytomedicine</a>, <a href="https://publications.waset.org/abstracts/search?q=MIC" title=" MIC"> MIC</a>, <a href="https://publications.waset.org/abstracts/search?q=Zimbabwe" title=" Zimbabwe"> Zimbabwe</a> </p> <a href="https://publications.waset.org/abstracts/52095/inhibition-of-escherichia-coli-and-salmonella-spp-by-traditional-phytomedicines-that-are-commonly-used-to-treat-gastroenteritis-in-zimbabwe" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52095.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">374</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">673</span> Production of Human BMP-7 with Recombinant E. coli and B. subtilis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jong%20Il%20Rhee">Jong Il Rhee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The polypeptide representing the mature part of human BMP-7 was cloned and efficiently expressed in Escherichia coli and Bacillus subtilis, which had a clear band for hBMP-7, a homodimeric protein with an apparent molecular weight of 15.4 kDa. Recombinant E.coli produced 111 pg hBMP-7/mg of protein hBMP-7 through IPTG induction. Recombinant B. subtilis also produced 350 pg hBMP-7/ml of culture medium. The hBMP-7 was purified in 2 steps using an FPLC system with an ion exchange column and a gel filtration column. The hBMP-7 produced in this work also stimulated the alkaline phosphatase (ALP) activity in a dose-dependent manner, i.e. 2.5- and 8.9-fold at 100 and 300 ng hBMP-7/ml, respectively, and showed intact biological activity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20subtilis" title="B. subtilis">B. subtilis</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20coli" title=" E. coli"> E. coli</a>, <a href="https://publications.waset.org/abstracts/search?q=fermentation" title=" fermentation"> fermentation</a>, <a href="https://publications.waset.org/abstracts/search?q=hBMP-7" title=" hBMP-7"> hBMP-7</a> </p> <a href="https://publications.waset.org/abstracts/35799/production-of-human-bmp-7-with-recombinant-e-coli-and-b-subtilis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35799.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">441</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">672</span> Riparian Buffer Strips’ Capability of E. coli Removal in New York Streams</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Helen%20Sanders">Helen Sanders</a>, <a href="https://publications.waset.org/abstracts/search?q=Joshua%20Cousins"> Joshua Cousins</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this study is to ascertain whether riparian buffer strips could be used to reduce Escherichia Coli (E. coli) runoff into streams in Central New York. Mainstream methods currently utilized to reduce E. coli runoff include fencing and staggered fertilizing plans for agriculture. These methods still do not significantly limit E. coli and thus, pose a serious health risk to individuals who swim in contaminated waters or consume contaminated produce. One additional method still in research development involves the planting of vegetated riparian buffers along waterways. Currently, riparian buffer strips are primarily used for filtration of nitrate and phosphate runoff to slow erosion, regulate pH and, improve biodiversity within waterways. For my research, four different stream sites were selected for the study, in which rainwater runoff was collected at both the riparian buffer and the E. coli sourced runoff upstream. Preliminary results indicate that there is an average 70% decrease in E. coli content in streams at the riparian buffer strips compared to upstream runoff. This research could be utilized to include vegetated buffer planting as a method to decrease manure runoff into essential waterways. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Escherichia%20coli" title="Escherichia coli">Escherichia coli</a>, <a href="https://publications.waset.org/abstracts/search?q=riparian%20buffer%20strips" title=" riparian buffer strips"> riparian buffer strips</a>, <a href="https://publications.waset.org/abstracts/search?q=vegetated%20riparian%20buffers" title=" vegetated riparian buffers"> vegetated riparian buffers</a>, <a href="https://publications.waset.org/abstracts/search?q=runoff" title=" runoff"> runoff</a>, <a href="https://publications.waset.org/abstracts/search?q=filtration" title=" filtration"> filtration</a> </p> <a href="https://publications.waset.org/abstracts/142236/riparian-buffer-strips-capability-of-e-coli-removal-in-new-york-streams" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142236.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">179</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">671</span> Cytolethal Distending Toxins in Intestinal and Extraintestinal E. coli</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Katar%C3%ADna%20%C4%8Curov%C3%A1">Katarína Čurová</a>, <a href="https://publications.waset.org/abstracts/search?q=Leonard%20Siegfried"> Leonard Siegfried</a>, <a href="https://publications.waset.org/abstracts/search?q=Radka%20Vargov%C3%A1"> Radka Vargová</a>, <a href="https://publications.waset.org/abstracts/search?q=Marta%20Kme%C5%A5ov%C3%A1"> Marta Kmeťová</a>, <a href="https://publications.waset.org/abstracts/search?q=Vladim%C3%ADr%20Hrabovsk%C3%BD"> Vladimír Hrabovský</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Cytolethal distending toxins (CDTs) represent intracellular acting proteins which interfere with cell cycle of eukaryotic cells. They are produced by Gram-negative bacteria with afinity to mucocutaneous surfaces and could play a role in the pathogenesis of various diseases. CDTs induce DNA damage probably through DNAse activity, which causes cell cycle arrest and leads to further changes (cell distension and death, apoptosis) depending on the cell type. Five subtypes of CDT (I to V) were reported in E. coli. Methods: We examined 252 E. coli strains belonging to four different groups. Of these strains, 57 were isolated from patients with diarrhea, 65 from patients with urinary tract infections (UTI), 65 from patients with sepsis and 65 from patients with other extraintestinal infections (mostly surgical wounds, decubitus ulcers and respiratory tract infections). Identification of these strains was performed by MALDI-TOF analysis and detection of genes encoding CDTs and determination of the phylogenetic group was performed by PCR. Results: In this study, we detected presence of cdt genes in 11 of 252 E. coli strains tested (4,4 %). Four cdt positive E. coli strains were confirmed in group of UTI (6,15 %), three cdt positive E. coli strains in groups of diarrhea (5,3 %) and other extraintestinal infections (4,6 %). The lowest incidence, one cdt positive E. coli strain, was observed in group of sepsis (1,5 %). All cdt positive E. coli strains belonged to phylogenetic group B2. Conclusion: CDT-producing E. coli are isolated in a low percentage from patients with intestinal and extraintestinal infections, including sepsis and our results correspond with these studies. A weak prevalence of cdt genes suggests that CDTs are not major virulence factors but in combination with other virulence factors may increase virulence potential of E. coli. We suppose that all 11 cdt positive E. coli strains represent real pathogens because they belong to the phylogenetic group B2 which is pathogenic lineage for bacteria E. coli. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cytolethal%20distending%20toxin" title="cytolethal distending toxin">cytolethal distending toxin</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20coli" title=" E. coli"> E. coli</a>, <a href="https://publications.waset.org/abstracts/search?q=phylogenetic%20group" title=" phylogenetic group"> phylogenetic group</a>, <a href="https://publications.waset.org/abstracts/search?q=extraintestinal%20infection" title=" extraintestinal infection"> extraintestinal infection</a>, <a href="https://publications.waset.org/abstracts/search?q=diarrhea" title=" diarrhea"> diarrhea</a> </p> <a href="https://publications.waset.org/abstracts/29361/cytolethal-distending-toxins-in-intestinal-and-extraintestinal-e-coli" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29361.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">350</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">670</span> Prevalence and Risk Factors of Faecal Carriage Fluoroquinolone-Resistant Escherichia coli among Hospitalized Patients in Ado-Ekiti, Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=C.%20A.%20Ologunde">C. A. Ologunde</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Escherichia coli have been a major microorganisms associated with, and isolated from feacal samples either in adult or children all over the world. Strains of these organisms are resistant to cephalosporins and fluoroquinolone (FQ) antimicrobial agents among hospitalized patients and FQs are the most frequently prescribed antimicrobial class in hospitals, and the level of resistant of E. coli to these antimicrobial agents is a risk factor that should be assessed. Hence, this study was conducted to determine the prevalence and risk factors for colonization with fluoroquinolone (FQ)-resistant E. coli in hospitalized patients in Ado-Ekiti. Rectal swabs were obtained from patients in hospitals in the study area and FQ-resistant E. coli were isolated and identified by means of Nalidixic acid multi-disk and a 1-step screening procedure. Species identification and FQ resistance were confirmed by automated testing (Vitek, bioMerieux, USA). Individual colonies were subjected to pulse-field gel electrophoresis (PAGE) to determine macro-restriction polymorphism after digestion of chromosomal DNA. FQ-resistant E. coli was detected in the stool sample of 37(62%) hospitalized patient. With multivariable analyses, the use of FQ before hospitalization was the only independent risk factor for FQ-resistant E. coli carriage and was consistent for FQ exposures for the 3-12 months of study. Pulsed-field gel electrophoresis of FQ-resistant E. coli identified conal spread of 1(one) strain among 18 patients. Loss (9 patients) or acquisition (10 residents) of FQ-resistant E. coli was documented and was associated with de novo colonization with genetically distinct strains. It was concluded that FQ-resistant E. coli carriage was associated with clonal spread. The differential effects of individual fluoroquinolone on antimicrobial drug resistance are an important area for future study, as hospitals manipulate their formularies with regard to use of individual fluoroquinolone, often for economic reasons. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=E.%20coli" title="E. coli">E. coli</a>, <a href="https://publications.waset.org/abstracts/search?q=fluoroquinolone" title=" fluoroquinolone"> fluoroquinolone</a>, <a href="https://publications.waset.org/abstracts/search?q=risk%20factors" title=" risk factors"> risk factors</a>, <a href="https://publications.waset.org/abstracts/search?q=feacal%20carriage" title=" feacal carriage"> feacal carriage</a>, <a href="https://publications.waset.org/abstracts/search?q=hospitalized%20patients" title=" hospitalized patients"> hospitalized patients</a>, <a href="https://publications.waset.org/abstracts/search?q=Ado-Ekiti" title=" Ado-Ekiti"> Ado-Ekiti</a> </p> <a href="https://publications.waset.org/abstracts/92734/prevalence-and-risk-factors-of-faecal-carriage-fluoroquinolone-resistant-escherichia-coli-among-hospitalized-patients-in-ado-ekiti-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92734.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">246</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">669</span> Multiple Etiologies and Incidences of Co-Infections in Childhood Diarrhea in a Hospital Based Screening Study in Odisha, India</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arpit%20K.%20Shrivastava">Arpit K. Shrivastava</a>, <a href="https://publications.waset.org/abstracts/search?q=Nirmal%20K.%20Mohakud"> Nirmal K. Mohakud</a>, <a href="https://publications.waset.org/abstracts/search?q=Subrat%20Kumar"> Subrat Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Priyadarshi%20S.%20Sahu"> Priyadarshi S. Sahu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Acute diarrhea is one of the major causes of morbidity and mortality among children less than five years of age. Multiple etiologies have been implicated for infectious gastroenteritis causing acute diarrhea. In our study fecal samples (n=165) were collected from children (<5 years) presenting with symptoms of acute diarrhea. Samples were screened for viral, bacterial, and parasitic etiologies such as Rotavirus, Adenovirus, Diarrhoeagenic Escherichia coli (EPEC, EHEC, STEC, O157, O111), Shigella spp., Salmonella spp., Vibrio cholera, Cryptosporidium spp., and Giardia spp. The overall results from our study showed that 57% of children below 5 years of age with acute diarrhea were positive for at least one infectious etiology. Diarrhoeagenic Escherichia coli was detected to be the major etiological agent (29.09%) followed by Rotavirus (24.24%), Shigella (21.21%), Adenovirus (5.45%), Cryptosporidium (2.42%), and Giardia (0.60%). Among the different DEC strains, EPEC was detected significantly higher in <2 years children in comparison to >2 years age group (p =0.001). Concurrent infections with two or more pathogens were observed in 47 of 160 (28.48%) cases with a predominant incidence particularly in <2-year-old children (66.66%) compared to children of 2 to 5 years age group. Co-infection of Rotavirus with Shigella was the most frequent combination, which was detected in 17.94% cases, followed by Rotavirus with EPEC (15.38%) and Shigella with STEC (12.82%). Detection of multiple infectious etiologies and diagnosis of the right causative agent(s) can immensely help in better management of acute childhood diarrhea. In future more studies focusing on the detection of cases with concurrent infections must be carried out, as we believe that the etiological agents might be complementing each other’s strategies of pathogenesis resulting in severe diarrhea. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=children" title="children">children</a>, <a href="https://publications.waset.org/abstracts/search?q=co-infection" title=" co-infection"> co-infection</a>, <a href="https://publications.waset.org/abstracts/search?q=infectious%20diarrhea" title=" infectious diarrhea"> infectious diarrhea</a>, <a href="https://publications.waset.org/abstracts/search?q=Odisha" title=" Odisha"> Odisha</a> </p> <a href="https://publications.waset.org/abstracts/61397/multiple-etiologies-and-incidences-of-co-infections-in-childhood-diarrhea-in-a-hospital-based-screening-study-in-odisha-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61397.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">336</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">668</span> Prevalence of Multidrug-resistant Escherichia coli Isolated from Ready to Eat: Crispy Fried Chicken in Jember, Indonesia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Enny%20Suswati">Enny Suswati</a>, <a href="https://publications.waset.org/abstracts/search?q=Supangat%20Supangat"> Supangat Supangat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background. Ready-to-eat food products are becoming increasingly popular because consumers are increasingly busy, competitive, and changing lifestyles. Examples of ready-to-eat foods include crispy fried chicken. Escherichia coli is one of the most important causes of food-borne diseases and the most frequent antibiotic-resistant pathogen globally. This study assessed the prevalence and antibiotic resistance profile of E. coli from ready-to-eat crispy fried chicken in Jember city, Indonesia. Methodology. This cross-sectional study was conducted from November 2020 to April 2021 by collecting 81crispy fried chicken samples from 27 food stalls in campus area using a simple random sampling method. Isolation and determination of E. coli use were performed by conventional culture method. An antibiotic susceptibility test was conducted using Kirby Bauer disk diffusion method on the Mueller–Hinton agar. Result. Out of 81crispy fried chicken samples, 77 (95.06%) were positive for E. coli. High E. coli drug resistance was observed on ampicillin, amoxicillin (100%) followed by cefixime (98.72%), erythromycin (97.59%), sulfamethoxazole (93.59%), azithromicin (83.33%), cefotaxime (78.28%), choramphenicol (75.64%), and cefixime (74.36%). On the other hand, there was the highest susceptibility for ciprofloxacin (64.10%). The multiple antibiotic resistance indexes of E. coli isolates varied from 0.4 to 1. The predominant antimicrobial resistance profiles of E. coli were CfmCroAmlAmpAzmCtxSxtCE (n=17), CfmCroAmlCipAmpAzmCtxSxtCE (n=16), and CfmAmlAmpAzmCtxSxtCE (n=5), respectively. Multidrug resistance was also found in the isolates' 76/77 (98.70%). Conclusion. The resistance pattern CfmCroAmlAmpAzmCtxSxtCE was the most common among the E. coli isolates, with 17 showing it. The multiple antibiotic index (MAR index) ranged from 0.4 to 1. Hygienic measures should be rigorously implemented and monitoring resistance of E. coli is required to reduce the risks related to the emergence of multi-resistant bacteria <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antibacterial%20drug" title="antibacterial drug">antibacterial drug</a>, <a href="https://publications.waset.org/abstracts/search?q=ready%20to%20eat" title=" ready to eat"> ready to eat</a>, <a href="https://publications.waset.org/abstracts/search?q=crispy%20fried%20chicken" title=" crispy fried chicken"> crispy fried chicken</a>, <a href="https://publications.waset.org/abstracts/search?q=escherichia%20coli" title=" escherichia coli"> escherichia coli</a> </p> <a href="https://publications.waset.org/abstracts/163867/prevalence-of-multidrug-resistant-escherichia-coli-isolated-from-ready-to-eat-crispy-fried-chicken-in-jember-indonesia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163867.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">110</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=enteropathogenic%20Eschericia%20coli%20O157&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=enteropathogenic%20Eschericia%20coli%20O157&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=enteropathogenic%20Eschericia%20coli%20O157&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=enteropathogenic%20Eschericia%20coli%20O157&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=enteropathogenic%20Eschericia%20coli%20O157&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=enteropathogenic%20Eschericia%20coli%20O157&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=enteropathogenic%20Eschericia%20coli%20O157&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=enteropathogenic%20Eschericia%20coli%20O157&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=enteropathogenic%20Eschericia%20coli%20O157&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=enteropathogenic%20Eschericia%20coli%20O157&page=23">23</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=enteropathogenic%20Eschericia%20coli%20O157&page=24">24</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=enteropathogenic%20Eschericia%20coli%20O157&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>