CINXE.COM
Search results for: lab-scale activated sludge biological reactor
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: lab-scale activated sludge biological reactor</title> <meta name="description" content="Search results for: lab-scale activated sludge biological reactor"> <meta name="keywords" content="lab-scale activated sludge biological reactor"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="lab-scale activated sludge biological reactor" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="lab-scale activated sludge biological reactor"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 3853</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: lab-scale activated sludge biological reactor</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3853</span> Total Dissolved Solids and Total Iron in High Rate Activated Sludge System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Y.%20Saleh">M. Y. Saleh</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20M.%20ELanany"> G. M. ELanany</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20H.%20Elzahar"> M. H. Elzahar</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Z.%20Elshikhipy"> M. Z. Elshikhipy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Industrial wastewater discharge, which carries high concentrations of dissolved solids and iron, could be treated by high rate activated sludge stage of the multiple-stage sludge treatment plant, a system which is characterized by high treatment efficiency, optimal prices, and small areas compared with conventional activated sludge treatment plants. A pilot plant with an influent industrial discharge flow of 135 L/h was designed following the activated sludge system to simulate between the biological and chemical treatment with the addition of dosages 100, 150, 200 and 250 mg/L alum salt to the aeration tank. The concentrations of total dissolved solids (TDS) and iron (Fe) in industrial discharge flow had an average range of 140000 TDS and 4.5 mg/L iron. The optimization of the chemical-biological process using a dosage of 200 mg/L alum succeeded to improve the removal efficiency of TDS and total iron to 48.15% and 68.11% respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wastewater" title="wastewater">wastewater</a>, <a href="https://publications.waset.org/abstracts/search?q=activated%20sludge" title=" activated sludge"> activated sludge</a>, <a href="https://publications.waset.org/abstracts/search?q=TDS" title=" TDS"> TDS</a>, <a href="https://publications.waset.org/abstracts/search?q=total%20iron" title=" total iron"> total iron</a> </p> <a href="https://publications.waset.org/abstracts/5980/total-dissolved-solids-and-total-iron-in-high-rate-activated-sludge-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5980.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">295</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3852</span> Characteristics of Domestic Sewage in Small Urban Communities</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shohreh%20Azizi">Shohreh Azizi</a>, <a href="https://publications.waset.org/abstracts/search?q=Memory%20Tekere"> Memory Tekere</a>, <a href="https://publications.waset.org/abstracts/search?q=Wag%20Nel"> Wag Nel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An evaluation of the characteristics of wastewater generated from small communities was carried out in relation to decentralized approach for domestic sewage treatment plant and design of biological nutrient removal system. The study included the survey of the waste from various individual communities such as a hotel, a residential complex, an office premise, and an educational institute. The results indicate that the concentration of organic pollutant in wastewater from the residential complex is higher than the waste from all the other communities with COD 664 mg/l, BOD 370.2 mg/l and TSS 248.8 mg/l. And the waste water from office premise indicates low organic load with COD428 mg/l, BOD 232mg/l and TSS 157mg/l. The wastewater from residential complex was studied under activated sludge process to evaluate this technology for decentralized wastewater treatment. The Activated sludge process was operated at different 12to 4 hrs hydraulic retention times and the optimum 6 hrs HRT was selected, therefore the average reduction of COD (85.92%) and BOD (91.28 %) was achieved. The issue of sludge recycling, maintenance of biomass concentration and high HRT reactor (10 L) volume are making the system non-practical for smaller communities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wastewater" title="wastewater">wastewater</a>, <a href="https://publications.waset.org/abstracts/search?q=small%20communities" title=" small communities"> small communities</a>, <a href="https://publications.waset.org/abstracts/search?q=activated%20sludge%20process" title=" activated sludge process"> activated sludge process</a>, <a href="https://publications.waset.org/abstracts/search?q=decentralized%20system" title=" decentralized system"> decentralized system</a> </p> <a href="https://publications.waset.org/abstracts/41627/characteristics-of-domestic-sewage-in-small-urban-communities" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41627.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">357</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3851</span> Removal of Lead in High Rate Activated Sludge System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mamdouh%20Y.%20Saleh">Mamdouh Y. Saleh</a>, <a href="https://publications.waset.org/abstracts/search?q=Gaber%20El%20Enany"> Gaber El Enany</a>, <a href="https://publications.waset.org/abstracts/search?q=Medhat%20H.%20Elzahar"> Medhat H. Elzahar</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Z.%20Elshikhipy"> Mohamed Z. Elshikhipy</a>, <a href="https://publications.waset.org/abstracts/search?q=Rana%20Hamouda"> Rana Hamouda</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The heavy metals pollution in water, sediments and fish of Lake Manzala affected from the disposal of wastewater, industrial and agricultural drainage water into the lake on the environmental situation. A pilot plant with an industrial discharge flow of 135L/h was designed according to the activated sludge plant to simulate between the biological and chemical treatment with the addition of alum to the aeration tank with dosages of 100, 150, 200, and 250 mg/L. The industrial discharge had concentrations of Lead and BOD5 with an average range 1.22, 145mg/L, respectively. That means the average Pb was high up to 25 times than the allowed permissible concentration. The optimization of the chemical-biological process using 200mg/L alum dosage compared has improvement of Lead and BOD5 removal efficiency to 61.76% and 56%, respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=industrial%20wastewater" title="industrial wastewater">industrial wastewater</a>, <a href="https://publications.waset.org/abstracts/search?q=activated%20sludge" title=" activated sludge"> activated sludge</a>, <a href="https://publications.waset.org/abstracts/search?q=BOD5" title=" BOD5"> BOD5</a>, <a href="https://publications.waset.org/abstracts/search?q=lead" title=" lead"> lead</a>, <a href="https://publications.waset.org/abstracts/search?q=alum%20salt" title=" alum salt"> alum salt</a> </p> <a href="https://publications.waset.org/abstracts/7453/removal-of-lead-in-high-rate-activated-sludge-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7453.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">518</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3850</span> Mathematical Modeling of Activated Sludge Process: Identification and Optimization of Key Design Parameters </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ujwal%20Kishor%20Zore">Ujwal Kishor Zore</a>, <a href="https://publications.waset.org/abstracts/search?q=Shankar%20Balajirao%20Kausley"> Shankar Balajirao Kausley</a>, <a href="https://publications.waset.org/abstracts/search?q=Aniruddha%20Bhalchandra%20Pandit"> Aniruddha Bhalchandra Pandit</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There are some important design parameters of activated sludge process (ASP) for wastewater treatment and they must be optimally defined to have the optimized plant working. To know them, developing a mathematical model is a way out as it is nearly commensurate the real world works. In this study, a mathematical model was developed for ASP, solved under activated sludge model no 1 (ASM 1) conditions and MATLAB tool was used to solve the mathematical equations. For its real-life validation, the developed model was tested for the inputs from the municipal wastewater treatment plant and the results were quite promising. Additionally, the most cardinal assumptions required to design the treatment plant are discussed in this paper. With the need for computerization and digitalization surging in every aspect of engineering, this mathematical model developed might prove to be a boon to many biological wastewater treatment plants as now they can in no time know the design parameters which are required for a particular type of wastewater treatment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=waste%20water%20treatment" title="waste water treatment">waste water treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=activated%20sludge%20process" title=" activated sludge process"> activated sludge process</a>, <a href="https://publications.waset.org/abstracts/search?q=mathematical%20modeling" title=" mathematical modeling"> mathematical modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a> </p> <a href="https://publications.waset.org/abstracts/112745/mathematical-modeling-of-activated-sludge-process-identification-and-optimization-of-key-design-parameters" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/112745.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">144</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3849</span> Effect of Physicochemical Treatments on the Characteristics of Activated Sludge</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hammadi%20Larbi">Hammadi Larbi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The treatment of wastewater in sewage plants usually results in the formation of a large amount of sludge. These appear at the outlet of the treatment plant as a viscous fluid loaded with a high concentration of dry matter. This sludge production presents environmental, ecological, and economic risks. That is why it is necessary to find many solutions for minimizing these risks. In the present article, the effect of hydrogen peroxide, thermal treatment, and quicklime on the characteristics of the activated sludge produced in urban wastewater plant were evaluated in order to avoid any risk in the plants. The study shows increasing of the dose of H2O2 from 0 to 0.4 g causes an increase in the solubilization rate of COD from 12% to 45% and a reduction in the organic matter content of sludge (VM/SM) from 74% to 36% . The results also show that the optimum efficiency of the heat treatment corresponds to a temperature of 80 ° C for a treatment time of 40 min is 47% and 51.82% for a temperature equal to 100 ° C and 76.30 % for a temperature of 120 ° C, and 79.38% for a temperature of 140 ° C. The treatment of sludge by quicklime gives the optimum efficiency of 70.62 %. It was shown the increasing of the temperature from 80°C to 140°C, the pH of sludge was increased from 7.12 to 9.59. The obtained results showed that with increasing the dose of quicklime from 0 g/l to 1g/l in activated sludge led to an increase of their pH from 7.12 to 12.06. The study shows the increasing the dose of quicklime from 0 g/l to 1g/l causes also an increase in the solubilization of COD from 0% to 70.62 % <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=activated%20sludge" title="activated sludge">activated sludge</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogen%20peroxide" title=" hydrogen peroxide"> hydrogen peroxide</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20treatment" title=" thermal treatment"> thermal treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=quicklime" title=" quicklime"> quicklime</a> </p> <a href="https://publications.waset.org/abstracts/157961/effect-of-physicochemical-treatments-on-the-characteristics-of-activated-sludge" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157961.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">104</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3848</span> Anaerobic Co-Digestion of Duckweed (Lemna gibba) and Waste Activated Sludge in Batch Mode</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rubia%20Gaur">Rubia Gaur</a>, <a href="https://publications.waset.org/abstracts/search?q=Surindra%20Suthar"> Surindra Suthar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study investigates the anaerobic co-digestion of duckweed (Lemna gibba) and waste activated sludge (WAS) of different proportions with acclimatized anaerobic granular sludge (AAGS) as inoculum in mesophilic conditions. Batch experiments were performed in 500 mL capacity reagent bottles at 300C temperature. Varied combinations of pre-treated duckweed biomass with constant volume of anaerobic inoculum (AAGS - 100 mL) and waste activated sludge (WAS - 22.5 mL) were devised into five batch tests. The highest methane generation was observed with batch study, T4. The Gompertz model fits well on the experimental data of the batch study, T4. The values of correlation coefficient were achieved relatively higher (R2 ≥ 0.99). The co-digestion without pre-treatment of both duckweed and WAS shows poor generation of methane gas. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aquatic%20weed" title="aquatic weed">aquatic weed</a>, <a href="https://publications.waset.org/abstracts/search?q=biogas" title=" biogas"> biogas</a>, <a href="https://publications.waset.org/abstracts/search?q=biomass" title=" biomass"> biomass</a>, <a href="https://publications.waset.org/abstracts/search?q=Gompertz%20equation" title=" Gompertz equation"> Gompertz equation</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20activated%20sludge" title=" waste activated sludge"> waste activated sludge</a> </p> <a href="https://publications.waset.org/abstracts/57321/anaerobic-co-digestion-of-duckweed-lemna-gibba-and-waste-activated-sludge-in-batch-mode" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57321.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">284</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3847</span> Sludge Densification: Emerging and Efficient Way to Look at Biological Nutrient Removal Treatment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Raj%20Chavan">Raj Chavan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Currently, there are over 14,500 Water Resource Recovery Facilities (WRRFs) in the United States, with ~35% of them having some type of nutrient limits in place. These WRRFs account for about 1% of overall power demand and 2% of total greenhouse gas emissions (GHG) in the United States and contribute for 10 to 15% of the overall nutrient load to surface rivers in the United States. The evolution of densification technologies toward more compact and energy-efficient nutrient removal processes has been impacted by a number of factors. Existing facilities that require capacity expansion or biomass densification for higher treatability within the same footprint are being subjected to more stringent requirements relating to nutrient removal prior to surface water discharge. Densification of activated sludge has received recent widespread interest as a means for achieving process intensification and nutrient removal at WRRFs. At the core of the technology are the aerobic sludge granules where the biological processes occur. There is considerable interest in the prospect of producing granular sludge in continuous (or traditional) activated sludge processes (CAS) or densification of biomass by moving activated sludge flocs to a denser aggregate of biomass as a highly effective technique of intensification. This presentation will provide a fundamental understanding of densification by presenting insights and practical issues. The topics that will be discussed include methods used to generate and retain densified granules; the mechanisms that allow biological flocs to densify; the role that physical selectors play in the densification of biological flocs; some viable ways for managing biological flocs that have become densified; effects of physical selection design parameters on the retention of densified biological flocs and finally some operational solutions for customizing the flocs and granules required to meet performance and capacity targets. In addition, it will present some case studies where biological and physical parameters were used to generate aerobic granular sludge in the continuous flow system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=densification" title="densification">densification</a>, <a href="https://publications.waset.org/abstracts/search?q=aerobic%20granular%20sludge" title=" aerobic granular sludge"> aerobic granular sludge</a>, <a href="https://publications.waset.org/abstracts/search?q=nutrient%20removal" title=" nutrient removal"> nutrient removal</a>, <a href="https://publications.waset.org/abstracts/search?q=intensification" title=" intensification"> intensification</a> </p> <a href="https://publications.waset.org/abstracts/152616/sludge-densification-emerging-and-efficient-way-to-look-at-biological-nutrient-removal-treatment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152616.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">186</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3846</span> Pollutants Removal from Synthetic Wastewater by the Combined Electrochemical Sequencing Batch Reactor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amin%20Mojiri">Amin Mojiri</a>, <a href="https://publications.waset.org/abstracts/search?q=Akiyoshi%20Ohashi"> Akiyoshi Ohashi</a>, <a href="https://publications.waset.org/abstracts/search?q=Tomonori%20Kindaichi"> Tomonori Kindaichi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Synthetic domestic wastewater was treated via combining treatment methods, including electrochemical oxidation, adsorption, and sequencing batch reactor (SBR). In the upper part of the reactor, an anode and a cathode (Ti/RuO<sub>2</sub>-IrO<sub>2</sub>) were organized in parallel for the electrochemical oxidation procedure. Sodium sulfate (Na<sub>2</sub>SO<sub>4</sub>) with a concentration of 2.5 g/L was applied as the electrolyte. The voltage and current were fixed on 7.50 V and 0.40 A, respectively. Then, 15% working value of the reactor was filled by activated sludge, and 85% working value of the reactor was added with synthetic wastewater. Powdered cockleshell, 1.5 g/L, was added in the reactor to do ion-exchange. Response surface methodology was employed for statistical analysis. Reaction time (h) and pH were considered as independent factors. A total of 97.0% biochemical oxygen demand, 99.9% phosphorous and 88.6% cadmium were eliminated at the optimum reaction time (80.0 min) and pH (6.4). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adsorption" title="adsorption">adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=electrochemical%20oxidation" title=" electrochemical oxidation"> electrochemical oxidation</a>, <a href="https://publications.waset.org/abstracts/search?q=metals" title=" metals"> metals</a>, <a href="https://publications.waset.org/abstracts/search?q=SBR" title=" SBR"> SBR</a> </p> <a href="https://publications.waset.org/abstracts/93816/pollutants-removal-from-synthetic-wastewater-by-the-combined-electrochemical-sequencing-batch-reactor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93816.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">210</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3845</span> Nitrification and Denitrification Kinetic Parameters of a Mature Sanitary Landfill Leachate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T%C3%A2nia%20F.%20C.%20V.%20Silva">Tânia F. C. V. Silva</a>, <a href="https://publications.waset.org/abstracts/search?q=Elo%C3%ADsa%20S.%20S.%20Vieira"> Eloísa S. S. Vieira</a>, <a href="https://publications.waset.org/abstracts/search?q=Jo%C3%A3o%20Pinto%20da%20Costa"> João Pinto da Costa</a>, <a href="https://publications.waset.org/abstracts/search?q=Rui%20A.%20R.%20Boaventura"> Rui A. R. Boaventura</a>, <a href="https://publications.waset.org/abstracts/search?q=Vitor%20J.%20P.%20Vilar"> Vitor J. P. Vilar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sanitary landfill leachates are characterized as a complex mixture of diverse organic and inorganic contaminants, which are usually removed by combining different treatment processes. Due to its simplicity, reliability, high cost-effectiveness and high nitrogen content (mostly under the ammonium form) inherent in this type of effluent, the activated sludge biological process is almost always applied in leachate treatment plants (LTPs). The purpose of this work is to assess the effect of the main nitrification and denitrification variables on the nitrogen's biological removal, from mature leachates. The leachate samples were collected after an aerated lagoon, at a LTP nearby Porto, presenting a high amount of dissolved organic carbon (1.0-1.3 g DOC/L) and ammonium nitrogen (1.1-1.7 g NH4+-N/L). The experiments were carried out in a 1-L lab-scale batch reactor, equipped with a pH, temperature and dissolved oxygen (DO) control system, in order to determine the reaction kinetic constants at unchanging conditions. The nitrification reaction rate was evaluated while varying the (i) operating temperature (15, 20, 25 and 30ºC), (ii) DO concentration interval (0.5-1.0, 1.0-2.0 and 2.0-4.0 mg/L) and (iii) solution pH (not controlled, 7.5-8.5 and 6.5-7.5). At the beginning of most assays, it was verified that the ammonium stripping occurred simultaneously to the nitrification, reaching up to 37% removal of total dissolved nitrogen. The denitrification kinetic constants and the methanol consumptions were calculated for different values of (i) volatile suspended solids (VSS) content (25, 50 and 100 mL of centrifuged sludge in 1 L solution), (ii) pH interval (6.5-7.0, 7.5-8.0 and 8.5-9.0) and (iii) temperature (15, 20, 25 and 30ºC), using effluent previously nitrified. The maximum nitrification rate obtained was 38±2 mg NH4+-N/h/g VSS (25ºC, 0.5-1.0 mg O2/L, pH not controlled), consuming 4.4±0.3 mg CaCO3/mg NH4+-N. The highest denitrification rate achieved was 19±1 mg (NO2--N+NO3--N)/h/g VSS (30ºC, 50 mL of sludge and pH between 7.5 and 8.0), with a C/N consumption ratio of 1.1±0.1 mg CH3OH/mg (NO2--N+NO3--N) and an overall alkalinity production of 3.7±0.3 mg CaCO3/mg (NO2--N+NO3--N). The denitrification process showed to be sensitive to all studied parameters, while the nitrification reaction did not suffered significant change when DO content was changed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mature%20sanitary%20landfill%20leachate" title="mature sanitary landfill leachate">mature sanitary landfill leachate</a>, <a href="https://publications.waset.org/abstracts/search?q=nitrogen%20removal" title=" nitrogen removal"> nitrogen removal</a>, <a href="https://publications.waset.org/abstracts/search?q=nitrification%20and%20denitrification%20parameters" title=" nitrification and denitrification parameters"> nitrification and denitrification parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=lab-scale%20activated%20sludge%20biological%20reactor" title=" lab-scale activated sludge biological reactor"> lab-scale activated sludge biological reactor</a> </p> <a href="https://publications.waset.org/abstracts/22478/nitrification-and-denitrification-kinetic-parameters-of-a-mature-sanitary-landfill-leachate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22478.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">275</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3844</span> Biogas Production Improve From Waste Activated Sludge Using Fenton Oxidation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Hassiba%20Zemmouri">A. Hassiba Zemmouri</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Nabil%20Mameri"> B. Nabil Mameri</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Hakim%20Lounici"> C. Hakim Lounici</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the effect of Fenton technology pretreatment on the anaerobic digestion of excess waste activated sludge (WAS) was investigated. The variation of physicochemical characteristics (TOC, DS, VSS, VS) and biogas volume (as form of value added products) were also evaluated. The preselected operator conditions of Fenton pretreatment were 0.01ml H2O2/g SS, 150 [H2O2]/[Fe2+], 25g/l TS, at 25 °C and 30, 60 and120 min as treatment duration. The main results show a Maximum solubilization and biodegradability (70%) obtained at 120 min of Fenton pretreatment duration. An increasing of TOC in soluble phase related obviously by releasing organic substances of sludge flocs was contested. Improving in biogas volume was also, increased. Fenton oxidation pretreatment may be a promising chemical pre-treatment for a benefic digestion, stabilization and volume reduction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=waste%20activated%20sludge" title="waste activated sludge">waste activated sludge</a>, <a href="https://publications.waset.org/abstracts/search?q=fenton%20pre-treatment" title=" fenton pre-treatment"> fenton pre-treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=biodegradability" title=" biodegradability"> biodegradability</a>, <a href="https://publications.waset.org/abstracts/search?q=biogas" title=" biogas"> biogas</a> </p> <a href="https://publications.waset.org/abstracts/28090/biogas-production-improve-from-waste-activated-sludge-using-fenton-oxidation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28090.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">640</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3843</span> Use of Waste Active Sludge for Reducing Fe₂O₃ </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Parra%20Parra">A. Parra Parra</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Vlasova"> M. Vlasova</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20A.%20Marquez"> P. A. Marquez</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Kakazey"> M. Kakazey</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20C.%20Resendiz%20Gonzalez"> M. C. Resendiz Gonzalez </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The work of water treatment plants from various sources of pollution includes a biological treatment stage using activated sludge. Due to the large volume of toxic activated sludge waste (WAS) generated and soil contamination during its storage, WAS disposal technologies are being continuously developed. The most common is the carbonization of WAS. The carbonization products are various forms of ordered and disordered carbon material having different reactivity. The aim of this work was to study the reduction process of Fe₂O₃ mixed with activated sludge waste (WAS). It could be assumed that the simultaneous action of the WAS thermal decomposition process, accompanied by the formation of reactive nano-carbon, with carbothermal reduction of the Fe₂O₃, will permit intensify reduction of metal oxide up to stage of metal and iron carbide formation. The studies showed that the temperature treatment in the region of (800-1000) °C for 1 hour under conditions of oxygen deficiency is accompanied by the occurrence of reactions: Fe₂O₃ → Fe₃O₄ → FeO → Fe, which are typical for the metallurgical process of iron smelting, but less energy-intensive. Depending on the ratio of the WAS - Fe₂O₃ components and the temperature-time regime of reduction of iron oxide, it is possible to distinguish the stages of the predominant formation of ferromagnetic compounds, cast iron, and iron carbide. The results indicated the promise of using WAS as a metals oxide reducing agent and obtaining of ceramic-based on metal carbides. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbothermal%20reduction" title="carbothermal reduction">carbothermal reduction</a>, <a href="https://publications.waset.org/abstracts/search?q=Fe%E2%82%82O%E2%82%83" title=" Fe₂O₃"> Fe₂O₃</a>, <a href="https://publications.waset.org/abstracts/search?q=Fe%E2%82%93O%E1%B5%A7-C" title=" FeₓOᵧ-C"> FeₓOᵧ-C</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20%20activated%20sludge" title=" waste activated sludge "> waste activated sludge </a> </p> <a href="https://publications.waset.org/abstracts/128648/use-of-waste-active-sludge-for-reducing-fe2o3" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/128648.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">134</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3842</span> Object-Oriented Modeling Simulation and Control of Activated Sludge Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20Fernandez%20de%20Canete">J. Fernandez de Canete</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Del%20Saz%20Orozco"> P. Del Saz Orozco</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Garcia-Moral"> I. Garcia-Moral</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Akhrymenka"> A. Akhrymenka</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Object-oriented modeling is spreading in current simulation of wastewater treatments plants through the use of the individual components of the process and its relations to define the underlying dynamic equations. In this paper, we describe the use of the free-software OpenModelica simulation environment for the object-oriented modeling of an activated sludge process under feedback control. The performance of the controlled system was analyzed both under normal conditions and in the presence of disturbances. The object-oriented described approach represents a valuable tool in teaching provides a practical insight in wastewater process control field. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=object-oriented%20programming" title="object-oriented programming">object-oriented programming</a>, <a href="https://publications.waset.org/abstracts/search?q=activated%20sludge%20process" title=" activated sludge process"> activated sludge process</a>, <a href="https://publications.waset.org/abstracts/search?q=OpenModelica" title=" OpenModelica"> OpenModelica</a>, <a href="https://publications.waset.org/abstracts/search?q=feedback%20control" title=" feedback control"> feedback control</a> </p> <a href="https://publications.waset.org/abstracts/47240/object-oriented-modeling-simulation-and-control-of-activated-sludge-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47240.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">386</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3841</span> Catalytic Hydrothermal Decarboxylation of Lipid from Activated Sludge for Renewable Diesel Production</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ifeanyichukwu%20Edeh">Ifeanyichukwu Edeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Tim%20Overton"> Tim Overton</a>, <a href="https://publications.waset.org/abstracts/search?q=Steve%20Bowra"> Steve Bowra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Currently biodiesel is produced from plant oils or animal’s fats by a liquid-phase catalysed transesterification process at low temperature. Although biodiesel is renewable and to a large extent sustainable, inherent properties such as poor cold flow, low oxidation stability, low cetane value restrict application to blends with fossil fuels. An alternative to biodiesel is renewable diesel produced by catalytic hydrotreating of oils and fats and is considered a drop in fuel because its properties are similar to petroleum diesel. In addition to developing alternative productions routes there is continued interest in reducing the cost of the feed stock, waste cooking oils and fats are increasingly used as the feedstocks due to low cost. However, use of oils and fat are highly adulterated resulting in high free fatty acid content which turn impacts on the efficiency of FAME production. Therefore, in light of the need to develop, alternative lipid feed stocks and related efficient catalysis the present study investigates the potential of producing renewable diesel from the lipids-extracted from activated sludge, a waste water treatment by-product, through catalytic hydrothermal decarboxylation. The microbial lipids were first extracted from the activated sludge using the Folch et al method before hydrothermal decarboxylation reactions were carried out using palladium (Pd/C) and platinum (Pt/C) on activated carbon as the catalysts in a batch reactor. The impact of three temperatures 290, 300, 330 °C and residence time between 30 min and 4hrs was assessed. At the end of the reaction, the products were recovered using organic solvents and characterized using gas chromatography (GC). The principle products of the reaction were pentadecane and heptadecane. The highest yields of pentadecane and heptadecane from lipid-extract were 23.23% and 15.21%, respectively. These yields were obtained at 290 °C and residence time 1h using Pt/C. To the best of our knowledge, the current work is the first investigation on the hydrothermal decarboxylation of lipid-extract from activated sludge. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=activated%20sludge" title="activated sludge">activated sludge</a>, <a href="https://publications.waset.org/abstracts/search?q=lipid" title=" lipid"> lipid</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrothermal%20decarboxylation" title=" hydrothermal decarboxylation"> hydrothermal decarboxylation</a>, <a href="https://publications.waset.org/abstracts/search?q=renewable%20diesel" title=" renewable diesel"> renewable diesel</a> </p> <a href="https://publications.waset.org/abstracts/41566/catalytic-hydrothermal-decarboxylation-of-lipid-from-activated-sludge-for-renewable-diesel-production" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41566.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">319</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3840</span> Development and Performance of Aerobic Granular Sludge at Elevated Temperature</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mustafa%20M.%20Bob">Mustafa M. Bob</a>, <a href="https://publications.waset.org/abstracts/search?q=Siti%20Izaidah%20Azmi"> Siti Izaidah Azmi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohd%20Hakim%20Ab%20Halim"> Mohd Hakim Ab Halim</a>, <a href="https://publications.waset.org/abstracts/search?q=Nur%20Syahida%20Abdul%20Jamal"> Nur Syahida Abdul Jamal</a>, <a href="https://publications.waset.org/abstracts/search?q=Aznah%20Nor-Anuar"> Aznah Nor-Anuar</a>, <a href="https://publications.waset.org/abstracts/search?q=Zaini%20Ujang"> Zaini Ujang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this research, the formation and development of aerobic granular sludge (AGS) for domestic wastewater treatment application in hot climate conditions was studied using a sequencing batch reactor (SBR). The performance of the developed AGS in the removal of organic matter and nutrients from wastewater was also investigated. The operation of the reactor was based on the sequencing batch system with a complete cycle time of 3 hours that included feeding, aeration, settling, discharging and idling. The reactor was seeded with sludge collected from the municipal wastewater treatment plant in Madinah city, Saudi Arabia and operated at a temperature of 40ºC using synthetic wastewater as influent. Results showed that granular sludge was developed after an operation period of 30 days. The developed granular sludge had a good settling ability with the average size of the granules ranging from 1.03 to 2.42 mm. The removal efficiency of chemical oxygen demand (COD), ammonia nitrogen (NH3-N) and total phosphorus (TP) were 87.31%, 91.93% and 61.25% respectively. These results show that AGS can be developed at elevated temperatures and it is a promising technique to treat domestic wastewater in hot and low humidity climate conditions such as those encountered in Saudi Arabia. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerobic%20granular%20sludge" title="aerobic granular sludge">aerobic granular sludge</a>, <a href="https://publications.waset.org/abstracts/search?q=hot%20climate" title=" hot climate"> hot climate</a>, <a href="https://publications.waset.org/abstracts/search?q=sequencing%20batch%20reactor" title=" sequencing batch reactor"> sequencing batch reactor</a>, <a href="https://publications.waset.org/abstracts/search?q=domestic%20wastewater%20treatment" title=" domestic wastewater treatment"> domestic wastewater treatment</a> </p> <a href="https://publications.waset.org/abstracts/15958/development-and-performance-of-aerobic-granular-sludge-at-elevated-temperature" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15958.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">358</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3839</span> In-Situ Sludge Minimization Using Integrated Moving Bed Biofilm Reactor for Industrial Wastewater Treatment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vijay%20Sodhi">Vijay Sodhi</a>, <a href="https://publications.waset.org/abstracts/search?q=Charanjit%20Singh"> Charanjit Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Neelam%20Sodhi"> Neelam Sodhi</a>, <a href="https://publications.waset.org/abstracts/search?q=Puneet%20P.%20S.%20Cheema"> Puneet P. S. Cheema</a>, <a href="https://publications.waset.org/abstracts/search?q=Reena%20Sharma"> Reena Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=Mithilesh%20K.%20Jha"> Mithilesh K. Jha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The management and secure disposal of the biosludge generated from widely commercialized conventional activated sludge (CAS) treatments become a potential environmental issue. Thus, a sustainable technological upgradation to the CAS for sludge yield minimization has recently been gained serious attention of the scientific community. A number of recently reported studies effectively addressed the remedial technological advancements that in monopoly limited to the municipal wastewater. Moreover, the critical review of the literature signifies side-stream sludge minimization as a complex task to maintain. In this work, therefore, a hybrid moving bed biofilm reactor (MBBR) configuration (named as AMOMOX process) for in-situ minimization of the excess biosludge generated from high organic strength tannery wastewater has been demonstrated. The AMOMOX collectively stands for anoxic MBBR (as AM), aerobic MBBR (OM) and an oxic CAS (OX). The AMOMOX configuration involved a combined arrangement of an anoxic MBBR and oxic MBBR coupled with the aerobic CAS. The AMOMOX system was run in parallel with an identical CAS reactor. Both system configurations were fed with same influent to judge the real-time operational changes. For the AMOMOX process, the strict maintenance of operational strategies resulted about 95% removal of NH4-N and SCOD from tannery wastewater. Here, the nourishment of filamentous microbiota and purposeful promotion of cell-lysis effectively sustained sludge yield (Yobs) lowering upto 0.51 kgVSS/kgCOD. As a result, the volatile sludge scarcity apparent in the AMOMOX system succeeded upto 47% reduction of the excess biosludge. The corroborated was further supported by FE-SEM imaging and thermogravimetric analysis. However, the detection of microbial strains habitat underlying extended SRT (23-26 days) of the AMOMOX system would be the matter of further research. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tannery%20wastewater" title="tannery wastewater">tannery wastewater</a>, <a href="https://publications.waset.org/abstracts/search?q=moving%20bed%20biofilm%20reactor" title=" moving bed biofilm reactor"> moving bed biofilm reactor</a>, <a href="https://publications.waset.org/abstracts/search?q=sludhe%20yield" title=" sludhe yield"> sludhe yield</a>, <a href="https://publications.waset.org/abstracts/search?q=sludge%20minimization" title=" sludge minimization"> sludge minimization</a>, <a href="https://publications.waset.org/abstracts/search?q=solids%20retention%20time" title=" solids retention time"> solids retention time</a> </p> <a href="https://publications.waset.org/abstracts/167992/in-situ-sludge-minimization-using-integrated-moving-bed-biofilm-reactor-for-industrial-wastewater-treatment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167992.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">71</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3838</span> The Effects of Hydraulic Retention Time on the Sludge Characteristics and Effluent Quality in an Aerobic Suspension Sequencing Batch Reactor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20W.%20N.%20Alattabi">Ali W. N. Alattabi</a>, <a href="https://publications.waset.org/abstracts/search?q=Clare%20B.%20Harris"> Clare B. Harris</a>, <a href="https://publications.waset.org/abstracts/search?q=Rafid%20M.%20Alkhaddar"> Rafid M. Alkhaddar</a>, <a href="https://publications.waset.org/abstracts/search?q=Montserrat%20Ortoneda"> Montserrat Ortoneda</a>, <a href="https://publications.waset.org/abstracts/search?q=David%20A.%20Phipps"> David A. Phipps</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Alzeyadi"> Ali Alzeyadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Khalid%20S.%20Hashim"> Khalid S. Hashim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study was performed to optimise the hydraulic retention time (HRT) and study its effects on the sludge characteristics and the effluent quality in an aerobic suspension sequencing batch reactor (ASSBR) treating synthetic wastewater. The results showed that increasing the HRT from 6 h to 12 h significantly improved the COD and Nitrate removal efficiency; it was increased from 78.7% - 75.7% to 94.7% – 97% for COD and Nitrate respectively. However, increasing the HRT from 12 h to 18 h reduced the COD and Nitrate removal efficiency from 94.7% - 97% to 91.1% – 94.4% respectively. Moreover, Increasing the HRT from 18 h to 24 h did not affect the COD and Nitrate removal efficiency. Sludge volume index (SVI) was used to monitor the sludge settling performance. The results showed a direct relationship between the HRT and SVI value. Increasing the HRT from 6 h to 12 h led to decrease the SVI value from 123 ml/g to 82.5 ml/g, and then it remained constant despite of increasing the HRT from 12 h to 18 h and to 24 h. The results obtained from this study showed that the HRT of 12 h was better for COD and Nitrate removal and a good settling performance occurred during that range. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=COD" title="COD">COD</a>, <a href="https://publications.waset.org/abstracts/search?q=hydraulic%20retention%20time" title=" hydraulic retention time"> hydraulic retention time</a>, <a href="https://publications.waset.org/abstracts/search?q=nitrate" title=" nitrate"> nitrate</a>, <a href="https://publications.waset.org/abstracts/search?q=sequencing%20batch%20reactor" title=" sequencing batch reactor"> sequencing batch reactor</a>, <a href="https://publications.waset.org/abstracts/search?q=sludge%20characteristics" title=" sludge characteristics"> sludge characteristics</a> </p> <a href="https://publications.waset.org/abstracts/49578/the-effects-of-hydraulic-retention-time-on-the-sludge-characteristics-and-effluent-quality-in-an-aerobic-suspension-sequencing-batch-reactor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49578.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">372</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3837</span> Single Species vs Mixed Microbial Culture Degradation of Pesticide in a Membrane Bioreactor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Karan%20R.%20Chavan">Karan R. Chavan</a>, <a href="https://publications.waset.org/abstracts/search?q=Srivats%20Gopalan"> Srivats Gopalan</a>, <a href="https://publications.waset.org/abstracts/search?q=Kumudini%20V.%20Marathe"> Kumudini V. Marathe</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the current work, the comparison of degradation of malathion by single species, Pseudomonas Stutzeri, and Activated Sludge/Mixed Microbial Culture is studied in a Membrane Bioreactor. Various parameters were considered to study the effect of single species degradation compared to degradation by activated sludge. The experimental results revealed 85-90% reduction in the COD of the Malathion containing synthetic wastewater. Complete reduction of malathion was observed within 24 hours in both the cases. The critical flux was 10 LMH for both the systems. Fouling propensity, Cake and Membrane resistances were calculated thus giving an insight regarding the working of Membrane Bioreactor-based on single species and activated sludge. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fouling" title="fouling">fouling</a>, <a href="https://publications.waset.org/abstracts/search?q=membrane%20bioreactor" title=" membrane bioreactor"> membrane bioreactor</a>, <a href="https://publications.waset.org/abstracts/search?q=mixed%20microbial%20culture" title=" mixed microbial culture"> mixed microbial culture</a>, <a href="https://publications.waset.org/abstracts/search?q=single%20species" title=" single species"> single species</a> </p> <a href="https://publications.waset.org/abstracts/46965/single-species-vs-mixed-microbial-culture-degradation-of-pesticide-in-a-membrane-bioreactor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46965.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">358</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3836</span> A Combined Activated Sludge-Filtration-Ozonation Process for Abattoir Wastewater Treatment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pello%20Alfonso-Muniozguren">Pello Alfonso-Muniozguren</a>, <a href="https://publications.waset.org/abstracts/search?q=Madeleine%20Bussemaker"> Madeleine Bussemaker</a>, <a href="https://publications.waset.org/abstracts/search?q=Ralph%20Chadeesingh"> Ralph Chadeesingh</a>, <a href="https://publications.waset.org/abstracts/search?q=Caryn%20Jones"> Caryn Jones</a>, <a href="https://publications.waset.org/abstracts/search?q=David%20Oakley"> David Oakley</a>, <a href="https://publications.waset.org/abstracts/search?q=Judy%20Lee"> Judy Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Devendra%20Saroj"> Devendra Saroj</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Current industrialized livestock agriculture is growing every year leading to an increase in the generation of wastewater that varies considerably in terms of organic content and microbial population. Therefore, suitable wastewater treatment methods are required to ensure the wastewater quality meet regulations before discharge. In the present study, a combined lab scale activated sludge-filtration-ozonation system was used to treat a pre-treated abattoir wastewater. A hydraulic retention time of 24 hours and a solid retention time of 13 days were used for the activated sludge process, followed by a filtration step (4-7 µm) and using ozone as tertiary treatment. An average reduction of 93% and 98% was achieved for Chemical Oxygen Demand (COD) and Biological Oxygen Demand (BOD), respectively, obtaining final values of 128 mg/L COD and 12 mg/L BOD. For the Total Suspended Solids (TSS), the average reduction increased to 99% in the same system, reducing the final value down to 3 mg/L. Additionally, 98% reduction in Phosphorus (P) and a complete inactivation of Total Coliforms (TC) was obtained after 17 min ozonation time. For Total Viable Counts (TVC), a drastic reduction was observed with 30 min ozonation time (6 log inactivation) at an ozone dose of 71 mg O3/L. Overall, the combined process was sufficient to meet discharge requirements without further treatment for the measured parameters (COD, BOD, TSS, P, TC, and TVC). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=abattoir%20waste%20water" title="abattoir waste water">abattoir waste water</a>, <a href="https://publications.waset.org/abstracts/search?q=activated%20sludge" title=" activated sludge"> activated sludge</a>, <a href="https://publications.waset.org/abstracts/search?q=ozone" title=" ozone"> ozone</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20water%20treatment" title=" waste water treatment"> waste water treatment</a> </p> <a href="https://publications.waset.org/abstracts/82961/a-combined-activated-sludge-filtration-ozonation-process-for-abattoir-wastewater-treatment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82961.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">279</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3835</span> Treatment Process of Sludge from Leachate with an Activated Sludge System and Extended Aeration System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Ch%C3%A1vez">A. Chávez</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Rodr%C3%ADguez"> A. Rodríguez</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Pinz%C3%B3n"> F. Pinzón</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Society is concerned about measures of environmental, economic and social impacts generated in the solid waste disposal. These places of confinement, also known as landfills, are locations where problems of pollution and damage to human health are reduced. They are technically designed and operated, using engineering principles, storing the residue in a small area, compact it to reduce volume and covering them with soil layers. Problems preventing liquid (leachate) and gases produced by the decomposition of organic matter. Despite planning and site selection for disposal, monitoring and control of selected processes, remains the dilemma of the leachate as extreme concentration of pollutants, devastating soil, flora and fauna; aggressive processes requiring priority attention. A biological technology is the activated sludge system, used for tributaries with high pollutant loads. Since transforms biodegradable dissolved and particulate matter into CO2, H2O and sludge; transform suspended and no Settleable solids; change nutrients as nitrogen and phosphorous; and degrades heavy metals. The microorganisms that remove organic matter in the processes are in generally facultative heterotrophic bacteria, forming heterogeneous populations. Is possible to find unicellular fungi, algae, protozoa and rotifers, that process the organic carbon source and oxygen, as well as the nitrogen and phosphorus because are vital for cell synthesis. The mixture of the substrate, in this case sludge leachate, molasses and wastewater is maintained ventilated by mechanical aeration diffusers. Considering as the biological processes work to remove dissolved material (< 45 microns), generating biomass, easily obtained by decantation processes. The design consists of an artificial support and aeration pumps, favoring develop microorganisms (denitrifying) using oxygen (O) with nitrate, resulting in nitrogen (N) in the gas phase. Thus, avoiding negative effects of the presence of ammonia or phosphorus. Overall the activated sludge system includes about 8 hours of hydraulic retention time, which does not prevent the demand for nitrification, which occurs on average in a value of MLSS 3,000 mg/L. The extended aeration works with times greater than 24 hours detention; with ratio of organic load/biomass inventory under 0.1; and average stay time (sludge age) more than 8 days. This project developed a pilot system with sludge leachate from Doña Juana landfill - RSDJ –, located in Bogota, Colombia, where they will be subjected to a process of activated sludge and extended aeration through a sequential Bach reactor - SBR, to be dump in hydric sources, avoiding ecological collapse. The system worked with a dwell time of 8 days, 30 L capacity, mainly by removing values of BOD and COD above 90%, with initial data of 1720 mg/L and 6500 mg/L respectively. Motivating the deliberate nitrification is expected to be possible commercial use diffused aeration systems for sludge leachate from landfills. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sludge" title="sludge">sludge</a>, <a href="https://publications.waset.org/abstracts/search?q=landfill" title=" landfill"> landfill</a>, <a href="https://publications.waset.org/abstracts/search?q=leachate" title=" leachate"> leachate</a>, <a href="https://publications.waset.org/abstracts/search?q=SBR" title=" SBR"> SBR</a> </p> <a href="https://publications.waset.org/abstracts/25785/treatment-process-of-sludge-from-leachate-with-an-activated-sludge-system-and-extended-aeration-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25785.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">271</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3834</span> Rheological Behavior of Fresh Activated Sludge</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Salam%20K.%20Al-Dawery">Salam K. Al-Dawery</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Despite of few research works on municipal sludge, still there is a lack of actual data. Thus, this work was focused on the conditioning and rheology of fresh activated sludge. The effect of cationic polyelectrolyte has been investigated at different concentrations and pH values in a comparative fashion. Yield stress is presented in all results indicating the minimum stress that necessary to reach flow conditions. Connections between particle-particle is the reason for this yield stress, also, the addition of polyelectrolyte causes strong bonds between particles and water resulting in the aggregation of particles which required higher shear stress in order to flow. The results from the experiments indicate that the cationic polyelectrolytes have significant effluence on the sludge characteristic and water quality such as turbidity, SVI, zone settling rate and shear stress. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rheology" title="rheology">rheology</a>, <a href="https://publications.waset.org/abstracts/search?q=polyelectrolyte" title=" polyelectrolyte"> polyelectrolyte</a>, <a href="https://publications.waset.org/abstracts/search?q=settling%20volume%20index" title=" settling volume index"> settling volume index</a>, <a href="https://publications.waset.org/abstracts/search?q=turbidity" title=" turbidity"> turbidity</a> </p> <a href="https://publications.waset.org/abstracts/9218/rheological-behavior-of-fresh-activated-sludge" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9218.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">357</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3833</span> Modeling of the Biodegradation Performance of a Membrane Bioreactor to Enhance Water Reuse in Agri-food Industry - Poultry Slaughterhouse as an Example</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=masmoudi%20Jabri%20Khaoula">masmoudi Jabri Khaoula</a>, <a href="https://publications.waset.org/abstracts/search?q=Zitouni%20Hana"> Zitouni Hana</a>, <a href="https://publications.waset.org/abstracts/search?q=Bousselmi%20Latifa"> Bousselmi Latifa</a>, <a href="https://publications.waset.org/abstracts/search?q=Akrout%20Hanen"> Akrout Hanen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mathematical modeling has become an essential tool for sustainable wastewater management, particularly for the simulation and the optimization of complex processes involved in activated sludge systems. In this context, the activated sludge model (ASM3h) was used for the simulation of a Biological Membrane Reactor (MBR) as it includes the integration of biological wastewater treatment and physical separation by membrane filtration. In this study, the MBR with a useful volume of 12.5 L was fed continuously with poultry slaughterhouse wastewater (PSWW) for 50 days at a feed rate of 2 L/h and for a hydraulic retention time (HRT) of 6.25h. Throughout its operation, High removal efficiency was observed for the removal of organic pollutants in terms of COD with 84% of efficiency. Moreover, the MBR has generated a treated effluent which fits with the limits of discharge into the public sewer according to the Tunisian standards which were set in March 2018. In fact, for the nitrogenous compounds, average concentrations of nitrate and nitrite in the permeat reached 0.26±0.3 mg. L-1 and 2.2±2.53 mg. L-1, respectively. The simulation of the MBR process was performed using SIMBA software v 5.0. The state variables employed in the steady state calibration of the ASM3h were determined using physical and respirometric methods. The model calibration was performed using experimental data obtained during the first 20 days of the MBR operation. Afterwards, kinetic parameters of the model were adjusted and the simulated values of COD, N-NH4+and N- NOx were compared with those reported from the experiment. A good prediction was observed for the COD, N-NH4+and N- NOx concentrations with 467 g COD/m³, 110.2 g N/m³, 3.2 g N/m³ compared to the experimental data which were 436.4 g COD/m³, 114.7 g N/m³ and 3 g N/m³, respectively. For the validation of the model under dynamic simulation, the results of the experiments obtained during the second treatment phase of 30 days were used. It was demonstrated that the model simulated the conditions accurately by yielding a similar pattern on the variation of the COD concentration. On the other hand, an underestimation of the N-NH4+ concentration was observed during the simulation compared to the experimental results and the measured N-NO3 concentrations were lower than the predicted ones, this difference could be explained by the fact that the ASM models were mainly designed for the simulation of biological processes in the activated sludge systems. In addition, more treatment time could be required by the autotrophic bacteria to achieve a complete and stable nitrification. Overall, this study demonstrated the effectiveness of mathematical modeling in the prediction of the performance of the MBR systems with respect to organic pollution, the model can be further improved for the simulation of nutrients removal for a longer treatment period. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=activated%20sludge%20model%20%28ASM3h%29" title="activated sludge model (ASM3h)">activated sludge model (ASM3h)</a>, <a href="https://publications.waset.org/abstracts/search?q=membrane%20bioreactor%20%28MBR%29" title=" membrane bioreactor (MBR)"> membrane bioreactor (MBR)</a>, <a href="https://publications.waset.org/abstracts/search?q=poultry%20slaughter%20wastewater%20%28PSWW%29" title=" poultry slaughter wastewater (PSWW)"> poultry slaughter wastewater (PSWW)</a>, <a href="https://publications.waset.org/abstracts/search?q=reuse" title=" reuse"> reuse</a> </p> <a href="https://publications.waset.org/abstracts/184678/modeling-of-the-biodegradation-performance-of-a-membrane-bioreactor-to-enhance-water-reuse-in-agri-food-industry-poultry-slaughterhouse-as-an-example" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/184678.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">58</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3832</span> Membrane Bioreactor versus Activated Sludge Process for Aerobic Wastewater Treatment and Recycling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sarra%20Kitanou">Sarra Kitanou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Membrane bioreactor (MBR) systems are one of the most widely used wastewater treatment processes for various municipal and industrial waste streams. It is based on complex interactions between biological processes, filtration process and rheological properties of the liquid to be treated. Its complexity makes understanding system operation and optimization more difficult, and traditional methods based on experimental analysis are costly and time consuming. The present study was based on an external membrane bioreactor pilot scale with ceramic membranes compared to conventional activated sludge process (ASP) plant. Both systems received their influent from a domestic wastewater. The membrane bioreactor (MBR) produced an effluent with much better quality than ASP in terms of total suspended solids (TSS), organic matter such as biological oxygen demand (BOD) and chemical oxygen demand (COD), total Phosphorus and total Nitrogen. Other effluent quality parameters also indicate substantial differences between ASP and MBR. This study leads to conclude that in the case domestic wastewater, MBR treatment has excellent effluent quality. Hence, the replacement of the ASP by the MBRs may be justified on the basis of their improved removal of solids, nutrients, and micropollutants. Furthermore, in terms of reuse the great quality of the treated water allows it to be reused for irrigation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerobic%20wastewater%20treatment" title="aerobic wastewater treatment">aerobic wastewater treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=conventional%20activated%20sludge%20process" title=" conventional activated sludge process"> conventional activated sludge process</a>, <a href="https://publications.waset.org/abstracts/search?q=membrane%20bioreactor" title=" membrane bioreactor"> membrane bioreactor</a>, <a href="https://publications.waset.org/abstracts/search?q=reuse%20for%20irrigation" title=" reuse for irrigation"> reuse for irrigation</a> </p> <a href="https://publications.waset.org/abstracts/167997/membrane-bioreactor-versus-activated-sludge-process-for-aerobic-wastewater-treatment-and-recycling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167997.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">78</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3831</span> Malachite Green and Red Congo Dyes Adsorption onto Chemical Treated Sewage Sludge</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zamouche%20Meriem">Zamouche Meriem</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehcene%20Ismahan"> Mehcene Ismahan</a>, <a href="https://publications.waset.org/abstracts/search?q=Temmine%20Manel"> Temmine Manel</a>, <a href="https://publications.waset.org/abstracts/search?q=Bencheikh%20Lehocine%20Mosaab"> Bencheikh Lehocine Mosaab</a>, <a href="https://publications.waset.org/abstracts/search?q=Meniai%20Abdeslam%20Hassen"> Meniai Abdeslam Hassen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the adsorption of Malachite Green (MG) by chemical treated sewage sludge has been studied. The sewage sludge, collected from drying beds of the municipal wastewater treatment station of IBN ZIED, Constantine, Algeria, was treated by different acids such us HNO₃, H₂SO₄, H₃PO₄ for modifying its aptitude to removal the MG from aqueous solutions. The results obtained shows that the sewage sludge activated by sulfuric acid give the highest elimination amounts of MG (9.52 mg/L) compared by the other acids used. The effects of operation parameters have been investigated, the results obtained show that the adsorption capacity per unit of adsorbent mass decreases from 18.69 to 1.20 mg/g when the mass of the adsorbent increases from 0.25 to 4 g respectively, the optimum mass for which a maximum of elimination of the dye is equal to 0.5g. The increasing in the temperature of the solution results in a slight decrease in the adsorption capacity of the chemically treated sludge. The highest amount of dye adsorbed by CSSS (9.56 mg/g) was observed for the optimum temperature of 25°C. The chemical activated sewage sludge proved its effectiveness for the removal of the Red Congo (RC), but by comparison the adsorption of the two dyes studies, we noted that the sludge has more affinity to adsorb the (MG). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adsorption" title="adsorption">adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=chemical%20activation" title=" chemical activation"> chemical activation</a>, <a href="https://publications.waset.org/abstracts/search?q=malachite%20green" title=" malachite green"> malachite green</a>, <a href="https://publications.waset.org/abstracts/search?q=sewage%20sludge" title=" sewage sludge"> sewage sludge</a> </p> <a href="https://publications.waset.org/abstracts/94506/malachite-green-and-red-congo-dyes-adsorption-onto-chemical-treated-sewage-sludge" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/94506.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">192</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3830</span> Up-Flow Sponge Submerged Biofilm Reactor for Municipal Sewage Treatment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saber%20A.%20El-Shafai">Saber A. El-Shafai</a>, <a href="https://publications.waset.org/abstracts/search?q=Waleed%20M.%20Zahid"> Waleed M. Zahid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An up-flow submerged biofilm reactor packed with sponge was investigated for sewage treatment. The reactor was operated two cycles as single aerobic (1-1 at 3.5 L/L.d HLR and 1-2 at 3.8 L/L.day HLR) and four cycles as single anaerobic/aerobic reactor; 2-1 and 2-2 at low HLR (3.7 and 3.5 L/L.day) and 2-3 and 2-4 at high HLR (5.1 and 5.4 L/L.day). During the aerobic cycles, 50% effluent recycling significantly reduces the system performance except for phosphorous. In case of the anaerobic/aerobic reactor, the effluent recycling, significantly improves system performance at low HLR while at high HLR only phosphorous removal was improved. Excess sludge production was limited to 0.133 g TSS/g COD with better sludge volume index (SVI) in case of anaerobic/aerobic cycles; (54.7 versus 58.5 ml/g). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerobic" title="aerobic">aerobic</a>, <a href="https://publications.waset.org/abstracts/search?q=anaerobic%2Faerobic" title=" anaerobic/aerobic"> anaerobic/aerobic</a>, <a href="https://publications.waset.org/abstracts/search?q=up-flow" title=" up-flow"> up-flow</a>, <a href="https://publications.waset.org/abstracts/search?q=submerged%20biofilm" title=" submerged biofilm"> submerged biofilm</a>, <a href="https://publications.waset.org/abstracts/search?q=sponge" title=" sponge"> sponge</a> </p> <a href="https://publications.waset.org/abstracts/62018/up-flow-sponge-submerged-biofilm-reactor-for-municipal-sewage-treatment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62018.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">298</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3829</span> Vermicomposting of Textile Industries’ Dyeing Sludge by Using Eisenia foetida</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kunwar%20D.%20Yadav">Kunwar D. Yadav</a>, <a href="https://publications.waset.org/abstracts/search?q=Dayanand%20Sharma"> Dayanand Sharma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Surat City in India is famous for textile and dyeing industries which generate textile sludge in huge quantity. Textile sludge contains harmful chemicals which are poisonous and carcinogenic. The safe disposal and reuse of textile dyeing sludge are challenging for owner of textile industries and government of the state. The aim of present study was the vermicomposting of textile industries dyeing sludge with cow dung and <em>Eisenia foetida </em>as earthworm spices. The vermicompost reactor of 0.3 m<sup>3</sup> capacity was used for vermicomposting. Textile dyeing sludge was mixed with cow dung in different proportion, i.e., 0:100 (C1), 10:90 (C2), 20:80 (C3), 30:70 (C4). Vermicomposting duration was 120 days. All the combinations of the feed mixture, the pH was increased to a range 7.45-7.78, percentage of total organic carbon was decreased to a range of 31-33.3%, total nitrogen was decreased to a range of 1.15-1.32%, total phosphorus was increased in the range of 6.2-7.9 (g/kg). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cow%20dung" title="cow dung">cow dung</a>, <a href="https://publications.waset.org/abstracts/search?q=Eisenia%20foetida" title=" Eisenia foetida"> Eisenia foetida</a>, <a href="https://publications.waset.org/abstracts/search?q=textile%20sludge" title=" textile sludge"> textile sludge</a>, <a href="https://publications.waset.org/abstracts/search?q=vermicompost" title=" vermicompost"> vermicompost</a> </p> <a href="https://publications.waset.org/abstracts/80034/vermicomposting-of-textile-industries-dyeing-sludge-by-using-eisenia-foetida" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80034.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">214</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3828</span> Identification of Microbial Community in an Anaerobic Reactor Treating Brewery Wastewater</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abimbola%20M.%20Enitan">Abimbola M. Enitan</a>, <a href="https://publications.waset.org/abstracts/search?q=John%20O.%20Odiyo"> John O. Odiyo</a>, <a href="https://publications.waset.org/abstracts/search?q=Feroz%20M.%20Swalaha"> Feroz M. Swalaha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study of microbial ecology and their function in anaerobic digestion processes are essential to control the biological processes. This is to know the symbiotic relationship between the microorganisms that are involved in the conversion of complex organic matter in the industrial wastewater to simple molecules. In this study, diversity and quantity of bacterial community in the granular sludge taken from the different compartments of a full-scale upflow anaerobic sludge blanket (UASB) reactor treating brewery wastewater was investigated using polymerase chain reaction (PCR) and real-time quantitative PCR (qPCR). The phylogenetic analysis showed three major eubacteria phyla that belong to <em>Proteobacteria, Firmicutes </em>and<em> Chloroflexi</em> in the full-scale UASB reactor, with different groups populating different compartment. The result of qPCR assay showed high amount of eubacteria with increase in concentration along the reactor’s compartment. This study extends our understanding on the diverse, topological distribution and shifts in concentration of microbial communities in the different compartments of a full-scale UASB reactor treating brewery wastewater. The colonization and the trophic interactions among these microbial populations in reducing and transforming complex organic matter within the UASB reactors were established. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bacteria" title="bacteria">bacteria</a>, <a href="https://publications.waset.org/abstracts/search?q=brewery%20wastewater" title=" brewery wastewater"> brewery wastewater</a>, <a href="https://publications.waset.org/abstracts/search?q=real-time%20quantitative%20PCR" title=" real-time quantitative PCR"> real-time quantitative PCR</a>, <a href="https://publications.waset.org/abstracts/search?q=UASB%20reactor" title=" UASB reactor"> UASB reactor</a> </p> <a href="https://publications.waset.org/abstracts/79480/identification-of-microbial-community-in-an-anaerobic-reactor-treating-brewery-wastewater" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79480.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">259</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3827</span> The Usage of Nitrogen Gas and Alum for Sludge Dewatering</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mamdouh%20Yousef%20Saleh">Mamdouh Yousef Saleh</a>, <a href="https://publications.waset.org/abstracts/search?q=Medhat%20Hosny%20El-Zahar"> Medhat Hosny El-Zahar</a>, <a href="https://publications.waset.org/abstracts/search?q=Shymaa%20El-Dosoky"> Shymaa El-Dosoky</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In most cases, the associated processing cost of dewatering sludge increase with the solid particles concentration. All experiments in this study were conducted on biological sludge type. All experiments help to reduce the greenhouse gases in addition, the technology used was faster in time and less in cost compared to other methods. First, the bubbling pressure was used to dissolve N₂ gas into the sludge, second alum was added to accelerate the process of coagulation of the sludge particles and facilitate their flotation, and third nitrogen gas was used to help floating the sludge particles and reduce the processing time because of the nitrogen gas from the inert gases. The conclusions of this experiment were as follows: first, the best conditions were obtained when the bubbling pressure was 0.6 bar. Second, the best alum dose was determined to help the sludge agglomerate and float. During the experiment, the best alum dose was 80 mg/L. It increased concentration of the sludge by 7-8 times. Third, the economic dose of nitrogen gas was 60 mg/L with separation efficiency of 85%. The sludge concentration was about 8-9 times. That happened due to the gas released tiny bubbles which adhere to the suspended matter causing them to float to the surface of the water where it could be then removed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nitrogen%20gas" title="nitrogen gas">nitrogen gas</a>, <a href="https://publications.waset.org/abstracts/search?q=biological%20treatment" title=" biological treatment"> biological treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=alum" title=" alum"> alum</a>, <a href="https://publications.waset.org/abstracts/search?q=dewatering%20sludge" title=" dewatering sludge"> dewatering sludge</a>, <a href="https://publications.waset.org/abstracts/search?q=greenhouse%20gases" title=" greenhouse gases"> greenhouse gases</a> </p> <a href="https://publications.waset.org/abstracts/104794/the-usage-of-nitrogen-gas-and-alum-for-sludge-dewatering" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/104794.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">217</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3826</span> Hard Sludge Formation and Consolidation in Pressurized Water Reactor Steam Generators: An Experimental Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Fernandez-Saavedra">R. Fernandez-Saavedra</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20B.%20Gomez-Mancebo"> M. B. Gomez-Mancebo</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Gomez-Briceno"> D. Gomez-Briceno</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The gradual corrosion of PWR (Pressurized Water Reactor) feedwater, condensate and drain systems results in the inevitable liberation of corrosion products, principally metallic oxides, to the secondary circuit. In addition, other contaminants and impurities are introduced into the makeup water, auxiliary feedwater and by condenser leaks. All these compounds circulating in the secondary flow can eventually be transported to steam generators and be transformed into deposits on their surfaces. Deposits that accumulate on the tube sheet are known as sludge piles and when they consolidate and harden become into hard sludge. Hard sludge is especially detrimental because it favors tube deformation or denting at the top of tube sheet and further stress corrosion cracking (SCC). These failures affect the efficiency of nuclear power plants. In a recent work, a model for the formation and consolidation of hard sludge has been formulated, highlighting the influence of aluminum and silicon compounds in the initial formation of hard sludge. In this work, an experimental study has been performed in order to get a deeper understanding of the behavior of Al and Si species in hard sludge formation and consolidation. For this purpose, the key components of hard sludge (magnetite, aluminum and/or silicon sources) have been isothermally autoclaved in representative secondary circuit conditions during one week, and the resulting products have been chemically and structurally characterized by XRF and XRD techniques, respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=consolidation" title="consolidation">consolidation</a>, <a href="https://publications.waset.org/abstracts/search?q=hard%20sludge" title=" hard sludge"> hard sludge</a>, <a href="https://publications.waset.org/abstracts/search?q=secondary%20circuit" title=" secondary circuit"> secondary circuit</a>, <a href="https://publications.waset.org/abstracts/search?q=steam%20generator" title=" steam generator"> steam generator</a> </p> <a href="https://publications.waset.org/abstracts/85117/hard-sludge-formation-and-consolidation-in-pressurized-water-reactor-steam-generators-an-experimental-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85117.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">190</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3825</span> A Combined Activated Sludge-Sonication Process for Abattoir Wastewater Treatment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pello%20Alfonso-Muniozguren">Pello Alfonso-Muniozguren</a>, <a href="https://publications.waset.org/abstracts/search?q=Madeleine%20Bussemaker"> Madeleine Bussemaker</a>, <a href="https://publications.waset.org/abstracts/search?q=Devendra%20Saroj"> Devendra Saroj</a>, <a href="https://publications.waset.org/abstracts/search?q=Judy%20Lee"> Judy Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Wastewater treatment is becoming a worldwide concern due to new and tighter environmental regulations, and the increasing need for fresh water for the exponentially growing population. The meat industry has one of the highest consumption of water producing up to 10 times more polluted (BOD) wastewaters in comparison to domestic sewage. Therefore, suitable wastewater treatment methods are required to ensure the wastewater quality meet regulations before discharge. In the present study, a combined lab scale activated sludge-sonication system was used to treat pre-treated abattoir wastewater. A hydraulic retention time of 24 hours and a solid retention time of 13 days were used for the activated sludge process and using ultrasound as tertiary treatment. Different ultrasonic frequencies, powers and sonication times were applied to the samples and results were analysed for chemical oxygen demand (COD), biological oxygen demand (BOD), total suspended solids, pH, total coliforms and total viable counts. Additionally, both mechanical and chemical effects of ultrasound were quantified for organic matter removal (COD and BOD) and disinfection (microorganism inactivation) using different techniques such as aluminum foil pitting, flow cytometry, and KI dosimetry. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=abattoir%20wastewater" title="abattoir wastewater">abattoir wastewater</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasound" title=" ultrasound"> ultrasound</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewater%20treatment" title=" wastewater treatment"> wastewater treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20disinfection" title=" water disinfection"> water disinfection</a> </p> <a href="https://publications.waset.org/abstracts/87214/a-combined-activated-sludge-sonication-process-for-abattoir-wastewater-treatment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/87214.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">287</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3824</span> Efficiency of Modified Granular Activated Carbon Coupled with Membrane Bioreactor for Trace Organic Contaminants Removal</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mousaab%20Alrhmoun">Mousaab Alrhmoun</a>, <a href="https://publications.waset.org/abstracts/search?q=Magali%20Casellas"> Magali Casellas</a>, <a href="https://publications.waset.org/abstracts/search?q=Michel%20Baudu"> Michel Baudu</a>, <a href="https://publications.waset.org/abstracts/search?q=Christophe%20Dagot"> Christophe Dagot </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of the study is to improve removal of trace organic contaminants dissolved in activated sludge by the process of filtration with membrane bioreactor combined with modified activated carbon, for a maximum removal of organic compounds characterized by low molecular weight. Special treatment was conducted in laboratory on activated carbon. Tow reaction parameters: The pH of aqueous middle and the type of granular activated carbon were very important to improve the removal and to motivate the electrostatic Interactions of organic compounds with modified activated carbon in addition to physical adsorption, ligand exchange or complexation on the surface activated carbon. The results indicate that modified activated carbon has a strong impact in removal 21 of organic contaminants and in percentage of 100% of the process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=activated%20carbon" title="activated carbon">activated carbon</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20micropolluants" title=" organic micropolluants"> organic micropolluants</a>, <a href="https://publications.waset.org/abstracts/search?q=membrane%20bioreactor" title=" membrane bioreactor"> membrane bioreactor</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon" title=" carbon"> carbon</a> </p> <a href="https://publications.waset.org/abstracts/3910/efficiency-of-modified-granular-activated-carbon-coupled-with-membrane-bioreactor-for-trace-organic-contaminants-removal" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3910.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">323</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=lab-scale%20activated%20sludge%20biological%20reactor&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=lab-scale%20activated%20sludge%20biological%20reactor&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=lab-scale%20activated%20sludge%20biological%20reactor&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=lab-scale%20activated%20sludge%20biological%20reactor&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=lab-scale%20activated%20sludge%20biological%20reactor&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=lab-scale%20activated%20sludge%20biological%20reactor&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=lab-scale%20activated%20sludge%20biological%20reactor&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=lab-scale%20activated%20sludge%20biological%20reactor&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=lab-scale%20activated%20sludge%20biological%20reactor&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=lab-scale%20activated%20sludge%20biological%20reactor&page=128">128</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=lab-scale%20activated%20sludge%20biological%20reactor&page=129">129</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=lab-scale%20activated%20sludge%20biological%20reactor&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>