CINXE.COM

Search results for: multiresolution segmentation

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: multiresolution segmentation</title> <meta name="description" content="Search results for: multiresolution segmentation"> <meta name="keywords" content="multiresolution segmentation"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="multiresolution segmentation" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="multiresolution segmentation"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 437</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: multiresolution segmentation</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">437</span> A Comparative Study of Medical Image Segmentation Methods for Tumor Detection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mayssa%20Bensalah">Mayssa Bensalah</a>, <a href="https://publications.waset.org/abstracts/search?q=Atef%20Boujelben"> Atef Boujelben</a>, <a href="https://publications.waset.org/abstracts/search?q=Mouna%20Baklouti"> Mouna Baklouti</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Abid"> Mohamed Abid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Image segmentation has a fundamental role in analysis and interpretation for many applications. The automated segmentation of organs and tissues throughout the body using computed imaging has been rapidly increasing. Indeed, it represents one of the most important parts of clinical diagnostic tools. In this paper, we discuss a thorough literature review of recent methods of tumour segmentation from medical images which are briefly explained with the recent contribution of various researchers. This study was followed by comparing these methods in order to define new directions to develop and improve the performance of the segmentation of the tumour area from medical images. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=features%20extraction" title="features extraction">features extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20segmentation" title=" image segmentation"> image segmentation</a>, <a href="https://publications.waset.org/abstracts/search?q=medical%20images" title=" medical images"> medical images</a>, <a href="https://publications.waset.org/abstracts/search?q=tumor%20detection" title=" tumor detection"> tumor detection</a> </p> <a href="https://publications.waset.org/abstracts/132616/a-comparative-study-of-medical-image-segmentation-methods-for-tumor-detection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/132616.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">168</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">436</span> Toward Automatic Chest CT Image Segmentation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Angely%20Sim%20Jia%20Wun">Angely Sim Jia Wun</a>, <a href="https://publications.waset.org/abstracts/search?q=Sasa%20Arsovski"> Sasa Arsovski</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Numerous studies have been conducted on the segmentation of medical images. Segmenting the lungs is one of the common research topics in those studies. Our research stemmed from the lack of solutions for automatic bone, airway, and vessel segmentation, despite the existence of multiple lung segmentation techniques. Consequently, currently, available software tools used for medical image segmentation do not provide automatic lung, bone, airway, and vessel segmentation. This paper presents segmentation techniques along with an interactive software tool architecture for segmenting bone, lung, airway, and vessel tissues. Additionally, we propose a method for creating binary masks from automatically generated segments. The key contribution of our approach is the technique for automatic image thresholding using adjustable Hounsfield values and binary mask extraction. Generated binary masks can be successfully used as a training dataset for deep-learning solutions in medical image segmentation. In this paper, we also examine the current software tools used for medical image segmentation, discuss our approach, and identify its advantages. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lung%20segmentation" title="lung segmentation">lung segmentation</a>, <a href="https://publications.waset.org/abstracts/search?q=binary%20masks" title=" binary masks"> binary masks</a>, <a href="https://publications.waset.org/abstracts/search?q=U-Net" title=" U-Net"> U-Net</a>, <a href="https://publications.waset.org/abstracts/search?q=medical%20software%20tools" title=" medical software tools"> medical software tools</a> </p> <a href="https://publications.waset.org/abstracts/168342/toward-automatic-chest-ct-image-segmentation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168342.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">98</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">435</span> A Product-Specific/Unobservable Approach to Segmentation for a Value Expressive Credit Card Service</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Manfred%20F.%20Maute">Manfred F. Maute</a>, <a href="https://publications.waset.org/abstracts/search?q=Olga%20Naumenko"> Olga Naumenko</a>, <a href="https://publications.waset.org/abstracts/search?q=Raymond%20T.%20Kong"> Raymond T. Kong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Using data from a nationally representative financial panel of Canadian households, this study develops a psychographic segmentation of the customers of a value-expressive credit card service and tests for effects on relational response differences. The variety of segments elicited by agglomerative and k means clustering and the familiar profiles of individual clusters suggest that the face validity of the psychographic segmentation was quite high. Segmentation had a significant effect on customer satisfaction and relationship depth. However, when socio-demographic characteristics like household size and income were accounted for in the psychographic segmentation, the effect on relational response differences was magnified threefold. Implications for the segmentation of financial services markets are considered. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=customer%20satisfaction" title="customer satisfaction">customer satisfaction</a>, <a href="https://publications.waset.org/abstracts/search?q=financial%20services" title=" financial services"> financial services</a>, <a href="https://publications.waset.org/abstracts/search?q=psychographics" title=" psychographics"> psychographics</a>, <a href="https://publications.waset.org/abstracts/search?q=response%20differences" title=" response differences"> response differences</a>, <a href="https://publications.waset.org/abstracts/search?q=segmentation" title=" segmentation"> segmentation</a> </p> <a href="https://publications.waset.org/abstracts/39282/a-product-specificunobservable-approach-to-segmentation-for-a-value-expressive-credit-card-service" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39282.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">334</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">434</span> A Comparison between Different Segmentation Techniques Used in Medical Imaging </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ibtihal%20D.%20Mustafa">Ibtihal D. Mustafa</a>, <a href="https://publications.waset.org/abstracts/search?q=Mawia%20A.%20Hassan"> Mawia A. Hassan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Tumor segmentation from MRI image is important part of medical images experts. This is particularly a challenging task because of the high assorting appearance of tumor tissue among different patients. MRI images are advance of medical imaging because it is give richer information about human soft tissue. There are different segmentation techniques to detect MRI brain tumor. In this paper, different procedure segmentation methods are used to segment brain tumors and compare the result of segmentations by using correlation and structural similarity index (SSIM) to analysis and see the best technique that could be applied to MRI image. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=MRI" title="MRI">MRI</a>, <a href="https://publications.waset.org/abstracts/search?q=segmentation" title=" segmentation"> segmentation</a>, <a href="https://publications.waset.org/abstracts/search?q=correlation" title=" correlation"> correlation</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20similarity" title=" structural similarity"> structural similarity</a> </p> <a href="https://publications.waset.org/abstracts/51091/a-comparison-between-different-segmentation-techniques-used-in-medical-imaging" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51091.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">410</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">433</span> Multidimensional Sports Spectators Segmentation and Social Media Marketing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20Schmid">B. Schmid</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Kexel"> C. Kexel</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Djafarova"> E. Djafarova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Understanding consumers is elementary for practitioners in marketing. Consumers of sports events, the sports spectators, are a particularly complex consumer crowd. In order to identify and define their profiles different segmentation approaches can be found in literature, one of them being multidimensional segmentation. Multidimensional segmentation models correspond to the broad range of attitudes, behaviours, motivations and beliefs of sports spectators, other than earlier models. Moreover, in sports there are some well-researched disciplines (e.g. football or North American sports) where consumer profiles and marketing strategies are elaborate and others where no research at all can be found. For example, there is almost no research on athletics spectators. This paper explores the current state of research on sports spectators segmentation. An in-depth literature review provides the framework for a spectators segmentation in athletics. On this basis, additional potential consumer groups and implications for social media marketing will be explored. The findings are the basis for further research. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=multidimensional%20segmentation" title="multidimensional segmentation">multidimensional segmentation</a>, <a href="https://publications.waset.org/abstracts/search?q=social%20media" title=" social media"> social media</a>, <a href="https://publications.waset.org/abstracts/search?q=sports%20marketing" title=" sports marketing"> sports marketing</a>, <a href="https://publications.waset.org/abstracts/search?q=sports%20spectators%20segmentation" title=" sports spectators segmentation"> sports spectators segmentation</a> </p> <a href="https://publications.waset.org/abstracts/47477/multidimensional-sports-spectators-segmentation-and-social-media-marketing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47477.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">307</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">432</span> Arabic Handwriting Recognition Using Local Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Arif">Mohammed Arif</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdessalam%20Kifouche"> Abdessalam Kifouche</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Optical character recognition (OCR) has a main role in the present time. It's capable to solve many serious problems and simplify human activities. The OCR yields to 70's, since many solutions has been proposed, but unfortunately, it was supportive to nothing but Latin languages. This work proposes a system of recognition of an off-line Arabic handwriting. This system is based on a structural segmentation method and uses support vector machines (SVM) in the classification phase. We have presented a state of art of the characters segmentation methods, after that a view of the OCR area, also we will address the normalization problems we went through. After a comparison between the Arabic handwritten characters & the segmentation methods, we had introduced a contribution through a segmentation algorithm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=OCR" title="OCR">OCR</a>, <a href="https://publications.waset.org/abstracts/search?q=segmentation" title=" segmentation"> segmentation</a>, <a href="https://publications.waset.org/abstracts/search?q=Arabic%20characters" title=" Arabic characters"> Arabic characters</a>, <a href="https://publications.waset.org/abstracts/search?q=PAW" title=" PAW"> PAW</a>, <a href="https://publications.waset.org/abstracts/search?q=post-processing" title=" post-processing"> post-processing</a>, <a href="https://publications.waset.org/abstracts/search?q=SVM" title=" SVM"> SVM</a> </p> <a href="https://publications.waset.org/abstracts/183495/arabic-handwriting-recognition-using-local-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/183495.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">71</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">431</span> Image Segmentation Using 2-D Histogram in RGB Color Space in Digital Libraries </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=El%20Asnaoui%20Khalid">El Asnaoui Khalid</a>, <a href="https://publications.waset.org/abstracts/search?q=Aksasse%20Brahim"> Aksasse Brahim</a>, <a href="https://publications.waset.org/abstracts/search?q=Ouanan%20Mohammed"> Ouanan Mohammed </a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents an unsupervised color image segmentation method. It is based on a hierarchical analysis of 2-D histogram in RGB color space. This histogram minimizes storage space of images and thus facilitates the operations between them. The improved segmentation approach shows a better identification of objects in a color image and, at the same time, the system is fast. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=image%20segmentation" title="image segmentation">image segmentation</a>, <a href="https://publications.waset.org/abstracts/search?q=hierarchical%20analysis" title=" hierarchical analysis"> hierarchical analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=2-D%20histogram" title=" 2-D histogram"> 2-D histogram</a>, <a href="https://publications.waset.org/abstracts/search?q=classification" title=" classification"> classification</a> </p> <a href="https://publications.waset.org/abstracts/42096/image-segmentation-using-2-d-histogram-in-rgb-color-space-in-digital-libraries" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42096.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">380</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">430</span> Imp_hist-Si: Improved Hybrid Image Segmentation Technique for Satellite Imagery to Decrease the Segmentation Error Rate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Neetu%20Manocha">Neetu Manocha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Image segmentation is a technique where a picture is parted into distinct parts having similar features which have a place with similar items. Various segmentation strategies have been proposed as of late by prominent analysts. But, after ultimate thorough research, the novelists have analyzed that generally, the old methods do not decrease the segmentation error rate. Then author finds the technique HIST-SI to decrease the segmentation error rates. In this technique, cluster-based and threshold-based segmentation techniques are merged together. After then, to improve the result of HIST-SI, the authors added the method of filtering and linking in this technique named Imp_HIST-SI to decrease the segmentation error rates. The goal of this research is to find a new technique to decrease the segmentation error rates and produce much better results than the HIST-SI technique. For testing the proposed technique, a dataset of Bhuvan – a National Geoportal developed and hosted by ISRO (Indian Space Research Organisation) is used. Experiments are conducted using Scikit-image & OpenCV tools of Python, and performance is evaluated and compared over various existing image segmentation techniques for several matrices, i.e., Mean Square Error (MSE) and Peak Signal Noise Ratio (PSNR). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=satellite%20image" title="satellite image">satellite image</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20segmentation" title=" image segmentation"> image segmentation</a>, <a href="https://publications.waset.org/abstracts/search?q=edge%20detection" title=" edge detection"> edge detection</a>, <a href="https://publications.waset.org/abstracts/search?q=error%20rate" title=" error rate"> error rate</a>, <a href="https://publications.waset.org/abstracts/search?q=MSE" title=" MSE"> MSE</a>, <a href="https://publications.waset.org/abstracts/search?q=PSNR" title=" PSNR"> PSNR</a>, <a href="https://publications.waset.org/abstracts/search?q=HIST-SI" title=" HIST-SI"> HIST-SI</a>, <a href="https://publications.waset.org/abstracts/search?q=linking" title=" linking"> linking</a>, <a href="https://publications.waset.org/abstracts/search?q=filtering" title=" filtering"> filtering</a>, <a href="https://publications.waset.org/abstracts/search?q=imp_HIST-SI" title=" imp_HIST-SI"> imp_HIST-SI</a> </p> <a href="https://publications.waset.org/abstracts/149905/imp-hist-si-improved-hybrid-image-segmentation-technique-for-satellite-imagery-to-decrease-the-segmentation-error-rate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/149905.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">141</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">429</span> Performance Evaluation of Various Segmentation Techniques on MRI of Brain Tissue</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=U.V.%20Suryawanshi">U.V. Suryawanshi</a>, <a href="https://publications.waset.org/abstracts/search?q=S.S.%20Chowhan"> S.S. Chowhan</a>, <a href="https://publications.waset.org/abstracts/search?q=U.V%20Kulkarni"> U.V Kulkarni</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Accuracy of segmentation methods is of great importance in brain image analysis. Tissue classification in Magnetic Resonance brain images (MRI) is an important issue in the analysis of several brain dementias. This paper portraits performance of segmentation techniques that are used on Brain MRI. A large variety of algorithms for segmentation of Brain MRI has been developed. The objective of this paper is to perform a segmentation process on MR images of the human brain, using Fuzzy c-means (FCM), Kernel based Fuzzy c-means clustering (KFCM), Spatial Fuzzy c-means (SFCM) and Improved Fuzzy c-means (IFCM). The review covers imaging modalities, MRI and methods for noise reduction and segmentation approaches. All methods are applied on MRI brain images which are degraded by salt-pepper noise demonstrate that the IFCM algorithm performs more robust to noise than the standard FCM algorithm. We conclude with a discussion on the trend of future research in brain segmentation and changing norms in IFCM for better results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=image%20segmentation" title="image segmentation">image segmentation</a>, <a href="https://publications.waset.org/abstracts/search?q=preprocessing" title=" preprocessing"> preprocessing</a>, <a href="https://publications.waset.org/abstracts/search?q=MRI" title=" MRI"> MRI</a>, <a href="https://publications.waset.org/abstracts/search?q=FCM" title=" FCM"> FCM</a>, <a href="https://publications.waset.org/abstracts/search?q=KFCM" title=" KFCM"> KFCM</a>, <a href="https://publications.waset.org/abstracts/search?q=SFCM" title=" SFCM"> SFCM</a>, <a href="https://publications.waset.org/abstracts/search?q=IFCM" title=" IFCM"> IFCM</a> </p> <a href="https://publications.waset.org/abstracts/12406/performance-evaluation-of-various-segmentation-techniques-on-mri-of-brain-tissue" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12406.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">332</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">428</span> Sea-Land Segmentation Method Based on the Transformer with Enhanced Edge Supervision</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lianzhong%20Zhang">Lianzhong Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Chao%20Huang"> Chao Huang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sea-land segmentation is a basic step in many tasks such as sea surface monitoring and ship detection. The existing sea-land segmentation algorithms have poor segmentation accuracy, and the parameter adjustments are cumbersome and difficult to meet actual needs. Also, the current sea-land segmentation adopts traditional deep learning models that use Convolutional Neural Networks (CNN). At present, the transformer architecture has achieved great success in the field of natural images, but its application in the field of radar images is less studied. Therefore, this paper proposes a sea-land segmentation method based on the transformer architecture to strengthen edge supervision. It uses a self-attention mechanism with a gating strategy to better learn relative position bias. Meanwhile, an additional edge supervision branch is introduced. The decoder stage allows the feature information of the two branches to interact, thereby improving the edge precision of the sea-land segmentation. Based on the Gaofen-3 satellite image dataset, the experimental results show that the method proposed in this paper can effectively improve the accuracy of sea-land segmentation, especially the accuracy of sea-land edges. The mean IoU (Intersection over Union), edge precision, overall precision, and F1 scores respectively reach 96.36%, 84.54%, 99.74%, and 98.05%, which are superior to those of the mainstream segmentation models and have high practical application values. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=SAR" title="SAR">SAR</a>, <a href="https://publications.waset.org/abstracts/search?q=sea-land%20segmentation" title=" sea-land segmentation"> sea-land segmentation</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20learning" title=" deep learning"> deep learning</a>, <a href="https://publications.waset.org/abstracts/search?q=transformer" title=" transformer"> transformer</a> </p> <a href="https://publications.waset.org/abstracts/148759/sea-land-segmentation-method-based-on-the-transformer-with-enhanced-edge-supervision" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/148759.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">181</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">427</span> U-Net Based Multi-Output Network for Lung Disease Segmentation and Classification Using Chest X-Ray Dataset</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jaiden%20X.%20Schraut">Jaiden X. Schraut</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Medical Imaging Segmentation of Chest X-rays is used for the purpose of identification and differentiation of lung cancer, pneumonia, COVID-19, and similar respiratory diseases. Widespread application of computer-supported perception methods into the diagnostic pipeline has been demonstrated to increase prognostic accuracy and aid doctors in efficiently treating patients. Modern models attempt the task of segmentation and classification separately and improve diagnostic efficiency; however, to further enhance this process, this paper proposes a multi-output network that follows a U-Net architecture for image segmentation output and features an additional CNN module for auxiliary classification output. The proposed model achieves a final Jaccard Index of .9634 for image segmentation and a final accuracy of .9600 for classification on the COVID-19 radiography database. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chest%20X-ray" title="chest X-ray">chest X-ray</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20learning" title=" deep learning"> deep learning</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20segmentation" title=" image segmentation"> image segmentation</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20classification" title=" image classification"> image classification</a> </p> <a href="https://publications.waset.org/abstracts/155537/u-net-based-multi-output-network-for-lung-disease-segmentation-and-classification-using-chest-x-ray-dataset" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/155537.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">144</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">426</span> Digital Retinal Images: Background and Damaged Areas Segmentation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eman%20A.%20Gani">Eman A. Gani</a>, <a href="https://publications.waset.org/abstracts/search?q=Loay%20E.%20George"> Loay E. George</a>, <a href="https://publications.waset.org/abstracts/search?q=Faisel%20G.%20Mohammed"> Faisel G. Mohammed</a>, <a href="https://publications.waset.org/abstracts/search?q=Kamal%20H.%20Sager"> Kamal H. Sager</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Digital retinal images are more appropriate for automatic screening of diabetic retinopathy systems. Unfortunately, a significant percentage of these images are poor quality that hinders further analysis due to many factors (such as patient movement, inadequate or non-uniform illumination, acquisition angle and retinal pigmentation). The retinal images of poor quality need to be enhanced before the extraction of features and abnormalities. So, the segmentation of retinal image is essential for this purpose, the segmentation is employed to smooth and strengthen image by separating the background and damaged areas from the overall image thus resulting in retinal image enhancement and less processing time. In this paper, methods for segmenting colored retinal image are proposed to improve the quality of retinal image diagnosis. The methods generate two segmentation masks; i.e., background segmentation mask for extracting the background area and poor quality mask for removing the noisy areas from the retinal image. The standard retinal image databases DIARETDB0, DIARETDB1, STARE, DRIVE and some images obtained from ophthalmologists have been used to test the validation of the proposed segmentation technique. Experimental results indicate the introduced methods are effective and can lead to high segmentation accuracy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=retinal%20images" title="retinal images">retinal images</a>, <a href="https://publications.waset.org/abstracts/search?q=fundus%20images" title=" fundus images"> fundus images</a>, <a href="https://publications.waset.org/abstracts/search?q=diabetic%20retinopathy" title=" diabetic retinopathy"> diabetic retinopathy</a>, <a href="https://publications.waset.org/abstracts/search?q=background%20segmentation" title=" background segmentation"> background segmentation</a>, <a href="https://publications.waset.org/abstracts/search?q=damaged%20areas%20segmentation" title=" damaged areas segmentation"> damaged areas segmentation</a> </p> <a href="https://publications.waset.org/abstracts/12289/digital-retinal-images-background-and-damaged-areas-segmentation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12289.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">403</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">425</span> An Image Segmentation Algorithm for Gradient Target Based on Mean-Shift and Dictionary Learning</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yanwen%20Li">Yanwen Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Shuguo%20Xie"> Shuguo Xie</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In electromagnetic imaging, because of the diffraction limited system, the pixel values could change slowly near the edge of the image targets and they also change with the location in the same target. Using traditional digital image segmentation methods to segment electromagnetic gradient images could result in lots of errors because of this change in pixel values. To address this issue, this paper proposes a novel image segmentation and extraction algorithm based on Mean-Shift and dictionary learning. Firstly, the preliminary segmentation results from adaptive bandwidth Mean-Shift algorithm are expanded, merged and extracted. Then the overlap rate of the extracted image block is detected before determining a segmentation region with a single complete target. Last, the gradient edge of the extracted targets is recovered and reconstructed by using a dictionary-learning algorithm, while the final segmentation results are obtained which are very close to the gradient target in the original image. Both the experimental results and the simulated results show that the segmentation results are very accurate. The Dice coefficients are improved by 70% to 80% compared with the Mean-Shift only method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gradient%20image" title="gradient image">gradient image</a>, <a href="https://publications.waset.org/abstracts/search?q=segmentation%20and%20extract" title=" segmentation and extract"> segmentation and extract</a>, <a href="https://publications.waset.org/abstracts/search?q=mean-shift%20algorithm" title=" mean-shift algorithm"> mean-shift algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=dictionary%20iearning" title=" dictionary iearning"> dictionary iearning</a> </p> <a href="https://publications.waset.org/abstracts/74979/an-image-segmentation-algorithm-for-gradient-target-based-on-mean-shift-and-dictionary-learning" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74979.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">267</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">424</span> Effective Texture Features for Segmented Mammogram Images Based on Multi-Region of Interest Segmentation Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ramayanam%20Suresh">Ramayanam Suresh</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Nagaraja%20Rao"> A. Nagaraja Rao</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Eswara%20Reddy"> B. Eswara Reddy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Texture features of mammogram images are useful for finding masses or cancer cases in mammography, which have been used by radiologists. Textures are greatly succeeded for segmented images rather than normal images. It is necessary to perform segmentation for exclusive specification of cancer and non-cancer regions separately. Region of interest (ROI) is most commonly used technique for mammogram segmentation. Limitation of this method is that it is unable to explore segmentation for large collection of mammogram images. Therefore, this paper is proposed multi-ROI segmentation for addressing the above limitation. It supports greatly in finding the best texture features of mammogram images. Experimental study demonstrates the effectiveness of proposed work using benchmarked images. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=texture%20features" title="texture features">texture features</a>, <a href="https://publications.waset.org/abstracts/search?q=region%20of%20interest" title=" region of interest"> region of interest</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-ROI%20segmentation" title=" multi-ROI segmentation"> multi-ROI segmentation</a>, <a href="https://publications.waset.org/abstracts/search?q=benchmarked%20images" title=" benchmarked images "> benchmarked images </a> </p> <a href="https://publications.waset.org/abstracts/88666/effective-texture-features-for-segmented-mammogram-images-based-on-multi-region-of-interest-segmentation-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/88666.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">311</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">423</span> Review of the Software Used for 3D Volumetric Reconstruction of the Liver</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20Strakos">P. Strakos</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Jaros"> M. Jaros</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Karasek"> T. Karasek</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Kozubek"> T. Kozubek</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Vavra"> P. Vavra</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Jonszta"> T. Jonszta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In medical imaging, segmentation of different areas of human body like bones, organs, tissues, etc. is an important issue. Image segmentation allows isolating the object of interest for further processing that can lead for example to 3D model reconstruction of whole organs. Difficulty of this procedure varies from trivial for bones to quite difficult for organs like liver. The liver is being considered as one of the most difficult human body organ to segment. It is mainly for its complexity, shape versatility and proximity of other organs and tissues. Due to this facts usually substantial user effort has to be applied to obtain satisfactory results of the image segmentation. Process of image segmentation then deteriorates from automatic or semi-automatic to fairly manual one. In this paper, overview of selected available software applications that can handle semi-automatic image segmentation with further 3D volume reconstruction of human liver is presented. The applications are being evaluated based on the segmentation results of several consecutive DICOM images covering the abdominal area of the human body. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=image%20segmentation" title="image segmentation">image segmentation</a>, <a href="https://publications.waset.org/abstracts/search?q=semi-automatic" title=" semi-automatic"> semi-automatic</a>, <a href="https://publications.waset.org/abstracts/search?q=software" title=" software"> software</a>, <a href="https://publications.waset.org/abstracts/search?q=3D%20volumetric%20reconstruction" title=" 3D volumetric reconstruction"> 3D volumetric reconstruction</a> </p> <a href="https://publications.waset.org/abstracts/23701/review-of-the-software-used-for-3d-volumetric-reconstruction-of-the-liver" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23701.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">290</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">422</span> Vision-Based Hand Segmentation Techniques for Human-Computer Interaction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Jebali">M. Jebali</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Jemni"> M. Jemni</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work is the part of vision based hand gesture recognition system for Natural Human Computer Interface. Hand tracking and segmentation are the primary steps for any hand gesture recognition system. The aim of this paper is to develop robust and efficient hand segmentation algorithm such as an input to another system which attempt to bring the HCI performance nearby the human-human interaction, by modeling an intelligent sign language recognition system based on prediction in the context of dialogue between the system (avatar) and the interlocutor. For the purpose of hand segmentation, an overcoming occlusion approach has been proposed for superior results for detection of hand from an image. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=HCI" title="HCI">HCI</a>, <a href="https://publications.waset.org/abstracts/search?q=sign%20language%20recognition" title=" sign language recognition"> sign language recognition</a>, <a href="https://publications.waset.org/abstracts/search?q=object%20tracking" title=" object tracking"> object tracking</a>, <a href="https://publications.waset.org/abstracts/search?q=hand%20segmentation" title=" hand segmentation"> hand segmentation</a> </p> <a href="https://publications.waset.org/abstracts/26490/vision-based-hand-segmentation-techniques-for-human-computer-interaction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26490.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">412</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">421</span> Abdominal Organ Segmentation in CT Images Based On Watershed Transform and Mosaic Image</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Belgherbi%20Aicha">Belgherbi Aicha</a>, <a href="https://publications.waset.org/abstracts/search?q=Hadjidj%20Ismahen"> Hadjidj Ismahen</a>, <a href="https://publications.waset.org/abstracts/search?q=Bessaid%20Abdelhafid"> Bessaid Abdelhafid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Accurate Liver, spleen and kidneys segmentation in abdominal CT images is one of the most important steps for computer aided abdominal organs pathology diagnosis. In this paper, we have proposed a new semi-automatic algorithm for Liver, spleen and kidneys area extraction in abdominal CT images. Our proposed method is based on hierarchical segmentation and watershed algorithm. In our approach, a powerful technique has been designed to suppress over-segmentation based on mosaic image and on the computation of the watershed transform. The algorithm is currency in two parts. In the first, we seek to improve the quality of the gradient-mosaic image. In this step, we propose a method for improving the gradient-mosaic image by applying the anisotropic diffusion filter followed by the morphological filters. Thereafter we proceed to the hierarchical segmentation of the liver, spleen and kidney. To validate the segmentation technique proposed, we have tested it on several images. Our segmentation approach is evaluated by comparing our results with the manual segmentation performed by an expert. The experimental results are described in the last part of this work. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anisotropic%20diffusion%20filter" title="anisotropic diffusion filter">anisotropic diffusion filter</a>, <a href="https://publications.waset.org/abstracts/search?q=CT%20images" title=" CT images"> CT images</a>, <a href="https://publications.waset.org/abstracts/search?q=morphological%20filter" title=" morphological filter"> morphological filter</a>, <a href="https://publications.waset.org/abstracts/search?q=mosaic%20image" title=" mosaic image"> mosaic image</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-abdominal%20organ%20segmentation" title=" multi-abdominal organ segmentation"> multi-abdominal organ segmentation</a>, <a href="https://publications.waset.org/abstracts/search?q=mosaic%20image" title=" mosaic image"> mosaic image</a>, <a href="https://publications.waset.org/abstracts/search?q=the%20watershed%20algorithm" title=" the watershed algorithm"> the watershed algorithm</a> </p> <a href="https://publications.waset.org/abstracts/20011/abdominal-organ-segmentation-in-ct-images-based-on-watershed-transform-and-mosaic-image" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20011.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">499</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">420</span> Image Segmentation Techniques: Review</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lindani%20Mbatha">Lindani Mbatha</a>, <a href="https://publications.waset.org/abstracts/search?q=Suvendi%20Rimer"> Suvendi Rimer</a>, <a href="https://publications.waset.org/abstracts/search?q=Mpho%20Gololo"> Mpho Gololo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Image segmentation is the process of dividing an image into several sections, such as the object's background and the foreground. It is a critical technique in both image-processing tasks and computer vision. Most of the image segmentation algorithms have been developed for gray-scale images and little research and algorithms have been developed for the color images. Most image segmentation algorithms or techniques vary based on the input data and the application. Nearly all of the techniques are not suitable for noisy environments. Most of the work that has been done uses the Markov Random Field (MRF), which involves the computations and is said to be robust to noise. In the past recent years' image segmentation has been brought to tackle problems such as easy processing of an image, interpretation of the contents of an image, and easy analysing of an image. This article reviews and summarizes some of the image segmentation techniques and algorithms that have been developed in the past years. The techniques include neural networks (CNN), edge-based techniques, region growing, clustering, and thresholding techniques and so on. The advantages and disadvantages of medical ultrasound image segmentation techniques are also discussed. The article also addresses the applications and potential future developments that can be done around image segmentation. This review article concludes with the fact that no technique is perfectly suitable for the segmentation of all different types of images, but the use of hybrid techniques yields more accurate and efficient results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=clustering-based" title="clustering-based">clustering-based</a>, <a href="https://publications.waset.org/abstracts/search?q=convolution-network" title=" convolution-network"> convolution-network</a>, <a href="https://publications.waset.org/abstracts/search?q=edge-based" title=" edge-based"> edge-based</a>, <a href="https://publications.waset.org/abstracts/search?q=region-growing" title=" region-growing"> region-growing</a> </p> <a href="https://publications.waset.org/abstracts/166513/image-segmentation-techniques-review" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/166513.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">97</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">419</span> Morphology Operation and Discrete Wavelet Transform for Blood Vessels Segmentation in Retina Fundus</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rita%20Magdalena">Rita Magdalena</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20K.%20Caecar%20Pratiwi"> N. K. Caecar Pratiwi</a>, <a href="https://publications.waset.org/abstracts/search?q=Yunendah%20Nur%20Fuadah"> Yunendah Nur Fuadah</a>, <a href="https://publications.waset.org/abstracts/search?q=Sofia%20Saidah"> Sofia Saidah</a>, <a href="https://publications.waset.org/abstracts/search?q=Bima%20Sakti"> Bima Sakti</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Vessel segmentation of retinal fundus is important for biomedical sciences in diagnosing ailments related to the eye. Segmentation can simplify medical experts in diagnosing retinal fundus image state. Therefore, in this study, we designed a software using MATLAB which enables the segmentation of the retinal blood vessels on retinal fundus images. There are two main steps in the process of segmentation. The first step is image preprocessing that aims to improve the quality of the image to be optimum segmented. The second step is the image segmentation in order to perform the extraction process to retrieve the retina’s blood vessel from the eye fundus image. The image segmentation methods that will be analyzed in this study are Morphology Operation, Discrete Wavelet Transform and combination of both. The amount of data that used in this project is 40 for the retinal image and 40 for manually segmentation image. After doing some testing scenarios, the average accuracy for Morphology Operation method is 88.46 % while for Discrete Wavelet Transform is 89.28 %. By combining the two methods mentioned in later, the average accuracy was increased to 89.53 %. The result of this study is an image processing system that can segment the blood vessels in retinal fundus with high accuracy and low computation time. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=discrete%20wavelet%20transform" title="discrete wavelet transform">discrete wavelet transform</a>, <a href="https://publications.waset.org/abstracts/search?q=fundus%20retina" title=" fundus retina"> fundus retina</a>, <a href="https://publications.waset.org/abstracts/search?q=morphology%20operation" title=" morphology operation"> morphology operation</a>, <a href="https://publications.waset.org/abstracts/search?q=segmentation" title=" segmentation"> segmentation</a>, <a href="https://publications.waset.org/abstracts/search?q=vessel" title=" vessel"> vessel</a> </p> <a href="https://publications.waset.org/abstracts/105620/morphology-operation-and-discrete-wavelet-transform-for-blood-vessels-segmentation-in-retina-fundus" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/105620.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">195</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">418</span> Computer-Aided Detection of Liver and Spleen from CT Scans using Watershed Algorithm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Belgherbi%20Aicha">Belgherbi Aicha</a>, <a href="https://publications.waset.org/abstracts/search?q=Bessaid%20Abdelhafid"> Bessaid Abdelhafid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the recent years a great deal of research work has been devoted to the development of semi-automatic and automatic techniques for the analysis of abdominal CT images. The first and fundamental step in all these studies is the semi-automatic liver and spleen segmentation that is still an open problem. In this paper, a semi-automatic liver and spleen segmentation method by the mathematical morphology based on watershed algorithm has been proposed. Our algorithm is currency in two parts. In the first, we seek to determine the region of interest by applying the morphological to extract the liver and spleen. The second step consists to improve the quality of the image gradient. In this step, we propose a method for improving the image gradient to reduce the over-segmentation problem by applying the spatial filters followed by the morphological filters. Thereafter we proceed to the segmentation of the liver, spleen. The aim of this work is to develop a method for semi-automatic segmentation liver and spleen based on watershed algorithm, improve the accuracy and the robustness of the liver and spleen segmentation and evaluate a new semi-automatic approach with the manual for liver segmentation. To validate the segmentation technique proposed, we have tested it on several images. Our segmentation approach is evaluated by comparing our results with the manual segmentation performed by an expert. The experimental results are described in the last part of this work. The system has been evaluated by computing the sensitivity and specificity between the semi-automatically segmented (liver and spleen) contour and the manually contour traced by radiological experts. Liver segmentation has achieved the sensitivity and specificity; sens Liver=96% and specif Liver=99% respectively. Spleen segmentation achieves similar, promising results sens Spleen=95% and specif Spleen=99%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CT%20images" title="CT images">CT images</a>, <a href="https://publications.waset.org/abstracts/search?q=liver%20and%20spleen%20segmentation" title=" liver and spleen segmentation"> liver and spleen segmentation</a>, <a href="https://publications.waset.org/abstracts/search?q=anisotropic%20diffusion%20filter" title=" anisotropic diffusion filter"> anisotropic diffusion filter</a>, <a href="https://publications.waset.org/abstracts/search?q=morphological%20filters" title=" morphological filters"> morphological filters</a>, <a href="https://publications.waset.org/abstracts/search?q=watershed%20algorithm" title=" watershed algorithm"> watershed algorithm</a> </p> <a href="https://publications.waset.org/abstracts/7381/computer-aided-detection-of-liver-and-spleen-from-ct-scans-using-watershed-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7381.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">325</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">417</span> A Neural Approach for Color-Textured Images Segmentation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khalid%20Salhi">Khalid Salhi</a>, <a href="https://publications.waset.org/abstracts/search?q=El%20Miloud%20Jaara"> El Miloud Jaara</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Talibi%20Alaoui"> Mohammed Talibi Alaoui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we present a neural approach for unsupervised natural color-texture image segmentation, which is based on both Kohonen maps and mathematical morphology, using a combination of the texture and the image color information of the image, namely, the fractal features based on fractal dimension are selected to present the information texture, and the color features presented in RGB color space. These features are then used to train the network Kohonen, which will be represented by the underlying probability density function, the segmentation of this map is made by morphological watershed transformation. The performance of our color-texture segmentation approach is compared first, to color-based methods or texture-based methods only, and then to k-means method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=segmentation" title="segmentation">segmentation</a>, <a href="https://publications.waset.org/abstracts/search?q=color-texture" title=" color-texture"> color-texture</a>, <a href="https://publications.waset.org/abstracts/search?q=neural%20networks" title=" neural networks"> neural networks</a>, <a href="https://publications.waset.org/abstracts/search?q=fractal" title=" fractal"> fractal</a>, <a href="https://publications.waset.org/abstracts/search?q=watershed" title=" watershed"> watershed</a> </p> <a href="https://publications.waset.org/abstracts/51740/a-neural-approach-for-color-textured-images-segmentation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51740.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">347</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">416</span> Defect Detection for Nanofibrous Images with Deep Learning-Based Approaches</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gaokai%20Liu">Gaokai Liu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Automatic defect detection for nanomaterial images is widely required in industrial scenarios. Deep learning approaches are considered as the most effective solutions for the great majority of image-based tasks. In this paper, an edge guidance network for defect segmentation is proposed. First, the encoder path with multiple convolution and downsampling operations is applied to the acquisition of shared features. Then two decoder paths both are connected to the last convolution layer of the encoder and supervised by the edge and segmentation labels, respectively, to guide the whole training process. Meanwhile, the edge and encoder outputs from the same stage are concatenated to the segmentation corresponding part to further tune the segmentation result. Finally, the effectiveness of the proposed method is verified via the experiments on open nanofibrous datasets. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=deep%20learning" title="deep learning">deep learning</a>, <a href="https://publications.waset.org/abstracts/search?q=defect%20detection" title=" defect detection"> defect detection</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20segmentation" title=" image segmentation"> image segmentation</a>, <a href="https://publications.waset.org/abstracts/search?q=nanomaterials" title=" nanomaterials"> nanomaterials</a> </p> <a href="https://publications.waset.org/abstracts/133093/defect-detection-for-nanofibrous-images-with-deep-learning-based-approaches" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/133093.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">149</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">415</span> A Distinct Method Based on Mamba-Unet for Brain Tumor Image Segmentation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Djallel%20Bouamama">Djallel Bouamama</a>, <a href="https://publications.waset.org/abstracts/search?q=Yasser%20R.%20Haddadi"> Yasser R. Haddadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Accurate brain tumor segmentation is crucial for diagnosis and treatment planning, yet it remains a challenging task due to the variability in tumor shapes and intensities. This paper introduces a distinct approach to brain tumor image segmentation by leveraging an advanced architecture known as Mamba-Unet. Building on the well-established U-Net framework, Mamba-Unet incorporates distinct design enhancements to improve segmentation performance. Our proposed method integrates a multi-scale attention mechanism and a hybrid loss function to effectively capture fine-grained details and contextual information in brain MRI scans. We demonstrate that Mamba-Unet significantly enhances segmentation accuracy compared to conventional U-Net models by utilizing a comprehensive dataset of annotated brain MRI scans. Quantitative evaluations reveal that Mamba-Unet surpasses traditional U-Net architectures and other contemporary segmentation models regarding Dice coefficient, sensitivity, and specificity. The improvements are attributed to the method's ability to manage class imbalance better and resolve complex tumor boundaries. This work advances the state-of-the-art in brain tumor segmentation and holds promise for improving clinical workflows and patient outcomes through more precise and reliable tumor detection. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=brain%20tumor%20classification" title="brain tumor classification">brain tumor classification</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20segmentation" title=" image segmentation"> image segmentation</a>, <a href="https://publications.waset.org/abstracts/search?q=CNN" title=" CNN"> CNN</a>, <a href="https://publications.waset.org/abstracts/search?q=U-NET" title=" U-NET"> U-NET</a> </p> <a href="https://publications.waset.org/abstracts/192073/a-distinct-method-based-on-mamba-unet-for-brain-tumor-image-segmentation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/192073.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">34</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">414</span> Design of a Graphical User Interface for Data Preprocessing and Image Segmentation Process in 2D MRI Images</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Enver%20Kucukkulahli">Enver Kucukkulahli</a>, <a href="https://publications.waset.org/abstracts/search?q=Pakize%20Erdogmus"> Pakize Erdogmus</a>, <a href="https://publications.waset.org/abstracts/search?q=Kemal%20Polat"> Kemal Polat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The 2D image segmentation is a significant process in finding a suitable region in medical images such as MRI, PET, CT etc. In this study, we have focused on 2D MRI images for image segmentation process. We have designed a GUI (graphical user interface) written in MATLABTM for 2D MRI images. In this program, there are two different interfaces including data pre-processing and image clustering or segmentation. In the data pre-processing section, there are median filter, average filter, unsharp mask filter, Wiener filter, and custom filter (a filter that is designed by user in MATLAB). As for the image clustering, there are seven different image segmentations for 2D MR images. These image segmentation algorithms are as follows: PSO (particle swarm optimization), GA (genetic algorithm), Lloyds algorithm, k-means, the combination of Lloyds and k-means, mean shift clustering, and finally BBO (Biogeography Based Optimization). To find the suitable cluster number in 2D MRI, we have designed the histogram based cluster estimation method and then applied to these numbers to image segmentation algorithms to cluster an image automatically. Also, we have selected the best hybrid method for each 2D MR images thanks to this GUI software. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=image%20segmentation" title="image segmentation">image segmentation</a>, <a href="https://publications.waset.org/abstracts/search?q=clustering" title=" clustering"> clustering</a>, <a href="https://publications.waset.org/abstracts/search?q=GUI" title=" GUI"> GUI</a>, <a href="https://publications.waset.org/abstracts/search?q=2D%20MRI" title=" 2D MRI "> 2D MRI </a> </p> <a href="https://publications.waset.org/abstracts/68097/design-of-a-graphical-user-interface-for-data-preprocessing-and-image-segmentation-process-in-2d-mri-images" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68097.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">377</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">413</span> Meta Mask Correction for Nuclei Segmentation in Histopathological Image</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jiangbo%20Shi">Jiangbo Shi</a>, <a href="https://publications.waset.org/abstracts/search?q=Zeyu%20Gao"> Zeyu Gao</a>, <a href="https://publications.waset.org/abstracts/search?q=Chen%20Li"> Chen Li</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nuclei segmentation is a fundamental task in digital pathology analysis and can be automated by deep learning-based methods. However, the development of such an automated method requires a large amount of data with precisely annotated masks which is hard to obtain. Training with weakly labeled data is a popular solution for reducing the workload of annotation. In this paper, we propose a novel meta-learning-based nuclei segmentation method which follows the label correction paradigm to leverage data with noisy masks. Specifically, we design a fully conventional meta-model that can correct noisy masks by using a small amount of clean meta-data. Then the corrected masks are used to supervise the training of the segmentation model. Meanwhile, a bi-level optimization method is adopted to alternately update the parameters of the main segmentation model and the meta-model. Extensive experimental results on two nuclear segmentation datasets show that our method achieves the state-of-the-art result. In particular, in some noise scenarios, it even exceeds the performance of training on supervised data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=deep%20learning" title="deep learning">deep learning</a>, <a href="https://publications.waset.org/abstracts/search?q=histopathological%20image" title=" histopathological image"> histopathological image</a>, <a href="https://publications.waset.org/abstracts/search?q=meta-learning" title=" meta-learning"> meta-learning</a>, <a href="https://publications.waset.org/abstracts/search?q=nuclei%20segmentation" title=" nuclei segmentation"> nuclei segmentation</a>, <a href="https://publications.waset.org/abstracts/search?q=weak%20annotations" title=" weak annotations"> weak annotations</a> </p> <a href="https://publications.waset.org/abstracts/136409/meta-mask-correction-for-nuclei-segmentation-in-histopathological-image" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/136409.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">140</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">412</span> Segmentation of the Liver and Spleen From Abdominal CT Images Using Watershed Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Belgherbi%20Aicha">Belgherbi Aicha</a>, <a href="https://publications.waset.org/abstracts/search?q=Hadjidj%20Ismahen"> Hadjidj Ismahen</a>, <a href="https://publications.waset.org/abstracts/search?q=Bessaid%20Abdelhafid"> Bessaid Abdelhafid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The phase of segmentation is an important step in the processing and interpretation of medical images. In this paper, we focus on the segmentation of liver and spleen from the abdomen computed tomography (CT) images. The importance of our study comes from the fact that the segmentation of ROI from CT images is usually a difficult task. This difficulty is the gray’s level of which is similar to the other organ also the ROI are connected to the ribs, heart, kidneys, etc. Our proposed method is based on the anatomical information and mathematical morphology tools used in the image processing field. At first, we try to remove the surrounding and connected organs and tissues by applying morphological filters. This first step makes the extraction of interest regions easier. The second step consists of improving the quality of the image gradient. In this step, we propose a method for improving the image gradient to reduce these deficiencies by applying the spatial filters followed by the morphological filters. Thereafter we proceed to the segmentation of the liver, spleen. To validate the segmentation technique proposed, we have tested it on several images. Our segmentation approach is evaluated by comparing our results with the manual segmentation performed by an expert. The experimental results are described in the last part of this work.The system has been evaluated by computing the sensitivity and specificity between the semi-automatically segmented (liver and spleen) contour and the manually contour traced by radiological experts. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CT%20images" title="CT images">CT images</a>, <a href="https://publications.waset.org/abstracts/search?q=liver%20and%20spleen%20segmentation" title=" liver and spleen segmentation"> liver and spleen segmentation</a>, <a href="https://publications.waset.org/abstracts/search?q=anisotropic%20diffusion%20filter" title=" anisotropic diffusion filter"> anisotropic diffusion filter</a>, <a href="https://publications.waset.org/abstracts/search?q=morphological%20filters" title=" morphological filters"> morphological filters</a>, <a href="https://publications.waset.org/abstracts/search?q=watershed%20algorithm" title=" watershed algorithm"> watershed algorithm</a> </p> <a href="https://publications.waset.org/abstracts/19950/segmentation-of-the-liver-and-spleen-from-abdominal-ct-images-using-watershed-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19950.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">495</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">411</span> Contrastive Learning for Unsupervised Object Segmentation in Sequential Images</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tian%20Zhang">Tian Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Unsupervised object segmentation aims at segmenting objects in sequential images and obtaining the mask of each object without any manual intervention. Unsupervised segmentation remains a challenging task due to the lack of prior knowledge about these objects. Previous methods often require manually specifying the action of each object, which is often difficult to obtain. Instead, this paper does not need action information of objects and automatically learns the actions and relations among objects from the structured environment. To obtain the object segmentation of sequential images, the relationships between objects and images are extracted to infer the action and interaction of objects based on the multi-head attention mechanism. Three types of objects’ relationships in the object segmentation task are proposed: the relationship between objects in the same frame, the relationship between objects in two frames, and the relationship between objects and historical information. Based on these relationships, the proposed model (1) is effective in multiple objects segmentation tasks, (2) just needs images as input, and (3) produces better segmentation results as more relationships are considered. The experimental results on multiple datasets show that this paper’s method achieves state-of-art performance. The quantitative and qualitative analyses of the result are conducted. The proposed method could be easily extended to other similar applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=unsupervised%20object%20segmentation" title="unsupervised object segmentation">unsupervised object segmentation</a>, <a href="https://publications.waset.org/abstracts/search?q=attention%20mechanism" title=" attention mechanism"> attention mechanism</a>, <a href="https://publications.waset.org/abstracts/search?q=contrastive%20learning" title=" contrastive learning"> contrastive learning</a>, <a href="https://publications.waset.org/abstracts/search?q=structured%20environment" title=" structured environment"> structured environment</a> </p> <a href="https://publications.waset.org/abstracts/148401/contrastive-learning-for-unsupervised-object-segmentation-in-sequential-images" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/148401.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">110</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">410</span> The Influence of Noise on Aerial Image Semantic Segmentation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pengchao%20Wei">Pengchao Wei</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiangzhong%20Fang"> Xiangzhong Fang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Noise is ubiquitous in this world. Denoising is an essential technology, especially in image semantic segmentation, where noises are generally categorized into two main types i.e. feature noise and label noise. The main focus of this paper is aiming at modeling label noise, investigating the behaviors of different types of label noise on image semantic segmentation tasks using K-Nearest-Neighbor and Convolutional Neural Network classifier. The performance without label noise and with is evaluated and illustrated in this paper. In addition to that, the influence of feature noise on the image semantic segmentation task is researched as well and a feature noise reduction method is applied to mitigate its influence in the learning procedure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=convolutional%20neural%20network" title="convolutional neural network">convolutional neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=denoising" title=" denoising"> denoising</a>, <a href="https://publications.waset.org/abstracts/search?q=feature%20noise" title=" feature noise"> feature noise</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20semantic%20segmentation" title=" image semantic segmentation"> image semantic segmentation</a>, <a href="https://publications.waset.org/abstracts/search?q=k-nearest-neighbor" title=" k-nearest-neighbor"> k-nearest-neighbor</a>, <a href="https://publications.waset.org/abstracts/search?q=label%20noise" title=" label noise"> label noise</a> </p> <a href="https://publications.waset.org/abstracts/141479/the-influence-of-noise-on-aerial-image-semantic-segmentation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/141479.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">220</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">409</span> Maximum Entropy Based Image Segmentation of Human Skin Lesion</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sheema%20Shuja%20Khattak">Sheema Shuja Khattak</a>, <a href="https://publications.waset.org/abstracts/search?q=Gule%20Saman"> Gule Saman</a>, <a href="https://publications.waset.org/abstracts/search?q=Imran%20Khan"> Imran Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdus%20Salam"> Abdus Salam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Image segmentation plays an important role in medical imaging applications. Therefore, accurate methods are needed for the successful segmentation of medical images for diagnosis and detection of various diseases. In this paper, we have used maximum entropy to achieve image segmentation. Maximum entropy has been calculated using Shannon, Renyi, and Tsallis entropies. This work has novelty based on the detection of skin lesion caused by the bite of a parasite called Sand Fly causing the disease is called Cutaneous Leishmaniasis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=shannon" title="shannon">shannon</a>, <a href="https://publications.waset.org/abstracts/search?q=maximum%20entropy" title=" maximum entropy"> maximum entropy</a>, <a href="https://publications.waset.org/abstracts/search?q=Renyi" title=" Renyi"> Renyi</a>, <a href="https://publications.waset.org/abstracts/search?q=Tsallis%20entropy" title=" Tsallis entropy"> Tsallis entropy</a> </p> <a href="https://publications.waset.org/abstracts/19990/maximum-entropy-based-image-segmentation-of-human-skin-lesion" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19990.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">463</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">408</span> Multi-Atlas Segmentation Based on Dynamic Energy Model: Application to Brain MR Images</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jie%20Huo">Jie Huo</a>, <a href="https://publications.waset.org/abstracts/search?q=Jonathan%20Wu"> Jonathan Wu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Segmentation of anatomical structures in medical images is essential for scientific inquiry into the complex relationships between biological structure and clinical diagnosis, treatment and assessment. As a method of incorporating the prior knowledge and the anatomical structure similarity between a target image and atlases, multi-atlas segmentation has been successfully applied in segmenting a variety of medical images, including the brain, cardiac, and abdominal images. The basic idea of multi-atlas segmentation is to transfer the labels in atlases to the coordinate of the target image by matching the target patch to the atlas patch in the neighborhood. However, this technique is limited by the pairwise registration between target image and atlases. In this paper, a novel multi-atlas segmentation approach is proposed by introducing a dynamic energy model. First, the target is mapped to each atlas image by minimizing the dynamic energy function, then the segmentation of target image is generated by weighted fusion based on the energy. The method is tested on MICCAI 2012 Multi-Atlas Labeling Challenge dataset which includes 20 target images and 15 atlases images. The paper also analyzes the influence of different parameters of the dynamic energy model on the segmentation accuracy and measures the dice coefficient by using different feature terms with the energy model. The highest mean dice coefficient obtained with the proposed method is 0.861, which is competitive compared with the recently published method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=brain%20MRI%20segmentation" title="brain MRI segmentation">brain MRI segmentation</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20energy%20model" title=" dynamic energy model"> dynamic energy model</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-atlas%20segmentation" title=" multi-atlas segmentation"> multi-atlas segmentation</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20minimization" title=" energy minimization"> energy minimization</a> </p> <a href="https://publications.waset.org/abstracts/68716/multi-atlas-segmentation-based-on-dynamic-energy-model-application-to-brain-mr-images" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68716.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">336</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=multiresolution%20segmentation&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=multiresolution%20segmentation&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=multiresolution%20segmentation&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=multiresolution%20segmentation&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=multiresolution%20segmentation&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=multiresolution%20segmentation&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=multiresolution%20segmentation&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=multiresolution%20segmentation&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=multiresolution%20segmentation&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=multiresolution%20segmentation&amp;page=14">14</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=multiresolution%20segmentation&amp;page=15">15</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=multiresolution%20segmentation&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10