CINXE.COM
Search results for: extraction chromatography
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: extraction chromatography</title> <meta name="description" content="Search results for: extraction chromatography"> <meta name="keywords" content="extraction chromatography"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="extraction chromatography" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="extraction chromatography"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 2646</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: extraction chromatography</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2646</span> Study of Chemical Compounds of Garlic</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20B.%20Bazaralieva">A. B. Bazaralieva</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20A.%20Turgumbayeva"> A. A. Turgumbayeva</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The phytosubstance from garlic was obtained by extraction with liquid carbon dioxide under critical conditions. Methods of processing raw materials are proposed, and the chemical composition of garlic is studied by gas chromatography and mass spectrometry. The garlic extract's composition was determined using gas chromatography (GC) and gas chromatography-mass spectrophotometry (GC-MS). The phytosubstance had 54 constituents. The extract included the following main compounds: Manool (39.56%), Viridifrolol (7%), Podocarpa-1,8,11,13-tetraen-3-one, 14-isopropyl-1,13-dimethoxy- 5,15 percent, (+)-2-Bornanone (4.29%), Thujone (3.49%), Linolic acid ethyl ester (3.41%), and 12-O-Methylcarn. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Allium%20sativum" title="Allium sativum">Allium sativum</a>, <a href="https://publications.waset.org/abstracts/search?q=bioactive%20compounds%20of%20garlic" title=" bioactive compounds of garlic"> bioactive compounds of garlic</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20dioxide%20extraction%20of%20garlic" title=" carbon dioxide extraction of garlic"> carbon dioxide extraction of garlic</a>, <a href="https://publications.waset.org/abstracts/search?q=GS-MS%20method" title=" GS-MS method"> GS-MS method</a> </p> <a href="https://publications.waset.org/abstracts/152011/study-of-chemical-compounds-of-garlic" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152011.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">112</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2645</span> Study of Chemical Compounds of Garlic</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bazaraliyeva%20Aigerim%20Bakytzhanovna">Bazaraliyeva Aigerim Bakytzhanovna</a>, <a href="https://publications.waset.org/abstracts/search?q=Turgumbayeva%20Aknur%20Amanbekovna"> Turgumbayeva Aknur Amanbekovna</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The phytosubstance from garlic was obtained by extraction with liquid carbon dioxide under critical conditions. Methods of processing raw materials are proposed, and the chemical composition of garlic is studied by gas chromatography and mass spectrometry. The garlic extract's composition was determined using gas chromatography (GC) and gas chromatography-mass spectrophotometry (GC-MS). The phytosubstance had 54 constituents. The extract included the following main compounds: Manool (39.56%), Viridifrolol (7%), Podocarpa-1,8,11,13-tetraen-3-one, 14-isopropyl-1,13-dimethoxy- 5,15 percent, (+)-2-Bornanone (4.29%), Thujone (3.49%), Linolic acid ethyl ester (3.41%), and 12-O-Methylcarn. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=allium%20sativum" title="allium sativum">allium sativum</a>, <a href="https://publications.waset.org/abstracts/search?q=bioactive%20compounds%20of%20garlic" title=" bioactive compounds of garlic"> bioactive compounds of garlic</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20dioxide%20extraction%20of%20garlic" title=" carbon dioxide extraction of garlic"> carbon dioxide extraction of garlic</a>, <a href="https://publications.waset.org/abstracts/search?q=GS-MS%20method" title=" GS-MS method"> GS-MS method</a> </p> <a href="https://publications.waset.org/abstracts/151198/study-of-chemical-compounds-of-garlic" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/151198.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">80</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2644</span> Use of Fabric Phase Sorptive Extraction with Gas Chromatography-Mass Spectrometry for the Determination of Organochlorine Pesticides in Various Aqueous and Juice Samples</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ramandeep%20Kaur">Ramandeep Kaur</a>, <a href="https://publications.waset.org/abstracts/search?q=Ashok%20Kumar%20Malik"> Ashok Kumar Malik</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fabric Phase Sorptive Extraction (FPSE) combined with Gas chromatography Mass Spectrometry (GCMS) has been developed for the determination of nineteen organochlorine pesticides in various aqueous samples. The method consolidates the features of sol-gel derived microextraction sorbents with rich surface chemistry of cellulose fabric substrate which could directly extract sample from complex sample matrices and incredibly improve the operation with decreased pretreatment time. Some vital parameters such as kind and volume of extraction solvent and extraction time were examinedand optimized. Calibration curves were obtained in the concentration range 0.5-500 ng/mL. Under the optimum conditions, the limits of detection (LODs) were in the range 0.033 ng/mL to 0.136 ng/mL. The relative standard deviations (RSDs) for extraction of 10 ng/mL 0f OCPs were less than 10%. The developed method has been applied for the quantification of these compounds in aqueous and fruit juice samples. The results obtained proved the present method to be rapid and feasible for the determination of organochlorine pesticides in aqueous samples. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fabric%20phase%20sorptive%20extraction" title="fabric phase sorptive extraction">fabric phase sorptive extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20chromatography-mass%20spectrometry" title=" gas chromatography-mass spectrometry"> gas chromatography-mass spectrometry</a>, <a href="https://publications.waset.org/abstracts/search?q=organochlorine%20pesticides" title=" organochlorine pesticides"> organochlorine pesticides</a>, <a href="https://publications.waset.org/abstracts/search?q=sample%20pretreatment" title=" sample pretreatment"> sample pretreatment</a> </p> <a href="https://publications.waset.org/abstracts/80494/use-of-fabric-phase-sorptive-extraction-with-gas-chromatography-mass-spectrometry-for-the-determination-of-organochlorine-pesticides-in-various-aqueous-and-juice-samples" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80494.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">484</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2643</span> Microwave Accelerated Simultaneous Distillation –Extraction: Preparative Recovery of Volatiles from Food Products</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ferhat%20Mohamed">Ferhat Mohamed</a>, <a href="https://publications.waset.org/abstracts/search?q=Boukhatem%20Mohamed%20Nadjib"> Boukhatem Mohamed Nadjib</a>, <a href="https://publications.waset.org/abstracts/search?q=Chemat%20Farid"> Chemat Farid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Simultaneous distillation–extraction (SDE) is routinely used by analysts for sample preparation prior to gas chromatography analysis. In this work, a new process design and operation for microwave assisted simultaneous distillation – solvent extraction (MW-SDE) of volatile compounds was developed. Using the proposed method, isolation, extraction and concentration of volatile compounds can be carried out in a single step. To demonstrate its feasibility, MW-SDE was compared with the conventional technique, Simultaneous distillation–extraction (SDE), for gas chromatography-mass spectrometry (GC-MS) analysis of volatile compounds in a fresh orange juice and a dry spice “carvi seeds”. SDE method required long time (3 h) to isolate the volatile compounds, and large amount of organic solvent (200 mL of hexane) for further extraction, while MW-SDE needed little time (only 30 min) to prepare sample, and less amount of organic solvent (10 mL of hexane). These results show that MW-SDE–GC-MS is a simple, rapid and solvent-less method for determination of volatile compounds from aromatic plants. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=essential%20oil" title="essential oil">essential oil</a>, <a href="https://publications.waset.org/abstracts/search?q=extraction" title=" extraction"> extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=distillation" title=" distillation"> distillation</a>, <a href="https://publications.waset.org/abstracts/search?q=carvi%20seeds" title=" carvi seeds"> carvi seeds</a> </p> <a href="https://publications.waset.org/abstracts/30977/microwave-accelerated-simultaneous-distillation-extraction-preparative-recovery-of-volatiles-from-food-products" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30977.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">560</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2642</span> Application of extraction chromatography to the separation of Sc, Zr and Sn isotopes from target materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Steffen%20Happel">Steffen Happel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Non-standard isotopes such as Sc-44/47, Zr-89, and Sn-117mare finding interest is increasing in radiopharmaceutical applications. Methods for the separation of these elements from typical target materials were developed. The methods used in this paper are based on the use of extraction chromatographic resins such as UTEVA, TBP, and DGA resin. Information on the selectivity of the resins (Dw values of selected elements in HCl and HNO3 of varying concentration) will be presented as well as results of the method development such as elution studies, chemical recoveries, and decontamination factors. Developed methods are based on the use of vacuum supported separation allowing for fast and selective separation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=elution" title="elution">elution</a>, <a href="https://publications.waset.org/abstracts/search?q=extraction%20chromatography" title=" extraction chromatography"> extraction chromatography</a>, <a href="https://publications.waset.org/abstracts/search?q=radiopharmacy" title=" radiopharmacy"> radiopharmacy</a>, <a href="https://publications.waset.org/abstracts/search?q=decontamination%20factors" title=" decontamination factors"> decontamination factors</a> </p> <a href="https://publications.waset.org/abstracts/4334/application-of-extraction-chromatography-to-the-separation-of-sc-zr-and-sn-isotopes-from-target-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4334.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">468</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2641</span> Study on Meristem Culture of Purwoceng (Pimpinella pruatjan Molk.) and Its Stigmasterol Detected by Thin Layer Chromatography</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Totik%20Sri%20Mariani">Totik Sri Mariani</a>, <a href="https://publications.waset.org/abstracts/search?q=Sukrasno%20Isna"> Sukrasno Isna</a>, <a href="https://publications.waset.org/abstracts/search?q=Tet%20Fatt%20Chia"> Tet Fatt Chia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Purwoceng (Pimpinella pruatjan Molk) is a legend plant used for increasing stamina by Kings in Java Island, Indonesia. Purpose of this study was to perform meristem culture and detected its stigmasterol by thin layer chromatography (TLC). Our result show that meristem culture could be propagated and grew into plantlet. After extracting intact acclimatized plant derived from meristem culture by hexane, we could detected stigmasterol by TLC. For suggestion, our extraction and TLC method could be used for detecting stigmasterol in others plant. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=purwoceng%20%28pimpinella%20pruatjan%29" title="purwoceng (pimpinella pruatjan)">purwoceng (pimpinella pruatjan)</a>, <a href="https://publications.waset.org/abstracts/search?q=meristem%20culture" title=" meristem culture"> meristem culture</a>, <a href="https://publications.waset.org/abstracts/search?q=extraction" title=" extraction"> extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=thin%20layer%20chromatography" title=" thin layer chromatography"> thin layer chromatography</a> </p> <a href="https://publications.waset.org/abstracts/36184/study-on-meristem-culture-of-purwoceng-pimpinella-pruatjan-molk-and-its-stigmasterol-detected-by-thin-layer-chromatography" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36184.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">430</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2640</span> Effects of Pressure and Temperature on the Extraction of Benzyl Isothiocyanate by Supercritical Fluids from Tropaeolum majus L. Leaves</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Espinoza%20S.%20Clara">Espinoza S. Clara</a>, <a href="https://publications.waset.org/abstracts/search?q=Gamarra%20Q.%20Flor"> Gamarra Q. Flor</a>, <a href="https://publications.waset.org/abstracts/search?q=Marianela%20F.%20Ramos%20Quispe%20S.%20Miguel"> Marianela F. Ramos Quispe S. Miguel</a>, <a href="https://publications.waset.org/abstracts/search?q=Flores%20R.%20Omar"> Flores R. Omar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <em>Tropaeolum majus</em> L. is a native plant to South and Central America, used since ancient times by our ancestors to combat different diseases. Glucotropaeolonin is one of its main components, which when hydrolyzed, forms benzyl isothiocyanate (BIT) that promotes cellular apoptosis (programmed cell death in cancer cells). Therefore, the present research aims to evaluate the effect of the pressure and temperature of BIT extraction by supercritical CO<sub>2</sub> from <em>Tropaeolum majus</em> L. The extraction was carried out in a supercritical fluid extractor equipment Speed SFE BASIC Brand: Poly science, the leaves of <em>Tropaeolum majus</em> L. were ground for one hour and lyophilized until obtaining a humidity of 6%. The extraction with supercritical CO<sub>2</sub> was carried out with pressures of 200 bar and 300 bar, temperatures of 50°C, 60°C and 70°C, obtained by the conjugation of these six treatments. BIT was identified by thin layer chromatography using 98% BIT as the standard, and as the mobile phase hexane: dichloromethane (4:2). Subsequently, BIT quantification was performed by high performance liquid chromatography (HPLC). The highest yield of oleoresin by supercritical CO<sub>2</sub> extraction was obtained pressure 300 bar and temperature at 60°C; and the higher content of BIT at pressure 200 bar and 70°C for 30 minutes to obtain 113.615 ± 0.03 mg BIT/100 g dry matter was obtained. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=solvent%20extraction" title="solvent extraction">solvent extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=Tropaeolum%20majus%20L." title=" Tropaeolum majus L."> Tropaeolum majus L.</a>, <a href="https://publications.waset.org/abstracts/search?q=supercritical%20fluids" title=" supercritical fluids"> supercritical fluids</a>, <a href="https://publications.waset.org/abstracts/search?q=benzyl%20isothiocyanate" title=" benzyl isothiocyanate"> benzyl isothiocyanate</a> </p> <a href="https://publications.waset.org/abstracts/76739/effects-of-pressure-and-temperature-on-the-extraction-of-benzyl-isothiocyanate-by-supercritical-fluids-from-tropaeolum-majus-l-leaves" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76739.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">438</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2639</span> Chromatography Study of Fundamental Properties of Medical Radioisotope Astatine-211</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Evgeny%20E.%20Tereshatov">Evgeny E. Tereshatov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Astatine-211 is considered one of the most promising radionuclides for Targeted Alpha Therapy. In order to develop reliable procedures to label biomolecules and utilize efficient delivery vehicle principles, one should understand the main chemical characteristics of astatine. The short half-life of 211At (~7.2 h) and absence of any stable isotopes of this element are limiting factors towards studying the behavior of astatine. Our team has developed a procedure for rapid and efficient isolation of astatine from irradiated bismuth material in nitric acid media based on 3-octanone and 1-octanol extraction chromatography resins. This process has been automated and it takes 20 min from the beginning of the target dissolution to the At-211 fraction elution. Our next step is to consider commercially available chromatography resins and their applicability in astatine purification in the same media. Results obtained along with the corresponding sorption mechanisms will be discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=astatine-211" title="astatine-211">astatine-211</a>, <a href="https://publications.waset.org/abstracts/search?q=chromatography" title=" chromatography"> chromatography</a>, <a href="https://publications.waset.org/abstracts/search?q=automation" title=" automation"> automation</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanism" title=" mechanism"> mechanism</a>, <a href="https://publications.waset.org/abstracts/search?q=radiopharmaceuticals" title=" radiopharmaceuticals"> radiopharmaceuticals</a> </p> <a href="https://publications.waset.org/abstracts/152922/chromatography-study-of-fundamental-properties-of-medical-radioisotope-astatine-211" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152922.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">92</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2638</span> Optimization, Yield and Chemical Composition of Essential Oil from Cymbopogon citratus: Comparative Study with Microwave Assisted Extraction and Hydrodistillation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Irsha%20Dhotre">Irsha Dhotre</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cymbopogon citratus is generally known as Indian Lemongrass and is widely applicable in the cosmetic, pharmaceutical, dairy puddings, and food industries. To enhance the quality of extraction, microwave-oven-aided hydro distillation processes were implemented. The basic parameter which influences the rate of extraction is considered, such as the temperature of extraction, the time required for extraction, and microwave-oven power applied. Locally available CKP 25 Cymbopogon citratus was used for the extraction of essential oil. Optimization of Extractions Parameters and full factorial Box–Behnken design (BBD) evaluated by using Design expert 13 software. The regression model revealed that the optimum parameters required for extractions are a temperature of 35℃, a time of extraction of 130 minutes, and microwave-oven power of 700 W. The extraction efficiency of yield is 4.76%. Gas Chromatography-Mass Spectroscopy (GC-MS) analysis confirmed the significant components present in the extraction of lemongrass oil. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Box%E2%80%93Behnken%20design" title="Box–Behnken design">Box–Behnken design</a>, <a href="https://publications.waset.org/abstracts/search?q=Cymbopogon%20citratus" title=" Cymbopogon citratus"> Cymbopogon citratus</a>, <a href="https://publications.waset.org/abstracts/search?q=hydro%20distillation" title=" hydro distillation"> hydro distillation</a>, <a href="https://publications.waset.org/abstracts/search?q=microwave-oven" title=" microwave-oven"> microwave-oven</a>, <a href="https://publications.waset.org/abstracts/search?q=response%20surface%20methodology" title=" response surface methodology"> response surface methodology</a> </p> <a href="https://publications.waset.org/abstracts/160880/optimization-yield-and-chemical-composition-of-essential-oil-from-cymbopogon-citratus-comparative-study-with-microwave-assisted-extraction-and-hydrodistillation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/160880.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">94</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2637</span> Synthetic Cannabinoids: Extraction, Identification and Purification</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Niki%20K.%20Burns">Niki K. Burns</a>, <a href="https://publications.waset.org/abstracts/search?q=James%20R.%20Pearson"> James R. Pearson</a>, <a href="https://publications.waset.org/abstracts/search?q=Paul%20G.%20Stevenson"> Paul G. Stevenson</a>, <a href="https://publications.waset.org/abstracts/search?q=Xavier%20A.%20Conlan"> Xavier A. Conlan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In Australian state Victoria, synthetic cannabinoids have recently been made illegal under an amendment to the drugs, poisons and controlled substances act 1981. Identification of synthetic cannabinoids in popular brands of ‘incense’ and ‘potpourri’ has been a difficult and challenging task due to the sample complexity and changes observed in the chemical composition of the cannabinoids of interest. This study has developed analytical methodology for the targeted extraction and determination of synthetic cannabinoids available pre-ban. A simple solvent extraction and solid phase extraction methodology was developed that selectively extracted the cannabinoid of interest. High performance liquid chromatography coupled with UV‐visible and chemiluminescence detection (acidic potassium permanganate and tris (2,2‐bipyridine) ruthenium(III)) were used to interrogate the synthetic cannabinoid products. Mass spectrometry and nuclear magnetic resonance spectroscopy were used for structural elucidation of the synthetic cannabinoids. The tris(2,2‐bipyridine)ruthenium(III) detection was found to offer better sensitivity than the permanganate based reagents. In twelve different brands of herbal incense, cannabinoids were extracted and identified including UR‐144, XLR 11, AM2201, 5‐F‐AKB48 and A796‐260. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrospray%20mass%20spectrometry" title="electrospray mass spectrometry">electrospray mass spectrometry</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20performance%20liquid%20chromatography" title=" high performance liquid chromatography"> high performance liquid chromatography</a>, <a href="https://publications.waset.org/abstracts/search?q=solid%20phase%20extraction" title=" solid phase extraction"> solid phase extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=synthetic%20cannabinoids" title=" synthetic cannabinoids"> synthetic cannabinoids</a> </p> <a href="https://publications.waset.org/abstracts/23354/synthetic-cannabinoids-extraction-identification-and-purification" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23354.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">467</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2636</span> Parameters of Validation Method of Determining Polycyclic Aromatic Hydrocarbons in Drinking Water by High Performance Liquid Chromatography</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jonida%20Canaj">Jonida Canaj</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A simple method of extraction and determination of fifteen priority polycyclic aromatic hydrocarbons (PAHs) from drinking water using high performance liquid chromatography (HPLC) has been validated with limits of detection (LOD) and limits of quantification (LOQ), method recovery and reproducibility, and other factors. HPLC parameters, such as mobile phase composition and flow standardized for determination of PAHs using fluorescent detector (FLD). PAH was carried out by liquid-liquid extraction using dichloromethane. Linearity of calibration curves was good for all PAH (R², 0.9954-1.0000) in the concentration range 0.1-100 ppb. Analysis of standard spiked water samples resulted in good recoveries between 78.5-150%(0.1ppb) and 93.04-137.47% (10ppb). The estimated LOD and LOQ ranged between 0.0018-0.98 ppb. The method described has been used for determination of the fifteen PAHs contents in drinking water samples. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=high%20performance%20liquid%20chromatography" title="high performance liquid chromatography">high performance liquid chromatography</a>, <a href="https://publications.waset.org/abstracts/search?q=HPLC" title=" HPLC"> HPLC</a>, <a href="https://publications.waset.org/abstracts/search?q=method%20validation" title=" method validation"> method validation</a>, <a href="https://publications.waset.org/abstracts/search?q=polycyclic%20aromatic%20hydrocarbons" title=" polycyclic aromatic hydrocarbons"> polycyclic aromatic hydrocarbons</a>, <a href="https://publications.waset.org/abstracts/search?q=PAHs" title=" PAHs"> PAHs</a>, <a href="https://publications.waset.org/abstracts/search?q=water" title=" water"> water</a> </p> <a href="https://publications.waset.org/abstracts/131378/parameters-of-validation-method-of-determining-polycyclic-aromatic-hydrocarbons-in-drinking-water-by-high-performance-liquid-chromatography" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/131378.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">104</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2635</span> First Approach on Lycopene Extraction Using Limonene</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Ferhat">M. A. Ferhat</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20N.%20Boukhatem"> M. N. Boukhatem</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Chemat"> F. Chemat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lycopene extraction with petroleum derivatives as solvents has caused safety, health, and environmental concerns everywhere. Thus, finding a safe alternative solvent will have a strong and positive impact on environments and general health of the world population. d-limonene from the orange peel was extracted through a steam distillation procedure followed by a deterpenation process and combining this achievement by using it as a solvent for extracting lycopene from tomato fruit as a substitute of dichloromethane. Lycopene content of fresh tomatoes was determined by high-performance liquid chromatography after extraction. Yields obtained for both extractions showed that yields of d-limonene’s extracts were almost equivalent to those obtained using dichloromethane. The proposed approach using a green solvent to perform extraction is useful and can be considered as a nice alternative to conventional petroleum solvent where toxicity for both operator and environment is reduced. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alternative%20solvent" title="alternative solvent">alternative solvent</a>, <a href="https://publications.waset.org/abstracts/search?q=d-limonene" title=" d-limonene"> d-limonene</a>, <a href="https://publications.waset.org/abstracts/search?q=extraction" title=" extraction"> extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=lycopene" title=" lycopene"> lycopene</a> </p> <a href="https://publications.waset.org/abstracts/51267/first-approach-on-lycopene-extraction-using-limonene" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51267.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">413</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2634</span> Multiclass Analysis of Pharmaceuticals in Fish and Shrimp Tissues by High-Performance Liquid Chromatography-Tandem Mass Spectrometry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Reza%20Pashaei">Reza Pashaei</a>, <a href="https://publications.waset.org/abstracts/search?q=Reda%20Dzingelevi%C4%8Dien%C4%97"> Reda Dzingelevičienė</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An efficient, reliable, and sensitive multiclass analytical method has been expanded to simultaneously determine 15 human pharmaceutical residues in fish and shrimp tissue samples by ultra-high-performance liquid chromatography-tandem mass spectrometry. The investigated compounds comprise ten classes, namely analgesic, antibacterial, anticonvulsant, cardiovascular, fluoroquinolones, macrolides, nonsteroidal anti-inflammatory, penicillins, stimulant, and sulfonamide. A simple liquid extraction procedure based on 0.1% formic acid in methanol was developed. Chromatographic conditions were optimized, and mobile phase namely 0.1 % ammonium acetate (A), and acetonitrile (B): 0 – 2 min, 15% B; 2 – 5 min, linear to 95% B; 5 – 10 min, 95% B; and 10 – 12 min was obtained. Limits of detection and quantification ranged from 0.017 to 1.371 μg/kg and 0.051 to 4.113 μg/kg, respectively. Finally, amoxicillin, azithromycin, caffeine, carbamazepine, ciprofloxacin, clarithromycin, diclofenac, erythromycin, furosemide, ibuprofen, ketoprofen, naproxen, sulfamethoxazole, tetracycline, and triclosan were quantifiable in fish and shrimp samples. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fish" title="fish">fish</a>, <a href="https://publications.waset.org/abstracts/search?q=liquid%20chromatography" title=" liquid chromatography"> liquid chromatography</a>, <a href="https://publications.waset.org/abstracts/search?q=mass%20spectrometry" title=" mass spectrometry"> mass spectrometry</a>, <a href="https://publications.waset.org/abstracts/search?q=pharmaceuticals" title=" pharmaceuticals"> pharmaceuticals</a>, <a href="https://publications.waset.org/abstracts/search?q=shrimp" title=" shrimp"> shrimp</a>, <a href="https://publications.waset.org/abstracts/search?q=solid-phase%20extraction" title=" solid-phase extraction"> solid-phase extraction</a> </p> <a href="https://publications.waset.org/abstracts/143257/multiclass-analysis-of-pharmaceuticals-in-fish-and-shrimp-tissues-by-high-performance-liquid-chromatography-tandem-mass-spectrometry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/143257.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">262</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2633</span> On-Line Super Critical Fluid Extraction, Supercritical Fluid Chromatography, Mass Spectrometry, a Technique in Pharmaceutical Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Narayana%20Murthy%20Akurathi">Narayana Murthy Akurathi</a>, <a href="https://publications.waset.org/abstracts/search?q=Vijaya%20Lakshmi%20Marella"> Vijaya Lakshmi Marella</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The literature is reviewed with regard to online Super critical fluid extraction (SFE) coupled directly with supercritical fluid chromatography (SFC) -mass spectrometry that have typically more sensitive than conventional LC-MS/MS and GC-MS/MS. It is becoming increasingly interesting to use on-line techniques that combine sample preparation, separation and detection in one analytical set up. This provides less human intervention, uses small amount of sample and organic solvent and yields enhanced analyte enrichment in a shorter time. The sample extraction is performed under light shielding and anaerobic conditions, preventing the degradation of thermo labile analytes. It may be able to analyze compounds over a wide polarity range as SFC generally uses carbon dioxide which was collected as a by-product of other chemical reactions or is collected from the atmosphere as it contributes no new chemicals to the environment. The diffusion of solutes in supercritical fluids is about ten times greater than that in liquids and about three times less than in gases which results in a decrease in resistance to mass transfer in the column and allows for fast high resolution separations. The drawback of SFC when using carbon dioxide as mobile phase is that the direct introduction of water samples poses a series of problems, water must therefore be eliminated before it reaches the analytical column. Hundreds of compounds analysed simultaneously by simple enclosing in an extraction vessel. This is mainly applicable for pharmaceutical industry where it can analyse fatty acids and phospholipids that have many analogues as their UV spectrum is very similar, trace additives in polymers, cleaning validation can be conducted by putting swab sample in an extraction vessel, analysing hundreds of pesticides with good resolution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=super%20critical%20fluid%20extraction%20%28SFE%29" title="super critical fluid extraction (SFE)">super critical fluid extraction (SFE)</a>, <a href="https://publications.waset.org/abstracts/search?q=super%20critical%20fluid%20chromatography%20%28SFC%29" title=" super critical fluid chromatography (SFC)"> super critical fluid chromatography (SFC)</a>, <a href="https://publications.waset.org/abstracts/search?q=LCMS%2FMS" title=" LCMS/MS"> LCMS/MS</a>, <a href="https://publications.waset.org/abstracts/search?q=GCMS%2FMS" title=" GCMS/MS"> GCMS/MS</a> </p> <a href="https://publications.waset.org/abstracts/29307/on-line-super-critical-fluid-extraction-supercritical-fluid-chromatography-mass-spectrometry-a-technique-in-pharmaceutical-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29307.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">391</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2632</span> Investigation of Deep Eutectic Solvents for Microwave Assisted Extraction and Headspace Gas Chromatographic Determination of Hexanal in Fat-Rich Food</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Birute%20Bugelyte">Birute Bugelyte</a>, <a href="https://publications.waset.org/abstracts/search?q=Ingrida%20Jurkute"> Ingrida Jurkute</a>, <a href="https://publications.waset.org/abstracts/search?q=Vida%20Vickackaite"> Vida Vickackaite</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The most complicated step of the determination of volatile compounds in complex matrices is the separation of analytes from the matrix. Traditional analyte separation methods (liquid extraction, Soxhlet extraction) require a lot of time and labour; moreover, there is a risk to lose the volatile analytes. In recent years, headspace gas chromatography has been used to determine volatile compounds. To date, traditional extraction solvents have been used in headspace gas chromatography. As a rule, such solvents are rather volatile; therefore, a large amount of solvent vapour enters into the headspace together with the analyte. Because of that, the determination sensitivity of the analyte is reduced, a huge solvent peak in the chromatogram can overlap with the peaks of the analyts. The sensitivity is also limited by the fact that the sample can’t be heated at a higher temperature than the solvent boiling point. In 2018 it was suggested to replace traditional headspace gas chromatographic solvents with non-volatile, eco-friendly, biodegradable, inexpensive, and easy to prepare deep eutectic solvents (DESs). Generally, deep eutectic solvents have low vapour pressure, a relatively wide liquid range, much lower melting point than that of any of their individual components. Those features make DESs very attractive as matrix media for application in headspace gas chromatography. Also, DESs are polar compounds, so they can be applied for microwave assisted extraction. The aim of this work was to investigate the possibility of applying deep eutectic solvents for microwave assisted extraction and headspace gas chromatographic determination of hexanal in fat-rich food. Hexanal is considered one of the most suitable indicators of lipid oxidation degree as it is the main secondary oxidation product of linoleic acid, which is one of the principal fatty acids of many edible oils. Eight hydrophilic and hydrophobic deep eutectic solvents have been synthesized, and the influence of the temperature and microwaves on their headspace gas chromatographic behaviour has been investigated. Using the most suitable DES, microwave assisted extraction conditions and headspace gas chromatographic conditions have been optimized for the determination of hexanal in potato chips. Under optimized conditions, the quality parameters of the prepared technique have been determined. The suggested technique was applied for the determination of hexanal in potato chips and other fat-rich food. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=deep%20eutectic%20solvents" title="deep eutectic solvents">deep eutectic solvents</a>, <a href="https://publications.waset.org/abstracts/search?q=headspace%20gas%20chromatography" title=" headspace gas chromatography"> headspace gas chromatography</a>, <a href="https://publications.waset.org/abstracts/search?q=hexanal" title=" hexanal"> hexanal</a>, <a href="https://publications.waset.org/abstracts/search?q=microwave%20assisted%20extraction" title=" microwave assisted extraction"> microwave assisted extraction</a> </p> <a href="https://publications.waset.org/abstracts/130578/investigation-of-deep-eutectic-solvents-for-microwave-assisted-extraction-and-headspace-gas-chromatographic-determination-of-hexanal-in-fat-rich-food" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/130578.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">195</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2631</span> Effect of Ultrasound and Enzyme on the Extraction of Eurycoma longifolia (Tongkat Ali)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=He%20Yuhai">He Yuhai</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20Ziad%20Bin%20Sulaiman"> Ahmad Ziad Bin Sulaiman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Tongkat Ali, or Eurycoma longifolia, is a traditional Malay and Orang Asli herb used as aphrodisiac, general tonic, anti-Malaria, and anti-Pyretic. It has been recognized as a cashcrop by Malaysia due to its high value for the pharmaceutical use. In Tongkat Ali, eurycomanone, a quassinoid is usually chosen as a marker phytochemical as it is the most abundant phytochemical. In this research, ultrasound and enzyme were used to enhance the extraction of Eurycomanone from Tongkat Ali. Ultrasonic assisted extraction (USE) enhances extraction by facilitating the swelling and hydration of the plant material, enlarging the plant pores, breaking the plant cell, reducing the plant particle size and creating cavitation bubbles that enhance mass transfer in both the washing and diffusion phase of extraction. Enzyme hydrolyses the cell wall of the plant, loosening the structure of the cell wall, releasing more phytochemicals from the plant cell, enhancing the productivity of the extraction. Possible effects of ultrasound on the activity of the enzyme during the hydrolysis of the cell wall is under the investigation by this research. The extracts was analysed by high performance liquid chromatography for the yields of Eurycomanone. In this whole process, the conventional water extraction was used as a control of comparing the performance of the ultrasound and enzyme assisted extraction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ultrasound" title="ultrasound">ultrasound</a>, <a href="https://publications.waset.org/abstracts/search?q=enzymatic" title=" enzymatic"> enzymatic</a>, <a href="https://publications.waset.org/abstracts/search?q=extraction" title=" extraction"> extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=Eurycoma%20longifolia" title=" Eurycoma longifolia"> Eurycoma longifolia</a> </p> <a href="https://publications.waset.org/abstracts/28783/effect-of-ultrasound-and-enzyme-on-the-extraction-of-eurycoma-longifolia-tongkat-ali" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28783.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">418</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2630</span> Technologies of Isolation and Separation of Anthraquinone Derivatives </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dmitry%20Yu.%20Korulkin">Dmitry Yu. Korulkin</a>, <a href="https://publications.waset.org/abstracts/search?q=Raissa%20A.%20Muzychkina"> Raissa A. Muzychkina</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In review the generalized data about different methods of extraction, separation and purification of natural and modify anthraquinones is presented. The basic regularity of an isolation process is analyzed. Action of temperature, pH, and polarity of extragent, catalysts and other factors on an isolation process is revealed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anthraquinones%3B%20isolation%3B%20extraction%3B%20polarity%3B%20chromatography%3B%20precipitation%3B%20bioactivity%3B%20phytopreparation%3B%20chrysophanol%3B%20aloe-emodin%3B%20emodin%3B%20physcion." title="anthraquinones; isolation; extraction; polarity; chromatography; precipitation; bioactivity; phytopreparation; chrysophanol; aloe-emodin; emodin; physcion.">anthraquinones; isolation; extraction; polarity; chromatography; precipitation; bioactivity; phytopreparation; chrysophanol; aloe-emodin; emodin; physcion.</a> </p> <a href="https://publications.waset.org/abstracts/11437/technologies-of-isolation-and-separation-of-anthraquinone-derivatives" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11437.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">341</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2629</span> New Method for the Determination of Montelukast in Human Plasma by Solid Phase Extraction Using Liquid Chromatography Tandem Mass Spectrometry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vijayalakshmi%20Marella">Vijayalakshmi Marella</a>, <a href="https://publications.waset.org/abstracts/search?q=NageswaraRaoPilli"> NageswaraRaoPilli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper describes a simple, rapid and sensitive liquid chromatography / tandem mass spectrometry assay for the determination of montelukast in human plasma using montelukast d6 as an internal standard. Analyte and the internal standard were extracted from 50 µL of human plasma via solid phase extraction technique without evaporation, drying and reconstitution steps. The chromatographic separation was achieved on a C18 column by using a mixture of methanol and 5mM ammonium acetate (80:20, v/v) as the mobile phase at a flow rate of 0.8 mL/min. Good linearity results were obtained during the entire course of validation. Method validation was performed as per FDA guidelines and the results met the acceptance criteria. A run time of 2.5 min for each sample made it possible to analyze more number of samples in short time, thus increasing the productivity. The proposed method was found to be applicable to clinical studies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Montelukast" title="Montelukast">Montelukast</a>, <a href="https://publications.waset.org/abstracts/search?q=tandem%20mass%20spectrometry" title=" tandem mass spectrometry"> tandem mass spectrometry</a>, <a href="https://publications.waset.org/abstracts/search?q=montelukast%20d6" title=" montelukast d6"> montelukast d6</a>, <a href="https://publications.waset.org/abstracts/search?q=FDA%20guidelines" title=" FDA guidelines"> FDA guidelines</a> </p> <a href="https://publications.waset.org/abstracts/29304/new-method-for-the-determination-of-montelukast-in-human-plasma-by-solid-phase-extraction-using-liquid-chromatography-tandem-mass-spectrometry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29304.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">315</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2628</span> Response Surface Methodology for the Optimization of Sugar Extraction from Phoenix dactylifera L.</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lila%20Boulekbache-Makhlouf">Lila Boulekbache-Makhlouf</a>, <a href="https://publications.waset.org/abstracts/search?q=Kahina%20Djaoud"> Kahina Djaoud</a>, <a href="https://publications.waset.org/abstracts/search?q=Myriam%20Tazarourte"> Myriam Tazarourte</a>, <a href="https://publications.waset.org/abstracts/search?q=Samir%20Hadjal"> Samir Hadjal</a>, <a href="https://publications.waset.org/abstracts/search?q=Khodir%20Madani"> Khodir Madani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In Algeria, important quantities of secondary date variety (Phoenix dactylifera L.) are generated in each campaign; their chemical composition is similar to that of commercial dates. The present work aims to valorize this common date variety (Degla-Beida) which is often poorly exploited. In this context, we tried to prepare syrup from the secondary date variety and to evaluate the effect of conventional extraction (CE) or water bath extraction (WBE) and alternative extraction (microwaves assisted extraction (MAE), and ultrasounds assisted extraction (UAE)) on its total sugar content (TSC), using response surface methodology (RSM). Then, the analysis of individual sugars was performed by high-performance liquid chromatography (HPLC). Maximum predicted TSC recoveries under the optimized conditions for MAE, UAE and CE were 233.248 ± 3.594 g/l, 202.889 ± 5.797 g/l, and 233.535 ± 5.412 g/l, respectively, which were close to the experimental values: 233.796 ± 1.898 g/l; 202.037 ± 3.401 g/l and 234.380 ± 2.425 g/l. HPLC analysis revealed high similarity in the sugar composition of date juices obtained by MAE (60.11% sucrose, 16.64% glucose and 23.25% fructose) and CE (50.78% sucrose, 20.67% glucose and 28.55% fructose), although a large difference was detected for that obtained by UAE (0.00% sucrose, 46.94% glucose and 53.06% fructose). Microwave-assisted extraction was the best method for the preparation of date syrup with an optimal recovery of total sugar content. However, ultrasound-assisted extraction was the best one for the preparation of date syrup with high content of reducing sugars. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dates" title="dates">dates</a>, <a href="https://publications.waset.org/abstracts/search?q=extraction" title=" extraction"> extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=RSM" title=" RSM"> RSM</a>, <a href="https://publications.waset.org/abstracts/search?q=sugars" title=" sugars"> sugars</a>, <a href="https://publications.waset.org/abstracts/search?q=syrup" title=" syrup"> syrup</a> </p> <a href="https://publications.waset.org/abstracts/104783/response-surface-methodology-for-the-optimization-of-sugar-extraction-from-phoenix-dactylifera-l" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/104783.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">158</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2627</span> Determination of a Novel Artificial Sweetener Advantame in Food by Liquid Chromatography Tandem Mass Spectrometry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fangyan%20Li">Fangyan Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Lin%20Min%20Lee"> Lin Min Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Hui%20Zhu%20Peh"> Hui Zhu Peh</a>, <a href="https://publications.waset.org/abstracts/search?q=Shoet%20Harn%20Chan"> Shoet Harn Chan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Advantame, a derivative of aspartame, is the latest addition to a family of low caloric and high potent dipeptide sweeteners which include aspartame, neotame and alitame. The use of advantame as a high-intensity sweetener in food was first accepted by Food Standards Australia New Zealand in 2011 and subsequently by US and EU food authorities in 2014, with the results from toxicity and exposure studies showing advantame poses no safety concern to the public at regulated levels. To our knowledge, currently there is barely any detailed information on the analytical method of advantame in food matrix, except for one report published in Japanese, stating a high performance liquid chromatography (HPLC) and liquid chromatography/ mass spectrometry (LC-MS) method with a detection limit at ppm level. However, the use of acid in sample preparation and instrumental analysis in the report raised doubt over the reliability of the method, as there is indication that stability of advantame is compromised under acidic conditions. Besides, the method may not be suitable for analyzing food matrices containing advantame at low ppm or sub-ppm level. In this presentation, a simple, specific and sensitive method for the determination of advantame in food is described. The method involved extraction with water and clean-up via solid phase extraction (SPE) followed by detection using liquid chromatography tandem mass spectrometry (LC-MS/MS) in negative electrospray ionization mode. No acid was used in the entire procedure. Single laboratory validation of the method was performed in terms of linearity, precision and accuracy. A low detection limit at ppb level was achieved. Satisfactory recoveries were obtained using spiked samples at three different concentration levels. This validated method could be used in the routine inspection of the advantame level in food. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=advantame" title="advantame">advantame</a>, <a href="https://publications.waset.org/abstracts/search?q=food" title=" food"> food</a>, <a href="https://publications.waset.org/abstracts/search?q=LC-MS%2FMS" title=" LC-MS/MS"> LC-MS/MS</a>, <a href="https://publications.waset.org/abstracts/search?q=sweetener" title=" sweetener"> sweetener</a> </p> <a href="https://publications.waset.org/abstracts/26887/determination-of-a-novel-artificial-sweetener-advantame-in-food-by-liquid-chromatography-tandem-mass-spectrometry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26887.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">475</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2626</span> Using Phase Equilibrium Theory to Calculate Solubility of γ-Oryzanol in Supercritical CO2</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Boy%20Arief%20Fachri">Boy Arief Fachri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Even its content is rich in antioxidants ϒ-oryzanol, rice bran is not used properly as functional food. This research aims to (1) extract ϒ-oryzanol; (2) determine the solubility of ϒ-oryzanol in supercritical CO<sub>2</sub> based on phase equilibrium theory; and (3) study the effect of process variables on solubility. Extraction experiments were carried out for rice bran (5 g) at various extraction pressures, temperatures and reaction times. The flowrate of supercritical fluid through the extraction vessel was 25 g/min. The extracts were collected and analysed with high-pressure liquid chromatography (HPLC). The conclusion based on the experiments are as: (1) The highest experimental solubility was 0.303 mcg/mL RBO at T= 60°C, P= 90 atm, t= 30 min; (2) Solubility of ϒ-oryzanol was influenced by pressure and temperature. As the pressure and temperature increase, the solubility increases; (3) The solubility data of supercritical extraction can be successfully determined using phase equilibrium theory. Meanwhile, tocopherol was found and slightly investigated in this work. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rice%20bran" title="rice bran">rice bran</a>, <a href="https://publications.waset.org/abstracts/search?q=solubility" title=" solubility"> solubility</a>, <a href="https://publications.waset.org/abstracts/search?q=supercritical%20CO2" title=" supercritical CO2"> supercritical CO2</a>, <a href="https://publications.waset.org/abstracts/search?q=%CF%92-orizanol" title=" ϒ-orizanol"> ϒ-orizanol</a> </p> <a href="https://publications.waset.org/abstracts/41830/using-phase-equilibrium-theory-to-calculate-solubility-of-gh-oryzanol-in-supercritical-co2" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41830.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">386</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2625</span> Optimizing Microwave Assisted Extraction of Anti-Diabetic Plant Tinospora cordifolia Used in Ayush System for Estimation of Berberine Using Taguchi L-9 Orthogonal Design</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saurabh%20Satija">Saurabh Satija</a>, <a href="https://publications.waset.org/abstracts/search?q=Munish%20Garg"> Munish Garg</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Present work reports an efficient extraction method using microwaves based solvent–sample duo-heating mechanism, for the extraction of an important anti-diabetic plant Tinospora cordifolia from AYUSH system for estimation of berberine content. The process is based on simultaneous heating of sample matrix and extracting solvent under microwave energy. Methanol was used as the extracting solvent, which has excellent berberine solubilizing power and warms up under microwave attributable to its great dispersal factor. Extraction conditions like time of irradition, microwave power, solute-solvent ratio and temperature were optimized using Taguchi design and berberine was quantified using high performance thin layer chromatography. The ranked optimized parameters were microwave power (rank 1), irradiation time (rank 2) and temperature (rank 3). This kind of extraction mechanism under dual heating provided choice of extraction parameters for better precision and higher yield with significant reduction in extraction time under optimum extraction conditions. This developed extraction protocol will lead to extract higher amounts of berberine which is a major anti-diabetic moiety in Tinospora cordifolia which can lead to development of cheaper formulations of the plant Tinospora cordifolia and can help in rapid prevention of diabetes in the world. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=berberine" title="berberine">berberine</a>, <a href="https://publications.waset.org/abstracts/search?q=microwave" title=" microwave"> microwave</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=Taguchi" title=" Taguchi"> Taguchi</a> </p> <a href="https://publications.waset.org/abstracts/58304/optimizing-microwave-assisted-extraction-of-anti-diabetic-plant-tinospora-cordifolia-used-in-ayush-system-for-estimation-of-berberine-using-taguchi-l-9-orthogonal-design" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58304.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">345</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2624</span> Mechanisms of Ginger Bioactive Compounds Extract Using Soxhlet and Accelerated Water Extraction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20N.%20Azian">M. N. Azian</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20N.%20Ilia%20Anisa"> A. N. Ilia Anisa</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Iwai"> Y. Iwai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The mechanism for extraction bioactive compounds from plant matrix is essential for optimizing the extraction process. As a benchmark technique, a soxhlet extraction has been utilized for discussing the mechanism and compared with an accelerated water extraction. The trends of both techniques show that the process involves extraction and degradation. The highest yields of 6-, 8-, 10-gingerols and 6-shogaol in soxhlet extraction were 13.948, 7.12, 10.312 and 2.306 mg/g, respectively. The optimum 6-, 8-, 10-gingerols and 6-shogaol extracted by the accelerated water extraction at 140oC were 68.97±3.95 mg/g at 3min, 18.98±3.04 mg/g at 5min, 5.167±2.35 mg/g at 3min and 14.57±6.27 mg/g at 3min, respectively. The effect of temperature at 3mins shows that the concentration of 6-shogaol increased rapidly as decreasing the recovery of 6-gingerol. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mechanism" title="mechanism">mechanism</a>, <a href="https://publications.waset.org/abstracts/search?q=ginger%20bioactive%20compounds" title=" ginger bioactive compounds"> ginger bioactive compounds</a>, <a href="https://publications.waset.org/abstracts/search?q=soxhlet%20extraction" title=" soxhlet extraction"> soxhlet extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=accelerated%20water%20extraction" title=" accelerated water extraction"> accelerated water extraction</a> </p> <a href="https://publications.waset.org/abstracts/9278/mechanisms-of-ginger-bioactive-compounds-extract-using-soxhlet-and-accelerated-water-extraction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9278.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">434</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2623</span> Use of the Gas Chromatography Method for Hydrocarbons' Quality Evaluation in the Offshore Fields of the Baltic Sea</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pavel%20Shcherban">Pavel Shcherban</a>, <a href="https://publications.waset.org/abstracts/search?q=Vlad%20Golovanov"> Vlad Golovanov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Currently, there is an active geological exploration and development of the subsoil shelf of the Kaliningrad region. To carry out a comprehensive and accurate assessment of the volumes and degree of extraction of hydrocarbons from open deposits, it is necessary to establish not only a number of geological and lithological characteristics of the structures under study, but also to determine the oil quality, its viscosity, density, fractional composition as accurately as possible. In terms of considered works, gas chromatography is one of the most capacious methods that allow the rapid formation of a significant amount of initial data. The aspects of the application of the gas chromatography method for determining the chemical characteristics of the hydrocarbons of the Kaliningrad shelf fields are observed in the article, as well as the correlation-regression analysis of these parameters in comparison with the previously obtained chemical characteristics of hydrocarbon deposits located on the land of the region. In the process of research, a number of methods of mathematical statistics and computer processing of large data sets have been applied, which makes it possible to evaluate the identity of the deposits, to specify the amount of reserves and to make a number of assumptions about the genesis of the hydrocarbons under analysis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=computer%20processing%20of%20large%20databases" title="computer processing of large databases">computer processing of large databases</a>, <a href="https://publications.waset.org/abstracts/search?q=correlation-regression%20analysis" title=" correlation-regression analysis"> correlation-regression analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrocarbon%20deposits" title=" hydrocarbon deposits"> hydrocarbon deposits</a>, <a href="https://publications.waset.org/abstracts/search?q=method%20of%20gas%20chromatography" title=" method of gas chromatography"> method of gas chromatography</a> </p> <a href="https://publications.waset.org/abstracts/88054/use-of-the-gas-chromatography-method-for-hydrocarbons-quality-evaluation-in-the-offshore-fields-of-the-baltic-sea" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/88054.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">157</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2622</span> Assisted Supercritical Carbon Dioxide Extraction of Tocotrienols from Palm Fatty Acid Distillate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Najwa%20Othman">Najwa Othman</a>, <a href="https://publications.waset.org/abstracts/search?q=Norhidayah%20Suleiman"> Norhidayah Suleiman</a>, <a href="https://publications.waset.org/abstracts/search?q=Gun%20Hean%20Chong"> Gun Hean Chong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Palm fatty acid distillate (PFAD) is a by-product of palm oil refineries which contains valuable compounds such as phytosterols, squalene, polycosanol, co-enzyme Q10 and vitamin E (tocopherols and tocotrienols). Approximately 0.7-1.0% of vitamin E accumulates in PFAD, and it functions as antioxidants and anti-inflammatory. The objective of this research is to evaluate the effect of manipulated variables in supercritical carbon dioxide towards the recovery of tocotrienols in PFAD. The vitamin E concentrate isolated varies depending on the pre-treatment of sample and extraction techniques. In this research, tocotrienols in PFAD was concentrated by removing the extraneous matters, especially free fatty acid (FFA) and acylglycerols. Pre-treatment method such as enzymatic hydrolysis by using lipase from Candida rugosa as an enzyme was used to remove FFA and improve recovery of vitamin E. After that, treated PFAD was extracted by using supercritical fluid extraction in co-current glass beads packed column (22 cm x 75 cm i.d) at different temperatures (40-60°C) and pressures (100-300 bar) for 5 hours. After the extraction, the sample was analyzed by using high-pressure liquid chromatography (HPLC) system to quantify the tocotrienols. The results indicated that a combined pressure (200 bar) and temperature (60°C) was predicted to provide highest tocotrienols yield and the extraction yield obtained was 106.45%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=enzymatic%20hydrolysis" title="enzymatic hydrolysis">enzymatic hydrolysis</a>, <a href="https://publications.waset.org/abstracts/search?q=palm%20fatty%20acid%20distillate" title=" palm fatty acid distillate"> palm fatty acid distillate</a>, <a href="https://publications.waset.org/abstracts/search?q=supercritical%20fluid%20extraction" title=" supercritical fluid extraction"> supercritical fluid extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=tocotrienols" title=" tocotrienols "> tocotrienols </a> </p> <a href="https://publications.waset.org/abstracts/104869/assisted-supercritical-carbon-dioxide-extraction-of-tocotrienols-from-palm-fatty-acid-distillate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/104869.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">135</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2621</span> Bioanalytical Method Development and Validation of Aminophylline in Rat Plasma Using Reverse Phase High Performance Liquid Chromatography: An Application to Preclinical Pharmacokinetics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20G.%20Vasantharaju">S. G. Vasantharaju</a>, <a href="https://publications.waset.org/abstracts/search?q=Viswanath%20Guptha"> Viswanath Guptha</a>, <a href="https://publications.waset.org/abstracts/search?q=Raghavendra%20Shetty"> Raghavendra Shetty</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Aminophylline is a methylxanthine derivative belonging to the class bronchodilator. From the literature survey, reported methods reveals the solid phase extraction and liquid liquid extraction which is highly variable, time consuming, costly and laborious analysis. Present work aims to develop a simple, highly sensitive, precise and accurate high-performance liquid chromatography method for the quantification of Aminophylline in rat plasma samples which can be utilized for preclinical studies. Method: Reverse Phase high-performance liquid chromatography method. Results: Selectivity: Aminophylline and the internal standard were well separated from the co-eluted components and there was no interference from the endogenous material at the retention time of analyte and the internal standard. The LLOQ measurable with acceptable accuracy and precision for the analyte was 0.5 µg/mL. Linearity: The developed and validated method is linear over the range of 0.5-40.0 µg/mL. The coefficient of determination was found to be greater than 0.9967, indicating the linearity of this method. Accuracy and precision: The accuracy and precision values for intra and inter day studies at low, medium and high quality control samples concentrations of aminophylline in the plasma were within the acceptable limits Extraction recovery: The method produced consistent extraction recovery at all 3 QC levels. The mean extraction recovery of aminophylline was 93.57 ± 1.28% while that of internal standard was 90.70 ± 1.30%. Stability: The results show that aminophylline is stable in rat plasma under the studied stability conditions and that it is also stable for about 30 days when stored at -80˚C. Pharmacokinetic studies: The method was successfully applied to the quantitative estimation of aminophylline rat plasma following its oral administration to rats. Discussion: Preclinical studies require a rapid and sensitive method for estimating the drug concentration in the rat plasma. The method described in our article includes a simple protein precipitation extraction technique with ultraviolet detection for quantification. The present method is simple and robust for fast high-throughput sample analysis with less analysis cost for analyzing aminophylline in biological samples. In this proposed method, no interfering peaks were observed at the elution times of aminophylline and the internal standard. The method also had sufficient selectivity, specificity, precision and accuracy over the concentration range of 0.5 - 40.0 µg/mL. An isocratic separation technique was used underlining the simplicity of the presented method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aminophyllin" title="Aminophyllin">Aminophyllin</a>, <a href="https://publications.waset.org/abstracts/search?q=preclinical%20pharmacokinetics" title=" preclinical pharmacokinetics"> preclinical pharmacokinetics</a>, <a href="https://publications.waset.org/abstracts/search?q=rat%20plasma" title=" rat plasma"> rat plasma</a>, <a href="https://publications.waset.org/abstracts/search?q=RPHPLC" title=" RPHPLC"> RPHPLC</a> </p> <a href="https://publications.waset.org/abstracts/64169/bioanalytical-method-development-and-validation-of-aminophylline-in-rat-plasma-using-reverse-phase-high-performance-liquid-chromatography-an-application-to-preclinical-pharmacokinetics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64169.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">222</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2620</span> Gas Chromatography Coupled to Tandem Mass Spectrometry and Liquid Chromatography Coupled to Tandem Mass Spectrometry Qualitative Determination of Pesticides Found in Tea Infusions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mihai-Alexandru%20Florea">Mihai-Alexandru Florea</a>, <a href="https://publications.waset.org/abstracts/search?q=Veronica%20Drumea"> Veronica Drumea</a>, <a href="https://publications.waset.org/abstracts/search?q=Roxana%20Nita"> Roxana Nita</a>, <a href="https://publications.waset.org/abstracts/search?q=Cerasela%20Gird"> Cerasela Gird</a>, <a href="https://publications.waset.org/abstracts/search?q=Laura%20Olariu"> Laura Olariu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this study was to investigate the residues of pesticide found in tea water infusions. A multi-residues method to determine 147 pesticides has been developed using the QuEChERS (Quick, Easy, Cheap, Effective, Rugged, Safe) procedure and dispersive solid phase extraction (d-SPE) for the cleanup the pesticides from complex matrices such as plants and tea. Sample preparation was carefully optimized for the efficient removal of coextracted matrix components by testing more solvent systems. Determination of pesticides was performed using GC-MS/MS (100 of pesticides) and LC-MS/MS (47 of pesticides). The selected reaction monitoring (SRM) mode was chosen to achieve low detection limits and high compounds selectivity and sensitivity. Overall performance was evaluated and validated according to DG-SANTE Guidelines. To assess the pesticide residue transfer rate (qualitative) from dried tea in infusions the samples (tea) were spiked with a mixture of pesticides at the maximum residues level accepted for teas and herbal infusions. In order to investigate the release of the pesticides in tea preparations, the medicinal plants were prepared in four ways by variation of water temperature and the infusion time. The pesticides from infusions were extracted using two methods: QuEChERS versus solid-phase extraction (SPE). More that 90 % of the pesticides studied was identified in infusion. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tea" title="tea">tea</a>, <a href="https://publications.waset.org/abstracts/search?q=solid-phase%20extraction%20%28SPE%29" title=" solid-phase extraction (SPE)"> solid-phase extraction (SPE)</a>, <a href="https://publications.waset.org/abstracts/search?q=selected%20reaction%20monitoring%20%28SRM%29" title=" selected reaction monitoring (SRM)"> selected reaction monitoring (SRM)</a>, <a href="https://publications.waset.org/abstracts/search?q=QuEChERS" title=" QuEChERS"> QuEChERS</a> </p> <a href="https://publications.waset.org/abstracts/70223/gas-chromatography-coupled-to-tandem-mass-spectrometry-and-liquid-chromatography-coupled-to-tandem-mass-spectrometry-qualitative-determination-of-pesticides-found-in-tea-infusions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/70223.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">213</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2619</span> Comparative Forensic Analysis of Lipsticks Using Thin Layer Chromatography and Gas Chromatography</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20O.%20Ezegbogu">M. O. Ezegbogu</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20B.%20Osadolor"> H. B. Osadolor</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lipsticks constitute a significant source of transfer evidence, and can, therefore, provide corroborative or inclusionary evidence in criminal investigation. This study aimed to determine the uniqueness and persistence of different lipstick smears using Thin Layer Chromatography (TLC), and Gas Chromatography with a Flame Ionisation Detector (GC-FID). In this study, we analysed lipstick smears retrieved from tea cups exposed to the environment for up to four weeks. The n-alkane content of each sample was determined using GC-FID, while TLC was used to determine the number of bands, and retention factor of each band per smear. This study shows that TLC gives more consistent results over a 4-week period than GC-FID. It also proposes a maximum exposure time of two weeks for the analysis of lipsticks left in the open using GC-FID. Finally, we conclude that neither TLC nor GC-FID can distinguish lipstick evidence recovered from hypothetical crime scenes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=forensic%20science" title="forensic science">forensic science</a>, <a href="https://publications.waset.org/abstracts/search?q=chromatography" title=" chromatography"> chromatography</a>, <a href="https://publications.waset.org/abstracts/search?q=identification" title=" identification"> identification</a>, <a href="https://publications.waset.org/abstracts/search?q=lipstick" title=" lipstick"> lipstick</a> </p> <a href="https://publications.waset.org/abstracts/108437/comparative-forensic-analysis-of-lipsticks-using-thin-layer-chromatography-and-gas-chromatography" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/108437.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">187</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2618</span> Aflatoxins Characterization in Remedial Plant-Delphinium denudatum by High-Performance Liquid Chromatography–Tandem Mass Spectrometry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nadeem%20A.%20Siddique">Nadeem A. Siddique</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohd%20Mujeeb"> Mohd Mujeeb</a>, <a href="https://publications.waset.org/abstracts/search?q=Kahkashan"> Kahkashan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: The objective of the projected work is to study the occurrence of the aflatoxins B1, B2, G1and G2 in remedial plants, exclusively in Delphinium denudatum. The aflatoxins were analysed by high-performance liquid chromatography–tandem quadrupole mass spectrometry with electrospray ionization (HPLC–MS/MS) and immunoaffinity column chromatography were used for extraction and purification of aflatoxins. PDA media was selected for fungal count. Results: A good quality linear relationship was originated for AFB1, AFB2, AFG1 and AFG2 at 1–10 ppb (r > 0.9995). The analyte precision at three different spiking levels was 88.7–109.1 %, by means of low per cent relative standard deviations in each case. Within 5 to7 min aflatoxins can be separated using an Agilent XDB C18-column. We found that AFB1 and AFB2 were not found in D. denudatum. This was reliable through exceptionally low figures of fungal colonies observed after 6 hr of incubation. The developed analytical method is straightforward, be successfully used to determine the aflatoxins. Conclusion: The developed analytical method is straightforward, simple, accurate, economical and can be successfully used to find out the aflatoxins in remedial plants and consequently to have power over the quality of products. The presence of aflatoxin in the plant extracts was interrelated to the least fungal load in the remedial plants examined. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aflatoxins" title="aflatoxins">aflatoxins</a>, <a href="https://publications.waset.org/abstracts/search?q=delphinium%20denudatum" title=" delphinium denudatum"> delphinium denudatum</a>, <a href="https://publications.waset.org/abstracts/search?q=liquid%20chromatography" title=" liquid chromatography"> liquid chromatography</a>, <a href="https://publications.waset.org/abstracts/search?q=mass%20spectrometry" title=" mass spectrometry"> mass spectrometry</a> </p> <a href="https://publications.waset.org/abstracts/56463/aflatoxins-characterization-in-remedial-plant-delphinium-denudatum-by-high-performance-liquid-chromatography-tandem-mass-spectrometry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56463.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">212</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2617</span> Ultrasound-Assisted Extraction of Carotenoids from Tangerine Peel Using Ostrich Oil as a Green Solvent and Optimization of the Process by Response Surface Methodology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fariba%20Tadayon">Fariba Tadayon</a>, <a href="https://publications.waset.org/abstracts/search?q=Nika%20Gharahgolooyan"> Nika Gharahgolooyan</a>, <a href="https://publications.waset.org/abstracts/search?q=Ateke%20Tadayon"> Ateke Tadayon</a>, <a href="https://publications.waset.org/abstracts/search?q=Mostafa%20Jafarian"> Mostafa Jafarian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Carotenoid pigments are a various group of lipophilic compounds that generate the yellow to red colors of many plants, foods and flowers. A well-known type of carotenoids which is pro-vitamin A is β-carotene. Due to the color of citrus fruit’s peel, the peel can be a good source of different carotenoids. Ostrich oil is one of the most valuable foundations in many branches of industry, medicine, cosmetics and nutrition. The animal-based ostrich oil could be considered as an alternative and green solvent. Following this study, wastes of citrus peel will recycle by a simple method and extracted carotenoids can increase properties of ostrich oil. In this work, a simple and efficient method for extraction of carotenoids from tangerine peel was designed. Ultrasound-assisted extraction (UAE) showed significant effect on the extraction rate by increasing the mass transfer rate. Ostrich oil can be used as a green solvent in many studies to eliminate petroleum-based solvents. Since tangerine peel is a complex source of different carotenoids separation and determination was performed by high-performance liquid chromatography (HPLC). In addition, the ability of ostrich oil and sunflower oil in carotenoid extraction from tangerine peel and carrot was compared. The highest yield of β-carotene extracted from tangerine peel using sunflower oil and ostrich oil were 75.741 and 88.110 (mg/L), respectively. Optimization of the process was achieved by response surface methodology (RSM) and the optimal extraction conditions were tangerine peel powder particle size of 0.180 mm, ultrasonic intensity of 19 W/cm2 and sonication time of 30 minutes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=%CE%B2-carotene" title="β-carotene">β-carotene</a>, <a href="https://publications.waset.org/abstracts/search?q=carotenoids" title=" carotenoids"> carotenoids</a>, <a href="https://publications.waset.org/abstracts/search?q=citrus%20peel" title=" citrus peel"> citrus peel</a>, <a href="https://publications.waset.org/abstracts/search?q=ostrich%20oil" title=" ostrich oil"> ostrich oil</a>, <a href="https://publications.waset.org/abstracts/search?q=response%20surface%20methodology" title=" response surface methodology"> response surface methodology</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasound-assisted%20extraction" title=" ultrasound-assisted extraction"> ultrasound-assisted extraction</a> </p> <a href="https://publications.waset.org/abstracts/45771/ultrasound-assisted-extraction-of-carotenoids-from-tangerine-peel-using-ostrich-oil-as-a-green-solvent-and-optimization-of-the-process-by-response-surface-methodology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45771.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">316</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=extraction%20chromatography&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=extraction%20chromatography&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=extraction%20chromatography&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=extraction%20chromatography&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=extraction%20chromatography&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=extraction%20chromatography&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=extraction%20chromatography&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=extraction%20chromatography&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=extraction%20chromatography&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=extraction%20chromatography&page=88">88</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=extraction%20chromatography&page=89">89</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=extraction%20chromatography&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>