CINXE.COM
Search results for: acoustic velocity
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: acoustic velocity</title> <meta name="description" content="Search results for: acoustic velocity"> <meta name="keywords" content="acoustic velocity"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="acoustic velocity" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="acoustic velocity"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 2025</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: acoustic velocity</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2025</span> Using Probabilistic Neural Network (PNN) for Extracting Acoustic Microwaves (Bulk Acoustic Waves) in Piezoelectric Material</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hafdaoui%20Hichem">Hafdaoui Hichem</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehadjebia%20Cherifa"> Mehadjebia Cherifa</a>, <a href="https://publications.waset.org/abstracts/search?q=Benatia%20Djamel"> Benatia Djamel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we propose a new method for Bulk detection of an acoustic microwave signal during the propagation of acoustic microwaves in a piezoelectric substrate (Lithium Niobate LiNbO3). We have used the classification by probabilistic neural network (PNN) as a means of numerical analysis in which we classify all the values of the real part and the imaginary part of the coefficient attenuation with the acoustic velocity in order to build a model from which we note the Bulk waves easily. These singularities inform us of presence of Bulk waves in piezoelectric materials. By which we obtain accurate values for each of the coefficient attenuation and acoustic velocity for Bulk waves. This study will be very interesting in modeling and realization of acoustic microwaves devices (ultrasound) based on the propagation of acoustic microwaves. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=piezoelectric%20material" title="piezoelectric material">piezoelectric material</a>, <a href="https://publications.waset.org/abstracts/search?q=probabilistic%20neural%20network%20%28PNN%29" title=" probabilistic neural network (PNN)"> probabilistic neural network (PNN)</a>, <a href="https://publications.waset.org/abstracts/search?q=classification" title=" classification"> classification</a>, <a href="https://publications.waset.org/abstracts/search?q=acoustic%20microwaves" title=" acoustic microwaves"> acoustic microwaves</a>, <a href="https://publications.waset.org/abstracts/search?q=bulk%20waves" title=" bulk waves"> bulk waves</a>, <a href="https://publications.waset.org/abstracts/search?q=the%20attenuation%20coefficient" title=" the attenuation coefficient"> the attenuation coefficient</a> </p> <a href="https://publications.waset.org/abstracts/43264/using-probabilistic-neural-network-pnn-for-extracting-acoustic-microwaves-bulk-acoustic-waves-in-piezoelectric-material" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43264.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">432</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2024</span> Visco-Acoustic Full Wave Inversion in the Frequency Domain with Mixed Grids</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sheryl%20Avenda%C3%B1o">Sheryl Avendaño</a>, <a href="https://publications.waset.org/abstracts/search?q=Miguel%20Ospina"> Miguel Ospina</a>, <a href="https://publications.waset.org/abstracts/search?q=Hebert%20Montegranario"> Hebert Montegranario</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Full Wave Inversion (FWI) is a variant of seismic tomography for obtaining velocity profiles by an optimization process that combine forward modelling (or solution of wave equation) with the misfit between synthetic and observed data. In this research we are modelling wave propagation in a visco-acoustic medium in the frequency domain. We apply finite differences for the numerical solution of the wave equation with a mix between usual and rotated grids, where density depends on velocity and there exists a damping function associated to a linear dissipative medium. The velocity profiles are obtained from an initial one and the data have been modeled for a frequency range 0-120 Hz. By an iterative procedure we obtain an estimated velocity profile in which are detailed the remarkable features of the velocity profile from which synthetic data were generated showing promising results for our method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=seismic%20inversion" title="seismic inversion">seismic inversion</a>, <a href="https://publications.waset.org/abstracts/search?q=full%20wave%20inversion" title=" full wave inversion"> full wave inversion</a>, <a href="https://publications.waset.org/abstracts/search?q=visco%20acoustic%20wave%20equation" title=" visco acoustic wave equation"> visco acoustic wave equation</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20diffrence%20methods" title=" finite diffrence methods"> finite diffrence methods</a> </p> <a href="https://publications.waset.org/abstracts/33694/visco-acoustic-full-wave-inversion-in-the-frequency-domain-with-mixed-grids" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33694.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">461</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2023</span> Despiking of Turbulent Flow Data in Gravel Bed Stream </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ratul%20Das">Ratul Das</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present experimental study insights the decontamination of instantaneous velocity fluctuations captured by Acoustic Doppler Velocimeter (ADV) in gravel-bed streams to ascertain near-bed turbulence for low Reynolds number. The interference between incidental and reflected pulses produce spikes in the ADV data especially in the near-bed flow zone and therefore filtering the data are very essential. Nortek’s Vectrino four-receiver ADV probe was used to capture the instantaneous three-dimensional velocity fluctuations over a non-cohesive bed. A spike removal algorithm based on the acceleration threshold method was applied to note the bed roughness and its influence on velocity fluctuations and velocity power spectra in the carrier fluid. The velocity power spectra of despiked signals with a best combination of velocity threshold (VT) and acceleration threshold (AT) are proposed which ascertained velocity power spectra a satisfactory fit with the Kolmogorov “–5/3 scaling-law” in the inertial sub-range. Also, velocity distributions below the roughness crest level fairly follows a third-degree polynomial series. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acoustic%20doppler%20velocimeter" title="acoustic doppler velocimeter">acoustic doppler velocimeter</a>, <a href="https://publications.waset.org/abstracts/search?q=gravel-bed" title=" gravel-bed"> gravel-bed</a>, <a href="https://publications.waset.org/abstracts/search?q=spike%20removal" title=" spike removal"> spike removal</a>, <a href="https://publications.waset.org/abstracts/search?q=reynolds%20shear%20stress" title=" reynolds shear stress"> reynolds shear stress</a>, <a href="https://publications.waset.org/abstracts/search?q=near-bed%20turbulence" title=" near-bed turbulence"> near-bed turbulence</a>, <a href="https://publications.waset.org/abstracts/search?q=velocity%20power%20spectra" title=" velocity power spectra"> velocity power spectra</a> </p> <a href="https://publications.waset.org/abstracts/47047/despiking-of-turbulent-flow-data-in-gravel-bed-stream" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47047.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">299</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2022</span> Velocity Distribution in Density Currents Flowing over Rough Beds</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Reza%20Nasrollahpour">Reza Nasrollahpour</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamad%20Hidayat%20Bin%20Jamal"> Mohamad Hidayat Bin Jamal</a>, <a href="https://publications.waset.org/abstracts/search?q=Zulhilmi%20Bin%20Ismail"> Zulhilmi Bin Ismail</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Density currents are generated when the fluid of one density is released into another fluid with a different density. These currents occur in a variety of natural and man-made environments, and this emphasises the importance of studying them. In most practical cases, the density currents flow over the surfaces which are not plane; however, there have been limited investigations in this regard. This study uses laboratory experiments to analyse the influence of bottom roughness on the velocity distribution within these dense underflows. The currents are analysed over a plane surface and three different configurations of beam-roughened beds. The velocity profiles are collected using Acoustic Doppler Velocimetry technique, and the distribution of velocity within these currents is formulated for the tested beds. The results indicate that the empirical power and Gaussian relations can describe the velocity distribution in the inner and outer regions of the profiles, respectively. Moreover, it is found that the bottom roughness is the primary controlling parameter in the inner region. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=density%20currents" title="density currents">density currents</a>, <a href="https://publications.waset.org/abstracts/search?q=velocity%20profiles" title=" velocity profiles"> velocity profiles</a>, <a href="https://publications.waset.org/abstracts/search?q=Acoustic%20Doppler%20Velocimeter" title=" Acoustic Doppler Velocimeter"> Acoustic Doppler Velocimeter</a>, <a href="https://publications.waset.org/abstracts/search?q=bed%20roughness" title=" bed roughness"> bed roughness</a> </p> <a href="https://publications.waset.org/abstracts/96631/velocity-distribution-in-density-currents-flowing-over-rough-beds" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/96631.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">185</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2021</span> Nondestructive Acoustic Microcharacterisation of Gamma Irradiation Effects on Sodium Oxide Borate Glass X2Na2O-X2B2O3 by Acoustic Signature</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ibrahim%20Al-Suraihy">Ibrahim Al-Suraihy</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdellaziz%20Doghmane"> Abdellaziz Doghmane</a>, <a href="https://publications.waset.org/abstracts/search?q=Zahia%20Hadjoub"> Zahia Hadjoub </a> </p> <p class="card-text"><strong>Abstract:</strong></p> We discuss in this work the elastic properties by using acoustic microscopes to measure Rayleigh and longitudinal wave velocities in a no radiated and radiated sodium borate glasses X2Na2O-X2B2O3 with 0 ≤ x ≤ 27 (mol %) at microscopic resolution. The acoustic material signatures were first measured, from which the characteristic surface velocities were determined.Longitudinal and shear ultrasonic velocities were measured in a different composition of sodium borate glass samples before and after irradiation with γ-rays. Results showed that the effect due to increasing sodium oxide content on the ultrasonic velocity appeared more clearly than due to γ-radiation. It was found that as Na2O composition increases, longitudinal velocities vary from 3832 to 5636 m/s in irradiated sample and it vary from 4010 to 5836 m/s in high radiated sample by 10 dose whereas shear velocities vary from 2223 to 3269 m/s in irradiated sample and it vary from 2326 m/s in low radiation to 3385 m/s in high radiated sample by 10 dose. The effect of increasing sodium oxide content on ultrasonic velocity was very clear. The increase of velocity was attributed to the gradual increase in the rigidity of glass and hence strengthening of network due to gradual change of boron atoms from the three-fold to the four-fold coordination of oxygen atoms. The ultrasonic velocities data of glass samples have been used to find the elastic modulus. It was found that ultrasonic velocity, elastic modulus and microhardness increase with increasing barium oxide content and increasing γ-radiation dose. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties%20X2Na2O-X2B2O3" title="mechanical properties X2Na2O-X2B2O3">mechanical properties X2Na2O-X2B2O3</a>, <a href="https://publications.waset.org/abstracts/search?q=acoustic%20signature" title=" acoustic signature"> acoustic signature</a>, <a href="https://publications.waset.org/abstracts/search?q=SAW%20velocities" title=" SAW velocities"> SAW velocities</a>, <a href="https://publications.waset.org/abstracts/search?q=additives" title=" additives"> additives</a>, <a href="https://publications.waset.org/abstracts/search?q=gamma-radiation%20dose" title=" gamma-radiation dose"> gamma-radiation dose</a> </p> <a href="https://publications.waset.org/abstracts/22062/nondestructive-acoustic-microcharacterisation-of-gamma-irradiation-effects-on-sodium-oxide-borate-glass-x2na2o-x2b2o3-by-acoustic-signature" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22062.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">396</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2020</span> The Condition Testing of Damaged Plates Using Acoustic Features and Machine Learning</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kyle%20Saltmarsh">Kyle Saltmarsh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Acoustic testing possesses many benefits due to its non-destructive nature and practicality. There hence exists many scenarios in which using acoustic testing for condition testing shows powerful feasibility. A wealth of information is contained within the acoustic and vibration characteristics of structures, allowing the development meaningful features for the classification of their respective condition. In this paper, methods, results, and discussions are presented on the use of non-destructive acoustic testing coupled with acoustic feature extraction and machine learning techniques for the condition testing of manufactured circular steel plates subjected to varied levels of damage. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=plates" title="plates">plates</a>, <a href="https://publications.waset.org/abstracts/search?q=deformation" title=" deformation"> deformation</a>, <a href="https://publications.waset.org/abstracts/search?q=acoustic%20features" title=" acoustic features"> acoustic features</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a> </p> <a href="https://publications.waset.org/abstracts/76911/the-condition-testing-of-damaged-plates-using-acoustic-features-and-machine-learning" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76911.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">337</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2019</span> Entropy Analysis of a Thermo-Acoustic Stack</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmadali%20Shirazytabar">Ahmadali Shirazytabar</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamidreza%20Namazi"> Hamidreza Namazi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The inherent irreversibility of thermo-acoustics primarily in the stack region causes poor efficiency of thermo-acoustic engines which is the major weakness of these devices. In view of the above, this study examines entropy generation in the stack of a thermo-acoustic system. For this purpose two parallel plates representative of the stack is considered. A general equation for entropy generation is derived based on the Second Law of thermodynamics. Assumptions such as Rott’s linear thermo-acoustic approximation, boundary layer type flow, etc. are made to simplify the governing continuity, momentum and energy equations to achieve analytical solutions for velocity and temperature. The entropy generation equation is also simplified based on the same assumptions and then is converted to dimensionless form by using characteristic entropy generation. A time averaged entropy generation rate followed by a global entropy generation rate are calculated and graphically represented for further analysis and inspecting the effect of different parameters on the entropy generation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=thermo-acoustics" title="thermo-acoustics">thermo-acoustics</a>, <a href="https://publications.waset.org/abstracts/search?q=entropy" title=" entropy"> entropy</a>, <a href="https://publications.waset.org/abstracts/search?q=second%20law%20of%20thermodynamics" title=" second law of thermodynamics"> second law of thermodynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=Rott%E2%80%99s%20linear%20thermo-acoustic%20approximation" title=" Rott’s linear thermo-acoustic approximation"> Rott’s linear thermo-acoustic approximation</a> </p> <a href="https://publications.waset.org/abstracts/32388/entropy-analysis-of-a-thermo-acoustic-stack" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32388.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">403</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2018</span> Far-Field Acoustic Prediction of a Supersonic Expanding Jet Using Large Eddy Simulation </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jesus%20Ruano">Jesus Ruano</a>, <a href="https://publications.waset.org/abstracts/search?q=Asensi%20Oliva"> Asensi Oliva</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The hydrodynamic field generated by a jet expansion is computed via three dimensional compressible Large Eddy Simulation (LES). Finite Volume Method (FVM) will be the discretization used during this simulation as well as hybrid schemes based on Kinetic Energy Preserving (KEP) schemes and up-winding Godunov based schemes with instabilities detectors. Velocity and pressure fields will be stored at different surfaces near the jet, but far enough to enclose all the fluctuations, in order to use them as input for the acoustic solver. The acoustic field is obtained in the far-field region at several locations by means of a hybrid method based on Ffowcs-Williams and Hawkings (FWH) equation. This equation will be formulated in the spectral domain, via Fourier Transform of the acoustic sources, which are modeled from the results of the initial simulation. The obtained results will allow the study of the broadband noise generated as well as sound directivities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=far-field%20noise" title="far-field noise">far-field noise</a>, <a href="https://publications.waset.org/abstracts/search?q=Ffowcs-Williams%20and%20Hawkings" title=" Ffowcs-Williams and Hawkings"> Ffowcs-Williams and Hawkings</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20volume%20method" title=" finite volume method"> finite volume method</a>, <a href="https://publications.waset.org/abstracts/search?q=large%20eddy%20simulation" title=" large eddy simulation"> large eddy simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=jet%20noise" title=" jet noise"> jet noise</a> </p> <a href="https://publications.waset.org/abstracts/58460/far-field-acoustic-prediction-of-a-supersonic-expanding-jet-using-large-eddy-simulation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58460.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">297</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2017</span> Improvement in Acoustic Performance at Low Frequency via Application of Acoustic Resistance of Vented Hole in In-Ear Earphones</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tzu-Hsuan%20Lei">Tzu-Hsuan Lei</a>, <a href="https://publications.waset.org/abstracts/search?q=Shu-Chien%20Wu"> Shu-Chien Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Kuang-Che%20Lo"> Kuang-Che Lo</a>, <a href="https://publications.waset.org/abstracts/search?q=Shu-Chi%20Liu"> Shu-Chi Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Yu-Cheng%20Liu"> Yu-Cheng Liu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The focus of this study was on the effects of air propagation associated with vented holes on acoustic resistance properties. A cylindrical hole with diameter and depth of 0.7 mm and 1.0 mm, respectively, was the research target. By constructing a finite element analytical model of its sound field properties, the acoustic-specific airflow resistance relationships were obtained for the differences in sound pressure and flow velocity at the two ends of this vented hole. In addition, the acoustic properties of this vented hole were included in the in-ear earphone simulation model to complete the sound pressure curve simulation analysis of the in-ear earphone system with a vented hole of corresponding size. Then, the simulation results were compared with actual measurements obtained from the standard system. Based on the results, when the in-ear earphone vented hole simulation model considered the simulated specific airflow resistance values of this cylindrical hole, the overall simulated sound pressure performance was highly consistent with that of measured values. The difference in the first peak values of sound pressure at mid-to-low frequencies was reduced from 5.64% when the simulation model did not consider the specific airflow resistance of the cylindrical hole to 1.18%, and the accuracy of the overall simulation was around 70%. This indicates the importance of the acoustic resistance properties of vented holes. Moreover, as specific airflow resistance values were able to be further quantified, the accuracy of the entire in-ear earphone simulation was ultimately and effectively elevated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=specific%20airflow%20resistance" title="specific airflow resistance">specific airflow resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=vented%20holes" title=" vented holes"> vented holes</a>, <a href="https://publications.waset.org/abstracts/search?q=in-ear%20earphone" title=" in-ear earphone"> in-ear earphone</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title=" finite element method"> finite element method</a> </p> <a href="https://publications.waset.org/abstracts/186158/improvement-in-acoustic-performance-at-low-frequency-via-application-of-acoustic-resistance-of-vented-hole-in-in-ear-earphones" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/186158.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">43</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2016</span> Effects of Charge Fluctuating Positive Dust on Linear Dust-Acoustic Waves </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sanjit%20Kumar%20Paul">Sanjit Kumar Paul</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20A.%20Mamun"> A. A. Mamun</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20R.%20Amin"> M. R. Amin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Linear propagation of the dust-acoustic wave in a dusty plasma consisting of Boltzmann distributed electrons and ions and mobile charge fluctuating positive dust grains has been investigated by employing the reductive perturbation method. It has been shown that the dust charge fluctuation is a source of dissipation and its responsible for the formation of the dust-acoustic waves in such a dusty plasma. The basic features of such dust-acoustic waves have been identified. It has been proposed to design a new laboratory experiment which will be able to identify the basic features of the dust-acoustic waves predicted in this theoretical investigation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dust%20acoustic%20waves" title="dust acoustic waves">dust acoustic waves</a>, <a href="https://publications.waset.org/abstracts/search?q=dusty%20plasma" title=" dusty plasma"> dusty plasma</a>, <a href="https://publications.waset.org/abstracts/search?q=Boltzmann%20distributed%20electrons" title=" Boltzmann distributed electrons"> Boltzmann distributed electrons</a>, <a href="https://publications.waset.org/abstracts/search?q=charge%20fluctuation" title=" charge fluctuation"> charge fluctuation</a> </p> <a href="https://publications.waset.org/abstracts/8380/effects-of-charge-fluctuating-positive-dust-on-linear-dust-acoustic-waves" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8380.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">637</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2015</span> A New Computational Tool for Noise Prediction of Rotating Surfaces (FACT)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ana%20Vieira">Ana Vieira</a>, <a href="https://publications.waset.org/abstracts/search?q=Fernando%20Lau"> Fernando Lau</a>, <a href="https://publications.waset.org/abstracts/search?q=Jo%C3%A3o%20Pedro%20Mort%C3%A1gua"> João Pedro Mortágua</a>, <a href="https://publications.waset.org/abstracts/search?q=Lu%C3%ADs%20Cruz"> Luís Cruz</a>, <a href="https://publications.waset.org/abstracts/search?q=Rui%20Santos"> Rui Santos</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The air transport impact on environment is more than ever a limitative obstacle to the aeronautical industry continuous growth. Over the last decades, considerable effort has been carried out in order to obtain quieter aircraft solutions, whether by changing the original design or investigating more silent maneuvers. The noise propagated by rotating surfaces is one of the most important sources of annoyance, being present in most aerial vehicles. Bearing this is mind, CEIIA developed a new computational chain for noise prediction with in-house software tools to obtain solutions in relatively short time without using excessive computer resources. This work is based on the new acoustic tool, which aims to predict the rotor noise generated during steady and maneuvering flight, making use of the flexibility of the C language and the advantages of GPU programming in terms of velocity. The acoustic tool is based in the Formulation 1A of Farassat, capable of predicting two important types of noise: the loading and thickness noise. The present work describes the most important features of the acoustic tool, presenting its most relevant results and framework analyses for helicopters and UAV quadrotors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rotor%20noise" title="rotor noise">rotor noise</a>, <a href="https://publications.waset.org/abstracts/search?q=acoustic%20tool" title=" acoustic tool"> acoustic tool</a>, <a href="https://publications.waset.org/abstracts/search?q=GPU%20Programming" title=" GPU Programming"> GPU Programming</a>, <a href="https://publications.waset.org/abstracts/search?q=UAV%20noise" title=" UAV noise"> UAV noise</a> </p> <a href="https://publications.waset.org/abstracts/16738/a-new-computational-tool-for-noise-prediction-of-rotating-surfaces-fact" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16738.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">401</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2014</span> Integral Form Solutions of the Linearized Navier-Stokes Equations without Deviatoric Stress Tensor Term in the Forward Modeling for FWI</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anyeres%20N.%20Atehortua%20Jimenez">Anyeres N. Atehortua Jimenez</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20David%20Lambra%C3%B1o"> J. David Lambraño</a>, <a href="https://publications.waset.org/abstracts/search?q=Juan%20Carlos%20Mu%C3%B1oz"> Juan Carlos Muñoz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Navier-Stokes equations (NSE), which describe the dynamics of a fluid, have an important application on modeling waves used for data inversion techniques as full waveform inversion (FWI). In this work a linearized version of NSE and its variables, neglecting deviatoric terms of stress tensor, is presented. In order to get a theoretical modeling of pressure p(x,t) and wave velocity profile c(x,t), a wave equation of visco-acoustic medium (VAE) is written. A change of variables p(x,t)=q(x,t)h(ρ), is made on the equation for the VAE leading to a well known Klein-Gordon equation (KGE) describing waves propagating in variable density medium (ρ) with dispersive term α^2(x). KGE is reduced to a Poisson equation and solved by proposing a specific function for α^2(x) accounting for the energy dissipation and dispersion. Finally, an integral form solution is derived for p(x,t), c(x,t) and kinematics variables like particle velocity v(x,t), displacement u(x,t) and bulk modulus function k_b(x,t). Further, it is compared this visco-acoustic formulation with another form broadly used in the geophysics; it is argued that this formalism is more general and, given its integral form, it may offer several advantages from the modern parallel computing point of view. Applications to minimize the errors in modeling for FWI applied to oils resources in geophysics are discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Navier-Stokes%20equations" title="Navier-Stokes equations">Navier-Stokes equations</a>, <a href="https://publications.waset.org/abstracts/search?q=modeling" title=" modeling"> modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=visco-acoustic" title=" visco-acoustic"> visco-acoustic</a>, <a href="https://publications.waset.org/abstracts/search?q=inversion%20FWI" title=" inversion FWI "> inversion FWI </a> </p> <a href="https://publications.waset.org/abstracts/33620/integral-form-solutions-of-the-linearized-navier-stokes-equations-without-deviatoric-stress-tensor-term-in-the-forward-modeling-for-fwi" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33620.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">520</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2013</span> ReS, Resonant String Shell: Development of an Acoustic Shell for Outdoor Chamber Music Concerts</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Serafino%20Di%20Rosario">Serafino Di Rosario</a> </p> <p class="card-text"><strong>Abstract:</strong></p> ReS is a sustainable hand-built temporary acoustic shell, developed since 2011 and built during the architectural workshop at Villa Pennisi in Musica in Acireale, Sicily, each year since 2012. The design concept aims to provide a portable structure by reducing the on-site construction problems and the skills required by the builders together with maximizing the acoustic performance for the audience and the musicians. The shell is built using only wood, recycled for the most part, and can be built and dismantled by non-specialized workers in just three days. This paper describes the research process, which spans over four years and presents the final results in form of acoustic simulations performed by acoustic modeling software and real world measurements. ReS is developed by the ReS team who has been presented with the Peter Lord Award in 2015 by the Institute of Acoustics in the UK. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acoustic%20shell" title="acoustic shell">acoustic shell</a>, <a href="https://publications.waset.org/abstracts/search?q=outdoor%20natural%20amplification" title=" outdoor natural amplification"> outdoor natural amplification</a>, <a href="https://publications.waset.org/abstracts/search?q=computational%20design" title=" computational design"> computational design</a>, <a href="https://publications.waset.org/abstracts/search?q=room%20acoustics" title=" room acoustics"> room acoustics</a> </p> <a href="https://publications.waset.org/abstracts/67117/res-resonant-string-shell-development-of-an-acoustic-shell-for-outdoor-chamber-music-concerts" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67117.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">228</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2012</span> Analytical Solutions for Geodesic Acoustic Eigenmodes in Tokamak Plasmas</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Victor%20I.%20Ilgisonis">Victor I. Ilgisonis</a>, <a href="https://publications.waset.org/abstracts/search?q=Ludmila%20V.%20Konovaltseva"> Ludmila V. Konovaltseva</a>, <a href="https://publications.waset.org/abstracts/search?q=Vladimir%20P.%20Lakhin"> Vladimir P. Lakhin</a>, <a href="https://publications.waset.org/abstracts/search?q=Ekaterina%20A.%20Sorokina"> Ekaterina A. Sorokina</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The analytical solutions for geodesic acoustic eigenmodes in tokamak plasmas with circular concentric magnetic surfaces are found. In the frame of ideal magnetohydrodynamics the dispersion relation taking into account the toroidal coupling between electrostatic perturbations and electromagnetic perturbations with poloidal mode number |m| = 2 is derived. In the absence of such a coupling the dispersion relation gives the standard continuous spectrum of geodesic acoustic modes. The analysis of the existence of global eigenmodes for plasma equilibria with both off-axis and on-axis maximum of the local geodesic acoustic frequency is performed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tokamak" title="tokamak">tokamak</a>, <a href="https://publications.waset.org/abstracts/search?q=MHD" title=" MHD"> MHD</a>, <a href="https://publications.waset.org/abstracts/search?q=geodesic%20acoustic%20mode" title=" geodesic acoustic mode"> geodesic acoustic mode</a>, <a href="https://publications.waset.org/abstracts/search?q=eigenmode" title=" eigenmode"> eigenmode</a> </p> <a href="https://publications.waset.org/abstracts/11335/analytical-solutions-for-geodesic-acoustic-eigenmodes-in-tokamak-plasmas" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11335.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">734</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2011</span> Test Research on Damage Initiation and Development of a Concrete Beam Using Acoustic Emission Technology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xiang%20Wang">Xiang Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to validate the efficiency of recognizing the damage initiation and development of a concrete beam using acoustic emission technology, a concrete beam is built and tested in the laboratory. The acoustic emission signals are analyzed based on both parameter and wave information, which is also compared with the beam deflection measured by displacement sensors. The results indicate that using acoustic emission technology can detect damage initiation and development effectively, especially in the early stage of the damage development, which can not be detected by the common monitoring technology. Furthermore, the positioning of the damage based on the acoustic emission signals can be proved to be reasonable. This job can be an important attempt for the future long-time monitoring of the real concrete structure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acoustic%20emission%20technology" title="acoustic emission technology">acoustic emission technology</a>, <a href="https://publications.waset.org/abstracts/search?q=concrete%20beam" title=" concrete beam"> concrete beam</a>, <a href="https://publications.waset.org/abstracts/search?q=parameter%20analysis" title=" parameter analysis"> parameter analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=wave%20analysis" title=" wave analysis"> wave analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=positioning" title=" positioning"> positioning</a> </p> <a href="https://publications.waset.org/abstracts/108497/test-research-on-damage-initiation-and-development-of-a-concrete-beam-using-acoustic-emission-technology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/108497.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">141</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2010</span> Laser - Ultrasonic Method for the Measurement of Residual Stresses in Metals</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alexander%20A.%20Karabutov">Alexander A. Karabutov</a>, <a href="https://publications.waset.org/abstracts/search?q=Natalia%20B.%20Podymova"> Natalia B. Podymova</a>, <a href="https://publications.waset.org/abstracts/search?q=Elena%20B.%20Cherepetskaya"> Elena B. Cherepetskaya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The theoretical analysis is carried out to get the relation between the ultrasonic wave velocity and the value of residual stresses. The laser-ultrasonic method is developed to evaluate the residual stresses and subsurface defects in metals. The method is based on the laser thermooptical excitation of longitudinal ultrasonic wave sand their detection by a broadband piezoelectric detector. A laser pulse with the time duration of 8 ns of the full width at half of maximum and with the energy of 300 µJ is absorbed in a thin layer of the special generator that is inclined relative to the object under study. The non-uniform heating of the generator causes the formation of a broadband powerful pulse of longitudinal ultrasonic waves. It is shown that the temporal profile of this pulse is the convolution of the temporal envelope of the laser pulse and the profile of the in-depth distribution of the heat sources. The ultrasonic waves reach the surface of the object through the prism that serves as an acoustic duct. At the interface ‚laser-ultrasonic transducer-object‘ the conversion of the most part of the longitudinal wave energy takes place into the shear, subsurface longitudinal and Rayleigh waves. They spread within the subsurface layer of the studied object and are detected by the piezoelectric detector. The electrical signal that corresponds to the detected acoustic signal is acquired by an analog-to-digital converter and when is mathematically processed and visualized with a personal computer. The distance between the generator and the piezodetector as well as the spread times of acoustic waves in the acoustic ducts are the characteristic parameters of the laser-ultrasonic transducer and are determined using the calibration samples. There lative precision of the measurement of the velocity of longitudinal ultrasonic waves is 0.05% that corresponds to approximately ±3 m/s for the steels of conventional quality. This precision allows one to determine the mechanical stress in the steel samples with the minimal detection threshold of approximately 22.7 MPa. The results are presented for the measured dependencies of the velocity of longitudinal ultrasonic waves in the samples on the values of the applied compression stress in the range of 20-100 MPa. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=laser-ultrasonic%20method" title="laser-ultrasonic method">laser-ultrasonic method</a>, <a href="https://publications.waset.org/abstracts/search?q=longitudinal%20ultrasonic%20waves" title=" longitudinal ultrasonic waves"> longitudinal ultrasonic waves</a>, <a href="https://publications.waset.org/abstracts/search?q=metals" title=" metals"> metals</a>, <a href="https://publications.waset.org/abstracts/search?q=residual%20stresses" title=" residual stresses"> residual stresses</a> </p> <a href="https://publications.waset.org/abstracts/35783/laser-ultrasonic-method-for-the-measurement-of-residual-stresses-in-metals" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35783.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">325</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2009</span> Bi-Directional Impulse Turbine for Thermo-Acoustic Generator</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20I.%20Dovgjallo">A. I. Dovgjallo</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20B.%20Tsapkova"> A. B. Tsapkova</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20A.%20Shimanov"> A. A. Shimanov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper is devoted to one of engine types with external heating – a thermoacoustic engine. In thermoacoustic engine heat energy is converted to an acoustic energy. Further, acoustic energy of oscillating gas flow must be converted to mechanical energy and this energy in turn must be converted to electric energy. The most widely used way of transforming acoustic energy to electric one is application of linear generator or usual generator with crank mechanism. In both cases, the piston is used. Main disadvantages of piston use are friction losses, lubrication problems and working fluid pollution which cause decrease of engine power and ecological efficiency. Using of a bidirectional impulse turbine as an energy converter is suggested. The distinctive feature of this kind of turbine is that the shock wave of oscillating gas flow passing through the turbine is reflected and passes through the turbine again in the opposite direction. The direction of turbine rotation does not change in the process. Different types of bidirectional impulse turbines for thermoacoustic engines are analyzed. The Wells turbine is the simplest and least efficient of them. A radial impulse turbine has more complicated design and is more efficient than the Wells turbine. The most appropriate type of impulse turbine was chosen. This type is an axial impulse turbine, which has a simpler design than that of a radial turbine and similar efficiency. The peculiarities of the method of an impulse turbine calculating are discussed. They include changes in gas pressure and velocity as functions of time during the generation of gas oscillating flow shock waves in a thermoacoustic system. In thermoacoustic system pressure constantly changes by a certain law due to acoustic waves generation. Peak values of pressure are amplitude which determines acoustic power. Gas, flowing in thermoacoustic system, periodically changes its direction and its mean velocity is equal to zero but its peak values can be used for bi-directional turbine rotation. In contrast with feed turbine, described turbine operates on un-steady oscillating flows with direction changes which significantly influence the algorithm of its calculation. Calculated power output is 150 W with frequency 12000 r/min and pressure amplitude 1,7 kPa. Then, 3-d modeling and numerical research of impulse turbine was carried out. As a result of numerical modeling, main parameters of the working fluid in turbine were received. On the base of theoretical and numerical data model of impulse turbine was made on 3D printer. Experimental unit was designed for numerical modeling results verification. Acoustic speaker was used as acoustic wave generator. Analysis if the acquired data shows that use of the bi-directional impulse turbine is advisable. By its characteristics as a converter, it is comparable with linear electric generators. But its lifetime cycle will be higher and engine itself will be smaller due to turbine rotation motion. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acoustic%20power" title="acoustic power">acoustic power</a>, <a href="https://publications.waset.org/abstracts/search?q=bi-directional%20pulse%20turbine" title=" bi-directional pulse turbine"> bi-directional pulse turbine</a>, <a href="https://publications.waset.org/abstracts/search?q=linear%20alternator" title=" linear alternator"> linear alternator</a>, <a href="https://publications.waset.org/abstracts/search?q=thermoacoustic%20generator" title=" thermoacoustic generator"> thermoacoustic generator</a> </p> <a href="https://publications.waset.org/abstracts/38417/bi-directional-impulse-turbine-for-thermo-acoustic-generator" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38417.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">378</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2008</span> The Contribution of Density Fluctuations in Ultrasound Scattering in Cancellous Bone</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Elsariti">A. Elsariti</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Evans"> T. Evans </a> </p> <p class="card-text"><strong>Abstract:</strong></p> An understanding of the interaction between acoustic waves and cancellous bone is needed in order to realize the full clinical potential of ultrasonic bone measurements. Scattering is likely to be of central importance but has received little attention to date. Few theoretical approaches have been described to explain scattering of ultrasound from bone. In this study, a scattering model based on velocity and density fluctuations in a binary mixture (marrow fat and cortical matrix) was used to estimate the ultrasonic attenuation in cancellous bone as a function of volume fraction. Predicted attenuation and backscatter coefficient were obtained for a range of porosities and scatterer size. At 600 kHZ and for different scatterer size the effect of velocity and density fluctuations in the predicted attenuation was approximately 60% higher than velocity fluctuations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ultrasound%20scattering" title="ultrasound scattering">ultrasound scattering</a>, <a href="https://publications.waset.org/abstracts/search?q=sound%20speed" title=" sound speed"> sound speed</a>, <a href="https://publications.waset.org/abstracts/search?q=density%20fluctuations" title=" density fluctuations"> density fluctuations</a>, <a href="https://publications.waset.org/abstracts/search?q=attenuation%20coefficient" title=" attenuation coefficient "> attenuation coefficient </a> </p> <a href="https://publications.waset.org/abstracts/4810/the-contribution-of-density-fluctuations-in-ultrasound-scattering-in-cancellous-bone" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4810.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">326</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2007</span> Ultrasonic Investigation as Tool for Study of Molecular Interaction of 2-Hydroxy Substituted Pyrimidine Derivative at Different Concentrations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shradha%20S.%20Binani">Shradha S. Binani</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20S.%20Bodke"> P. S. Bodke</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20V.%20Joat"> R. V. Joat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recent decades have witnessed an exponential growth in the field of acoustical parameters and ultrasound on solid, liquid and gases. Ultrasonic propagation parameters yield valuable information regarding the behavior of liquid systems because intra and intermolecular association, dipolar interaction, complex formation and related structural changes affecting the compressibility of the system which in turn produces variations in the ultrasonic velocity. The acoustic and thermo dynamical parameters obtained in ultrasonic study show that ion-solvation is accompanied by the destruction or enhancement of the solvent structure. In the present paper the ultrasonic velocity (v), density (ρ), viscosity(η) have been measured for the pharmacological important compound 2-hydroxy substituted phenyl pyrimidine derivative (2-hydroxy-4-(4’-methoxy phenyl)-6-(2’-hydroxy-4’-methyl-5’-chlorophenyl)pyrimidine) in ethanol as a solvent by using different concentration at constant room temperature. These experimental data have been used to estimate physical parameter like adiabatic compressibility, intermolecular free length, relaxation time, free volume, specific acoustic impedance, relative association, Wada’s constant, Rao’s constant etc. The above parameters provide information in understanding the structural and molecular interaction between solute-solvent in the drug solution with respect to change in concentration. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acoustical%20parameters" title="acoustical parameters">acoustical parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasonic%20velocity" title=" ultrasonic velocity"> ultrasonic velocity</a>, <a href="https://publications.waset.org/abstracts/search?q=density" title=" density"> density</a>, <a href="https://publications.waset.org/abstracts/search?q=viscosity" title=" viscosity"> viscosity</a>, <a href="https://publications.waset.org/abstracts/search?q=2-hydroxy%20substituted%20phenyl%20pyrimidine%20derivative" title=" 2-hydroxy substituted phenyl pyrimidine derivative"> 2-hydroxy substituted phenyl pyrimidine derivative</a> </p> <a href="https://publications.waset.org/abstracts/9294/ultrasonic-investigation-as-tool-for-study-of-molecular-interaction-of-2-hydroxy-substituted-pyrimidine-derivative-at-different-concentrations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9294.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">471</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2006</span> Sound Performance of a Composite Acoustic Coating With Embedded Parallel Plates Under Hydrostatic Pressure</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bo%20Hu">Bo Hu</a>, <a href="https://publications.waset.org/abstracts/search?q=Shibo%20Wang"> Shibo Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Haoyang%20Zhang"> Haoyang Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Jie%20Shi"> Jie Shi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With the development of sonar detection technology, the acoustic stealth technology of underwater vehicles is facing severe challenges. The underwater acoustic coating is developing towards the direction of low-frequency absorption capability and broad absorption frequency bandwidth. In this paper, an acoustic model of underwater acoustic coating of composite material embedded with periodical steel structure is presented. The model has multiple high absorption peaks in the frequency range of 1kHz-8kHz, where achieves high sound absorption and broad bandwidth performance. It is found that the frequencies of the absorption peaks are related to the classic half-wavelength transmission principle. The sound absorption performance of the acoustic model is investigated by the finite element method using COMSOL software. The sound absorption mechanism of the proposed model is explained by the distributions of the displacement vector field. The influence of geometric parameters of periodical steel structure, including thickness and distance, on the sound absorption ability of the proposed model are further discussed. The acoustic model proposed in this study provides an idea for the design of underwater low-frequency broadband acoustic coating, and the results shows the possibility and feasibility for practical underwater application. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acoustic%20coating" title="acoustic coating">acoustic coating</a>, <a href="https://publications.waset.org/abstracts/search?q=composite%20material" title=" composite material"> composite material</a>, <a href="https://publications.waset.org/abstracts/search?q=broad%20frequency%20bandwidth" title=" broad frequency bandwidth"> broad frequency bandwidth</a>, <a href="https://publications.waset.org/abstracts/search?q=sound%20absorption%20performance" title=" sound absorption performance"> sound absorption performance</a> </p> <a href="https://publications.waset.org/abstracts/167774/sound-performance-of-a-composite-acoustic-coating-with-embedded-parallel-plates-under-hydrostatic-pressure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167774.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">174</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2005</span> Measurements of Radial Velocity in Fixed Fluidized Bed for Fischer-Tropsch Synthesis Using LDV</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xiaolai%20Zhang">Xiaolai Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Haitao%20Zhang"> Haitao Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Qiwen%20Sun"> Qiwen Sun</a>, <a href="https://publications.waset.org/abstracts/search?q=Weixin%20Qian"> Weixin Qian</a>, <a href="https://publications.waset.org/abstracts/search?q=Weiyong%20Ying"> Weiyong Ying</a> </p> <p class="card-text"><strong>Abstract:</strong></p> High temperature Fischer-Tropsch synthesis process use fixed fluidized bed as a reactor. In order to understand the flow behavior in the fluidized bed better, the research of how the radial velocity affect the entire flow field is necessary. Laser Doppler Velocimetry (LDV) was used to study the radial velocity distribution along the diameter direction of the cross-section of the particle in a fixed fluidized bed. The velocity in the cross-section is fluctuating within a small range. The direction of the speed is a random phenomenon. In addition to r/R is 1, the axial velocity are more than 6 times of the radial velocity, the radial velocity has little impact on the axial velocity in a fixed fluidized bed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fischer-Tropsch%20synthesis" title="Fischer-Tropsch synthesis">Fischer-Tropsch synthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=Fixed%20fluidized%20bed" title=" Fixed fluidized bed"> Fixed fluidized bed</a>, <a href="https://publications.waset.org/abstracts/search?q=LDV" title=" LDV"> LDV</a>, <a href="https://publications.waset.org/abstracts/search?q=Velocity" title=" Velocity"> Velocity</a> </p> <a href="https://publications.waset.org/abstracts/24993/measurements-of-radial-velocity-in-fixed-fluidized-bed-for-fischer-tropsch-synthesis-using-ldv" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24993.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">404</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2004</span> Personal Perception of the Acoustic Properties of Three Different Rooms for Music Lessons</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Natalia%20Ivanova">Natalia Ivanova</a>, <a href="https://publications.waset.org/abstracts/search?q=Konstantin%20Adamov"> Konstantin Adamov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The importance of acoustics in music classes made us analyse three music rooms in a Bulgarian school. The same music piece was performed in every one of the classrooms. The recording was played to 2 groups of students. A survey was then taken among those students in order to determine their personal preferences and impressions of the acoustic. The results show differences in the preferences of older students compared to younger ones. Results of the survey show a correlation between older students’ preferences and the standard requirements. However, we discover that younger students’ classrooms should be further analysed and adapted to their needs and preferences. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acousic" title="acousic">acousic</a>, <a href="https://publications.waset.org/abstracts/search?q=building%20acoustic" title=" building acoustic"> building acoustic</a>, <a href="https://publications.waset.org/abstracts/search?q=sound%20quality" title=" sound quality"> sound quality</a>, <a href="https://publications.waset.org/abstracts/search?q=scool%20acoustic" title=" scool acoustic"> scool acoustic</a> </p> <a href="https://publications.waset.org/abstracts/157391/personal-perception-of-the-acoustic-properties-of-three-different-rooms-for-music-lessons" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157391.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">104</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2003</span> Acoustic Modeling of a Data Center with a Hot Aisle Containment System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arshad%20Alfoqaha">Arshad Alfoqaha</a>, <a href="https://publications.waset.org/abstracts/search?q=Seth%20Bard"> Seth Bard</a>, <a href="https://publications.waset.org/abstracts/search?q=Dustin%20Demetriou"> Dustin Demetriou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A new multi-physics acoustic modeling approach using ANSYS Mechanical FEA and FLUENT CFD methods is developed for modeling servers mounted to racks, such as IBM Z and IBM Power Systems, in data centers. This new approach allows users to determine the thermal and acoustic conditions that people are exposed to within the data center. The sound pressure level (SPL) exposure for a human working inside a hot aisle containment system inside the data center is studied. The SPL is analyzed at the noise source, at the human body, on the rack walls, on the containment walls, and on the ceiling and flooring plenum walls. In the acoustic CFD simulation, it is assumed that a four-inch diameter sphere with monopole acoustic radiation, placed in the middle of each rack, provides a single-source representation of all noise sources within the rack. Ffowcs Williams & Hawkings (FWH) acoustic model is employed. The target frequency is 1000 Hz, and the total simulation time for the transient analysis is 1.4 seconds, with a very small time step of 3e-5 seconds and 10 iterations to ensure convergence and accuracy. A User Defined Function (UDF) is developed to accurately simulate the acoustic noise source, and a Dynamic Mesh is applied to ensure acoustic wave propagation. Initial validation of the acoustic CFD simulation using a closed-form solution for the spherical propagation of an acoustic point source is performed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=data%20centers" title="data centers">data centers</a>, <a href="https://publications.waset.org/abstracts/search?q=FLUENT" title=" FLUENT"> FLUENT</a>, <a href="https://publications.waset.org/abstracts/search?q=acoustics" title=" acoustics"> acoustics</a>, <a href="https://publications.waset.org/abstracts/search?q=sound%20pressure%20level" title=" sound pressure level"> sound pressure level</a>, <a href="https://publications.waset.org/abstracts/search?q=SPL" title=" SPL"> SPL</a>, <a href="https://publications.waset.org/abstracts/search?q=hot%20aisle%20containment" title=" hot aisle containment"> hot aisle containment</a>, <a href="https://publications.waset.org/abstracts/search?q=IBM" title=" IBM"> IBM</a> </p> <a href="https://publications.waset.org/abstracts/141377/acoustic-modeling-of-a-data-center-with-a-hot-aisle-containment-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/141377.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">175</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2002</span> Study of a Lean Premixed Combustor: A Thermo Acoustic Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Minoo%20Ghasemzadeh">Minoo Ghasemzadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Rouzbeh%20Riazi"> Rouzbeh Riazi</a>, <a href="https://publications.waset.org/abstracts/search?q=Shidvash%20Vakilipour"> Shidvash Vakilipour</a>, <a href="https://publications.waset.org/abstracts/search?q=Alireza%20Ramezani"> Alireza Ramezani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, thermo acoustic oscillations of a lean premixed combustor has been investigated, and a mono-dimensional code was developed in this regard. The linearized equations of motion are solved for perturbations with time dependence〖 e〗^iwt. Two flame models were considered in this paper and the effect of mean flow and boundary conditions were also investigated. After manipulation of flame heat release equation together with the equations of flow perturbation within the main components of the combustor model (i.e., plenum/ premixed duct/ and combustion chamber) and by considering proper boundary conditions between the components of model, a system of eight homogeneous equations can be obtained. This simplification, for the main components of the combustor model, is convenient since low frequency acoustic waves are not affected by bends. Moreover, some elements in the combustor are smaller than the wavelength of propagated acoustic perturbations. A convection time is also assumed to characterize the required time for the acoustic velocity fluctuations to travel from the point of injection to the location of flame front in the combustion chamber. The influence of an extended flame model on the acoustic frequencies of combustor was also investigated, assuming the effect of flame speed as a function of equivalence ratio perturbation, on the rate of flame heat release. The abovementioned system of equations has a related eigenvalue equation which has complex roots. The sign of imaginary part of these roots determines whether the disturbances grow or decay and the real part of these roots would give the frequency of the modes. The results show a reasonable agreement between the predicted values of dominant frequencies in the present model and those calculated in previous related studies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=combustion%20instability" title="combustion instability">combustion instability</a>, <a href="https://publications.waset.org/abstracts/search?q=dominant%20frequencies" title=" dominant frequencies"> dominant frequencies</a>, <a href="https://publications.waset.org/abstracts/search?q=flame%20speed" title=" flame speed"> flame speed</a>, <a href="https://publications.waset.org/abstracts/search?q=premixed%20combustor" title=" premixed combustor"> premixed combustor</a> </p> <a href="https://publications.waset.org/abstracts/24231/study-of-a-lean-premixed-combustor-a-thermo-acoustic-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24231.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">379</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2001</span> Influence of Bragg Reflectors Pairs on Resonance Characteristics of Solidly Mounted Resonators</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vinita%20Choudhary">Vinita Choudhary</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The solidly mounted resonator (SMR) is a bulk acoustic wave-based device consisting of a piezoelectric layer sandwiched between two electrodes upon Bragg reflectors, which then are attached to a substrate. To transform the effective acoustic impedance of the substrate to a near zero value, the Bragg reflectors are composed of alternating high and low acoustic impedance layers of quarter-wavelength thickness. In this work presents the design and investigation of acoustic Bragg reflectors (ABRs) for solidly mounted bulk acoustic wave resonators through analysis and simulation. This performance of the resonator is analyzed using 1D Mason modeling. The performance parameters are the effect of Bragg pairs number on transmissivity, reflectivity, insertion loss, the electromechanical and quality factor of the 5GHz operating resonator. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bragg%20reflectors" title="bragg reflectors">bragg reflectors</a>, <a href="https://publications.waset.org/abstracts/search?q=SMR" title=" SMR"> SMR</a>, <a href="https://publications.waset.org/abstracts/search?q=insertion%20loss" title=" insertion loss"> insertion loss</a>, <a href="https://publications.waset.org/abstracts/search?q=quality%20factor" title=" quality factor"> quality factor</a> </p> <a href="https://publications.waset.org/abstracts/164288/influence-of-bragg-reflectors-pairs-on-resonance-characteristics-of-solidly-mounted-resonators" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164288.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">98</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2000</span> Bearing Condition Monitoring with Acoustic Emission Techniques</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Faisal%20AlShammari">Faisal AlShammari</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdulmajid%20Addali"> Abdulmajid Addali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Monitoring the conditions of rotating machinery as bearing is important in order to improve its stability of works. Acoustic emission (AE) and vibration analysis are some of the most accomplished techniques used for this purpose. Acoustic emission has the ability to detect the initial phase of component degradation. Moreover, it has been observed that the success of vibration analysis does not take place below 100 rpm rotational speed. This because the energy generated below 100 rpm rotational speed is not detectable using conventional vibration. From this pint, this paper has presented a focused review of using acoustic emission techniques for monitoring bearings condition. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=condition%20monitoring" title="condition monitoring">condition monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=stress%20wave%20analysis" title=" stress wave analysis"> stress wave analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=low-speed%20bearings" title=" low-speed bearings"> low-speed bearings</a>, <a href="https://publications.waset.org/abstracts/search?q=bearing%20defect%20diagnosis" title=" bearing defect diagnosis"> bearing defect diagnosis</a> </p> <a href="https://publications.waset.org/abstracts/40780/bearing-condition-monitoring-with-acoustic-emission-techniques" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40780.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">315</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1999</span> Investigation of the Acoustic Properties of Recycled Felt Panels and Their Application in Classrooms and Multi-Purpose Halls</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ivanova%20B.%20Natalia">Ivanova B. Natalia</a>, <a href="https://publications.waset.org/abstracts/search?q=Djambova%20%D0%A2.%20Svetlana"> Djambova Т. Svetlana</a>, <a href="https://publications.waset.org/abstracts/search?q=Hristev%20S.%20Ivailo"> Hristev S. Ivailo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The acoustic properties of recycled felt panels have been investigated using various methods. Experimentally, the sound insulation of the panels has been evaluated for frequencies in the range of 600 Hz to 4000 Hz, utilizing a small-sized acoustic chamber. Additionally, the sound absorption coefficient for the frequency range of 63 Hz to 4000 Hz was measured according to the EN ISO 354 standard in a laboratory reverberation room. This research was deemed necessary after conducting reverberation time measurements of a university classroom following the EN ISO 3382-2 standard. The measurements indicated values of 2.86 s at 500 Hz, 3.23 s at 1000 Hz, and 2.53 s at 2000 Hz, which significantly exceeded the requirements set by the national regulatory framework (0.6s) for such premises. For this reason, recycled felt panels have been investigated in the laboratory, showing very good acoustic properties at high frequencies. To enhance performance in the low frequencies, the influence of the distance of the panel spacing was examined. Furthermore, the sound insulation of the panels was studied to expand the possibilities of their application, both for the acoustic treatment of educational and multifunctional halls and for sound insulation purposes (e.g., a suspended ceiling with an air gap passing from room to room). As a conclusion, a theoretical acoustic design of the classroom has been carried out with suggestions for improvements to achieve the necessary acoustic and aesthetic parameters for such rooms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acoustic%20panels" title="acoustic panels">acoustic panels</a>, <a href="https://publications.waset.org/abstracts/search?q=recycled%20felt" title=" recycled felt"> recycled felt</a>, <a href="https://publications.waset.org/abstracts/search?q=sound%20absorption" title=" sound absorption"> sound absorption</a>, <a href="https://publications.waset.org/abstracts/search?q=sound%20insulation" title=" sound insulation"> sound insulation</a>, <a href="https://publications.waset.org/abstracts/search?q=classroom%20acoustics" title=" classroom acoustics"> classroom acoustics</a> </p> <a href="https://publications.waset.org/abstracts/167058/investigation-of-the-acoustic-properties-of-recycled-felt-panels-and-their-application-in-classrooms-and-multi-purpose-halls" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167058.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">90</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1998</span> Turbulence Measurement Over Rough and Smooth Bed in Open Channel Flow</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kirti%20Singh">Kirti Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Kesheo%20Prasad"> Kesheo Prasad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A 3D Acoustic Doppler velocimeter was used in the current investigation to quantify the mean and turbulence characteristics in non-uniform open-channel flows. Results are obtained from studies done in the laboratory, analysing the behavior of sand particles under turbulent open channel flow conditions flowing through rough, porous beds. Data obtained from ADV is used to calculate turbulent flow characteristics, Reynolds stresses and turbulent kinetic energy. Theoretical formulations for the distribution of Reynolds stress and the vertical velocity have been constructed using the Reynolds equation and the continuity equation of 2D open-channel flow. The measured Reynolds stress profile and the vertical velocity are comparable with the derived expressions. This study uses the Navier-Stokes equations for analysing the behavior of the vertical velocity profile in the dominant region of full-fledged turbulent flows in open channels, and it gives a new origination of the profile. For both wide and narrow open channels, this origination can estimate the time-averaged primary velocity in the turbulent boundary layer's outer region. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=turbulence" title="turbulence">turbulence</a>, <a href="https://publications.waset.org/abstracts/search?q=bed%20roughness" title=" bed roughness"> bed roughness</a>, <a href="https://publications.waset.org/abstracts/search?q=logarithmic%20law" title=" logarithmic law"> logarithmic law</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20stress%20correlations" title=" shear stress correlations"> shear stress correlations</a>, <a href="https://publications.waset.org/abstracts/search?q=ADV" title=" ADV"> ADV</a>, <a href="https://publications.waset.org/abstracts/search?q=Reynolds%20shear%20stress" title=" Reynolds shear stress"> Reynolds shear stress</a> </p> <a href="https://publications.waset.org/abstracts/159300/turbulence-measurement-over-rough-and-smooth-bed-in-open-channel-flow" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/159300.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">107</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1997</span> Design Optimization and Thermoacoustic Analysis of Pulse Tube Cryocooler Components</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Aravinth">K. Aravinth</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20T.%20Vignesh"> C. T. Vignesh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The usage of pulse tube cryocoolers is significantly increased mainly due to the advantage of the absence of moving parts. The underlying idea of this project is to optimize the design of pulse tube, regenerator, a resonator in cryocooler and analyzing the thermo-acoustic oscillations with respect to the design parameters. Computational Fluid Dynamic (CFD) model with time-dependent validation is done to predict its performance. The continuity, momentum, and energy equations are solved for various porous media regions. The effect of changing the geometries and orientation will be validated and investigated in performance. The pressure, temperature and velocity fields in the regenerator and pulse tube are evaluated. This optimized design performance results will be compared with the existing pulse tube cryocooler design. The sinusoidal behavior of cryocooler in acoustic streaming patterns in pulse tube cryocooler will also be evaluated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acoustics" title="acoustics">acoustics</a>, <a href="https://publications.waset.org/abstracts/search?q=cryogenics" title=" cryogenics"> cryogenics</a>, <a href="https://publications.waset.org/abstracts/search?q=design" title=" design"> design</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a> </p> <a href="https://publications.waset.org/abstracts/82751/design-optimization-and-thermoacoustic-analysis-of-pulse-tube-cryocooler-components" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82751.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">175</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1996</span> Velocity Distribution in Open Channels with Sand: An Experimental Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=E.%20Keramaris">E. Keramaris</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, laboratory experiments in open channel flows over a sand bed were conducted. A porous bed (sand bed) with porosity of ε=0.70 and porous thickness of s΄=3 cm was tested. Vertical distributions of velocity were evaluated by using a two-dimensional (2D) Particle Image Velocimetry (PIV). Velocity profiles are measured above the impermeable bed and above the sand bed for the same different total water heights (h= 6, 8, 10 and 12 cm) and for the same slope S=1.5. Measurements of mean velocity indicate the effects of the bed material used (sand bed) on the flow characteristics (Velocity distribution and Reynolds number) in comparison with those above the impermeable bed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=particle%20image%20velocimetry" title="particle image velocimetry">particle image velocimetry</a>, <a href="https://publications.waset.org/abstracts/search?q=sand%20bed" title=" sand bed"> sand bed</a>, <a href="https://publications.waset.org/abstracts/search?q=velocity%20distribution" title=" velocity distribution"> velocity distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=Reynolds%20number" title=" Reynolds number"> Reynolds number</a> </p> <a href="https://publications.waset.org/abstracts/46893/velocity-distribution-in-open-channels-with-sand-an-experimental-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46893.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">374</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=acoustic%20velocity&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=acoustic%20velocity&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=acoustic%20velocity&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=acoustic%20velocity&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=acoustic%20velocity&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=acoustic%20velocity&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=acoustic%20velocity&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=acoustic%20velocity&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=acoustic%20velocity&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=acoustic%20velocity&page=67">67</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=acoustic%20velocity&page=68">68</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=acoustic%20velocity&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>