CINXE.COM
Search results for: Jiří Mach
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Jiří Mach</title> <meta name="description" content="Search results for: Jiří Mach"> <meta name="keywords" content="Jiří Mach"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Jiří Mach" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Jiří Mach"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 183</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Jiří Mach</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">183</span> Analysis of Simple Mechanisms to Continuously Vary Mach Number in a Supersonic Wind Tunnel Facility</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Prateek%20Kishore">Prateek Kishore</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20M.%20Muruganandam"> T. M. Muruganandam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Supersonic wind tunnel nozzles are generally capable of producing a constant Mach number flow in the test section of the wind tunnel. As a result, most of the supersonic vehicles are widely designed using steady state flow characteristics which may have errors while facing unsteady situations. This study aims to explore the possibility of varying the Mach number of the flow during wind tunnel operation. The nozzle walls are restricted to be inflexible for cooling near the throat due to high stagnation temperature requirement of the flow to simulate the conditions as experienced by the vehicle. Two simple independent mechanisms, rotation and translation of nozzle walls have been analyzed and the nozzle ranges have been optimized to vary the Mach number from Mach 2 to Mach 5 using minimum number of nozzles in the wind tunnel. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=method%20of%20characteristics" title="method of characteristics">method of characteristics</a>, <a href="https://publications.waset.org/abstracts/search?q=nozzle" title=" nozzle"> nozzle</a>, <a href="https://publications.waset.org/abstracts/search?q=supersonic%20wind%20tunnel" title=" supersonic wind tunnel"> supersonic wind tunnel</a>, <a href="https://publications.waset.org/abstracts/search?q=variable%20mach%20number" title=" variable mach number"> variable mach number</a> </p> <a href="https://publications.waset.org/abstracts/66454/analysis-of-simple-mechanisms-to-continuously-vary-mach-number-in-a-supersonic-wind-tunnel-facility" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66454.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">295</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">182</span> Drag Reduction of Base Bleed at Various Flight Conditions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Man%20Chul%20Jeong">Man Chul Jeong</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyoung%20Jin%20Lee"> Hyoung Jin Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Sang%20Yoon%20Lee"> Sang Yoon Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Ji%20Hyun%20Park"> Ji Hyun Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Min%20Wook%20Chang"> Min Wook Chang</a>, <a href="https://publications.waset.org/abstracts/search?q=In-Seuck%20Jeung"> In-Seuck Jeung</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study focus on the drag reduction effect of the base bleed at supersonic flow. Base bleed is the method which bleeds the gas on the tail of the flight vehicle and reduces the base drag, which occupies over 50% of the total drag in any flight speed. Thus base bleed can reduce the total drag significantly, and enhance the total flight range. Drag reduction ratio of the base bleed is strongly related to the mass flow rate of the bleeding gas. Thus selecting appropriate mass flow rate is important. However, since the flight vehicle has various flight speed, same mass flow rate of the base bleed can have different drag reduction effect during the flight. Thus, this study investigates the effect of the drag reduction depending on the flight speed by numerical analysis using STAR-CCM+. The analysis model is 155mm diameter projectile with boat-tailed shape base. Angle of the boat-tail is chosen previously for minimum drag coefficient. Numerical analysis is conducted for Mach 2 and Mach 3, with various mass flow rate, or the injection parameter I, of the bleeding gas and the temperature of the bleeding gas, is fixed to 300K. The results showed that I=0.025 has the minimum drag at Mach 2, and I=0.014 has the minimum drag at Mach 3. Thus as the Mach number is higher, the lower mass flow rate of the base bleed has more effect on drag reduction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=base%20bleed" title="base bleed">base bleed</a>, <a href="https://publications.waset.org/abstracts/search?q=supersonic" title=" supersonic"> supersonic</a>, <a href="https://publications.waset.org/abstracts/search?q=drag%20reduction" title=" drag reduction"> drag reduction</a>, <a href="https://publications.waset.org/abstracts/search?q=recirculation" title=" recirculation"> recirculation</a> </p> <a href="https://publications.waset.org/abstracts/69358/drag-reduction-of-base-bleed-at-various-flight-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69358.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">415</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">181</span> Refractometric Optical Sensing by Using Photonics Mach–Zehnder Interferometer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gong%20Zhang">Gong Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Hong%20Cai"> Hong Cai</a>, <a href="https://publications.waset.org/abstracts/search?q=Bin%20Dong"> Bin Dong</a>, <a href="https://publications.waset.org/abstracts/search?q=Jifang%20Tao"> Jifang Tao</a>, <a href="https://publications.waset.org/abstracts/search?q=Aiqun%20Liu"> Aiqun Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Dim-Lee%20Kwong"> Dim-Lee Kwong</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuandong%20Gu"> Yuandong Gu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An on-chip refractive index sensor with high sensitivity and large measurement range is demonstrated in this paper. The sensing structures are based on Mach-Zehnder interferometer configuration, built on the SOI substrate. The wavelength sensitivity of the sensor is estimated to be 3129 nm/RIU. Meanwhile, according to the interference pattern period changes, the measured period sensitivities are 2.9 nm/RIU (TE mode) and 4.21 nm/RIU (TM mode), respectively. As such, the wavelength shift and the period shift can be used for fine index change detection and larger index change detection, respectively. Therefore, the sensor design provides an approach for large index change measurement with high sensitivity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mach-Zehnder%20interferometer" title="Mach-Zehnder interferometer">Mach-Zehnder interferometer</a>, <a href="https://publications.waset.org/abstracts/search?q=nanotechnology" title=" nanotechnology"> nanotechnology</a>, <a href="https://publications.waset.org/abstracts/search?q=refractive%20index%20sensing" title=" refractive index sensing"> refractive index sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=sensors" title=" sensors"> sensors</a> </p> <a href="https://publications.waset.org/abstracts/37878/refractometric-optical-sensing-by-using-photonics-mach-zehnder-interferometer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37878.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">445</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">180</span> Flexible Communication Platform for Crisis Management</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ji%C5%99%C3%AD%20Barta">Jiří Barta</a>, <a href="https://publications.waset.org/abstracts/search?q=Tom%C3%A1%C5%A1%20Lud%C3%ADk"> Tomáš Ludík</a>, <a href="https://publications.waset.org/abstracts/search?q=Ji%C5%99%C3%AD%20Urb%C3%A1nek"> Jiří Urbánek</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The topics of disaster and emergency management are highly debated among experts. Fast communication will help to deal with emergencies. Problem is with the network connection and data exchange. The paper suggests a solution, which allows possibilities and perspectives of new flexible communication platform to the protection of communication systems for crisis management. This platform is used for everyday communication and communication in crisis situations too. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=crisis%20management" title="crisis management">crisis management</a>, <a href="https://publications.waset.org/abstracts/search?q=information%20systems" title=" information systems"> information systems</a>, <a href="https://publications.waset.org/abstracts/search?q=interoperability" title=" interoperability"> interoperability</a>, <a href="https://publications.waset.org/abstracts/search?q=crisis%20communication" title=" crisis communication"> crisis communication</a>, <a href="https://publications.waset.org/abstracts/search?q=security%20environment" title=" security environment"> security environment</a>, <a href="https://publications.waset.org/abstracts/search?q=communication%20platform" title=" communication platform"> communication platform</a> </p> <a href="https://publications.waset.org/abstracts/2171/flexible-communication-platform-for-crisis-management" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2171.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">475</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">179</span> Characterization of Inertial Confinement Fusion Targets Based on Transmission Holographic Mach-Zehnder Interferometer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20Zare-Farsani">B. Zare-Farsani</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Valieghbal"> M. Valieghbal</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Tarkashvand"> M. Tarkashvand</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20H.%20Farahbod"> A. H. Farahbod</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To provide the conditions for nuclear fusion by high energy and powerful laser beams, it is required to have a high degree of symmetry and surface uniformity of the spherical capsules to reduce the Rayleigh-Taylor hydrodynamic instabilities. In this paper, we have used the digital microscopic holography based on Mach-Zehnder interferometer to study the quality of targets for inertial fusion. The interferometric pattern of the target has been registered by a CCD camera and analyzed by Holovision software. The uniformity of the surface and shell thickness are investigated and measured in reconstructed image. We measured shell thickness in different zone where obtained non uniformity 22.82 percent. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=inertial%20confinement%20fusion" title="inertial confinement fusion">inertial confinement fusion</a>, <a href="https://publications.waset.org/abstracts/search?q=mach-zehnder%20interferometer" title=" mach-zehnder interferometer"> mach-zehnder interferometer</a>, <a href="https://publications.waset.org/abstracts/search?q=digital%20holographic%20microscopy" title=" digital holographic microscopy"> digital holographic microscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20reconstruction" title=" image reconstruction"> image reconstruction</a>, <a href="https://publications.waset.org/abstracts/search?q=holovision" title=" holovision"> holovision</a> </p> <a href="https://publications.waset.org/abstracts/45440/characterization-of-inertial-confinement-fusion-targets-based-on-transmission-holographic-mach-zehnder-interferometer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45440.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">304</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">178</span> Experimental Investigation of Partially Premixed Laminar Methane/Air Co-Flow Flames Using Mach-Zehnder Interferometry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Misagh%20Irandoost%20Shahrestani">Misagh Irandoost Shahrestani</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehdi%20Ashjaee"> Mehdi Ashjaee</a>, <a href="https://publications.waset.org/abstracts/search?q=Shahrokh%20Zandieh%20Vakili"> Shahrokh Zandieh Vakili</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, partially premixed laminar methane/air co-flow flame is studied experimentally. Methane-air flame was established on an axisymmetric coannular burner. The fuel-air jet flows from the central tube while the secondary air flows from the region between the inner and the outer tube. The aim is to investigate the flame features and to develop a nonintrusive method for temperature measurement of methane/air partially premixed flame using Mach-Zehnder interferometry method. Different equivalence ratios and Reynolds numbers are considered. Flame generic visible appearance was also investigated and its various structures were studied. Three distinguished flame regimes were seen based on its appearance. A double flame structure can be seen for the equivalence ratio in the range of 1<Φ<2.1. By adding air to the mixture up to Φ=4 the flame has the characteristics of both premixed and non-premixed flames. Finally for 4<Φ<∞ the flame mainly becomes non-premixed like and the luminous sooting region on its tip is the obvious feature of this type of flames. The Mach-Zehnder method is used to obtain temperature field of a transparent fluid by means of index of refraction. Temperature obtained from optical techniques was compared with that of obtained from thermocouples in order to validate the results. Good agreement was observed for these two methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flame%20structure" title="flame structure">flame structure</a>, <a href="https://publications.waset.org/abstracts/search?q=Mach-Zehnder%20interferometry" title=" Mach-Zehnder interferometry"> Mach-Zehnder interferometry</a>, <a href="https://publications.waset.org/abstracts/search?q=partially%20premixed%20flame" title=" partially premixed flame"> partially premixed flame</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature%20field" title=" temperature field "> temperature field </a> </p> <a href="https://publications.waset.org/abstracts/17291/experimental-investigation-of-partially-premixed-laminar-methaneair-co-flow-flames-using-mach-zehnder-interferometry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17291.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">482</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">177</span> Requirements Engineering via Controlling Actors Definition for the Organizations of European Critical Infrastructure</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jiri%20F.%20Urbanek">Jiri F. Urbanek</a>, <a href="https://publications.waset.org/abstracts/search?q=Jiri%20Barta"> Jiri Barta</a>, <a href="https://publications.waset.org/abstracts/search?q=Oldrich%20Svoboda"> Oldrich Svoboda</a>, <a href="https://publications.waset.org/abstracts/search?q=Jiri%20J.%20Urbanek"> Jiri J. Urbanek</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The organizations of European and Czech critical infrastructure have specific position, mission, characteristics and behaviour in European Union and Czech state/ business environments, regarding specific requirements for regional and global security environments. They must respect policy of national security and global rules, requirements and standards in all their inherent and outer processes of supply-customer chains and networks. A controlling is generalized capability to have control over situational policy. This paper aims and purposes are to introduce the controlling as quite new necessary process attribute providing for critical infrastructure is environment the capability and profit to achieve its commitment regarding to the effectiveness of the quality management system in meeting customer/ user requirements and also the continual improvement of critical infrastructure organization’s processes overall performance and efficiency, as well as its societal security via continual planning improvement via DYVELOP modelling. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=added%20value" title="added value">added value</a>, <a href="https://publications.waset.org/abstracts/search?q=DYVELOP" title=" DYVELOP"> DYVELOP</a>, <a href="https://publications.waset.org/abstracts/search?q=controlling" title=" controlling"> controlling</a>, <a href="https://publications.waset.org/abstracts/search?q=environments" title=" environments"> environments</a>, <a href="https://publications.waset.org/abstracts/search?q=process%20approach" title=" process approach"> process approach</a> </p> <a href="https://publications.waset.org/abstracts/18634/requirements-engineering-via-controlling-actors-definition-for-the-organizations-of-european-critical-infrastructure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18634.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">412</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">176</span> The Use of Crisis Workplace Technology to Protect Communication Processes of Critical Infrastructure</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jiri%20Barta">Jiri Barta</a>, <a href="https://publications.waset.org/abstracts/search?q=Ji%C5%99%C3%AD%20F.%20Urbanek"> Jiří F. Urbanek</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper deals with a protection of the national and European infrastructure. It is issue nowadays. The paper deals with the perspectives and possibilities of "smart solutions" to critical infrastructure protection. The research project deals with computers aided technologies are used from the perspective of new, better protection of selected infrastructure objects. Protection is focused on communication and information channels. These communication and information channels are very important for the functioning of the system of protection of critical infrastructure elements. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=interoperability" title="interoperability">interoperability</a>, <a href="https://publications.waset.org/abstracts/search?q=communication%20systems" title=" communication systems"> communication systems</a>, <a href="https://publications.waset.org/abstracts/search?q=controlling%20proces" title=" controlling proces"> controlling proces</a>, <a href="https://publications.waset.org/abstracts/search?q=critical%20infrastructure" title=" critical infrastructure"> critical infrastructure</a>, <a href="https://publications.waset.org/abstracts/search?q=crisis%20workplaces" title=" crisis workplaces"> crisis workplaces</a>, <a href="https://publications.waset.org/abstracts/search?q=continuity" title=" continuity"> continuity</a> </p> <a href="https://publications.waset.org/abstracts/17844/the-use-of-crisis-workplace-technology-to-protect-communication-processes-of-critical-infrastructure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17844.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">299</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">175</span> Bias Optimization of Mach-Zehnder Modulator Considering RF Gain on OFDM Radio-Over-Fiber System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ghazi%20Al%20Sukkar">Ghazi Al Sukkar</a>, <a href="https://publications.waset.org/abstracts/search?q=Yazid%20Khattabi"> Yazid Khattabi</a>, <a href="https://publications.waset.org/abstracts/search?q=Shifen%20Zhong"> Shifen Zhong </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Most of the recent wireless LANs, broadband access networks, and digital broadcasting use Orthogonal Frequency Division Multiplexing techniques. In addition, the increasing demand of Data and Internet makes fiber optics an important technology, as fiber optics has many characteristics that make it the best solution for transferring huge frames of Data from a point to another. Radio over fiber is the place where high quality RF is converted to optical signals over single mode fiber. Optimum values for the bias level and the switching voltage for Mach-Zehnder modulator are important for the performance of radio over fiber links. In this paper, we propose a method to optimize the two parameters simultaneously; the bias and the switching voltage point of the external modulator of a radio over fiber system considering RF gain. Simulation results show the optimum gain value under these two parameters. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=OFDM" title="OFDM">OFDM</a>, <a href="https://publications.waset.org/abstracts/search?q=Mach%20Zehnder%20bias%20voltage" title=" Mach Zehnder bias voltage"> Mach Zehnder bias voltage</a>, <a href="https://publications.waset.org/abstracts/search?q=switching%20voltage" title=" switching voltage"> switching voltage</a>, <a href="https://publications.waset.org/abstracts/search?q=radio-over-fiber" title=" radio-over-fiber"> radio-over-fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=RF%20gain" title=" RF gain"> RF gain</a> </p> <a href="https://publications.waset.org/abstracts/82338/bias-optimization-of-mach-zehnder-modulator-considering-rf-gain-on-ofdm-radio-over-fiber-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82338.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">477</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">174</span> 2D and 3D Unsteady Simulation of the Heat Transfer in the Sample during Heat Treatment by Moving Heat Source</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zden%C4%9Bk%20Vesel%C3%BD">Zdeněk Veselý</a>, <a href="https://publications.waset.org/abstracts/search?q=Milan%20Honner"> Milan Honner</a>, <a href="https://publications.waset.org/abstracts/search?q=Ji%C5%99%C3%AD%20Mach"> Jiří Mach </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of the performed work is to establish the 2D and 3D model of direct unsteady task of sample heat treatment by moving source employing computer model on the basis of finite element method. The complex boundary condition on heat loaded sample surface is the essential feature of the task. Computer model describes heat treatment of the sample during heat source movement over the sample surface. It is started from the 2D task of sample cross section as a basic model. Possibilities of extension from 2D to 3D task are discussed. The effect of the addition of third model dimension on the temperature distribution in the sample is showed. Comparison of various model parameters on the sample temperatures is observed. Influence of heat source motion on the depth of material heat treatment is shown for several velocities of the movement. Presented computer model is prepared for the utilization in laser treatment of machine parts. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=computer%20simulation" title="computer simulation">computer simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=unsteady%20model" title=" unsteady model"> unsteady model</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20treatment" title=" heat treatment"> heat treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=complex%20boundary%20condition" title=" complex boundary condition"> complex boundary condition</a>, <a href="https://publications.waset.org/abstracts/search?q=moving%20heat%20source" title=" moving heat source"> moving heat source</a> </p> <a href="https://publications.waset.org/abstracts/32393/2d-and-3d-unsteady-simulation-of-the-heat-transfer-in-the-sample-during-heat-treatment-by-moving-heat-source" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32393.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">394</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">173</span> Temperature Field Measurement of Premixed Landfill Gas Laminar Flame in a Cylindrical Slot Burner Using Mach-Zehnder Interferometry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bahareh%20Najafian%20Ashrafi">Bahareh Najafian Ashrafi</a>, <a href="https://publications.waset.org/abstracts/search?q=Hossein%20Zeidabadinejad"> Hossein Zeidabadinejad</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehdi%20Ashjaee"> Mehdi Ashjaee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The temperature field is a key factor of flame heat transfer rate and therefore should be measured accurately. In this study, the Mach-Zehnder Interferometry method is applied to measure the temperature field of premixed air/landfill gas (LFG60:60% CH4+40% CO2) laminar flame. The three-dimensional flame of cylindrical slot burner can assume to be two-dimensional due to the high aspect ratio (L/W=10) of the rectangular slot. So, the method converts two-dimensional flame to closed isothermal curves called fringes and the outer fringes temperature is measured by thermocouples. The experiments are carried out for Reynolds numbers and equivalence ratios ranging from 100 to 400 and 1.0 to 1.4, respectively. Results show that by increasing the equivalence ratio or Reynolds number, the flame height increases. The maximum flame temperature decreases by increasing the equivalence ratio but does not change considerably by changing the Reynolds number. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=landfill%20gas" title="landfill gas">landfill gas</a>, <a href="https://publications.waset.org/abstracts/search?q=Mach-Zehender%20interferometry" title=" Mach-Zehender interferometry"> Mach-Zehender interferometry</a>, <a href="https://publications.waset.org/abstracts/search?q=premix%20flame" title=" premix flame"> premix flame</a>, <a href="https://publications.waset.org/abstracts/search?q=slot%20burner" title=" slot burner"> slot burner</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature%20filed" title=" temperature filed "> temperature filed </a> </p> <a href="https://publications.waset.org/abstracts/126018/temperature-field-measurement-of-premixed-landfill-gas-laminar-flame-in-a-cylindrical-slot-burner-using-mach-zehnder-interferometry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/126018.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">150</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">172</span> Measurement of Convective Heat Transfer from a Vertical Flat Plate Using Mach-Zehnder Interferometer with Wedge Fringe Setting</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Divya%20Haridas">Divya Haridas</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20B.%20Sobhan"> C. B. Sobhan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Laser interferometric methods have been utilized for the measurement of natural convection heat transfer from a heated vertical flat plate, in the investigation presented here. The study mainly aims at comparing two different fringe orientations in the wedge fringe setting of Mach-Zehnder interferometer (MZI), used for the measurements. The interference fringes are set in horizontal and vertical orientations with respect to the heated surface, and two different fringe analysis methods, namely the stepping method and the method proposed by Naylor and Duarte, are used to obtain the heat transfer coefficients. The experimental system is benchmarked with theoretical results, thus validating its reliability in heat transfer measurements. The interference fringe patterns are analyzed digitally using MATLAB 7 and MOTIC Plus softwares, which ensure improved efficiency in fringe analysis, hence reducing the errors associated with conventional fringe tracing. The work also discuss the relative merits and limitations of the two methods used. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mach-Zehnder%20interferometer%20%28MZI%29" title="Mach-Zehnder interferometer (MZI)">Mach-Zehnder interferometer (MZI)</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20convection" title=" natural convection"> natural convection</a>, <a href="https://publications.waset.org/abstracts/search?q=Naylor%20method" title=" Naylor method"> Naylor method</a>, <a href="https://publications.waset.org/abstracts/search?q=Vertical%20Flat%20Plate" title=" Vertical Flat Plate"> Vertical Flat Plate</a> </p> <a href="https://publications.waset.org/abstracts/2448/measurement-of-convective-heat-transfer-from-a-vertical-flat-plate-using-mach-zehnder-interferometer-with-wedge-fringe-setting" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2448.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">364</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">171</span> Numerical Investigation of Effect of Throat Design on the Performance of a Rectangular Ramjet Intake </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Subrat%20Partha%20Sarathi%20Pattnaik">Subrat Partha Sarathi Pattnaik</a>, <a href="https://publications.waset.org/abstracts/search?q=Rajan%20N.K.S."> Rajan N.K.S.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Integrated rocket ramjet engines are highly suitable for long range missile applications. Designing the fixed geometry intakes for such missiles that can operate efficiently over a range of operating conditions is a highly challenging task. Hence, the present study aims to evaluate the effect of throat design on the performance of a rectangular mixed compression intake for operation in the Mach number range of 1.8 – 2.5. The analysis has been carried out at four different Mach numbers of 1.8, 2, 2.2, 2.5 and two angle-of-attacks of +5 and +10 degrees. For the throat design, three different throat heights have been considered, one corresponding to a 3- external shock design and two heights corresponding to a 2-external shock design leading to different internal contraction ratios. The on-design Mach number for the study is M 2.2. To obtain the viscous flow field in the intake, the theoretical designs have been considered for computational fluid dynamic analysis. For which Favre averaged Navier- Stokes (FANS) equations with two equation SST k-w model have been solved. The analysis shows that for zero angle of attack at on-design and high off-design Mach number operations the three-ramp design leads to a higher total pressure recovery (TPR) compared to the two-ramp design at both contraction ratios maintaining same mass flow ratio (MFR). But at low off-design Mach numbers the total pressure shows an opposite trend that is maximum for the two-ramp low contraction ratio design due to lower shock loss across the external shocks similarly the MFR is higher for low contraction ratio design as the external ramp shocks move closer to the cowl. At both the angle of attack conditions and complete range of Mach numbers the total pressure recovery and mass flow ratios are highest for two ramp low contraction design due to lower stagnation pressure loss across the detached bow shock formed at the ramp and lower mass spillage. Hence, low contraction design is found to be suitable for higher off-design performance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=internal%20contraction%20ratio" title="internal contraction ratio">internal contraction ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=mass%20flow%20ratio" title=" mass flow ratio"> mass flow ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=mixed%20compression%20intake" title=" mixed compression intake"> mixed compression intake</a>, <a href="https://publications.waset.org/abstracts/search?q=performance" title=" performance"> performance</a>, <a href="https://publications.waset.org/abstracts/search?q=supersonic%20flows" title=" supersonic flows "> supersonic flows </a> </p> <a href="https://publications.waset.org/abstracts/120058/numerical-investigation-of-effect-of-throat-design-on-the-performance-of-a-rectangular-ramjet-intake" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/120058.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">108</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">170</span> Computational Analysis of Variation in Thrust of Oblique Detonation Ramjet Engine With Adaptive Inlet</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aditya">Aditya</a>, <a href="https://publications.waset.org/abstracts/search?q=Ganapati%20Joshi"> Ganapati Joshi</a>, <a href="https://publications.waset.org/abstracts/search?q=Vinod%20Kumar"> Vinod Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> IN THE MODERN-WARFARE ERA, THE PRIME REQUIREMENT IS A HIGH SPEED AND MACH NUMBER. WHEN THE MISSILES STRIKE IN THE HYPERSONIC REGIME THE OPPONENT CAN DETECT IT WITH THE ANTI-DEFENSE SYSTEM BUT CAN NOT STOP IT FROM CAUSING DAMAGE. SO, TO ACHIEVE THE SPEEDS OF THIS LEVEL THERE ARE TWO ENGINES THAT ARE AVAILABLE WHICH CAN WORK IN THIS REGION ARE RAMJET AND SCRAMJET. THE PROBLEM WITH RAMJET STARTS TO OCCUR WHEN MACH NUMBER EXCEEDS 4 AS THE STATIC PRESSURE AT THE INLET BECOMES EQUAL TO THE EXIT PRESSURE. SO, SCRAMJET ENGINE DEALS WITH THIS PROBLEM AS IT NEARLY HAS THE SAME WORKING BUT HERE THE FLOW IS NOT MUCH SLOWED DOWN AS COMPARED TO RAMJET IN THE DIFFUSER BUT IT SUFFERS FROM THE PROBLEMS SUCH AS INLET BUZZ, THERMAL CHOCKING, MIXING OF FUEL AND OXIDIZER, THERMAL HEATING, AND MANY MORE. HERE THE NEW ENGINE IS DEVELOPED ON THE SAME PRINCIPLE AS THE SCRAMJET ENGINE BUT BURNING HAPPENS DUE TO DETONATION INSTEAD OF DEFLAGRATION. THE PROBLEM WITH THE ENGINE STARTS WHEN THE MACH NUMBER BECOMES VARIABLE AND THE INLET GEOMETRY IS FIXED AND THIS LEADS TO INLET SPILLAGE WHICH WILL AFFECT THE THRUST ADVERSELY. SO, HERE ADAPTIVE INLET IS MADE OF SHAPE MEMORY ALLOYS WHICH WILL ENHANCE THE INLET MASS FLOW RATE AS WELL AS THRUST. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=detonation" title="detonation">detonation</a>, <a href="https://publications.waset.org/abstracts/search?q=ramjet%20engine" title=" ramjet engine"> ramjet engine</a>, <a href="https://publications.waset.org/abstracts/search?q=shape%20memory%20alloy" title=" shape memory alloy"> shape memory alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=ignition%20delay" title=" ignition delay"> ignition delay</a>, <a href="https://publications.waset.org/abstracts/search?q=shock-boundary%20layer%20interaction" title=" shock-boundary layer interaction"> shock-boundary layer interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=eddy%20dissipation" title=" eddy dissipation"> eddy dissipation</a>, <a href="https://publications.waset.org/abstracts/search?q=asymmetric%20nozzle" title=" asymmetric nozzle"> asymmetric nozzle</a> </p> <a href="https://publications.waset.org/abstracts/149070/computational-analysis-of-variation-in-thrust-of-oblique-detonation-ramjet-engine-with-adaptive-inlet" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/149070.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">102</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">169</span> Optical Diagnostics of Corona Discharge by Laser Interferometry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Bendimerad">N. Bendimerad</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Lemerini"> M. Lemerini</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Guen"> A. Guen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, we propose to determine the density of neutral particles of an electric discharge peak - Plan types performed in air at atmospheric pressure by applying a technique based on laser interferometry. The experimental methods used so far as the shadowgraph or stereoscopy, give rather qualitative results with regard to the determination of the neutral density. The neutral rotational temperature has been subject of several studies but direct measurements of kinetic temperature are rare. The aim of our work is to determine quantitatively and experimentally depopulation with a Mach-Zehnder type interferometer. This purely optical appearance of the discharge is important when looking to know the refractive index of any gas for any physicochemical applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=laser%20source" title="laser source">laser source</a>, <a href="https://publications.waset.org/abstracts/search?q=Mach-Zehnder%20interferometer" title=" Mach-Zehnder interferometer"> Mach-Zehnder interferometer</a>, <a href="https://publications.waset.org/abstracts/search?q=refractive%20index" title=" refractive index"> refractive index</a>, <a href="https://publications.waset.org/abstracts/search?q=corona%20discharge" title=" corona discharge"> corona discharge</a> </p> <a href="https://publications.waset.org/abstracts/30938/optical-diagnostics-of-corona-discharge-by-laser-interferometry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30938.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">448</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">168</span> Scenarios of Societal Security and Business Continuity Cycles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ji%C5%99%C3%AD%20F.%20Urb%C3%A1nek">Jiří F. Urbánek</a>, <a href="https://publications.waset.org/abstracts/search?q=Ji%C5%99%C3%AD%20Barta"> Jiří Barta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Societal security, continuity scenarios, and methodological cycling approach understands in this article. Namely, societal security organizational challenges ask implementation of international standards BS 25999-2 and global ISO 22300 which is a family of standards for business continuity management system. Efficient global organization system is distinguished of high entity´s complexity, connectivity, and interoperability, having not only cooperative relations in a fact. Competing business have numerous participating ´enemies´, which are in apparent or hidden opponent and antagonistic roles with prosperous organization systems, resulting to a crisis scene or even to a battle theater. Organization business continuity scenarios are necessary for such ´a play´ preparedness, planning, management, and overmastering in real environments. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=business%20continuity" title="business continuity">business continuity</a>, <a href="https://publications.waset.org/abstracts/search?q=societal%20security" title=" societal security"> societal security</a>, <a href="https://publications.waset.org/abstracts/search?q=crisis%20scenarios%20cycles" title=" crisis scenarios cycles"> crisis scenarios cycles</a>, <a href="https://publications.waset.org/abstracts/search?q=interoperability" title=" interoperability"> interoperability</a> </p> <a href="https://publications.waset.org/abstracts/2192/scenarios-of-societal-security-and-business-continuity-cycles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2192.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">385</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">167</span> Prediction of Finned Projectile Aerodynamics Using a Lattice-Boltzmann Method CFD Solution</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zaki%20Abiza">Zaki Abiza</a>, <a href="https://publications.waset.org/abstracts/search?q=Miguel%20Chavez"> Miguel Chavez</a>, <a href="https://publications.waset.org/abstracts/search?q=David%20M.%20Holman"> David M. Holman</a>, <a href="https://publications.waset.org/abstracts/search?q=Ruddy%20Brionnaud"> Ruddy Brionnaud</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the prediction of the aerodynamic behavior of the flow around a Finned Projectile will be validated using a Computational Fluid Dynamics (CFD) solution, XFlow, based on the Lattice-Boltzmann Method (LBM). XFlow is an innovative CFD software developed by Next Limit Dynamics. It is based on a state-of-the-art Lattice-Boltzmann Method which uses a proprietary particle-based kinetic solver and a LES turbulent model coupled with the generalized law of the wall (WMLES). The Lattice-Boltzmann method discretizes the continuous Boltzmann equation, a transport equation for the particle probability distribution function. From the Boltzmann transport equation, and by means of the Chapman-Enskog expansion, the compressible Navier-Stokes equations can be recovered. However to simulate compressible flows, this method has a Mach number limitation because of the lattice discretization. Thanks to this flexible particle-based approach the traditional meshing process is avoided, the discretization stage is strongly accelerated reducing engineering costs, and computations on complex geometries are affordable in a straightforward way. The projectile that will be used in this work is the Army-Navy Basic Finned Missile (ANF) with a caliber of 0.03 m. The analysis will consist in varying the Mach number from M=0.5 comparing the axial force coefficient, normal force slope coefficient and the pitch moment slope coefficient of the Finned Projectile obtained by XFlow with the experimental data. The slope coefficients will be obtained using finite difference techniques in the linear range of the polar curve. The aim of such an analysis is to find out the limiting Mach number value starting from which the effects of high fluid compressibility (related to transonic flow regime) lead the XFlow simulations to differ from the experimental results. This will allow identifying the critical Mach number which limits the validity of the isothermal formulation of XFlow and beyond which a fully compressible solver implementing a coupled momentum-energy equations would be required. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CFD" title="CFD">CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=computational%20fluid%20dynamics" title=" computational fluid dynamics"> computational fluid dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=drag" title=" drag"> drag</a>, <a href="https://publications.waset.org/abstracts/search?q=finned%20projectile" title=" finned projectile"> finned projectile</a>, <a href="https://publications.waset.org/abstracts/search?q=lattice-boltzmann%20method" title=" lattice-boltzmann method"> lattice-boltzmann method</a>, <a href="https://publications.waset.org/abstracts/search?q=LBM" title=" LBM"> LBM</a>, <a href="https://publications.waset.org/abstracts/search?q=lift" title=" lift"> lift</a>, <a href="https://publications.waset.org/abstracts/search?q=mach" title=" mach"> mach</a>, <a href="https://publications.waset.org/abstracts/search?q=pitch" title=" pitch"> pitch</a> </p> <a href="https://publications.waset.org/abstracts/42078/prediction-of-finned-projectile-aerodynamics-using-a-lattice-boltzmann-method-cfd-solution" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42078.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">421</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">166</span> Linear Evolution of Compressible Görtler Vortices Subject to Free-Stream Vortical Disturbances</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Samuele%20Viaro">Samuele Viaro</a>, <a href="https://publications.waset.org/abstracts/search?q=Pierre%20Ricco"> Pierre Ricco</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Görtler instabilities generate in boundary layers from an unbalance between pressure and centrifugal forces caused by concave surfaces. Their spatial streamwise evolution influences transition to turbulence. It is therefore important to understand even the early stages where perturbations, still small, grow linearly and could be controlled more easily. This work presents a rigorous theoretical framework for compressible flows using the linearized unsteady boundary region equations, where only the streamwise pressure gradient and streamwise diffusion terms are neglected from the full governing equations of fluid motion. Boundary and initial conditions are imposed through an asymptotic analysis in order to account for the interaction of the boundary layer with free-stream turbulence. The resulting parabolic system is discretize with a second-order finite difference scheme. Realistic flow parameters are chosen from wind tunnel studies performed at supersonic and subsonic conditions. The Mach number ranges from 0.5 to 8, with two different radii of curvature, 5 m and 10 m, frequencies up to 2000 Hz, and vortex spanwise wavelengths from 5 mm to 20 mm. The evolution of the perturbation flow is shown through velocity, temperature, pressure profiles relatively close to the leading edge, where non-linear effects can still be neglected, and growth rate. Results show that a global stabilizing effect exists with the increase of Mach number, frequency, spanwise wavenumber and radius of curvature. In particular, at high Mach numbers curvature effects are less pronounced and thermal streaks become stronger than velocity streaks. This increase of temperature perturbations saturates at approximately Mach 4 flows, and is limited in the early stage of growth, near the leading edge. In general, Görtler vortices evolve closer to the surface with respect to a flat plate scenario but their location shifts toward the edge of the boundary layer as the Mach number increases. In fact, a jet-like behavior appears for steady vortices having small spanwise wavelengths (less than 10 mm) at Mach 8, creating a region of unperturbed flow close to the wall. A similar response is also found at the highest frequency considered for a Mach 3 flow. Larger vortices are found to have a higher growth rate but are less influenced by the Mach number. An eigenvalue approach is also employed to study the amplification of the perturbations sufficiently downstream from the leading edge. These eigenvalue results are compared with the ones obtained through the initial value approach with inhomogeneous free-stream boundary conditions. All of the parameters here studied have a significant influence on the evolution of the instabilities for the Görtler problem which is indeed highly dependent on initial conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=compressible%20boundary%20layers" title="compressible boundary layers">compressible boundary layers</a>, <a href="https://publications.waset.org/abstracts/search?q=G%C3%B6rtler%20instabilities" title=" Görtler instabilities"> Görtler instabilities</a>, <a href="https://publications.waset.org/abstracts/search?q=receptivity" title=" receptivity"> receptivity</a>, <a href="https://publications.waset.org/abstracts/search?q=turbulence%20transition" title=" turbulence transition"> turbulence transition</a> </p> <a href="https://publications.waset.org/abstracts/67855/linear-evolution-of-compressible-gortler-vortices-subject-to-free-stream-vortical-disturbances" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67855.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">253</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">165</span> The Use of Computer Simulation as Technological Education for Crisis Management Staff</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ji%C5%99%C3%AD%20Barta">Jiří Barta</a>, <a href="https://publications.waset.org/abstracts/search?q=Josef%20Krahulec"> Josef Krahulec</a>, <a href="https://publications.waset.org/abstracts/search?q=Ji%C5%99%C3%AD%20F.%20Urb%C3%A1nek"> Jiří F. Urbánek</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Education and practical training crisis management members are a topical issue nowadays. The paper deals with the perspectives and possibilities of ‘smart solutions’ to education for crisis management staff. Currently, there are a large number of simulation tools, which notes that they are suitable for practical training of crisis management staff. The first part of the paper is focused on the introduction of the technology simulation tools. The simulators aim is to create a realistic environment for the practical training of extending units of crisis staff. The second part of the paper concerns the possibilities of using the simulation technology to the education process. The aim of this section is to introduce the practical capabilities and potential of the simulation programs for practical training of crisis management staff. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=crisis%20management%20staff" title="crisis management staff">crisis management staff</a>, <a href="https://publications.waset.org/abstracts/search?q=computer%20simulation" title=" computer simulation"> computer simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=software" title=" software"> software</a>, <a href="https://publications.waset.org/abstracts/search?q=technological%20education" title=" technological education"> technological education</a> </p> <a href="https://publications.waset.org/abstracts/39792/the-use-of-computer-simulation-as-technological-education-for-crisis-management-staff" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39792.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">355</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">164</span> A Review Of Blended Wing Body And Slender Delta Wing Performance Utilizing Experimental Techniques And Computational Fluid Dynamics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abhiyan%20Paudel">Abhiyan Paudel</a>, <a href="https://publications.waset.org/abstracts/search?q=Maheshwaran%20M%20Pillai"> Maheshwaran M Pillai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper deals with the optimization and comparison of slender delta wing and blended wing body. The objective is to study the difference between the two wing types and analyze the various aerodynamic characteristics of both of these types.The blended-wing body is an aircraft configuration that has the potential to be more efficient than conventional large transport aircraft configurations with the same capability. The purported advantages of the BWB approach are efficient high-lift wings and a wide airfoil-shaped body. Similarly, symmetric separation vortices over slender delta wing may become asymmetric as the angle of attack is increased beyond a certain value, causing asymmetric forces even at symmetric flight conditions. The transition of the vortex pattern from being symmetric to asymmetric over symmetric bodies under symmetric flow conditions is a fascinating fluid dynamics problem and of major importance for the performance and control of high-maneuverability flight vehicles that favor the use of slender bodies. With the use of Star CCM, we analyze both the fluid properties. The CL, CD and CM were investigated in steady state CFD of BWB at Mach 0.3 and through wind tunnel experiments on 1/6th model of BWB at Mach 0.1. From CFD analysis pressure variation, Mach number contours and turbulence area was observed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Coefficient%20%20of%20%20Lift" title="Coefficient of Lift">Coefficient of Lift</a>, <a href="https://publications.waset.org/abstracts/search?q=Coefficient%20%20of%20%20Drag" title=" Coefficient of Drag"> Coefficient of Drag</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD%3DComputational%20%20Fluid%20%20Dynamics" title=" CFD=Computational Fluid Dynamics"> CFD=Computational Fluid Dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=BWB%3DBlended%20Wing%20Body" title=" BWB=Blended Wing Body"> BWB=Blended Wing Body</a>, <a href="https://publications.waset.org/abstracts/search?q=slender%20delta%20wing" title=" slender delta wing"> slender delta wing</a> </p> <a href="https://publications.waset.org/abstracts/17417/a-review-of-blended-wing-body-and-slender-delta-wing-performance-utilizing-experimental-techniques-and-computational-fluid-dynamics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17417.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">531</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">163</span> Dynamics of Mach Zehnder Modulator in Open and Closed Loop Bias Condition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ramonika%20Sengupta">Ramonika Sengupta</a>, <a href="https://publications.waset.org/abstracts/search?q=Stuti%20Kachhwaha"> Stuti Kachhwaha</a>, <a href="https://publications.waset.org/abstracts/search?q=Asha%20Adhiya"> Asha Adhiya</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Satya%20Raja%20Sekhar"> K. Satya Raja Sekhar</a>, <a href="https://publications.waset.org/abstracts/search?q=Rajwinder%20Kaur"> Rajwinder Kaur</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Numerous efforts have been done in the past decade to develop the methods of secure communication that are free from interception and eavesdropping. In fiber optic communication, chaotic optical carrier signals are used for data encryption in secure data transmission. Mach-Zehnder Modulators (MZM) are the key components for generating the chaotic signals to be used as optical carriers. This paper presents the dynamics of a lithium niobate MZM modulator under various biasing conditions. The chaotic fluctuations of the intensity of a laser diode have been generated using the electro-optic MZM modulator operating in a highly nonlinear regime. The modulator is driven in closed loop by its own output at an earlier time. When used as an electro-optic oscillator employing delayed feedback, the MZM displays a wide range of output waveforms of varying complexity. The dynamical behavior of the system ranges from periodic to nonlinear oscillations. The nonlinearity displayed by the system is reproducible and is easily controllable. In this paper, we demonstrate a wide variety of optical signals generated by MZM using easily controllable device parameters in both open and close loop bias conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chaotic%20carrier" title="chaotic carrier">chaotic carrier</a>, <a href="https://publications.waset.org/abstracts/search?q=fiber%20optic%20communication" title=" fiber optic communication"> fiber optic communication</a>, <a href="https://publications.waset.org/abstracts/search?q=Mach-Zehnder%20modulator" title=" Mach-Zehnder modulator"> Mach-Zehnder modulator</a>, <a href="https://publications.waset.org/abstracts/search?q=secure%20data%20transmission" title=" secure data transmission"> secure data transmission</a> </p> <a href="https://publications.waset.org/abstracts/95076/dynamics-of-mach-zehnder-modulator-in-open-and-closed-loop-bias-condition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/95076.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">272</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">162</span> Optimization of Temperature Difference Formula at Thermoacoustic Cryocooler Stack with Genetic Algorithm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Afsari">H. Afsari</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Shokouhmand"> H. Shokouhmand</a> </p> <p class="card-text"><strong>Abstract:</strong></p> When stack is placed in a thermoacoustic resonator in a cryocooler, one extremity of the stack heats up while the other cools down due to the thermoacoustic effect. In the present, with expression a formula by linear theory, will see this temperature difference depends on what factors. The computed temperature difference is compared to the one predicted by the formula. These discrepancies can not be attributed to non-linear effects, rather they exist because of thermal effects. Two correction factors are introduced for close up results among linear theory and computed and use these correction factors to modified linear theory. In fact, this formula, is optimized by GA (Genetic Algorithm). Finally, results are shown at different Mach numbers and stack location in resonator. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer" title="heat transfer">heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=thermoacoustic%20cryocooler" title=" thermoacoustic cryocooler"> thermoacoustic cryocooler</a>, <a href="https://publications.waset.org/abstracts/search?q=stack" title=" stack"> stack</a>, <a href="https://publications.waset.org/abstracts/search?q=resonator" title=" resonator"> resonator</a>, <a href="https://publications.waset.org/abstracts/search?q=mach%20number" title=" mach number"> mach number</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm" title=" genetic algorithm"> genetic algorithm</a> </p> <a href="https://publications.waset.org/abstracts/39263/optimization-of-temperature-difference-formula-at-thermoacoustic-cryocooler-stack-with-genetic-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39263.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">378</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">161</span> Longitudinal Static and Dynamic Stability of a Typical Reentry Body in Subsonic Conditions Using Computational Fluid Dynamics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Jathaveda">M. Jathaveda</a>, <a href="https://publications.waset.org/abstracts/search?q=Joben%20Leons"> Joben Leons</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Vidya"> G. Vidya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Reentry from orbit is a critical phase in the entry trajectory. For a non-propulsive ballistic entry, static and dynamic stability play an important role in the trajectory, especially for the safe deployment of parachutes, typically at subsonic Mach numbers. Static stability of flight vehicles are being estimated through CFD techniques routinely. Advances in CFD software as well as computational facilities have enabled the estimation of the dynamic stability derivatives also through CFD techniques. Longitudinal static and dynamic stability of a typical reentry body for subsonic Mach number of 0.6 is predicted using commercial software CFD++ and presented here. Steady state simulations are carried out for α = 2° on an unstructured grid using SST k-ω model. Transient simulation using forced oscillation method is used to compute pitch damping derivatives. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=stability" title="stability">stability</a>, <a href="https://publications.waset.org/abstracts/search?q=typical%20reentry%20body" title=" typical reentry body"> typical reentry body</a>, <a href="https://publications.waset.org/abstracts/search?q=subsonic" title=" subsonic"> subsonic</a>, <a href="https://publications.waset.org/abstracts/search?q=static%20and%20dynamic" title=" static and dynamic"> static and dynamic</a> </p> <a href="https://publications.waset.org/abstracts/159425/longitudinal-static-and-dynamic-stability-of-a-typical-reentry-body-in-subsonic-conditions-using-computational-fluid-dynamics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/159425.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">116</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">160</span> Aerodynamic Coefficients Prediction from Minimum Computation Combinations Using OpenVSP Software</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marine%20Segui">Marine Segui</a>, <a href="https://publications.waset.org/abstracts/search?q=Ruxandra%20Mihaela%20Botez"> Ruxandra Mihaela Botez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> OpenVSP is an aerodynamic solver developed by National Aeronautics and Space Administration (NASA) that allows building a reliable model of an aircraft. This software performs an aerodynamic simulation according to the angle of attack of the aircraft makes between the incoming airstream, and its speed. A reliable aerodynamic model of the Cessna Citation X was designed but it required a lot of computation time. As a consequence, a prediction method was established that allowed predicting lift and drag coefficients for all Mach numbers and for all angles of attack, exclusively for stall conditions, from a computation of three angles of attack and only one Mach number. Aerodynamic coefficients given by the prediction method for a Cessna Citation X model were finally compared with aerodynamics coefficients obtained using a complete OpenVSP study. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerodynamic" title="aerodynamic">aerodynamic</a>, <a href="https://publications.waset.org/abstracts/search?q=coefficient" title=" coefficient"> coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=cruise" title=" cruise"> cruise</a>, <a href="https://publications.waset.org/abstracts/search?q=improving" title=" improving"> improving</a>, <a href="https://publications.waset.org/abstracts/search?q=longitudinal" title=" longitudinal"> longitudinal</a>, <a href="https://publications.waset.org/abstracts/search?q=openVSP" title=" openVSP"> openVSP</a>, <a href="https://publications.waset.org/abstracts/search?q=solver" title=" solver"> solver</a>, <a href="https://publications.waset.org/abstracts/search?q=time" title=" time"> time</a> </p> <a href="https://publications.waset.org/abstracts/85268/aerodynamic-coefficients-prediction-from-minimum-computation-combinations-using-openvsp-software" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85268.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">235</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">159</span> Effect of Mach Number for Gust-Airfoil Interatcion Noise</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=ShuJiang%20Jiang">ShuJiang Jiang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The interaction of turbulence with airfoil is an important noise source in many engineering fields, including helicopters, turbofan, and contra-rotating open rotor engines, where turbulence generated in the wake of upstream blades interacts with the leading edge of downstream blades and produces aerodynamic noise. One approach to study turbulence-airfoil interaction noise is to model the oncoming turbulence as harmonic gusts. A compact noise source produces a dipole-like sound directivity pattern. However, when the acoustic wavelength is much smaller than the airfoil chord length, the airfoil needs to be treated as a non-compact source, and the gust-airfoil interaction becomes more complicated and results in multiple lobes generated in the radiated sound directivity. Capturing the short acoustic wavelength is a challenge for numerical simulations. In this work, simulations are performed for gust-airfoil interaction at different Mach numbers, using a high-fidelity direct Computational AeroAcoustic (CAA) approach based on a spectral/hp element method, verified by a CAA benchmark case. It is found that the squared sound pressure varies approximately as the 5th power of Mach number, which changes slightly with the observer location. This scaling law can give a better sound prediction than the flat-plate theory for thicker airfoils. Besides, another prediction method, based on the flat-plate theory and CAA simulation, has been proposed to give better predictions than the scaling law for thicker airfoils. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aeroacoustics" title="aeroacoustics">aeroacoustics</a>, <a href="https://publications.waset.org/abstracts/search?q=gust-airfoil%20interaction" title=" gust-airfoil interaction"> gust-airfoil interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD" title=" CFD"> CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=CAA" title=" CAA"> CAA</a> </p> <a href="https://publications.waset.org/abstracts/168371/effect-of-mach-number-for-gust-airfoil-interatcion-noise" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168371.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">78</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">158</span> Hypersonic Propulsion Requirements for Sustained Hypersonic Flight for Air Transportation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=James%20Rate">James Rate</a>, <a href="https://publications.waset.org/abstracts/search?q=Apostolos%20Pesiridis"> Apostolos Pesiridis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the propulsion requirements required to achieve sustained hypersonic flight for commercial air transportation are evaluated. In addition, a design methodology is developed and used to determine the propulsive capabilities of both ramjet and scramjet engines. Twelve configurations are proposed for hypersonic flight using varying combinations of turbojet, turbofan, ramjet and scramjet engines. The optimal configuration was determined based on how well each of the configurations met the projected requirements for hypersonic commercial transport. The configurations were separated into four sub-configurations each comprising of three unique derivations. The first sub-configuration comprised four afterburning turbojets and either one or two ramjets idealised for Mach 5 cruise. The number of ramjets required was dependent on the thrust required to accelerate the vehicle from a speed where the turbojets cut out to Mach 5 cruise. The second comprised four afterburning turbojets and either one or two scramjets, similar to the first configuration. The third used four turbojets, one scramjet and one ramjet to aid acceleration from Mach 3 to Mach 5. The fourth configuration was the same as the third, but instead of turbojets, it implemented turbofan engines for the preliminary acceleration of the vehicle. From calculations which determined the fuel consumption at incremental Mach numbers this paper found that the ideal solution would require four turbojet engines and two Scramjet engines. The ideal mission profile was determined as being an 8000km sortie based on an averaging of popular long haul flights with strong business ties, which included Los Angeles to Tokyo, London to New York and Dubai to Beijing. This paper deemed that these routes would benefit from hypersonic transport links based on the previously mentioned factors. This paper has found that this configuration would be sufficient for the 8000km flight to be completed in approximately two and a half hours and would consume less fuel than Concord in doing so. However, this propulsion configuration still result in a greater fuel cost than a conventional passenger. In this regard, this investigation contributes towards the specification of the engine requirements throughout a mission profile for a hypersonic passenger vehicle. A number of assumptions have had to be made for this theoretical approach but the authors believe that this investigation lays the groundwork for appropriate framing of the propulsion requirements for sustained hypersonic flight for commercial air transportation. Despite this, it does serve as a crucial step in the development of the propulsion systems required for hypersonic commercial air transportation. This paper provides a methodology and a focus for the development of the propulsion systems that would be required for sustained hypersonic flight for commercial air transportation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hypersonic" title="hypersonic">hypersonic</a>, <a href="https://publications.waset.org/abstracts/search?q=ramjet" title=" ramjet"> ramjet</a>, <a href="https://publications.waset.org/abstracts/search?q=propulsion" title=" propulsion"> propulsion</a>, <a href="https://publications.waset.org/abstracts/search?q=Scramjet" title=" Scramjet"> Scramjet</a>, <a href="https://publications.waset.org/abstracts/search?q=Turbojet" title=" Turbojet"> Turbojet</a>, <a href="https://publications.waset.org/abstracts/search?q=turbofan" title=" turbofan"> turbofan</a> </p> <a href="https://publications.waset.org/abstracts/59663/hypersonic-propulsion-requirements-for-sustained-hypersonic-flight-for-air-transportation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59663.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">320</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">157</span> Leadership's Controlling via Complexity Investigation in Crisis Scenarios</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ji%C5%99%C3%AD%20Barta">Jiří Barta</a>, <a href="https://publications.waset.org/abstracts/search?q=Old%C5%99ich%20Svoboda"> Oldřich Svoboda</a>, <a href="https://publications.waset.org/abstracts/search?q=Ji%C5%99%C3%AD%20F.%20Urb%C3%A1nek"> Jiří F. Urbánek</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper will be discussed two coin´s sides of crisis scenarios dynamics. On the one's side is negative role of subsidiary scenario branches in its compactness weakening by means unduly chaotic atomizing, having many interactive feedbacks cases, increasing a value of a complexity here. This negative role reflects the complexity of use cases, weakening leader compliancy, which brings something as a ´readiness for controlling capabilities provision´. Leader´s dissatisfaction has zero compliancy, but factual it is a ´crossbar´ (interface in fact) between planning and executing use cases. On the other side of this coin, an advantage of rich scenarios embranchment is possible to see in a support of response awareness, readiness, preparedness, adaptability, creativity and flexibility. Here rich scenarios embranchment contributes to the steadiness and resistance of scenario mission actors. These all will be presented in live power-points ´Blazons´, modelled via DYVELOP (Dynamic Vector Logistics of Processes) on the Conference. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=leadership" title="leadership">leadership</a>, <a href="https://publications.waset.org/abstracts/search?q=controlling" title=" controlling"> controlling</a>, <a href="https://publications.waset.org/abstracts/search?q=complexity" title=" complexity"> complexity</a>, <a href="https://publications.waset.org/abstracts/search?q=DYVELOP" title=" DYVELOP"> DYVELOP</a>, <a href="https://publications.waset.org/abstracts/search?q=scenarios" title=" scenarios"> scenarios</a> </p> <a href="https://publications.waset.org/abstracts/8442/leaderships-controlling-via-complexity-investigation-in-crisis-scenarios" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8442.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">404</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">156</span> Established Novel Approach for Chemical Oxygen Demand Concentrations Measurement Based Mach-Zehner Interferometer Sensor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Su%20Sin%20Chong">Su Sin Chong</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdul%20Aziz%20Abdul%20Raman"> Abdul Aziz Abdul Raman</a>, <a href="https://publications.waset.org/abstracts/search?q=Sulaiman%20Wadi%20Harun"> Sulaiman Wadi Harun</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamzah%20Arof"> Hamzah Arof</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Chemical Oxygen Demand (COD) plays a vital role determination of an appropriate strategy for wastewater treatment including the control of the quality of an effluent. In this study, a new sensing method was introduced for the first time and developed to investigate chemical oxygen demand (COD) using a Mach-Zehner Interferometer (MZI)-based dye sensor. The sensor is constructed by bridging two single mode fibres (SMF1 and SMF2) with a short section (~20 mm) of multimode fibre (MMF) and was formed by tapering the MMF to generate evanescent field which is sensitive to perturbation of sensing medium. When the COD concentration increase takes effect will induce changes in output intensity and effective refractive index between the microfiber and the sensing medium. The adequacy of decisions based on COD values relies on the quality of the measurements. Therefore, the dual output response can be applied to the analytical procedure enhance measurement quality. This work presents a detailed assessment of the determination of COD values in synthetic wastewaters. Detailed models of the measurement performance, including sensitivity, reversibility, stability, and uncertainty were successfully validated by proficiency tests where supported on sound and objective criteria. Comparison of the standard method with the new proposed method was also conducted. This proposed sensor is compact, reliable and feasible to investigate the COD value. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chemical%20oxygen%20demand" title="chemical oxygen demand">chemical oxygen demand</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20sensing" title=" environmental sensing"> environmental sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=Mach-Zehnder%20interferometer%20sensor" title=" Mach-Zehnder interferometer sensor"> Mach-Zehnder interferometer sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=online%20monitoring" title=" online monitoring"> online monitoring</a> </p> <a href="https://publications.waset.org/abstracts/28806/established-novel-approach-for-chemical-oxygen-demand-concentrations-measurement-based-mach-zehner-interferometer-sensor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28806.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">494</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">155</span> Numerical Simulation of Two-Phase Flows Using a Pressure-Based Solver</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lei%20Zhang">Lei Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Jean-Michel%20Ghidaglia"> Jean-Michel Ghidaglia</a>, <a href="https://publications.waset.org/abstracts/search?q=Anela%20Kumbaro"> Anela Kumbaro</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work focuses on numerical simulation of two-phase flows based on the bi-fluid six-equation model widely used in many industrial areas, such as nuclear power plant safety analysis. A pressure-based numerical method is adopted in our studies due to the fact that in two-phase flows, it is common to have a large range of Mach numbers because of the mixture of liquid and gas, and density-based solvers experience stiffness problems as well as a loss of accuracy when approaching the low Mach number limit. This work extends the semi-implicit pressure solver in the nuclear component CUPID code, where the governing equations are solved on unstructured grids with co-located variables to accommodate complicated geometries. A conservative version of the solver is developed in order to capture exactly the shock in one-phase flows, and is extended to two-phase situations. An inter-facial pressure term is added to the bi-fluid model to make the system hyperbolic and to establish a well-posed mathematical problem that will allow us to obtain convergent solutions with refined meshes. The ability of the numerical method to treat phase appearance and disappearance as well as the behavior of the scheme at low Mach numbers will be demonstrated through several numerical results. Finally, inter-facial mass and heat transfer models are included to deal with situations when mass and energy transfer between phases is important, and associated industrial numerical benchmarks with tabulated EOS (equations of state) for fluids are performed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=two-phase%20flows" title="two-phase flows">two-phase flows</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20simulation" title=" numerical simulation"> numerical simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=bi-fluid%20model" title=" bi-fluid model"> bi-fluid model</a>, <a href="https://publications.waset.org/abstracts/search?q=unstructured%20grids" title=" unstructured grids"> unstructured grids</a>, <a href="https://publications.waset.org/abstracts/search?q=phase%20appearance%20and%20disappearance" title=" phase appearance and disappearance"> phase appearance and disappearance</a> </p> <a href="https://publications.waset.org/abstracts/47231/numerical-simulation-of-two-phase-flows-using-a-pressure-based-solver" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47231.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">394</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">154</span> Improvement Performances of the Supersonic Nozzles at High Temperature Type Minimum Length Nozzle</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=W.%20Hamaidia">W. Hamaidia</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Zebbiche"> T. Zebbiche</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the design of axisymmetric supersonic nozzles, in order to accelerate a supersonic flow to the desired Mach number and that having a small weight, in the same time gives a high thrust. The concerned nozzle gives a parallel and uniform flow at the exit section. The nozzle is divided into subsonic and supersonic regions. The supersonic portion is independent to the upstream conditions of the sonic line. The subsonic portion is used to give a sonic flow at the throat. In this case, nozzle gives a uniform and parallel flow at the exit section. It’s named by minimum length Nozzle. The study is done at high temperature, lower than the dissociation threshold of the molecules, in order to improve the aerodynamic performances. Our aim consists of improving the performances both by the increase of exit Mach number and the thrust coefficient and by reduction of the nozzle's mass. The variation of the specific heats with the temperature is considered. The design is made by the Method of Characteristics. The finite differences method with predictor-corrector algorithm is used to make the numerical resolution of the obtained nonlinear algebraic equations. The application is for air. All the obtained results depend on three parameters which are exit Mach number, the stagnation temperature, the chosen mesh in characteristics. A numerical simulation of nozzle through Computational Fluid Dynamics-FASTRAN was done to determine and to confirm the necessary design parameters. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flux%20supersonic%20flow" title="flux supersonic flow">flux supersonic flow</a>, <a href="https://publications.waset.org/abstracts/search?q=axisymmetric%20minimum%20length%20nozzle" title=" axisymmetric minimum length nozzle"> axisymmetric minimum length nozzle</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20temperature" title=" high temperature"> high temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=method%20of%20characteristics" title=" method of characteristics"> method of characteristics</a>, <a href="https://publications.waset.org/abstracts/search?q=calorically%20imperfect%20gas" title=" calorically imperfect gas"> calorically imperfect gas</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20difference%20method" title=" finite difference method"> finite difference method</a>, <a href="https://publications.waset.org/abstracts/search?q=trust%20coefficient" title=" trust coefficient"> trust coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=mass%20of%20the%20nozzle" title=" mass of the nozzle"> mass of the nozzle</a>, <a href="https://publications.waset.org/abstracts/search?q=specific%20heat%20at%20constant%20pressure" title=" specific heat at constant pressure"> specific heat at constant pressure</a>, <a href="https://publications.waset.org/abstracts/search?q=air" title=" air"> air</a>, <a href="https://publications.waset.org/abstracts/search?q=error" title=" error"> error</a> </p> <a href="https://publications.waset.org/abstracts/97205/improvement-performances-of-the-supersonic-nozzles-at-high-temperature-type-minimum-length-nozzle" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97205.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">150</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Ji%C5%99%C3%AD%20Mach&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Ji%C5%99%C3%AD%20Mach&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Ji%C5%99%C3%AD%20Mach&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Ji%C5%99%C3%AD%20Mach&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Ji%C5%99%C3%AD%20Mach&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Ji%C5%99%C3%AD%20Mach&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Ji%C5%99%C3%AD%20Mach&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>