CINXE.COM

Search results for: tail gas treatment unit

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: tail gas treatment unit</title> <meta name="description" content="Search results for: tail gas treatment unit"> <meta name="keywords" content="tail gas treatment unit"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="tail gas treatment unit" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="tail gas treatment unit"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 10368</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: tail gas treatment unit</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10368</span> Review of Sulfur Unit Capacity Expansion Options</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Avinashkumar%20Karre">Avinashkumar Karre</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sulfur recovery unit, most commonly called as Claus process, is very significant gas desulfurization process unit in refinery and gas industries. Explorations of new natural gas fields, refining of high-sulfur crude oils, and recent crude expansion projects are needing capacity expansion of Claus unit for many companies around the world. In refineries, the sulphur recovery units take acid gas from amine regeneration units and sour water strippers, converting hydrogen sulfide to elemental sulfur using the Claus process. The Claus process is hydraulically limited by mass flow rate. Reducing the pressure drop across control valves, flow meters, lines, knock-out drums, and packing improves the capacity. Oxygen enrichment helps improve the capacity by removing nitrogen, this is more commonly done on all capacity expansion projects. Typical upgrades required due to oxygen enrichment are new burners, new refractory in thermal reactor, resizing of 1st condenser, instrumentation changes, and steam/condensate heat integration. Some other capacity expansion options typically considered are tail gas compressor, replacing air blower with higher head, hydrocarbon minimization in the feed, water removal, and ammonia removal. Increased capacity related upgrades in sulfur recovery unit also need changes in the tail gas treatment unit, typical changes include improvement to quench tower duty, packing area upgrades in quench and absorber towers and increased amine circulation flow rates. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Claus%20process" title="Claus process">Claus process</a>, <a href="https://publications.waset.org/abstracts/search?q=oxygen%20enrichment" title=" oxygen enrichment"> oxygen enrichment</a>, <a href="https://publications.waset.org/abstracts/search?q=sulfur%20recovery%20unit" title=" sulfur recovery unit"> sulfur recovery unit</a>, <a href="https://publications.waset.org/abstracts/search?q=tail%20gas%20treatment%20unit" title=" tail gas treatment unit"> tail gas treatment unit</a> </p> <a href="https://publications.waset.org/abstracts/109156/review-of-sulfur-unit-capacity-expansion-options" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/109156.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">125</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10367</span> Effects of X and + Tail-Body Configurations on Hydrodynamic Performance and Stability of an Underwater Vehicle</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kadri%20Ko%C3%A7er">Kadri Koçer</a>, <a href="https://publications.waset.org/abstracts/search?q=Sezer%20Kefeli"> Sezer Kefeli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper proposes a comparison of hydrodynamic performance and stability characteristic for an underwater vehicle which has two type of tail design, namely X and +tail-body configurations. The effects of these configurations on the underwater vehicle’s hydrodynamic performance and maneuvering characteristic will be investigated comprehensively. Hydrodynamic damping coefficients for modeling the motion of the underwater vehicles will be predicted. Additionally, forces and moments due to control surfaces will be compared using computational fluid dynamics methods. In the aviation, the X tail-body configuration is widely used for high maneuverability requirements. However, in the underwater, the + tail-body configuration is more commonly used than the X tail-body configuration for its stability characteristics. Thus it is important to see the effect and differences of the tail designs in the underwater world. For CFD analysis, the incompressible, three-dimensional, and steady Navier-Stokes equations will be used to simulate the flows. Also, k-ε Realizable turbulence model with enhanced wall treatment will be taken. Numerical results is verified with experimental results for verification. The overall goal of this study is to present the advantages and disadvantages of hydrodynamic performance and stability characteristic for X and + tail-body configurations of the underwater vehicle. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=maneuverability" title="maneuverability">maneuverability</a>, <a href="https://publications.waset.org/abstracts/search?q=stability" title=" stability"> stability</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD" title=" CFD"> CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=tail%20configuration" title=" tail configuration"> tail configuration</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrodynamic%20design" title=" hydrodynamic design"> hydrodynamic design</a> </p> <a href="https://publications.waset.org/abstracts/144684/effects-of-x-and-tail-body-configurations-on-hydrodynamic-performance-and-stability-of-an-underwater-vehicle" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/144684.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">184</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10366</span> Inflation Tail Risks and Asset Pricing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sebastian%20Luber">Sebastian Luber</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study demonstrates that tail inflation risk is priced into stock returns and credit spreads. This holds true even when controlling for current and historical inflation moments. The analysis employs inflation caps and floors to obtain the distribution of future inflation under the risk-neutral measure. Credit spreads decrease as the mean and median of future inflation rise, but they respond positively to tail risks. Conversely, stocks serve as a robust hedge against future inflation. Stock returns increase with a higher mean and median of future inflation and rising inflationary tail risk, while they decrease with rising deflationary tail risk. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=asset%20pricing" title="asset pricing">asset pricing</a>, <a href="https://publications.waset.org/abstracts/search?q=inflation%20expectations" title=" inflation expectations"> inflation expectations</a>, <a href="https://publications.waset.org/abstracts/search?q=tail%20risk" title=" tail risk"> tail risk</a>, <a href="https://publications.waset.org/abstracts/search?q=stocks" title=" stocks"> stocks</a>, <a href="https://publications.waset.org/abstracts/search?q=inflation%20derivatives" title=" inflation derivatives"> inflation derivatives</a>, <a href="https://publications.waset.org/abstracts/search?q=credit" title=" credit"> credit</a> </p> <a href="https://publications.waset.org/abstracts/192569/inflation-tail-risks-and-asset-pricing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/192569.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">22</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10365</span> Estimation of the Upper Tail Dependence Coefficient for Insurance Loss Data Using an Empirical Copula-Based Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adrian%20O%27Hagan">Adrian O&#039;Hagan</a>, <a href="https://publications.waset.org/abstracts/search?q=Robert%20McLoughlin"> Robert McLoughlin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Considerable focus in the world of insurance risk quantification is placed on modeling loss values from lines of business (LOBs) that possess upper tail dependence. Copulas such as the Joe, Gumbel and Student-t copula may be used for this purpose. The copula structure imparts a desired level of tail dependence on the joint distribution of claims from the different LOBs. Alternatively, practitioners may possess historical or simulated data that already exhibit upper tail dependence, through the impact of catastrophe events such as hurricanes or earthquakes. In these circumstances, it is not desirable to induce additional upper tail dependence when modeling the joint distribution of the loss values from the individual LOBs. Instead, it is of interest to accurately assess the degree of tail dependence already present in the data. The empirical copula and its associated upper tail dependence coefficient are presented in this paper as robust, efficient means of achieving this goal. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=empirical%20copula" title="empirical copula">empirical copula</a>, <a href="https://publications.waset.org/abstracts/search?q=extreme%20events" title=" extreme events"> extreme events</a>, <a href="https://publications.waset.org/abstracts/search?q=insurance%20loss%20reserving" title=" insurance loss reserving"> insurance loss reserving</a>, <a href="https://publications.waset.org/abstracts/search?q=upper%20tail%20dependence%20coefficient" title=" upper tail dependence coefficient"> upper tail dependence coefficient</a> </p> <a href="https://publications.waset.org/abstracts/2645/estimation-of-the-upper-tail-dependence-coefficient-for-insurance-loss-data-using-an-empirical-copula-based-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2645.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">284</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10364</span> Tail-Binding Effect of Kinesin-1 Auto Inhibition Using Elastic Network Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hyun%20Joon%20Chang">Hyun Joon Chang</a>, <a href="https://publications.waset.org/abstracts/search?q=Jae%20In%20Kim"> Jae In Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Sungsoo%20Na"> Sungsoo Na</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Kinesin-1 (hereafter called kinesin) is a molecular motor protein that moves cargos toward the end of microtubules using the energy of adenosine triphosphate (ATP) hydrolysis. When kinesin is inactive, its tail autoinhibits the motor chain in order to prevent from reacting with the ATP by cross-linking of the tail domain to the motor domains at two positions. However, the morphological study of kinesin during autoinhibition is yet remained obscured. In this study, we report the effect of the binding site of the tail domain using the normal mode analysis of the elastic network model on kinesin in the tail-free form and tail-bind form. Considering the relationship between the connectivity of conventional network model with respect to the cutoff length and the functionality of the binding site of the tail, we revaluated the network model to observe the key role of the tail domain in its structural aspect. Contingent on the existence of the tail domain, the results suggest the morphological stability of the motor domain. Furthermore, employing the results from normal mode analysis, we have determined the strain energy of the neck linker, an essential portion of the motor domain for ATP hydrolysis. The results of the neck linker also converge to the same indication, i.e. the morphological analysis of the motor domain. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=elastic%20network%20model" title="elastic network model">elastic network model</a>, <a href="https://publications.waset.org/abstracts/search?q=Kinesin-1" title=" Kinesin-1"> Kinesin-1</a>, <a href="https://publications.waset.org/abstracts/search?q=autoinhibition" title=" autoinhibition"> autoinhibition</a> </p> <a href="https://publications.waset.org/abstracts/11825/tail-binding-effect-of-kinesin-1-auto-inhibition-using-elastic-network-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11825.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">455</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10363</span> Small Scale Stationary and Mobile Production of Biodiesel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Yusuf%20Abduh">Muhammad Yusuf Abduh</a>, <a href="https://publications.waset.org/abstracts/search?q=Robert%20Manurung"> Robert Manurung</a>, <a href="https://publications.waset.org/abstracts/search?q=Hero%20Jan%20Heeres"> Hero Jan Heeres</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Biodiesel can be produced in small scale mobile units which are designed with local input and demand. Unlike the typical biodiesel production plants, mobile biodiesel unit consiss of a biodiesel production facility placed inside a standard cargo container and mounted on a truck so that it can be transported to a region near the location of raw materials. In this paper, we review the existing concept and unit for the development of community-scale and mobile production of biodiesel. This includes the main reactor technology to produce biodiesel as well as the pre-treatment prior to the reaction unit. The pre-treatment includes the oil-expeller unit to obtain oil from the oilseeds as well as the quality control of the oil before it enters the reaction unit. This paper also discusses the post-treatment after the production of biodiesel. It includes the refining and purification of biodiesel to meet the product specification set by the biodiesel industry. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biodiesel" title="biodiesel">biodiesel</a>, <a href="https://publications.waset.org/abstracts/search?q=community%20scale" title=" community scale"> community scale</a>, <a href="https://publications.waset.org/abstracts/search?q=mobile%20biodiesel%20unit" title=" mobile biodiesel unit"> mobile biodiesel unit</a>, <a href="https://publications.waset.org/abstracts/search?q=reactor%20technology" title=" reactor technology"> reactor technology</a> </p> <a href="https://publications.waset.org/abstracts/85377/small-scale-stationary-and-mobile-production-of-biodiesel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85377.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">236</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10362</span> Fat-Tail Test of Regulatory DNA Sequences</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jian-Jun%20Shu">Jian-Jun Shu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The statistical properties of CRMs are explored by estimating similar-word set occurrence distribution. It is observed that CRMs tend to have a fat-tail distribution for similar-word set occurrence. Thus, the fat-tail test with two fatness coefficients is proposed to distinguish CRMs from non-CRMs, especially from exons. For the first fatness coefficient, the separation accuracy between CRMs and exons is increased as compared with the existing content-based CRM prediction method – fluffy-tail test. For the second fatness coefficient, the computing time is reduced as compared with fluffy-tail test, making it very suitable for long sequences and large data-base analysis in the post-genome time. Moreover, these indexes may be used to predict the CRMs which have not yet been observed experimentally. This can serve as a valuable filtering process for experiment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=statistical%20approach" title="statistical approach">statistical approach</a>, <a href="https://publications.waset.org/abstracts/search?q=transcription%20factor%20binding%20sites" title=" transcription factor binding sites"> transcription factor binding sites</a>, <a href="https://publications.waset.org/abstracts/search?q=cis-regulatory%20modules" title=" cis-regulatory modules"> cis-regulatory modules</a>, <a href="https://publications.waset.org/abstracts/search?q=DNA%20sequences" title=" DNA sequences"> DNA sequences</a> </p> <a href="https://publications.waset.org/abstracts/41863/fat-tail-test-of-regulatory-dna-sequences" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41863.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">290</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10361</span> Design and Validation of an Aerodynamic Model of the Cessna Citation X Horizontal Stabilizer Using both OpenVSP and Digital Datcom</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marine%20Segui">Marine Segui</a>, <a href="https://publications.waset.org/abstracts/search?q=Matthieu%20Mantilla"> Matthieu Mantilla</a>, <a href="https://publications.waset.org/abstracts/search?q=Ruxandra%20Mihaela%20Botez"> Ruxandra Mihaela Botez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research is the part of a major project at the Research Laboratory in Active Controls, Avionics and Aeroservoelasticity (LARCASE) aiming to improve a Cessna Citation X aircraft cruise performance with an application of the morphing wing technology on its horizontal tail. However, the horizontal stabilizer of the Cessna Citation X turns around its span axis with an angle between -8 and 2 degrees. Within this range, the horizontal stabilizer generates certainly some unwanted drag. To cancel this drag, the LARCASE proposes to trim the aircraft with a horizontal stabilizer equipped by a morphing wing technology. This technology aims to optimize aerodynamic performances by changing the conventional horizontal tail shape during the flight. As a consequence, this technology will be able to generate enough lift on the horizontal tail to balance the aircraft without an unwanted drag generation. To conduct this project, an accurate aerodynamic model of the horizontal tail is firstly required. This aerodynamic model will finally allow precise comparison between a conventional horizontal tail and a morphed horizontal tail results. This paper presents how this aerodynamic model was designed. In this way, it shows how the 2D geometry of the horizontal tail was collected and how the unknown airfoil&rsquo;s shape of the horizontal tail has been recovered. Finally, the complete horizontal tail airfoil shape was found and a comparison between aerodynamic polar of the real horizontal tail and the horizontal tail found in this paper shows a maximum difference of 0.04 on the lift or the drag coefficient which is very good. Aerodynamic polar data of the aircraft horizontal tail are obtained from the CAE Inc. level D research aircraft flight simulator of the Cessna Citation X. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerodynamic" title="aerodynamic">aerodynamic</a>, <a href="https://publications.waset.org/abstracts/search?q=Cessna" title=" Cessna"> Cessna</a>, <a href="https://publications.waset.org/abstracts/search?q=citation" title=" citation"> citation</a>, <a href="https://publications.waset.org/abstracts/search?q=coefficient" title=" coefficient"> coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=Datcom" title=" Datcom"> Datcom</a>, <a href="https://publications.waset.org/abstracts/search?q=drag" title=" drag"> drag</a>, <a href="https://publications.waset.org/abstracts/search?q=lift" title=" lift"> lift</a>, <a href="https://publications.waset.org/abstracts/search?q=longitudinal" title=" longitudinal"> longitudinal</a>, <a href="https://publications.waset.org/abstracts/search?q=model" title=" model"> model</a>, <a href="https://publications.waset.org/abstracts/search?q=OpenVSP" title=" OpenVSP"> OpenVSP</a> </p> <a href="https://publications.waset.org/abstracts/84863/design-and-validation-of-an-aerodynamic-model-of-the-cessna-citation-x-horizontal-stabilizer-using-both-openvsp-and-digital-datcom" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84863.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">373</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10360</span> A Long Tail Study of eWOM Communities</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Olmedilla">M. Olmedilla</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20R.%20Martinez-Torres"> M. R. Martinez-Torres</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20L.%20Toral"> S. L. Toral</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Electronic Word-Of-Mouth (eWOM) communities represent today an important source of information in which more and more customers base their purchasing decisions. They include thousands of reviews concerning very different products and services posted by many individuals geographically distributed all over the world. Due to their massive audience, eWOM communities can help users to find the product they are looking for even if they are less popular or rare. This is known as the long tail effect, which leads to a larger number of lower-selling niche products. This paper analyzes the long tail effect in a well-known eWOM community and defines a tool for finding niche products unavailable through conventional channels. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=eWOM" title="eWOM">eWOM</a>, <a href="https://publications.waset.org/abstracts/search?q=online%20user%20reviews" title=" online user reviews"> online user reviews</a>, <a href="https://publications.waset.org/abstracts/search?q=long%20tail%20theory" title=" long tail theory"> long tail theory</a>, <a href="https://publications.waset.org/abstracts/search?q=product%20categorization" title=" product categorization"> product categorization</a>, <a href="https://publications.waset.org/abstracts/search?q=social%20network%20analysis" title=" social network analysis"> social network analysis</a> </p> <a href="https://publications.waset.org/abstracts/21450/a-long-tail-study-of-ewom-communities" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21450.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">421</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10359</span> A Methodology for Characterising the Tail Behaviour of a Distribution</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Serge%20Provost">Serge Provost</a>, <a href="https://publications.waset.org/abstracts/search?q=Yishan%20Zang"> Yishan Zang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Following a review of various approaches that are utilized for classifying the tail behavior of a distribution, an easily implementable methodology that relies on an arctangent transformation is presented. The classification criterion is actually based on the difference between two specific quantiles of the transformed distribution. The resulting categories enable one to classify distributional tails as distinctly short, short, nearly medium, medium, extended medium and somewhat long, providing that at least two moments exist. Distributions possessing a single moment are said to be long tailed while those failing to have any finite moments are classified as having an extremely long tail. Several illustrative examples will be presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=arctangent%20transformation" title="arctangent transformation">arctangent transformation</a>, <a href="https://publications.waset.org/abstracts/search?q=tail%20classification" title=" tail classification"> tail classification</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy-tailed%20distributions" title=" heavy-tailed distributions"> heavy-tailed distributions</a>, <a href="https://publications.waset.org/abstracts/search?q=distributional%20moments" title=" distributional moments"> distributional moments</a> </p> <a href="https://publications.waset.org/abstracts/125602/a-methodology-for-characterising-the-tail-behaviour-of-a-distribution" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/125602.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">120</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10358</span> A Low Phase Noise CMOS LC Oscillator with Tail Current-Shaping</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amir%20Mahdavi">Amir Mahdavi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a circuit topology of voltage-controlled oscillators (VCO) which is suitable for ultra-low-phase noise operations is introduced. To do so, a new low phase noise cross-coupled oscillator by using the general topology of cross-coupled oscillator and adding a differential stage for tail current shaping is designed. In addition, a tail current shaping technique to improve phase noise in differential LC VCOs is presented. The tail current becomes large when the oscillator output voltage arrives at the maximum or minimum value and when the sensitivity of the output phase to the noise is the smallest. Also, the tail current becomes small when the phase noise sensitivity is large. The proposed circuit does not use extra power and extra noisy active devices. Furthermore, this topology occupies small area. Simulation results show the improvement in phase noise by 2.5dB under the same conditions and at the carrier frequency of 1 GHz for GSM applications. The power consumption of the proposed circuit is 2.44 mW and the figure of merit (FOM) with -192.2 dBc/Hz is achieved for the new oscillator. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=LC%20oscillator" title="LC oscillator">LC oscillator</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20phase%20noise" title=" low phase noise"> low phase noise</a>, <a href="https://publications.waset.org/abstracts/search?q=current%20shaping" title=" current shaping"> current shaping</a>, <a href="https://publications.waset.org/abstracts/search?q=diff%20mode" title=" diff mode"> diff mode</a> </p> <a href="https://publications.waset.org/abstracts/75354/a-low-phase-noise-cmos-lc-oscillator-with-tail-current-shaping" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75354.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">600</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10357</span> Evaluation of the Performance of ACTIFLO® Clarifier in the Treatment of Mining Wastewaters: Case Study of Costerfield Mining Operations, Victoria, Australia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seyed%20Mohsen%20Samaei">Seyed Mohsen Samaei</a>, <a href="https://publications.waset.org/abstracts/search?q=Shirley%20Gato-Trinidad"> Shirley Gato-Trinidad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A pre-treatment stage prior to reverse osmosis (RO) is very important to ensure the long-term performance of the RO membranes in any wastewater treatment using RO. This study aims to evaluate the application of the Actiflo<sup>&reg;</sup> clarifier as part of a pre-treatment unit in mining operations. It involves performing analytical testing on RO feed water before and after installation of Actiflo<sup>&reg;</sup> unit. Water samples prior to RO plant stage were obtained on different dates from Costerfield mining operations in Victoria, Australia. Tests were conducted in an independent laboratory to determine the concentration of various compounds in RO feed water before and after installation of Actiflo<sup>&reg;</sup> unit during the entire evaluated period from December 2015 to June 2018. Water quality analysis shows that the quality of RO feed water has remarkably improved since installation of Actiflo<sup>&reg;</sup> clarifier. Suspended solids (SS) and turbidity removal efficiencies has been improved by 91 and 85 percent respectively in pre-treatment system since the installation of Actiflo<sup>&reg;</sup>. The Actiflo<sup>&reg; </sup>clarifier proved to be a valuable part of pre-treatment system prior to RO. It has the potential to conveniently condition the mining wastewater prior to RO unit, and reduce the risk of RO physical failure and irreversible fouling. Consequently, reliable and durable operation of RO unit with minimum requirement for RO membrane replacement is expected with Actiflo<sup>&reg;</sup> in use. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ACTIFLO%20%C2%AE%20clarifier" title="ACTIFLO ® clarifier">ACTIFLO ® clarifier</a>, <a href="https://publications.waset.org/abstracts/search?q=mining%20wastewater" title=" mining wastewater"> mining wastewater</a>, <a href="https://publications.waset.org/abstracts/search?q=reverse%20osmosis" title=" reverse osmosis"> reverse osmosis</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20treatment" title=" water treatment"> water treatment</a> </p> <a href="https://publications.waset.org/abstracts/96179/evaluation-of-the-performance-of-actiflo-clarifier-in-the-treatment-of-mining-wastewaters-case-study-of-costerfield-mining-operations-victoria-australia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/96179.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">193</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10356</span> Investigation of Antidepressant Activity of Dracaena Trifasciata in Rats</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Samiah%20Rehman">Samiah Rehman</a>, <a href="https://publications.waset.org/abstracts/search?q=Kashmira%20J.%20Gohil"> Kashmira J. Gohil</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Objective: Dracaena trifascaita extract (DTE) possesses strong antioxidant and anti-inflammatory properties that play a vital role in the treatment of mental disorders like depression. The present study was designed to evaluate the antidepressant effects of hydroalcoholic extracts of DT on behavioral models of depression. Methodology: Animals were randomly divided into 6 groups of 5 each: Group 1 and 2 received distilled water and standard drug, imipramine: 25mg/kg, respectively. Groups 4, 5 and 6 received DTE treatment orally at doses of 200 ,400 and 600mg/ kg, respectively, for 14 days. Time of immobility was noted by force swimming test (FST)and tail suspension test (TST) on the 1st,7th and 14th days. Results: The time of immobility was reduced in the treatment group as compared to the control and standard. DTE600 mg/kg showed the highest and most significant antidepressant effects as compared to the standard drug imipramine. (25mg/kg). Conclusion: DTE has good potential as an alternative therapy for depression. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dracaena%20trifasciata" title="Dracaena trifasciata">Dracaena trifasciata</a>, <a href="https://publications.waset.org/abstracts/search?q=antidepressants" title=" antidepressants"> antidepressants</a>, <a href="https://publications.waset.org/abstracts/search?q=force%20swimming%20test" title=" force swimming test"> force swimming test</a>, <a href="https://publications.waset.org/abstracts/search?q=tail%20suspension%20test" title=" tail suspension test"> tail suspension test</a>, <a href="https://publications.waset.org/abstracts/search?q=herbal%20drug%20of%20depression" title=" herbal drug of depression"> herbal drug of depression</a> </p> <a href="https://publications.waset.org/abstracts/160465/investigation-of-antidepressant-activity-of-dracaena-trifasciata-in-rats" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/160465.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">74</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10355</span> Optimum Flight Altitude</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ravi%20Nandu">Ravi Nandu</a>, <a href="https://publications.waset.org/abstracts/search?q=Anmol%20Taploo"> Anmol Taploo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As per current scenario, commercial aircrafts have been very well functioning with higher efficiency, but there is something that affects it. Every aircraft runs with the combustion produced by mixture of fuel and air. For example: A flight to travel from Mumbai to Kolkata it takes 2h: 30 min and from Kolkata to Mumbai it takes 2h: 45 min. It happens due to head and tail wind. Due to head wind air craft travels faster than its usual velocity and it takes 2h: 30 min to reach to Kolkata, while it takes 2h;45min vis versa. This lag in time is caused due to head wind that increases the drag and reduces the relative velocity of the plane. So in order to reduce this wastage of fuel there is an optimal flight altitude at which the head and tail wind action is reduced compared to the present scenario. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=drag" title="drag">drag</a>, <a href="https://publications.waset.org/abstracts/search?q=head%20wind" title=" head wind"> head wind</a>, <a href="https://publications.waset.org/abstracts/search?q=tail%20wind" title=" tail wind"> tail wind</a>, <a href="https://publications.waset.org/abstracts/search?q=aircraft" title=" aircraft"> aircraft</a> </p> <a href="https://publications.waset.org/abstracts/16394/optimum-flight-altitude" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16394.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">468</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10354</span> Investigation Effect of External Flow to Exhaust Gas Flow at Heavy Commercial Vehicle with CFD</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=F.%20Kanta%C5%9F">F. Kantaş</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Boyac%C4%B1"> D. Boyacı</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Din%C3%A7"> C. Dinç </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Exhaust systems plays an important role in thermal heat management. Exhaust manifold picks burned gas from engine and exhaust pipes transmit exhaust gas to muffler, exhaust gas is reacted chemically to avoid noxious gas and sound is reduced in muffler then gas is threw out with tail pipe from muffler. Exhaust gas flows out from tail pipe and this hot gas flows to many parts that available around tail pipe and muffler, like spare tire, transmission, pipes etc. These parts are heated by hot exhaust gas. Also vehicle on ride, external flow effects exhaust gas flow and exhaust gas behavior is changed. It's impossible to understand which parts are heated by hot exhaust gas in tests. To understand this phenomena, exhaust gas flow is solved in CFD also external flow due to vehicle movement must be solved with exhaust gas flow. Because external flow effects exhaust gas flow behavior with many parameters. This paper investigates external flow effects exhaust gas flow behavior and other critical parameters effect exhaust gas flow behavior, like different tail pipe design, exhaust gas mass flow in critic vehicle driving situations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=exhaust" title="exhaust">exhaust</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20flow" title=" gas flow"> gas flow</a>, <a href="https://publications.waset.org/abstracts/search?q=vehicle" title=" vehicle"> vehicle</a>, <a href="https://publications.waset.org/abstracts/search?q=external%20flow" title=" external flow "> external flow </a> </p> <a href="https://publications.waset.org/abstracts/17975/investigation-effect-of-external-flow-to-exhaust-gas-flow-at-heavy-commercial-vehicle-with-cfd" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17975.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">448</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10353</span> Variation of Base Width of a Typical Concrete Gravity Dam under Different Seismic Conditions Using Static Seismic Loading</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Prasanna%20Kumar%20Khaund">Prasanna Kumar Khaund</a>, <a href="https://publications.waset.org/abstracts/search?q=Sukanya%20Talukdar"> Sukanya Talukdar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A concrete gravity dam is a major hydraulic structure and it is very essential to consider the earthquake forces, to get a proper design base width, so that the entire weight of the dam resists the overturning moment due to earthquake and other forces. The main objective of this study is to obtain the design base width of a dam for different seismic conditions by varying the earthquake coefficients in both vertical and horizontal directions. This shall be done by equating the factor of safety against overturning, factor of safety against sliding and factor of safety against shear friction factor for a dam with their limiting values, under both tail water and no tail water condition. The shape of the Mettur dam in India is considered for the study. The study has been done taking a constant head of water at the reservoir, which is the maximum reservoir water level and a constant height of tail water. Using linear approximation method of Newton Raphson, the obtained equations against different factors of safety under different earthquake conditions are solved using a programme in C++ to get different values of base width of dam for varying earthquake conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=design%20base%20width" title="design base width">design base width</a>, <a href="https://publications.waset.org/abstracts/search?q=horizontal%20earthquake%20coefficient" title=" horizontal earthquake coefficient"> horizontal earthquake coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=tail%20water" title=" tail water"> tail water</a>, <a href="https://publications.waset.org/abstracts/search?q=vertical%20earthquake%20coefficient" title=" vertical earthquake coefficient"> vertical earthquake coefficient</a> </p> <a href="https://publications.waset.org/abstracts/72683/variation-of-base-width-of-a-typical-concrete-gravity-dam-under-different-seismic-conditions-using-static-seismic-loading" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72683.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">282</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10352</span> Treatment of Greywater at Household by Using Ceramic Tablet Membranes </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdelkader%20T.%20Ahmed">Abdelkader T. Ahmed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Greywater is any wastewater draining from a household including kitchen sinks and bathroom tubs, except toilet wastes. Although this used water may contain grease, food particles, hair, and any number of other impurities, it may still be suitable for reuse after treatment. Greywater reusing serves two purposes including reduction the amount of freshwater needed to supply a household, and reduction the amount of wastewater entering sewer systems. This study aims to investigate and design a simple and cheap unit to treat the greywater in household via using ceramic membranes and reuse it in supplying water for toilet flushing. The study include an experimental program for manufacturing several tablet ceramic membranes from clay and sawdust with three different mixtures. The productivity and efficiency of these ceramic membranes were investigated by chemical and physical tests for greywater before and after filtration through these membranes. Then a treatment unit from this ceramic membrane was designed based on the experimental results of lab tests. Results showed that increase sawdust percent with the mixture increase the flow rate and productivity of treated water but decrease in the same time the water quality. The efficiency of the new ceramic membrane reached 95%. The treatment unit save 0.3 m3/day water for toilet flushing without need to consume them from the fresh water supply network. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ceramic%20membranes" title="ceramic membranes">ceramic membranes</a>, <a href="https://publications.waset.org/abstracts/search?q=filtration" title=" filtration"> filtration</a>, <a href="https://publications.waset.org/abstracts/search?q=greywater" title=" greywater"> greywater</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewater%20treatment" title=" wastewater treatment "> wastewater treatment </a> </p> <a href="https://publications.waset.org/abstracts/39192/treatment-of-greywater-at-household-by-using-ceramic-tablet-membranes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39192.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">330</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10351</span> Cucurbita pepo L. Attenuates Diabetic Neuropathy by Targeting Oxidative Stress in STZ-Nicotinamide Induced Diabetic Rats</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Navpreet%20Kaur">Navpreet Kaur</a>, <a href="https://publications.waset.org/abstracts/search?q=Randhir%20Singh"> Randhir Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Diabetic neuropathy is one of the most common microvascular complications of diabetes mellitus which affects more than 50% of diabetic patients. The present study targeted oxidative stress mediated nerve damage in diabetic rats using a hydro-alcohol extract of Cucurbita pepo L. (Family: Cucurbitaceae) and its potential in treatment of diabetic neuropathy. Diabetes neuropathy was induced in Wistar rats by injection of streptozotocin (65 mg/kg, i.p.) 15 min after Nicotinamide (230 mg/kg, i.p.) administration. Hydro-alcohol extract of C. pepo seeds was assessed by oral administration at 100, 200 and 400 mg/kg in STZ-nicotinamide induced diabetic rats. Thermal hyperalgesia (Eddy's hot plate and tail immersion), mechanical hyperalgesia (Randall-Selitto) and tactile allodynia (Von Frey hair tests) were evaluated in all groups of streptozotocin diabetic rats to assess the extent of neuropathy. Tissue (sciatic nerve) antioxidant enzymes (SOD, CAT, GSH and LPO) levels were measured along with the formation of AGEs in serum to assess the effect of hydro-alcohol extract of C. pepo in ameliorating oxidative stress. Diabetic rats exhibited significantly decreased tail-flick latency in the tail-immersion test and decreased paw withdrawal threshold in both Randall-Selitto and von-Frey hair test. A decrease in the nociceptive threshold was accompanied by significantly increased oxidative stress in sciatic nerve of diabetic rats. Treatment with the C. pepo hydro-alcohol extract significantly attenuated all the behavioral and biochemical alterations in a dose-dependent manner. C. pepo attenuated the diabetic condition and also reversed neuropathic pain through modulation of oxidative stress and thus it may find application as a possible therapeutic agent against diabetic neuropathy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=advanced%20glycation%20end%20products" title="advanced glycation end products">advanced glycation end products</a>, <a href="https://publications.waset.org/abstracts/search?q=antioxidant%20enzymes" title=" antioxidant enzymes"> antioxidant enzymes</a>, <a href="https://publications.waset.org/abstracts/search?q=cucurbita%20pepo" title=" cucurbita pepo"> cucurbita pepo</a>, <a href="https://publications.waset.org/abstracts/search?q=hyperglycemia" title=" hyperglycemia"> hyperglycemia</a> </p> <a href="https://publications.waset.org/abstracts/42884/cucurbita-pepo-l-attenuates-diabetic-neuropathy-by-targeting-oxidative-stress-in-stz-nicotinamide-induced-diabetic-rats" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42884.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">297</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10350</span> 3D Numerical Studies and Design Optimization of a Swallowtail Butterfly with Twin Tail</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arunkumar%20Balamurugan">Arunkumar Balamurugan</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Soundharya%20Lakshmi"> G. Soundharya Lakshmi</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Thenmozhi"> V. Thenmozhi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Jegannath"> M. Jegannath</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20R.%20Sanal%20Kumar"> V. R. Sanal Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aerodynamics of insects is of topical interest in aeronautical industries due to its wide applications on various types of Micro Air Vehicles (MAVs). Note that the MAVs are having smaller geometric dimensions operate at significantly lower speeds on the order of 10 m/s and their Reynolds numbers range is approximately 1,50,000 or lower. In this paper, numerical study has been carried out to capture the flow physics of a biological inspired Swallowtail Butterfly with fixed wing having twin tail at a flight speed of 10 m/s. Comprehensive numerical simulations have been carried out on swallow butterfly with twin tail flying at a speed of 10 m/s with uniform upper and lower angles of attack in both lateral and longitudinal position for identifying the best wing orientation with better aerodynamic efficiency. Grid system in the computational domain is selected after a detailed grid refinement exercises. Parametric analytical studies have been carried out with different lateral and longitudinal angles of attack for finding the better aerodynamic efficiency at the same flight speed. The results reveal that lift coefficient significantly increases with marginal changes in the longitudinal angle and vice versa. But in the case of drag coefficient the conventional changes have been noticed, viz., drag increases at high longitudinal angles. We observed that the change of twin tail section has a significant impact on the formation of vortices and aerodynamic efficiency of the MAV’s. We concluded that for every lateral angle there is an exact longitudinal orientation for the existence of an aerodynamically efficient flying condition of any MAV. This numerical study is a pointer towards for the design optimization of Twin tail MAVs with flapping wings. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerodynamics%20of%20insects" title="aerodynamics of insects">aerodynamics of insects</a>, <a href="https://publications.waset.org/abstracts/search?q=MAV" title=" MAV"> MAV</a>, <a href="https://publications.waset.org/abstracts/search?q=swallowtail%20butterfly" title=" swallowtail butterfly"> swallowtail butterfly</a>, <a href="https://publications.waset.org/abstracts/search?q=twin%20tail%20MAV%20design" title=" twin tail MAV design"> twin tail MAV design</a> </p> <a href="https://publications.waset.org/abstracts/69861/3d-numerical-studies-and-design-optimization-of-a-swallowtail-butterfly-with-twin-tail" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69861.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">395</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10349</span> Optimal Opportunistic Maintenance Policy for a Two-Unit System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nooshin%20Salari">Nooshin Salari</a>, <a href="https://publications.waset.org/abstracts/search?q=Viliam%20Makis"> Viliam Makis</a>, <a href="https://publications.waset.org/abstracts/search?q=Jane%20Doe"> Jane Doe</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a maintenance policy for a system consisting of two units. Unit 1 is gradually deteriorating and is subject to soft failure. Unit 2 has a general lifetime distribution and is subject to hard failure. Condition of unit 1 of the system is monitored periodically and it is considered as failed when its deterioration level reaches or exceeds a critical level N. At the failure time of unit 2 system is considered as failed, and unit 2 will be correctively replaced by the next inspection epoch. Unit 1 or 2 are preventively replaced when deterioration level of unit 1 or age of unit 2 exceeds the related preventive maintenance (PM) levels. At the time of corrective or preventive replacement of unit 2, there is an opportunity to replace unit 1 if its deterioration level reaches the opportunistic maintenance (OM) level. If unit 2 fails in an inspection interval, system stops operating although unit 1 has not failed. A mathematical model is derived to find the preventive and opportunistic replacement levels for unit 1 and preventive replacement age for unit 2, that minimize the long run expected average cost per unit time. The problem is formulated and solved in the semi-Markov decision process (SMDP) framework. Numerical example is provided to illustrate the performance of the proposed model and the comparison of the proposed model with an optimal policy without opportunistic maintenance level for unit 1 is carried out. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=condition-based%20maintenance" title="condition-based maintenance">condition-based maintenance</a>, <a href="https://publications.waset.org/abstracts/search?q=opportunistic%20maintenance" title=" opportunistic maintenance"> opportunistic maintenance</a>, <a href="https://publications.waset.org/abstracts/search?q=preventive%20maintenance" title=" preventive maintenance"> preventive maintenance</a>, <a href="https://publications.waset.org/abstracts/search?q=two-unit%20system" title=" two-unit system"> two-unit system</a> </p> <a href="https://publications.waset.org/abstracts/62311/optimal-opportunistic-maintenance-policy-for-a-two-unit-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62311.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">200</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10348</span> Surgical Treatment Tumors and Cysts of the Pancreas in Children</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Trunov%20V.O.">Trunov V.O.</a>, <a href="https://publications.waset.org/abstracts/search?q=Ryabov%20A.%20B."> Ryabov A. B.</a>, <a href="https://publications.waset.org/abstracts/search?q=Poddubny%20I.V"> Poddubny I.V</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: cystic and solid pancreatic tumors have a relevant and disruptive position in many positions. The results of the treatment of children with tumors and pancreatic cysts aged 3 to 17 years for the period from 2008 to 2019 on the basis of the Morozov State Children's Clinical Hospital in Moscow were analyzed. The total number of children with solid tumors was 17, and 31 with cysts. In all children, the diagnosis was made on the basis of ultrasound, followed by CT and MRI. In most patients with solid tumors, they were located in the area of the pancreas tail - 58%, in the body area - 14%, in the area of the pancreatic head - 28%. In patients with pancreatic cysts, the distribution of patients by topography was as follows: head of the pancreas - 10%, body of the pancreas - 16%, tail of the pancreas - 68%, total cystic transformation of the Wirsung duct - 6%. In pancreatic cysts, the method of surgical treatment was based on the results of MRCP, the level of amylase in the contents of the cyst, and the localization of the cyst. Thus, pathogenetically substantiated treatment included: excision of cysts, internal drainage on an isolated loop according to Ru, the formation of pancreatojejunoanastomosis in a child with the total cystic transformation of the Wirsung duct. In patients with solid pancreatic lesions, pancretoduodenalresection, central resection of the pancreas, and distal resection from laparotomy and laparoscopic access were performed. In the postoperative period, in order to prevent pancreatitis, all children underwent antisecretory therapy, parenteral nutrition, and drainage of the omental bursa. Results: hospital stay ranged from 7 to 12 days. The duration of postoperative fermentemia in patients with solid formations lasted from 3 to 6 days. In all cases, according to the histological examination, a pseudopapillary tumor of the pancreas was revealed. In the group of children with pancreatic cysts, fermentemia was observed from 2 to 4 days, recurrence of cysts in the long term was detected in 3 children (10%). Conclusions: the treatment of cystic and solid pancreatic neoplasms is a difficult task in connection with the anatomical and functional features of the organ. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pancreas" title="pancreas">pancreas</a>, <a href="https://publications.waset.org/abstracts/search?q=tumors" title=" tumors"> tumors</a>, <a href="https://publications.waset.org/abstracts/search?q=cysts" title=" cysts"> cysts</a>, <a href="https://publications.waset.org/abstracts/search?q=resection" title=" resection"> resection</a>, <a href="https://publications.waset.org/abstracts/search?q=laparoscopy" title=" laparoscopy"> laparoscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=children" title=" children"> children</a> </p> <a href="https://publications.waset.org/abstracts/124601/surgical-treatment-tumors-and-cysts-of-the-pancreas-in-children" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/124601.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">140</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10347</span> The Effect of Online Analyzer Malfunction on the Performance of Sulfur Recovery Unit and Providing a Temporary Solution to Reduce the Emission Rate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hamid%20Reza%20Mahdipoor">Hamid Reza Mahdipoor</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehdi%20Bahrami"> Mehdi Bahrami</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Bodaghi"> Mohammad Bodaghi</a>, <a href="https://publications.waset.org/abstracts/search?q=Seyed%20Ali%20Akbar%20Mansoori"> Seyed Ali Akbar Mansoori</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nowadays, with stricter limitations to reduce emissions, considerable penalties are imposed if pollution limits are exceeded. Therefore, refineries, along with focusing on improving the quality of their products, are also focused on producing products with the least environmental impact. The duty of the sulfur recovery unit (SRU) is to convert H₂S gas coming from the upstream units to elemental sulfur and minimize the burning of sulfur compounds to SO₂. The Claus process is a common process for converting H₂S to sulfur, including a reaction furnace followed by catalytic reactors and sulfur condensers. In addition to a Claus section, SRUs usually consist of a tail gas treatment (TGT) section to decrease the concentration of SO₂ in the flue gas below the emission limits. To operate an SRU properly, the flow rate of combustion air to the reaction furnace must be adjusted so that the Claus reaction is performed according to stoichiometry. Accurate control of the air demand leads to an optimum recovery of sulfur during the flow and composition fluctuations in the acid gas feed. Therefore, the major control system in the SRU is the air demand control loop, which includes a feed-forward control system based on predetermined feed flow rates and a feed-back control system based on the signal from the tail gas online analyzer. The use of online analyzers requires compliance with the installation and operation instructions. Unfortunately, most of these analyzers in Iran are out of service for different reasons, like the low importance of environmental issues and a lack of access to after-sales services due to sanctions. In this paper, an SRU in Iran was simulated and calibrated using industrial experimental data. Afterward, the effect of the malfunction of the online analyzer on the performance of SRU was investigated using the calibrated simulation. The results showed that an increase in the SO₂ concentration in the tail gas led to an increase in the temperature of the reduction reactor in the TGT section. This increase in temperature caused the failure of TGT and increased the concentration of SO₂ from 750 ppm to 35,000 ppm. In addition, the lack of a control system for the adjustment of the combustion air caused further increases in SO₂ emissions. In some processes, the major variable cannot be controlled directly due to difficulty in measurement or a long delay in the sampling system. In these cases, a secondary variable, which can be measured more easily, is considered to be controlled. With the correct selection of this variable, the main variable is also controlled along with the secondary variable. This strategy for controlling a process system is referred to as inferential control" and is considered in this paper. Therefore, a sensitivity analysis was performed to investigate the sensitivity of other measurable parameters to input disturbances. The results revealed that the output temperature of the first Claus reactor could be used for inferential control of the combustion air. Applying this method to the operation led to maximizing the sulfur recovery in the Claus section. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sulfur%20recovery" title="sulfur recovery">sulfur recovery</a>, <a href="https://publications.waset.org/abstracts/search?q=online%20analyzer" title=" online analyzer"> online analyzer</a>, <a href="https://publications.waset.org/abstracts/search?q=inferential%20control" title=" inferential control"> inferential control</a>, <a href="https://publications.waset.org/abstracts/search?q=SO%E2%82%82%20emission" title=" SO₂ emission"> SO₂ emission</a> </p> <a href="https://publications.waset.org/abstracts/176522/the-effect-of-online-analyzer-malfunction-on-the-performance-of-sulfur-recovery-unit-and-providing-a-temporary-solution-to-reduce-the-emission-rate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/176522.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">75</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10346</span> Application of Nanofiltration Membrane for River Nile Water Treatment in Egypt</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tarek%20S.%20Jamil">Tarek S. Jamil</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20M.%20Shaban"> Ahmed M. Shaban</a>, <a href="https://publications.waset.org/abstracts/search?q=Eman%20S.%20Mansor"> Eman S. Mansor</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20A.%20Karim"> Ahmed A. Karim</a>, <a href="https://publications.waset.org/abstracts/search?q=Azza%20M.%20Abdel%20Aty"> Azza M. Abdel Aty</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this manuscript, 35 m³/d NF unit was designed and applied for surface water treatment of river Nile water. Intake of Embaba drinking water treatment plant was selected to install that unit at since; it has the lowest water quality index value through the examined 6 sites in greater Cairo area. The optimized operating conditions were feed and permeate flow, 40 and 7 m³/d, feed pressure 2.68 bar and flux rate 37.7 l/m2.h. The permeate water was drinkable according to Egyptian Ministerial decree 458/2007 for the tested parameters (physic-chemical, heavy metals, organic, algal, bacteriological and parasitological). Single and double sand filters were used as pretreatment for NF membranes, but continuous clogging for sand filters moved us to use UF membrane as pretreatment for NF membrane. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=River%20Nile" title="River Nile">River Nile</a>, <a href="https://publications.waset.org/abstracts/search?q=NF%20membrane" title=" NF membrane"> NF membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=pretreatment" title=" pretreatment"> pretreatment</a>, <a href="https://publications.waset.org/abstracts/search?q=UF%20membrane" title=" UF membrane"> UF membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20quality" title=" water quality"> water quality</a> </p> <a href="https://publications.waset.org/abstracts/61649/application-of-nanofiltration-membrane-for-river-nile-water-treatment-in-egypt" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61649.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">708</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10345</span> The Cellular Internalization Mechanisms of Cationic Niosomes/DNA Complex in HeLa Cells</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Orapan%20Paecharoenchai">Orapan Paecharoenchai</a>, <a href="https://publications.waset.org/abstracts/search?q=Tanasait%20Ngawhirunpat"> Tanasait Ngawhirunpat</a>, <a href="https://publications.waset.org/abstracts/search?q=Theerasak%20Rojanarata"> Theerasak Rojanarata</a>, <a href="https://publications.waset.org/abstracts/search?q=Auayporn%20Apirakaramwong"> Auayporn Apirakaramwong</a>, <a href="https://publications.waset.org/abstracts/search?q=Praneet%20Opanasopit"> Praneet Opanasopit</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cationic niosomes formulated with Span20, cholesterol and novel synthesized spermine-cationic lipids (2-hydrocarbon tail and 4- hydrocarbon tail) in a molar ratio of 2.5:2.5:1 can mediate high gene transfection in vitro. However, the uptake mechanisms of these systems are not well clarified. In the present study, effect of endocytic inhibitors on the transfection efficiency of niosomes/DNA complexes was determined on a human cervical carcinoma cell line (HeLa cells) using the inhibitors of macropinocytosis (wortmannin), clathrin- and caveolae-mediated endocytosis (methyl-β-cyclodextrin), clathrin-mediated endocytosis (chlorpromazine), caveolae-mediated endocytosis (genistein and filipin), cytosolic transfer (ammonium chloride) and microtubules polymerization (nocodazole). The transfection of niosomes with 2-hydrocarbon tail lipid was blocked by nocodazole, genistein, ammonium chloride and filipin, respectively, whereas, the transfection of niosomes with 4-hydrocarbon tail lipid was blocked by nocodazole, genistein, ammonium chloride, methyl-β-cyclodextrin and filipin, respectively. It can be concluded that these niosomes/DNA complexes were internalized predominantly by endocytosis via clathrin and caveolae-independent pathway. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cellular%20internalization" title="cellular internalization">cellular internalization</a>, <a href="https://publications.waset.org/abstracts/search?q=cationic%20niosomes" title=" cationic niosomes"> cationic niosomes</a>, <a href="https://publications.waset.org/abstracts/search?q=gene%20carriers" title=" gene carriers"> gene carriers</a>, <a href="https://publications.waset.org/abstracts/search?q=spermine-cationic%20lipids" title=" spermine-cationic lipids"> spermine-cationic lipids</a> </p> <a href="https://publications.waset.org/abstracts/11538/the-cellular-internalization-mechanisms-of-cationic-niosomesdna-complex-in-hela-cells" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11538.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">456</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10344</span> Cogeneration Unit for Small Stove</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Michal%20Spilacek">Michal Spilacek</a>, <a href="https://publications.waset.org/abstracts/search?q=Marian%20Brazdil"> Marian Brazdil</a>, <a href="https://publications.waset.org/abstracts/search?q=Otakar%20Stelcl"> Otakar Stelcl</a>, <a href="https://publications.waset.org/abstracts/search?q=Jiri%20Pospisil"> Jiri Pospisil</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper shows an experimental testing of a small unit for combustion of solid fuels, such as charcoal and wood logs, that can provide electricity. One of the concepts is that the unit does not require a qualified personnel for its operation. The unit itself is composed of two main parts. The design requires a heat producing stove and an electricity producing thermoelectric generator. After the construction the unit was tested and the results shows that the emission release is within the legislative requirements for emission production and environmental protection. That qualifies such unit for indoor application. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=micro-cogeneration" title="micro-cogeneration">micro-cogeneration</a>, <a href="https://publications.waset.org/abstracts/search?q=thermoelectric%20generator" title=" thermoelectric generator"> thermoelectric generator</a>, <a href="https://publications.waset.org/abstracts/search?q=biomass%20combustion" title=" biomass combustion"> biomass combustion</a>, <a href="https://publications.waset.org/abstracts/search?q=wood%20stove" title=" wood stove"> wood stove</a> </p> <a href="https://publications.waset.org/abstracts/27174/cogeneration-unit-for-small-stove" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27174.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">617</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10343</span> Phage Therapy as a Potential Solution in the Fight against Antimicrobial Resistance </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sanjay%20%20Shukla">Sanjay Shukla</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Excessive use of antibiotics is a main problem in the treatment of wounds and other chronic infections and antibiotic treatment is frequently non-curative, thus alternative treatment is necessary. Phage therapy is considered one of the most effective approaches to treat multi-drug resistant bacterial pathogens. Infections caused by Staphylococcus aureus are very efficiently controlled with phage cocktails, containing a different individual phages lysate infecting a majority of known pathogenic S. aureus strains. The aim of current study was to investigate the efficiency of a purified phage cocktail for prophylactic as well as therapeutic application in mouse model and in large animals with chronic septic infection of wounds. A total of 150 sewage samples were collected from various livestock farms. These samples were subjected for the isolation of bacteriophage by double agar layer method. A total of 27 sewage samples showed plaque formation by producing lytic activity against S. aureus in double agar overlay method out of 150 sewage samples. In TEM recovered isolates of bacteriophages showed hexagonal structure with tail fiber. In the bacteriophage (ØVS) had an icosahedral symmetry with the head size 52.20 nm in diameter and long tail of 109 nm. Head and tail were held together by connector and can be classified as a member of the Myoviridae family under the order of Caudovirale. Recovered bacteriophage had shown the antibacterial activity against the S. aureus in vitro. Cocktail (ØVS1, ØVS5, ØVS9 and ØVS 27) of phage lysate were tested to know in vivo antibacterial activity as well as the safety profile. Result of mice experiment indicated that the bacteriophage lysate was very safe, did not show any appearance of abscess formation which indicates its safety in living system. The mice were also prophylactically protected against S. aureus when administered with cocktail of bacteriophage lysate just before the administration of S. aureus which indicates that they are good prophylactic agent. The S. aureus inoculated mice were completely recovered by bacteriophage administration with 100% recovery which was very good as compere to conventional therapy. In present study ten chronic cases of wound were treated with phage lysate and follow up of these cases was done regularly up to ten days (at 0, 5 and 10 d). Result indicated that the six cases out of ten showed complete recovery of wounds within 10 d. The efficacy of bacteriophage therapy was found to be 60% which was very good as compared to the conventional antibiotic therapy in chronic septic wounds infections. Thus, the application of lytic phage in single dose proved to be innovative and effective therapy for treatment of septic chronic wounds. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=phage%20therapy" title="phage therapy">phage therapy</a>, <a href="https://publications.waset.org/abstracts/search?q=phage%20lysate" title=" phage lysate"> phage lysate</a>, <a href="https://publications.waset.org/abstracts/search?q=antimicrobial%20resistance" title=" antimicrobial resistance"> antimicrobial resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20aureus" title=" S. aureus "> S. aureus </a> </p> <a href="https://publications.waset.org/abstracts/136925/phage-therapy-as-a-potential-solution-in-the-fight-against-antimicrobial-resistance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/136925.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">118</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10342</span> Bacteriophage Is a Novel Solution of Therapy Against S. aureus Having Multiple Drug Resistance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sanjay%20Shukla">Sanjay Shukla</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Nayak"> A. Nayak</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20K.%20Sharma"> R. K. Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20P.%20Singh"> A. P. Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20P.%20Tiwari"> S. P. Tiwari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Excessive use of antibiotics is a major problem in the treatment of wounds and other chronic infections, and antibiotic treatment is frequently non-curative, thus alternative treatment is necessary. Phage therapy is considered one of the most promising approaches to treat multi-drug resistant bacterial pathogens. Infections caused by Staphylococcus aureus are very efficiently controlled with phage cocktails, containing a different individual phages lysate infecting a majority of known pathogenic S. aureus strains. The aim of the present study was to evaluate the efficacy of a purified phage cocktail for prophylactic as well as therapeutic application in mouse model and in large animals with chronic septic infection of wounds. A total of 150 sewage samples were collected from various livestock farms. These samples were subjected for the isolation of bacteriophage by the double agar layer method. A total of 27 sewage samples showed plaque formation by producing lytic activity against S. aureus in the double agar overlay method out of 150 sewage samples. In TEM, recovered isolates of bacteriophages showed hexagonal structure with tail fiber. In the bacteriophage (ØVS) had an icosahedral symmetry with the head size 52.20 nm in diameter and long tail of 109 nm. Head and tail were held together by connector and can be classified as a member of the Myoviridae family under the order of Caudovirale. Recovered bacteriophage had shown the antibacterial activity against the S. aureus in vitro. Cocktail (ØVS1, ØVS5, ØVS9, and ØVS 27) of phage lysate were tested to know in vivo antibacterial activity as well as the safety profile. Result of mice experiment indicated that the bacteriophage lysate were very safe, did not show any appearance of abscess formation, which indicates its safety in living system. The mice were also prophylactically protected against S. aureus when administered with cocktail of bacteriophage lysate just before the administration of S. aureuswhich indicates that they are good prophylactic agent. The S. aureusinoculated mice were completely recovered by bacteriophage administration with 100% recovery, which was very good as compere to conventional therapy. In the present study, ten chronic cases of the wound were treated with phage lysate, and follow up of these cases was done regularly up to ten days (at 0, 5, and 10 d). The result indicated that the six cases out of ten showed complete recovery of wounds within 10 d. The efficacy of bacteriophage therapy was found to be 60% which was very good as compared to the conventional antibiotic therapy in chronic septic wounds infections. Thus, the application of lytic phage in single dose proved to be innovative and effective therapy for the treatment of septic chronic wounds. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=phage%20therapy" title="phage therapy">phage therapy</a>, <a href="https://publications.waset.org/abstracts/search?q=S%20aureus" title=" S aureus"> S aureus</a>, <a href="https://publications.waset.org/abstracts/search?q=antimicrobial%20resistance" title=" antimicrobial resistance"> antimicrobial resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=lytic%20phage" title=" lytic phage"> lytic phage</a>, <a href="https://publications.waset.org/abstracts/search?q=and%20bacteriophage" title=" and bacteriophage"> and bacteriophage</a> </p> <a href="https://publications.waset.org/abstracts/144984/bacteriophage-is-a-novel-solution-of-therapy-against-s-aureus-having-multiple-drug-resistance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/144984.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">117</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10341</span> Risk Measure from Investment in Finance by Value at Risk</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20El-Arbi%20Khalfallah">Mohammed El-Arbi Khalfallah</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Lakhdar%20Hadji"> Mohamed Lakhdar Hadji</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Managing and controlling risk is a topic research in the world of finance. Before a risky situation, the stakeholders need to do comparison according to the positions and actions, and financial institutions must take measures of a particular market risk and credit. In this work, we study a model of risk measure in finance: Value at Risk (VaR), which is a new tool for measuring an entity's exposure risk. We explain the concept of value at risk, your average, tail, and describe the three methods for computing: Parametric method, Historical method, and numerical method of Monte Carlo. Finally, we briefly describe advantages and disadvantages of the three methods for computing value at risk. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=average%20value%20at%20risk" title="average value at risk">average value at risk</a>, <a href="https://publications.waset.org/abstracts/search?q=conditional%20value%20at%20risk" title=" conditional value at risk"> conditional value at risk</a>, <a href="https://publications.waset.org/abstracts/search?q=tail%20value%20at%20risk" title=" tail value at risk"> tail value at risk</a>, <a href="https://publications.waset.org/abstracts/search?q=value%20at%20risk" title=" value at risk"> value at risk</a> </p> <a href="https://publications.waset.org/abstracts/61669/risk-measure-from-investment-in-finance-by-value-at-risk" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61669.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">441</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10340</span> Combination of Lamotrigine and Duloxetine: A Potential Approach for the Treatment of Acute Bipolar Depression</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kedar%20S.%20Prabhavalkar">Kedar S. Prabhavalkar</a>, <a href="https://publications.waset.org/abstracts/search?q=Nimmy%20Baby%20Poovanpallil"> Nimmy Baby Poovanpallil</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lamotrigine is approved for maintenance treatment of bipolar I disorder. However, its role in the treatment of acute bipolar depression is not well clear. Its efficacy in the treatment of major depressive disorders including refractory unipolar depression suggested the use of lamotrigine as an augmentation drug for acute bipolar depression. The present study aims to evaluate and perform a comparative analysis of the therapeutic effects of lamotrigine, an epileptic mood stabilizer, when used alone and in combination with duloxetine in treating acute bipolar depression at different doses of lamotrigine. Male swiss albino mice were used. For evaluation of efficacy of combination, immobility period was analyzed 30 min after the treatment from forced swim and tail suspension tests. Further amount of sucrose consumed in sucrose preference test was estimated. The combination of duloxetine and lamotrigine showed potentiation of antidepressant activity in acute models. Decrease in immobility time and increase in the amount of sucrose consumption in stressed mice were higher in combined group compared to lamotrigine monotherapy group. Brain monoamine levels were also attenuated more with combination compared to monotherapy. Results of the present study suggest potential role of lamotrigine and duloxetine combination in the treatment of acute bipolar depression. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lamotrigine" title="lamotrigine">lamotrigine</a>, <a href="https://publications.waset.org/abstracts/search?q=duloxetine" title=" duloxetine"> duloxetine</a>, <a href="https://publications.waset.org/abstracts/search?q=acute%20bipolar%20depression" title=" acute bipolar depression"> acute bipolar depression</a>, <a href="https://publications.waset.org/abstracts/search?q=augmentation" title=" augmentation"> augmentation</a> </p> <a href="https://publications.waset.org/abstracts/43929/combination-of-lamotrigine-and-duloxetine-a-potential-approach-for-the-treatment-of-acute-bipolar-depression" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43929.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">507</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10339</span> Unit Root Tests Based On the Robust Estimator</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wararit%20Panichkitkosolkul">Wararit Panichkitkosolkul</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p class="Abstract" style="text-indent:10.2pt">The unit root tests based on the robust estimator for the first-order autoregressive process are proposed and compared with the unit root tests based on the ordinary least squares (OLS) estimator. The percentiles of the null distributions of the unit root test are also reported. The empirical probabilities of Type I error and powers of the unit root tests are estimated via Monte Carlo simulation. Simulation results show that all unit root tests can control the probability of Type I error for all situations. The empirical power of the unit root tests based on the robust estimator are higher than the unit root tests based on the OLS estimator.<o:p></o:p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=autoregressive" title="autoregressive">autoregressive</a>, <a href="https://publications.waset.org/abstracts/search?q=ordinary%20least%20squares" title=" ordinary least squares"> ordinary least squares</a>, <a href="https://publications.waset.org/abstracts/search?q=type%20i%20error" title=" type i error"> type i error</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20of%20the%20test" title=" power of the test"> power of the test</a>, <a href="https://publications.waset.org/abstracts/search?q=Monte%20Carlo%20simulation" title=" Monte Carlo simulation"> Monte Carlo simulation</a> </p> <a href="https://publications.waset.org/abstracts/3693/unit-root-tests-based-on-the-robust-estimator" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3693.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">289</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=tail%20gas%20treatment%20unit&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=tail%20gas%20treatment%20unit&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=tail%20gas%20treatment%20unit&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=tail%20gas%20treatment%20unit&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=tail%20gas%20treatment%20unit&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=tail%20gas%20treatment%20unit&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=tail%20gas%20treatment%20unit&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=tail%20gas%20treatment%20unit&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=tail%20gas%20treatment%20unit&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=tail%20gas%20treatment%20unit&amp;page=345">345</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=tail%20gas%20treatment%20unit&amp;page=346">346</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=tail%20gas%20treatment%20unit&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10