CINXE.COM

Search results for: image forensics

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: image forensics</title> <meta name="description" content="Search results for: image forensics"> <meta name="keywords" content="image forensics"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="image forensics" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="image forensics"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 2833</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: image forensics</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2833</span> Digital Image Forensics: Discovering the History of Digital Images</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gurinder%20Singh">Gurinder Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Kulbir%20Singh"> Kulbir Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Digital multimedia contents such as image, video, and audio can be tampered easily due to the availability of powerful editing softwares. Multimedia forensics is devoted to analyze these contents by using various digital forensic techniques in order to validate their authenticity. Digital image forensics is dedicated to investigate the reliability of digital images by analyzing the integrity of data and by reconstructing the historical information of an image related to its acquisition phase. In this paper, a survey is carried out on the forgery detection by considering the most recent and promising digital image forensic techniques. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Computer%20Forensics" title="Computer Forensics">Computer Forensics</a>, <a href="https://publications.waset.org/abstracts/search?q=Multimedia%20Forensics" title=" Multimedia Forensics"> Multimedia Forensics</a>, <a href="https://publications.waset.org/abstracts/search?q=Image%20Ballistics" title=" Image Ballistics"> Image Ballistics</a>, <a href="https://publications.waset.org/abstracts/search?q=Camera%20Source%20Identification" title=" Camera Source Identification"> Camera Source Identification</a>, <a href="https://publications.waset.org/abstracts/search?q=Forgery%20Detection" title=" Forgery Detection"> Forgery Detection</a> </p> <a href="https://publications.waset.org/abstracts/76669/digital-image-forensics-discovering-the-history-of-digital-images" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76669.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">247</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2832</span> Analysis of Various Copy Move Image Forgery Techniques for Better Detection Accuracy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Grishma%20D.%20Solanki">Grishma D. Solanki</a>, <a href="https://publications.waset.org/abstracts/search?q=Karshan%20Kandoriya"> Karshan Kandoriya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In modern era of information age, digitalization has revolutionized like never before. Powerful computers, advanced photo editing software packages and high resolution capturing devices have made manipulation of digital images incredibly easy. As per as image forensics concerns, one of the most actively researched area are detection of copy move forgeries. Higher computational complexity is one of the major component of existing techniques to detect such tampering. Moreover, copy move forgery is usually performed in three steps. First, copying of a region in an image then pasting the same one in the same respective image and finally doing some post-processing like rotation, scaling, shift, noise, etc. Consequently, pseudo Zernike moment is used as a features extraction method for matching image blocks and as a primary factor on which performance of detection algorithms depends. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=copy-move%20image%20forgery" title="copy-move image forgery">copy-move image forgery</a>, <a href="https://publications.waset.org/abstracts/search?q=digital%20forensics" title=" digital forensics"> digital forensics</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20forensics" title=" image forensics"> image forensics</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20forgery" title=" image forgery"> image forgery</a> </p> <a href="https://publications.waset.org/abstracts/49539/analysis-of-various-copy-move-image-forgery-techniques-for-better-detection-accuracy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49539.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">288</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2831</span> Establishing Digital Forensics Capability and Capacity among Malaysia&#039;s Law Enforcement Agencies: Issues, Challenges and Recommendations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sarah%20Taylor">Sarah Taylor</a>, <a href="https://publications.waset.org/abstracts/search?q=Nor%20Zarina%20Zainal%20Abidin"> Nor Zarina Zainal Abidin</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohd%20Zabri%20Adil%20Talib"> Mohd Zabri Adil Talib</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Although cybercrime is on the rise, yet many Law Enforcement Agencies in Malaysia faces difficulty in establishing own digital forensics capability and capacity. The main reasons are undoubtedly because of the high cost and difficulty in convincing their management. A survey has been conducted among Malaysia’s Law Enforcement Agencies owning a digital forensics laboratory to understand their history of building digital forensics capacity and capability, the challenges and the impact of having own laboratory to their case investigation. The result of the study shall be used by other Law Enforcement Agencies in justifying to their management to establish own digital forensics capability and capacity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=digital%20forensics" title="digital forensics">digital forensics</a>, <a href="https://publications.waset.org/abstracts/search?q=digital%20forensics%20capacity%20and%20capability" title=" digital forensics capacity and capability"> digital forensics capacity and capability</a>, <a href="https://publications.waset.org/abstracts/search?q=laboratory" title=" laboratory"> laboratory</a>, <a href="https://publications.waset.org/abstracts/search?q=law%20enforcement%20agency" title=" law enforcement agency"> law enforcement agency</a> </p> <a href="https://publications.waset.org/abstracts/85550/establishing-digital-forensics-capability-and-capacity-among-malaysias-law-enforcement-agencies-issues-challenges-and-recommendations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85550.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">251</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2830</span> Texture-Based Image Forensics from Video Frame</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Li%20Zhou">Li Zhou</a>, <a href="https://publications.waset.org/abstracts/search?q=Yanmei%20Fang"> Yanmei Fang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With current technology, images and videos can be obtained more easily than ever. It is so easy to manipulate these digital multimedia information when obtained, and that the content or source of the image and video could be easily tampered. In this paper, we propose to identify the image and video frame by the texture-based approach, e.g. Markov Transition Probability (MTP), which is in space domain, DCT domain and DWT domain, respectively. In the experiment, image and video frame database is constructed, and is used to train and test the classifier Support Vector Machine (SVM). Experiment results show that the texture-based approach has good performance. In order to verify the experiment result, and testify the universality and robustness of algorithm, we build a random testing dataset, the random testing result is in keeping with above experiment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=multimedia%20forensics" title="multimedia forensics">multimedia forensics</a>, <a href="https://publications.waset.org/abstracts/search?q=video%20frame" title=" video frame"> video frame</a>, <a href="https://publications.waset.org/abstracts/search?q=LBP" title=" LBP"> LBP</a>, <a href="https://publications.waset.org/abstracts/search?q=MTP" title=" MTP"> MTP</a>, <a href="https://publications.waset.org/abstracts/search?q=SVM" title=" SVM"> SVM</a> </p> <a href="https://publications.waset.org/abstracts/42936/texture-based-image-forensics-from-video-frame" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42936.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">427</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2829</span> The Forensic Swing of Things: The Current Legal and Technical Challenges of IoT Forensics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pantaleon%20Lutta">Pantaleon Lutta</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Sedky"> Mohamed Sedky</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Hassan"> Mohamed Hassan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The inability of organizations to put in place management control measures for Internet of Things (IoT) complexities persists to be a risk concern. Policy makers have been left to scamper in finding measures to combat these security and privacy concerns. IoT forensics is a cumbersome process as there is no standardization of the IoT products, no or limited historical data are stored on the devices. This paper highlights why IoT forensics is a unique adventure and brought out the legal challenges encountered in the investigation process. A quadrant model is presented to study the conflicting aspects in IoT forensics. The model analyses the effectiveness of forensic investigation process versus the admissibility of the evidence integrity; taking into account the user privacy and the providers&rsquo; compliance with the laws and regulations. Our analysis concludes that a semi-automated forensic process using machine learning, could eliminate the human factor from the profiling and surveillance processes, and hence resolves the issues of data protection (privacy and confidentiality). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cloud%20forensics" title="cloud forensics">cloud forensics</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20protection%20Laws" title=" data protection Laws"> data protection Laws</a>, <a href="https://publications.waset.org/abstracts/search?q=GDPR" title=" GDPR"> GDPR</a>, <a href="https://publications.waset.org/abstracts/search?q=IoT%20forensics" title=" IoT forensics"> IoT forensics</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20Learning" title=" machine Learning"> machine Learning</a> </p> <a href="https://publications.waset.org/abstracts/121576/the-forensic-swing-of-things-the-current-legal-and-technical-challenges-of-iot-forensics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/121576.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">150</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2828</span> Towards a Proof Acceptance by Overcoming Challenges in Collecting Digital Evidence</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lilian%20Noronha%20Nassif">Lilian Noronha Nassif</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cybercrime investigation demands an appropriated evidence collection mechanism. If the investigator does not acquire digital proofs in a forensic sound, some important information can be lost, and judges can discard case evidence because the acquisition was inadequate. The correct digital forensic seizing involves preparation of professionals from fields of law, police, and computer science. This paper presents important challenges faced during evidence collection in different perspectives of places. The crime scene can be virtual or real, and technical obstacles and privacy concerns must be considered. All pointed challenges here highlight the precautions to be taken in the digital evidence collection and the suggested procedures contribute to the best practices in the digital forensics field. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=digital%20evidence" title="digital evidence">digital evidence</a>, <a href="https://publications.waset.org/abstracts/search?q=digital%20forensics%20process%20and%20procedures" title=" digital forensics process and procedures"> digital forensics process and procedures</a>, <a href="https://publications.waset.org/abstracts/search?q=mobile%20forensics" title=" mobile forensics"> mobile forensics</a>, <a href="https://publications.waset.org/abstracts/search?q=cloud%20forensics" title=" cloud forensics"> cloud forensics</a> </p> <a href="https://publications.waset.org/abstracts/60179/towards-a-proof-acceptance-by-overcoming-challenges-in-collecting-digital-evidence" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60179.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">406</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2827</span> Filling the Gap of Extraction of Digital Evidence from Emerging Platforms Without Forensics Tools</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yi%20Anson%20Lam">Yi Anson Lam</a>, <a href="https://publications.waset.org/abstracts/search?q=Siu%20Ming%20Yiu"> Siu Ming Yiu</a>, <a href="https://publications.waset.org/abstracts/search?q=Kam%20Pui%20Chow"> Kam Pui Chow</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Digital evidence has been tendering to courts at an exponential rate in recent years. As an industrial practice, most digital evidence is extracted and preserved using specialized and well-accepted forensics tools. On the other hand, the advancement in technologies enables the creation of quite a few emerging platforms such as Telegram, Signal etc. Existing (well-accepted) forensics tools were not designed to extract evidence from these emerging platforms. While new forensics tools require a significant amount of time and effort to be developed and verified, this paper tries to address how to fill this gap using quick-fix alternative methods for digital evidence collection (e.g., based on APIs provided by Apps) and discuss issues related to the admissibility of this evidence to courts with support from international courts’ stance and the circumstances of accepting digital evidence using these proposed alternatives. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=extraction" title="extraction">extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=digital%20evidence" title=" digital evidence"> digital evidence</a>, <a href="https://publications.waset.org/abstracts/search?q=laws" title=" laws"> laws</a>, <a href="https://publications.waset.org/abstracts/search?q=investigation" title=" investigation"> investigation</a> </p> <a href="https://publications.waset.org/abstracts/177751/filling-the-gap-of-extraction-of-digital-evidence-from-emerging-platforms-without-forensics-tools" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/177751.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">68</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2826</span> Digital Forensics Compute Cluster: A High Speed Distributed Computing Capability for Digital Forensics </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Daniel%20Gonzales">Daniel Gonzales</a>, <a href="https://publications.waset.org/abstracts/search?q=Zev%20Winkelman"> Zev Winkelman</a>, <a href="https://publications.waset.org/abstracts/search?q=Trung%20Tran"> Trung Tran</a>, <a href="https://publications.waset.org/abstracts/search?q=Ricardo%20Sanchez"> Ricardo Sanchez</a>, <a href="https://publications.waset.org/abstracts/search?q=Dulani%20Woods"> Dulani Woods</a>, <a href="https://publications.waset.org/abstracts/search?q=John%20Hollywood"> John Hollywood</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We have developed a distributed computing capability, Digital Forensics Compute Cluster (DFORC2) to speed up the ingestion and processing of digital evidence that is resident on computer hard drives. DFORC2 parallelizes evidence ingestion and file processing steps. It can be run on a standalone computer cluster or in the Amazon Web Services (AWS) cloud. When running in a virtualized computing environment, its cluster resources can be dynamically scaled up or down using Kubernetes. DFORC2 is an open source project that uses Autopsy, Apache Spark and Kafka, and other open source software packages. It extends the proven open source digital forensics capabilities of Autopsy to compute clusters and cloud architectures, so digital forensics tasks can be accomplished efficiently by a scalable array of cluster compute nodes. In this paper, we describe DFORC2 and compare it with a standalone version of Autopsy when both are used to process evidence from hard drives of different sizes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=digital%20forensics" title="digital forensics">digital forensics</a>, <a href="https://publications.waset.org/abstracts/search?q=cloud%20computing" title=" cloud computing"> cloud computing</a>, <a href="https://publications.waset.org/abstracts/search?q=cyber%20security" title=" cyber security"> cyber security</a>, <a href="https://publications.waset.org/abstracts/search?q=spark" title=" spark"> spark</a>, <a href="https://publications.waset.org/abstracts/search?q=Kubernetes" title=" Kubernetes"> Kubernetes</a>, <a href="https://publications.waset.org/abstracts/search?q=Kafka" title=" Kafka"> Kafka</a> </p> <a href="https://publications.waset.org/abstracts/73858/digital-forensics-compute-cluster-a-high-speed-distributed-computing-capability-for-digital-forensics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73858.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">394</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2825</span> Organizational Decision to Adopt Digital Forensics: An Empirical Investigation in the Case of Malaysian Law Enforcement Agencies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Siti%20N.%20I.%20Mat%20Kamal">Siti N. I. Mat Kamal</a>, <a href="https://publications.waset.org/abstracts/search?q=Othman%20Ibrahim"> Othman Ibrahim</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehrbakhsh%20Nilashi"> Mehrbakhsh Nilashi</a>, <a href="https://publications.waset.org/abstracts/search?q=Jafalizan%20M.%20Jali"> Jafalizan M. Jali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The use of digital forensics (DF) is nowadays essential for law enforcement agencies to identify analysis and interpret the digital information derived from digital sources. In Malaysia, the engagement of Malaysian Law Enforcement Agencies (MLEA) with this new technology is not evenly distributed. To investigate the factors influencing the adoption of DF in Malaysia law enforcement agencies’ operational environment, this study proposed the initial theoretical framework based on the integration of technology organization environment (TOE), institutional theory, and human organization technology (HOT) fit model. A questionnaire survey was conducted on selected law enforcement agencies in Malaysia to verify the validity of the initial integrated framework. Relative advantage, compatibility, coercive pressure, normative pressure, vendor support and perceived technical competence of technical staff were found as the influential factors on digital forensics adoption. In addition to the only moderator of this study (agency size), any significant moderating effect on the perceived technical competence and the decision to adopt digital forensics by Malaysian law enforcement agencies was found insignificant. Thus, these results indicated that the developed integrated framework provides an effective prediction of the digital forensics adoption by Malaysian law enforcement agencies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=digital%20forensics" title="digital forensics">digital forensics</a>, <a href="https://publications.waset.org/abstracts/search?q=digital%20forensics%20adoption" title=" digital forensics adoption"> digital forensics adoption</a>, <a href="https://publications.waset.org/abstracts/search?q=digital%20information" title=" digital information"> digital information</a>, <a href="https://publications.waset.org/abstracts/search?q=law%20enforcement%20agency" title=" law enforcement agency"> law enforcement agency</a> </p> <a href="https://publications.waset.org/abstracts/103036/organizational-decision-to-adopt-digital-forensics-an-empirical-investigation-in-the-case-of-malaysian-law-enforcement-agencies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/103036.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">151</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2824</span> Gender Identification Using Digital Forensics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vinod%20C.%20Nayak">Vinod C. Nayak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In day-to-day forensic practice, identification is always a difficult task. Availability of anti-mortem and postmortem records plays a major rule in facilitating this tough task. However, the advent of digital forensic is a boon for forensic experts. This study has made use of digital forensics to establish identity by radiological dimensions of maxillary sinus using workstation software. The findings suggest a significant association between maxillary sinus dimensions and human gender. The author will be discussing the methods and results of the study in this e-poster. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=digital%20forensics" title="digital forensics">digital forensics</a>, <a href="https://publications.waset.org/abstracts/search?q=identification" title=" identification"> identification</a>, <a href="https://publications.waset.org/abstracts/search?q=maxillary%20sinus" title=" maxillary sinus"> maxillary sinus</a>, <a href="https://publications.waset.org/abstracts/search?q=radiology" title=" radiology"> radiology</a> </p> <a href="https://publications.waset.org/abstracts/41653/gender-identification-using-digital-forensics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41653.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">419</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2823</span> Classification of Computer Generated Images from Photographic Images Using Convolutional Neural Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chaitanya%20Chawla">Chaitanya Chawla</a>, <a href="https://publications.waset.org/abstracts/search?q=Divya%20Panwar"> Divya Panwar</a>, <a href="https://publications.waset.org/abstracts/search?q=Gurneesh%20Singh%20Anand"> Gurneesh Singh Anand</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20P.%20S%20Bhatia"> M. P. S Bhatia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a deep-learning mechanism for classifying computer generated images and photographic images. The proposed method accounts for a convolutional layer capable of automatically learning correlation between neighbouring pixels. In the current form, Convolutional Neural Network (CNN) will learn features based on an image&#39;s content instead of the structural features of the image. The layer is particularly designed to subdue an image&#39;s content and robustly learn the sensor pattern noise features (usually inherited from image processing in a camera) as well as the statistical properties of images. The paper was assessed on latest natural and computer generated images, and it was concluded that it performs better than the current state of the art methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=image%20forensics" title="image forensics">image forensics</a>, <a href="https://publications.waset.org/abstracts/search?q=computer%20graphics" title=" computer graphics"> computer graphics</a>, <a href="https://publications.waset.org/abstracts/search?q=classification" title=" classification"> classification</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20learning" title=" deep learning"> deep learning</a>, <a href="https://publications.waset.org/abstracts/search?q=convolutional%20neural%20networks" title=" convolutional neural networks"> convolutional neural networks</a> </p> <a href="https://publications.waset.org/abstracts/95266/classification-of-computer-generated-images-from-photographic-images-using-convolutional-neural-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/95266.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">336</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2822</span> A Novel Methodology for Browser Forensics to Retrieve Searched Keywords from Windows 10 Physical Memory Dump</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dija%20Sulekha">Dija Sulekha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nowadays, a good percentage of reported cybercrimes involve the usage of the Internet, directly or indirectly for committing the crime. Usually, Web Browsers leave traces of browsing activities on the host computer’s hard disk, which can be used by investigators to identify internet-based activities of the suspect. But criminals, who involve in some organized crimes, disable browser file generation feature to hide the evidence while doing illegal activities through the Internet. In such cases, even though browser files were not generated in the storage media of the system, traces of recent and ongoing activities were generated in the Physical Memory of the system. As a result, the analysis of Physical Memory Dump collected from the suspect's machine retrieves lots of forensically crucial information related to the browsing history of the Suspect. This information enables the cyber forensic investigators to concentrate on a few highly relevant selected artefacts while doing the Offline Forensics analysis of storage media. This paper addresses the reconstruction of web browsing activities by conducting live forensics to identify searched terms, downloaded files, visited sites, email headers, email ids, etc. from the physical memory dump collected from Windows 10 Systems. Well-known entry points are available for retrieving all the above artefacts except searched terms. The paper describes a novel methodology to retrieve the searched terms from Windows 10 Physical Memory. The searched terms retrieved in this way can be used for doing advanced file and keyword search in the storage media files reconstructed from the file system recovery in offline forensics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=browser%20forensics" title="browser forensics">browser forensics</a>, <a href="https://publications.waset.org/abstracts/search?q=digital%20forensics" title=" digital forensics"> digital forensics</a>, <a href="https://publications.waset.org/abstracts/search?q=live%20Forensics" title=" live Forensics"> live Forensics</a>, <a href="https://publications.waset.org/abstracts/search?q=physical%20memory%20forensics" title=" physical memory forensics "> physical memory forensics </a> </p> <a href="https://publications.waset.org/abstracts/128686/a-novel-methodology-for-browser-forensics-to-retrieve-searched-keywords-from-windows-10-physical-memory-dump" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/128686.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">116</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2821</span> Navigating Cyber Attacks with Quantum Computing: Leveraging Vulnerabilities and Forensics for Advanced Penetration Testing in Cybersecurity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sayor%20Ajfar%20Aaron">Sayor Ajfar Aaron</a>, <a href="https://publications.waset.org/abstracts/search?q=Ashif%20Newaz"> Ashif Newaz</a>, <a href="https://publications.waset.org/abstracts/search?q=Sajjat%20Hossain%20Abir"> Sajjat Hossain Abir</a>, <a href="https://publications.waset.org/abstracts/search?q=Mushfiqur%20Rahman"> Mushfiqur Rahman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper examines the transformative potential of quantum computing in the field of cybersecurity, with a focus on advanced penetration testing and forensics. It explores how quantum technologies can be leveraged to identify and exploit vulnerabilities more efficiently than traditional methods and how they can enhance the forensic analysis of cyber-attacks. Through theoretical analysis and practical simulations, this study highlights the enhanced capabilities of quantum algorithms in detecting and responding to sophisticated cyber threats, providing a pathway for developing more resilient cybersecurity infrastructures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cybersecurity" title="cybersecurity">cybersecurity</a>, <a href="https://publications.waset.org/abstracts/search?q=cyber%20forensics" title=" cyber forensics"> cyber forensics</a>, <a href="https://publications.waset.org/abstracts/search?q=penetration%20testing" title=" penetration testing"> penetration testing</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20computing" title=" quantum computing"> quantum computing</a> </p> <a href="https://publications.waset.org/abstracts/185867/navigating-cyber-attacks-with-quantum-computing-leveraging-vulnerabilities-and-forensics-for-advanced-penetration-testing-in-cybersecurity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/185867.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">67</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2820</span> WormHex: Evidence Retrieval Tool of Social Media from Volatile Memory</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Norah%20Almubairik">Norah Almubairik</a>, <a href="https://publications.waset.org/abstracts/search?q=Wadha%20Almattar"> Wadha Almattar</a>, <a href="https://publications.waset.org/abstracts/search?q=Amani%20Alqarni"> Amani Alqarni</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Social media applications are increasingly being used in our everyday communications. These applications utilise end-to-end encryption mechanisms, which make them suitable tools for criminals to exchange messages. These messages are preserved in the volatile memory until the device is restarted. Therefore, volatile forensics has become an important branch of digital forensics. In this study, the WormHex tool was developed to inspect the memory dump files of Windows and Mac-based workstations. The tool supports digital investigators to extract valuable data written in Arabic and English through web-based WhatsApp and Twitter applications. The results verify that social media applications write their data into the memory regardless of the operating system running the application, with there being no major differences between Windows and Mac. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=volatile%20memory" title="volatile memory">volatile memory</a>, <a href="https://publications.waset.org/abstracts/search?q=REGEX" title=" REGEX"> REGEX</a>, <a href="https://publications.waset.org/abstracts/search?q=digital%20forensics" title=" digital forensics"> digital forensics</a>, <a href="https://publications.waset.org/abstracts/search?q=memory%20acquisition" title=" memory acquisition"> memory acquisition</a> </p> <a href="https://publications.waset.org/abstracts/147426/wormhex-evidence-retrieval-tool-of-social-media-from-volatile-memory" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/147426.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">191</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2819</span> A Method to Enhance the Accuracy of Digital Forensic in the Absence of Sufficient Evidence in Saudi Arabia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fahad%20Alanazi">Fahad Alanazi</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrew%20Jones"> Andrew Jones</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Digital forensics seeks to achieve the successful investigation of digital crimes through obtaining acceptable evidence from digital devices that can be presented in a court of law. Thus, the digital forensics investigation is normally performed through a number of phases in order to achieve the required level of accuracy in the investigation processes. Since 1984 there have been a number of models and frameworks developed to support the digital investigation processes. In this paper, we review a number of the investigation processes that have been produced throughout the years and introduce a proposed digital forensic model which is based on the scope of the Saudi Arabia investigation process. The proposed model has been integrated with existing models for the investigation processes and produced a new phase to deal with a situation where there is initially insufficient evidence. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=digital%20forensics" title="digital forensics">digital forensics</a>, <a href="https://publications.waset.org/abstracts/search?q=process" title=" process"> process</a>, <a href="https://publications.waset.org/abstracts/search?q=metadata" title=" metadata"> metadata</a>, <a href="https://publications.waset.org/abstracts/search?q=Traceback" title=" Traceback"> Traceback</a>, <a href="https://publications.waset.org/abstracts/search?q=Sauid%20Arabia" title=" Sauid Arabia"> Sauid Arabia</a> </p> <a href="https://publications.waset.org/abstracts/57322/a-method-to-enhance-the-accuracy-of-digital-forensic-in-the-absence-of-sufficient-evidence-in-saudi-arabia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57322.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">359</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2818</span> The Use of Artificial Intelligence in Digital Forensics and Incident Response in a Constrained Environment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dipo%20Dunsin">Dipo Dunsin</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20C.%20Ghanem"> Mohamed C. Ghanem</a>, <a href="https://publications.waset.org/abstracts/search?q=Karim%20Ouazzane"> Karim Ouazzane</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Digital investigators often have a hard time spotting evidence in digital information. It has become hard to determine which source of proof relates to a specific investigation. A growing concern is that the various processes, technology, and specific procedures used in the digital investigation are not keeping up with criminal developments. Therefore, criminals are taking advantage of these weaknesses to commit further crimes. In digital forensics investigations, artificial intelligence is invaluable in identifying crime. It has been observed that an algorithm based on artificial intelligence (AI) is highly effective in detecting risks, preventing criminal activity, and forecasting illegal activity. Providing objective data and conducting an assessment is the goal of digital forensics and digital investigation, which will assist in developing a plausible theory that can be presented as evidence in court. Researchers and other authorities have used the available data as evidence in court to convict a person. This research paper aims at developing a multiagent framework for digital investigations using specific intelligent software agents (ISA). The agents communicate to address particular tasks jointly and keep the same objectives in mind during each task. The rules and knowledge contained within each agent are dependent on the investigation type. A criminal investigation is classified quickly and efficiently using the case-based reasoning (CBR) technique. The MADIK is implemented using the Java Agent Development Framework and implemented using Eclipse, Postgres repository, and a rule engine for agent reasoning. The proposed framework was tested using the Lone Wolf image files and datasets. Experiments were conducted using various sets of ISA and VMs. There was a significant reduction in the time taken for the Hash Set Agent to execute. As a result of loading the agents, 5 percent of the time was lost, as the File Path Agent prescribed deleting 1,510, while the Timeline Agent found multiple executable files. In comparison, the integrity check carried out on the Lone Wolf image file using a digital forensic tool kit took approximately 48 minutes (2,880 ms), whereas the MADIK framework accomplished this in 16 minutes (960 ms). The framework is integrated with Python, allowing for further integration of other digital forensic tools, such as AccessData Forensic Toolkit (FTK), Wireshark, Volatility, and Scapy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=artificial%20intelligence" title="artificial intelligence">artificial intelligence</a>, <a href="https://publications.waset.org/abstracts/search?q=computer%20science" title=" computer science"> computer science</a>, <a href="https://publications.waset.org/abstracts/search?q=criminal%20investigation" title=" criminal investigation"> criminal investigation</a>, <a href="https://publications.waset.org/abstracts/search?q=digital%20forensics" title=" digital forensics"> digital forensics</a> </p> <a href="https://publications.waset.org/abstracts/139763/the-use-of-artificial-intelligence-in-digital-forensics-and-incident-response-in-a-constrained-environment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/139763.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">212</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2817</span> Digital Forensics Showdown: Encase and FTK Head-to-Head</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rida%20Nasir">Rida Nasir</a>, <a href="https://publications.waset.org/abstracts/search?q=Waseem%20Iqbal"> Waseem Iqbal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to the constant revolution in technology and the increase in anti-forensic techniques used by attackers to remove their traces, professionals often struggle to choose the best tool to be used in digital forensic investigations. This paper compares two of the most well-known and widely used licensed commercial tools, i.e., Encase & FTK. The comparison was drawn on various parameters and features to provide an authentic evaluation of licensed versions of these well-known commercial tools against various real-world scenarios. In order to discover the popularity of these tools within the digital forensic community, a survey was conducted publicly to determine the preferred choice. The dataset used is the Computer Forensics Reference Dataset (CFReDS). A total of 70 features were selected from various categories. Upon comparison, both FTK and EnCase produce remarkable results. However, each tool has some limitations, and none of the tools is declared best. The comparison drawn is completely unbiased, based on factual data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=digital%20forensics" title="digital forensics">digital forensics</a>, <a href="https://publications.waset.org/abstracts/search?q=commercial%20tools" title=" commercial tools"> commercial tools</a>, <a href="https://publications.waset.org/abstracts/search?q=investigation" title=" investigation"> investigation</a>, <a href="https://publications.waset.org/abstracts/search?q=forensic%20evaluation" title=" forensic evaluation"> forensic evaluation</a> </p> <a href="https://publications.waset.org/abstracts/190321/digital-forensics-showdown-encase-and-ftk-head-to-head" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/190321.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">19</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2816</span> Hash Based Block Matching for Digital Evidence Image Files from Forensic Software Tools</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Kaya">M. Kaya</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Eris"> M. Eris</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Internet use, intelligent communication tools, and social media have all become an integral part of our daily life as a result of rapid developments in information technology. However, this widespread use increases crimes committed in the digital environment. Therefore, digital forensics, dealing with various crimes committed in digital environment, has become an important research topic. It is in the research scope of digital forensics to investigate digital evidences such as computer, cell phone, hard disk, DVD, etc. and to report whether it contains any crime related elements. There are many software and hardware tools developed for use in the digital evidence acquisition process. Today, the most widely used digital evidence investigation tools are based on the principle of finding all the data taken place in digital evidence that is matched with specified criteria and presenting it to the investigator (e.g. text files, files starting with letter A, etc.). Then, digital forensics experts carry out data analysis to figure out whether these data are related to a potential crime. Examination of a 1 TB hard disk may take hours or even days, depending on the expertise and experience of the examiner. In addition, it depends on examiner&rsquo;s experience, and may change overall result involving in different cases overlooked. In this study, a hash-based matching and digital evidence evaluation method is proposed, and it is aimed to automatically classify the evidence containing criminal elements, thereby shortening the time of the digital evidence examination process and preventing human errors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=block%20matching" title="block matching">block matching</a>, <a href="https://publications.waset.org/abstracts/search?q=digital%20evidence" title=" digital evidence"> digital evidence</a>, <a href="https://publications.waset.org/abstracts/search?q=hash%20list" title=" hash list"> hash list</a>, <a href="https://publications.waset.org/abstracts/search?q=evaluation%20of%20digital%20evidence" title=" evaluation of digital evidence"> evaluation of digital evidence</a> </p> <a href="https://publications.waset.org/abstracts/76796/hash-based-block-matching-for-digital-evidence-image-files-from-forensic-software-tools" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76796.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">255</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2815</span> An Erudite Technique for Face Detection and Recognition Using Curvature Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Jagadeesh%20Kumar">S. Jagadeesh Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Face detection and recognition is an authoritative technology for image database management, video surveillance, and human computer interface (HCI). Face recognition is a rapidly nascent method, which has been extensively discarded in forensics such as felonious identification, tenable entree, and custodial security. This paper recommends an erudite technique using curvature analysis (CA) that has less false positives incidence, operative in different light environments and confiscates the artifacts that are introduced during image acquisition by ring correction in polar coordinate (RCP) method. This technique affronts mean and median filtering technique to remove the artifacts but it works in polar coordinate during image acquisition. Investigational fallouts for face detection and recognition confirms decent recitation even in diagonal orientation and stance variation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=curvature%20analysis" title="curvature analysis">curvature analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=ring%20correction%20in%20polar%20coordinate%20method" title=" ring correction in polar coordinate method"> ring correction in polar coordinate method</a>, <a href="https://publications.waset.org/abstracts/search?q=face%20detection" title=" face detection"> face detection</a>, <a href="https://publications.waset.org/abstracts/search?q=face%20recognition" title=" face recognition"> face recognition</a>, <a href="https://publications.waset.org/abstracts/search?q=human%20computer%20interaction" title=" human computer interaction"> human computer interaction</a> </p> <a href="https://publications.waset.org/abstracts/70748/an-erudite-technique-for-face-detection-and-recognition-using-curvature-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/70748.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">287</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2814</span> TACTICAL: Ram Image Retrieval in Linux Using Protected Mode Architecture’s Paging Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sedat%20Aktas">Sedat Aktas</a>, <a href="https://publications.waset.org/abstracts/search?q=Egemen%20Ulusoy"> Egemen Ulusoy</a>, <a href="https://publications.waset.org/abstracts/search?q=Remzi%20Yildirim"> Remzi Yildirim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This article explains how to get a ram image from a computer with a Linux operating system and what steps should be followed while getting it. What we mean by taking a ram image is the process of dumping the physical memory instantly and writing it to a file. This process can be likened to taking a picture of everything in the computer’s memory at that moment. This process is very important for tools that analyze ram images. Volatility can be given as an example because before these tools can analyze ram, images must be taken. These tools are used extensively in the forensic world. Forensic, on the other hand, is a set of processes for digitally examining the information on any computer or server on behalf of official authorities. In this article, the protected mode architecture in the Linux operating system is examined, and the way to save the image sample of the kernel driver and system memory to disk is followed. Tables and access methods to be used in the operating system are examined based on the basic architecture of the operating system, and the most appropriate methods and application methods are transferred to the article. Since there is no article directly related to this study on Linux in the literature, it is aimed to contribute to the literature with this study on obtaining ram images. LIME can be mentioned as a similar tool, but there is no explanation about the memory dumping method of this tool. Considering the frequency of use of these tools, the contribution of the study in the field of forensic medicine has been the main motivation of the study due to the intense studies on ram image in the field of forensics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=linux" title="linux">linux</a>, <a href="https://publications.waset.org/abstracts/search?q=paging" title=" paging"> paging</a>, <a href="https://publications.waset.org/abstracts/search?q=addressing" title=" addressing"> addressing</a>, <a href="https://publications.waset.org/abstracts/search?q=ram-image" title=" ram-image"> ram-image</a>, <a href="https://publications.waset.org/abstracts/search?q=memory%20dumping" title=" memory dumping"> memory dumping</a>, <a href="https://publications.waset.org/abstracts/search?q=kernel%20modules" title=" kernel modules"> kernel modules</a>, <a href="https://publications.waset.org/abstracts/search?q=forensic" title=" forensic"> forensic</a> </p> <a href="https://publications.waset.org/abstracts/153801/tactical-ram-image-retrieval-in-linux-using-protected-mode-architectures-paging-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/153801.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">118</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2813</span> Strategies and Approaches for Curriculum Development and Training of Faculty in Cybersecurity Education</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lucy%20Tsado">Lucy Tsado</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As cybercrime and cyberattacks continue to increase, the need to respond will follow suit. When cybercrimes occur, the duty to respond sometimes falls on law enforcement. However, criminal justice students are not taught concepts in cybersecurity and digital forensics. There is, therefore, an urgent need for many more institutions to begin teaching cybersecurity and related courses to social science students especially criminal justice students. However, many faculty in universities, colleges, and high schools are not equipped to teach these courses or do not have the knowledge and resources to teach important concepts in cybersecurity or digital forensics to criminal justice students. This research intends to develop curricula and training programs to equip faculty with the skills to meet this need. There is a current call to involve non-technical fields to fill the cybersecurity skills gap, according to experts. There is a general belief among non-technical fields that cybersecurity education is only attainable within computer science and technologically oriented fields. As seen from current calls, this is not entirely the case. Transitioning into the field is possible through curriculum development, training, certifications, internships and apprenticeships, and competitions. There is a need to identify how a cybersecurity eco-system can be created at a university to encourage/start programs that will lead to an interest in cybersecurity education as well as attract potential students. A short-term strategy can address this problem through curricula development, while a long-term strategy will address developing training faculty to teach cybersecurity and digital forensics. Therefore this research project addresses this overall problem in two parts, through curricula development for the criminal justice discipline; and training of faculty in criminal justice to teaching the important concepts of cybersecurity and digital forensics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cybersecurity%20education" title="cybersecurity education">cybersecurity education</a>, <a href="https://publications.waset.org/abstracts/search?q=criminal%20justice" title=" criminal justice"> criminal justice</a>, <a href="https://publications.waset.org/abstracts/search?q=curricula%20development" title=" curricula development"> curricula development</a>, <a href="https://publications.waset.org/abstracts/search?q=nontechnical%20cybersecurity" title=" nontechnical cybersecurity"> nontechnical cybersecurity</a>, <a href="https://publications.waset.org/abstracts/search?q=cybersecurity" title=" cybersecurity"> cybersecurity</a>, <a href="https://publications.waset.org/abstracts/search?q=digital%20forensics" title=" digital forensics"> digital forensics</a> </p> <a href="https://publications.waset.org/abstracts/158085/strategies-and-approaches-for-curriculum-development-and-training-of-faculty-in-cybersecurity-education" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158085.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">105</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2812</span> Applications of Forensics/DNA Tools in Combating Gender-Based Violence: A Case Study in Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Edeaghe%20Ehikhamenor">Edeaghe Ehikhamenor</a>, <a href="https://publications.waset.org/abstracts/search?q=Jennifer%20Nnamdi"> Jennifer Nnamdi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Gender-based violence (GBV) was a well-known global crisis before the COVID-19 pandemic. The pandemic burden only intensified the crisis. With prevailing lockdowns, increased poverty due to high unemployment, especially affecting females, and other mobility restrictions that have left many women trapped with their abusers, plus isolation from social contact and support networks, GBV cases spiraled out of control. Prevalence of economic with cultural disparity, which is greatly manifested in Nigeria, is a major contributory factor to GBV. This is made worst by religious adherents where the females are virtually relegated to the background. Our societal approaches to investigations and sanctions to culprits have not sufficiently applied forensic/DNA tools in combating these major vices. Violence against women or some rare cases against men can prevent them from carrying out their duties regardless of the position they hold. Objective: The main objective of this research is to highlight the origin of GBV, the victims, types, contributing factors, and the applications of forensics/DNA tools and remedies so as to minimize GBV in our society. Methods: Descriptive information was obtained through the search on our daily newspapers, electronic media, google scholar websites, other authors' observations and personal experiences, plus anecdotal reports. Results: Findings from our exploratory searches revealed a high incidence of GBV with very limited or no applications of Forensics/DNA tools as an intervening mechanism to reduce GBV in Nigeria. Conclusion: Nigeria needs to develop clear-cut policies on forensics/DNA tools in terms of institutional framework to develop a curriculum for the training of all stakeholders to fast-track justice for victims of GBV so as to serve as a deterrent to other culprits. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gender-based%20violence" title="gender-based violence">gender-based violence</a>, <a href="https://publications.waset.org/abstracts/search?q=forensics" title=" forensics"> forensics</a>, <a href="https://publications.waset.org/abstracts/search?q=DNA" title=" DNA"> DNA</a>, <a href="https://publications.waset.org/abstracts/search?q=justice" title=" justice"> justice</a> </p> <a href="https://publications.waset.org/abstracts/157942/applications-of-forensicsdna-tools-in-combating-gender-based-violence-a-case-study-in-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157942.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">84</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2811</span> Anomaly Detection of Log Analysis using Data Visualization Techniques for Digital Forensics Audit and Investigation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Fadzlee%20Sulaiman">Mohamed Fadzlee Sulaiman</a>, <a href="https://publications.waset.org/abstracts/search?q=Zainurrasyid%20Abdullah"> Zainurrasyid Abdullah</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohd%20Zabri%20Adil%20Talib"> Mohd Zabri Adil Talib</a>, <a href="https://publications.waset.org/abstracts/search?q=Aswami%20Fadillah%20Mohd%20Ariffin"> Aswami Fadillah Mohd Ariffin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In common digital forensics cases, investigation may rely on the analysis conducted on specific and relevant exhibits involved. Usually the investigation officer may define and advise digital forensic analyst about the goals and objectives to be achieved in reconstructing the trail of evidence while maintaining the specific scope of investigation. With the technology growth, people are starting to realize the importance of cyber security to their organization and this new perspective creates awareness that digital forensics auditing must come in place in order to measure possible threat or attack to their cyber-infrastructure. Instead of performing investigation on incident basis, auditing may broaden the scope of investigation to the level of anomaly detection in daily operation of organization’s cyber space. While handling a huge amount of data such as log files, performing digital forensics audit for large organization proven to be onerous task for the analyst either to analyze the huge files or to translate the findings in a way where the stakeholder can clearly understand. Data visualization can be emphasized in conducting digital forensic audit and investigation to resolve both needs. This study will identify the important factors that should be considered to perform data visualization techniques in order to detect anomaly that meet the digital forensic audit and investigation objectives. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=digital%20forensic" title="digital forensic">digital forensic</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20visualization" title=" data visualization"> data visualization</a>, <a href="https://publications.waset.org/abstracts/search?q=anomaly%20detection" title=" anomaly detection "> anomaly detection </a>, <a href="https://publications.waset.org/abstracts/search?q=log%20analysis" title=" log analysis"> log analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=forensic%20audit" title=" forensic audit"> forensic audit</a>, <a href="https://publications.waset.org/abstracts/search?q=visualization%20techniques" title=" visualization techniques"> visualization techniques</a> </p> <a href="https://publications.waset.org/abstracts/89574/anomaly-detection-of-log-analysis-using-data-visualization-techniques-for-digital-forensics-audit-and-investigation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/89574.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">287</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2810</span> Design and Implementation of Image Super-Resolution for Myocardial Image</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20V.%20Chidananda%20Murthy">M. V. Chidananda Murthy</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Z.%20Kurian"> M. Z. Kurian</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20S.%20Guruprasad"> H. S. Guruprasad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Super-resolution is the technique of intelligently upscaling images, avoiding artifacts or blurring, and deals with the recovery of a high-resolution image from one or more low-resolution images. Single-image super-resolution is a process of obtaining a high-resolution image from a set of low-resolution observations by signal processing. While super-resolution has been demonstrated to improve image quality in scaled down images in the image domain, its effects on the Fourier-based technique remains unknown. Super-resolution substantially improved the spatial resolution of the patient LGE images by sharpening the edges of the heart and the scar. This paper aims at investigating the effects of single image super-resolution on Fourier-based and image based methods of scale-up. In this paper, first, generate a training phase of the low-resolution image and high-resolution image to obtain dictionary. In the test phase, first, generate a patch and then difference of high-resolution image and interpolation image from the low-resolution image. Next simulation of the image is obtained by applying convolution method to the dictionary creation image and patch extracted the image. Finally, super-resolution image is obtained by combining the fused image and difference of high-resolution and interpolated image. Super-resolution reduces image errors and improves the image quality. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=image%20dictionary%20creation" title="image dictionary creation">image dictionary creation</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20super-resolution" title=" image super-resolution"> image super-resolution</a>, <a href="https://publications.waset.org/abstracts/search?q=LGE%20images" title=" LGE images"> LGE images</a>, <a href="https://publications.waset.org/abstracts/search?q=patch%20extraction" title=" patch extraction"> patch extraction</a> </p> <a href="https://publications.waset.org/abstracts/59494/design-and-implementation-of-image-super-resolution-for-myocardial-image" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59494.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">375</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2809</span> A Method of the Semantic on Image Auto-Annotation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lin%20Huo">Lin Huo</a>, <a href="https://publications.waset.org/abstracts/search?q=Xianwei%20Liu"> Xianwei Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Jingxiong%20Zhou"> Jingxiong Zhou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recently, due to the existence of semantic gap between image visual features and human concepts, the semantic of image auto-annotation has become an important topic. Firstly, by extract low-level visual features of the image, and the corresponding Hash method, mapping the feature into the corresponding Hash coding, eventually, transformed that into a group of binary string and store it, image auto-annotation by search is a popular method, we can use it to design and implement a method of image semantic auto-annotation. Finally, Through the test based on the Corel image set, and the results show that, this method is effective. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=image%20auto-annotation" title="image auto-annotation">image auto-annotation</a>, <a href="https://publications.waset.org/abstracts/search?q=color%20correlograms" title=" color correlograms"> color correlograms</a>, <a href="https://publications.waset.org/abstracts/search?q=Hash%20code" title=" Hash code"> Hash code</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20retrieval" title=" image retrieval"> image retrieval</a> </p> <a href="https://publications.waset.org/abstracts/15628/a-method-of-the-semantic-on-image-auto-annotation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15628.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">497</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2808</span> An Analysis of Digital Forensic Laboratory Development among Malaysia’s Law Enforcement Agencies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sarah%20K.%20Taylor">Sarah K. Taylor</a>, <a href="https://publications.waset.org/abstracts/search?q=Miratun%20M.%20Saharuddin"> Miratun M. Saharuddin</a>, <a href="https://publications.waset.org/abstracts/search?q=Zabri%20A.%20Talib"> Zabri A. Talib </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cybercrime is on the rise, and yet many Law Enforcement Agencies (LEAs) in Malaysia have no Digital Forensics Laboratory (DFL) to assist them in the attrition and analysis of digital evidence. From the estimated number of 30 LEAs in Malaysia, sadly, only eight of them owned a DFL. All of the DFLs are concentrated in the capital of Malaysia and none at the state level. LEAs are still depending on the national DFL (CyberSecurity Malaysia) even for simple and straightforward cases. A survey was conducted among LEAs in Malaysia owning a DFL to understand their history of establishing the DFL, the challenges that they faced and the significance of the DFL to their case investigation. The results showed that the while some LEAs faced no challenge in establishing a DFL, some of them took seven to 10 years to do so. The reason was due to the difficulty in convincing their management because of the high costs involved. The results also revealed that with the establishment of a DFL, LEAs were better able to get faster forensic result and to meet agency&rsquo;s timeline expectation. It is also found that LEAs were also able to get more meaningful forensic results on cases that require niche expertise, compared to sending off cases to the national DFL. Other than that, cases are getting more complex, and hence, a continuous stream of budget for equipment and training is inevitable. The result derived from the study is hoped to be used by other LEAs in justifying to their management the benefits of establishing an in-house DFL. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=digital%20evidence" title="digital evidence">digital evidence</a>, <a href="https://publications.waset.org/abstracts/search?q=digital%20forensics" title=" digital forensics"> digital forensics</a>, <a href="https://publications.waset.org/abstracts/search?q=digital%20forensics%20laboratory" title=" digital forensics laboratory"> digital forensics laboratory</a>, <a href="https://publications.waset.org/abstracts/search?q=law%20enforcement%20agency" title=" law enforcement agency"> law enforcement agency</a> </p> <a href="https://publications.waset.org/abstracts/95162/an-analysis-of-digital-forensic-laboratory-development-among-malaysias-law-enforcement-agencies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/95162.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">176</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2807</span> Deployment of Matrix Transpose in Digital Image Encryption</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Okike%20Benjamin">Okike Benjamin</a>, <a href="https://publications.waset.org/abstracts/search?q=Garba%20E%20J.%20D."> Garba E J. D.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Encryption is used to conceal information from prying eyes. Presently, information and data encryption are common due to the volume of data and information in transit across the globe on daily basis. Image encryption is yet to receive the attention of the researchers as deserved. In other words, video and multimedia documents are exposed to unauthorized accessors. The authors propose image encryption using matrix transpose. An algorithm that would allow image encryption is developed. In this proposed image encryption technique, the image to be encrypted is split into parts based on the image size. Each part is encrypted separately using matrix transpose. The actual encryption is on the picture elements (pixel) that make up the image. After encrypting each part of the image, the positions of the encrypted images are swapped before transmission of the image can take place. Swapping the positions of the images is carried out to make the encrypted image more robust for any cryptanalyst to decrypt. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=image%20encryption" title="image encryption">image encryption</a>, <a href="https://publications.waset.org/abstracts/search?q=matrices" title=" matrices"> matrices</a>, <a href="https://publications.waset.org/abstracts/search?q=pixel" title=" pixel"> pixel</a>, <a href="https://publications.waset.org/abstracts/search?q=matrix%20transpose" title=" matrix transpose "> matrix transpose </a> </p> <a href="https://publications.waset.org/abstracts/48717/deployment-of-matrix-transpose-in-digital-image-encryption" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48717.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">421</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2806</span> Performance of Hybrid Image Fusion: Implementation of Dual-Tree Complex Wavelet Transform Technique </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Manoj%20Gupta">Manoj Gupta</a>, <a href="https://publications.waset.org/abstracts/search?q=Nirmendra%20Singh%20Bhadauria"> Nirmendra Singh Bhadauria</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Most of the applications in image processing require high spatial and high spectral resolution in a single image. For example satellite image system, the traffic monitoring system, and long range sensor fusion system all use image processing. However, most of the available equipment is not capable of providing this type of data. The sensor in the surveillance system can only cover the view of a small area for a particular focus, yet the demanding application of this system requires a view with a high coverage of the field. Image fusion provides the possibility of combining different sources of information. In this paper, we have decomposed the image using DTCWT and then fused using average and hybrid of (maxima and average) pixel level techniques and then compared quality of both the images using PSNR. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=image%20fusion" title="image fusion">image fusion</a>, <a href="https://publications.waset.org/abstracts/search?q=DWT" title=" DWT"> DWT</a>, <a href="https://publications.waset.org/abstracts/search?q=DT-CWT" title=" DT-CWT"> DT-CWT</a>, <a href="https://publications.waset.org/abstracts/search?q=PSNR" title=" PSNR"> PSNR</a>, <a href="https://publications.waset.org/abstracts/search?q=average%20image%20fusion" title=" average image fusion"> average image fusion</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20image%20fusion" title=" hybrid image fusion"> hybrid image fusion</a> </p> <a href="https://publications.waset.org/abstracts/19207/performance-of-hybrid-image-fusion-implementation-of-dual-tree-complex-wavelet-transform-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19207.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">606</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2805</span> Assessment of Image Databases Used for Human Skin Detection Methods</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saleh%20Alshehri">Saleh Alshehri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Human skin detection is a vital step in many applications. Some of the applications are critical especially those related to security. This leverages the importance of a high-performance detection algorithm. To validate the accuracy of the algorithm, image databases are usually used. However, the suitability of these image databases is still questionable. It is suggested that the suitability can be measured mainly by the span the database covers of the color space. This research investigates the validity of three famous image databases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=image%20databases" title="image databases">image databases</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20processing" title=" image processing"> image processing</a>, <a href="https://publications.waset.org/abstracts/search?q=pattern%20recognition" title=" pattern recognition"> pattern recognition</a>, <a href="https://publications.waset.org/abstracts/search?q=neural%20networks" title=" neural networks"> neural networks</a> </p> <a href="https://publications.waset.org/abstracts/87836/assessment-of-image-databases-used-for-human-skin-detection-methods" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/87836.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">271</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2804</span> A Novel Combination Method for Computing the Importance Map of Image</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20Absetan">Ahmad Absetan</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahdi%20Nooshyar"> Mahdi Nooshyar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The importance map is an image-based measure and is a core part of the resizing algorithm. Importance measures include image gradients, saliency and entropy, as well as high level cues such as face detectors, motion detectors and more. In this work we proposed a new method to calculate the importance map, the importance map is generated automatically using a novel combination of image edge density and Harel saliency measurement. Experiments of different type images demonstrate that our method effectively detects prominent areas can be used in image resizing applications to aware important areas while preserving image quality. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=content-aware%20image%20resizing" title="content-aware image resizing">content-aware image resizing</a>, <a href="https://publications.waset.org/abstracts/search?q=visual%20saliency" title=" visual saliency"> visual saliency</a>, <a href="https://publications.waset.org/abstracts/search?q=edge%20density" title=" edge density"> edge density</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20warping" title=" image warping"> image warping</a> </p> <a href="https://publications.waset.org/abstracts/35692/a-novel-combination-method-for-computing-the-importance-map-of-image" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35692.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">582</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=image%20forensics&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=image%20forensics&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=image%20forensics&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=image%20forensics&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=image%20forensics&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=image%20forensics&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=image%20forensics&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=image%20forensics&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=image%20forensics&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=image%20forensics&amp;page=94">94</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=image%20forensics&amp;page=95">95</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=image%20forensics&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10