CINXE.COM
Search results for: Finite Element Methods
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Finite Element Methods</title> <meta name="description" content="Search results for: Finite Element Methods"> <meta name="keywords" content="Finite Element Methods"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Finite Element Methods" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Finite Element Methods"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 18506</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Finite Element Methods</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18416</span> Finite Element Approximation of the Heat Equation under Axisymmetry Assumption</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Raphael%20Zanella">Raphael Zanella</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This works deals with the finite element approximation of axisymmetric problems. The weak formulation of the heat equation under the axisymmetry assumption is established for continuous finite elements. The weak formulation is implemented in a C++ solver with implicit march-in-time. The code is verified by space and time convergence tests using a manufactured solution. The solving of an example problem with an axisymmetric formulation is compared to that with a full-3D formulation. Both formulations lead to the same result, but the code based on the axisymmetric formulation is much faster due to the lower number of degrees of freedom. This confirms the correctness of our approach and the interest in using an axisymmetric formulation when it is possible. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=axisymmetric%20problem" title="axisymmetric problem">axisymmetric problem</a>, <a href="https://publications.waset.org/abstracts/search?q=continuous%20finite%20elements" title=" continuous finite elements"> continuous finite elements</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20equation" title=" heat equation"> heat equation</a>, <a href="https://publications.waset.org/abstracts/search?q=weak%20formulation" title=" weak formulation"> weak formulation</a> </p> <a href="https://publications.waset.org/abstracts/143012/finite-element-approximation-of-the-heat-equation-under-axisymmetry-assumption" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/143012.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">203</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18415</span> The Mechanical Properties of a Small-Size Seismic Isolation Rubber Bearing for Bridges</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yi%20F.%20Wu">Yi F. Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Ai%20Q.%20Li"> Ai Q. Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Hao%20Wang"> Hao Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Taking a novel type of bridge bearings with the diameter being 100mm as an example, the theoretical analysis, the experimental research as well as the numerical simulation of the bearing were conducted. Since the normal compression-shear machines cannot be applied to the small-size bearing, an improved device to test the properties of the bearing was proposed and fabricated. Besides, the simulation of the bearing was conducted on the basis of the explicit finite element software ANSYS/LS-DYNA, and some parameters of the bearing are modified in the finite element model to effectively reduce the computation cost. Results show that all the research methods are capable of revealing the fundamental properties of the small-size bearings, and a combined use of these methods can better catch both the integral properties and the inner detailed mechanical behaviors of the bearing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ANSYS%2FLS-DYNA" title="ANSYS/LS-DYNA">ANSYS/LS-DYNA</a>, <a href="https://publications.waset.org/abstracts/search?q=compression%20shear" title=" compression shear"> compression shear</a>, <a href="https://publications.waset.org/abstracts/search?q=contact%20analysis" title=" contact analysis"> contact analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=explicit%20algorithm" title=" explicit algorithm"> explicit algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=small-size" title=" small-size"> small-size</a> </p> <a href="https://publications.waset.org/abstracts/82546/the-mechanical-properties-of-a-small-size-seismic-isolation-rubber-bearing-for-bridges" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82546.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">181</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18414</span> Finite Element Modeling of Integral Abutment Bridge for Lateral Displacement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Naji">M. Naji</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20R.%20Khalim"> A. R. Khalim</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Naji"> M. Naji</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Integral Abutment Bridges (IAB) are defined as simple or multiple span bridges in which the bridge deck is cast monolithically with the abutment walls. This kind of bridges are becoming very popular due to different aspects such as good response under seismic loading, low initial costs, elimination of bearings and less maintenance. However, the main issue related to the analysis of this type of structures is dealing with soil-structure interaction of the abutment walls and the supporting piles. A two-dimensional, non-linear finite element (FE) model of an integral abutment bridge has been developed to study the effect of lateral time history displacement loading on the soil system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=integral%20abutment%20bridge" title="integral abutment bridge">integral abutment bridge</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20structure%20interaction" title=" soil structure interaction"> soil structure interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20modeling" title=" finite element modeling"> finite element modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=soil-pile%20interaction" title=" soil-pile interaction"> soil-pile interaction</a> </p> <a href="https://publications.waset.org/abstracts/2655/finite-element-modeling-of-integral-abutment-bridge-for-lateral-displacement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2655.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">289</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18413</span> Mechanical Characterization of Porcine Skin with the Finite Element Method Based Inverse Optimization Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Djamel%20Remache">Djamel Remache</a>, <a href="https://publications.waset.org/abstracts/search?q=Serge%20Dos%20Santos"> Serge Dos Santos</a>, <a href="https://publications.waset.org/abstracts/search?q=Michael%20Cliez"> Michael Cliez</a>, <a href="https://publications.waset.org/abstracts/search?q=Michel%20Gratton"> Michel Gratton</a>, <a href="https://publications.waset.org/abstracts/search?q=Patrick%20Chabrand"> Patrick Chabrand</a>, <a href="https://publications.waset.org/abstracts/search?q=Jean-Marie%20Rossi"> Jean-Marie Rossi</a>, <a href="https://publications.waset.org/abstracts/search?q=Jean-Louis%20Milan"> Jean-Louis Milan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Skin tissue is an inhomogeneous and anisotropic material. Uniaxial tensile testing is one of the primary testing techniques for the mechanical characterization of skin at large scales. In order to predict the mechanical behavior of materials, the direct or inverse analytical approaches are often used. However, in case of an inhomogeneous and anisotropic material as skin tissue, analytical approaches are not able to provide solutions. The numerical simulation is thus necessary. In this work, the uniaxial tensile test and the FEM (finite element method) based inverse method were used to identify the anisotropic mechanical properties of porcine skin tissue. The uniaxial tensile experiments were performed using Instron 8800 tensile machine®. The uniaxial tensile test was simulated with FEM, and then the inverse optimization approach (or the inverse calibration) was used for the identification of mechanical properties of the samples. Experimentally results were compared to finite element solutions. The results showed that the finite element model predictions of the mechanical behavior of the tested skin samples were well correlated with experimental results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mechanical%20skin%20tissue%20behavior" title="mechanical skin tissue behavior">mechanical skin tissue behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=uniaxial%20tensile%20test" title=" uniaxial tensile test"> uniaxial tensile test</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20analysis" title=" finite element analysis"> finite element analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=inverse%20optimization%20approach" title=" inverse optimization approach"> inverse optimization approach</a> </p> <a href="https://publications.waset.org/abstracts/65920/mechanical-characterization-of-porcine-skin-with-the-finite-element-method-based-inverse-optimization-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65920.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">408</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18412</span> Existence of Rational Primitive Normal Pairs with Prescribed Norm and Trace</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Soniya%20Takshak">Soniya Takshak</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20K.%20Sharma"> R. K. Sharma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Let q and n be positive integers, then Fᵩ denotes the finite field of q elements, and Fqn denotes the extension of Fᵩ of degree n. Also, Fᵩ* represents the multiplicative group of non-zero elements of Fᵩ, and the generators of Fᵩ* are called primitive elements. A normal element α of a finite field Fᵩⁿ is such that {α, αᵠ, . . . , αᵠⁿ⁻¹} forms a basis for Fᵩⁿ over Fᵩ. Primitive normal elements have several applications in coding theory and cryptography. So, establishing the existence of primitive normal elements under certain conditions is both theoretically important and a natural issue. In this article, we provide a sufficient condition for the existence of a primitive normal element α in Fᵩⁿ of a prescribed primitive norm and non-zero trace over Fᵩ such that f(α) is also primitive, where f(x) ∈ Fᵩⁿ(x) is a rational function of degree sum m. Particularly, we investigated the rational functions of degree sum 4 over Fᵩⁿ, where q = 11ᵏ and demonstrated that there are only 3 exceptional pairs (q, n), n ≥ 7 for which such kind of primitive normal elements may not exist. In general, we show that such elements always exist except for finitely many choices of (q, n). To arrive to our conclusion, we used additive and multiplicative character sums. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=finite%20field" title="finite field">finite field</a>, <a href="https://publications.waset.org/abstracts/search?q=primitive%20element" title=" primitive element"> primitive element</a>, <a href="https://publications.waset.org/abstracts/search?q=normal%20element" title=" normal element"> normal element</a>, <a href="https://publications.waset.org/abstracts/search?q=norm" title=" norm"> norm</a>, <a href="https://publications.waset.org/abstracts/search?q=trace" title=" trace"> trace</a>, <a href="https://publications.waset.org/abstracts/search?q=character" title=" character"> character</a> </p> <a href="https://publications.waset.org/abstracts/149587/existence-of-rational-primitive-normal-pairs-with-prescribed-norm-and-trace" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/149587.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">104</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18411</span> Modeling and Simulation for 3D Eddy Current Testing in Conducting Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Bennoud">S. Bennoud</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Zergoug"> M. Zergoug</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The numerical simulation of electromagnetic interactions is still a challenging problem, especially in problems that result in fully three dimensional mathematical models. The goal of this work is to use mathematical modeling to characterize the reliability and capacity of eddy current technique to detect and characterize defects embedded in aeronautical in-service pieces. The finite element method is used for describing the eddy current technique in a mathematical model by the prediction of the eddy current interaction with defects. However, this model is an approximation of the full Maxwell equations. In this study, the analysis of the problem is based on a three dimensional finite element model that computes directly the electromagnetic field distortions due to defects. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=eddy%20current" title="eddy current">eddy current</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title=" finite element method"> finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=non%20destructive%20testing" title=" non destructive testing"> non destructive testing</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20simulations" title=" numerical simulations"> numerical simulations</a> </p> <a href="https://publications.waset.org/abstracts/7187/modeling-and-simulation-for-3d-eddy-current-testing-in-conducting-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7187.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">443</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18410</span> Improvement of the Geometric of Dental Bridge Framework through Automatic Program</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rong-Yang%20Lai">Rong-Yang Lai</a>, <a href="https://publications.waset.org/abstracts/search?q=Jia-Yu%20Wu"> Jia-Yu Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Chih-Han%20Chang"> Chih-Han Chang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yung-Chung%20Chen"> Yung-Chung Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The dental bridge is one of the clinical methods of the treatment for missing teeth. The dental bridge is generally designed for two layers, containing the inner layer of the framework(zirconia) and the outer layer of the porcelain-fused to framework restorations. The design of a conventional bridge is generally based on the antagonist tooth profile so that the framework evenly indented by an equal thickness from outer contour. All-ceramic dental bridge made of zirconia have well demonstrated remarkable potential to withstand a higher physiological occlusal load in posterior region, but it was found that there is still the risk of all-ceramic bridge failure in five years. Thus, how to reduce the incidence of failure is still a problem to be solved. Therefore, the objective of this study is to develop mechanical designs for all-ceramic dental bridges framework by reducing the stress and enhancing fracture resistance under given loading conditions by finite element method. In this study, dental design software is used to design dental bridge based on tooth CT images. After building model, Bi-directional Evolutionary Structural Optimization (BESO) Method algorithm implemented in finite element software was employed to analyze results of finite element software and determine the distribution of the materials in dental bridge; BESO searches the optimum distribution of two different materials, namely porcelain and zirconia. According to the previous calculation of the stress value of each element, when the element stress value is higher than the threshold value, the element would be replaced by the framework material; besides, the difference of maximum stress peak value is less than 0.1%, calculation is complete. After completing the design of dental bridge, the stress distribution of the whole structure is changed. BESO reduces the peak values of principle stress of 10% in outer-layer porcelain and avoids producing tensile stress failure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dental%20bridge" title="dental bridge">dental bridge</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20analysis" title=" finite element analysis"> finite element analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=framework" title=" framework"> framework</a>, <a href="https://publications.waset.org/abstracts/search?q=automatic%20program" title=" automatic program"> automatic program</a> </p> <a href="https://publications.waset.org/abstracts/66121/improvement-of-the-geometric-of-dental-bridge-framework-through-automatic-program" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66121.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">282</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18409</span> Postbuckling Analysis of End Supported Rods under Self-Weight Using Intrinsic Coordinate Finite Elements</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=C.%20Juntarasaid">C. Juntarasaid</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Pulngern"> T. Pulngern</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Chucheepsakul"> S. Chucheepsakul</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A formulation of postbuckling analysis of end supported rods under self-weight has been presented by the variational method. The variational formulation involving the strain energy due to bending and the potential energy of the self-weight, are expressed in terms of the intrinsic coordinates. The variational formulation is accomplished by introducing the Lagrange multiplier technique to impose the boundary conditions. The finite element method is used to derive a system of nonlinear equations resulting from the stationary of the total potential energy and then Newton-Raphson iterative procedure is applied to solve this system of equations. The numerical results demonstrate the postbluckled configurations of end supported rods under self-weight. This finite element method based on variational formulation expressed in term of intrinsic coordinate is highly recommended for postbuckling analysis of end-supported rods under self-weight. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=postbuckling" title="postbuckling">postbuckling</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title=" finite element method"> finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=variational%20method" title=" variational method"> variational method</a>, <a href="https://publications.waset.org/abstracts/search?q=intrinsic%20coordinate" title=" intrinsic coordinate"> intrinsic coordinate</a> </p> <a href="https://publications.waset.org/abstracts/112297/postbuckling-analysis-of-end-supported-rods-under-self-weight-using-intrinsic-coordinate-finite-elements" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/112297.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">158</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18408</span> Numerical Analysis of Shear Crack Propagation in a Concrete Beam without Transverse Reinforcement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G.%20A.%20Rombach">G. A. Rombach</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Faron"> A. Faron</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Crack formation and growth in reinforced concrete members are, in many cases, the cause of the collapse of technical structures. Such serious failures impair structural behavior and can also damage property and persons. An intensive investigation of the crack propagation is indispensable. Numerical methods are being developed to analyze crack growth in an element and to detect fracture failure at an early stage. For reinforced concrete components, however, further research and action are required in the analysis of shear cracks. This paper presents numerical simulations and continuum mechanical modeling of bending shear crack propagation in a three-dimensional reinforced concrete beam without transverse reinforcement. The analysis will provide a further understanding of crack growth and redistribution of inner forces in concrete members. As a numerical method to map discrete cracks, the extended finite element method (XFEM) is applied. The crack propagation is compared with the smeared crack approach using concrete damage plasticity. For validation, the crack patterns of real experiments are compared with the results of the different finite element models. The evaluation is based on single span beams under bending. With the analysis, it is possible to predict the fracture behavior of concrete members. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=concrete%20damage%20plasticity" title="concrete damage plasticity">concrete damage plasticity</a>, <a href="https://publications.waset.org/abstracts/search?q=crack%20propagation" title=" crack propagation"> crack propagation</a>, <a href="https://publications.waset.org/abstracts/search?q=extended%20finite%20element%20method" title=" extended finite element method"> extended finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=fracture%20mechanics" title=" fracture mechanics"> fracture mechanics</a> </p> <a href="https://publications.waset.org/abstracts/105887/numerical-analysis-of-shear-crack-propagation-in-a-concrete-beam-without-transverse-reinforcement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/105887.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">119</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18407</span> Electromagnetic Assessment of Submarine Power Cable Degradation Using Finite Element Method and Sensitivity Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Boutra">N. Boutra</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Ravot"> N. Ravot</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Benoit"> J. Benoit</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20Picon"> O. Picon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Submarine power cables used for offshore wind farms electric energy distribution and transmission are subject to numerous threats. Some of the risks are associated with transport, installation and operating in harsh marine environment. This paper describes the feasibility of an electromagnetic low frequency sensing technique for submarine power cable failure prediction. The impact of a structural damage shape and material variability on the induced electric field is evaluated. The analysis is performed by modeling the cable using the finite element method, we use sensitivity analysis in order to identify the main damage characteristics affecting electric field variation. Lastly, we discuss the results obtained. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electromagnetism" title="electromagnetism">electromagnetism</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title=" finite element method"> finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=sensitivity%20analysis" title=" sensitivity analysis"> sensitivity analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=submarine%20power%20cables" title=" submarine power cables"> submarine power cables</a> </p> <a href="https://publications.waset.org/abstracts/57648/electromagnetic-assessment-of-submarine-power-cable-degradation-using-finite-element-method-and-sensitivity-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57648.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">356</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18406</span> Localized Meshfree Methods for Solving 3D-Helmholtz Equation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Reza%20Mollapourasl">Reza Mollapourasl</a>, <a href="https://publications.waset.org/abstracts/search?q=Majid%20Haghi"> Majid Haghi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, we develop local meshfree methods known as radial basis function-generated finite difference (RBF-FD) method and Hermite finite difference (RBF-HFD) method to design stencil weights and spatial discretization for Helmholtz equation. The convergence and stability of schemes are investigated numerically in three dimensions with irregular shaped domain. These localized meshless methods incorporate the advantages of the RBF method, finite difference and Hermite finite difference methods to handle the ill-conditioning issue that often destroys the convergence rate of global RBF methods. Moreover, numerical illustrations show that the proposed localized RBF type methods are efficient and applicable for problems with complex geometries. The convergence and accuracy of both schemes are compared by solving a test problem. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=radial%20basis%20functions" title="radial basis functions">radial basis functions</a>, <a href="https://publications.waset.org/abstracts/search?q=Hermite%20finite%20difference" title=" Hermite finite difference"> Hermite finite difference</a>, <a href="https://publications.waset.org/abstracts/search?q=Helmholtz%20equation" title=" Helmholtz equation"> Helmholtz equation</a>, <a href="https://publications.waset.org/abstracts/search?q=stability" title=" stability"> stability</a> </p> <a href="https://publications.waset.org/abstracts/168736/localized-meshfree-methods-for-solving-3d-helmholtz-equation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168736.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">99</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18405</span> Numerical Simulation of High Strength Steel Hot-Finished Elliptical Hollow Section Subjected to Uniaxial Eccentric Compression</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhengyi%20Kong">Zhengyi Kong</a>, <a href="https://publications.waset.org/abstracts/search?q=Xueqing%20Wang"> Xueqing Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Quang-Viet%20Vu"> Quang-Viet Vu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the structural behavior of high strength steel (HSS) hot-finished elliptical hollow section (EHS) subjected to uniaxial eccentric compression is investigated. A finite element method for predicting the cross-section resistance of HSS hot-finished EHS is developed using ABAQUS software, which is then verified by comparison with previous experiments. The validated finite element method is employed to carry out parametric studies for investigating the structural behavior of HSS hot-finished EHS under uniaxial eccentric compression and evaluate the current design guidance for HSS hot-finished EHS. Different parameters, such as the radius of the larger and smaller outer diameter of EHS, thickness of EHS, eccentricity, and material property, are considered. The resulting data from 84 finite element models are used to obtain the relationship between the cross-section resistance of HSS hot-finished EHS and cross-section slenderness. It is concluded that current design provisions, such as EN 1993-1-1, BS 5950-1, AS4100, and Gardner et al., are conservative for predicting the HSS hot-finished EHS under uniaxial eccentric compression. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hot-finished" title="hot-finished">hot-finished</a>, <a href="https://publications.waset.org/abstracts/search?q=elliptical%20hollow%20section" title=" elliptical hollow section"> elliptical hollow section</a>, <a href="https://publications.waset.org/abstracts/search?q=uniaxial%20eccentric%20compression" title=" uniaxial eccentric compression"> uniaxial eccentric compression</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title=" finite element method"> finite element method</a> </p> <a href="https://publications.waset.org/abstracts/129596/numerical-simulation-of-high-strength-steel-hot-finished-elliptical-hollow-section-subjected-to-uniaxial-eccentric-compression" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/129596.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">138</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18404</span> Comparison of the Boundary Element Method and the Method of Fundamental Solutions for Analysis of Potential and Elasticity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Zenhari">S. Zenhari</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20R.%20Hematiyan"> M. R. Hematiyan</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Khosravifard"> A. Khosravifard</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20R.%20Feizi"> M. R. Feizi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The boundary element method (BEM) and the method of fundamental solutions (MFS) are well-known fundamental solution-based methods for solving a variety of problems. Both methods are boundary-type techniques and can provide accurate results. In comparison to the finite element method (FEM), which is a domain-type method, the BEM and the MFS need less manual effort to solve a problem. The aim of this study is to compare the accuracy and reliability of the BEM and the MFS. This comparison is made for 2D potential and elasticity problems with different boundary and loading conditions. In the comparisons, both convex and concave domains are considered. Both linear and quadratic elements are employed for boundary element analysis of the examples. The discretization of the problem domain in the BEM, i.e., converting the boundary of the problem into boundary elements, is relatively simple; however, in the MFS, obtaining appropriate locations of collocation and source points needs more attention to obtain reliable solutions. The results obtained from the presented examples show that both methods lead to accurate solutions for convex domains, whereas the BEM is more suitable than the MFS for concave domains. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=boundary%20element%20method" title="boundary element method">boundary element method</a>, <a href="https://publications.waset.org/abstracts/search?q=method%20of%20fundamental%20solutions" title=" method of fundamental solutions"> method of fundamental solutions</a>, <a href="https://publications.waset.org/abstracts/search?q=elasticity" title=" elasticity"> elasticity</a>, <a href="https://publications.waset.org/abstracts/search?q=potential%20problem" title=" potential problem"> potential problem</a>, <a href="https://publications.waset.org/abstracts/search?q=convex%20domain" title=" convex domain"> convex domain</a>, <a href="https://publications.waset.org/abstracts/search?q=concave%20domain" title=" concave domain"> concave domain</a> </p> <a href="https://publications.waset.org/abstracts/163380/comparison-of-the-boundary-element-method-and-the-method-of-fundamental-solutions-for-analysis-of-potential-and-elasticity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163380.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">91</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18403</span> Study on Sharp V-Notch Problem under Dynamic Loading Condition Using Symplectic Analytical Singular Element</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xiaofei%20Hu">Xiaofei Hu</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhiyu%20Cai"> Zhiyu Cai</a>, <a href="https://publications.waset.org/abstracts/search?q=Weian%20Yao"> Weian Yao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> V-notch problem under dynamic loading condition is considered in this paper. In the time domain, the precise time domain expanding algorithm is employed, in which a self-adaptive technique is carried out to improve computing accuracy. By expanding variables in each time interval, the recursive finite element formulas are derived. In the space domain, a Symplectic Analytical Singular Element (SASE) for V-notch problem is constructed addressing the stress singularity of the notch tip. Combining with the conventional finite elements, the proposed SASE can be used to solve the dynamic stress intensity factors (DSIFs) in a simple way. Numerical results show that the proposed SASE for V-notch problem subjected to dynamic loading condition is effective and efficient. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=V-notch" title="V-notch">V-notch</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20stress%20intensity%20factor" title=" dynamic stress intensity factor"> dynamic stress intensity factor</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title=" finite element method"> finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=precise%20time%20domain%20expanding%20algorithm" title=" precise time domain expanding algorithm"> precise time domain expanding algorithm</a> </p> <a href="https://publications.waset.org/abstracts/83948/study-on-sharp-v-notch-problem-under-dynamic-loading-condition-using-symplectic-analytical-singular-element" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/83948.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">172</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18402</span> A Coupled Extended-Finite-Discrete Element Method: On the Different Contact Schemes between Continua and Discontinua</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shervin%20Khazaeli">Shervin Khazaeli</a>, <a href="https://publications.waset.org/abstracts/search?q=Shahab%20Haj-zamani"> Shahab Haj-zamani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recently, advanced geotechnical engineering problems related to soil movement, particle loss, and modeling of local failure (i.e. discontinua) as well as modeling the in-contact structures (i.e. continua) are of the great interest among researchers. The aim of this research is to meet the requirements with respect to the modeling of the above-mentioned two different domains simultaneously. To this end, a coupled numerical method is introduced based on Discrete Element Method (DEM) and eXtended-Finite Element Method (X-FEM). In the coupled procedure, DEM is employed to capture the interactions and relative movements of soil particles as discontinua, while X-FEM is utilized to model in-contact structures as continua, which may consist of different types of discontinuities. For verification purposes, the new coupled approach is utilized to examine benchmark problems including different contacts between/within continua and discontinua. Results are validated by comparison with those of existing analytical and numerical solutions. This study proves that extended-finite-discrete element method can be used to robustly analyze not only contact problems, but also other types of discontinuities in continua such as (i) crack formations and propagations, (ii) voids and bimaterial interfaces, and (iii) combination of previous cases. In essence, the proposed method can be used vastly in advanced soil-structure interaction problems to investigate the micro and macro behaviour of the surrounding soil and the response of the embedded structure that contains discontinuities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=contact%20problems" title="contact problems">contact problems</a>, <a href="https://publications.waset.org/abstracts/search?q=discrete%20element%20method" title=" discrete element method"> discrete element method</a>, <a href="https://publications.waset.org/abstracts/search?q=extended-finite%20element%20method" title=" extended-finite element method"> extended-finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=soil-structure%20interaction" title=" soil-structure interaction"> soil-structure interaction</a> </p> <a href="https://publications.waset.org/abstracts/36267/a-coupled-extended-finite-discrete-element-method-on-the-different-contact-schemes-between-continua-and-discontinua" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36267.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">505</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18401</span> Variation of Inductance in a Switched-Reluctance Motor under Various Rotor Faults</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Asghar%20Saqib">Muhammad Asghar Saqib</a>, <a href="https://publications.waset.org/abstracts/search?q=Saad%20Saleem%20Khan"> Saad Saleem Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Syed%20Abdul%20Rahman%20Kashif"> Syed Abdul Rahman Kashif</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to have higher efficiency, performance and reliability the regular monitoring of an electrical motor is required. This article presents a novel view of the air-gap magnetic field analysis of a switched reluctance motor under rotor cracks and rotor tilt along its shaft axis. The fault diagnosis is illustrated on the basis of a 3-D model of the motor using finite element analysis (FEA). The analytical equations of flux linkages have been used to determine the inductance. The results of the 3-D finite element analysis on a 6/4 switched reluctance motor (SRM) shows the variation of mutual inductance with the tilting of the rotor shaft and cracked rotor conditions. These results present useful information regarding the detection of shaft tilting and cracked rotors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=switched%20reluctance%20motor" title="switched reluctance motor">switched reluctance motor</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20analysis" title=" finite element analysis"> finite element analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=cracked%20rotor" title=" cracked rotor"> cracked rotor</a>, <a href="https://publications.waset.org/abstracts/search?q=3-D%20modelling%20of%20a%20srm" title=" 3-D modelling of a srm"> 3-D modelling of a srm</a> </p> <a href="https://publications.waset.org/abstracts/30951/variation-of-inductance-in-a-switched-reluctance-motor-under-various-rotor-faults" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30951.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">665</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18400</span> Compressive Stresses near Crack Tip Induced by Thermo-Electric Field</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Thomas%20Jin-Chee%20Liu">Thomas Jin-Chee Liu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the thermo-electro-structural coupled-field in a cracked metal plate is studied using the finite element analysis. From the computational results, the compressive stresses reveal near the crack tip. This conclusion agrees with the past reference. Furthermore, the compressive condition can retard and stop the crack growth during the Joule heating process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=compressive%20stress" title="compressive stress">compressive stress</a>, <a href="https://publications.waset.org/abstracts/search?q=crack%20tip" title=" crack tip"> crack tip</a>, <a href="https://publications.waset.org/abstracts/search?q=Joule%20heating" title=" Joule heating"> Joule heating</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element" title=" finite element"> finite element</a> </p> <a href="https://publications.waset.org/abstracts/10730/compressive-stresses-near-crack-tip-induced-by-thermo-electric-field" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10730.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">407</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18399</span> Simulation of Wave Propagation in Multiphase Medium</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Edip%20Kemal">Edip Kemal</a>, <a href="https://publications.waset.org/abstracts/search?q=Sheshov%20Vlatko"> Sheshov Vlatko</a>, <a href="https://publications.waset.org/abstracts/search?q=Bojadjieva%20Julijana"> Bojadjieva Julijana</a>, <a href="https://publications.waset.org/abstracts/search?q=Bogdanovic%20ALeksandra"> Bogdanovic ALeksandra</a>, <a href="https://publications.waset.org/abstracts/search?q=Gjorgjeska%20Irena"> Gjorgjeska Irena</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The wave propagation phenomenon in porous domains is of great importance in the field of geotechnical earthquake engineering. In these kinds of problems, the elastic waves propagate from the interior to the exterior domain and require special treatment at the computational level since apart from displacement in the solid-state there is a p-wave that takes place in the pore water phase. In this paper, a study on the implementation of multiphase finite elements is presented. The proposed algorithm is implemented in the ANSYS finite element software and tested on one-dimensional wave propagation considering both pore pressure wave propagation and displacement fields. In the simulation of porous media such as soils, the behavior is governed largely by the interaction of the solid skeleton with water and/or air in the pores. Therefore, coupled problems of fluid flow and deformation of the solid skeleton are considered in a detailed way. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wave%20propagation" title="wave propagation">wave propagation</a>, <a href="https://publications.waset.org/abstracts/search?q=multiphase%20model" title=" multiphase model"> multiphase model</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20methods" title=" numerical methods"> numerical methods</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title=" finite element method"> finite element method</a> </p> <a href="https://publications.waset.org/abstracts/144167/simulation-of-wave-propagation-in-multiphase-medium" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/144167.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">164</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18398</span> Strength Analysis of RCC Dams Subject to the Layer-by-Layer Construction Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Archil%20Motsonelidze">Archil Motsonelidze</a>, <a href="https://publications.waset.org/abstracts/search?q=Vitaly%20Dvalishvili"> Vitaly Dvalishvili</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Existing roller compacted concrete (RCC) dams indicate that the layer-by-layer construction method gives considerable economies as compared with the conventional methods. RCC dams have also gained acceptance in the regions of high seismic activity. Earthquake resistance analysis of RCC gravity dams based on nonlinear finite element technique is presented. An elastic-plastic approach is used to describe the material of a dam while it is under static conditions (period of construction). Seismic force, as an acceleration equivalent to that produced by a real earthquake, is supposed to act when the dam is completed. The materials of the dam and foundation may be nonhomogeneous and anisotropic. The “dam-foundation” system is idealized as a plain strain problem. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title="finite element method">finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=layer-by-layer%20construction" title=" layer-by-layer construction"> layer-by-layer construction</a>, <a href="https://publications.waset.org/abstracts/search?q=RCC%20dams" title=" RCC dams"> RCC dams</a>, <a href="https://publications.waset.org/abstracts/search?q=strength%20analysis" title=" strength analysis"> strength analysis</a> </p> <a href="https://publications.waset.org/abstracts/35897/strength-analysis-of-rcc-dams-subject-to-the-layer-by-layer-construction-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35897.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">549</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18397</span> Simulation of Non-Crimp 3D Orthogonal Carbon Fabric Composite for Aerospace Applications Using Finite Element Method </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sh.%20Minapoor">Sh. Minapoor</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Ajeli"> S. Ajeli</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Javadi%20Toghchi"> M. Javadi Toghchi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Non-crimp 3D orthogonal fabric composite is one of the textile-based composite materials that are rapidly developing light-weight engineering materials. The present paper focuses on geometric and micro mechanical modeling of non-crimp 3D orthogonal carbon fabric and composites reinforced with it for aerospace applications. In this research meso-finite element (FE) modeling employs for stress analysis in different load conditions. Since mechanical testing of expensive textile carbon composites with specific application isn't affordable, simulation composite in a virtual environment is a helpful way to investigate its mechanical properties in different conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=woven%20composite" title="woven composite">woven composite</a>, <a href="https://publications.waset.org/abstracts/search?q=aerospace%20applications" title=" aerospace applications"> aerospace applications</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title=" finite element method"> finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a> </p> <a href="https://publications.waset.org/abstracts/31120/simulation-of-non-crimp-3d-orthogonal-carbon-fabric-composite-for-aerospace-applications-using-finite-element-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31120.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">465</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18396</span> Comparison of ANN and Finite Element Model for the Prediction of Ultimate Load of Thin-Walled Steel Perforated Sections in Compression</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhi-Jun%20Lu">Zhi-Jun Lu</a>, <a href="https://publications.waset.org/abstracts/search?q=Qi%20Lu"> Qi Lu</a>, <a href="https://publications.waset.org/abstracts/search?q=Meng%20Wu"> Meng Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Qian%20Xiang"> Qian Xiang</a>, <a href="https://publications.waset.org/abstracts/search?q=Jun%20Gu"> Jun Gu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The analysis of perforated steel members is a 3D problem in nature, therefore the traditional analytical expressions for the ultimate load of thin-walled steel sections cannot be used for the perforated steel member design. In this study, finite element method (FEM) and artificial neural network (ANN) were used to simulate the process of stub column tests based on specific codes. Results show that compared with those of the FEM model, the ultimate load predictions obtained from ANN technique were much closer to those obtained from the physical experiments. The ANN model for the solving the hard problem of complex steel perforated sections is very promising. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=artificial%20neural%20network%20%28ANN%29" title="artificial neural network (ANN)">artificial neural network (ANN)</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method%20%28FEM%29" title=" finite element method (FEM)"> finite element method (FEM)</a>, <a href="https://publications.waset.org/abstracts/search?q=perforated%20sections" title=" perforated sections"> perforated sections</a>, <a href="https://publications.waset.org/abstracts/search?q=thin-walled%20Steel" title=" thin-walled Steel"> thin-walled Steel</a>, <a href="https://publications.waset.org/abstracts/search?q=ultimate%20load" title=" ultimate load"> ultimate load</a> </p> <a href="https://publications.waset.org/abstracts/71733/comparison-of-ann-and-finite-element-model-for-the-prediction-of-ultimate-load-of-thin-walled-steel-perforated-sections-in-compression" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71733.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">352</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18395</span> Finite Element Simulation of Deep Drawing Process to Minimize Earing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pawan%20S.%20Nagda">Pawan S. Nagda</a>, <a href="https://publications.waset.org/abstracts/search?q=Purnank%20S.%20Bhatt"> Purnank S. Bhatt</a>, <a href="https://publications.waset.org/abstracts/search?q=Mit%20K.%20Shah"> Mit K. Shah </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Earing defect in drawing process is highly undesirable not only because it adds on an additional trimming operation but also because the uneven material flow demands extra care. The objective of this work is to study the earing problem in the Deep Drawing of circular cup and to optimize the blank shape to reduce the earing. A finite element model is developed for 3-D numerical simulation of cup forming process in ABAQUS. Extra-deep-drawing (EDD) steel sheet has been used for simulation. Properties and tool design parameters were used as input for simulation. Earing was observed in the simulated cup and it was measured at various angles with respect to rolling direction. To reduce the earing defect initial blank shape was modified with the help of anisotropy coefficient. Modified blanks showed notable reduction in earing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anisotropy" title="anisotropy">anisotropy</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20drawing" title=" deep drawing"> deep drawing</a>, <a href="https://publications.waset.org/abstracts/search?q=earing" title=" earing"> earing</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20simulation" title=" finite element simulation"> finite element simulation</a> </p> <a href="https://publications.waset.org/abstracts/66457/finite-element-simulation-of-deep-drawing-process-to-minimize-earing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66457.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">377</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18394</span> Stress Concentration Trend for Combined Loading Conditions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aderet%20M.%20Pantierer">Aderet M. Pantierer</a>, <a href="https://publications.waset.org/abstracts/search?q=Shmuel%20Pantierer"> Shmuel Pantierer</a>, <a href="https://publications.waset.org/abstracts/search?q=Raphael%20Cordina"> Raphael Cordina</a>, <a href="https://publications.waset.org/abstracts/search?q=Yougashwar%20Budhoo"> Yougashwar Budhoo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Stress concentration occurs when there is an abrupt change in geometry, a mechanical part under loading. These changes in geometry can include holes, notches, or cracks within the component. The modifications create larger stress within the part. This maximum stress is difficult to determine, as it is directly at the point of the minimum area. Strain gauges have yet to be developed to analyze stresses at such minute areas. Therefore, a stress concentration factor must be utilized. The stress concentration factor is a dimensionless parameter calculated solely on the geometry of a part. The factor is multiplied by the nominal, or average, stress of the component, which can be found analytically or experimentally. Stress concentration graphs exist for common loading conditions and geometrical configurations to aid in the determination of the maximum stress a part can withstand. These graphs were developed from historical data yielded from experimentation. This project seeks to verify a stress concentration graph for combined loading conditions. The aforementioned graph was developed using CATIA Finite Element Analysis software. The results of this analysis will be validated through further testing. The 3D modeled parts will be subjected to further finite element analysis using Patran-Nastran software. The finite element models will then be verified by testing physical specimen using a tensile testing machine. Once the data is validated, the unique stress concentration graph will be submitted for publication so it can aid engineers in future projects. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=stress%20concentration" title="stress concentration">stress concentration</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20analysis" title=" finite element analysis"> finite element analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20models" title=" finite element models"> finite element models</a>, <a href="https://publications.waset.org/abstracts/search?q=combined%20loading" title=" combined loading"> combined loading</a> </p> <a href="https://publications.waset.org/abstracts/115912/stress-concentration-trend-for-combined-loading-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/115912.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">444</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18393</span> Comparative Analysis of DTC Based Switched Reluctance Motor Drive Using Torque Equation and FEA Models</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20Srinivas">P. Srinivas</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20V.%20N.%20Prasad"> P. V. N. Prasad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Since torque ripple is the main cause of noise and vibrations, the performance of Switched Reluctance Motor (SRM) can be improved by minimizing its torque ripple using a novel control technique called Direct Torque Control (DTC). In DTC technique, torque is controlled directly through control of magnitude of the flux and change in speed of the stator flux vector. The flux and torque are maintained within set hysteresis bands. The DTC of SRM is analysed by two methods. In one of the methods, the actual torque is computed by conducting Finite Element Analysis (FEA) on the design specifications of the motor. In the other method, the torque is computed by Simplified Torque Equation. The variation of peak current, average current, torque ripple and speed settling time with Simplified Torque Equation model is compared with FEA based model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=direct%20toque%20control" title="direct toque control">direct toque control</a>, <a href="https://publications.waset.org/abstracts/search?q=simplified%20torque%20equation" title=" simplified torque equation"> simplified torque equation</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20analysis" title=" finite element analysis"> finite element analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=torque%20ripple" title=" torque ripple"> torque ripple</a> </p> <a href="https://publications.waset.org/abstracts/4801/comparative-analysis-of-dtc-based-switched-reluctance-motor-drive-using-torque-equation-and-fea-models" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4801.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">479</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18392</span> Modeling of Large Elasto-Plastic Deformations by the Coupled FE-EFGM</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Azher%20Jameel">Azher Jameel</a>, <a href="https://publications.waset.org/abstracts/search?q=Ghulam%20Ashraf%20Harmain"> Ghulam Ashraf Harmain</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the recent years, the enriched techniques like the extended finite element method, the element free Galerkin method, and the Coupled finite element-element free Galerkin method have found wide application in modeling different types of discontinuities produced by cracks, contact surfaces, and bi-material interfaces. The extended finite element method faces severe mesh distortion issues while modeling large deformation problems. The element free Galerkin method does not have mesh distortion issues, but it is computationally more demanding than the finite element method. The coupled FE-EFGM proves to be an efficient numerical tool for modeling large deformation problems as it exploits the advantages of both FEM and EFGM. The present paper employs the coupled FE-EFGM to model large elastoplastic deformations in bi-material engineering components. The large deformation occurring in the domain has been modeled by using the total Lagrangian approach. The non-linear elastoplastic behavior of the material has been represented by the Ramberg-Osgood model. The elastic predictor-plastic corrector algorithms are used for the evaluation stresses during large deformation. Finally, several numerical problems are solved by the coupled FE-EFGM to illustrate its applicability, efficiency and accuracy in modeling large elastoplastic deformations in bi-material samples. The results obtained by the proposed technique are compared with the results obtained by XFEM and EFGM. A remarkable agreement was observed between the results obtained by the three techniques. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=XFEM" title="XFEM">XFEM</a>, <a href="https://publications.waset.org/abstracts/search?q=EFGM" title=" EFGM"> EFGM</a>, <a href="https://publications.waset.org/abstracts/search?q=coupled%20FE-EFGM" title=" coupled FE-EFGM"> coupled FE-EFGM</a>, <a href="https://publications.waset.org/abstracts/search?q=level%20sets" title=" level sets"> level sets</a>, <a href="https://publications.waset.org/abstracts/search?q=large%20deformation" title=" large deformation"> large deformation</a> </p> <a href="https://publications.waset.org/abstracts/62784/modeling-of-large-elasto-plastic-deformations-by-the-coupled-fe-efgm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62784.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">447</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18391</span> Assessment of Slope Stability by Continuum and Discontinuum Methods</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Taleb%20Hosni%20Abderrahmane">Taleb Hosni Abderrahmane</a>, <a href="https://publications.waset.org/abstracts/search?q=Berga%20Abdelmadjid"> Berga Abdelmadjid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The development of numerical analysis and its application to geomechanics problems have provided geotechnical engineers with extremely powerful tools. One of the most important problems in geotechnical engineering is the slope stability assessment. It is a very difficult task due to several aspects such the nature of the problem, experimental consideration, monitoring, controlling, and assessment. The main objective of this paper is to perform a comparative numerical study between the following methods: The Limit Equilibrium (LEM), Finite Element (FEM), Limit Analysis (LAM) and Distinct Element (DEM). The comparison is conducted in terms of the safety factors and the critical slip surfaces. Through the results, we see the feasibility to analyse slope stability by many methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=comparison" title="comparison">comparison</a>, <a href="https://publications.waset.org/abstracts/search?q=factor%20of%20safety" title=" factor of safety"> factor of safety</a>, <a href="https://publications.waset.org/abstracts/search?q=geomechanics" title=" geomechanics"> geomechanics</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20methods" title=" numerical methods"> numerical methods</a>, <a href="https://publications.waset.org/abstracts/search?q=slope%20analysis" title=" slope analysis"> slope analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=slip%20surfaces" title=" slip surfaces"> slip surfaces</a> </p> <a href="https://publications.waset.org/abstracts/35737/assessment-of-slope-stability-by-continuum-and-discontinuum-methods" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35737.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">533</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18390</span> Failure Detection in an Edge Cracked Tapered Pipe Conveying Fluid Using Finite Element Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Gaith">Mohamed Gaith</a>, <a href="https://publications.waset.org/abstracts/search?q=Zaid%20Haddadin"> Zaid Haddadin</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdulah%20Wahbe"> Abdulah Wahbe</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahmoud%20Hamam"> Mahmoud Hamam</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahmoud%20Qunees"> Mahmoud Qunees</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Al%20Khatib"> Mohammad Al Khatib</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Bsaileh"> Mohammad Bsaileh</a>, <a href="https://publications.waset.org/abstracts/search?q=Abd%20Al-Aziz%20Jaber"> Abd Al-Aziz Jaber</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20Aqra%E2%80%99a"> Ahmad Aqra’a</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The crack is one of the most common types of failure in pipelines that convey fluid, and early detection of the crack may assist to avoid the piping system from experiencing catastrophic damage, which would otherwise be fatal. The influence of flow velocity and the presence of a crack on the performance of a tapered simply supported pipe containing moving fluid is explored using the finite element approach in this study. ANSYS software is used to simulate the pipe as Bernoulli's beam theory. In this paper, the fluctuation of natural frequencies and matching mode shapes for various scenarios owing to changes in fluid speed and the presence of damage is discussed in detail. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=damage%20detection" title="damage detection">damage detection</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element" title=" finite element"> finite element</a>, <a href="https://publications.waset.org/abstracts/search?q=tapered%20pipe" title=" tapered pipe"> tapered pipe</a>, <a href="https://publications.waset.org/abstracts/search?q=vibration%20characteristics" title=" vibration characteristics"> vibration characteristics</a> </p> <a href="https://publications.waset.org/abstracts/149937/failure-detection-in-an-edge-cracked-tapered-pipe-conveying-fluid-using-finite-element-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/149937.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">170</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18389</span> Development of Numerical Method for Mass Transfer across the Moving Membrane with Selective Permeability: Approximation of the Membrane Shape by Level Set Method for Numerical Integral</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Suguru%20Miyauchi">Suguru Miyauchi</a>, <a href="https://publications.waset.org/abstracts/search?q=Toshiyuki%20Hayase"> Toshiyuki Hayase</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Biological membranes have selective permeability, and the capsules or cells enclosed by the membrane show the deformation by the osmotic flow. This mass transport phenomenon is observed everywhere in a living body. For the understanding of the mass transfer in a body, it is necessary to consider the mass transfer phenomenon across the membrane as well as the deformation of the membrane by a flow. To our knowledge, in the numerical analysis, the method for mass transfer across the moving membrane has not been established due to the difficulty of the treating of the mass flux permeating through the moving membrane with selective permeability. In the existing methods for the mass transfer across the membrane, the approximate delta function is used to communicate the quantities on the interface. The methods can reproduce the permeation of the solute, but cannot reproduce the non-permeation. Moreover, the computational accuracy decreases with decreasing of the permeable coefficient of the membrane. This study aims to develop the numerical method capable of treating three-dimensional problems of mass transfer across the moving flexible membrane. One of the authors developed the numerical method with high accuracy based on the finite element method. This method can capture the discontinuity on the membrane sharply due to the consideration of the jumps in concentration and concentration gradient in the finite element discretization. The formulation of the method takes into account the membrane movement, and both permeable and non-permeable membranes can be treated. However, searching the cross points of the membrane and fluid element boundaries and splitting the fluid element into sub-elements are needed for the numerical integral. Therefore, cumbersome operation is required for a three-dimensional problem. In this paper, we proposed an improved method to avoid the search and split operations, and confirmed its effectiveness. The membrane shape was treated implicitly by introducing the level set function. As the construction of the level set function, the membrane shape in one fluid element was expressed by the shape function of the finite element method. By the numerical experiment, it was found that the shape function with third order appropriately reproduces the membrane shapes. The same level of accuracy compared with the previous method using search and split operations was achieved by using a number of sampling points of the numerical integral. The effectiveness of the method was confirmed by solving several model problems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title="finite element method">finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=level%20set%20method" title=" level set method"> level set method</a>, <a href="https://publications.waset.org/abstracts/search?q=mass%20transfer" title=" mass transfer"> mass transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=membrane%20permeability" title=" membrane permeability"> membrane permeability</a> </p> <a href="https://publications.waset.org/abstracts/57272/development-of-numerical-method-for-mass-transfer-across-the-moving-membrane-with-selective-permeability-approximation-of-the-membrane-shape-by-level-set-method-for-numerical-integral" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57272.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">250</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18388</span> Micro-Meso 3D FE Damage Modelling of Woven Carbon Fibre Reinforced Plastic Composite under Quasi-Static Bending</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aamir%20Mubashar">Aamir Mubashar</a>, <a href="https://publications.waset.org/abstracts/search?q=Ibrahim%20Fiaz"> Ibrahim Fiaz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research presents a three-dimensional finite element modelling strategy to simulate damage in a quasi-static three-point bending analysis of woven twill 2/2 type carbon fibre reinforced plastic (CFRP) composite on a micro-meso level using cohesive zone modelling technique. A meso scale finite element model comprised of a number of plies was developed in the commercial finite element code Abaqus/explicit. The interfaces between the plies were explicitly modelled using cohesive zone elements to allow for debonding by crack initiation and propagation. Load-deflection response of the CRFP within the quasi-static range was obtained and compared with the data existing in the literature. This provided validation of the model at the global scale. The outputs resulting from the global model were then used to develop a simulation model capturing the micro-meso scale material features. The sub-model consisted of a refined mesh representative volume element (RVE) modelled in texgen software, which was later embedded with cohesive elements in the finite element software environment. The results obtained from the developed strategy were successful in predicting the overall load-deflection response and the damage in global and sub-model at the flexure limit of the specimen. Detailed analysis of the effects of the micro-scale features was carried out. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=woven%20composites" title="woven composites">woven composites</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-scale%20modelling" title=" multi-scale modelling"> multi-scale modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=cohesive%20zone" title=" cohesive zone"> cohesive zone</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20model" title=" finite element model"> finite element model</a> </p> <a href="https://publications.waset.org/abstracts/101250/micro-meso-3d-fe-damage-modelling-of-woven-carbon-fibre-reinforced-plastic-composite-under-quasi-static-bending" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/101250.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">138</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18387</span> Electric Field Investigation in MV PILC Cables with Void Defect</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20A.%20Alsharif">Mohamed A. Alsharif</a>, <a href="https://publications.waset.org/abstracts/search?q=Peter%20A.%20Wallace"> Peter A. Wallace</a>, <a href="https://publications.waset.org/abstracts/search?q=Donald%20M.%20Hepburn"> Donald M. Hepburn</a>, <a href="https://publications.waset.org/abstracts/search?q=Chengke%20Zhou"> Chengke Zhou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Worldwide, most PILC MV underground cables in use are approaching the end of their design life; hence, failures are likely to increase. This paper studies the electric field and potential distributions within the PILC insulted cable containing common void-defect. The finite element model of the performance of the belted PILC MV underground cable is presented. The variation of the electric field stress within the cable using the Finite Element Method (FEM) is concentrated. The effects of the void-defect within the insulation are given. Outcomes will lead to deeper understanding of the modeling of Paper Insulated Lead Covered (PILC) and electric field response of belted PILC insulted cable containing void defect. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=MV%20PILC%20cables" title="MV PILC cables">MV PILC cables</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20model%2FCOMSOL%20multiphysics" title=" finite element model/COMSOL multiphysics"> finite element model/COMSOL multiphysics</a>, <a href="https://publications.waset.org/abstracts/search?q=electric%20field%20stress" title=" electric field stress"> electric field stress</a>, <a href="https://publications.waset.org/abstracts/search?q=partial%20discharge%20degradation" title=" partial discharge degradation "> partial discharge degradation </a> </p> <a href="https://publications.waset.org/abstracts/18993/electric-field-investigation-in-mv-pilc-cables-with-void-defect" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18993.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">488</span> </span> </div> </div> <ul class="pagination"> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Finite%20Element%20Methods&page=3" rel="prev">‹</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Finite%20Element%20Methods&page=1">1</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Finite%20Element%20Methods&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Finite%20Element%20Methods&page=3">3</a></li> <li class="page-item active"><span class="page-link">4</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Finite%20Element%20Methods&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Finite%20Element%20Methods&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Finite%20Element%20Methods&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Finite%20Element%20Methods&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Finite%20Element%20Methods&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Finite%20Element%20Methods&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Finite%20Element%20Methods&page=616">616</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Finite%20Element%20Methods&page=617">617</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Finite%20Element%20Methods&page=5" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>