CINXE.COM

Search results for: electron impact ionization cross-sections

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: electron impact ionization cross-sections</title> <meta name="description" content="Search results for: electron impact ionization cross-sections"> <meta name="keywords" content="electron impact ionization cross-sections"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="electron impact ionization cross-sections" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="electron impact ionization cross-sections"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 13531</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: electron impact ionization cross-sections</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13531</span> Electron Impact Ionization Cross-Sections for e-C₅H₅N₅ Scattering</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Manoj%20Kumar">Manoj Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ionization cross sections of molecules due to electron impact play an important role in chemical processes in various branches of applied physics, such as radiation chemistry, gas discharges, plasmas etching in semiconductors, planetary upper atmospheric physics, mass spectrometry, etc. In the present work, we have calculated the total ionization cross sections for Adenine (C₅H₅N₅), a biologically important molecule, by electron impact in the incident electron energy range from ionization threshold to 2 keV employing a well-known Jain-Khare semiempirical formulation based on Bethe and Möllor cross sections. In the non-availability of the experimental results, the present results are in good agreement qualitatively as well as quantitatively with available theoretical results. The present results drive our confidence for further investigation of complex bio-molecule with better accuracy. Notwithstanding, the present method can deduce reliable cross-sectional data for complex targets with adequate accuracy and may facilitate the acclimatization of calculated cross-sections into atomic molecular cross-section data sets for modeling codes and other applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electron%20impact%20ionization%20cross-sections" title="electron impact ionization cross-sections">electron impact ionization cross-sections</a>, <a href="https://publications.waset.org/abstracts/search?q=oscillator%20strength" title=" oscillator strength"> oscillator strength</a>, <a href="https://publications.waset.org/abstracts/search?q=jain-khare%20semiempirical%20approach" title=" jain-khare semiempirical approach"> jain-khare semiempirical approach</a> </p> <a href="https://publications.waset.org/abstracts/161986/electron-impact-ionization-cross-sections-for-e-c5h5n5-scattering" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/161986.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">111</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13530</span> A Novel Model for Saturation Velocity Region of Graphene Nanoribbon Transistor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohsen%20Khaledian">Mohsen Khaledian</a>, <a href="https://publications.waset.org/abstracts/search?q=Razali%20Ismail"> Razali Ismail</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehdi%20Saeidmanesh"> Mehdi Saeidmanesh</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahdiar%20Hosseinghadiry"> Mahdiar Hosseinghadiry</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A semi-analytical model for impact ionization coefficient of graphene nanoribbon (GNR) is presented. The model is derived by calculating probability of electrons reaching ionization threshold energy Et and the distance traveled by electron gaining Et. In addition, ionization threshold energy is semi-analytically modeled for GNR. We justify our assumptions using analytic modeling and comparison with simulation results. Gaussian simulator together with analytical modeling is used in order to calculate ionization threshold energy and Kinetic Monte Carlo is employed to calculate ionization coefficient and verify the analytical results. Finally, the profile of ionization is presented using the proposed models and simulation and the results are compared with that of silicon. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanostructures" title="nanostructures">nanostructures</a>, <a href="https://publications.waset.org/abstracts/search?q=electronic%20transport" title=" electronic transport"> electronic transport</a>, <a href="https://publications.waset.org/abstracts/search?q=semiconductor%20modeling" title=" semiconductor modeling"> semiconductor modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=systems%20engineering" title=" systems engineering"> systems engineering</a> </p> <a href="https://publications.waset.org/abstracts/6813/a-novel-model-for-saturation-velocity-region-of-graphene-nanoribbon-transistor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6813.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">473</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13529</span> Four-Electron Auger Process for Hollow Ions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shahin%20A.%20Abdel-Naby">Shahin A. Abdel-Naby</a>, <a href="https://publications.waset.org/abstracts/search?q=James%20P.%20Colgan"> James P. Colgan</a>, <a href="https://publications.waset.org/abstracts/search?q=Michael%20S.%20Pindzola"> Michael S. Pindzola</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A time-dependent close-coupling method is developed to calculate a total, double and triple autoionization rates for hollow atomic ions of four-electron systems. This work was motivated by recent observations of the four-electron Auger process in near K-edge photoionization of C+ ions. The time-dependent close-coupled equations are solved using lattice techniques to obtain a discrete representation of radial wave functions and all operators on a four-dimensional grid with uniform spacing. Initial excited states are obtained by relaxation of the Schrodinger equation in imaginary time using a Schmidt orthogonalization method involving interior subshells. The radial wave function grids are partitioned over the cores on a massively parallel computer, which is essential due to the large memory requirements needed to store the coupled-wave functions and the long run times needed to reach the convergence of the ionization process. Total, double, and triple autoionization rates are obtained by the propagation of the time-dependent close-coupled equations in real-time using integration over bound and continuum single-particle states. These states are generated by matrix diagonalization of one-electron Hamiltonians. The total autoionization rates for each L excited state is found to be slightly above the single autoionization rate for the excited configuration using configuration-average distorted-wave theory. As expected, we find the double and triple autoionization rates to be much smaller than the total autoionization rates. Future work can be extended to study electron-impact triple ionization of atoms or ions. The work was supported in part by grants from the American University of Sharjah and the US Department of Energy. Computational work was carried out at the National Energy Research Scientific Computing Center (NERSC) in Berkeley, California, USA. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hollow%20atoms" title="hollow atoms">hollow atoms</a>, <a href="https://publications.waset.org/abstracts/search?q=autoionization" title=" autoionization"> autoionization</a>, <a href="https://publications.waset.org/abstracts/search?q=auger%20rates" title=" auger rates"> auger rates</a>, <a href="https://publications.waset.org/abstracts/search?q=time-dependent%20close-coupling%20method" title=" time-dependent close-coupling method"> time-dependent close-coupling method</a> </p> <a href="https://publications.waset.org/abstracts/123947/four-electron-auger-process-for-hollow-ions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/123947.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">153</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13528</span> Simulation of I–V Characteristics of Lateral PIN Diode on Polysilicon Films</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdelaziz%20Rabhi">Abdelaziz Rabhi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Amrani"> Mohamed Amrani</a>, <a href="https://publications.waset.org/abstracts/search?q=Abderrazek%20Ziane"> Abderrazek Ziane</a>, <a href="https://publications.waset.org/abstracts/search?q=Nabil%20Belkadi"> Nabil Belkadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelraouf%20Hocini"> Abdelraouf Hocini</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a bedimensional simulation program of the electric characteristics of reverse biased lateral polysilicon PIN diode is presented. In this case we have numerically solved the system of partial differential equations formed by Poisson's equation and both continuity equations that take into account the effect of impact ionization. Therefore we will obtain the current-voltage characteristics (I-V) of the reverse-biased structure which may include the effect of breakdown.The geometrical model assumes that the polysilicon layer is composed by a succession of defined mean grain size crystallites, separated by lateral grain boundaries which are parallel to the metallurgic junction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=breakdown" title="breakdown">breakdown</a>, <a href="https://publications.waset.org/abstracts/search?q=polycrystalline%20silicon" title=" polycrystalline silicon"> polycrystalline silicon</a>, <a href="https://publications.waset.org/abstracts/search?q=PIN" title=" PIN"> PIN</a>, <a href="https://publications.waset.org/abstracts/search?q=grain" title=" grain"> grain</a>, <a href="https://publications.waset.org/abstracts/search?q=impact%20ionization" title=" impact ionization"> impact ionization</a> </p> <a href="https://publications.waset.org/abstracts/1337/simulation-of-i-v-characteristics-of-lateral-pin-diode-on-polysilicon-films" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1337.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">381</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13527</span> Dominant Correlation Effects in Atomic Spectra</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hubert%20Klar">Hubert Klar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> High double excitation of two-electron atoms has been investigated using hyperpherical coordinates within a modified adiabatic expansion technique. This modification creates a novel fictitious force leading to a spontaneous exchange symmetry breaking at high double excitation. The Pauli principle must therefore be regarded as approximation valid only at low excitation energy. Threshold electron scattering from high Rydberg states shows an unexpected time reversal symmetry breaking. At threshold for double escape we discover a broad (few eV) Cooper pair. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=correlation" title="correlation">correlation</a>, <a href="https://publications.waset.org/abstracts/search?q=resonances" title=" resonances"> resonances</a>, <a href="https://publications.waset.org/abstracts/search?q=threshold%20ionization" title=" threshold ionization"> threshold ionization</a>, <a href="https://publications.waset.org/abstracts/search?q=Cooper%20pair" title=" Cooper pair"> Cooper pair</a> </p> <a href="https://publications.waset.org/abstracts/42435/dominant-correlation-effects-in-atomic-spectra" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42435.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">348</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13526</span> Two-Photon Ionization of Silver Clusters</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=V.%20Paployan">V. Paployan</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Madoyan"> K. Madoyan</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Melikyan"> A. Melikyan</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Minassian"> H. Minassian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Resonant two-photon ionization (TPI) is a valuable technique for the study of clusters due to its ultrahigh sensitivity. The comparison of the observed TPI spectra with results of calculations allows to deduce important information on the shape, rotational and vibrational temperatures of the clusters with high accuracy. In this communication we calculate the TPI cross-section for pump-probe scheme in Ag neutral cluster. The pump photon energy is chosen to be close to the surface plasmon (SP) energy of cluster in dielectric media. Since the interband transition energy in Ag exceeds the SP resonance energy, the main contribution into the TPI comes from the latter. The calculations are performed by separating the coordinates of electrons corresponding to the collective oscillations and the individual motion that allows to take into account the resonance contribution of excited SP oscillations. It is shown that the ionization cross section increases by two orders of magnitude if the energy of the pump photon matches the surface plasmon energy in the cluster. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=resonance%20enhancement" title="resonance enhancement">resonance enhancement</a>, <a href="https://publications.waset.org/abstracts/search?q=silver%20clusters" title=" silver clusters"> silver clusters</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20plasmon" title=" surface plasmon"> surface plasmon</a>, <a href="https://publications.waset.org/abstracts/search?q=two-photon%20ionization" title=" two-photon ionization"> two-photon ionization</a> </p> <a href="https://publications.waset.org/abstracts/27311/two-photon-ionization-of-silver-clusters" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27311.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">427</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13525</span> Energy Deposited by Secondary Electrons Generated by Swift Proton Beams through Polymethylmethacrylate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maurizio%20Dapor">Maurizio Dapor</a>, <a href="https://publications.waset.org/abstracts/search?q=Isabel%20Abril"> Isabel Abril</a>, <a href="https://publications.waset.org/abstracts/search?q=Pablo%20de%20Vera"> Pablo de Vera</a>, <a href="https://publications.waset.org/abstracts/search?q=Rafael%20Garcia-Molina"> Rafael Garcia-Molina</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The ionization yield of ion tracks in polymers and bio-molecular systems reaches a maximum, known as the Bragg peak, close to the end of the ion trajectories. Along the path of the ions through the materials, many electrons are generated, which produce a cascade of further ionizations and, consequently, a shower of secondary electrons. Among these, very low energy secondary electrons can produce damage in the biomolecules by dissociative electron attachment. This work deals with the calculation of the energy distribution of electrons produced by protons in a sample of polymethylmethacrylate (PMMA), a material that is used as a phantom for living tissues in hadron therapy. PMMA is also of relevance for microelectronics in CMOS technologies and as a photoresist mask in electron beam lithography. We present a Monte Carlo code that, starting from a realistic description of the energy distribution of the electrons ejected by protons moving through PMMA, simulates the entire cascade of generated secondary electrons. By following in detail the motion of all these electrons, we find the radial distribution of the energy that they deposit in PMMA for several initial proton energies characteristic of the Bragg peak. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Monte%20Carlo%20method" title="Monte Carlo method">Monte Carlo method</a>, <a href="https://publications.waset.org/abstracts/search?q=secondary%20electrons" title=" secondary electrons"> secondary electrons</a>, <a href="https://publications.waset.org/abstracts/search?q=energetic%20ions" title=" energetic ions"> energetic ions</a>, <a href="https://publications.waset.org/abstracts/search?q=ion-beam%20cancer%20therapy" title=" ion-beam cancer therapy"> ion-beam cancer therapy</a>, <a href="https://publications.waset.org/abstracts/search?q=ionization%20cross%20section" title=" ionization cross section"> ionization cross section</a>, <a href="https://publications.waset.org/abstracts/search?q=polymethylmethacrylate" title=" polymethylmethacrylate"> polymethylmethacrylate</a>, <a href="https://publications.waset.org/abstracts/search?q=proton%20beams" title=" proton beams"> proton beams</a>, <a href="https://publications.waset.org/abstracts/search?q=secondary%20electrons" title=" secondary electrons"> secondary electrons</a>, <a href="https://publications.waset.org/abstracts/search?q=radial%20energy%20distribution" title=" radial energy distribution"> radial energy distribution</a> </p> <a href="https://publications.waset.org/abstracts/48476/energy-deposited-by-secondary-electrons-generated-by-swift-proton-beams-through-polymethylmethacrylate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48476.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">286</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13524</span> Computational Studies of the Reactivity Descriptors and the Optoelectronic Properties on the Efficiency Free-Base- and Zn-Porphyrin-Sensitized Solar Cells</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Soraya%20Abtouche">Soraya Abtouche</a>, <a href="https://publications.waset.org/abstracts/search?q=Zeyneb%20Ghoualem"> Zeyneb Ghoualem</a>, <a href="https://publications.waset.org/abstracts/search?q=Syrine%20Daoudi"> Syrine Daoudi</a>, <a href="https://publications.waset.org/abstracts/search?q=Lina%20Ouldmohamed"> Lina Ouldmohamed</a>, <a href="https://publications.waset.org/abstracts/search?q=Xavier%20Assfeld"> Xavier Assfeld</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work reports density functional theory calculations of the optimized geometries, molecular reactivity, energy gap,and thermodynamic properties of the free base (H2P) and their Zn (II) metallated (ZnP), bearing one, two, or three carboxylic acid groups using the hybrid functional B3LYP, Cam-B3lYP, wb97xd with 6-31G(d,p) basis sets. When donating groups are attached to the molecular dye, the bond lengths are slightly decreased, which is important for the easy transfer of an electron from donating to the accepting group. For all dyes, the highest occupied molecular orbital/lowest occupied molecular orbital analysis results in positive outcomes upon electron injection to the semiconductor and subsequent dye regeneration by the electrolyte. The ionization potential increases with increasing conjugation; therefore, the compound dye attached to one carboxylic acid group has the highest ionization potential. The results show higher efficiencies of those sensitized with ZnP. These results have been explained, taking into account the electronic character of the metal ion, which acts as a mediator in the injection step, and, on the other hand, considering the number of anchoring groups to which it binds to the surface of TiO2. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DSSC" title="DSSC">DSSC</a>, <a href="https://publications.waset.org/abstracts/search?q=porphyrin" title=" porphyrin"> porphyrin</a>, <a href="https://publications.waset.org/abstracts/search?q=TD-DFT" title=" TD-DFT"> TD-DFT</a>, <a href="https://publications.waset.org/abstracts/search?q=electronic%20properties" title=" electronic properties"> electronic properties</a>, <a href="https://publications.waset.org/abstracts/search?q=donor-acceptor%20groups" title=" donor-acceptor groups"> donor-acceptor groups</a> </p> <a href="https://publications.waset.org/abstracts/164820/computational-studies-of-the-reactivity-descriptors-and-the-optoelectronic-properties-on-the-efficiency-free-base-and-zn-porphyrin-sensitized-solar-cells" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164820.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">78</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13523</span> Electron-Ion Recombination for Photoionized and Collisionally Ionized Plasmas</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shahin%20A.%20Abdel-Naby">Shahin A. Abdel-Naby</a>, <a href="https://publications.waset.org/abstracts/search?q=Asad%20T.%20Hassan"> Asad T. Hassan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Astrophysical plasma environments can be classified into collisionally ionized (CP) and photoionizedplasmas (PP). In the PP, ionization is caused by an external radiation field, while it is caused by electron collision in the CP. Accurate and reliable laboratory astrophysical data for electron-ion recombination is needed for plasma modeling for low and high-temperatures. Dielectronic recombination (DR) is the dominant recombination process for the CP for most of the ions. When a free electron is captured by an ion with simultaneous excitation of its core, a doubly-exited intermediate state may be formed. The doubly excited state relaxes either by electron emission (autoionization) or by radiative decay (photon emission). DR process takes place when the relaxation occurs to a bound state by a photon emission. DR calculations at low-temperatures are problematic and challenging since small uncertaintiesin the low-energy DR resonance positions can produce huge uncertainties in DR rate coefficients.DR rate coefficients for N²⁺ and O³⁺ ions are calculated using state-of-the-art multi-configurationBreit-Pauli atomic structure AUTOSTRUCTURE collisional package within the generalized collisional-radiative framework. Level-resolved calculations for RR and DR rate coefficients from the ground and metastable initial states are produced in an intermediate coupling scheme associated withn = 0 and n = 1 core-excitations. DR cross sections for these ions are convoluted with the experimental electron-cooler temperatures to produce DR rate coefficients. Good agreements are foundbetween these rate coefficients and theexperimental measurements performed at CRYRING heavy-ionstorage ring for both ions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=atomic%20data" title="atomic data">atomic data</a>, <a href="https://publications.waset.org/abstracts/search?q=atomic%20process" title=" atomic process"> atomic process</a>, <a href="https://publications.waset.org/abstracts/search?q=electron-ion%20collision" title=" electron-ion collision"> electron-ion collision</a>, <a href="https://publications.waset.org/abstracts/search?q=plasmas" title=" plasmas"> plasmas</a> </p> <a href="https://publications.waset.org/abstracts/151520/electron-ion-recombination-for-photoionized-and-collisionally-ionized-plasmas" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/151520.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">95</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13522</span> Air Breakdown Voltage Prediction in Post-arcing Conditions for Compact Circuit Breakers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jing%20Nan">Jing Nan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The air breakdown voltage in compact circuit breakers is a critical factor in the design and reliability of electrical distribution systems. This voltage determines the threshold at which the air insulation between conductors will fail or 'break down,' leading to an arc. This phenomenon is highly sensitive to the conditions within the breaker, such as the temperature and the distance between electrodes. Typically, air breakdown voltage models have been reliable for predicting failure under standard operational temperatures. However, in conditions post-arcing, where temperatures can soar above 2000K, these models face challenges due to the complex physics of ionization and electron behaviour at such high-energy states. Building upon the foundational understanding that the breakdown mechanism is initiated by free electrons and propelled by electric fields, which lead to ionization and, potentially, to avalanche or streamer formation, we acknowledge the complexity introduced by high-temperature environments. Recognizing the limitations of existing experimental data, a notable research gap exists in the accurate prediction of breakdown voltage at elevated temperatures, typically observed post-arcing, where temperatures exceed 2000K.To bridge this knowledge gap, we present a method that integrates gap distance and high-temperature effects into air breakdown voltage assessment. The proposed model is grounded in the physics of ionization, accounting for the dynamic behaviour of free electrons which, under intense electric fields at elevated temperatures, lead to thermal ionization and potentially reach the threshold for streamer formation as Meek's criterion. Employing the Saha equation, our model calculates equilibrium electron densities, adapting to the atmospheric pressure and the hot temperature regions indicative of post-arc temperature conditions. Our model is rigorously validated against established experimental data, demonstrating substantial improvements in predicting air breakdown voltage in the high-temperature regime. This work significantly improves the predictive power for air breakdown voltage under conditions that closely mimic operational stressors in compact circuit breakers. Looking ahead, the proposed methods are poised for further exploration in alternative insulating media, like SF6, enhancing the model's utility for a broader range of insulation technologies and contributing to the future of high-temperature electrical insulation research. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=air%20breakdown%20voltage" title="air breakdown voltage">air breakdown voltage</a>, <a href="https://publications.waset.org/abstracts/search?q=high-temperature%20insulation" title=" high-temperature insulation"> high-temperature insulation</a>, <a href="https://publications.waset.org/abstracts/search?q=compact%20circuit%20breakers" title=" compact circuit breakers"> compact circuit breakers</a>, <a href="https://publications.waset.org/abstracts/search?q=electrical%20discharge" title=" electrical discharge"> electrical discharge</a>, <a href="https://publications.waset.org/abstracts/search?q=saha%20equation" title=" saha equation"> saha equation</a> </p> <a href="https://publications.waset.org/abstracts/178874/air-breakdown-voltage-prediction-in-post-arcing-conditions-for-compact-circuit-breakers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/178874.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">84</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13521</span> Waste Egg Albumin Derived Small Peptides Stimulate Photosynthetic Electron Transport</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seungwon%20Han">Seungwon Han</a>, <a href="https://publications.waset.org/abstracts/search?q=Sung%20young%20Yoo"> Sung young Yoo</a>, <a href="https://publications.waset.org/abstracts/search?q=Tae%20Wan%20Kim"> Tae Wan Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this study was to measure the changes in the photochemical response in the leaves of red pepper (Capsium annuum L.) after foliar fertilization of amino acid and small peptides derived from the waste egg. As a nitrogen fertilizer, waste eggs were incubated over one 1week and then degraded as amino acids and small peptides. The smaller peptides less than 20 kDa were identified by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF-MS). MALDI-TOF-MS as a rapid analysis method was to show the molecular mass of degraded egg protein. The sequences of peptides were identified as follows; γ-Glu- Cys-γ-Glu-Cys-γ-Glu-Cys)-Ser and γ-Glu-Cys-γ-Glu-Cys-γ-Glu- Cys)-Gly. It was clearly illuminated that the parameters related to quantum yields for PSI electron transport (ΦRE1O, ΨRE1O, δRE1O) and RC/ABS have increased tendency by small peptide application. On the other hand, phenomenological energy fluxes (ABSO/CSM, TRO/CSM, ET2O/CSM, RE1O/CSM, DIO/CSM) have considerably fluctuated with foliar fertilization of small peptides. In conclusion, the small peptides can enhance the photochemical activities from photosystem II to photosystem I. This study was financially supported by RDA Agenda Project PJ 016196012022. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electron%20transport" title="electron transport">electron transport</a>, <a href="https://publications.waset.org/abstracts/search?q=foliar%20fertilization" title=" foliar fertilization"> foliar fertilization</a>, <a href="https://publications.waset.org/abstracts/search?q=small%20peptide" title=" small peptide"> small peptide</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20egg" title=" waste egg"> waste egg</a> </p> <a href="https://publications.waset.org/abstracts/143256/waste-egg-albumin-derived-small-peptides-stimulate-photosynthetic-electron-transport" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/143256.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">167</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13520</span> Molecular Dynamics Simulations on Richtmyer-Meshkov Instability of Li-H2 Interface at Ultra High-Speed Shock Loads</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Weirong%20Wang">Weirong Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Shenghong%20Huang"> Shenghong Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Xisheng%20Luo"> Xisheng Luo</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhenyu%20Li"> Zhenyu Li</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Material mixing process and related dynamic issues at extreme compressing conditions have gained more and more concerns in last ten years because of the engineering appealings in inertial confinement fusion (ICF) and hypervelocity aircraft developments. However, there lacks models and methods that can handle fully coupled turbulent material mixing and complex fluid evolution under conditions of high energy density regime up to now. In aspects of macro hydrodynamics, three numerical methods such as direct numerical simulation (DNS), large eddy simulation (LES) and Reynolds-averaged Navier–Stokes equations (RANS) has obtained relative acceptable consensus under the conditions of low energy density regime. However, under the conditions of high energy density regime, they can not be applied directly due to occurrence of dissociation, ionization, dramatic change of equation of state, thermodynamic properties etc., which may make the governing equations invalid in some coupled situations. However, in view of micro/meso scale regime, the methods based on Molecular Dynamics (MD) as well as Monte Carlo (MC) model are proved to be promising and effective ways to investigate such issues. In this study, both classical MD and first-principle based electron force field MD (eFF-MD) methods are applied to investigate Richtmyer-Meshkov Instability of metal Lithium and gas Hydrogen (Li-H2) interface mixing at different shock loading speed ranging from 3 km/s to 30 km/s. It is found that: 1) Classical MD method based on predefined potential functions has some limits in application to extreme conditions, since it cannot simulate the ionization process and its potential functions are not suitable to all conditions, while the eFF-MD method can correctly simulate the ionization process due to its ‘ab initio’ feature; 2) Due to computational cost, the eFF-MD results are also influenced by simulation domain dimensions, boundary conditions and relaxation time choices, etc., in computations. Series of tests have been conducted to determine the optimized parameters. 3) Ionization induced by strong shock compression has important effects on Li-H2 interface evolutions of RMI, indicating a new micromechanism of RMI under conditions of high energy density regime. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=first-principle" title="first-principle">first-principle</a>, <a href="https://publications.waset.org/abstracts/search?q=ionization" title=" ionization"> ionization</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20dynamics" title=" molecular dynamics"> molecular dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=material%20mixture" title=" material mixture"> material mixture</a>, <a href="https://publications.waset.org/abstracts/search?q=Richtmyer-Meshkov%20instability" title=" Richtmyer-Meshkov instability"> Richtmyer-Meshkov instability</a> </p> <a href="https://publications.waset.org/abstracts/58617/molecular-dynamics-simulations-on-richtmyer-meshkov-instability-of-li-h2-interface-at-ultra-high-speed-shock-loads" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58617.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">225</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13519</span> Ethanol Chlorobenzene Dosimetr Usage for Measuring Dose of the Intraoperative Linear Electron Accelerator System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mojtaba%20Barzegar">Mojtaba Barzegar</a>, <a href="https://publications.waset.org/abstracts/search?q=Alireza%20Shirazi"> Alireza Shirazi</a>, <a href="https://publications.waset.org/abstracts/search?q=Saied%20Rabi%20Mahdavi"> Saied Rabi Mahdavi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Intraoperative radiation therapy (IORT) is an innovative treatment modality that the delivery of a large single dose of radiation to the tumor bed during the surgery. The radiotherapy success depends on the absorbed dose delivered to the tumor. The achievement better accuracy in patient treatment depends upon the measured dose by standard dosimeter such as ionization chamber, but because of the high density of electric charge/pulse produced by the accelerator in the ionization chamber volume, the standard correction factor for ion recombination Ksat calculated with the classic two-voltage method is overestimated so the use of dose/pulse independent dosimeters such as chemical Fricke and ethanol chlorobenzene (ECB) dosimeters have been suggested. Dose measurement is usually calculated and calibrated in the Zmax. Ksat calculated by comparison of ion chamber response and ECB dosimeter at each applicator degree, size, and dose. The relative output factors for IORT applicators have been calculated and compared with experimentally determined values and the results simulated by Monte Carlo software. The absorbed doses have been calculated and measured with statistical uncertainties less than 0.7% and 2.5% consecutively. The relative differences between calculated and measured OF’s were up to 2.5%, for major OF’s the agreement was better. In these conditions, together with the relative absorbed dose calculations, the OF’s could be considered as an indication that the IORT electron beams have been well simulated. These investigations demonstrate the utility of the full Monte Carlo simulation of accelerator head with ECB dosimeter allow us to obtain detailed information of clinical IORT beams. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=intra%20operative%20radiotherapy" title="intra operative radiotherapy">intra operative radiotherapy</a>, <a href="https://publications.waset.org/abstracts/search?q=ethanol%20chlorobenzene" title=" ethanol chlorobenzene"> ethanol chlorobenzene</a>, <a href="https://publications.waset.org/abstracts/search?q=ksat" title=" ksat"> ksat</a>, <a href="https://publications.waset.org/abstracts/search?q=output%20factor" title=" output factor"> output factor</a>, <a href="https://publications.waset.org/abstracts/search?q=monte%20carlo%20simulation" title=" monte carlo simulation "> monte carlo simulation </a> </p> <a href="https://publications.waset.org/abstracts/29851/ethanol-chlorobenzene-dosimetr-usage-for-measuring-dose-of-the-intraoperative-linear-electron-accelerator-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29851.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">479</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13518</span> Body Fluids Identification by Raman Spectroscopy and Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Huixia%20Shi">Huixia Shi</a>, <a href="https://publications.waset.org/abstracts/search?q=Can%20Hu"> Can Hu</a>, <a href="https://publications.waset.org/abstracts/search?q=Jun%20Zhu"> Jun Zhu</a>, <a href="https://publications.waset.org/abstracts/search?q=Hongling%20Guo"> Hongling Guo</a>, <a href="https://publications.waset.org/abstracts/search?q=Haiyan%20Li"> Haiyan Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Hongyan%20Du"> Hongyan Du</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The identification of human body fluids during forensic investigations is a critical step to determine key details, and present strong evidence to testify criminal in a case. With the popularity of DNA and improved detection technology, the potential question must be revolved that whether the suspect’s DNA derived from saliva or semen, menstrual or peripheral blood, how to identify the red substance or aged blood traces on the spot is blood; How to determine who contribute the right one in mixed stains. In recent years, molecular approaches have been developing increasingly on mRNA, miRNA, DNA methylation and microbial markers, but appear expensive, time-consuming, and destructive disadvantages. Physicochemical methods are utilized frequently such us scanning electron microscopy/energy spectroscopy and X-ray fluorescence and so on, but results only showing one or two characteristics of body fluid itself and that out of working in unknown or mixed body fluid stains. This paper focuses on using chemistry methods Raman spectroscopy and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry to discriminate species of peripheral blood, menstrual blood, semen, saliva, vaginal secretions, urine or sweat. Firstly, non-destructive, confirmatory, convenient and fast Raman spectroscopy method combined with more accurate matrix-assisted laser desorption/ionization time-of-flight mass spectrometry method can totally distinguish one from other body fluids. Secondly, 11 spectral signatures and specific metabolic molecules have been obtained by analysis results after 70 samples detected. Thirdly, Raman results showed peripheral and menstrual blood, saliva and vaginal have highly similar spectroscopic features. Advanced statistical analysis of the multiple Raman spectra must be requested to classify one to another. On the other hand, it seems that the lactic acid can differentiate peripheral and menstrual blood detected by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, but that is not a specific metabolic molecule, more sensitivity ones will be analyzed in a forward study. These results demonstrate the great potential of the developed chemistry methods for forensic applications, although more work is needed for method validation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=body%20fluids" title="body fluids">body fluids</a>, <a href="https://publications.waset.org/abstracts/search?q=identification" title=" identification"> identification</a>, <a href="https://publications.waset.org/abstracts/search?q=Raman%20spectroscopy" title=" Raman spectroscopy"> Raman spectroscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=matrix-assisted%20laser%20desorption%2Fionization%20time-of-flight%20mass%20spectrometry" title=" matrix-assisted laser desorption/ionization time-of-flight mass spectrometry"> matrix-assisted laser desorption/ionization time-of-flight mass spectrometry</a> </p> <a href="https://publications.waset.org/abstracts/103873/body-fluids-identification-by-raman-spectroscopy-and-matrix-assisted-laser-desorptionionization-time-of-flight-mass-spectrometry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/103873.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">137</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13517</span> Electronic Structure Calculation of AsSiTeB/SiAsBTe Nanostructures Using Density Functional Theory</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ankit%20Kargeti">Ankit Kargeti</a>, <a href="https://publications.waset.org/abstracts/search?q=Ravikant%20Shrivastav"> Ravikant Shrivastav</a>, <a href="https://publications.waset.org/abstracts/search?q=Tabish%20Rasheed"> Tabish Rasheed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The electronic structure calculation for the nanoclusters of AsSiTeB/SiAsBTe quaternary semiconductor alloy belonging to the III-V Group elements was performed. Motivation for this research work was to look for accurate electronic and geometric data of small nanoclusters of AsSiTeB/SiAsBTe in the gaseous form. The two clusters, one in the linear form and the other in the bent form, were studied under the framework of Density Functional Theory (DFT) using the B3LYP functional and LANL2DZ basis set with the software packaged Gaussian 16. We have discussed the Optimized Energy, Frontier Orbital Energy Gap in terms of HOMO-LUMO, Dipole Moment, Ionization Potential, Electron Affinity, Binding Energy, Embedding Energy, Density of States (DoS) spectrum for both structures. The important findings of the predicted nanostructures are that these structures have wide band gap energy, where linear structure has band gap energy (Eg) value is 2.375 eV and bent structure (Eg) value is 2.778 eV. Therefore, these structures can be utilized as wide band gap semiconductors. These structures have high electron affinity value of 4.259 eV for the linear structure and electron affinity value of 3.387 eV for the bent structure form. It shows that electron acceptor capability is high for both forms. The widely known application of these compounds is in the light emitting diodes due to their wide band gap nature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=density%20functional%20theory" title="density functional theory">density functional theory</a>, <a href="https://publications.waset.org/abstracts/search?q=DFT" title=" DFT"> DFT</a>, <a href="https://publications.waset.org/abstracts/search?q=density%20functional%20theory" title=" density functional theory"> density functional theory</a>, <a href="https://publications.waset.org/abstracts/search?q=nanostructures" title=" nanostructures"> nanostructures</a>, <a href="https://publications.waset.org/abstracts/search?q=HOMO-LUMO" title=" HOMO-LUMO"> HOMO-LUMO</a>, <a href="https://publications.waset.org/abstracts/search?q=density%20of%20states" title=" density of states "> density of states </a> </p> <a href="https://publications.waset.org/abstracts/121158/electronic-structure-calculation-of-assitebsiasbte-nanostructures-using-density-functional-theory" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/121158.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">114</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13516</span> Analysis of the Temperature Dependence of Local Avalanche Compact Model for Bipolar Transistors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Robert%20Setekera">Robert Setekera</a>, <a href="https://publications.waset.org/abstracts/search?q=Ramses%20van%20der%20Toorn"> Ramses van der Toorn</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We present an extensive analysis of the temperature dependence of the local avalanche model used in most of the modern compact models for bipolar transistors. This local avalanche model uses the Chynoweth's empirical law for ionization coefficient to define the generation of the avalanche current in terms of the local electric field. We carry out the model analysis using DC-measurements taken on both Si and advanced SiGe bipolar transistors. For the advanced industrial SiGe-HBTs, we consider both high-speed and high-power devices (both NPN and PNP transistors). The limitations of the local avalanche model in modeling the temperature dependence of the avalanche current mostly in the weak avalanche region are demonstrated. In addition, the model avalanche parameters are analyzed to see if they are in agreement with semiconductor device physics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=avalanche%20multiplication" title="avalanche multiplication">avalanche multiplication</a>, <a href="https://publications.waset.org/abstracts/search?q=avalanche%20current" title=" avalanche current"> avalanche current</a>, <a href="https://publications.waset.org/abstracts/search?q=bipolar%20transistors" title=" bipolar transistors"> bipolar transistors</a>, <a href="https://publications.waset.org/abstracts/search?q=compact%20modeling" title=" compact modeling"> compact modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=electric%20field" title=" electric field"> electric field</a>, <a href="https://publications.waset.org/abstracts/search?q=impact%20ionization" title=" impact ionization"> impact ionization</a>, <a href="https://publications.waset.org/abstracts/search?q=local%20avalanche" title=" local avalanche"> local avalanche</a> </p> <a href="https://publications.waset.org/abstracts/15421/analysis-of-the-temperature-dependence-of-local-avalanche-compact-model-for-bipolar-transistors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15421.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">622</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13515</span> Combustion Characteristics of Ionized Fuels for Battery System Safety</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hyeuk%20Ju%20Ko">Hyeuk Ju Ko</a>, <a href="https://publications.waset.org/abstracts/search?q=Eui%20Ju%20Lee"> Eui Ju Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Many electronic devices are powered by various rechargeable batteries such as lithium-ion today, but occasionally the batteries undergo thermal runaway and cause fire, explosion, and other hazards. If a battery fire should occur in an electronic device of vehicle and aircraft cabin, it is important to quickly extinguish the fire and cool the batteries to minimize safety risks. Attempts to minimize these risks have been carried out by many researchers but the number of study on the successful extinguishment is limited. Because most rechargeable batteries are operated on the ion state with electron during charge and discharge of electricity, and the reaction of this electrolyte has a big difference with normal combustion. Here, we focused on the effect of ions on reaction stability and pollutant emissions during combustion process. The other importance for understanding ionized fuel combustion could be found in high efficient and environment-friendly combustion technologies, which are used to be operated an extreme condition and hence results in unintended flame instability such as extinction and oscillation. The use of electromagnetic energy and non-equilibrium plasma is one of the way to solve the problems, but the application has been still limited because of lack of excited ion effects in the combustion process. Therefore, the understanding of ion role during combustion might be promised to the energy safety society including the battery safety. In this study, the effects of an ionized fuel on the flame stability and pollutant emissions were experimentally investigated in the hydrocarbon jet diffusion flames. The burner used in this experiment consisted of 7.5 mm diameter tube for fuel and the gaseous fuels were ionized with the ionizer (SUNJE, SPN-11). Methane (99.9% purity) and propane (commercial grade) were used as a fuel and open ambient air was used as an oxidizer. As the performance of ionizer used in the experiment was evaluated at first, ion densities of both propane and methane increased linearly with volume flow rate but the ion density of propane is slightly higher than that of methane. The results show that the overall flame stability and shape such as flame length has no significant difference even in the higher ion concentration. However, the fuel ionization affects to the pollutant emissions such as NOx and soot. NOx and CO emissions measured in post flame region decreased with increasing fuel ionization, especially at high fuel velocity, i.e. high ion density. TGA analysis and morphology of soot by TEM indicates that the fuel ionization makes soot to be matured. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=battery%20fires" title="battery fires">battery fires</a>, <a href="https://publications.waset.org/abstracts/search?q=ionization" title=" ionization"> ionization</a>, <a href="https://publications.waset.org/abstracts/search?q=jet%20flames" title=" jet flames"> jet flames</a>, <a href="https://publications.waset.org/abstracts/search?q=stability" title=" stability"> stability</a>, <a href="https://publications.waset.org/abstracts/search?q=NOx%20and%20soot" title=" NOx and soot"> NOx and soot</a> </p> <a href="https://publications.waset.org/abstracts/89407/combustion-characteristics-of-ionized-fuels-for-battery-system-safety" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/89407.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">186</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13514</span> Tailoring Polycrystalline Diamond for Increasing Earth-Drilling Challenges</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jie%20Chen">Jie Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Chris%20Cheng"> Chris Cheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Kai%20Zhang"> Kai Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Polycrystalline diamond compact (PDC) cutters with a polycrystalline diamond (PCD) table supported by a cemented tungsten carbide substrate have been widely used for earth-drilling tools in the oil and gas industry. Both wear and impact resistances are key figure of merits of PDC cutters, and they are closely related to the microstructure of the PCD table. As oil and gas exploration enters deeper, harder, and more complex formations, plus increasing requirement of accelerated downhole drilling speed and drilling cost reduction, current PDC cutters face unprecedented challenges for maintaining a longer drilling life than ever. Excessive wear on uneven hard formations, spalling, chipping, and premature fracture due to impact loads are common failure modes of PDC cutters in the field. Tailoring microstructure of the PCD table is one of the effective approaches to improve the wear and impact resistances of PDC cutters, along with other factors such as cutter geometry and bit design. In this research, cross-sectional microstructure, fracture surface, wear surface, and elemental composition of PDC cutters were analyzed using scanning electron microscopy (SEM) with both backscattered electron and secondary electron detectors, and energy dispersive X-ray spectroscopy (EDS). The microstructure and elemental composition were further correlated with the wear and impact resistances of corresponding PDC cutters. Wear modes and impact toughening mechanisms of state-of-the-art PDCs were identified. Directions to further improve the wear and impact resistances of PDC cutters were proposed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fracture%20surface" title="fracture surface">fracture surface</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure" title=" microstructure"> microstructure</a>, <a href="https://publications.waset.org/abstracts/search?q=polycrystalline%20diamond" title=" polycrystalline diamond"> polycrystalline diamond</a>, <a href="https://publications.waset.org/abstracts/search?q=PDC" title=" PDC"> PDC</a>, <a href="https://publications.waset.org/abstracts/search?q=wear%20surface" title=" wear surface"> wear surface</a> </p> <a href="https://publications.waset.org/abstracts/178914/tailoring-polycrystalline-diamond-for-increasing-earth-drilling-challenges" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/178914.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">53</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13513</span> Challenges in E-Government: Conceptual Views and Solutions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rasim%20Alguliev">Rasim Alguliev</a>, <a href="https://publications.waset.org/abstracts/search?q=Farhad%20Yusifov"> Farhad Yusifov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Considering the international experience, conceptual and architectural principles of forming of electron government are researched and some suggestions were made. The assessment of monitoring of forming processes of electron government, intellectual analysis of web-resources, provision of information security, electron democracy problems were researched, conceptual approaches were suggested. By taking into consideration main principles of electron government theory, important research directions were specified. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electron%20government" title="electron government">electron government</a>, <a href="https://publications.waset.org/abstracts/search?q=public%20administration" title=" public administration"> public administration</a>, <a href="https://publications.waset.org/abstracts/search?q=information%20security" title=" information security"> information security</a>, <a href="https://publications.waset.org/abstracts/search?q=web-analytics" title=" web-analytics"> web-analytics</a>, <a href="https://publications.waset.org/abstracts/search?q=social%20networks" title=" social networks"> social networks</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20mining" title=" data mining"> data mining</a> </p> <a href="https://publications.waset.org/abstracts/17703/challenges-in-e-government-conceptual-views-and-solutions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17703.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">473</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13512</span> The Effect of Torsional Angle on Reversible Electron Transfer in Donor: Acceptor Frameworks Using Bis(Imino)Pyridines as Proxy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ryan%20Brisbin">Ryan Brisbin</a>, <a href="https://publications.waset.org/abstracts/search?q=Hassan%20Harb"> Hassan Harb</a>, <a href="https://publications.waset.org/abstracts/search?q=Justin%20Debow"> Justin Debow</a>, <a href="https://publications.waset.org/abstracts/search?q=Hrant%20Hratchian"> Hrant Hratchian</a>, <a href="https://publications.waset.org/abstracts/search?q=Ryan%20Baxter"> Ryan Baxter</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Donor-Acceptor (DA) frameworks are crucial parts of any technology requiring charge transport. This type of behavior is ubiquitous across technologies from semi conductors to solar panels. Currently, most DA systems involve metallic components, but progressive research is being pursued to design fully organic DA systems to be used as both organic semi-conductors and light emitting diodes. These systems are currently comprised of conductive polymers and salts. However, little is known about the effect of various physical aspects (size, torsional angle, electron density) have on the act of reversible charge transfer. Herein, the effect of torsional angle on reductive stability in bis(imino)pyridines is analyzed using a combination of single crystal analysis and electro-chemical peak current ratios from cyclic voltammetry. The computed free energies of reduction and electron attachment points were also investigated through density functional theory and natural ionization orbital theory to gain greater understanding of the global effect torsional angles have on electron transfer in bis(imino)pyridines. Findings indicated that torsional angles are a multi-variable parameter affected by both local steric constraints and resonant electronic contributions. Local steric impacted torsional angles demonstrated a negligible effect on electrochemical reversibility, while resonant affected torsional angles were observed to significantly alter the electrochemical reversibility. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cyclic%20voltammetry" title="cyclic voltammetry">cyclic voltammetry</a>, <a href="https://publications.waset.org/abstracts/search?q=bis%28imino%29pyridines" title=" bis(imino)pyridines"> bis(imino)pyridines</a>, <a href="https://publications.waset.org/abstracts/search?q=structure-activity%20relationship" title=" structure-activity relationship"> structure-activity relationship</a>, <a href="https://publications.waset.org/abstracts/search?q=torsional%20angles" title=" torsional angles"> torsional angles</a> </p> <a href="https://publications.waset.org/abstracts/133994/the-effect-of-torsional-angle-on-reversible-electron-transfer-in-donor-acceptor-frameworks-using-bisiminopyridines-as-proxy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/133994.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">237</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13511</span> Low Dose In-Line Electron Holography for 3D Atomic Resolution Tomography of Soft Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=F.%20R.%20Chen">F. R. Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Kisielowski"> C. Kisielowski</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Van%20Dyck"> D. Van Dyck</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In principle, the latest generation aberration-corrected transmission electron microscopes (TEMs) could achieve sub-Å resolution, but there is bottleneck that hinders the final step towards revealing 3D structure. Firstly, in order to achieve a resolution around 1 Å with single atom sensitivity, the electron dose rate needs to be sufficiently large (10⁴-10⁵eÅ⁻² s⁻¹). With such large dose rate, the electron beam can induce surfaces alterations or even bulk modifications, in particular, for electron beam sensitive (soft) materials such as nm size particles, organic materials, proteins or macro-molecules. We will demonstrate methodology of low dose electron holography for observing 3D structure for soft materials such as single Oleic acid molecules at atomic resolution. The main improvement of this new type of electron holography is based on two concepts. Firstly, the total electron dose is distributed over many images obtained at different defocus values from which the electron hologram is then reconstructed. Secondly, in contrast to the current tomographic methods that require projections from several directions, the 3D structural information of the nano-object is then extracted from this one hologram obtained from only one viewing direction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=low%20dose%20electron%20microscopy" title="low dose electron microscopy">low dose electron microscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=in-line%20electron%20holography" title=" in-line electron holography"> in-line electron holography</a>, <a href="https://publications.waset.org/abstracts/search?q=atomic%20resolution%20tomography" title=" atomic resolution tomography"> atomic resolution tomography</a>, <a href="https://publications.waset.org/abstracts/search?q=soft%20materials" title=" soft materials"> soft materials</a> </p> <a href="https://publications.waset.org/abstracts/87215/low-dose-in-line-electron-holography-for-3d-atomic-resolution-tomography-of-soft-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/87215.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">192</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13510</span> Modulational Instability of Ion-Acoustic Wave in Electron-Positron-Ion Plasmas with Two-Electron Temperature Distributions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jitendra%20Kumar%20Chawla">Jitendra Kumar Chawla</a>, <a href="https://publications.waset.org/abstracts/search?q=Mukesh%20Kumar%20Mishra"> Mukesh Kumar Mishra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The nonlinear amplitude modulation of ion-acoustic wave is studied in the presence of two-electron temperature distribution in unmagnetized electron-positron-ion plasmas. The Krylov-Bogoliubov-Mitropolosky (KBM) perturbation method is used to derive the nonlinear Schrödinger equation. The dispersive and nonlinear coefficients are obtained which depend on the temperature and concentration of the hot and cold electron species as well as the positron density and temperature. The modulationally unstable regions are studied numerically for a wide range of wave number. The effects of the temperature and concentration of the hot and cold electron on the modulational stability are investigated in detail. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=modulational%20instability" title="modulational instability">modulational instability</a>, <a href="https://publications.waset.org/abstracts/search?q=ion%20acoustic%20wave" title=" ion acoustic wave"> ion acoustic wave</a>, <a href="https://publications.waset.org/abstracts/search?q=KBM%20method" title=" KBM method"> KBM method</a> </p> <a href="https://publications.waset.org/abstracts/28700/modulational-instability-of-ion-acoustic-wave-in-electron-positron-ion-plasmas-with-two-electron-temperature-distributions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28700.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">665</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13509</span> Nano-Sensors: Search for New Features</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=I.%20Filikhin">I. Filikhin</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Vlahovic"> B. Vlahovic</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We focus on a novel type of detection based on electron tunneling properties of double nanoscale structures in semiconductor materials. Semiconductor heterostructures as quantum wells (QWs), quantum dots (QDs), and quantum rings (QRs) may have energy level structure of several hundred of electron confinement states. The single electron spectra of the double quantum objects (DQW, DQD, and DQR) were studied in our previous works with relation to the electron localization and tunneling between the objects. The wave function of electron may be localized in one of the QDs or be delocalized when it is spread over the whole system. The localizing-delocalizing tunneling occurs when an electron transition between both states is possible. The tunneling properties of spectra differ strongly for “regular” and “chaotic” systems. We have shown that a small violation of the geometry drastically affects localization of electron. In particular, such violations lead to the elimination of the delocalized states of the system. The same symmetry violation effect happens if electrical or magnetic fields are applied. These phenomena could be used to propose a new type of detection based on the high sensitivity of charge transport between double nanostructures and small violations of the shapes. It may have significant technological implications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=double%20quantum%20dots" title="double quantum dots">double quantum dots</a>, <a href="https://publications.waset.org/abstracts/search?q=single%20electron%20levels" title=" single electron levels"> single electron levels</a>, <a href="https://publications.waset.org/abstracts/search?q=tunneling" title=" tunneling"> tunneling</a>, <a href="https://publications.waset.org/abstracts/search?q=electron%20localizations" title=" electron localizations"> electron localizations</a> </p> <a href="https://publications.waset.org/abstracts/24024/nano-sensors-search-for-new-features" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24024.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">505</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13508</span> A Plasmonic Mass Spectrometry Approach for Detection of Small Nutrients and Toxins</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Haiyang%20Su">Haiyang Su</a>, <a href="https://publications.waset.org/abstracts/search?q=Kun%20Qian"> Kun Qian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We developed a novel plasmonic matrix assisted laser desorption/ionization mass spectrometry (MALDI MS) approach to detect small nutrients and toxin in complex biological emulsion samples. We used silver nanoshells (SiO₂@Ag) with optimized structures as matrices and achieved direct analysis of ~6 nL of human breast milk without any enrichment or separation. We performed identification and quantitation of small nutrients and toxins with limit-of-detection down to 0.4 pmol (for melamine) and reaction time shortened to minutes, superior to the conventional biochemical methods currently in use. Our approach contributed to the near-future application of MALDI MS in a broad field and personalized design of plasmonic materials for real case bio-analysis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=plasmonic%20materials" title="plasmonic materials">plasmonic materials</a>, <a href="https://publications.waset.org/abstracts/search?q=laser%20desorption%2Fionization" title=" laser desorption/ionization"> laser desorption/ionization</a>, <a href="https://publications.waset.org/abstracts/search?q=mass%20spectrometry" title=" mass spectrometry"> mass spectrometry</a>, <a href="https://publications.waset.org/abstracts/search?q=small%20nutrients" title=" small nutrients"> small nutrients</a>, <a href="https://publications.waset.org/abstracts/search?q=toxins" title=" toxins"> toxins</a> </p> <a href="https://publications.waset.org/abstracts/90310/a-plasmonic-mass-spectrometry-approach-for-detection-of-small-nutrients-and-toxins" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90310.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">211</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13507</span> Comparison Between the Radiation Resistance of n/p and p/n InP Solar Cell</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mazouz%20Halima">Mazouz Halima</a>, <a href="https://publications.waset.org/abstracts/search?q=Belghachi%20Abdrahmane"> Belghachi Abdrahmane</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Effects of electron irradiation-induced deep level defects have been studied on both n/p and p/n indium phosphide solar cells with very thin emitters. The simulation results show that n/p structure offers a somewhat better short circuit current but the p/n structure offers improved circuit voltage, not only before electron irradiation, but also after 1MeV electron irradiation with 5.1015 fluence. The simulation also shows that n/p solar cell structure is more resistant than that of p/n structure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=InP%20solar%20cell" title="InP solar cell">InP solar cell</a>, <a href="https://publications.waset.org/abstracts/search?q=p%2Fn%20and%20n%2Fp%20structure" title=" p/n and n/p structure"> p/n and n/p structure</a>, <a href="https://publications.waset.org/abstracts/search?q=electron%20irradiation" title=" electron irradiation"> electron irradiation</a>, <a href="https://publications.waset.org/abstracts/search?q=output%20parameters" title=" output parameters"> output parameters</a> </p> <a href="https://publications.waset.org/abstracts/7526/comparison-between-the-radiation-resistance-of-np-and-pn-inp-solar-cell" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7526.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">550</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13506</span> An Investigation of the Weak Localization, Electron-Electron Interaction and the Superconducting Fluctuations in a Weakly Disordered Granular Aluminum Film</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rukshana%20Pervin">Rukshana Pervin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We report a detailed study on the transport properties of a 40 nm thick granular aluminum film. As measured by temperature-dependent resistance R(T), a resistance peak is observed before the transition to superconductivity, which indicates that the diffusion channel is subjected to weak localization and electron-electron interaction, and the superconductor channel is subjected to SC fluctuations (SCFs). The zero-magnetic field transport measurement demonstrated that Electron-Electron Interaction (EEI), weak localization, and SCFs are closely related in this granular aluminum film. The characteristic temperature at which SCFs emerge on the sample is determined by measuring the R(T) during cooling. The SCF of the film is studied in terms of the direct contribution of the Aslamazov-Larkin's fluctuation Cooper pair density and the indirect contribution of the Maki-Thomson's quasiparticle pair density. In this sample, the rise in R(T) above the SCF characteristic temperature indicates the WL and/or EEI. Comparative analyses are conducted on how the EEI and WL contribute to the upturn in R(T). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fluctuation%20superconductivity" title="fluctuation superconductivity">fluctuation superconductivity</a>, <a href="https://publications.waset.org/abstracts/search?q=weak%20localization" title=" weak localization"> weak localization</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20deposition" title=" thermal deposition"> thermal deposition</a>, <a href="https://publications.waset.org/abstracts/search?q=electron-electron%20interaction" title=" electron-electron interaction"> electron-electron interaction</a> </p> <a href="https://publications.waset.org/abstracts/175740/an-investigation-of-the-weak-localization-electron-electron-interaction-and-the-superconducting-fluctuations-in-a-weakly-disordered-granular-aluminum-film" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/175740.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">56</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13505</span> Probing Anomalous WW γ and WWZ Couplings with Polarized Electron Beam at the LHeC and FCC-Ep Collider</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=I.%20Turk%20Cakir">I. Turk Cakir</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Senol"> A. Senol</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20T.%20Tasci"> A. T. Tasci</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20Cakir"> O. Cakir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We study the anomalous WWγ and WWZ couplings by calculating total cross sections of the ep→νqγX and ep→νqZX processes at the LHeC with electron beam energy Ee=140 GeV and the proton beam energy Ep=7 TeV, and at the FCC-ep collider with the polarized electron beam energy Ee=80 GeV and the proton beam energy Ep=50 TeV. At the LHeC with electron beam polarization, we obtain the results for the difference of upper and lower bounds as (0.975, 0.118) and (0.285, 0.009) for the anomalous (Δκγ,λγ) and (Δκz,λz) couplings, respectively. As for FCC-ep collider, these bounds are obtained as (1.101,0.065) and (0.320,0.002) at an integrated luminosity of Lint=100 fb-1. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anomalous%20couplings" title="anomalous couplings">anomalous couplings</a>, <a href="https://publications.waset.org/abstracts/search?q=future%20circular%20collider" title=" future circular collider"> future circular collider</a>, <a href="https://publications.waset.org/abstracts/search?q=large%20hadron%20electron%20collider" title=" large hadron electron collider"> large hadron electron collider</a>, <a href="https://publications.waset.org/abstracts/search?q=W-boson%20and%20Z-boson" title=" W-boson and Z-boson"> W-boson and Z-boson</a> </p> <a href="https://publications.waset.org/abstracts/17408/probing-anomalous-ww-gh-and-wwz-couplings-with-polarized-electron-beam-at-the-lhec-and-fcc-ep-collider" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17408.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">381</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13504</span> Relation of the Anomalous Magnetic Moment of Electron with the Proton and Neutron Masses</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sergei%20P.%20Efimov">Sergei P. Efimov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The anomalous magnetic moment of the electron is calculated by introducing the effective mass of the virtual part of the electron structure. In this case, the anomalous moment is inversely proportional to the effective mass Meff, which is shown to be a linear combination of the neutron, proton, and electrostatic electron field masses. The spin of a rotating structure is assumed to be equal to 3/2, while the spin of a 'bare' electron is equal to unity, the resultant spin being 1/2. A simple analysis gives the coefficients for a linear combination of proton and electron masses, the approximation precision giving here nine significant digits after the decimal point. The summand proportional to α² adds four more digits. Thus, the conception of the effective mass Meff leads to the formula for the total magnetic moment of the electron, which is accurate to fourteen digits. Association with the virtual beta-decay reaction and possible reasons for simplicity of the derived formula are discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anomalous%20magnetic%20moment%20of%20electron" title="anomalous magnetic moment of electron">anomalous magnetic moment of electron</a>, <a href="https://publications.waset.org/abstracts/search?q=comparison%20with%20quantum%20electrodynamics.%20effective%20%20mass" title=" comparison with quantum electrodynamics. effective mass"> comparison with quantum electrodynamics. effective mass</a>, <a href="https://publications.waset.org/abstracts/search?q=fifteen%20significant%20figures" title=" fifteen significant figures"> fifteen significant figures</a>, <a href="https://publications.waset.org/abstracts/search?q=proton%20and%20neutron%20masses" title=" proton and neutron masses"> proton and neutron masses</a> </p> <a href="https://publications.waset.org/abstracts/131423/relation-of-the-anomalous-magnetic-moment-of-electron-with-the-proton-and-neutron-masses" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/131423.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">123</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13503</span> Simulations of High-Intensity, Thermionic Electron Guns for Electron Beam Thermal Processing Including Effects of Space Charge Compensation </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=O.%20Hinrichs">O. Hinrichs</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Franz"> H. Franz</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Reiter"> G. Reiter</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Electron guns have a key function in a series of thermal processes, like EB (electron beam) melting, evaporation or welding. These techniques need a high-intensity continuous electron beam that defocuses itself due to high space charge forces. A proper beam transport throughout the magnetic focusing system can be ensured by a space charge compensation via residual gas ions. The different pressure stages in the EB gun cause various degrees of compensation. A numerical model was installed to simulate realistic charge distributions within the beam by using CST-Particle Studio code. We will present current status of beam dynamic simulations. This contribution will focus on the creation of space charge ions and their influence on beam and gun components. Furthermore, the beam transport in the gun will be shown for different beam parameters. The electron source allows to produce beams with currents of 3 A to 15 A and energies of 40 keV to 45 keV. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=beam%20dynamic%20simulation" title="beam dynamic simulation">beam dynamic simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=space%20charge%20compensation" title=" space charge compensation"> space charge compensation</a>, <a href="https://publications.waset.org/abstracts/search?q=thermionic%20electron%20source" title=" thermionic electron source"> thermionic electron source</a>, <a href="https://publications.waset.org/abstracts/search?q=EB%20melting" title=" EB melting"> EB melting</a>, <a href="https://publications.waset.org/abstracts/search?q=EB%20thermal%20processing" title=" EB thermal processing "> EB thermal processing </a> </p> <a href="https://publications.waset.org/abstracts/106185/simulations-of-high-intensity-thermionic-electron-guns-for-electron-beam-thermal-processing-including-effects-of-space-charge-compensation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/106185.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">337</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13502</span> Computer Software for Calculating Electron Mobility of Semiconductors Compounds; Case Study for N-Gan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Emad%20A.%20Ahmed">Emad A. Ahmed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Computer software to calculate electron mobility with respect to different scattering mechanism has been developed. This software is adopted completely Graphical User Interface (GUI) technique and its interface has been designed by Microsoft Visual Basic 6.0. As a case study the electron mobility of n-GaN was performed using this software. The behaviour of the mobility for n-GaN due to elastic scattering processes and its relation to temperature and doping concentration were discussed. The results agree with other available theoretical and experimental data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electron%20mobility" title="electron mobility">electron mobility</a>, <a href="https://publications.waset.org/abstracts/search?q=relaxation%20time" title=" relaxation time"> relaxation time</a>, <a href="https://publications.waset.org/abstracts/search?q=GaN" title=" GaN"> GaN</a>, <a href="https://publications.waset.org/abstracts/search?q=scattering" title=" scattering"> scattering</a>, <a href="https://publications.waset.org/abstracts/search?q=computer%20software" title=" computer software"> computer software</a>, <a href="https://publications.waset.org/abstracts/search?q=computation%20physics" title=" computation physics"> computation physics</a> </p> <a href="https://publications.waset.org/abstracts/6777/computer-software-for-calculating-electron-mobility-of-semiconductors-compounds-case-study-for-n-gan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6777.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">670</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=electron%20impact%20ionization%20cross-sections&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=electron%20impact%20ionization%20cross-sections&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=electron%20impact%20ionization%20cross-sections&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=electron%20impact%20ionization%20cross-sections&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=electron%20impact%20ionization%20cross-sections&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=electron%20impact%20ionization%20cross-sections&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=electron%20impact%20ionization%20cross-sections&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=electron%20impact%20ionization%20cross-sections&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=electron%20impact%20ionization%20cross-sections&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=electron%20impact%20ionization%20cross-sections&amp;page=451">451</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=electron%20impact%20ionization%20cross-sections&amp;page=452">452</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=electron%20impact%20ionization%20cross-sections&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10