CINXE.COM
Search | arXiv e-print repository
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1–50 of 69 results for author: <span class="mathjax">Pedarsani, R</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> <div class="content"> <form method="GET" action="/search/cs" aria-role="search"> Searching in archive <strong>cs</strong>. <a href="/search/?searchtype=author&query=Pedarsani%2C+R">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Pedarsani, R"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Pedarsani%2C+R&terms-0-field=author&size=50&order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Pedarsani, R"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Pedarsani%2C+R&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Pedarsani%2C+R&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Pedarsani%2C+R&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.15361">arXiv:2501.15361</a> <span> [<a href="https://arxiv.org/pdf/2501.15361">pdf</a>, <a href="https://arxiv.org/format/2501.15361">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Decentralized Low-Rank Fine-Tuning of Large Language Models </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Ghiasvand%2C+S">Sajjad Ghiasvand</a>, <a href="/search/cs?searchtype=author&query=Alizadeh%2C+M">Mahnoosh Alizadeh</a>, <a href="/search/cs?searchtype=author&query=Pedarsani%2C+R">Ramtin Pedarsani</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.15361v2-abstract-short" style="display: inline;"> While parameter-efficient fine-tuning (PEFT) techniques like Low-Rank Adaptation (LoRA) offer computationally efficient adaptations of Large Language Models (LLMs), their practical deployment often assumes centralized data and training environments. However, real-world scenarios frequently involve distributed, privacy-sensitive datasets that require decentralized solutions. Federated learning (FL)… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.15361v2-abstract-full').style.display = 'inline'; document.getElementById('2501.15361v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.15361v2-abstract-full" style="display: none;"> While parameter-efficient fine-tuning (PEFT) techniques like Low-Rank Adaptation (LoRA) offer computationally efficient adaptations of Large Language Models (LLMs), their practical deployment often assumes centralized data and training environments. However, real-world scenarios frequently involve distributed, privacy-sensitive datasets that require decentralized solutions. Federated learning (FL) addresses data privacy by coordinating model updates across clients, but it is typically based on centralized aggregation through a parameter server, which can introduce bottlenecks and communication constraints. Decentralized learning, in contrast, eliminates this dependency by enabling direct collaboration between clients, improving scalability and efficiency in distributed environments. Despite its advantages, decentralized LLM fine-tuning remains underexplored. In this work, we propose Dec-LoRA, an algorithm for decentralized fine-tuning of LLMs based on LoRA. Through extensive experiments on BERT and LLaMA-2 models, we show that Dec-LoRA maintains performance comparable to centralized LoRA across various conditions, including data heterogeneity and quantization constraints. This highlights its potential for scalable LLM fine-tuning in decentralized environments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.15361v2-abstract-full').style.display = 'none'; document.getElementById('2501.15361v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.12192">arXiv:2412.12192</a> <span> [<a href="https://arxiv.org/pdf/2412.12192">pdf</a>, <a href="https://arxiv.org/format/2412.12192">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cryptography and Security">cs.CR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> </div> </div> <p class="title is-5 mathjax"> No Free Lunch for Defending Against Prefilling Attack by In-Context Learning </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Xue%2C+Z">Zhiyu Xue</a>, <a href="/search/cs?searchtype=author&query=Liu%2C+G">Guangliang Liu</a>, <a href="/search/cs?searchtype=author&query=Chen%2C+B">Bocheng Chen</a>, <a href="/search/cs?searchtype=author&query=Johnson%2C+K+M">Kristen Marie Johnson</a>, <a href="/search/cs?searchtype=author&query=Pedarsani%2C+R">Ramtin Pedarsani</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.12192v1-abstract-short" style="display: inline;"> The security of Large Language Models (LLMs) has become an important research topic since the emergence of ChatGPT. Though there have been various effective methods to defend against jailbreak attacks, prefilling attacks remain an unsolved and popular threat against open-sourced LLMs. In-Context Learning (ICL) offers a computationally efficient defense against various jailbreak attacks, yet no eff… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.12192v1-abstract-full').style.display = 'inline'; document.getElementById('2412.12192v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.12192v1-abstract-full" style="display: none;"> The security of Large Language Models (LLMs) has become an important research topic since the emergence of ChatGPT. Though there have been various effective methods to defend against jailbreak attacks, prefilling attacks remain an unsolved and popular threat against open-sourced LLMs. In-Context Learning (ICL) offers a computationally efficient defense against various jailbreak attacks, yet no effective ICL methods have been developed to counter prefilling attacks. In this paper, we: (1) show that ICL can effectively defend against prefilling jailbreak attacks by employing adversative sentence structures within demonstrations; (2) characterize the effectiveness of this defense through the lens of model size, number of demonstrations, over-defense, integration with other jailbreak attacks, and the presence of safety alignment. Given the experimental results and our analysis, we conclude that there is no free lunch for defending against prefilling jailbreak attacks with ICL. On the one hand, current safety alignment methods fail to mitigate prefilling jailbreak attacks, but adversative structures within ICL demonstrations provide robust defense across various model sizes and complex jailbreak attacks. On the other hand, LLMs exhibit similar over-defensiveness when utilizing ICL demonstrations with adversative structures, and this behavior appears to be independent of model size. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.12192v1-abstract-full').style.display = 'none'; document.getElementById('2412.12192v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.04504">arXiv:2412.04504</a> <span> [<a href="https://arxiv.org/pdf/2412.04504">pdf</a>, <a href="https://arxiv.org/format/2412.04504">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Distributed, Parallel, and Cluster Computing">cs.DC</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Systems and Control">eess.SY</span> </div> </div> <p class="title is-5 mathjax"> Multi-Bin Batching for Increasing LLM Inference Throughput </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Guldogan%2C+O">Ozgur Guldogan</a>, <a href="/search/cs?searchtype=author&query=Kunde%2C+J">Jackson Kunde</a>, <a href="/search/cs?searchtype=author&query=Lee%2C+K">Kangwook Lee</a>, <a href="/search/cs?searchtype=author&query=Pedarsani%2C+R">Ramtin Pedarsani</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.04504v1-abstract-short" style="display: inline;"> As large language models (LLMs) grow in popularity for their diverse capabilities, improving the efficiency of their inference systems has become increasingly critical. Batching LLM requests is a critical step in scheduling the inference jobs on servers (e.g. GPUs), enabling the system to maximize throughput by allowing multiple requests to be processed in parallel. However, requests often have va… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.04504v1-abstract-full').style.display = 'inline'; document.getElementById('2412.04504v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.04504v1-abstract-full" style="display: none;"> As large language models (LLMs) grow in popularity for their diverse capabilities, improving the efficiency of their inference systems has become increasingly critical. Batching LLM requests is a critical step in scheduling the inference jobs on servers (e.g. GPUs), enabling the system to maximize throughput by allowing multiple requests to be processed in parallel. However, requests often have varying generation lengths, causing resource underutilization, as hardware must wait for the longest-running request in the batch to complete before moving to the next batch. We formalize this problem from a queueing-theoretic perspective, and aim to design a control policy which is throughput-optimal. We propose Multi-Bin Batching, a simple yet effective method that can provably improve LLM inference throughput by grouping requests with similar (predicted) execution times into predetermined bins. Through a combination of theoretical analysis and experiments, including real-world LLM inference scenarios, we demonstrate significant throughput gains compared to standard batching approaches. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.04504v1-abstract-full').style.display = 'none'; document.getElementById('2412.04504v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.16579">arXiv:2410.16579</a> <span> [<a href="https://arxiv.org/pdf/2410.16579">pdf</a>, <a href="https://arxiv.org/format/2410.16579">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> </div> </div> <p class="title is-5 mathjax"> Conflict-Aware Adversarial Training </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Xue%2C+Z">Zhiyu Xue</a>, <a href="/search/cs?searchtype=author&query=Wang%2C+H">Haohan Wang</a>, <a href="/search/cs?searchtype=author&query=Qin%2C+Y">Yao Qin</a>, <a href="/search/cs?searchtype=author&query=Pedarsani%2C+R">Ramtin Pedarsani</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.16579v1-abstract-short" style="display: inline;"> Adversarial training is the most effective method to obtain adversarial robustness for deep neural networks by directly involving adversarial samples in the training procedure. To obtain an accurate and robust model, the weighted-average method is applied to optimize standard loss and adversarial loss simultaneously. In this paper, we argue that the weighted-average method does not provide the bes… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.16579v1-abstract-full').style.display = 'inline'; document.getElementById('2410.16579v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.16579v1-abstract-full" style="display: none;"> Adversarial training is the most effective method to obtain adversarial robustness for deep neural networks by directly involving adversarial samples in the training procedure. To obtain an accurate and robust model, the weighted-average method is applied to optimize standard loss and adversarial loss simultaneously. In this paper, we argue that the weighted-average method does not provide the best tradeoff for the standard performance and adversarial robustness. We argue that the failure of the weighted-average method is due to the conflict between the gradients derived from standard and adversarial loss, and further demonstrate such a conflict increases with attack budget theoretically and practically. To alleviate this problem, we propose a new trade-off paradigm for adversarial training with a conflict-aware factor for the convex combination of standard and adversarial loss, named \textbf{Conflict-Aware Adversarial Training~(CA-AT)}. Comprehensive experimental results show that CA-AT consistently offers a superior trade-off between standard performance and adversarial robustness under the settings of adversarial training from scratch and parameter-efficient finetuning. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.16579v1-abstract-full').style.display = 'none'; document.getElementById('2410.16579v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.13097">arXiv:2410.13097</a> <span> [<a href="https://arxiv.org/pdf/2410.13097">pdf</a>, <a href="https://arxiv.org/format/2410.13097">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> </div> </div> <p class="title is-5 mathjax"> Communication-Efficient and Tensorized Federated Fine-Tuning of Large Language Models </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Ghiasvand%2C+S">Sajjad Ghiasvand</a>, <a href="/search/cs?searchtype=author&query=Yang%2C+Y">Yifan Yang</a>, <a href="/search/cs?searchtype=author&query=Xue%2C+Z">Zhiyu Xue</a>, <a href="/search/cs?searchtype=author&query=Alizadeh%2C+M">Mahnoosh Alizadeh</a>, <a href="/search/cs?searchtype=author&query=Zhang%2C+Z">Zheng Zhang</a>, <a href="/search/cs?searchtype=author&query=Pedarsani%2C+R">Ramtin Pedarsani</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.13097v1-abstract-short" style="display: inline;"> Parameter-efficient fine-tuning (PEFT) methods typically assume that Large Language Models (LLMs) are trained on data from a single device or client. However, real-world scenarios often require fine-tuning these models on private data distributed across multiple devices. Federated Learning (FL) offers an appealing solution by preserving user privacy, as sensitive data remains on local devices duri… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.13097v1-abstract-full').style.display = 'inline'; document.getElementById('2410.13097v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.13097v1-abstract-full" style="display: none;"> Parameter-efficient fine-tuning (PEFT) methods typically assume that Large Language Models (LLMs) are trained on data from a single device or client. However, real-world scenarios often require fine-tuning these models on private data distributed across multiple devices. Federated Learning (FL) offers an appealing solution by preserving user privacy, as sensitive data remains on local devices during training. Nonetheless, integrating PEFT methods into FL introduces two main challenges: communication overhead and data heterogeneity. In this paper, we introduce FedTT and FedTT+, methods for adapting LLMs by integrating tensorized adapters into client-side models' encoder/decoder blocks. FedTT is versatile and can be applied to both cross-silo FL and large-scale cross-device FL. FedTT+, an extension of FedTT tailored for cross-silo FL, enhances robustness against data heterogeneity by adaptively freezing portions of tensor factors, further reducing the number of trainable parameters. Experiments on BERT and LLaMA models demonstrate that our proposed methods successfully address data heterogeneity challenges and perform on par or even better than existing federated PEFT approaches while achieving up to 10$\times$ reduction in communication cost. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.13097v1-abstract-full').style.display = 'none'; document.getElementById('2410.13097v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.07350">arXiv:2407.07350</a> <span> [<a href="https://arxiv.org/pdf/2407.07350">pdf</a>, <a href="https://arxiv.org/format/2407.07350">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">stat.ML</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computers and Society">cs.CY</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1109/JSAIT.2024.3416078">10.1109/JSAIT.2024.3416078 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Long-Term Fairness in Sequential Multi-Agent Selection with Positive Reinforcement </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Puranik%2C+B">Bhagyashree Puranik</a>, <a href="/search/cs?searchtype=author&query=Guldogan%2C+O">Ozgur Guldogan</a>, <a href="/search/cs?searchtype=author&query=Madhow%2C+U">Upamanyu Madhow</a>, <a href="/search/cs?searchtype=author&query=Pedarsani%2C+R">Ramtin Pedarsani</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.07350v1-abstract-short" style="display: inline;"> While much of the rapidly growing literature on fair decision-making focuses on metrics for one-shot decisions, recent work has raised the intriguing possibility of designing sequential decision-making to positively impact long-term social fairness. In selection processes such as college admissions or hiring, biasing slightly towards applicants from under-represented groups is hypothesized to prov… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.07350v1-abstract-full').style.display = 'inline'; document.getElementById('2407.07350v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.07350v1-abstract-full" style="display: none;"> While much of the rapidly growing literature on fair decision-making focuses on metrics for one-shot decisions, recent work has raised the intriguing possibility of designing sequential decision-making to positively impact long-term social fairness. In selection processes such as college admissions or hiring, biasing slightly towards applicants from under-represented groups is hypothesized to provide positive feedback that increases the pool of under-represented applicants in future selection rounds, thus enhancing fairness in the long term. In this paper, we examine this hypothesis and its consequences in a setting in which multiple agents are selecting from a common pool of applicants. We propose the Multi-agent Fair-Greedy policy, that balances greedy score maximization and fairness. Under this policy, we prove that the resource pool and the admissions converge to a long-term fairness target set by the agents when the score distributions across the groups in the population are identical. We provide empirical evidence of existence of equilibria under non-identical score distributions through synthetic and adapted real-world datasets. We then sound a cautionary note for more complex applicant pool evolution models, under which uncoordinated behavior by the agents can cause negative reinforcement, leading to a reduction in the fraction of under-represented applicants. Our results indicate that, while positive reinforcement is a promising mechanism for long-term fairness, policies must be designed carefully to be robust to variations in the evolution model, with a number of open issues that remain to be explored by algorithm designers, social scientists, and policymakers. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.07350v1-abstract-full').style.display = 'none'; document.getElementById('2407.07350v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">This manuscript has been accepted for publication in the IEEE Journal on Selected Areas in Information Theory special issue on information-theoretic methods for reliable and trustworthy ML</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.00965">arXiv:2405.00965</a> <span> [<a href="https://arxiv.org/pdf/2405.00965">pdf</a>, <a href="https://arxiv.org/format/2405.00965">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Distributed, Parallel, and Cluster Computing">cs.DC</span> </div> </div> <p class="title is-5 mathjax"> Robust Decentralized Learning with Local Updates and Gradient Tracking </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Ghiasvand%2C+S">Sajjad Ghiasvand</a>, <a href="/search/cs?searchtype=author&query=Reisizadeh%2C+A">Amirhossein Reisizadeh</a>, <a href="/search/cs?searchtype=author&query=Alizadeh%2C+M">Mahnoosh Alizadeh</a>, <a href="/search/cs?searchtype=author&query=Pedarsani%2C+R">Ramtin Pedarsani</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.00965v1-abstract-short" style="display: inline;"> As distributed learning applications such as Federated Learning, the Internet of Things (IoT), and Edge Computing grow, it is critical to address the shortcomings of such technologies from a theoretical perspective. As an abstraction, we consider decentralized learning over a network of communicating clients or nodes and tackle two major challenges: data heterogeneity and adversarial robustness. W… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.00965v1-abstract-full').style.display = 'inline'; document.getElementById('2405.00965v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.00965v1-abstract-full" style="display: none;"> As distributed learning applications such as Federated Learning, the Internet of Things (IoT), and Edge Computing grow, it is critical to address the shortcomings of such technologies from a theoretical perspective. As an abstraction, we consider decentralized learning over a network of communicating clients or nodes and tackle two major challenges: data heterogeneity and adversarial robustness. We propose a decentralized minimax optimization method that employs two important modules: local updates and gradient tracking. Minimax optimization is the key tool to enable adversarial training for ensuring robustness. Having local updates is essential in Federated Learning (FL) applications to mitigate the communication bottleneck, and utilizing gradient tracking is essential to proving convergence in the case of data heterogeneity. We analyze the performance of the proposed algorithm, Dec-FedTrack, in the case of nonconvex-strongly concave minimax optimization, and prove that it converges a stationary point. We also conduct numerical experiments to support our theoretical findings. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.00965v1-abstract-full').style.display = 'none'; document.getElementById('2405.00965v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.03576">arXiv:2402.03576</a> <span> [<a href="https://arxiv.org/pdf/2402.03576">pdf</a>, <a href="https://arxiv.org/ps/2402.03576">ps</a>, <a href="https://arxiv.org/format/2402.03576">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cryptography and Security">cs.CR</span> </div> </div> <p class="title is-5 mathjax"> Generalization Properties of Adversarial Training for $\ell_0$-Bounded Adversarial Attacks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Delgosha%2C+P">Payam Delgosha</a>, <a href="/search/cs?searchtype=author&query=Hassani%2C+H">Hamed Hassani</a>, <a href="/search/cs?searchtype=author&query=Pedarsani%2C+R">Ramtin Pedarsani</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.03576v1-abstract-short" style="display: inline;"> We have widely observed that neural networks are vulnerable to small additive perturbations to the input causing misclassification. In this paper, we focus on the $\ell_0$-bounded adversarial attacks, and aim to theoretically characterize the performance of adversarial training for an important class of truncated classifiers. Such classifiers are shown to have strong performance empirically, as we… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.03576v1-abstract-full').style.display = 'inline'; document.getElementById('2402.03576v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.03576v1-abstract-full" style="display: none;"> We have widely observed that neural networks are vulnerable to small additive perturbations to the input causing misclassification. In this paper, we focus on the $\ell_0$-bounded adversarial attacks, and aim to theoretically characterize the performance of adversarial training for an important class of truncated classifiers. Such classifiers are shown to have strong performance empirically, as well as theoretically in the Gaussian mixture model, in the $\ell_0$-adversarial setting. The main contribution of this paper is to prove a novel generalization bound for the binary classification setting with $\ell_0$-bounded adversarial perturbation that is distribution-independent. Deriving a generalization bound in this setting has two main challenges: (i) the truncated inner product which is highly non-linear; and (ii) maximization over the $\ell_0$ ball due to adversarial training is non-convex and highly non-smooth. To tackle these challenges, we develop new coding techniques for bounding the combinatorial dimension of the truncated hypothesis class. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.03576v1-abstract-full').style.display = 'none'; document.getElementById('2402.03576v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.02631">arXiv:2402.02631</a> <span> [<a href="https://arxiv.org/pdf/2402.02631">pdf</a>, <a href="https://arxiv.org/format/2402.02631">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Learning to Understand: Identifying Interactions via the M枚bius Transform </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Kang%2C+J+S">Justin S. Kang</a>, <a href="/search/cs?searchtype=author&query=Erginbas%2C+Y+E">Yigit E. Erginbas</a>, <a href="/search/cs?searchtype=author&query=Butler%2C+L">Landon Butler</a>, <a href="/search/cs?searchtype=author&query=Pedarsani%2C+R">Ramtin Pedarsani</a>, <a href="/search/cs?searchtype=author&query=Ramchandran%2C+K">Kannan Ramchandran</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.02631v2-abstract-short" style="display: inline;"> One of the key challenges in machine learning is to find interpretable representations of learned functions. The M枚bius transform is essential for this purpose, as its coefficients correspond to unique importance scores for sets of input variables. This transform is closely related to widely used game-theoretic notions of importance like the Shapley and Bhanzaf value, but it also captures crucial… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.02631v2-abstract-full').style.display = 'inline'; document.getElementById('2402.02631v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.02631v2-abstract-full" style="display: none;"> One of the key challenges in machine learning is to find interpretable representations of learned functions. The M枚bius transform is essential for this purpose, as its coefficients correspond to unique importance scores for sets of input variables. This transform is closely related to widely used game-theoretic notions of importance like the Shapley and Bhanzaf value, but it also captures crucial higher-order interactions. Although computing the obius Transform of a function with $n$ inputs involves $2^n$ coefficients, it becomes tractable when the function is sparse and of low-degree as we show is the case for many real-world functions. Under these conditions, the complexity of the transform computation is significantly reduced. When there are $K$ non-zero coefficients, our algorithm recovers the M枚bius transform in $O(Kn)$ samples and $O(Kn^2)$ time asymptotically under certain assumptions, the first non-adaptive algorithm to do so. We also uncover a surprising connection between group testing and the M枚bius transform. For functions where all interactions involve at most $t$ inputs, we use group testing results to compute the M枚bius transform with $O(Kt\log n)$ sample complexity and $O(K\mathrm{poly}(n))$ time. A robust version of this algorithm withstands noise and maintains this complexity. This marks the first $n$ sub-linear query complexity, noise-tolerant algorithm for the M枚bius transform. In several examples, we observe that representations generated via sparse M枚bius transform are up to twice as faithful to the original function, as compared to Shaply and Banzhaf values, while using the same number of terms. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.02631v2-abstract-full').style.display = 'none'; document.getElementById('2402.02631v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">34 pages, 16 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.01886">arXiv:2402.01886</a> <span> [<a href="https://arxiv.org/pdf/2402.01886">pdf</a>, <a href="https://arxiv.org/format/2402.01886">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> </div> </div> <p class="title is-5 mathjax"> Inverse Reinforcement Learning by Estimating Expertise of Demonstrators </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Beliaev%2C+M">Mark Beliaev</a>, <a href="/search/cs?searchtype=author&query=Pedarsani%2C+R">Ramtin Pedarsani</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.01886v2-abstract-short" style="display: inline;"> In Imitation Learning (IL), utilizing suboptimal and heterogeneous demonstrations presents a substantial challenge due to the varied nature of real-world data. However, standard IL algorithms consider these datasets as homogeneous, thereby inheriting the deficiencies of suboptimal demonstrators. Previous approaches to this issue rely on impractical assumptions like high-quality data subsets, confi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.01886v2-abstract-full').style.display = 'inline'; document.getElementById('2402.01886v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.01886v2-abstract-full" style="display: none;"> In Imitation Learning (IL), utilizing suboptimal and heterogeneous demonstrations presents a substantial challenge due to the varied nature of real-world data. However, standard IL algorithms consider these datasets as homogeneous, thereby inheriting the deficiencies of suboptimal demonstrators. Previous approaches to this issue rely on impractical assumptions like high-quality data subsets, confidence rankings, or explicit environmental knowledge. This paper introduces IRLEED, Inverse Reinforcement Learning by Estimating Expertise of Demonstrators, a novel framework that overcomes these hurdles without prior knowledge of demonstrator expertise. IRLEED enhances existing Inverse Reinforcement Learning (IRL) algorithms by combining a general model for demonstrator suboptimality to address reward bias and action variance, with a Maximum Entropy IRL framework to efficiently derive the optimal policy from diverse, suboptimal demonstrations. Experiments in both online and offline IL settings, with simulated and human-generated data, demonstrate IRLEED's adaptability and effectiveness, making it a versatile solution for learning from suboptimal demonstrations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.01886v2-abstract-full').style.display = 'none'; document.getElementById('2402.01886v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 4 figures, extended version of AAAI publication</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2301.13336">arXiv:2301.13336</a> <span> [<a href="https://arxiv.org/pdf/2301.13336">pdf</a>, <a href="https://arxiv.org/format/2301.13336">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cryptography and Security">cs.CR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computer Science and Game Theory">cs.GT</span> </div> </div> <p class="title is-5 mathjax"> The Fair Value of Data Under Heterogeneous Privacy Constraints in Federated Learning </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Kang%2C+J">Justin Kang</a>, <a href="/search/cs?searchtype=author&query=Pedarsani%2C+R">Ramtin Pedarsani</a>, <a href="/search/cs?searchtype=author&query=Ramchandran%2C+K">Kannan Ramchandran</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2301.13336v2-abstract-short" style="display: inline;"> Modern data aggregation often involves a platform collecting data from a network of users with various privacy options. Platforms must solve the problem of how to allocate incentives to users to convince them to share their data. This paper puts forth an idea for a \textit{fair} amount to compensate users for their data at a given privacy level based on an axiomatic definition of fairness, along t… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.13336v2-abstract-full').style.display = 'inline'; document.getElementById('2301.13336v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2301.13336v2-abstract-full" style="display: none;"> Modern data aggregation often involves a platform collecting data from a network of users with various privacy options. Platforms must solve the problem of how to allocate incentives to users to convince them to share their data. This paper puts forth an idea for a \textit{fair} amount to compensate users for their data at a given privacy level based on an axiomatic definition of fairness, along the lines of the celebrated Shapley value. To the best of our knowledge, these are the first fairness concepts for data that explicitly consider privacy constraints. We also formulate a heterogeneous federated learning problem for the platform with privacy level options for users. By studying this problem, we investigate the amount of compensation users receive under fair allocations with different privacy levels, amounts of data, and degrees of heterogeneity. We also discuss what happens when the platform is forced to design fair incentives. Under certain conditions we find that when privacy sensitivity is low, the platform will set incentives to ensure that it collects all the data with the lowest privacy options. When the privacy sensitivity is above a given threshold, the platform will provide no incentives to users. Between these two extremes, the platform will set the incentives so some fraction of the users chooses the higher privacy option and the others chooses the lower privacy option. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.13336v2-abstract-full').style.display = 'none'; document.getElementById('2301.13336v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">29 pages, 5 figures, Accepted to TMLR</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.11963">arXiv:2211.11963</a> <span> [<a href="https://arxiv.org/pdf/2211.11963">pdf</a>, <a href="https://arxiv.org/format/2211.11963">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Robotics">cs.RO</span> </div> </div> <p class="title is-5 mathjax"> Learning-based social coordination to improve safety and robustness of cooperative autonomous vehicles in mixed traffic </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Valiente%2C+R">Rodolfo Valiente</a>, <a href="/search/cs?searchtype=author&query=Toghi%2C+B">Behrad Toghi</a>, <a href="/search/cs?searchtype=author&query=Razzaghpour%2C+M">Mahdi Razzaghpour</a>, <a href="/search/cs?searchtype=author&query=Pedarsani%2C+R">Ramtin Pedarsani</a>, <a href="/search/cs?searchtype=author&query=Fallah%2C+Y+P">Yaser P. Fallah</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.11963v1-abstract-short" style="display: inline;"> It is expected that autonomous vehicles(AVs) and heterogeneous human-driven vehicles(HVs) will coexist on the same road. The safety and reliability of AVs will depend on their social awareness and their ability to engage in complex social interactions in a socially accepted manner. However, AVs are still inefficient in terms of cooperating with HVs and struggle to understand and adapt to human beh… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.11963v1-abstract-full').style.display = 'inline'; document.getElementById('2211.11963v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.11963v1-abstract-full" style="display: none;"> It is expected that autonomous vehicles(AVs) and heterogeneous human-driven vehicles(HVs) will coexist on the same road. The safety and reliability of AVs will depend on their social awareness and their ability to engage in complex social interactions in a socially accepted manner. However, AVs are still inefficient in terms of cooperating with HVs and struggle to understand and adapt to human behavior, which is particularly challenging in mixed autonomy. In a road shared by AVs and HVs, the social preferences or individual traits of HVs are unknown to the AVs and different from AVs, which are expected to follow a policy, HVs are particularly difficult to forecast since they do not necessarily follow a stationary policy. To address these challenges, we frame the mixed-autonomy problem as a multi-agent reinforcement learning (MARL) problem and propose an approach that allows AVs to learn the decision-making of HVs implicitly from experience, account for all vehicles' interests, and safely adapt to other traffic situations. In contrast with existing works, we quantify AVs' social preferences and propose a distributed reward structure that introduces altruism into their decision-making process, allowing the altruistic AVs to learn to establish coalitions and influence the behavior of HVs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.11963v1-abstract-full').style.display = 'none'; document.getElementById('2211.11963v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">arXiv admin note: substantial text overlap with arXiv:2202.00881</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.06732">arXiv:2210.06732</a> <span> [<a href="https://arxiv.org/pdf/2210.06732">pdf</a>, <a href="https://arxiv.org/format/2210.06732">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computers and Society">cs.CY</span> </div> </div> <p class="title is-5 mathjax"> Equal Improvability: A New Fairness Notion Considering the Long-term Impact </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Guldogan%2C+O">Ozgur Guldogan</a>, <a href="/search/cs?searchtype=author&query=Zeng%2C+Y">Yuchen Zeng</a>, <a href="/search/cs?searchtype=author&query=Sohn%2C+J">Jy-yong Sohn</a>, <a href="/search/cs?searchtype=author&query=Pedarsani%2C+R">Ramtin Pedarsani</a>, <a href="/search/cs?searchtype=author&query=Lee%2C+K">Kangwook Lee</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.06732v2-abstract-short" style="display: inline;"> Devising a fair classifier that does not discriminate against different groups is an important problem in machine learning. Although researchers have proposed various ways of defining group fairness, most of them only focused on the immediate fairness, ignoring the long-term impact of a fair classifier under the dynamic scenario where each individual can improve its feature over time. Such dynamic… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.06732v2-abstract-full').style.display = 'inline'; document.getElementById('2210.06732v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.06732v2-abstract-full" style="display: none;"> Devising a fair classifier that does not discriminate against different groups is an important problem in machine learning. Although researchers have proposed various ways of defining group fairness, most of them only focused on the immediate fairness, ignoring the long-term impact of a fair classifier under the dynamic scenario where each individual can improve its feature over time. Such dynamic scenarios happen in real world, e.g., college admission and credit loaning, where each rejected sample makes effort to change its features to get accepted afterwards. In this dynamic setting, the long-term fairness should equalize the samples' feature distribution across different groups after the rejected samples make some effort to improve. In order to promote long-term fairness, we propose a new fairness notion called Equal Improvability (EI), which equalizes the potential acceptance rate of the rejected samples across different groups assuming a bounded level of effort will be spent by each rejected sample. We analyze the properties of EI and its connections with existing fairness notions. To find a classifier that satisfies the EI requirement, we propose and study three different approaches that solve EI-regularized optimization problems. Through experiments on both synthetic and real datasets, we demonstrate that the proposed EI-regularized algorithms encourage us to find a fair classifier in terms of EI. Finally, we provide experimental results on dynamic scenarios which highlight the advantages of our EI metric in achieving the long-term fairness. Codes are available in a GitHub repository, see https://github.com/guldoganozgur/ei_fairness. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.06732v2-abstract-full').style.display = 'none'; document.getElementById('2210.06732v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Codes are available in a GitHub repository, see https://github.com/guldoganozgur/ei_fairness. ICLR 2023 Poster. 31 pages, 10 figures, 6 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2206.02468">arXiv:2206.02468</a> <span> [<a href="https://arxiv.org/pdf/2206.02468">pdf</a>, <a href="https://arxiv.org/ps/2206.02468">ps</a>, <a href="https://arxiv.org/format/2206.02468">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">stat.ML</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1109/JSAIT.2022.3182355">10.1109/JSAIT.2022.3182355 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> An Optimal Transport Approach to Personalized Federated Learning </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Farnia%2C+F">Farzan Farnia</a>, <a href="/search/cs?searchtype=author&query=Reisizadeh%2C+A">Amirhossein Reisizadeh</a>, <a href="/search/cs?searchtype=author&query=Pedarsani%2C+R">Ramtin Pedarsani</a>, <a href="/search/cs?searchtype=author&query=Jadbabaie%2C+A">Ali Jadbabaie</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2206.02468v1-abstract-short" style="display: inline;"> Federated learning is a distributed machine learning paradigm, which aims to train a model using the local data of many distributed clients. A key challenge in federated learning is that the data samples across the clients may not be identically distributed. To address this challenge, personalized federated learning with the goal of tailoring the learned model to the data distribution of every ind… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.02468v1-abstract-full').style.display = 'inline'; document.getElementById('2206.02468v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2206.02468v1-abstract-full" style="display: none;"> Federated learning is a distributed machine learning paradigm, which aims to train a model using the local data of many distributed clients. A key challenge in federated learning is that the data samples across the clients may not be identically distributed. To address this challenge, personalized federated learning with the goal of tailoring the learned model to the data distribution of every individual client has been proposed. In this paper, we focus on this problem and propose a novel personalized Federated Learning scheme based on Optimal Transport (FedOT) as a learning algorithm that learns the optimal transport maps for transferring data points to a common distribution as well as the prediction model under the applied transport map. To formulate the FedOT problem, we extend the standard optimal transport task between two probability distributions to multi-marginal optimal transport problems with the goal of transporting samples from multiple distributions to a common probability domain. We then leverage the results on multi-marginal optimal transport problems to formulate FedOT as a min-max optimization problem and analyze its generalization and optimization properties. We discuss the results of several numerical experiments to evaluate the performance of FedOT under heterogeneous data distributions in federated learning problems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.02468v1-abstract-full').style.display = 'none'; document.getElementById('2206.02468v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2206.02078">arXiv:2206.02078</a> <span> [<a href="https://arxiv.org/pdf/2206.02078">pdf</a>, <a href="https://arxiv.org/format/2206.02078">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Distributed, Parallel, and Cluster Computing">cs.DC</span> </div> </div> <p class="title is-5 mathjax"> Straggler-Resilient Personalized Federated Learning </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Tziotis%2C+I">Isidoros Tziotis</a>, <a href="/search/cs?searchtype=author&query=Shen%2C+Z">Zebang Shen</a>, <a href="/search/cs?searchtype=author&query=Pedarsani%2C+R">Ramtin Pedarsani</a>, <a href="/search/cs?searchtype=author&query=Hassani%2C+H">Hamed Hassani</a>, <a href="/search/cs?searchtype=author&query=Mokhtari%2C+A">Aryan Mokhtari</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2206.02078v1-abstract-short" style="display: inline;"> Federated Learning is an emerging learning paradigm that allows training models from samples distributed across a large network of clients while respecting privacy and communication restrictions. Despite its success, federated learning faces several challenges related to its decentralized nature. In this work, we develop a novel algorithmic procedure with theoretical speedup guarantees that simult… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.02078v1-abstract-full').style.display = 'inline'; document.getElementById('2206.02078v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2206.02078v1-abstract-full" style="display: none;"> Federated Learning is an emerging learning paradigm that allows training models from samples distributed across a large network of clients while respecting privacy and communication restrictions. Despite its success, federated learning faces several challenges related to its decentralized nature. In this work, we develop a novel algorithmic procedure with theoretical speedup guarantees that simultaneously handles two of these hurdles, namely (i) data heterogeneity, i.e., data distributions can vary substantially across clients, and (ii) system heterogeneity, i.e., the computational power of the clients could differ significantly. Our method relies on ideas from representation learning theory to find a global common representation using all clients' data and learn a user-specific set of parameters leading to a personalized solution for each client. Furthermore, our method mitigates the effects of stragglers by adaptively selecting clients based on their computational characteristics and statistical significance, thus achieving, for the first time, near optimal sample complexity and provable logarithmic speedup. Experimental results support our theoretical findings showing the superiority of our method over alternative personalized federated schemes in system and data heterogeneous environments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.02078v1-abstract-full').style.display = 'none'; document.getElementById('2206.02078v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.04855">arXiv:2203.04855</a> <span> [<a href="https://arxiv.org/pdf/2203.04855">pdf</a>, <a href="https://arxiv.org/ps/2203.04855">ps</a>, <a href="https://arxiv.org/format/2203.04855">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Information Theory">cs.IT</span> </div> </div> <p class="title is-5 mathjax"> Binary Classification Under $\ell_0$ Attacks for General Noise Distribution </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Delgosha%2C+P">Payam Delgosha</a>, <a href="/search/cs?searchtype=author&query=Hassani%2C+H">Hamed Hassani</a>, <a href="/search/cs?searchtype=author&query=Pedarsani%2C+R">Ramtin Pedarsani</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.04855v1-abstract-short" style="display: inline;"> Adversarial examples have recently drawn considerable attention in the field of machine learning due to the fact that small perturbations in the data can result in major performance degradation. This phenomenon is usually modeled by a malicious adversary that can apply perturbations to the data in a constrained fashion, such as being bounded in a certain norm. In this paper, we study this problem… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.04855v1-abstract-full').style.display = 'inline'; document.getElementById('2203.04855v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.04855v1-abstract-full" style="display: none;"> Adversarial examples have recently drawn considerable attention in the field of machine learning due to the fact that small perturbations in the data can result in major performance degradation. This phenomenon is usually modeled by a malicious adversary that can apply perturbations to the data in a constrained fashion, such as being bounded in a certain norm. In this paper, we study this problem when the adversary is constrained by the $\ell_0$ norm; i.e., it can perturb a certain number of coordinates in the input, but has no limit on how much it can perturb those coordinates. Due to the combinatorial nature of this setting, we need to go beyond the standard techniques in robust machine learning to address this problem. We consider a binary classification scenario where $d$ noisy data samples of the true label are provided to us after adversarial perturbations. We introduce a classification method which employs a nonlinear component called truncation, and show in an asymptotic scenario, as long as the adversary is restricted to perturb no more than $\sqrt{d}$ data samples, we can almost achieve the optimal classification error in the absence of the adversary, i.e. we can completely neutralize adversary's effect. Surprisingly, we observe a phase transition in the sense that using a converse argument, we show that if the adversary can perturb more than $\sqrt{d}$ coordinates, no classifier can do better than a random guess. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.04855v1-abstract-full').style.display = 'none'; document.getElementById('2203.04855v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2202.09398">arXiv:2202.09398</a> <span> [<a href="https://arxiv.org/pdf/2202.09398">pdf</a>, <a href="https://arxiv.org/format/2202.09398">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Multiagent Systems">cs.MA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Information Theory">cs.IT</span> </div> </div> <p class="title is-5 mathjax"> Provably Private Distributed Averaging Consensus: An Information-Theoretic Approach </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Fereydounian%2C+M">Mohammad Fereydounian</a>, <a href="/search/cs?searchtype=author&query=Mokhtari%2C+A">Aryan Mokhtari</a>, <a href="/search/cs?searchtype=author&query=Pedarsani%2C+R">Ramtin Pedarsani</a>, <a href="/search/cs?searchtype=author&query=Hassani%2C+H">Hamed Hassani</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2202.09398v1-abstract-short" style="display: inline;"> In this work, we focus on solving a decentralized consensus problem in a private manner. Specifically, we consider a setting in which a group of nodes, connected through a network, aim at computing the mean of their local values without revealing those values to each other. The distributed consensus problem is a classic problem that has been extensively studied and its convergence characteristics… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.09398v1-abstract-full').style.display = 'inline'; document.getElementById('2202.09398v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2202.09398v1-abstract-full" style="display: none;"> In this work, we focus on solving a decentralized consensus problem in a private manner. Specifically, we consider a setting in which a group of nodes, connected through a network, aim at computing the mean of their local values without revealing those values to each other. The distributed consensus problem is a classic problem that has been extensively studied and its convergence characteristics are well-known. Alas, state-of-the-art consensus methods build on the idea of exchanging local information with neighboring nodes which leaks information about the users' local values. We propose an algorithmic framework that is capable of achieving the convergence limit and rate of classic consensus algorithms while keeping the users' local values private. The key idea of our proposed method is to carefully design noisy messages that are passed from each node to its neighbors such that the consensus algorithm still converges precisely to the average of local values, while a minimum amount of information about local values is leaked. We formalize this by precisely characterizing the mutual information between the private message of a node and all the messages that another adversary collects over time. We prove that our method is capable of preserving users' privacy for any network without a so-called "generalized leaf", and formalize the trade-off between privacy and convergence time. Unlike many private algorithms, any desired accuracy is achievable by our method, and the required level of privacy only affects the convergence time. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.09398v1-abstract-full').style.display = 'none'; document.getElementById('2202.09398v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">31 pages</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2202.01288">arXiv:2202.01288</a> <span> [<a href="https://arxiv.org/pdf/2202.01288">pdf</a>, <a href="https://arxiv.org/format/2202.01288">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Imitation Learning by Estimating Expertise of Demonstrators </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Beliaev%2C+M">Mark Beliaev</a>, <a href="/search/cs?searchtype=author&query=Shih%2C+A">Andy Shih</a>, <a href="/search/cs?searchtype=author&query=Ermon%2C+S">Stefano Ermon</a>, <a href="/search/cs?searchtype=author&query=Sadigh%2C+D">Dorsa Sadigh</a>, <a href="/search/cs?searchtype=author&query=Pedarsani%2C+R">Ramtin Pedarsani</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2202.01288v2-abstract-short" style="display: inline;"> Many existing imitation learning datasets are collected from multiple demonstrators, each with different expertise at different parts of the environment. Yet, standard imitation learning algorithms typically treat all demonstrators as homogeneous, regardless of their expertise, absorbing the weaknesses of any suboptimal demonstrators. In this work, we show that unsupervised learning over demonstra… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.01288v2-abstract-full').style.display = 'inline'; document.getElementById('2202.01288v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2202.01288v2-abstract-full" style="display: none;"> Many existing imitation learning datasets are collected from multiple demonstrators, each with different expertise at different parts of the environment. Yet, standard imitation learning algorithms typically treat all demonstrators as homogeneous, regardless of their expertise, absorbing the weaknesses of any suboptimal demonstrators. In this work, we show that unsupervised learning over demonstrator expertise can lead to a consistent boost in the performance of imitation learning algorithms. We develop and optimize a joint model over a learned policy and expertise levels of the demonstrators. This enables our model to learn from the optimal behavior and filter out the suboptimal behavior of each demonstrator. Our model learns a single policy that can outperform even the best demonstrator, and can be used to estimate the expertise of any demonstrator at any state. We illustrate our findings on real-robotic continuous control tasks from Robomimic and discrete environments such as MiniGrid and chess, out-performing competing methods in $21$ out of $23$ settings, with an average of $7\%$ and up to $60\%$ improvement in terms of the final reward. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.01288v2-abstract-full').style.display = 'none'; document.getElementById('2202.01288v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">ICML 2022. 17 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2202.00881">arXiv:2202.00881</a> <span> [<a href="https://arxiv.org/pdf/2202.00881">pdf</a>, <a href="https://arxiv.org/format/2202.00881">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Robotics">cs.RO</span> </div> </div> <p class="title is-5 mathjax"> Robustness and Adaptability of Reinforcement Learning based Cooperative Autonomous Driving in Mixed-autonomy Traffic </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Valiente%2C+R">Rodolfo Valiente</a>, <a href="/search/cs?searchtype=author&query=Toghi%2C+B">Behrad Toghi</a>, <a href="/search/cs?searchtype=author&query=Pedarsani%2C+R">Ramtin Pedarsani</a>, <a href="/search/cs?searchtype=author&query=Fallah%2C+Y+P">Yaser P. Fallah</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2202.00881v1-abstract-short" style="display: inline;"> Building autonomous vehicles (AVs) is a complex problem, but enabling them to operate in the real world where they will be surrounded by human-driven vehicles (HVs) is extremely challenging. Prior works have shown the possibilities of creating inter-agent cooperation between a group of AVs that follow a social utility. Such altruistic AVs can form alliances and affect the behavior of HVs to achiev… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.00881v1-abstract-full').style.display = 'inline'; document.getElementById('2202.00881v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2202.00881v1-abstract-full" style="display: none;"> Building autonomous vehicles (AVs) is a complex problem, but enabling them to operate in the real world where they will be surrounded by human-driven vehicles (HVs) is extremely challenging. Prior works have shown the possibilities of creating inter-agent cooperation between a group of AVs that follow a social utility. Such altruistic AVs can form alliances and affect the behavior of HVs to achieve socially desirable outcomes. We identify two major challenges in the co-existence of AVs and HVs. First, social preferences and individual traits of a given human driver, e.g., selflessness and aggressiveness are unknown to an AV, and it is almost impossible to infer them in real-time during a short AV-HV interaction. Second, contrary to AVs that are expected to follow a policy, HVs do not necessarily follow a stationary policy and therefore are extremely hard to predict. To alleviate the above-mentioned challenges, we formulate the mixed-autonomy problem as a multi-agent reinforcement learning (MARL) problem and propose a decentralized framework and reward function for training cooperative AVs. Our approach enables AVs to learn the decision-making of HVs implicitly from experience, optimizes for a social utility while prioritizing safety and allowing adaptability; robustifying altruistic AVs to different human behaviors and constraining them to a safe action space. Finally, we investigate the robustness, safety and sensitivity of AVs to various HVs behavioral traits and present the settings in which the AVs can learn cooperative policies that are adaptable to different situations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.00881v1-abstract-full').style.display = 'none'; document.getElementById('2202.00881v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2201.09369">arXiv:2201.09369</a> <span> [<a href="https://arxiv.org/pdf/2201.09369">pdf</a>, <a href="https://arxiv.org/format/2201.09369">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cryptography and Security">cs.CR</span> </div> </div> <p class="title is-5 mathjax"> Efficient and Robust Classification for Sparse Attacks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Beliaev%2C+M">Mark Beliaev</a>, <a href="/search/cs?searchtype=author&query=Delgosha%2C+P">Payam Delgosha</a>, <a href="/search/cs?searchtype=author&query=Hassani%2C+H">Hamed Hassani</a>, <a href="/search/cs?searchtype=author&query=Pedarsani%2C+R">Ramtin Pedarsani</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2201.09369v1-abstract-short" style="display: inline;"> In the past two decades we have seen the popularity of neural networks increase in conjunction with their classification accuracy. Parallel to this, we have also witnessed how fragile the very same prediction models are: tiny perturbations to the inputs can cause misclassification errors throughout entire datasets. In this paper, we consider perturbations bounded by the $\ell_0$--norm, which have… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.09369v1-abstract-full').style.display = 'inline'; document.getElementById('2201.09369v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2201.09369v1-abstract-full" style="display: none;"> In the past two decades we have seen the popularity of neural networks increase in conjunction with their classification accuracy. Parallel to this, we have also witnessed how fragile the very same prediction models are: tiny perturbations to the inputs can cause misclassification errors throughout entire datasets. In this paper, we consider perturbations bounded by the $\ell_0$--norm, which have been shown as effective attacks in the domains of image-recognition, natural language processing, and malware-detection. To this end, we propose a novel defense method that consists of "truncation" and "adversarial training". We then theoretically study the Gaussian mixture setting and prove the asymptotic optimality of our proposed classifier. Motivated by the insights we obtain, we extend these components to neural network classifiers. We conduct numerical experiments in the domain of computer vision using the MNIST and CIFAR datasets, demonstrating significant improvement for the robust classification error of neural networks. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.09369v1-abstract-full').style.display = 'none'; document.getElementById('2201.09369v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2112.02209">arXiv:2112.02209</a> <span> [<a href="https://arxiv.org/pdf/2112.02209">pdf</a>, <a href="https://arxiv.org/format/2112.02209">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">stat.ML</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1109/TSP.2022.3198169">10.1109/TSP.2022.3198169 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Generalized Likelihood Ratio Test for Adversarially Robust Hypothesis Testing </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Puranik%2C+B">Bhagyashree Puranik</a>, <a href="/search/cs?searchtype=author&query=Madhow%2C+U">Upamanyu Madhow</a>, <a href="/search/cs?searchtype=author&query=Pedarsani%2C+R">Ramtin Pedarsani</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2112.02209v1-abstract-short" style="display: inline;"> Machine learning models are known to be susceptible to adversarial attacks which can cause misclassification by introducing small but well designed perturbations. In this paper, we consider a classical hypothesis testing problem in order to develop fundamental insight into defending against such adversarial perturbations. We interpret an adversarial perturbation as a nuisance parameter, and propos… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.02209v1-abstract-full').style.display = 'inline'; document.getElementById('2112.02209v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2112.02209v1-abstract-full" style="display: none;"> Machine learning models are known to be susceptible to adversarial attacks which can cause misclassification by introducing small but well designed perturbations. In this paper, we consider a classical hypothesis testing problem in order to develop fundamental insight into defending against such adversarial perturbations. We interpret an adversarial perturbation as a nuisance parameter, and propose a defense based on applying the generalized likelihood ratio test (GLRT) to the resulting composite hypothesis testing problem, jointly estimating the class of interest and the adversarial perturbation. While the GLRT approach is applicable to general multi-class hypothesis testing, we first evaluate it for binary hypothesis testing in white Gaussian noise under $\ell_{\infty}$ norm-bounded adversarial perturbations, for which a known minimax defense optimizing for the worst-case attack provides a benchmark. We derive the worst-case attack for the GLRT defense, and show that its asymptotic performance (as the dimension of the data increases) approaches that of the minimax defense. For non-asymptotic regimes, we show via simulations that the GLRT defense is competitive with the minimax approach under the worst-case attack, while yielding a better robustness-accuracy tradeoff under weaker attacks. We also illustrate the GLRT approach for a multi-class hypothesis testing problem, for which a minimax strategy is not known, evaluating its performance under both noise-agnostic and noise-aware adversarial settings, by providing a method to find optimal noise-aware attacks, and heuristics to find noise-agnostic attacks that are close to optimal in the high SNR regime. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.02209v1-abstract-full').style.display = 'none'; document.getElementById('2112.02209v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted to the IEEE Transactions on Signal Processing</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.03688">arXiv:2111.03688</a> <span> [<a href="https://arxiv.org/pdf/2111.03688">pdf</a>, <a href="https://arxiv.org/format/2111.03688">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Robotics">cs.RO</span> </div> </div> <p class="title is-5 mathjax"> Towards Learning Generalizable Driving Policies from Restricted Latent Representations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Toghi%2C+B">Behrad Toghi</a>, <a href="/search/cs?searchtype=author&query=Valiente%2C+R">Rodolfo Valiente</a>, <a href="/search/cs?searchtype=author&query=Pedarsani%2C+R">Ramtin Pedarsani</a>, <a href="/search/cs?searchtype=author&query=Fallah%2C+Y+P">Yaser P. Fallah</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.03688v2-abstract-short" style="display: inline;"> Training intelligent agents that can drive autonomously in various urban and highway scenarios has been a hot topic in the robotics society within the last decades. However, the diversity of driving environments in terms of road topology and positioning of the neighboring vehicles makes this problem very challenging. It goes without saying that although scenario-specific driving policies for auton… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.03688v2-abstract-full').style.display = 'inline'; document.getElementById('2111.03688v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.03688v2-abstract-full" style="display: none;"> Training intelligent agents that can drive autonomously in various urban and highway scenarios has been a hot topic in the robotics society within the last decades. However, the diversity of driving environments in terms of road topology and positioning of the neighboring vehicles makes this problem very challenging. It goes without saying that although scenario-specific driving policies for autonomous driving are promising and can improve transportation safety and efficiency, they are clearly not a universal scalable solution. Instead, we seek decision-making schemes and driving policies that can generalize to novel and unseen environments. In this work, we capitalize on the key idea that human drivers learn abstract representations of their surroundings that are fairly similar among various driving scenarios and environments. Through these representations, human drivers are able to quickly adapt to novel environments and drive in unseen conditions. Formally, through imposing an information bottleneck, we extract a latent representation that minimizes the \textit{distance} -- a quantification that we introduce to gauge the similarity among different driving configurations -- between driving scenarios. This latent space is then employed as the input to a Q-learning module to learn generalizable driving policies. Our experiments revealed that, using this latent representation can reduce the number of crashes to about half. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.03688v2-abstract-full').style.display = 'none'; document.getElementById('2111.03688v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 April, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Under review in an IEEE Journal</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2107.05664">arXiv:2107.05664</a> <span> [<a href="https://arxiv.org/pdf/2107.05664">pdf</a>, <a href="https://arxiv.org/format/2107.05664">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Robotics">cs.RO</span> </div> </div> <p class="title is-5 mathjax"> Altruistic Maneuver Planning for Cooperative Autonomous Vehicles Using Multi-agent Advantage Actor-Critic </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Toghi%2C+B">Behrad Toghi</a>, <a href="/search/cs?searchtype=author&query=Valiente%2C+R">Rodolfo Valiente</a>, <a href="/search/cs?searchtype=author&query=Sadigh%2C+D">Dorsa Sadigh</a>, <a href="/search/cs?searchtype=author&query=Pedarsani%2C+R">Ramtin Pedarsani</a>, <a href="/search/cs?searchtype=author&query=Fallah%2C+Y+P">Yaser P. Fallah</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2107.05664v1-abstract-short" style="display: inline;"> With the adoption of autonomous vehicles on our roads, we will witness a mixed-autonomy environment where autonomous and human-driven vehicles must learn to co-exist by sharing the same road infrastructure. To attain socially-desirable behaviors, autonomous vehicles must be instructed to consider the utility of other vehicles around them in their decision-making process. Particularly, we study the… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.05664v1-abstract-full').style.display = 'inline'; document.getElementById('2107.05664v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2107.05664v1-abstract-full" style="display: none;"> With the adoption of autonomous vehicles on our roads, we will witness a mixed-autonomy environment where autonomous and human-driven vehicles must learn to co-exist by sharing the same road infrastructure. To attain socially-desirable behaviors, autonomous vehicles must be instructed to consider the utility of other vehicles around them in their decision-making process. Particularly, we study the maneuver planning problem for autonomous vehicles and investigate how a decentralized reward structure can induce altruism in their behavior and incentivize them to account for the interest of other autonomous and human-driven vehicles. This is a challenging problem due to the ambiguity of a human driver's willingness to cooperate with an autonomous vehicle. Thus, in contrast with the existing works which rely on behavior models of human drivers, we take an end-to-end approach and let the autonomous agents to implicitly learn the decision-making process of human drivers only from experience. We introduce a multi-agent variant of the synchronous Advantage Actor-Critic (A2C) algorithm and train agents that coordinate with each other and can affect the behavior of human drivers to improve traffic flow and safety. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.05664v1-abstract-full').style.display = 'none'; document.getElementById('2107.05664v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted to 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2021) - Workshop on Autonomous Driving: Perception, Prediction and Planning</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2107.00898">arXiv:2107.00898</a> <span> [<a href="https://arxiv.org/pdf/2107.00898">pdf</a>, <a href="https://arxiv.org/format/2107.00898">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Robotics">cs.RO</span> </div> </div> <p class="title is-5 mathjax"> Cooperative Autonomous Vehicles that Sympathize with Human Drivers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Toghi%2C+B">Behrad Toghi</a>, <a href="/search/cs?searchtype=author&query=Valiente%2C+R">Rodolfo Valiente</a>, <a href="/search/cs?searchtype=author&query=Sadigh%2C+D">Dorsa Sadigh</a>, <a href="/search/cs?searchtype=author&query=Pedarsani%2C+R">Ramtin Pedarsani</a>, <a href="/search/cs?searchtype=author&query=Fallah%2C+Y+P">Yaser P. Fallah</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2107.00898v1-abstract-short" style="display: inline;"> Widespread adoption of autonomous vehicles will not become a reality until solutions are developed that enable these intelligent agents to co-exist with humans. This includes safely and efficiently interacting with human-driven vehicles, especially in both conflictive and competitive scenarios. We build up on the prior work on socially-aware navigation and borrow the concept of social value orient… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.00898v1-abstract-full').style.display = 'inline'; document.getElementById('2107.00898v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2107.00898v1-abstract-full" style="display: none;"> Widespread adoption of autonomous vehicles will not become a reality until solutions are developed that enable these intelligent agents to co-exist with humans. This includes safely and efficiently interacting with human-driven vehicles, especially in both conflictive and competitive scenarios. We build up on the prior work on socially-aware navigation and borrow the concept of social value orientation from psychology -- that formalizes how much importance a person allocates to the welfare of others -- in order to induce altruistic behavior in autonomous driving. In contrast with existing works that explicitly model the behavior of human drivers and rely on their expected response to create opportunities for cooperation, our Sympathetic Cooperative Driving (SymCoDrive) paradigm trains altruistic agents that realize safe and smooth traffic flow in competitive driving scenarios only from experiential learning and without any explicit coordination. We demonstrate a significant improvement in both safety and traffic-level metrics as a result of this altruistic behavior and importantly conclude that the level of altruism in agents requires proper tuning as agents that are too altruistic also lead to sub-optimal traffic flow. The code and supplementary material are available at: https://symcodrive.toghi.net/ <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.00898v1-abstract-full').style.display = 'none'; document.getElementById('2107.00898v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted in 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2107.00200">arXiv:2107.00200</a> <span> [<a href="https://arxiv.org/pdf/2107.00200">pdf</a>, <a href="https://arxiv.org/format/2107.00200">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Robotics">cs.RO</span> </div> </div> <p class="title is-5 mathjax"> Social Coordination and Altruism in Autonomous Driving </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Toghi%2C+B">Behrad Toghi</a>, <a href="/search/cs?searchtype=author&query=Valiente%2C+R">Rodolfo Valiente</a>, <a href="/search/cs?searchtype=author&query=Sadigh%2C+D">Dorsa Sadigh</a>, <a href="/search/cs?searchtype=author&query=Pedarsani%2C+R">Ramtin Pedarsani</a>, <a href="/search/cs?searchtype=author&query=Fallah%2C+Y+P">Yaser P. Fallah</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2107.00200v4-abstract-short" style="display: inline;"> Despite the advances in the autonomous driving domain, autonomous vehicles (AVs) are still inefficient and limited in terms of cooperating with each other or coordinating with vehicles operated by humans. A group of autonomous and human-driven vehicles (HVs) which work together to optimize an altruistic social utility -- as opposed to the egoistic individual utility -- can co-exist seamlessly and… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.00200v4-abstract-full').style.display = 'inline'; document.getElementById('2107.00200v4-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2107.00200v4-abstract-full" style="display: none;"> Despite the advances in the autonomous driving domain, autonomous vehicles (AVs) are still inefficient and limited in terms of cooperating with each other or coordinating with vehicles operated by humans. A group of autonomous and human-driven vehicles (HVs) which work together to optimize an altruistic social utility -- as opposed to the egoistic individual utility -- can co-exist seamlessly and assure safety and efficiency on the road. Achieving this mission without explicit coordination among agents is challenging, mainly due to the difficulty of predicting the behavior of humans with heterogeneous preferences in mixed-autonomy environments. Formally, we model an AV's maneuver planning in mixed-autonomy traffic as a partially-observable stochastic game and attempt to derive optimal policies that lead to socially-desirable outcomes using a multi-agent reinforcement learning framework. We introduce a quantitative representation of the AVs' social preferences and design a distributed reward structure that induces altruism into their decision making process. Our altruistic AVs are able to form alliances, guide the traffic, and affect the behavior of the HVs to handle competitive driving scenarios. As a case study, we compare egoistic AVs to our altruistic autonomous agents in a highway merging setting and demonstrate the emerging behaviors that lead to a noticeable improvement in the number of successful merges as well as the overall traffic flow and safety. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.00200v4-abstract-full').style.display = 'none'; document.getElementById('2107.00200v4-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 April, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Under Review in an IEEE Journal</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.04678">arXiv:2106.04678</a> <span> [<a href="https://arxiv.org/pdf/2106.04678">pdf</a>, <a href="https://arxiv.org/format/2106.04678">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Multiagent Systems">cs.MA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Robotics">cs.RO</span> </div> </div> <p class="title is-5 mathjax"> Incentivizing Efficient Equilibria in Traffic Networks with Mixed Autonomy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=B%C4%B1y%C4%B1k%2C+E">Erdem B谋y谋k</a>, <a href="/search/cs?searchtype=author&query=Lazar%2C+D+A">Daniel A. Lazar</a>, <a href="/search/cs?searchtype=author&query=Pedarsani%2C+R">Ramtin Pedarsani</a>, <a href="/search/cs?searchtype=author&query=Sadigh%2C+D">Dorsa Sadigh</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.04678v1-abstract-short" style="display: inline;"> Traffic congestion has large economic and social costs. The introduction of autonomous vehicles can potentially reduce this congestion by increasing road capacity via vehicle platooning and by creating an avenue for influencing people's choice of routes. We consider a network of parallel roads with two modes of transportation: (i) human drivers, who will choose the quickest route available to them… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.04678v1-abstract-full').style.display = 'inline'; document.getElementById('2106.04678v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.04678v1-abstract-full" style="display: none;"> Traffic congestion has large economic and social costs. The introduction of autonomous vehicles can potentially reduce this congestion by increasing road capacity via vehicle platooning and by creating an avenue for influencing people's choice of routes. We consider a network of parallel roads with two modes of transportation: (i) human drivers, who will choose the quickest route available to them, and (ii) a ride hailing service, which provides an array of autonomous vehicle route options, each with different prices, to users. We formalize a model of vehicle flow in mixed autonomy and a model of how autonomous service users make choices between routes with different prices and latencies. Developing an algorithm to learn the preferences of the users, we formulate a planning optimization that chooses prices to maximize a social objective. We demonstrate the benefit of the proposed scheme by comparing the results to theoretical benchmarks which we show can be efficiently calculated. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.04678v1-abstract-full').style.display = 'none'; document.getElementById('2106.04678v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 May, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 7 figures, 2 tables. To appear at IEEE Transactions on Control of Network Systems (TCNS). arXiv admin note: substantial text overlap with arXiv:1904.02209</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2105.06593">arXiv:2105.06593</a> <span> [<a href="https://arxiv.org/pdf/2105.06593">pdf</a>, <a href="https://arxiv.org/format/2105.06593">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Multiagent Systems">cs.MA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computer Science and Game Theory">cs.GT</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Emergent Prosociality in Multi-Agent Games Through Gifting </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Wang%2C+W+Z">Woodrow Z. Wang</a>, <a href="/search/cs?searchtype=author&query=Beliaev%2C+M">Mark Beliaev</a>, <a href="/search/cs?searchtype=author&query=B%C4%B1y%C4%B1k%2C+E">Erdem B谋y谋k</a>, <a href="/search/cs?searchtype=author&query=Lazar%2C+D+A">Daniel A. Lazar</a>, <a href="/search/cs?searchtype=author&query=Pedarsani%2C+R">Ramtin Pedarsani</a>, <a href="/search/cs?searchtype=author&query=Sadigh%2C+D">Dorsa Sadigh</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2105.06593v1-abstract-short" style="display: inline;"> Coordination is often critical to forming prosocial behaviors -- behaviors that increase the overall sum of rewards received by all agents in a multi-agent game. However, state of the art reinforcement learning algorithms often suffer from converging to socially less desirable equilibria when multiple equilibria exist. Previous works address this challenge with explicit reward shaping, which requi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.06593v1-abstract-full').style.display = 'inline'; document.getElementById('2105.06593v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2105.06593v1-abstract-full" style="display: none;"> Coordination is often critical to forming prosocial behaviors -- behaviors that increase the overall sum of rewards received by all agents in a multi-agent game. However, state of the art reinforcement learning algorithms often suffer from converging to socially less desirable equilibria when multiple equilibria exist. Previous works address this challenge with explicit reward shaping, which requires the strong assumption that agents can be forced to be prosocial. We propose using a less restrictive peer-rewarding mechanism, gifting, that guides the agents toward more socially desirable equilibria while allowing agents to remain selfish and decentralized. Gifting allows each agent to give some of their reward to other agents. We employ a theoretical framework that captures the benefit of gifting in converging to the prosocial equilibrium by characterizing the equilibria's basins of attraction in a dynamical system. With gifting, we demonstrate increased convergence of high risk, general-sum coordination games to the prosocial equilibrium both via numerical analysis and experiments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.06593v1-abstract-full').style.display = 'none'; document.getElementById('2105.06593v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 May, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 6 figures, IJCAI 2021</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2104.02189">arXiv:2104.02189</a> <span> [<a href="https://arxiv.org/pdf/2104.02189">pdf</a>, <a href="https://arxiv.org/ps/2104.02189">ps</a>, <a href="https://arxiv.org/format/2104.02189">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">stat.ML</span> </div> </div> <p class="title is-5 mathjax"> Robust Classification Under $\ell_0$ Attack for the Gaussian Mixture Model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Delgosha%2C+P">Payam Delgosha</a>, <a href="/search/cs?searchtype=author&query=Hassani%2C+H">Hamed Hassani</a>, <a href="/search/cs?searchtype=author&query=Pedarsani%2C+R">Ramtin Pedarsani</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2104.02189v1-abstract-short" style="display: inline;"> It is well-known that machine learning models are vulnerable to small but cleverly-designed adversarial perturbations that can cause misclassification. While there has been major progress in designing attacks and defenses for various adversarial settings, many fundamental and theoretical problems are yet to be resolved. In this paper, we consider classification in the presence of $\ell_0$-bounded… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.02189v1-abstract-full').style.display = 'inline'; document.getElementById('2104.02189v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2104.02189v1-abstract-full" style="display: none;"> It is well-known that machine learning models are vulnerable to small but cleverly-designed adversarial perturbations that can cause misclassification. While there has been major progress in designing attacks and defenses for various adversarial settings, many fundamental and theoretical problems are yet to be resolved. In this paper, we consider classification in the presence of $\ell_0$-bounded adversarial perturbations, a.k.a. sparse attacks. This setting is significantly different from other $\ell_p$-adversarial settings, with $p\geq 1$, as the $\ell_0$-ball is non-convex and highly non-smooth. Under the assumption that data is distributed according to the Gaussian mixture model, our goal is to characterize the optimal robust classifier and the corresponding robust classification error as well as a variety of trade-offs between robustness, accuracy, and the adversary's budget. To this end, we develop a novel classification algorithm called FilTrun that has two main modules: Filtration and Truncation. The key idea of our method is to first filter out the non-robust coordinates of the input and then apply a carefully-designed truncated inner product for classification. By analyzing the performance of FilTrun, we derive an upper bound on the optimal robust classification error. We also find a lower bound by designing a specific adversarial strategy that enables us to derive the corresponding robust classifier and its achieved error. For the case that the covariance matrix of the Gaussian mixtures is diagonal, we show that as the input's dimension gets large, the upper and lower bounds converge; i.e. we characterize the asymptotically-optimal robust classifier. Throughout, we discuss several examples that illustrate interesting behaviors such as the existence of a phase transition for adversary's budget determining whether the effect of adversarial perturbation can be fully neutralized. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.02189v1-abstract-full').style.display = 'none'; document.getElementById('2104.02189v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2103.13553">arXiv:2103.13553</a> <span> [<a href="https://arxiv.org/pdf/2103.13553">pdf</a>, <a href="https://arxiv.org/format/2103.13553">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optimization and Control">math.OC</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Social and Information Networks">cs.SI</span> </div> </div> <p class="title is-5 mathjax"> The Role of Differentiation in Tolling of Traffic Networks with Mixed Autonomy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Lazar%2C+D+A">Daniel A. Lazar</a>, <a href="/search/cs?searchtype=author&query=Pedarsani%2C+R">Ramtin Pedarsani</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2103.13553v2-abstract-short" style="display: inline;"> With autonomous vehicles now sharing roads with human drivers, the era of mixed autonomy brings new challenges in dealing with congestion. One cause of congestion is when vehicle users choose their routes selfishly to minimize their personal travel delay rather than a global travel delay, and prior works address this phenomenon using tolling to influence routing choices, but do not address the set… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.13553v2-abstract-full').style.display = 'inline'; document.getElementById('2103.13553v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2103.13553v2-abstract-full" style="display: none;"> With autonomous vehicles now sharing roads with human drivers, the era of mixed autonomy brings new challenges in dealing with congestion. One cause of congestion is when vehicle users choose their routes selfishly to minimize their personal travel delay rather than a global travel delay, and prior works address this phenomenon using tolling to influence routing choices, but do not address the setting of mixed autonomy. Tolls may be differentiated, meaning different users of a road experience different tolls, or they may be anonymous; the latter is desirable to allay concerns of fairness and privacy, as well as logistical challenges. In this work we examine the role of differentiation in traffic networks with mixed autonomy. Specifically, we first establish differentiated tolls which completely eliminate inefficiency due to selfish routing. We then show the fundamental limitations of anonymous tolls in our setting, and we provide anonymous tolls with mild performance guarantees. We show that in parallel networks, an infinitesimal differentiation in tolls is enough to guarantee optimality, and finally we establish a lower bound on the inefficiency of variable marginal cost tolling in the mixed autonomy setting. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.13553v2-abstract-full').style.display = 'none'; document.getElementById('2103.13553v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 August, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2012.15749">arXiv:2012.15749</a> <span> [<a href="https://arxiv.org/pdf/2012.15749">pdf</a>, <a href="https://arxiv.org/format/2012.15749">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Social and Information Networks">cs.SI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Systems and Control">eess.SY</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1145/3450267.3450546">10.1145/3450267.3450546 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Incentivizing Routing Choices for Safe and Efficient Transportation in the Face of the COVID-19 Pandemic </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Beliaev%2C+M">Mark Beliaev</a>, <a href="/search/cs?searchtype=author&query=B%C4%B1y%C4%B1k%2C+E">Erdem B谋y谋k</a>, <a href="/search/cs?searchtype=author&query=Lazar%2C+D+A">Daniel A. Lazar</a>, <a href="/search/cs?searchtype=author&query=Wang%2C+W+Z">Woodrow Z. Wang</a>, <a href="/search/cs?searchtype=author&query=Sadigh%2C+D">Dorsa Sadigh</a>, <a href="/search/cs?searchtype=author&query=Pedarsani%2C+R">Ramtin Pedarsani</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2012.15749v2-abstract-short" style="display: inline;"> The COVID-19 pandemic has severely affected many aspects of people's daily lives. While many countries are in a re-opening stage, some effects of the pandemic on people's behaviors are expected to last much longer, including how they choose between different transport options. Experts predict considerably delayed recovery of the public transport options, as people try to avoid crowded places. In t… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.15749v2-abstract-full').style.display = 'inline'; document.getElementById('2012.15749v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2012.15749v2-abstract-full" style="display: none;"> The COVID-19 pandemic has severely affected many aspects of people's daily lives. While many countries are in a re-opening stage, some effects of the pandemic on people's behaviors are expected to last much longer, including how they choose between different transport options. Experts predict considerably delayed recovery of the public transport options, as people try to avoid crowded places. In turn, significant increases in traffic congestion are expected, since people are likely to prefer using their own vehicles or taxis as opposed to riskier and more crowded options such as the railway. In this paper, we propose to use financial incentives to set the tradeoff between risk of infection and congestion to achieve safe and efficient transportation networks. To this end, we formulate a network optimization problem to optimize taxi fares. For our framework to be useful in various cities and times of the day without much designer effort, we also propose a data-driven approach to learn human preferences about transport options, which is then used in our taxi fare optimization. Our user studies and simulation experiments show our framework is able to minimize congestion and risk of infection. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.15749v2-abstract-full').style.display = 'none'; document.getElementById('2012.15749v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 February, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">ICCPS 2021. 11 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2012.14453">arXiv:2012.14453</a> <span> [<a href="https://arxiv.org/pdf/2012.14453">pdf</a>, <a href="https://arxiv.org/format/2012.14453">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Distributed, Parallel, and Cluster Computing">cs.DC</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">stat.ML</span> </div> </div> <p class="title is-5 mathjax"> Straggler-Resilient Federated Learning: Leveraging the Interplay Between Statistical Accuracy and System Heterogeneity </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Reisizadeh%2C+A">Amirhossein Reisizadeh</a>, <a href="/search/cs?searchtype=author&query=Tziotis%2C+I">Isidoros Tziotis</a>, <a href="/search/cs?searchtype=author&query=Hassani%2C+H">Hamed Hassani</a>, <a href="/search/cs?searchtype=author&query=Mokhtari%2C+A">Aryan Mokhtari</a>, <a href="/search/cs?searchtype=author&query=Pedarsani%2C+R">Ramtin Pedarsani</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2012.14453v1-abstract-short" style="display: inline;"> Federated Learning is a novel paradigm that involves learning from data samples distributed across a large network of clients while the data remains local. It is, however, known that federated learning is prone to multiple system challenges including system heterogeneity where clients have different computation and communication capabilities. Such heterogeneity in clients' computation speeds has a… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.14453v1-abstract-full').style.display = 'inline'; document.getElementById('2012.14453v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2012.14453v1-abstract-full" style="display: none;"> Federated Learning is a novel paradigm that involves learning from data samples distributed across a large network of clients while the data remains local. It is, however, known that federated learning is prone to multiple system challenges including system heterogeneity where clients have different computation and communication capabilities. Such heterogeneity in clients' computation speeds has a negative effect on the scalability of federated learning algorithms and causes significant slow-down in their runtime due to the existence of stragglers. In this paper, we propose a novel straggler-resilient federated learning method that incorporates statistical characteristics of the clients' data to adaptively select the clients in order to speed up the learning procedure. The key idea of our algorithm is to start the training procedure with faster nodes and gradually involve the slower nodes in the model training once the statistical accuracy of the data corresponding to the current participating nodes is reached. The proposed approach reduces the overall runtime required to achieve the statistical accuracy of data of all nodes, as the solution for each stage is close to the solution of the subsequent stage with more samples and can be used as a warm-start. Our theoretical results characterize the speedup gain in comparison to standard federated benchmarks for strongly convex objectives, and our numerical experiments also demonstrate significant speedups in wall-clock time of our straggler-resilient method compared to federated learning benchmarks. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.14453v1-abstract-full').style.display = 'none'; document.getElementById('2012.14453v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2011.07835">arXiv:2011.07835</a> <span> [<a href="https://arxiv.org/pdf/2011.07835">pdf</a>, <a href="https://arxiv.org/ps/2011.07835">ps</a>, <a href="https://arxiv.org/format/2011.07835">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">stat.ML</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cryptography and Security">cs.CR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Adversarially Robust Classification based on GLRT </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Puranik%2C+B">Bhagyashree Puranik</a>, <a href="/search/cs?searchtype=author&query=Madhow%2C+U">Upamanyu Madhow</a>, <a href="/search/cs?searchtype=author&query=Pedarsani%2C+R">Ramtin Pedarsani</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2011.07835v1-abstract-short" style="display: inline;"> Machine learning models are vulnerable to adversarial attacks that can often cause misclassification by introducing small but well designed perturbations. In this paper, we explore, in the setting of classical composite hypothesis testing, a defense strategy based on the generalized likelihood ratio test (GLRT), which jointly estimates the class of interest and the adversarial perturbation. We eva… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.07835v1-abstract-full').style.display = 'inline'; document.getElementById('2011.07835v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2011.07835v1-abstract-full" style="display: none;"> Machine learning models are vulnerable to adversarial attacks that can often cause misclassification by introducing small but well designed perturbations. In this paper, we explore, in the setting of classical composite hypothesis testing, a defense strategy based on the generalized likelihood ratio test (GLRT), which jointly estimates the class of interest and the adversarial perturbation. We evaluate the GLRT approach for the special case of binary hypothesis testing in white Gaussian noise under $\ell_{\infty}$ norm-bounded adversarial perturbations, a setting for which a minimax strategy optimizing for the worst-case attack is known. We show that the GLRT approach yields performance competitive with that of the minimax approach under the worst-case attack, and observe that it yields a better robustness-accuracy trade-off under weaker attacks, depending on the values of signal components relative to the attack budget. We also observe that the GLRT defense generalizes naturally to more complex models for which optimal minimax classifiers are not known. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.07835v1-abstract-full').style.display = 'none'; document.getElementById('2011.07835v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted to the International Conference on Acoustics, Speech, and Signal Processing (ICASSP) 2021</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2010.13275">arXiv:2010.13275</a> <span> [<a href="https://arxiv.org/pdf/2010.13275">pdf</a>, <a href="https://arxiv.org/format/2010.13275">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">stat.ML</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Information Theory">cs.IT</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> </div> </div> <p class="title is-5 mathjax"> Asymptotic Behavior of Adversarial Training in Binary Classification </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Taheri%2C+H">Hossein Taheri</a>, <a href="/search/cs?searchtype=author&query=Pedarsani%2C+R">Ramtin Pedarsani</a>, <a href="/search/cs?searchtype=author&query=Thrampoulidis%2C+C">Christos Thrampoulidis</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2010.13275v3-abstract-short" style="display: inline;"> It has been consistently reported that many machine learning models are susceptible to adversarial attacks i.e., small additive adversarial perturbations applied to data points can cause misclassification. Adversarial training using empirical risk minimization is considered to be the state-of-the-art method for defense against adversarial attacks. Despite being successful in practice, several prob… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.13275v3-abstract-full').style.display = 'inline'; document.getElementById('2010.13275v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2010.13275v3-abstract-full" style="display: none;"> It has been consistently reported that many machine learning models are susceptible to adversarial attacks i.e., small additive adversarial perturbations applied to data points can cause misclassification. Adversarial training using empirical risk minimization is considered to be the state-of-the-art method for defense against adversarial attacks. Despite being successful in practice, several problems in understanding generalization performance of adversarial training remain open. In this paper, we derive precise theoretical predictions for the performance of adversarial training in binary classification. We consider the high-dimensional regime where the dimension of data grows with the size of the training data-set at a constant ratio. Our results provide exact asymptotics for standard and adversarial test errors of the estimators obtained by adversarial training with $\ell_q$-norm bounded perturbations ($q \ge 1$) for both discriminative binary models and generative Gaussian-mixture models with correlated features. Furthermore, we use these sharp predictions to uncover several intriguing observations on the role of various parameters including the over-parameterization ratio, the data model, and the attack budget on the adversarial and standard errors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.13275v3-abstract-full').style.display = 'none'; document.getElementById('2010.13275v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 October, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">V3: additional theoretical results, extensions to correlated features</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2009.00198">arXiv:2009.00198</a> <span> [<a href="https://arxiv.org/pdf/2009.00198">pdf</a>, <a href="https://arxiv.org/format/2009.00198">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optimization and Control">math.OC</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computer Science and Game Theory">cs.GT</span> </div> </div> <p class="title is-5 mathjax"> Optimal Tolling for Multitype Mixed Autonomous Traffic Networks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Lazar%2C+D+A">Daniel A. Lazar</a>, <a href="/search/cs?searchtype=author&query=Pedarsani%2C+R">Ramtin Pedarsani</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2009.00198v1-abstract-short" style="display: inline;"> When selfish users share a road network and minimize their individual travel costs, the equilibrium they reach can be worse than the socially optimal routing. Tolls are often used to mitigate this effect in traditional congestion games, where all vehicle contribute identically to congestion. However, with the proliferation of autonomous vehicles and driver-assistance technology, vehicles become he… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.00198v1-abstract-full').style.display = 'inline'; document.getElementById('2009.00198v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2009.00198v1-abstract-full" style="display: none;"> When selfish users share a road network and minimize their individual travel costs, the equilibrium they reach can be worse than the socially optimal routing. Tolls are often used to mitigate this effect in traditional congestion games, where all vehicle contribute identically to congestion. However, with the proliferation of autonomous vehicles and driver-assistance technology, vehicles become heterogeneous in how they contribute to road latency. This magnifies the potential inefficiencies due to selfish routing and invalidates traditional tolling methods. To address this, we consider a network of parallel roads where the latency on each road is an affine function of the quantity of flow of each vehicle type. We provide tolls (which differentiate between vehicle types) which are guaranteed to minimize social cost at equilibrium. The tolls are a function of a calculated optimal routing; to enable this tolling, we prove that some element in the set of optimal routings has a lack of cycles in a graph representing the way vehicles types share roads. We then show that unless a planner can differentiate between vehicle types in the tolls given, the resulting equilibrium can be unboundedly worse than the optimal routing, and that marginal cost tolling fails in our setting. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.00198v1-abstract-full').style.display = 'none'; document.getElementById('2009.00198v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 August, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2006.08917">arXiv:2006.08917</a> <span> [<a href="https://arxiv.org/pdf/2006.08917">pdf</a>, <a href="https://arxiv.org/format/2006.08917">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">stat.ML</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Information Theory">cs.IT</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> </div> </div> <p class="title is-5 mathjax"> Fundamental Limits of Ridge-Regularized Empirical Risk Minimization in High Dimensions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Taheri%2C+H">Hossein Taheri</a>, <a href="/search/cs?searchtype=author&query=Pedarsani%2C+R">Ramtin Pedarsani</a>, <a href="/search/cs?searchtype=author&query=Thrampoulidis%2C+C">Christos Thrampoulidis</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2006.08917v2-abstract-short" style="display: inline;"> Empirical Risk Minimization (ERM) algorithms are widely used in a variety of estimation and prediction tasks in signal-processing and machine learning applications. Despite their popularity, a theory that explains their statistical properties in modern regimes where both the number of measurements and the number of unknown parameters is large is only recently emerging. In this paper, we characteri… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.08917v2-abstract-full').style.display = 'inline'; document.getElementById('2006.08917v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2006.08917v2-abstract-full" style="display: none;"> Empirical Risk Minimization (ERM) algorithms are widely used in a variety of estimation and prediction tasks in signal-processing and machine learning applications. Despite their popularity, a theory that explains their statistical properties in modern regimes where both the number of measurements and the number of unknown parameters is large is only recently emerging. In this paper, we characterize for the first time the fundamental limits on the statistical accuracy of convex ERM for inference in high-dimensional generalized linear models. For a stylized setting with Gaussian features and problem dimensions that grow large at a proportional rate, we start with sharp performance characterizations and then derive tight lower bounds on the estimation and prediction error that hold over a wide class of loss functions and for any value of the regularization parameter. Our precise analysis has several attributes. First, it leads to a recipe for optimally tuning the loss function and the regularization parameter. Second, it allows to precisely quantify the sub-optimality of popular heuristic choices: for instance, we show that optimally-tuned least-squares is (perhaps surprisingly) approximately optimal for standard logistic data, but the sub-optimality gap grows drastically as the signal strength increases. Third, we use the bounds to precisely assess the merits of ridge-regularization as a function of the over-parameterization ratio. Notably, our bounds are expressed in terms of the Fisher Information of random variables that are simple functions of the data distribution, thus making ties to corresponding bounds in classical statistics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.08917v2-abstract-full').style.display = 'none'; document.getElementById('2006.08917v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 June, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2006.08907">arXiv:2006.08907</a> <span> [<a href="https://arxiv.org/pdf/2006.08907">pdf</a>, <a href="https://arxiv.org/format/2006.08907">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optimization and Control">math.OC</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">stat.ML</span> </div> </div> <p class="title is-5 mathjax"> Robust Federated Learning: The Case of Affine Distribution Shifts </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Reisizadeh%2C+A">Amirhossein Reisizadeh</a>, <a href="/search/cs?searchtype=author&query=Farnia%2C+F">Farzan Farnia</a>, <a href="/search/cs?searchtype=author&query=Pedarsani%2C+R">Ramtin Pedarsani</a>, <a href="/search/cs?searchtype=author&query=Jadbabaie%2C+A">Ali Jadbabaie</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2006.08907v1-abstract-short" style="display: inline;"> Federated learning is a distributed paradigm that aims at training models using samples distributed across multiple users in a network while keeping the samples on users' devices with the aim of efficiency and protecting users privacy. In such settings, the training data is often statistically heterogeneous and manifests various distribution shifts across users, which degrades the performance of t… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.08907v1-abstract-full').style.display = 'inline'; document.getElementById('2006.08907v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2006.08907v1-abstract-full" style="display: none;"> Federated learning is a distributed paradigm that aims at training models using samples distributed across multiple users in a network while keeping the samples on users' devices with the aim of efficiency and protecting users privacy. In such settings, the training data is often statistically heterogeneous and manifests various distribution shifts across users, which degrades the performance of the learnt model. The primary goal of this paper is to develop a robust federated learning algorithm that achieves satisfactory performance against distribution shifts in users' samples. To achieve this goal, we first consider a structured affine distribution shift in users' data that captures the device-dependent data heterogeneity in federated settings. This perturbation model is applicable to various federated learning problems such as image classification where the images undergo device-dependent imperfections, e.g. different intensity, contrast, and brightness. To address affine distribution shifts across users, we propose a Federated Learning framework Robust to Affine distribution shifts (FLRA) that is provably robust against affine Wasserstein shifts to the distribution of observed samples. To solve the FLRA's distributed minimax problem, we propose a fast and efficient optimization method and provide convergence guarantees via a gradient Descent Ascent (GDA) method. We further prove generalization error bounds for the learnt classifier to show proper generalization from empirical distribution of samples to the true underlying distribution. We perform several numerical experiments to empirically support FLRA. We show that an affine distribution shift indeed suffices to significantly decrease the performance of the learnt classifier in a new test user, and our proposed algorithm achieves a significant gain in comparison to standard federated learning and adversarial training methods. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.08907v1-abstract-full').style.display = 'none'; document.getElementById('2006.08907v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 June, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2002.09964">arXiv:2002.09964</a> <span> [<a href="https://arxiv.org/pdf/2002.09964">pdf</a>, <a href="https://arxiv.org/format/2002.09964">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Distributed, Parallel, and Cluster Computing">cs.DC</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Multiagent Systems">cs.MA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Systems and Control">eess.SY</span> </div> </div> <p class="title is-5 mathjax"> Quantized Decentralized Stochastic Learning over Directed Graphs </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Taheri%2C+H">Hossein Taheri</a>, <a href="/search/cs?searchtype=author&query=Mokhtari%2C+A">Aryan Mokhtari</a>, <a href="/search/cs?searchtype=author&query=Hassani%2C+H">Hamed Hassani</a>, <a href="/search/cs?searchtype=author&query=Pedarsani%2C+R">Ramtin Pedarsani</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2002.09964v6-abstract-short" style="display: inline;"> We consider a decentralized stochastic learning problem where data points are distributed among computing nodes communicating over a directed graph. As the model size gets large, decentralized learning faces a major bottleneck that is the heavy communication load due to each node transmitting large messages (model updates) to its neighbors. To tackle this bottleneck, we propose the quantized decen… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2002.09964v6-abstract-full').style.display = 'inline'; document.getElementById('2002.09964v6-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2002.09964v6-abstract-full" style="display: none;"> We consider a decentralized stochastic learning problem where data points are distributed among computing nodes communicating over a directed graph. As the model size gets large, decentralized learning faces a major bottleneck that is the heavy communication load due to each node transmitting large messages (model updates) to its neighbors. To tackle this bottleneck, we propose the quantized decentralized stochastic learning algorithm over directed graphs that is based on the push-sum algorithm in decentralized consensus optimization. More importantly, we prove that our algorithm achieves the same convergence rates of the decentralized stochastic learning algorithm with exact-communication for both convex and non-convex losses. Numerical evaluations corroborate our main theoretical results and illustrate significant speed-up compared to the exact-communication methods. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2002.09964v6-abstract-full').style.display = 'none'; document.getElementById('2002.09964v6-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 February, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">fixing typos, minor edits</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2002.09580">arXiv:2002.09580</a> <span> [<a href="https://arxiv.org/pdf/2002.09580">pdf</a>, <a href="https://arxiv.org/format/2002.09580">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">stat.ML</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> </div> </div> <p class="title is-5 mathjax"> Polarizing Front Ends for Robust CNNs </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Bakiskan%2C+C">Can Bakiskan</a>, <a href="/search/cs?searchtype=author&query=Gopalakrishnan%2C+S">Soorya Gopalakrishnan</a>, <a href="/search/cs?searchtype=author&query=Cekic%2C+M">Metehan Cekic</a>, <a href="/search/cs?searchtype=author&query=Madhow%2C+U">Upamanyu Madhow</a>, <a href="/search/cs?searchtype=author&query=Pedarsani%2C+R">Ramtin Pedarsani</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2002.09580v1-abstract-short" style="display: inline;"> The vulnerability of deep neural networks to small, adversarially designed perturbations can be attributed to their "excessive linearity." In this paper, we propose a bottom-up strategy for attenuating adversarial perturbations using a nonlinear front end which polarizes and quantizes the data. We observe that ideal polarization can be utilized to completely eliminate perturbations, develop algori… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2002.09580v1-abstract-full').style.display = 'inline'; document.getElementById('2002.09580v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2002.09580v1-abstract-full" style="display: none;"> The vulnerability of deep neural networks to small, adversarially designed perturbations can be attributed to their "excessive linearity." In this paper, we propose a bottom-up strategy for attenuating adversarial perturbations using a nonlinear front end which polarizes and quantizes the data. We observe that ideal polarization can be utilized to completely eliminate perturbations, develop algorithms to learn approximately polarizing bases for data, and investigate the effectiveness of the proposed strategy on the MNIST and Fashion MNIST datasets. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2002.09580v1-abstract-full').style.display = 'none'; document.getElementById('2002.09580v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 February, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Published in 45th International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2020)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2002.07284">arXiv:2002.07284</a> <span> [<a href="https://arxiv.org/pdf/2002.07284">pdf</a>, <a href="https://arxiv.org/format/2002.07284">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Statistics Theory">math.ST</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Information Theory">cs.IT</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">stat.ML</span> </div> </div> <p class="title is-5 mathjax"> Sharp Asymptotics and Optimal Performance for Inference in Binary Models </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Taheri%2C+H">Hossein Taheri</a>, <a href="/search/cs?searchtype=author&query=Pedarsani%2C+R">Ramtin Pedarsani</a>, <a href="/search/cs?searchtype=author&query=Thrampoulidis%2C+C">Christos Thrampoulidis</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2002.07284v2-abstract-short" style="display: inline;"> We study convex empirical risk minimization for high-dimensional inference in binary models. Our first result sharply predicts the statistical performance of such estimators in the linear asymptotic regime under isotropic Gaussian features. Importantly, the predictions hold for a wide class of convex loss functions, which we exploit in order to prove a bound on the best achievable performance amon… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2002.07284v2-abstract-full').style.display = 'inline'; document.getElementById('2002.07284v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2002.07284v2-abstract-full" style="display: none;"> We study convex empirical risk minimization for high-dimensional inference in binary models. Our first result sharply predicts the statistical performance of such estimators in the linear asymptotic regime under isotropic Gaussian features. Importantly, the predictions hold for a wide class of convex loss functions, which we exploit in order to prove a bound on the best achievable performance among them. Notably, we show that the proposed bound is tight for popular binary models (such as Signed, Logistic or Probit), by constructing appropriate loss functions that achieve it. More interestingly, for binary linear classification under the Logistic and Probit models, we prove that the performance of least-squares is no worse than 0.997 and 0.98 times the optimal one. Numerical simulations corroborate our theoretical findings and suggest they are accurate even for relatively small problem dimensions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2002.07284v2-abstract-full').style.display = 'none'; document.getElementById('2002.07284v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 February, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 February, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1912.09512">arXiv:1912.09512</a> <span> [<a href="https://arxiv.org/pdf/1912.09512">pdf</a>, <a href="https://arxiv.org/format/1912.09512">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Distributed, Parallel, and Cluster Computing">cs.DC</span> </div> </div> <p class="title is-5 mathjax"> Edge Computing in the Dark: Leveraging Contextual-Combinatorial Bandit and Coded Computing </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Yang%2C+C">Chien-Sheng Yang</a>, <a href="/search/cs?searchtype=author&query=Pedarsani%2C+R">Ramtin Pedarsani</a>, <a href="/search/cs?searchtype=author&query=Avestimehr%2C+A+S">A. Salman Avestimehr</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1912.09512v2-abstract-short" style="display: inline;"> With recent advancements in edge computing capabilities, there has been a significant increase in utilizing the edge cloud for event-driven and time-sensitive computations. However, large-scale edge computing networks can suffer substantially from unpredictable and unreliable computing resources which can result in high variability of service quality. Thus, it is crucial to design efficient task s… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1912.09512v2-abstract-full').style.display = 'inline'; document.getElementById('1912.09512v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1912.09512v2-abstract-full" style="display: none;"> With recent advancements in edge computing capabilities, there has been a significant increase in utilizing the edge cloud for event-driven and time-sensitive computations. However, large-scale edge computing networks can suffer substantially from unpredictable and unreliable computing resources which can result in high variability of service quality. Thus, it is crucial to design efficient task scheduling policies that guarantee quality of service and the timeliness of computation queries. In this paper, we study the problem of computation offloading over unknown edge cloud networks with a sequence of timely computation jobs. Motivated by the MapReduce computation paradigm, we assume each computation job can be partitioned to smaller Map functions that are processed at the edge, and the Reduce function is computed at the user after the Map results are collected from the edge nodes. We model the service quality (success probability of returning result back to the user within deadline) of each edge device as function of context (collection of factors that affect edge devices). The user decides the computations to offload to each device with the goal of receiving a recoverable set of computation results in the given deadline. Our goal is to design an efficient edge computing policy in the dark without the knowledge of the context or computation capabilities of each device. By leveraging the \emph{coded computing} framework in order to tackle failures or stragglers in computation, we formulate this problem using contextual-combinatorial multi-armed bandits (CC-MAB), and aim to maximize the cumulative expected reward. We propose an online learning policy called \emph{online coded edge computing policy}, which provably achieves asymptotically-optimal performance in terms of regret loss compared with the optimal offline policy for the proposed CC-MAB problem. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1912.09512v2-abstract-full').style.display = 'none'; document.getElementById('1912.09512v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 December, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2019. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1909.13014">arXiv:1909.13014</a> <span> [<a href="https://arxiv.org/pdf/1909.13014">pdf</a>, <a href="https://arxiv.org/format/1909.13014">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Distributed, Parallel, and Cluster Computing">cs.DC</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optimization and Control">math.OC</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">stat.ML</span> </div> </div> <p class="title is-5 mathjax"> FedPAQ: A Communication-Efficient Federated Learning Method with Periodic Averaging and Quantization </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Reisizadeh%2C+A">Amirhossein Reisizadeh</a>, <a href="/search/cs?searchtype=author&query=Mokhtari%2C+A">Aryan Mokhtari</a>, <a href="/search/cs?searchtype=author&query=Hassani%2C+H">Hamed Hassani</a>, <a href="/search/cs?searchtype=author&query=Jadbabaie%2C+A">Ali Jadbabaie</a>, <a href="/search/cs?searchtype=author&query=Pedarsani%2C+R">Ramtin Pedarsani</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1909.13014v4-abstract-short" style="display: inline;"> Federated learning is a distributed framework according to which a model is trained over a set of devices, while keeping data localized. This framework faces several systems-oriented challenges which include (i) communication bottleneck since a large number of devices upload their local updates to a parameter server, and (ii) scalability as the federated network consists of millions of devices. Du… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1909.13014v4-abstract-full').style.display = 'inline'; document.getElementById('1909.13014v4-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1909.13014v4-abstract-full" style="display: none;"> Federated learning is a distributed framework according to which a model is trained over a set of devices, while keeping data localized. This framework faces several systems-oriented challenges which include (i) communication bottleneck since a large number of devices upload their local updates to a parameter server, and (ii) scalability as the federated network consists of millions of devices. Due to these systems challenges as well as issues related to statistical heterogeneity of data and privacy concerns, designing a provably efficient federated learning method is of significant importance yet it remains challenging. In this paper, we present FedPAQ, a communication-efficient Federated Learning method with Periodic Averaging and Quantization. FedPAQ relies on three key features: (1) periodic averaging where models are updated locally at devices and only periodically averaged at the server; (2) partial device participation where only a fraction of devices participate in each round of the training; and (3) quantized message-passing where the edge nodes quantize their updates before uploading to the parameter server. These features address the communications and scalability challenges in federated learning. We also show that FedPAQ achieves near-optimal theoretical guarantees for strongly convex and non-convex loss functions and empirically demonstrate the communication-computation tradeoff provided by our method. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1909.13014v4-abstract-full').style.display = 'none'; document.getElementById('1909.13014v4-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 June, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 September, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2019. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1909.03664">arXiv:1909.03664</a> <span> [<a href="https://arxiv.org/pdf/1909.03664">pdf</a>, <a href="https://arxiv.org/format/1909.03664">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optimization and Control">math.OC</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Robotics">cs.RO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Systems and Control">eess.SY</span> </div> </div> <p class="title is-5 mathjax"> Learning How to Dynamically Route Autonomous Vehicles on Shared Roads </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Lazar%2C+D+A">Daniel A. Lazar</a>, <a href="/search/cs?searchtype=author&query=B%C4%B1y%C4%B1k%2C+E">Erdem B谋y谋k</a>, <a href="/search/cs?searchtype=author&query=Sadigh%2C+D">Dorsa Sadigh</a>, <a href="/search/cs?searchtype=author&query=Pedarsani%2C+R">Ramtin Pedarsani</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1909.03664v2-abstract-short" style="display: inline;"> Road congestion induces significant costs across the world, and road network disturbances, such as traffic accidents, can cause highly congested traffic patterns. If a planner had control over the routing of all vehicles in the network, they could easily reverse this effect. In a more realistic scenario, we consider a planner that controls autonomous cars, which are a fraction of all present cars.… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1909.03664v2-abstract-full').style.display = 'inline'; document.getElementById('1909.03664v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1909.03664v2-abstract-full" style="display: none;"> Road congestion induces significant costs across the world, and road network disturbances, such as traffic accidents, can cause highly congested traffic patterns. If a planner had control over the routing of all vehicles in the network, they could easily reverse this effect. In a more realistic scenario, we consider a planner that controls autonomous cars, which are a fraction of all present cars. We study a dynamic routing game, in which the route choices of autonomous cars can be controlled and the human drivers react selfishly and dynamically. As the problem is prohibitively large, we use deep reinforcement learning to learn a policy for controlling the autonomous vehicles. This policy indirectly influences human drivers to route themselves in such a way that minimizes congestion on the network. To gauge the effectiveness of our learned policies, we establish theoretical results characterizing equilibria and empirically compare the learned policy results with best possible equilibria. We prove properties of equilibria on parallel roads and provide a polynomial-time optimization for computing the most efficient equilibrium. Moreover, we show that in the absence of these policies, high demand and network perturbations would result in large congestion, whereas using the policy greatly decreases the travel times by minimizing the congestion. To the best of our knowledge, this is the first work that employs deep reinforcement learning to reduce congestion by indirectly influencing humans' routing decisions in mixed-autonomy traffic. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1909.03664v2-abstract-full').style.display = 'none'; document.getElementById('1909.03664v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 September, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted to Transportation Research Part C</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1908.04433">arXiv:1908.04433</a> <span> [<a href="https://arxiv.org/pdf/1908.04433">pdf</a>, <a href="https://arxiv.org/format/1908.04433">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Statistics Theory">math.ST</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Information Theory">cs.IT</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> </div> </div> <p class="title is-5 mathjax"> Sharp Guarantees for Solving Random Equations with One-Bit Information </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Taheri%2C+H">Hossein Taheri</a>, <a href="/search/cs?searchtype=author&query=Pedarsani%2C+R">Ramtin Pedarsani</a>, <a href="/search/cs?searchtype=author&query=Thrampoulidis%2C+C">Christos Thrampoulidis</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1908.04433v2-abstract-short" style="display: inline;"> We study the performance of a wide class of convex optimization-based estimators for recovering a signal from corrupted one-bit measurements in high-dimensions. Our general result predicts sharply the performance of such estimators in the linear asymptotic regime when the measurement vectors have entries IID Gaussian. This includes, as a special case, the previously studied least-squares estimator… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1908.04433v2-abstract-full').style.display = 'inline'; document.getElementById('1908.04433v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1908.04433v2-abstract-full" style="display: none;"> We study the performance of a wide class of convex optimization-based estimators for recovering a signal from corrupted one-bit measurements in high-dimensions. Our general result predicts sharply the performance of such estimators in the linear asymptotic regime when the measurement vectors have entries IID Gaussian. This includes, as a special case, the previously studied least-squares estimator and various novel results for other popular estimators such as least-absolute deviations, hinge-loss and logistic-loss. Importantly, we exploit the fact that our analysis holds for generic convex loss functions to prove a bound on the best achievable performance across the entire class of estimators. Numerical simulations corroborate our theoretical findings and suggest they are accurate even for relatively small problem dimensions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1908.04433v2-abstract-full').style.display = 'none'; document.getElementById('1908.04433v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 January, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 August, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2019. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1907.10595">arXiv:1907.10595</a> <span> [<a href="https://arxiv.org/pdf/1907.10595">pdf</a>, <a href="https://arxiv.org/format/1907.10595">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Distributed, Parallel, and Cluster Computing">cs.DC</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optimization and Control">math.OC</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">stat.ML</span> </div> </div> <p class="title is-5 mathjax"> Robust and Communication-Efficient Collaborative Learning </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Reisizadeh%2C+A">Amirhossein Reisizadeh</a>, <a href="/search/cs?searchtype=author&query=Taheri%2C+H">Hossein Taheri</a>, <a href="/search/cs?searchtype=author&query=Mokhtari%2C+A">Aryan Mokhtari</a>, <a href="/search/cs?searchtype=author&query=Hassani%2C+H">Hamed Hassani</a>, <a href="/search/cs?searchtype=author&query=Pedarsani%2C+R">Ramtin Pedarsani</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1907.10595v2-abstract-short" style="display: inline;"> We consider a decentralized learning problem, where a set of computing nodes aim at solving a non-convex optimization problem collaboratively. It is well-known that decentralized optimization schemes face two major system bottlenecks: stragglers' delay and communication overhead. In this paper, we tackle these bottlenecks by proposing a novel decentralized and gradient-based optimization algorithm… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.10595v2-abstract-full').style.display = 'inline'; document.getElementById('1907.10595v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1907.10595v2-abstract-full" style="display: none;"> We consider a decentralized learning problem, where a set of computing nodes aim at solving a non-convex optimization problem collaboratively. It is well-known that decentralized optimization schemes face two major system bottlenecks: stragglers' delay and communication overhead. In this paper, we tackle these bottlenecks by proposing a novel decentralized and gradient-based optimization algorithm named as QuanTimed-DSGD. Our algorithm stands on two main ideas: (i) we impose a deadline on the local gradient computations of each node at each iteration of the algorithm, and (ii) the nodes exchange quantized versions of their local models. The first idea robustifies to straggling nodes and the second alleviates communication efficiency. The key technical contribution of our work is to prove that with non-vanishing noises for quantization and stochastic gradients, the proposed method exactly converges to the global optimal for convex loss functions, and finds a first-order stationary point in non-convex scenarios. Our numerical evaluations of the QuanTimed-DSGD on training benchmark datasets, MNIST and CIFAR-10, demonstrate speedups of up to 3x in run-time, compared to state-of-the-art decentralized optimization methods. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.10595v2-abstract-full').style.display = 'none'; document.getElementById('1907.10595v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 October, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 July, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2019. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1904.05522">arXiv:1904.05522</a> <span> [<a href="https://arxiv.org/pdf/1904.05522">pdf</a>, <a href="https://arxiv.org/format/1904.05522">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Distributed, Parallel, and Cluster Computing">cs.DC</span> </div> </div> <p class="title is-5 mathjax"> Timely-Throughput Optimal Coded Computing over Cloud Networks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Yang%2C+C">Chien-Sheng Yang</a>, <a href="/search/cs?searchtype=author&query=Pedarsani%2C+R">Ramtin Pedarsani</a>, <a href="/search/cs?searchtype=author&query=Avestimehr%2C+A+S">A. Salman Avestimehr</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1904.05522v1-abstract-short" style="display: inline;"> In modern distributed computing systems, unpredictable and unreliable infrastructures result in high variability of computing resources. Meanwhile, there is significantly increasing demand for timely and event-driven services with deadline constraints. Motivated by measurements over Amazon EC2 clusters, we consider a two-state Markov model for variability of computing speed in cloud networks. In t… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.05522v1-abstract-full').style.display = 'inline'; document.getElementById('1904.05522v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1904.05522v1-abstract-full" style="display: none;"> In modern distributed computing systems, unpredictable and unreliable infrastructures result in high variability of computing resources. Meanwhile, there is significantly increasing demand for timely and event-driven services with deadline constraints. Motivated by measurements over Amazon EC2 clusters, we consider a two-state Markov model for variability of computing speed in cloud networks. In this model, each worker can be either in a good state or a bad state in terms of the computation speed, and the transition between these states is modeled as a Markov chain which is unknown to the scheduler. We then consider a Coded Computing framework, in which the data is possibly encoded and stored at the worker nodes in order to provide robustness against nodes that may be in a bad state. With timely computation requests submitted to the system with computation deadlines, our goal is to design the optimal computation-load allocation scheme and the optimal data encoding scheme that maximize the timely computation throughput (i.e, the average number of computation tasks that are accomplished before their deadline). Our main result is the development of a dynamic computation strategy called Lagrange Estimate-and Allocate (LEA) strategy, which achieves the optimal timely computation throughput. It is shown that compared to the static allocation strategy, LEA increases the timely computation throughput by 1.4X - 17.5X in various scenarios via simulations and by 1.27X - 6.5X in experiments over Amazon EC2 clusters <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.05522v1-abstract-full').style.display = 'none'; document.getElementById('1904.05522v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 April, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">to appear in MobiHoc 2019</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1904.02209">arXiv:1904.02209</a> <span> [<a href="https://arxiv.org/pdf/1904.02209">pdf</a>, <a href="https://arxiv.org/format/1904.02209">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optimization and Control">math.OC</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Robotics">cs.RO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Systems and Control">eess.SY</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1109/CDC40024.2019.9030169">10.1109/CDC40024.2019.9030169 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Green Choice: Learning and Influencing Human Decisions on Shared Roads </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=B%C4%B1y%C4%B1k%2C+E">Erdem B谋y谋k</a>, <a href="/search/cs?searchtype=author&query=Lazar%2C+D+A">Daniel A. Lazar</a>, <a href="/search/cs?searchtype=author&query=Sadigh%2C+D">Dorsa Sadigh</a>, <a href="/search/cs?searchtype=author&query=Pedarsani%2C+R">Ramtin Pedarsani</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1904.02209v2-abstract-short" style="display: inline;"> Autonomous vehicles have the potential to increase the capacity of roads via platooning, even when human drivers and autonomous vehicles share roads. However, when users of a road network choose their routes selfishly, the resulting traffic configuration may be very inefficient. Because of this, we consider how to influence human decisions so as to decrease congestion on these roads. We consider a… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.02209v2-abstract-full').style.display = 'inline'; document.getElementById('1904.02209v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1904.02209v2-abstract-full" style="display: none;"> Autonomous vehicles have the potential to increase the capacity of roads via platooning, even when human drivers and autonomous vehicles share roads. However, when users of a road network choose their routes selfishly, the resulting traffic configuration may be very inefficient. Because of this, we consider how to influence human decisions so as to decrease congestion on these roads. We consider a network of parallel roads with two modes of transportation: (i) human drivers who will choose the quickest route available to them, and (ii) ride hailing service which provides an array of autonomous vehicle ride options, each with different prices, to users. In this work, we seek to design these prices so that when autonomous service users choose from these options and human drivers selfishly choose their resulting routes, road usage is maximized and transit delay is minimized. To do so, we formalize a model of how autonomous service users make choices between routes with different price/delay values. Developing a preference-based algorithm to learn the preferences of the users, and using a vehicle flow model related to the Fundamental Diagram of Traffic, we formulate a planning optimization to maximize a social objective and demonstrate the benefit of the proposed routing and learning scheme. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.02209v2-abstract-full').style.display = 'none'; document.getElementById('1904.02209v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 April, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 April, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted to CDC 2019</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1902.01981">arXiv:1902.01981</a> <span> [<a href="https://arxiv.org/pdf/1902.01981">pdf</a>, <a href="https://arxiv.org/format/1902.01981">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">stat.ML</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Distributed, Parallel, and Cluster Computing">cs.DC</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Information Theory">cs.IT</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computation">stat.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1109/TNET.2021.3109097">10.1109/TNET.2021.3109097 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> CodedReduce: A Fast and Robust Framework for Gradient Aggregation in Distributed Learning </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Reisizadeh%2C+A">Amirhossein Reisizadeh</a>, <a href="/search/cs?searchtype=author&query=Prakash%2C+S">Saurav Prakash</a>, <a href="/search/cs?searchtype=author&query=Pedarsani%2C+R">Ramtin Pedarsani</a>, <a href="/search/cs?searchtype=author&query=Avestimehr%2C+A+S">Amir Salman Avestimehr</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1902.01981v3-abstract-short" style="display: inline;"> We focus on the commonly used synchronous Gradient Descent paradigm for large-scale distributed learning, for which there has been a growing interest to develop efficient and robust gradient aggregation strategies that overcome two key system bottlenecks: communication bandwidth and stragglers' delays. In particular, Ring-AllReduce (RAR) design has been proposed to avoid bandwidth bottleneck at an… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1902.01981v3-abstract-full').style.display = 'inline'; document.getElementById('1902.01981v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1902.01981v3-abstract-full" style="display: none;"> We focus on the commonly used synchronous Gradient Descent paradigm for large-scale distributed learning, for which there has been a growing interest to develop efficient and robust gradient aggregation strategies that overcome two key system bottlenecks: communication bandwidth and stragglers' delays. In particular, Ring-AllReduce (RAR) design has been proposed to avoid bandwidth bottleneck at any particular node by allowing each worker to only communicate with its neighbors that are arranged in a logical ring. On the other hand, Gradient Coding (GC) has been recently proposed to mitigate stragglers in a master-worker topology by allowing carefully designed redundant allocation of the data set to the workers. We propose a joint communication topology design and data set allocation strategy, named CodedReduce (CR), that combines the best of both RAR and GC. That is, it parallelizes the communications over a tree topology leading to efficient bandwidth utilization, and carefully designs a redundant data set allocation and coding strategy at the nodes to make the proposed gradient aggregation scheme robust to stragglers. In particular, we quantify the communication parallelization gain and resiliency of the proposed CR scheme, and prove its optimality when the communication topology is a regular tree. Moreover, we characterize the expected run-time of CR and show order-wise speedups compared to the benchmark schemes. Finally, we empirically evaluate the performance of our proposed CR design over Amazon EC2 and demonstrate that it achieves speedups of up to 27.2x and 7.0x, respectively over the benchmarks GC and RAR. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1902.01981v3-abstract-full').style.display = 'none'; document.getElementById('1902.01981v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 February, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Final version to appear in IEEE Transactions on Networking</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1810.11978">arXiv:1810.11978</a> <span> [<a href="https://arxiv.org/pdf/1810.11978">pdf</a>, <a href="https://arxiv.org/format/1810.11978">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optimization and Control">math.OC</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Robotics">cs.RO</span> </div> </div> <p class="title is-5 mathjax"> Altruistic Autonomy: Beating Congestion on Shared Roads </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=B%C4%B1y%C4%B1k%2C+E">Erdem B谋y谋k</a>, <a href="/search/cs?searchtype=author&query=Lazar%2C+D">Daniel Lazar</a>, <a href="/search/cs?searchtype=author&query=Pedarsani%2C+R">Ramtin Pedarsani</a>, <a href="/search/cs?searchtype=author&query=Sadigh%2C+D">Dorsa Sadigh</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1810.11978v1-abstract-short" style="display: inline;"> Traffic congestion has large economic and social costs. The introduction of autonomous vehicles can potentially reduce this congestion, both by increasing network throughput and by enabling a social planner to incentivize users of autonomous vehicles to take longer routes that can alleviate congestion on more direct roads. We formalize the effects of altruistic autonomy on roads shared between hum… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1810.11978v1-abstract-full').style.display = 'inline'; document.getElementById('1810.11978v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1810.11978v1-abstract-full" style="display: none;"> Traffic congestion has large economic and social costs. The introduction of autonomous vehicles can potentially reduce this congestion, both by increasing network throughput and by enabling a social planner to incentivize users of autonomous vehicles to take longer routes that can alleviate congestion on more direct roads. We formalize the effects of altruistic autonomy on roads shared between human drivers and autonomous vehicles. In this work, we develop a formal model of road congestion on shared roads based on the fundamental diagram of traffic. We consider a network of parallel roads and provide algorithms that compute optimal equilibria that are robust to additional unforeseen demand. We further plan for optimal routings when users have varying degrees of altruism. We find that even with arbitrarily small altruism, total latency can be unboundedly better than without altruism, and that the best selfish equilibrium can be unboundedly better than the worst selfish equilibrium. We validate our theoretical results through microscopic traffic simulations and show average latency decrease of a factor of 4 from worst-case selfish equilibrium to the optimal equilibrium when autonomous vehicles are altruistic. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1810.11978v1-abstract-full').style.display = 'none'; document.getElementById('1810.11978v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 October, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted to Workshop on the Algorithmic Foundations of Robotics (WAFR) 2018</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1810.10625">arXiv:1810.10625</a> <span> [<a href="https://arxiv.org/pdf/1810.10625">pdf</a>, <a href="https://arxiv.org/format/1810.10625">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">stat.ML</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Information Theory">cs.IT</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Robust Adversarial Learning via Sparsifying Front Ends </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Gopalakrishnan%2C+S">Soorya Gopalakrishnan</a>, <a href="/search/cs?searchtype=author&query=Marzi%2C+Z">Zhinus Marzi</a>, <a href="/search/cs?searchtype=author&query=Cekic%2C+M">Metehan Cekic</a>, <a href="/search/cs?searchtype=author&query=Madhow%2C+U">Upamanyu Madhow</a>, <a href="/search/cs?searchtype=author&query=Pedarsani%2C+R">Ramtin Pedarsani</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1810.10625v3-abstract-short" style="display: inline;"> It is by now well-known that small adversarial perturbations can induce classification errors in deep neural networks. In this paper, we take a bottom-up signal processing perspective to this problem and show that a systematic exploitation of sparsity in natural data is a promising tool for defense. For linear classifiers, we show that a sparsifying front end is provably effective against… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1810.10625v3-abstract-full').style.display = 'inline'; document.getElementById('1810.10625v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1810.10625v3-abstract-full" style="display: none;"> It is by now well-known that small adversarial perturbations can induce classification errors in deep neural networks. In this paper, we take a bottom-up signal processing perspective to this problem and show that a systematic exploitation of sparsity in natural data is a promising tool for defense. For linear classifiers, we show that a sparsifying front end is provably effective against $\ell_{\infty}$-bounded attacks, reducing output distortion due to the attack by a factor of roughly $K/N$ where $N$ is the data dimension and $K$ is the sparsity level. We then extend this concept to deep networks, showing that a "locally linear" model can be used to develop a theoretical foundation for crafting attacks and defenses. We also devise attacks based on the locally linear model that outperform the well-known FGSM attack. We supplement our theoretical results with experiments on the MNIST and CIFAR-10 datasets, showing the efficacy of the proposed sparsity-based defense schemes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1810.10625v3-abstract-full').style.display = 'none'; document.getElementById('1810.10625v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 May, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 October, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 12 figures, 6 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1809.01283">arXiv:1809.01283</a> <span> [<a href="https://arxiv.org/pdf/1809.01283">pdf</a>, <a href="https://arxiv.org/format/1809.01283">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optimization and Control">math.OC</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computer Science and Game Theory">cs.GT</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Systems and Control">eess.SY</span> </div> </div> <p class="title is-5 mathjax"> Routing for Traffic Networks with Mixed Autonomy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Lazar%2C+D+A">Daniel A. Lazar</a>, <a href="/search/cs?searchtype=author&query=Coogan%2C+S">Sam Coogan</a>, <a href="/search/cs?searchtype=author&query=Pedarsani%2C+R">Ramtin Pedarsani</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1809.01283v1-abstract-short" style="display: inline;"> In this work we propose a macroscopic model for studying routing on networks shared between human-driven and autonomous vehicles that captures the effects of autonomous vehicles forming platoons. We use this to study inefficiency due to selfish routing and bound the Price of Anarchy (PoA), the maximum ratio between total delay experienced by selfish users and the minimum possible total delay. To d… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1809.01283v1-abstract-full').style.display = 'inline'; document.getElementById('1809.01283v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1809.01283v1-abstract-full" style="display: none;"> In this work we propose a macroscopic model for studying routing on networks shared between human-driven and autonomous vehicles that captures the effects of autonomous vehicles forming platoons. We use this to study inefficiency due to selfish routing and bound the Price of Anarchy (PoA), the maximum ratio between total delay experienced by selfish users and the minimum possible total delay. To do so, we establish two road capacity models, each corresponding to an assumption regarding the platooning capabilities of autonomous vehicles. Using these we develop a class of road delay functions, parameterized by the road capacity, that are polynomial with respect to vehicle flow. We then bound the PoA and the bicriteria, another measure of the inefficiency due to selfish routing. We find these bounds depend on: 1) the degree of the polynomial in the road cost function and 2) the degree of asymmetry, the difference in how human-driven and autonomous traffic affect congestion. We demonstrate that these bounds recover the classical bounds when no asymmetry exists. We show the bounds are tight in certain cases and that the PoA bound is order-optimal with respect to the degree of asymmetry. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1809.01283v1-abstract-full').style.display = 'none'; document.getElementById('1809.01283v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 September, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2018. </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Pedarsani%2C+R&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Pedarsani%2C+R&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Pedarsani%2C+R&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>