CINXE.COM
Search results for: residual oil mobilization
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: residual oil mobilization</title> <meta name="description" content="Search results for: residual oil mobilization"> <meta name="keywords" content="residual oil mobilization"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="residual oil mobilization" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="residual oil mobilization"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 888</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: residual oil mobilization</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">888</span> Medical and Surgical Nursing Care</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nassim%20Salmi">Nassim Salmi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Postoperative mobilization is an important part of fundamental care. Increased mobilization has a positive effect on recovery, but immobilization is still a challenge in postoperative care. Aims: To report how the establishment of a national nursing database was used to measure postoperative mobilization in patients undergoing surgery for ovarian cancer. Mobilization was defined as at least 3 hours out of bed on postoperative day 1, with the goal set at achieving this in 60% of patients. Clinical nurses on 4400 patients with ovarian cancer performed data entry. Findings: 46.7% of patients met the goal for mobilization on the first postoperative day, but variations in duration and type of mobilization were observed. Of those mobilized, 51.8% had been walking in the hallway. A national nursing database creates opportunities to optimize fundamental care. By comparing nursing data with oncological, surgical, and pathology data, it became possible to study mobilization in relation to cancer stage, comorbidity, treatment, and extent of surgery. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=postoperative%20care" title="postoperative care">postoperative care</a>, <a href="https://publications.waset.org/abstracts/search?q=gynecology" title=" gynecology"> gynecology</a>, <a href="https://publications.waset.org/abstracts/search?q=nursing%20documentation" title=" nursing documentation"> nursing documentation</a>, <a href="https://publications.waset.org/abstracts/search?q=database" title=" database"> database</a> </p> <a href="https://publications.waset.org/abstracts/157726/medical-and-surgical-nursing-care" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157726.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">116</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">887</span> The Work System Method for Designing Knowledge Mobilization Projects</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chihab%20Benmoussa">Chihab Benmoussa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Could the Work System Approach (WSA) function as a framework for designing high-impact knowledge mobilization systems? This paper put forward arguments in favor of the applicability of WSA for knowledge mobilization design based on evidences from a practical research. Normative approaches for practitioners are highly needed especially in the field of knowledge management (KM), given the abysmal rate of disappointment and failure of KM projects. The paper contrasts knowledge management and knowledge mobilization, presents the WSA and showed how the WSA’s concepts and ideas fit with the approach adopted by a multinational company in designing a successful knowledge mobilization initiative. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=knowledge%20management" title="knowledge management">knowledge management</a>, <a href="https://publications.waset.org/abstracts/search?q=knowledge%20mobilizations" title=" knowledge mobilizations"> knowledge mobilizations</a>, <a href="https://publications.waset.org/abstracts/search?q=work%20system%20method" title=" work system method"> work system method</a> </p> <a href="https://publications.waset.org/abstracts/23034/the-work-system-method-for-designing-knowledge-mobilization-projects" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23034.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">523</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">886</span> 'Propaganda by the Deed', 'Armed Propaganda' and Mass Mobilization: The Missing Link in the Left-Wing Terrorist Thinking</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ersun%20N.%20Kurtulus">Ersun N. Kurtulus</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the strategic goals of left-wing terrorism, both in its Anarchist and Marxist-Leninist forms, was mobilization of masses as a first step in launching a revolution. However, in the canonical texts of left-wing terrorist literature (such as the works of Brousse, Nachaev, Bakunin, Kropotkin, Most, Heinzen, Guevara and Marighella) it is not clear how resort to terrorist tactics such as assassinations or bomb attacks will lead to mobilization of masses. This link is usually presumed and taken for granted. However, in other, less known terrorist texts, where there is some elaboration upon this link, two conflicting views emerge: (i) terrorist attacks are supposed to cause state repression which in turn radicalizes masses and opens up the way for recruitment and mobilization versus (ii) terrorist attacks are supposed to demonstrate the hollowness of the already existent state repression and thereby encourage mobilization of masses that are already radicalized but inactive due fear caused by state repression. The paper argues that terrorism studies have largely overemphasized the former while the latter has remained more or less unnoticed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=terrorism" title="terrorism">terrorism</a>, <a href="https://publications.waset.org/abstracts/search?q=repression" title=" repression"> repression</a>, <a href="https://publications.waset.org/abstracts/search?q=radical%20left" title=" radical left"> radical left</a>, <a href="https://publications.waset.org/abstracts/search?q=mobilization%20of%20masses" title=" mobilization of masses"> mobilization of masses</a> </p> <a href="https://publications.waset.org/abstracts/86297/propaganda-by-the-deed-armed-propaganda-and-mass-mobilization-the-missing-link-in-the-left-wing-terrorist-thinking" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/86297.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">225</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">885</span> A Finite Memory Residual Generation Filter for Fault Detection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pyung%20Soo%20Kim">Pyung Soo Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Eung%20Hyuk%20Lee"> Eung Hyuk Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Mun%20Suck%20Jang"> Mun Suck Jang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the current paper, a residual generation filter with finite memory structure is proposed for fault detection. The proposed finite memory residual generation filter provides the residual by real-time filtering of fault vector using only the most recent finite observations and inputs on the window. It is shown that the residual given by the proposed residual generation filter provides the exact fault for noise-free systems. Finally, to illustrate the capability of the proposed residual generation filter, numerical examples are performed for the discretized DC motor system having the multiple sensor faults. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=residual%20generation%20filter" title="residual generation filter">residual generation filter</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20memory%20structure" title=" finite memory structure"> finite memory structure</a>, <a href="https://publications.waset.org/abstracts/search?q=kalman%20filter" title=" kalman filter"> kalman filter</a>, <a href="https://publications.waset.org/abstracts/search?q=fast%20detection" title=" fast detection"> fast detection</a> </p> <a href="https://publications.waset.org/abstracts/35140/a-finite-memory-residual-generation-filter-for-fault-detection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35140.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">698</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">884</span> The Influence of Residual Stress on Hardness and Microstructure in Railway Rails</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammet%20Emre%20Turan">Muhammet Emre Turan</a>, <a href="https://publications.waset.org/abstracts/search?q=Sait%20%C3%96z%C3%A7elik"> Sait Özçelik</a>, <a href="https://publications.waset.org/abstracts/search?q=Yavuz%20Sun"> Yavuz Sun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In railway rails, residual stress was measured and the values of residual stress were associated with hardness and micro structure in this study. At first, three rails as one meter long were taken and residual stresses were measured by cutting method according to the EN 13674-1 standardization. In this study, strain gauge that is an electrical apparatus was used. During the cutting, change in resistance in rail gave us residual stress value via computer program. After residual stress measurement, Brinell hardness distribution were performed for head parts of rails. Thus, the relationship between residual stress and hardness were established. In addition to that, micro structure analysis was carried out by optical microscope. The results show that, the micro structure and hardness value was changed with residual stress. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=residual%20stress" title="residual stress">residual stress</a>, <a href="https://publications.waset.org/abstracts/search?q=hardness" title=" hardness"> hardness</a>, <a href="https://publications.waset.org/abstracts/search?q=micro%20structure" title=" micro structure"> micro structure</a>, <a href="https://publications.waset.org/abstracts/search?q=rail" title=" rail"> rail</a>, <a href="https://publications.waset.org/abstracts/search?q=strain%20gauge" title=" strain gauge "> strain gauge </a> </p> <a href="https://publications.waset.org/abstracts/15651/the-influence-of-residual-stress-on-hardness-and-microstructure-in-railway-rails" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15651.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">602</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">883</span> Numerical Investigation of the Boundary Conditions at Liquid-Liquid Interfaces in the Presence of Surfactants</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bamikole%20J.%20Adeyemi">Bamikole J. Adeyemi</a>, <a href="https://publications.waset.org/abstracts/search?q=Prashant%20Jadhawar"> Prashant Jadhawar</a>, <a href="https://publications.waset.org/abstracts/search?q=Lateef%20Akanji"> Lateef Akanji</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Liquid-liquid interfacial flow is an important process that has applications across many spheres. One such applications are residual oil mobilization, where crude oil and low salinity water are emulsified due to lowered interfacial tension under the condition of low shear rates. The amphiphilic components (asphaltenes and resins) in crude oil are considered to assemble at the interface between the two immiscible liquids. To justify emulsification, drag and snap-off suppression as the main effects of low salinity water, mobilization of residual oil is visualized as thickening and slip of the wetting phase at the brine/crude oil interface which results in the squeezing and drag of the non-wetting phase to the pressure sinks. Meanwhile, defining the boundary conditions for such a system can be very challenging since the interfacial dynamics do not only depend on interfacial tension but also the flow rate. Hence, understanding the flow boundary condition at the brine/crude oil interface is an important step towards defining the influence of low salinity water composition on residual oil mobilization. This work presents a numerical evaluation of three slip boundary conditions that may apply at liquid-liquid interfaces. A mathematical model was developed to describe the evolution of a viscoelastic interfacial thin liquid film. The base model is developed by the asymptotic expansion of the full Navier-Stokes equations for fluid motion due to gradients of surface tension. This model was upscaled to describe the dynamics of the film surface deformation. Subsequently, Jeffrey’s model was integrated into the formulations to account for viscoelastic stress within a long wave approximation of the Navier-Stokes equations. To study the fluid response to a prescribed disturbance, a linear stability analysis (LSA) was performed. The dispersion relation and the corresponding characteristic equation for the growth rate were obtained. Three slip (slip, 1; locking, -1; and no-slip, 0) boundary conditions were examined using the resulted characteristic equation. Also, the dynamics of the evolved interfacial thin liquid film were numerically evaluated by considering the influence of the boundary conditions. The linear stability analysis shows that the boundary conditions of such systems are greatly impacted by the presence of amphiphilic molecules when three different values of interfacial tension were tested. The results for slip and locking conditions are consistent with the fundamental solution representation of the diffusion equation where there is film decay. The interfacial films at both boundary conditions respond to exposure time in a similar manner with increasing growth rate which resulted in the formation of more droplets with time. Contrarily, no-slip boundary condition yielded an unbounded growth and it is not affected by interfacial tension. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=boundary%20conditions" title="boundary conditions">boundary conditions</a>, <a href="https://publications.waset.org/abstracts/search?q=liquid-liquid%20interfaces" title=" liquid-liquid interfaces"> liquid-liquid interfaces</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20salinity%20water" title=" low salinity water"> low salinity water</a>, <a href="https://publications.waset.org/abstracts/search?q=residual%20oil%20mobilization" title=" residual oil mobilization"> residual oil mobilization</a> </p> <a href="https://publications.waset.org/abstracts/114002/numerical-investigation-of-the-boundary-conditions-at-liquid-liquid-interfaces-in-the-presence-of-surfactants" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/114002.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">129</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">882</span> Social Media and Political Mobilization in Nigeria: A Study in E-Participation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Peter%20Amobi%20Chiamogu">Peter Amobi Chiamogu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Communication has subsisted as the basis for mass mobilization and political education through history with the media as a generic concept. Revolutions in ICTs have occasioned a limitless environment for the dissemination of information and ideas especially with the use of a seemingly pervasive access, penetration and use of the internet which has engendered a connected society. This study seeks to analyze the prospects and challenges for the adaptation of social media for free election and how this process can enhance public policy making, implementation and evaluation in a developing state. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=social%20media" title="social media">social media</a>, <a href="https://publications.waset.org/abstracts/search?q=e-participation" title=" e-participation"> e-participation</a>, <a href="https://publications.waset.org/abstracts/search?q=political%20mobilization" title=" political mobilization"> political mobilization</a>, <a href="https://publications.waset.org/abstracts/search?q=public%20policy" title=" public policy"> public policy</a>, <a href="https://publications.waset.org/abstracts/search?q=electioneering" title=" electioneering"> electioneering</a> </p> <a href="https://publications.waset.org/abstracts/58242/social-media-and-political-mobilization-in-nigeria-a-study-in-e-participation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58242.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">352</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">881</span> The Relationship between Fatigue Crack Growth and Residual Stress in Rails</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=F.%20Husem">F. Husem</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20E.%20Turan"> M. E. Turan</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Sun"> Y. Sun</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Ahlatci"> H. Ahlatci</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Tozlu"> I. Tozlu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Residual stress and fatigue crack growth rates are important to determine mechanical behavior of rails. This study aims to make relationship between residual stress and fatigue crack growth values in rails. For this purpose, three R260 quality rails (0.6-0.8% C, 0.6-1.25 Mn) were chosen. Residual stress of samples was measured by cutting method that is related in railway standard. Then samples were machined for fatigue crack growth test and analyze was completed according to the ASTM E647 standard which gives information about parameters of rails for this test. Microstructure characterizations were examined by Light Optic Microscope (LOM). The results showed that residual stress change with fatigue crack growth rate. The sample has highest residual stress exhibits highest crack growth rate and pearlitic structure can be seen clearly for all samples by microstructure analyze. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=residual%20stress" title="residual stress">residual stress</a>, <a href="https://publications.waset.org/abstracts/search?q=fatigue%20crack%20growth" title=" fatigue crack growth"> fatigue crack growth</a>, <a href="https://publications.waset.org/abstracts/search?q=R260" title=" R260"> R260</a>, <a href="https://publications.waset.org/abstracts/search?q=SEM" title=" SEM"> SEM</a>, <a href="https://publications.waset.org/abstracts/search?q=ASTM%20E647" title=" ASTM E647"> ASTM E647</a> </p> <a href="https://publications.waset.org/abstracts/56215/the-relationship-between-fatigue-crack-growth-and-residual-stress-in-rails" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56215.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">327</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">880</span> Fatigue Crack Behaviour in a Residual Stress Field at Fillet Welds in Ship Structures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anurag%20Niranjan">Anurag Niranjan</a>, <a href="https://publications.waset.org/abstracts/search?q=Michael%20Fitzpatrick"> Michael Fitzpatrick</a>, <a href="https://publications.waset.org/abstracts/search?q=Yin%20Jin%20Janin"> Yin Jin Janin</a>, <a href="https://publications.waset.org/abstracts/search?q=Jazeel%20Chukkan"> Jazeel Chukkan</a>, <a href="https://publications.waset.org/abstracts/search?q=Niall%20Smyth"> Niall Smyth</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fillet welds are used in joining longitudinal stiffeners in ship structures. Welding residual stresses in fillet welds are generally distributed in a non-uniform manner, as shown in previous research the residual stress redistribution occurs under the cyclic loading that is experienced by such joints during service, and the combination of the initial residual stress, local constraints, and loading can alter the stress field in ways that are extremely difficult to predict. As the residual stress influences the crack propagation originating from the toe of the fillet welds, full understanding of the residual stress field and how it evolves is very important for structural integrity calculations. Knowledge of the residual stress redistribution in the presence of a flaw is therefore required for better fatigue life prediction. Moreover, defect assessment procedures such as BS7910 offer very limited guidance for flaw acceptance and the associated residual stress redistribution in the assessment of fillet welds. Therefore the objective of this work is to study a surface-breaking flaw at the weld toe region in a fillet weld under cyclic load, in conjunction with residual stress measurement at pre-defined crack depths. This work will provide details of residual stress redistribution under cyclic load in the presence of a crack. The outcome of this project will inform integrity assessment with respect to the treatment of residual stress in fillet welds. Knowledge of the residual stress evolution for this weld geometry will be greatly beneficial for flaw tolerance assessments (BS 7910, API 591). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fillet%20weld" title="fillet weld">fillet weld</a>, <a href="https://publications.waset.org/abstracts/search?q=fatigue" title=" fatigue"> fatigue</a>, <a href="https://publications.waset.org/abstracts/search?q=residual%20stress" title=" residual stress"> residual stress</a>, <a href="https://publications.waset.org/abstracts/search?q=structure%20integrity" title=" structure integrity"> structure integrity</a> </p> <a href="https://publications.waset.org/abstracts/156016/fatigue-crack-behaviour-in-a-residual-stress-field-at-fillet-welds-in-ship-structures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/156016.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">142</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">879</span> Electro-Discharge Drilling in Residual Stress Measurement of Annealed St.37 Steel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Gholami">H. Gholami</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Jalali%20Azizpour"> M. Jalali Azizpour </a> </p> <p class="card-text"><strong>Abstract:</strong></p> For materials such as hard coating whose stresses state are difficult to obtain by a widely used method called high-speed hole-drilling method (ASTM Standard E837). It is important to develop a non contact method. This process itself imposes an additional stresses. The through thickness residual stress of st37 steel using elector-discharge was investigated. The strain gage and dynamic strain indicator used in all cases was FRS-2-11 rosette type and TML 221, respectively. The average residual stress in depth of 320 µm was -6.47 MPa. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=HVOF" title="HVOF">HVOF</a>, <a href="https://publications.waset.org/abstracts/search?q=residual%20stress" title=" residual stress"> residual stress</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20spray" title=" thermal spray"> thermal spray</a>, <a href="https://publications.waset.org/abstracts/search?q=WC-Co" title=" WC-Co "> WC-Co </a> </p> <a href="https://publications.waset.org/abstracts/20109/electro-discharge-drilling-in-residual-stress-measurement-of-annealed-st37-steel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20109.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">311</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">878</span> Assessment of Residual Stress on HDPE Pipe Wall Thickness</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20Sersab">D. Sersab</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Aberkane"> M. Aberkane</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Residual stresses, in high-density polyethylene (HDPE) pipes, result from a nonhomogeneous cooling rate that occurs between the inner and outer surfaces during the extrusion process in manufacture. Most known methods of measurements to determine the magnitude and profile of the residual stresses in the pipe wall thickness are layer removal and ring slitting method. The combined layer removal and ring slitting methods described in this paper involves measurement of the circumferential residual stresses with minimal local disturbance. The existing methods used for pipe geometry (ring slitting method) gives a single residual stress value at the bore. The layer removal method which is used more in flat plate specimen is implemented with ring slitting method. The method permits stress measurements to be made directly at different depth in the pipe wall and a well-defined residual stress profile was consequently obtained. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=residual%20stress" title="residual stress">residual stress</a>, <a href="https://publications.waset.org/abstracts/search?q=layer%20removal" title=" layer removal"> layer removal</a>, <a href="https://publications.waset.org/abstracts/search?q=ring%20splitting" title=" ring splitting"> ring splitting</a>, <a href="https://publications.waset.org/abstracts/search?q=HDPE" title=" HDPE"> HDPE</a>, <a href="https://publications.waset.org/abstracts/search?q=wall%20thickness" title=" wall thickness "> wall thickness </a> </p> <a href="https://publications.waset.org/abstracts/25357/assessment-of-residual-stress-on-hdpe-pipe-wall-thickness" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25357.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">338</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">877</span> Free Residual Chlorine and Bacteriological Contamination in Addis Ababa Water Supply System, Ethiopia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aklilu%20Zeleke">Aklilu Zeleke</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A cross-sectional study was conducted in order to understand the effect of wet and dry seasons on the free residual chlorine and bacteriological contamination of the Addis Ababa (Ethiopia) water supply system. Water samples were taken at 30 selected distribution points and analyzed for Free Residual Chlorine and bacteriological analysis total coliforms and fecal coliform). It was found that some of the bacteriological data and Free Residual Chlorine levels are below the recommended values and beyond the maximum tolerable limits recommended by World Health Organization and Ethiopian National Standards. Water quality during the dry season is better than that of the wet season. There is a strong relationship between Free Residual Chlorine levels in drinking water and its bacteriological quality. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=addis%20ababa" title="addis ababa">addis ababa</a>, <a href="https://publications.waset.org/abstracts/search?q=wet%20season" title=" wet season"> wet season</a>, <a href="https://publications.waset.org/abstracts/search?q=dry%20season" title=" dry season"> dry season</a>, <a href="https://publications.waset.org/abstracts/search?q=free%20residual%20chlorine" title=" free residual chlorine"> free residual chlorine</a> </p> <a href="https://publications.waset.org/abstracts/168079/free-residual-chlorine-and-bacteriological-contamination-in-addis-ababa-water-supply-system-ethiopia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168079.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">78</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">876</span> The Power of Public Opinion in the Xinhai Revolution: Media, Public Sentiment, and Social Mobilization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yu%20Yaochuan">Yu Yaochuan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper explores the pivotal role of public opinion during the Xinhai Revolution. Examining the dynamics of public sentiment in Chinese society in 1911 shows how information dissemination, ideological propaganda, and public mobilization worked together to drive the revolution to success. The study highlights the indispensable role of revolutionary newspapers, assemblies, and speeches in spreading revolutionary ideas, mobilizing the public, and shaping policy perceptions. By analyzing these historical events, the paper provides a deeper insight into the Xinhai Revolution and offers theoretical and empirical support for understanding the application of public opinion in modern social and political transformations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xinhai%20Revolution" title="Xinhai Revolution">Xinhai Revolution</a>, <a href="https://publications.waset.org/abstracts/search?q=public%20opinion" title=" public opinion"> public opinion</a>, <a href="https://publications.waset.org/abstracts/search?q=social%20mobilization" title=" social mobilization"> social mobilization</a>, <a href="https://publications.waset.org/abstracts/search?q=information%20dissemination" title=" information dissemination"> information dissemination</a>, <a href="https://publications.waset.org/abstracts/search?q=ideology" title=" ideology"> ideology</a>, <a href="https://publications.waset.org/abstracts/search?q=political%20transformation" title=" political transformation"> political transformation</a> </p> <a href="https://publications.waset.org/abstracts/186513/the-power-of-public-opinion-in-the-xinhai-revolution-media-public-sentiment-and-social-mobilization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/186513.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">43</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">875</span> Simulation the Effect of Temperature on the Residual Stress in Shot Peening Process Using FEM Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Jalali%20Azizpour">M. Jalali Azizpour</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Mohammadi%20Majd"> H. Mohammadi Majd</a>, <a href="https://publications.waset.org/abstracts/search?q=A.R.%20Aboudi%20Asl"> A.R. Aboudi Asl</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Sajedipour"> D. Sajedipour</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Tawaf"> V. Tawaf</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sandblasting is a generally used surface treatment technique to improve the residual stress and adhesion of coatings to substrate. The goal of this work is to study the effect of temperature on the residual stress in sandblasting AISI1045 substrate. For this purpose a two dimensional axisymmetric model of shot impacting on an AISI 1045 disc was generated using ABAQUS version 6.10. The result shows for sandblasting temperature there is an optimum condition. In addition there are other effective factors that influence the fatigue life of parts. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=modeling" title="modeling">modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=shot%20peen" title=" shot peen"> shot peen</a>, <a href="https://publications.waset.org/abstracts/search?q=residual%20stress" title=" residual stress"> residual stress</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature" title=" temperature"> temperature</a> </p> <a href="https://publications.waset.org/abstracts/26894/simulation-the-effect-of-temperature-on-the-residual-stress-in-shot-peening-process-using-fem-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26894.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">586</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">874</span> Effect of Friction Parameters on the Residual Bagging Behaviors of Denim Fabrics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Gazzah">M. Gazzah</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Jaouachi"> B. Jaouachi</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Sakli"> F. Sakli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research focuses on the yarn-to-yarn and metal-to-fabric friction effects on the residual bagging behavior expressed by residual bagging height, volume and recovery of some denim fabrics. The results show, that both residual bagging height and residual bagging volume, which is determined using image analysis method, are significantly affected due to the most influential fabric parameter variations, the weft yarns density and the mean frictional coefficients. After the applied number of fatigue cycles, the findings revealed that the weft yarn rigidity contributes on fabric bagging behavior accurately. Among the tested samples, our results show that the elastic fabrics present a high recovery ability to give low bagging height and volume values. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bagging%20recovery" title="bagging recovery">bagging recovery</a>, <a href="https://publications.waset.org/abstracts/search?q=denim%20fabric" title=" denim fabric"> denim fabric</a>, <a href="https://publications.waset.org/abstracts/search?q=metal-to-fabric%20friction" title=" metal-to-fabric friction"> metal-to-fabric friction</a>, <a href="https://publications.waset.org/abstracts/search?q=residual%20bagging%20height" title=" residual bagging height"> residual bagging height</a>, <a href="https://publications.waset.org/abstracts/search?q=yarn-to-yarn%20friction" title=" yarn-to-yarn friction"> yarn-to-yarn friction</a> </p> <a href="https://publications.waset.org/abstracts/25575/effect-of-friction-parameters-on-the-residual-bagging-behaviors-of-denim-fabrics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25575.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">577</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">873</span> The Development of a Residual Stress Measurement Method for Roll Formed Products</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yong%20Sun">Yong Sun</a>, <a href="https://publications.waset.org/abstracts/search?q=Vladimir%20Luzin"> Vladimir Luzin</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhen%20Qian"> Zhen Qian</a>, <a href="https://publications.waset.org/abstracts/search?q=William%20J.%20T.%20Daniel"> William J. T. Daniel</a>, <a href="https://publications.waset.org/abstracts/search?q=Mingxing%20Zhang"> Mingxing Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Shichao%20Ding"> Shichao Ding</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The residual stresses in roll formed products are generally very high and un-predictable. This is due to the occurrence of redundant plastic deformation in roll forming process and it can cause various product defects. Although the residual stresses of a roll formed product consist of longitudinal and transverse residual stresses components, but the longitudinal residual stresses plays a key role to the product defects of a roll formed product and therefore, only the longitudinal residual stresses concerned by the roll forming scholars and engineers. However, how to inspect the residual stresses of a product quickly and economically as a routine operation is still a challenge. This paper introduces a residual stresses measurement method called slope cutting method to study the longitudinal residual stresses through layers geometrically to a roll formed products or a product with similar process such as a rolled sheet. The detailed measuring procedure is given and discussed. The residual stresses variation through the layer can be derived based on the variation of curvature in different layers and steps. The slope cutting method has been explored and validated by experimental study on a roll-formed square tube. The neutron diffraction method is applied to validate the accuracy of the newly proposed layering removal materials results. The two set results agree with each other very well and therefore, the method is expected to be a routine testing method to monitor the quality of a product been formed and that is a great impact to roll forming industry. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=roll%20forming" title="roll forming">roll forming</a>, <a href="https://publications.waset.org/abstracts/search?q=residual%20stress" title=" residual stress"> residual stress</a>, <a href="https://publications.waset.org/abstracts/search?q=measurement%20method" title=" measurement method"> measurement method</a>, <a href="https://publications.waset.org/abstracts/search?q=neutron%20diffraction" title=" neutron diffraction"> neutron diffraction</a> </p> <a href="https://publications.waset.org/abstracts/51177/the-development-of-a-residual-stress-measurement-method-for-roll-formed-products" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51177.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">365</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">872</span> Study on Residual Stress Measurement of Inconel-718 under Different Lubricating Conditions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Sandeep%20Kumar">M. Sandeep Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Vasu%20Velagapudi"> Vasu Velagapudi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Venugopal"> A. Venugopal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> When machining is carried out on a workpiece, residual stresses are induced in the workpiece due to nonuniform thermal and mechanical loads. These stresses play a vital role in the surface integrity of the final product or the output. Inconel 718 is commonly used in critical structural components of aircraft engines due to its properties at high temperatures. Therefore it is important to keep down the stresses induced due to machining. This can be achieved through proper lubricating conditions. In this work, experiments were carried out to check the influence of the developed nanofluid as cutting fluids on residual stresses developed during the course of machining. The results of MQL/Nanofluids were compared with MQL/Vegetable oil and dry machining lubricating condition. Results indicate the reduction in residual stress with the use of MQL/Nanofluid. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanofluids" title="nanofluids">nanofluids</a>, <a href="https://publications.waset.org/abstracts/search?q=MQL" title=" MQL"> MQL</a>, <a href="https://publications.waset.org/abstracts/search?q=residual%20stress" title=" residual stress"> residual stress</a>, <a href="https://publications.waset.org/abstracts/search?q=Inconel-718" title=" Inconel-718"> Inconel-718</a> </p> <a href="https://publications.waset.org/abstracts/67072/study-on-residual-stress-measurement-of-inconel-718-under-different-lubricating-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67072.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">260</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">871</span> A Regression Model for Residual-State Creep Failure</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Deepak%20Raj%20Bhat">Deepak Raj Bhat</a>, <a href="https://publications.waset.org/abstracts/search?q=Ryuichi%20Yatabe"> Ryuichi Yatabe</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, a residual-state creep failure model was developed based on the residual-state creep test results of clayey soils. To develop the proposed model, the regression analyses were done by using the R. The model results of the failure time (tf) and critical displacement (δc) were compared with experimental results and found in close agreements to each others. It is expected that the proposed regression model for residual-state creep failure will be more useful for the prediction of displacement of different clayey soils in the future. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=regression%20model" title="regression model">regression model</a>, <a href="https://publications.waset.org/abstracts/search?q=residual-state%20creep%20failure" title=" residual-state creep failure"> residual-state creep failure</a>, <a href="https://publications.waset.org/abstracts/search?q=displacement%20prediction" title=" displacement prediction"> displacement prediction</a>, <a href="https://publications.waset.org/abstracts/search?q=clayey%20soils" title=" clayey soils"> clayey soils</a> </p> <a href="https://publications.waset.org/abstracts/50000/a-regression-model-for-residual-state-creep-failure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50000.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">408</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">870</span> A Comparative Study of the Effects of Vibratory Stress Relief and Thermal Aging on the Residual Stress of Explosives Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xuemei%20Yang">Xuemei Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Xin%20Sun"> Xin Sun</a>, <a href="https://publications.waset.org/abstracts/search?q=Cheng%20Fu"> Cheng Fu</a>, <a href="https://publications.waset.org/abstracts/search?q=Qiong%20Lan"> Qiong Lan</a>, <a href="https://publications.waset.org/abstracts/search?q=Chao%20Han"> Chao Han</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Residual stresses, which can be produced during the manufacturing process of plastic bonded explosive (PBX), play an important role in weapon system security and reliability. Residual stresses can and do change in service. This paper mainly studies the influence of vibratory stress relief (VSR) and thermal aging on residual stress of explosives. Firstly, the residual stress relaxation of PBX via different physical condition of VSR, such as vibration time, amplitude and dynamic strain, were studied by drill-hole technique. The result indicated that the vibratory amplitude, time and dynamic strain had a significant influence on the residual stress relief of PBX. The rate of residual stress relief of PBX increases first and then decreases with the increase of dynamic strain, amplitude and time, because the activation energy is too small to make the PBX yield plastic deformation at first. Then the dynamic strain, time and amplitude exceed a certain threshold, the residual stress changes show the same rule and decrease sharply, this sharply drop of residual stress relief rate may have been caused by over vibration. Meanwhile, the comparison between VSR and thermal aging was also studied. The conclusion is that the reduction ratio of residual stress after VSR process with applicable vibratory parameters could be equivalent to 73% of thermal aging with 7 days. In addition, the density attenuation rate, mechanical property, and dimensional stability with 3 months after VSR process was almost the same compared with thermal aging. However, compared with traditional thermal aging, VSR only takes a very short time, which greatly improves the efficiency of aging treatment for explosive materials. Therefore, the VSR could be a potential alternative technique in the industry of residual stress relaxation of PBX explosives. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=explosives" title="explosives">explosives</a>, <a href="https://publications.waset.org/abstracts/search?q=residual%20stresses" title=" residual stresses"> residual stresses</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20aging" title=" thermal aging"> thermal aging</a>, <a href="https://publications.waset.org/abstracts/search?q=vibratory%20stress%20relief" title=" vibratory stress relief"> vibratory stress relief</a>, <a href="https://publications.waset.org/abstracts/search?q=VSR" title=" VSR"> VSR</a> </p> <a href="https://publications.waset.org/abstracts/103733/a-comparative-study-of-the-effects-of-vibratory-stress-relief-and-thermal-aging-on-the-residual-stress-of-explosives-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/103733.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">160</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">869</span> Laser Shock Peening of Additively Manufactured Nickel-Based Superalloys</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Michael%20Munther">Michael Munther</a>, <a href="https://publications.waset.org/abstracts/search?q=Keivan%20Davami"> Keivan Davami</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One significant roadblock for additively manufactured (AM) parts is the buildup of residual tensile stresses during the fabrication process. These residual stresses are formed due to the intense localized thermal gradients and high cooling rates that cause non-uniform material expansion/contraction and mismatched strain profiles during powder-bed fusion techniques, such as direct metal laser sintering (DMLS). The residual stresses adversely affect the fatigue life of the AM parts. Moreover, if the residual stresses become higher than the material’s yield strength, they will lead to acute geometric distortion. These are limiting the applications and acceptance of AM components for safety-critical applications. Herein, we discuss laser shock peening method as an advanced technique for the manipulation of the residual stresses in AM parts. An X-ray diffraction technique is used for the measurements of the residual stresses before and after the laser shock peening process. Also, the hardness of the structures is measured using a nanoindentation technique. Maps of nanohardness and modulus are obtained from the nanoindentation, and a correlation is made between the residual stresses and the mechanical properties. The results indicate that laser shock peening is able to induce compressive residual stresses in the structure that mitigate the tensile residual stresses and increase the hardness of AM IN718, a superalloy, almost 20%. No significant changes were observed in the modulus after laser shock peening. The results strongly suggest that laser shock peening can be used as an advanced post-processing technique to optimize the service lives of critical components for various applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=additive%20manufacturing" title="additive manufacturing">additive manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=Inconel%20718" title=" Inconel 718"> Inconel 718</a>, <a href="https://publications.waset.org/abstracts/search?q=laser%20shock%20peening" title=" laser shock peening"> laser shock peening</a>, <a href="https://publications.waset.org/abstracts/search?q=residual%20stresses" title=" residual stresses"> residual stresses</a> </p> <a href="https://publications.waset.org/abstracts/111318/laser-shock-peening-of-additively-manufactured-nickel-based-superalloys" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/111318.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">127</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">868</span> Estimation of Residual Stresses in Thick Walled Cylinder by Radial Basis Artificial Neural </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Heidari">Mohammad Heidari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper a method for high strength steel is proposed of residual stresses in autofrettaged tubes by combination of artificial neural networks is presented. Many different thick walled cylinders that were subjected to different conditions were studied. At first, the residual stress is calculated by analytical solution. Then by changing of the parameters that influenced in residual stresses such as percentage of autofrettage, internal pressure, wall ratio of cylinder, material property of cylinder, bauschinger and hardening effect factor, a neural network is created. These parameters are the input of network. The output of network is residual stress. Numerical data, employed for training the network and capabilities of the model in predicting the residual stress has been verified. The output obtained from neural network model is compared with numerical results, and the amount of relative error has been calculated. Based on this verification error, it is shown that the radial basis function of neural network has the average error of 2.75% in predicting residual stress of thick wall cylinder. Further analysis of residual stress of thick wall cylinder under different input conditions has been investigated and comparison results of modeling with numerical considerations shows a good agreement, which also proves the feasibility and effectiveness of the adopted approach. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=thick%20walled%20cylinder" title="thick walled cylinder">thick walled cylinder</a>, <a href="https://publications.waset.org/abstracts/search?q=residual%20stress" title=" residual stress"> residual stress</a>, <a href="https://publications.waset.org/abstracts/search?q=radial%20basis" title=" radial basis"> radial basis</a>, <a href="https://publications.waset.org/abstracts/search?q=artificial%20neural%20network" title=" artificial neural network"> artificial neural network</a> </p> <a href="https://publications.waset.org/abstracts/34495/estimation-of-residual-stresses-in-thick-walled-cylinder-by-radial-basis-artificial-neural" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34495.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">416</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">867</span> The Interaction between Hydrogen and Surface Stress in Stainless Steel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Osamu%20Takakuwa">Osamu Takakuwa</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuta%20Mano"> Yuta Mano</a>, <a href="https://publications.waset.org/abstracts/search?q=Hitoshi%20Soyama"> Hitoshi Soyama</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper reveals the interaction between hydrogen and surface stress in austenitic stainless steel by X-ray diffraction stress measurement and thermal desorption analysis before and after being charged with hydrogen. The surface residual stress was varied by surface finishing using several disc polishing agents. The obtained results show that the residual stress near surface had a significant effect on hydrogen absorption behavior, that is, tensile residual stress promoted the hydrogen absorption and compressive one did opposite. Also, hydrogen induced equi-biaxial stress and this stress has a linear correlation with hydrogen content. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydrogen%20embrittlement" title="hydrogen embrittlement">hydrogen embrittlement</a>, <a href="https://publications.waset.org/abstracts/search?q=residual%20stress" title=" residual stress"> residual stress</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20finishing" title=" surface finishing"> surface finishing</a>, <a href="https://publications.waset.org/abstracts/search?q=stainless%20steel" title=" stainless steel"> stainless steel</a> </p> <a href="https://publications.waset.org/abstracts/16765/the-interaction-between-hydrogen-and-surface-stress-in-stainless-steel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16765.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">381</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">866</span> A Numerical Study of the Interaction between Residual Stress Profiles Induced by Quasi-Static Plastification</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Guilherme%20F.%20Guimaraes">Guilherme F. Guimaraes</a>, <a href="https://publications.waset.org/abstracts/search?q=Alfredo%20R.%20De%20Faria"> Alfredo R. De Faria</a>, <a href="https://publications.waset.org/abstracts/search?q=Ronnie%20R.%20Rego"> Ronnie R. Rego</a>, <a href="https://publications.waset.org/abstracts/search?q=Andre%20L.%20R.%20D%27Oliveira"> Andre L. R. D'Oliveira</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The development of methods for predicting manufacturing phenomena steadily grows due to their high potential to contribute to the component’s performance and durability. One of the most relevant phenomena in manufacturing is the residual stress state development through the manufacturing chain. In most cases, the residual stresses have their origin due to heterogenous plastifications produced by the processes. Although a few manufacturing processes have been successfully approached by numerical modeling, there is still a lack of understanding on how these processes' interactions will affect the final stress state. The objective of this work is to analyze the influence of previous stresses on the residual stress state induced by plastic deformation of a quasi-static indentation. The model consists of a simplified approach of shot peening, modeling four cases with variations in indenter size and force. This model was validated through topography, measured by optical 3D focus-variation, and residual stress, measured with the X-ray diffraction technique. The validated model was then exposed to several initial stress states, and the effect on the final residual stress was analyzed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=plasticity" title="plasticity">plasticity</a>, <a href="https://publications.waset.org/abstracts/search?q=residual%20stress" title=" residual stress"> residual stress</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title=" finite element method"> finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=manufacturing" title=" manufacturing"> manufacturing</a> </p> <a href="https://publications.waset.org/abstracts/135638/a-numerical-study-of-the-interaction-between-residual-stress-profiles-induced-by-quasi-static-plastification" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/135638.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">206</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">865</span> Post-Islamic Utopias, Contentious Memory and the Revolutionary Mobilization in Iran</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saeed%20Saffar-Heidari">Saeed Saffar-Heidari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This article aims to study the recent Iranian national uprising of “Women, Life, Freedom” as a site of memory which renders the political possibility of imagining the post-Islamic futures in Iran. “Women, Life, Freedom” movement in Iran has been arguably the most pervasive social movement since the Islamic Revolution (1979) as it has posed serious issues and conflicts for the present Islamic state in Iran. The core argument of this article, however, is oriented toward the critical role of collective memory as a means of political transition and revolutionary mobilization. “Women, Life, Freedom” movement, among other things, has revitalized the popular binary opposition of pre-1979 and post-1979 Iran through which the Ancien Régime or the pre-1979 era is likely to be interpreted, read, and remembered in terms of present post-1979 cultural and political demands. As remembering involves everyday participation in shaping and reshaping the past through new codes, criteria, and values, it is argued that the presentist refashioning and remembering of the pre-1979 monarchical era has been one of the major facilitatory forces for the on-going revolutionary mobilization in Iran. The construction of the pre-1979 memory and the return of the dynastic specter has played a significant role in revolutionary mobilization as it has provided the protesters with the possible perspectives of post-Islamic regime in Iran. Additionally, the question of compulsory “Hijab” (veiling) as the prime mover of "Women, Life, Freedom” movement in Iran has strongly contributed to the everyday comparative discourse of pre/post 1979 memory. According to this presentist remembering of pre-1979, the Pahlavi dynasty would be conceived as a symbol of modernization, westernization, secularization, and non-compulsory Hijab. While the memory of the pre-revolutionary Iran is genuinely an imaginative as well as a constructed entity that finally culminates in the public condemnation of the very Islamic revolution (1979), it serves the enrichment of the Iranian political imagination as it paves the ways for the revolutionary mobilization and then the overthrowing of the Islamic regime in Iran. This article makes a case for the ways that the public narrative and discourse around the Islamic regime (especially the Islamic Hijab) led to the refashioning of the memory of pre-1979 era and inspired he revolutionary mobilization in Iran. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=post-islamic" title="post-islamic">post-islamic</a>, <a href="https://publications.waset.org/abstracts/search?q=utopias" title=" utopias"> utopias</a>, <a href="https://publications.waset.org/abstracts/search?q=memory" title=" memory"> memory</a>, <a href="https://publications.waset.org/abstracts/search?q=revolutionary" title=" revolutionary"> revolutionary</a>, <a href="https://publications.waset.org/abstracts/search?q=mobilization" title=" mobilization"> mobilization</a>, <a href="https://publications.waset.org/abstracts/search?q=Iran" title=" Iran"> Iran</a> </p> <a href="https://publications.waset.org/abstracts/165409/post-islamic-utopias-contentious-memory-and-the-revolutionary-mobilization-in-iran" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165409.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">120</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">864</span> Residual Life Estimation of K-out-of-N Cold Standby System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Qian%20Zhao">Qian Zhao</a>, <a href="https://publications.waset.org/abstracts/search?q=Shi-Qi%20Liu"> Shi-Qi Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Bo%20Guo"> Bo Guo</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhi-Jun%20Cheng"> Zhi-Jun Cheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiao-Yue%20Wu"> Xiao-Yue Wu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cold standby redundancy is considered to be an effective mechanism for improving system reliability and is widely used in industrial engineering. However, because of the complexity of the reliability structure, there is little literature studying on the residual life of cold standby system consisting of complex components. In this paper, a simulation method is presented to predict the residual life of k-out-of-n cold standby system. In practical cases, failure information of a system is either unknown, partly unknown or completely known. Our proposed method is designed to deal with the three scenarios, respectively. Differences between the procedures are analyzed. Finally, numerical examples are used to validate the proposed simulation method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cold%20standby%20system" title="cold standby system">cold standby system</a>, <a href="https://publications.waset.org/abstracts/search?q=k-out-of-n" title=" k-out-of-n"> k-out-of-n</a>, <a href="https://publications.waset.org/abstracts/search?q=residual%20life" title=" residual life"> residual life</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation%20sampling" title=" simulation sampling"> simulation sampling</a> </p> <a href="https://publications.waset.org/abstracts/84899/residual-life-estimation-of-k-out-of-n-cold-standby-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84899.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">401</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">863</span> Residual Compressive Strength of Drilled Glass Fiber Reinforced Composites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Navid%20Zarif%20Karimi">Navid Zarif Karimi</a>, <a href="https://publications.waset.org/abstracts/search?q=Giangiacomo%20Minak"> Giangiacomo Minak</a>, <a href="https://publications.waset.org/abstracts/search?q=Parnian%20Kianfar"> Parnian Kianfar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Drilling is one of the most frequently used machining process for glass fiber reinforced polymer composites due to the need for structural joining. In drilling of composite laminates, interlaminar cracking, or delamination, has a detrimental effect on the compressive strength of these materials. The delamination can be controlled by adopting proper drilling condition. In this paper, the effect of feed rate, cutting speed and drill point angle on delamination and residual compressive strength of drilled GFRPs is studied. The objective is to find optimal conditions for maximum residual compressive strength. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=composite%20material" title="composite material">composite material</a>, <a href="https://publications.waset.org/abstracts/search?q=delamination" title=" delamination"> delamination</a>, <a href="https://publications.waset.org/abstracts/search?q=drilling" title=" drilling"> drilling</a>, <a href="https://publications.waset.org/abstracts/search?q=residual%20compressive%20strength" title=" residual compressive strength"> residual compressive strength</a> </p> <a href="https://publications.waset.org/abstracts/36171/residual-compressive-strength-of-drilled-glass-fiber-reinforced-composites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36171.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">458</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">862</span> Residual Life Prediction for a System Subject to Condition Monitoring and Two Failure Modes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Akram%20Khaleghei">Akram Khaleghei</a>, <a href="https://publications.waset.org/abstracts/search?q=Ghosheh%20Balagh"> Ghosheh Balagh</a>, <a href="https://publications.waset.org/abstracts/search?q=Viliam%20Makis"> Viliam Makis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we investigate the residual life prediction problem for a partially observable system subject to two failure modes, namely a catastrophic failure and a failure due to the system degradation. The system is subject to condition monitoring and the degradation process is described by a hidden Markov model with unknown parameters. The parameter estimation procedure based on an EM algorithm is developed and the formulas for the conditional reliability function and the mean residual life are derived, illustrated by a numerical example. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=partially%20observable%20system" title="partially observable system">partially observable system</a>, <a href="https://publications.waset.org/abstracts/search?q=hidden%20Markov%20model" title=" hidden Markov model"> hidden Markov model</a>, <a href="https://publications.waset.org/abstracts/search?q=competing%20risks" title=" competing risks"> competing risks</a>, <a href="https://publications.waset.org/abstracts/search?q=residual%20life%20prediction" title=" residual life prediction"> residual life prediction</a> </p> <a href="https://publications.waset.org/abstracts/6352/residual-life-prediction-for-a-system-subject-to-condition-monitoring-and-two-failure-modes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6352.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">415</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">861</span> Evaluation of Residual Stresses in Human Face as a Function of Growth</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Askari">M. A. Askari</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Nazari"> M. A. Nazari</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Perrier"> P. Perrier</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Payan"> Y. Payan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Growth and remodeling of biological structures have gained lots of attention over the past decades. Determining the response of living tissues to mechanical loads is necessary for a wide range of developing fields such as prosthetics design or computerassisted surgical interventions. It is a well-known fact that biological structures are never stress-free, even when externally unloaded. The exact origin of these residual stresses is not clear, but theoretically, growth is one of the main sources. Extracting body organ’s shapes from medical imaging does not produce any information regarding the existing residual stresses in that organ. The simplest cause of such stresses is gravity since an organ grows under its influence from birth. Ignoring such residual stresses might cause erroneous results in numerical simulations. Accounting for residual stresses due to tissue growth can improve the accuracy of mechanical analysis results. This paper presents an original computational framework based on gradual growth to determine the residual stresses due to growth. To illustrate the method, we apply it to a finite element model of a healthy human face reconstructed from medical images. The distribution of residual stress in facial tissues is computed, which can overcome the effect of gravity and maintain tissues firmness. Our assumption is that tissue wrinkles caused by aging could be a consequence of decreasing residual stress and thus not counteracting gravity. Taking into account these stresses seems therefore extremely important in maxillofacial surgery. It would indeed help surgeons to estimate tissues changes after surgery. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title="finite element method">finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=growth" title=" growth"> growth</a>, <a href="https://publications.waset.org/abstracts/search?q=residual%20stress" title=" residual stress"> residual stress</a>, <a href="https://publications.waset.org/abstracts/search?q=soft%20tissue" title=" soft tissue"> soft tissue</a> </p> <a href="https://publications.waset.org/abstracts/42023/evaluation-of-residual-stresses-in-human-face-as-a-function-of-growth" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42023.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">270</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">860</span> The Role of Hausa Oral Praise Singer in Conflict Management and Social Mobilization in Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ladan%20Surajo">Ladan Surajo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nigeria as a third world country is full of people who cannot read and write, thereby constituting a stumbling block to the modern way of communication. It is a well known fact that Nigeria is a heterogeneous country with an estimated 450 or more ethnic groups communicating in divergent languages. Despite this scenario, English, Hausa, Igbo and Yoruba languages are predominantly used in the country. Apart from English language, Hausa has a wider coverage of usage among the indigenous languages in Nigeria, thereby using it in the area of social mobilization and conflict management cannot be overemphasized. Hausa Oral Singers are depicting their artistic and God endowed talents through singing to mobilize and sensitize the local communities about government programmes and the ills of other social problems of the society. It is the belief of this researcher that if used properly, the Hausa Oral Singers will assist immensely in reducing to the barest minimum some social ills of the society in Nigeria. More so that music is the food of the heart and has a resounding impact in changing the behaviour of individuals and groups. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=oral" title="oral">oral</a>, <a href="https://publications.waset.org/abstracts/search?q=singers" title=" singers"> singers</a>, <a href="https://publications.waset.org/abstracts/search?q=praise" title=" praise"> praise</a>, <a href="https://publications.waset.org/abstracts/search?q=social%20mobilization" title=" social mobilization"> social mobilization</a>, <a href="https://publications.waset.org/abstracts/search?q=conflict%20management" title=" conflict management"> conflict management</a> </p> <a href="https://publications.waset.org/abstracts/12804/the-role-of-hausa-oral-praise-singer-in-conflict-management-and-social-mobilization-in-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12804.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">462</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">859</span> Experiments on Residual Compressive Strength After Fatigue of Carbon Fiber Fabric Composites in Hydrothermal Environment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xuan%20Sun">Xuan Sun</a>, <a href="https://publications.waset.org/abstracts/search?q=Mingbo%20Tong"> Mingbo Tong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to study the effect of hydrothermal environment on the fatigue properties of carbon fiber fabric composites, the experiments on fatigue and residual compressive strength with the center-hole laminates were carried out. For the experiments on fatigue in hydrothermal environment, an environmental chamber used for hydrothermal environment was designed, and the FLUENT was used to simulate the field of temperature in the environmental chamber, it proved that the design met the test requirements. In accordance with ASTM standard, the fatigue test fixture and compression test fixture were designed and produced. Then the tension-compression fatigue tests were carried out in conditions of standard environment (temperature of 23+2℃, relative humidity of 50+/-5%RH) and hydrothermal environment (temperature of 70 +2℃, relative humidity of 85+/-5%RH). After that, the residual compressive strength tests were carried out, respectively. The residual compressive strength after fatigue in condition of standard environment was set as a reference value, compared with the value in condition of hydrothermal environment, calculating the difference between them. According to the result of residual compressive strength tests, it shows that the residual compressive strength after fatigue in condition of hydrothermal environment was decreased by 13.5%,so the hydrothermal environment has little effect on the residual compressive strength of carbon fiber fabric composites laminates after fatigue under load spectrum in this research. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20fiber" title="carbon fiber">carbon fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrothermal%20environment" title=" hydrothermal environment"> hydrothermal environment</a>, <a href="https://publications.waset.org/abstracts/search?q=fatigue" title=" fatigue"> fatigue</a>, <a href="https://publications.waset.org/abstracts/search?q=residual%20compressive%20strength" title=" residual compressive strength"> residual compressive strength</a> </p> <a href="https://publications.waset.org/abstracts/28401/experiments-on-residual-compressive-strength-after-fatigue-of-carbon-fiber-fabric-composites-in-hydrothermal-environment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28401.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">486</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=residual%20oil%20mobilization&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=residual%20oil%20mobilization&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=residual%20oil%20mobilization&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=residual%20oil%20mobilization&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=residual%20oil%20mobilization&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=residual%20oil%20mobilization&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=residual%20oil%20mobilization&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=residual%20oil%20mobilization&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=residual%20oil%20mobilization&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=residual%20oil%20mobilization&page=29">29</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=residual%20oil%20mobilization&page=30">30</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=residual%20oil%20mobilization&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>