CINXE.COM

Search results for: S. Lehmann

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: S. Lehmann</title> <meta name="description" content="Search results for: S. Lehmann"> <meta name="keywords" content="S. Lehmann"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="S. Lehmann" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="S. Lehmann"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 7</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: S. Lehmann</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> Determination of Biomolecular Interactions Using Microscale Thermophoresis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lynn%20Lehmann">Lynn Lehmann</a>, <a href="https://publications.waset.org/abstracts/search?q=Dinorah%20Leyva"> Dinorah Leyva</a>, <a href="https://publications.waset.org/abstracts/search?q=Ana%20Lazic"> Ana Lazic</a>, <a href="https://publications.waset.org/abstracts/search?q=Stefan%20Duhr"> Stefan Duhr</a>, <a href="https://publications.waset.org/abstracts/search?q=Philipp%20Baaske"> Philipp Baaske</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Characterization of biomolecular interactions, such as protein-protein, protein-nucleic acid or protein-small molecule, provides critical insights into cellular processes and is essential for the development of drug diagnostics and therapeutics. Here we present a novel, label-free, and tether-free technology to analyze picomolar to millimolar affinities of biomolecular interactions by Microscale Thermophoresis (MST). The entropy of the hydration shell surrounding molecules determines thermophoretic movement. MST exploits this principle by measuring interactions using optically generated temperature gradients. MST detects changes in the size, charge and hydration shell of molecules and measures biomolecule interactions under close-to-native conditions: immobilization-free and in bioliquids of choice, including cell lysates and blood serum. Thus, MST measures interactions under close-to-native conditions, and without laborious sample purification. We demonstrate how MST determines the picomolar affinities of antibody::antigen interactions, and protein::protein interactions measured from directly from cell lysates. MST assays are highly adaptable to fit to the diverse requirements of different and complex biomolecules. NanoTemper´s unique technology is ideal for studies requiring flexibility and sensitivity at the experimental scale, making MST suitable for basic research investigations and pharmaceutical applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biochemistry" title="biochemistry">biochemistry</a>, <a href="https://publications.waset.org/abstracts/search?q=biophysics" title=" biophysics"> biophysics</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20interactions" title=" molecular interactions"> molecular interactions</a>, <a href="https://publications.waset.org/abstracts/search?q=quantitative%20techniques" title=" quantitative techniques"> quantitative techniques</a> </p> <a href="https://publications.waset.org/abstracts/27726/determination-of-biomolecular-interactions-using-microscale-thermophoresis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27726.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">524</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> MAGE-A3 and PRAME Gene Expression and EGFR Mutation Status in Non-Small-Cell Lung Cancer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Renata%20Checiches">Renata Checiches</a>, <a href="https://publications.waset.org/abstracts/search?q=Thierry%20Coche"> Thierry Coche</a>, <a href="https://publications.waset.org/abstracts/search?q=Nicolas%20F.%20Delahaye"> Nicolas F. Delahaye</a>, <a href="https://publications.waset.org/abstracts/search?q=Albert%20Linder"> Albert Linder</a>, <a href="https://publications.waset.org/abstracts/search?q=Fernando%20Ulloa%20Montoya"> Fernando Ulloa Montoya</a>, <a href="https://publications.waset.org/abstracts/search?q=Olivier%20Gruselle"> Olivier Gruselle</a>, <a href="https://publications.waset.org/abstracts/search?q=Karen%20Langfeld"> Karen Langfeld</a>, <a href="https://publications.waset.org/abstracts/search?q=An%20de%20Creus"> An de Creus</a>, <a href="https://publications.waset.org/abstracts/search?q=Bart%20Spiessens"> Bart Spiessens</a>, <a href="https://publications.waset.org/abstracts/search?q=Vincent%20G.%20Brichard"> Vincent G. Brichard</a>, <a href="https://publications.waset.org/abstracts/search?q=Jamila%20Louahed"> Jamila Louahed</a>, <a href="https://publications.waset.org/abstracts/search?q=Fr%C3%A9d%C3%A9ric%20F.%20Lehmann"> Frédéric F. Lehmann</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: The RNA-expression levels of cancer-testis antigens MAGE A3 and PRAME were determined in resected tissue from patients with primary non-small-cell lung cancer (NSCLC) and related to clinical outcome. EGFR, KRAS and BRAF mutation status was determined in a subset to investigate associations with MAGE A3 and PRAME expression. Methods: We conducted a single-centre, uncontrolled, retrospective study of 1260 tissue-bank samples from stage IA-III resected NSCLC. The prognostic value of antigen expression (qRT-PCR) was determined by hazard-ratio and Kaplan-Meier curves. Results: Thirty-seven percent (314/844) of tumours expressed MAGE-A3, 66% (723/1092) expressed PRAME and 31% (239/839) expressed both. Respective frequencies in squamous-cell tumours and adenocarcinomas were 43%/30% for MAGE A3 and 80%/44% for PRAME. No correlation with stage, tumour size or patient age was found. Overall, no prognostic value was identified for either antigen. A trend to poorer overall survival was associated with MAGE-A3 in stage IIIB and with PRAME in stage IB. EGFR and KRAS mutations were found in 10.1% (28/311) and 33.8% (97/311) of tumours, respectively. EGFR (but not KRAS) mutation status was negatively associated with PRAME expression. Conclusion: No clear prognostic value for either PRAME or MAGE A3 was observed in the overall population, although some observed trends may warrant further investigation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=MAGE%20A3" title="MAGE A3">MAGE A3</a>, <a href="https://publications.waset.org/abstracts/search?q=PRAME" title=" PRAME"> PRAME</a>, <a href="https://publications.waset.org/abstracts/search?q=cancer-testis%20gene" title=" cancer-testis gene"> cancer-testis gene</a>, <a href="https://publications.waset.org/abstracts/search?q=NSCLC" title=" NSCLC"> NSCLC</a>, <a href="https://publications.waset.org/abstracts/search?q=survival" title=" survival"> survival</a>, <a href="https://publications.waset.org/abstracts/search?q=EGFR" title=" EGFR"> EGFR</a> </p> <a href="https://publications.waset.org/abstracts/54549/mage-a3-and-prame-gene-expression-and-egfr-mutation-status-in-non-small-cell-lung-cancer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54549.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">382</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> Mineralogy and Fluid Inclusion Study of the Kebbouch South Pb-Zn Deposit, Northwest Tunisia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Imen%20Salhi">Imen Salhi</a>, <a href="https://publications.waset.org/abstracts/search?q=Salah%20Bouhlel"> Salah Bouhlel</a>, <a href="https://publications.waset.org/abstracts/search?q=Bernrd%20Lehmann"> Bernrd Lehmann</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Kebbouch South Pb-Zn deposit is located 20 km to the east of El Kef (NW) in the southeastern part of the Triassic diapir belt in the Tunisian Atlas. The deposit is composed of sulfide and non-sulfide zinc-lead ore bodies. The aim of this study is to provide petrographic results, mineralogy, as well as fluid inclusion data of the carbonate-hosted Pb-Zn Kebbouch South deposit. Mineralization forms two major ore types: (1) lenticular dolostones and clay breccias in the contact zone between Triassic and Upper Cretaceous strata;, it consists of small-scale lenticular, strata-or fault-controlled mineralization mainly composed of marcasite, galena, sphalerite, pyrite, and (2) stratiform mineralization in the Bahloul Formation (Upper Cenomanian-Lower Turonian) consisting of framboidal and cubic pyrite, disseminated sphalerite and galena. Non-metalliferous and/or gangue minerals are represented by dolomite, calcite, celestite and quartz. Fluid inclusion petrography study has been carried out on calcite and celestite. Fluid inclusions hosted in celestite are less than 20 µm large and show two types of aqueous inclusions: monophase liquid aqueous inclusions (L), abundant and very small, generally less than 15 µm and liquid-rich two phase inclusions (L+V). The gas phase forms a mobile vapor bubble. Microthermometric analyses of (L+V) fluid inclusions for celestite indicate that the homogenization temperature ranges from 121 to 156°C, and final ice melting temperatures are in the range of – 19 to -9°C corresponding to salinities of 12 to 21 wt% NaCl eq. (L+V) fluid inclusions from calcite are frequently localized along the growth zones; their homogenization temperature ranges from 96 to 164°C with final ice melting temperatures between -16 and -7°C corresponding to salinities of 9 to 19 wt% NaCl eq. According to mineralogical and fluid inclusion studies, mineralization in the Pb – Zn Kebbouch South deposit formed between 96 to 164°C with salinities ranging from 9 to 21 wt% NaCl eq. A contribution of basinal brines in the ore formation of the kebbouch South Pb–Zn deposit is likely. The deposit is part of the family of MVT deposits associated with the salt diapir environment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fluid%20inclusion" title="fluid inclusion">fluid inclusion</a>, <a href="https://publications.waset.org/abstracts/search?q=Kebbouch%20South" title=" Kebbouch South"> Kebbouch South</a>, <a href="https://publications.waset.org/abstracts/search?q=mineralogy" title=" mineralogy"> mineralogy</a>, <a href="https://publications.waset.org/abstracts/search?q=MVT%20deposits" title=" MVT deposits"> MVT deposits</a>, <a href="https://publications.waset.org/abstracts/search?q=Pb-Zn" title=" Pb-Zn"> Pb-Zn</a> </p> <a href="https://publications.waset.org/abstracts/68088/mineralogy-and-fluid-inclusion-study-of-the-kebbouch-south-pb-zn-deposit-northwest-tunisia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68088.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">252</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> Comparing Xbar Charts: Conventional versus Reweighted Robust Estimation Methods for Univariate Data Sets</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ece%20Cigdem%20Mutlu">Ece Cigdem Mutlu</a>, <a href="https://publications.waset.org/abstracts/search?q=Burak%20Alakent"> Burak Alakent</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Maintaining the quality of manufactured products at a desired level depends on the stability of process dispersion and location parameters and detection of perturbations in these parameters as promptly as possible. Shewhart control chart is the most widely used technique in statistical process monitoring to monitor the quality of products and control process mean and variability. In the application of Xbar control charts, sample standard deviation and sample mean are known to be the most efficient conventional estimators in determining process dispersion and location parameters, respectively, based on the assumption of independent and normally distributed datasets. On the other hand, there is no guarantee that the real-world data would be normally distributed. In the cases of estimated process parameters from Phase I data clouded with outliers, efficiency of traditional estimators is significantly reduced, and performance of Xbar charts are undesirably low, e.g. occasional outliers in the rational subgroups in Phase I data set may considerably affect the sample mean and standard deviation, resulting a serious delay in detection of inferior products in Phase II. For more efficient application of control charts, it is required to use robust estimators against contaminations, which may exist in Phase I. In the current study, we present a simple approach to construct robust Xbar control charts using average distance to the median, Qn-estimator of scale, M-estimator of scale with logistic psi-function in the estimation of process dispersion parameter, and Harrell-Davis qth quantile estimator, Hodge-Lehmann estimator and M-estimator of location with Huber psi-function and logistic psi-function in the estimation of process location parameter. Phase I efficiency of proposed estimators and Phase II performance of Xbar charts constructed from these estimators are compared with the conventional mean and standard deviation statistics both under normality and against diffuse-localized and symmetric-asymmetric contaminations using 50,000 Monte Carlo simulations on MATLAB. Consequently, it is found that robust estimators yield parameter estimates with higher efficiency against all types of contaminations, and Xbar charts constructed using robust estimators have higher power in detecting disturbances, compared to conventional methods. Additionally, utilizing individuals charts to screen outlier subgroups and employing different combination of dispersion and location estimators on subgroups and individual observations are found to improve the performance of Xbar charts. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=average%20run%20length" title="average run length">average run length</a>, <a href="https://publications.waset.org/abstracts/search?q=M-estimators" title=" M-estimators"> M-estimators</a>, <a href="https://publications.waset.org/abstracts/search?q=quality%20control" title=" quality control"> quality control</a>, <a href="https://publications.waset.org/abstracts/search?q=robust%20estimators" title=" robust estimators"> robust estimators</a> </p> <a href="https://publications.waset.org/abstracts/79020/comparing-xbar-charts-conventional-versus-reweighted-robust-estimation-methods-for-univariate-data-sets" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79020.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">190</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> Emotions Evoked by Robots - Comparison of Older Adults and Students </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Stephanie%20Lehmann">Stephanie Lehmann</a>, <a href="https://publications.waset.org/abstracts/search?q=Esther%20Ruf"> Esther Ruf</a>, <a href="https://publications.waset.org/abstracts/search?q=Sabina%20Misoch"> Sabina Misoch</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Due to demographic change and shortage of skilled nursing staff, assistive robots are built to support older adults at home and nursing staff in care institutions. When assistive robots facilitate tasks that are usually performed by humans, user acceptance is essential. Even though they are an important aspect of acceptance, emotions towards different assistive robots and different situations of robot-use have so far not been examined in detail. The appearance of assistive robots can trigger emotions that affect their acceptance. Acceptance of robots is assumed to be greater when they look more human-like; however, too much human similarity can be counterproductive. Regarding different groups, it is assumed that older adults have a more negative attitude towards robots than younger adults. Within the framework of a simulated robot study, the aim was to investigate emotions of older adults compared to students towards robots with different appearances and in different situations and so contribute to a deeper view of the emotions influencing acceptance. Methods: In a questionnaire study, vignettes were used to assess emotions toward robots in different situations and of different appearance. The vignettes were composed of two situations (service and care) shown by video and four pictures of robots varying in human similarity (machine-like to android). The combination of the vignettes was randomly distributed to the participants. One hundred forty-two older adults and 35 bachelor students of nursing participated. They filled out a questionnaire that surveyed 30 positive and 30 negative emotions. For each group, older adults and students, a sum score of “positive emotions” and a sum score of “negative emotions” was calculated. Mean value, standard deviation, or n for sample size and % for frequencies, according to the scale level, were calculated. For differences in the scores of positive and negative emotions for different situations, t-tests were calculated. Results: Overall, older adults reported significantly more positive emotions than students towards robots in general. Students reported significantly more negative emotions than older adults. Regarding the two different situations, the results were similar for the care situation, with older adults reporting more positive emotions than students and less negative emotions than students. In the service situation, older adults reported significantly more positive emotions; negative emotions did not differ significantly from the students. Regarding the appearance of the robot, there were no significant differences in emotions reported towards the machine-like, the mechanical-human-like and the human-like appearance. Regarding the android robot, students reported significantly more negative emotions than older adults. Conclusion: There were differences in the emotions reported by older adults compared to students. Older adults reported more positive emotions, and students reported more negative emotions towards robots in different situations and with different appearances. It can be assumed that older adults have a different attitude towards the use of robots than younger people, especially young adults in the health sector. Therefore, the use of robots in the service or care sector should not be rejected rashly based on the attitudes of younger persons, without considering the attitudes of older adults equally. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=emotions" title="emotions">emotions</a>, <a href="https://publications.waset.org/abstracts/search?q=robots" title=" robots"> robots</a>, <a href="https://publications.waset.org/abstracts/search?q=seniors" title=" seniors"> seniors</a>, <a href="https://publications.waset.org/abstracts/search?q=young%20adults" title=" young adults"> young adults</a> </p> <a href="https://publications.waset.org/abstracts/114688/emotions-evoked-by-robots-comparison-of-older-adults-and-students" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/114688.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">465</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> Prenatal Paraben Exposure Impacts Infant Overweight Development and in vitro Adipogenesis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Beate%20Englich">Beate Englich</a>, <a href="https://publications.waset.org/abstracts/search?q=Linda%20Schlittenbauer"> Linda Schlittenbauer</a>, <a href="https://publications.waset.org/abstracts/search?q=Christiane%20Pfeifer"> Christiane Pfeifer</a>, <a href="https://publications.waset.org/abstracts/search?q=Isabel%20Kratochvil"> Isabel Kratochvil</a>, <a href="https://publications.waset.org/abstracts/search?q=Michael%20Borte"> Michael Borte</a>, <a href="https://publications.waset.org/abstracts/search?q=Gabriele%20I.%20Stangl"> Gabriele I. Stangl</a>, <a href="https://publications.waset.org/abstracts/search?q=Martin%20von%20Bergen"> Martin von Bergen</a>, <a href="https://publications.waset.org/abstracts/search?q=Thorsten%20Reemtsma"> Thorsten Reemtsma</a>, <a href="https://publications.waset.org/abstracts/search?q=Irina%20Lehmann"> Irina Lehmann</a>, <a href="https://publications.waset.org/abstracts/search?q=Kristin%20M.%20Junge"> Kristin M. Junge</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The worldwide production of endocrine disrupting compounds (EDC) has risen dramatically over the last decades, as so has the prevalence for obesity. Many EDCs are believed to contribute to this obesity epidemic, by enhancing adipogenesis or disrupting relevant metabolism. This effect is most tremendous in the early prenatal period when priming effects find a highly vulnerable time window. Therefore, we investigate the impact of parabens on childhood overweight development and adipogenesis in general. Parabens are ester of 4-hydroxy-benzoic acid and part of many cosmetic products or food packing. Therefore, ubiquitous exposure can be found in the westernized world, with exposure already starting during the sensitive prenatal period. We assessed maternal cosmetic product consumption, prenatal paraben exposure and infant BMI z-scores in the prospective German LINA cohort. In detail, maternal urinary concentrations (34 weeks of gestation) of methyl paraben (MeP), ethyl paraben (EtP), n-propyl paraben (PrP) and n-butyl paraben (BuP) were quantified using UPLC-MS/MS. Body weight and height of their children was assessed during annual clinical visits. Further, we investigated the direct influence of those parabens on adipogenesis in-vitro using a human mesenchymal stem cell (MSC) differentiation assay to mimic a prenatal exposure scenario. MSC were exposed to 0.1 – 50 µM paraben during the entire differentiation period. Differentiation outcome was monitored by impedance spectrometry, real-time PCR and triglyceride staining. We found that maternal cosmetic product consumption was highly correlated with urinary paraben concentrations at pregnancy. Further, prenatal paraben exposure was linked to higher BMI Z-scores in children. Our in-vitro analysis revealed that especially the long chained paraben BuP stimulates adipogenesis by increasing the expression of adipocyte specific genes (PPARγ, ADIPOQ, LPL, etc.) and triglyceride storage. Moreover, we found that adiponectin secretion is increased whereas leptin secretion is reduced under BuP exposure in-vitro. Further mechanistic analysis for receptor binding and activation of PPARγ and other key players in adipogenesis are currently in process. We conclude that maternal cosmetic product consumption is linked to prenatal paraben exposure of children and contributes to the development of infant overweight development by triggering key pathways of adipogenesis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adipogenesis" title="adipogenesis">adipogenesis</a>, <a href="https://publications.waset.org/abstracts/search?q=endocrine%20disruptors" title=" endocrine disruptors"> endocrine disruptors</a>, <a href="https://publications.waset.org/abstracts/search?q=paraben" title=" paraben"> paraben</a>, <a href="https://publications.waset.org/abstracts/search?q=prenatal%20exposure" title=" prenatal exposure"> prenatal exposure</a> </p> <a href="https://publications.waset.org/abstracts/59000/prenatal-paraben-exposure-impacts-infant-overweight-development-and-in-vitro-adipogenesis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59000.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">274</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1</span> Identification and Characterization of Novel Genes Involved in Quinone Synthesis in the Odoriferous Defensive Stink Glands of the Red Flour Beetle, Tribolium castaneum</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20Atika">B. Atika</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Lehmann"> S. Lehmann</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Wimmer"> E. Wimmer</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The defense strategy is very common in the insect world. Defensive substances play a wide variety of functions for beetles, such as repellents, toxicants, insecticides, and antimicrobics. Beetles react to predators, invaders, and parasitic microbes with the release of toxic and repellent substances. Defensive substances are directed against a large array of potential target organisms or may function for boiling bombardment or as surfactants. Usually, Coleoptera biosynthesize and store their defensive compounds in a complex secretory organ, known as odoriferous defensive stink glands. The red flour beetle, Tribolium castaneum (Coleoptera: Tenebrionidae), uses these glands to produce antimicrobial p-benzoquinones and 1-alkenes. In the past, the morphology of stink gland has been studied in detail in tenebrionid beetles; however, very little is known about the genes that are involved in the production of gland secretion. In this study, we studied a subset of genes that are essential for the benzoquinone production in red flour beetle. In the first phase, we selected 74 potential candidate genes from a genome-wide RNA interference (RNAi) knockdown screen named 'iBeetle.' All these 74 candidate genes were functionally characterized by RNAi-mediated gene knockdown. Therefore, they were selected for a subsequent gas chromatography-mass spectrometry (GC-MS) analysis of secretion volatiles in respective RNAi knockdown glands. 33 of them were observed to alter the phenotype of stink gland. In the GC-MS analysis, 7 candidate genes were noted to display a strongly altered gland, in terms of secretion color and chemical composition, upon knockdown, showing their key role in the biosynthesis of gland secretion. Morphologically altered stink glands were found for odorant receptor and protein kinase superfamily. Subsequent GC-MS analysis of secretion volatiles revealed reduced benzoquinone levels in LIM domain, PDZ domain, PBP/GOBP family knockdowns and a complete lack of benzoquinones in the knockdown of sulfatase-modifying factor enzyme 1, sulfate transporter family. Based on stink gland transcriptome data, we analyzed the function of sulfatase-modifying factor enzyme 1 and sulfate transporter family via RNAi-mediated gene knockdowns, GC-MS, in situ hybridization, and enzymatic activity assays. Morphologically altered stink glands were noted in knockdown of both these genes. Furthermore, GC-MS analysis of secretion volatiles showed a complete lack of benzoquinones in the knockdown of these two genes. In situ hybridization showed that these two genes are expressed around the vesicle of certain subgroup of secretory stink gland cells. Enzymatic activity assays on stink gland tissue showed that these genes are involved in p-benzoquinone biosynthesis. These results suggest that sulfatase-modifying factor enzyme 1 and sulfate transporter family play a role specifically in benzoquinone biosynthesis in red flour beetles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Red%20Flour%20Beetle" title="Red Flour Beetle">Red Flour Beetle</a>, <a href="https://publications.waset.org/abstracts/search?q=defensive%20stink%20gland" title=" defensive stink gland"> defensive stink gland</a>, <a href="https://publications.waset.org/abstracts/search?q=benzoquinones" title=" benzoquinones"> benzoquinones</a>, <a href="https://publications.waset.org/abstracts/search?q=sulfate%20transporter" title=" sulfate transporter"> sulfate transporter</a>, <a href="https://publications.waset.org/abstracts/search?q=sulfatase-modifying%20factor%20enzyme%201" title=" sulfatase-modifying factor enzyme 1"> sulfatase-modifying factor enzyme 1</a> </p> <a href="https://publications.waset.org/abstracts/75081/identification-and-characterization-of-novel-genes-involved-in-quinone-synthesis-in-the-odoriferous-defensive-stink-glands-of-the-red-flour-beetle-tribolium-castaneum" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75081.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">155</span> </span> </div> </div> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10