CINXE.COM
Transfer function - Wikipedia
<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>Transfer function - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy", "wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"c4cd4d18-fe6d-45f7-adb0-c6c8059b87d8","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Transfer_function","wgTitle":"Transfer function","wgCurRevisionId":1253921914,"wgRevisionId":1253921914,"wgArticleId":31146,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["Wikipedia articles needing page number citations from April 2013","Articles with short description","Short description matches Wikidata","Electrical circuits","Transfer functions","Frequency-domain analysis","Types of functions"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName":"Transfer_function","wgRelevantArticleId":31146,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[], "wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":20000,"wgRelatedArticlesCompat":[],"wgCentralAuthMobileDomain":false,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q334269","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false, "wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.cite.styles":"ready","ext.math.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","jquery.makeCollapsible.styles":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","site","mediawiki.page.ready","jquery.makeCollapsible","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.ReferenceTooltips","ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups", "ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cjquery.makeCollapsible.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&only=styles&skin=vector-2022"> <script async="" src="/w/load.php?lang=en&modules=startup&only=scripts&raw=1&skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&modules=site.styles&only=styles&skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.4"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Transfer function - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/Transfer_function"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=Transfer_function&action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Transfer_function"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Transfer_function rootpage-Transfer_function skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page's font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_en.wikipedia.org&uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&returnto=Transfer+function" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&returnto=Transfer+function" title="You're encouraged to log in; however, it's not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_en.wikipedia.org&uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&returnto=Transfer+function" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&returnto=Transfer+function" title="You're encouraged to log in; however, it's not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contents" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contents</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(Top)</div> </a> </li> <li id="toc-Linear_time-invariant_systems" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Linear_time-invariant_systems"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Linear time-invariant systems</span> </div> </a> <button aria-controls="toc-Linear_time-invariant_systems-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Linear time-invariant systems subsection</span> </button> <ul id="toc-Linear_time-invariant_systems-sublist" class="vector-toc-list"> <li id="toc-Continuous-time" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Continuous-time"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.1</span> <span>Continuous-time</span> </div> </a> <ul id="toc-Continuous-time-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Discrete-time" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Discrete-time"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.2</span> <span>Discrete-time</span> </div> </a> <ul id="toc-Discrete-time-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Direct_derivation_from_differential_equations" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Direct_derivation_from_differential_equations"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.3</span> <span>Direct derivation from differential equations</span> </div> </a> <ul id="toc-Direct_derivation_from_differential_equations-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Gain,_transient_behavior_and_stability" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Gain,_transient_behavior_and_stability"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.4</span> <span>Gain, transient behavior and stability</span> </div> </a> <ul id="toc-Gain,_transient_behavior_and_stability-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Signal_processing" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Signal_processing"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Signal processing</span> </div> </a> <button aria-controls="toc-Signal_processing-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Signal processing subsection</span> </button> <ul id="toc-Signal_processing-sublist" class="vector-toc-list"> <li id="toc-Common_transfer-function_families" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Common_transfer-function_families"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.1</span> <span>Common transfer-function families</span> </div> </a> <ul id="toc-Common_transfer-function_families-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Control_engineering" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Control_engineering"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Control engineering</span> </div> </a> <ul id="toc-Control_engineering-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Imaging" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Imaging"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Imaging</span> </div> </a> <ul id="toc-Imaging-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Non-linear_systems" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Non-linear_systems"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Non-linear systems</span> </div> </a> <ul id="toc-Non-linear_systems-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-See_also" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#See_also"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>See also</span> </div> </a> <ul id="toc-See_also-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-References" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#References"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>References</span> </div> </a> <ul id="toc-References-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-External_links" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#External_links"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>External links</span> </div> </a> <ul id="toc-External_links-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Transfer function</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Go to an article in another language. Available in 29 languages" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-29" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">29 languages</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D8%AF%D8%A7%D9%84%D8%A9_%D8%AA%D8%AD%D9%88%D9%8A%D9%84" title="دالة تحويل – Arabic" lang="ar" hreflang="ar" data-title="دالة تحويل" data-language-autonym="العربية" data-language-local-name="Arabic" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/Funci%C3%B3_de_transfer%C3%A8ncia" title="Funció de transferència – Catalan" lang="ca" hreflang="ca" data-title="Funció de transferència" data-language-autonym="Català" data-language-local-name="Catalan" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/%C3%9Cbertragungsfunktion" title="Übertragungsfunktion – German" lang="de" hreflang="de" data-title="Übertragungsfunktion" data-language-autonym="Deutsch" data-language-local-name="German" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-et mw-list-item"><a href="https://et.wikipedia.org/wiki/%C3%9Clekandefunktsioon" title="Ülekandefunktsioon – Estonian" lang="et" hreflang="et" data-title="Ülekandefunktsioon" data-language-autonym="Eesti" data-language-local-name="Estonian" class="interlanguage-link-target"><span>Eesti</span></a></li><li class="interlanguage-link interwiki-el mw-list-item"><a href="https://el.wikipedia.org/wiki/%CE%A3%CF%85%CE%BD%CE%AC%CF%81%CF%84%CE%B7%CF%83%CE%B7_%CE%BC%CE%B5%CF%84%CE%B1%CF%86%CE%BF%CF%81%CE%AC%CF%82" title="Συνάρτηση μεταφοράς – Greek" lang="el" hreflang="el" data-title="Συνάρτηση μεταφοράς" data-language-autonym="Ελληνικά" data-language-local-name="Greek" class="interlanguage-link-target"><span>Ελληνικά</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Funci%C3%B3n_de_transferencia" title="Función de transferencia – Spanish" lang="es" hreflang="es" data-title="Función de transferencia" data-language-autonym="Español" data-language-local-name="Spanish" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-eo mw-list-item"><a href="https://eo.wikipedia.org/wiki/Tradona_funkcio" title="Tradona funkcio – Esperanto" lang="eo" hreflang="eo" data-title="Tradona funkcio" data-language-autonym="Esperanto" data-language-local-name="Esperanto" class="interlanguage-link-target"><span>Esperanto</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D8%AA%D8%A7%D8%A8%D8%B9_%D8%A7%D9%86%D8%AA%D9%82%D8%A7%D9%84" title="تابع انتقال – Persian" lang="fa" hreflang="fa" data-title="تابع انتقال" data-language-autonym="فارسی" data-language-local-name="Persian" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Fonction_de_transfert" title="Fonction de transfert – French" lang="fr" hreflang="fr" data-title="Fonction de transfert" data-language-autonym="Français" data-language-local-name="French" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-hi mw-list-item"><a href="https://hi.wikipedia.org/wiki/%E0%A4%85%E0%A4%82%E0%A4%A4%E0%A4%B0%E0%A4%A3_%E0%A4%AA%E0%A5%8D%E0%A4%B0%E0%A4%95%E0%A4%BE%E0%A4%B0%E0%A5%8D%E0%A4%AF" title="अंतरण प्रकार्य – Hindi" lang="hi" hreflang="hi" data-title="अंतरण प्रकार्य" data-language-autonym="हिन्दी" data-language-local-name="Hindi" class="interlanguage-link-target"><span>हिन्दी</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Funzione_di_trasferimento" title="Funzione di trasferimento – Italian" lang="it" hreflang="it" data-title="Funzione di trasferimento" data-language-autonym="Italiano" data-language-local-name="Italian" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-he mw-list-item"><a href="https://he.wikipedia.org/wiki/%D7%A4%D7%95%D7%A0%D7%A7%D7%A6%D7%99%D7%99%D7%AA_%D7%AA%D7%9E%D7%A1%D7%95%D7%A8%D7%AA" title="פונקציית תמסורת – Hebrew" lang="he" hreflang="he" data-title="פונקציית תמסורת" data-language-autonym="עברית" data-language-local-name="Hebrew" class="interlanguage-link-target"><span>עברית</span></a></li><li class="interlanguage-link interwiki-hu mw-list-item"><a href="https://hu.wikipedia.org/wiki/%C3%81tviteli_f%C3%BCggv%C3%A9ny" title="Átviteli függvény – Hungarian" lang="hu" hreflang="hu" data-title="Átviteli függvény" data-language-autonym="Magyar" data-language-local-name="Hungarian" class="interlanguage-link-target"><span>Magyar</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Transferfunctie" title="Transferfunctie – Dutch" lang="nl" hreflang="nl" data-title="Transferfunctie" data-language-autonym="Nederlands" data-language-local-name="Dutch" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E4%BC%9D%E9%81%94%E9%96%A2%E6%95%B0%E6%B3%95" title="伝達関数法 – Japanese" lang="ja" hreflang="ja" data-title="伝達関数法" data-language-autonym="日本語" data-language-local-name="Japanese" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-no mw-list-item"><a href="https://no.wikipedia.org/wiki/Overf%C3%B8ringsfunksjon" title="Overføringsfunksjon – Norwegian Bokmål" lang="nb" hreflang="nb" data-title="Overføringsfunksjon" data-language-autonym="Norsk bokmål" data-language-local-name="Norwegian Bokmål" class="interlanguage-link-target"><span>Norsk bokmål</span></a></li><li class="interlanguage-link interwiki-nn mw-list-item"><a href="https://nn.wikipedia.org/wiki/Transferfunksjon" title="Transferfunksjon – Norwegian Nynorsk" lang="nn" hreflang="nn" data-title="Transferfunksjon" data-language-autonym="Norsk nynorsk" data-language-local-name="Norwegian Nynorsk" class="interlanguage-link-target"><span>Norsk nynorsk</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/Transmitancja_operatorowa" title="Transmitancja operatorowa – Polish" lang="pl" hreflang="pl" data-title="Transmitancja operatorowa" data-language-autonym="Polski" data-language-local-name="Polish" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/Fun%C3%A7%C3%A3o_de_transfer%C3%AAncia" title="Função de transferência – Portuguese" lang="pt" hreflang="pt" data-title="Função de transferência" data-language-autonym="Português" data-language-local-name="Portuguese" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-ro mw-list-item"><a href="https://ro.wikipedia.org/wiki/Func%C8%9Bie_de_transfer" title="Funcție de transfer – Romanian" lang="ro" hreflang="ro" data-title="Funcție de transfer" data-language-autonym="Română" data-language-local-name="Romanian" class="interlanguage-link-target"><span>Română</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%9F%D0%B5%D1%80%D0%B5%D0%B4%D0%B0%D1%82%D0%BE%D1%87%D0%BD%D0%B0%D1%8F_%D1%84%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D1%8F" title="Передаточная функция – Russian" lang="ru" hreflang="ru" data-title="Передаточная функция" data-language-autonym="Русский" data-language-local-name="Russian" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-sr mw-list-item"><a href="https://sr.wikipedia.org/wiki/%D0%A4%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D1%98%D0%B0_%D0%BF%D1%80%D0%B5%D0%BD%D0%BE%D1%81%D0%B0" title="Функција преноса – Serbian" lang="sr" hreflang="sr" data-title="Функција преноса" data-language-autonym="Српски / srpski" data-language-local-name="Serbian" class="interlanguage-link-target"><span>Српски / srpski</span></a></li><li class="interlanguage-link interwiki-fi mw-list-item"><a href="https://fi.wikipedia.org/wiki/Siirtofunktio" title="Siirtofunktio – Finnish" lang="fi" hreflang="fi" data-title="Siirtofunktio" data-language-autonym="Suomi" data-language-local-name="Finnish" class="interlanguage-link-target"><span>Suomi</span></a></li><li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://sv.wikipedia.org/wiki/%C3%96verf%C3%B6ringsfunktion" title="Överföringsfunktion – Swedish" lang="sv" hreflang="sv" data-title="Överföringsfunktion" data-language-autonym="Svenska" data-language-local-name="Swedish" class="interlanguage-link-target"><span>Svenska</span></a></li><li class="interlanguage-link interwiki-tr mw-list-item"><a href="https://tr.wikipedia.org/wiki/Transfer_fonksiyonu" title="Transfer fonksiyonu – Turkish" lang="tr" hreflang="tr" data-title="Transfer fonksiyonu" data-language-autonym="Türkçe" data-language-local-name="Turkish" class="interlanguage-link-target"><span>Türkçe</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%9F%D0%B5%D1%80%D0%B5%D0%B4%D0%B0%D0%B2%D0%B0%D0%BB%D1%8C%D0%BD%D0%B0_%D1%84%D1%83%D0%BD%D0%BA%D1%86%D1%96%D1%8F" title="Передавальна функція – Ukrainian" lang="uk" hreflang="uk" data-title="Передавальна функція" data-language-autonym="Українська" data-language-local-name="Ukrainian" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-vi mw-list-item"><a href="https://vi.wikipedia.org/wiki/H%C3%A0m_truy%E1%BB%81n" title="Hàm truyền – Vietnamese" lang="vi" hreflang="vi" data-title="Hàm truyền" data-language-autonym="Tiếng Việt" data-language-local-name="Vietnamese" class="interlanguage-link-target"><span>Tiếng Việt</span></a></li><li class="interlanguage-link interwiki-zh-yue mw-list-item"><a href="https://zh-yue.wikipedia.org/wiki/%E9%81%9E%E7%A7%BB%E5%87%BD%E6%95%B8" title="遞移函數 – Cantonese" lang="yue" hreflang="yue" data-title="遞移函數" data-language-autonym="粵語" data-language-local-name="Cantonese" class="interlanguage-link-target"><span>粵語</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E4%BC%A0%E9%80%92%E5%87%BD%E6%95%B0" title="传递函数 – Chinese" lang="zh" hreflang="zh" data-title="传递函数" data-language-autonym="中文" data-language-local-name="Chinese" class="interlanguage-link-target"><span>中文</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q334269#sitelinks-wikipedia" title="Edit interlanguage links" class="wbc-editpage">Edit links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Transfer_function" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:Transfer_function" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Transfer_function"><span>Read</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Transfer_function&action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Transfer_function&action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Transfer_function"><span>Read</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Transfer_function&action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Transfer_function&action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/Transfer_function" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/Transfer_function" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages" title="A list of all special pages [q]" accesskey="q"><span>Special pages</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Transfer_function&oldid=1253921914" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Transfer_function&action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&page=Transfer_function&id=1253921914&wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FTransfer_function"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FTransfer_function"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&page=Transfer_function&action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Transfer_function&printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q334269" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><div class="shortdescription nomobile noexcerpt noprint searchaux" style="display:none">Function specifying the behavior of a component in an electronic or control system</div> <style data-mw-deduplicate="TemplateStyles:r1236090951">.mw-parser-output .hatnote{font-style:italic}.mw-parser-output div.hatnote{padding-left:1.6em;margin-bottom:0.5em}.mw-parser-output .hatnote i{font-style:normal}.mw-parser-output .hatnote+link+.hatnote{margin-top:-0.5em}@media print{body.ns-0 .mw-parser-output .hatnote{display:none!important}}</style><div role="note" class="hatnote navigation-not-searchable">Not to be confused with <a href="/wiki/Transformation_(function)" title="Transformation (function)">Transformation (function)</a>.</div> <p>In <a href="/wiki/Engineering" title="Engineering">engineering</a>, a <b>transfer function</b> (also known as <b>system function</b><sup id="cite_ref-1" class="reference"><a href="#cite_note-1"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup> or <b>network function</b>) of a system, sub-system, or component is a <a href="/wiki/Function_(mathematics)" title="Function (mathematics)">mathematical function</a> that <a href="/wiki/Mathematical_model" title="Mathematical model">models</a> the system's output for each possible input.<sup id="cite_ref-LaughtonWarne2002_2-0" class="reference"><a href="#cite_note-LaughtonWarne2002-2"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Parr1993_3-0" class="reference"><a href="#cite_note-Parr1993-3"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-SinclairDunton2007_4-0" class="reference"><a href="#cite_note-SinclairDunton2007-4"><span class="cite-bracket">[</span>4<span class="cite-bracket">]</span></a></sup> It is widely used in <a href="/wiki/Electronic_engineering" title="Electronic engineering">electronic engineering</a> tools like <a href="/wiki/Electronic_circuit_simulation" title="Electronic circuit simulation">circuit simulators</a> and <a href="/wiki/Control_system" title="Control system">control systems</a>. In simple cases, this function can be represented as a two-dimensional <a href="/wiki/Graph_(function)" class="mw-redirect" title="Graph (function)">graph</a> of an independent <a href="/wiki/Scalar_(mathematics)" title="Scalar (mathematics)">scalar</a> input versus the dependent scalar output (known as a <b>transfer curve</b> or <b>characteristic curve</b>). Transfer functions for components are used to design and analyze systems assembled from components, particularly using the <a href="/wiki/Block_diagram" title="Block diagram">block diagram</a> technique, in electronics and <a href="/wiki/Control_theory" title="Control theory">control theory</a>. </p><p>Dimensions and units of the transfer function model the output response of the device for a range of possible inputs. The transfer function of a <a href="/wiki/Two-port" class="mw-redirect" title="Two-port">two-port</a> electronic circuit, such as an <a href="/wiki/Amplifier" title="Amplifier">amplifier</a>, might be a two-dimensional graph of the scalar voltage at the output as a function of the scalar voltage applied to the input; the transfer function of an electromechanical <a href="/wiki/Actuator" title="Actuator">actuator</a> might be the mechanical displacement of the movable arm as a function of electric current applied to the device; the transfer function of a <a href="/wiki/Photodetector" title="Photodetector">photodetector</a> might be the output voltage as a function of the <a href="/wiki/Luminous_intensity" title="Luminous intensity">luminous intensity</a> of incident light of a given <a href="/wiki/Wavelength" title="Wavelength">wavelength</a>. </p><p>The term "transfer function" is also used in the <a href="/wiki/Frequency_domain" title="Frequency domain">frequency domain</a> analysis of systems using transform methods, such as the <a href="/wiki/Laplace_transform" title="Laplace transform">Laplace transform</a>; it is the <a href="/wiki/Amplitude" title="Amplitude">amplitude</a> of the output as a function of the <a href="/wiki/Frequency" title="Frequency">frequency</a> of the input signal. The transfer function of an <a href="/wiki/Electronic_filter" title="Electronic filter">electronic filter</a> is the amplitude at the output as a function of the frequency of a constant amplitude <a href="/wiki/Sine_wave" title="Sine wave">sine wave</a> applied to the input. For optical imaging devices, the <a href="/wiki/Optical_transfer_function" title="Optical transfer function">optical transfer function</a> is the <a href="/wiki/Fourier_transform" title="Fourier transform">Fourier transform</a> of the <a href="/wiki/Point_spread_function" title="Point spread function">point spread function</a> (a function of <a href="/wiki/Spatial_frequency" title="Spatial frequency">spatial frequency</a>). </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Linear_time-invariant_systems">Linear time-invariant systems</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Transfer_function&action=edit&section=1" title="Edit section: Linear time-invariant systems"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Transfer functions are commonly used in the analysis of systems such as <a href="/wiki/Single-input_single-output" class="mw-redirect" title="Single-input single-output">single-input single-output</a> <a href="/wiki/Filter_(signal_processing)" title="Filter (signal processing)">filters</a> in <a href="/wiki/Signal_processing" title="Signal processing">signal processing</a>, <a href="/wiki/Communication_theory" title="Communication theory">communication theory</a>, and <a href="/wiki/Control_theory" title="Control theory">control theory</a>. The term is often used exclusively to refer to <a href="/wiki/Linear_time-invariant" class="mw-redirect" title="Linear time-invariant">linear time-invariant</a> (LTI) systems. Most real systems have <a href="/wiki/Non-linear" class="mw-redirect" title="Non-linear">non-linear</a> input-output characteristics, but many systems operated within nominal parameters (not over-driven) have behavior close enough to linear that <a href="/wiki/LTI_system_theory" class="mw-redirect" title="LTI system theory">LTI system theory</a> is an acceptable representation of their input-output behavior. </p> <div class="mw-heading mw-heading3"><h3 id="Continuous-time">Continuous-time</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Transfer_function&action=edit&section=2" title="Edit section: Continuous-time"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Descriptions are given in terms of a <a href="/wiki/Complex_variable" class="mw-redirect" title="Complex variable">complex variable</a>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle s=\sigma +j\cdot \omega }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>s</mi> <mo>=</mo> <mi>σ<!-- σ --></mi> <mo>+</mo> <mi>j</mi> <mo>⋅<!-- ⋅ --></mo> <mi>ω<!-- ω --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle s=\sigma +j\cdot \omega }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bdc5bc85809fc5a4af728b15af62f99fb483faab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:12.442ex; height:2.509ex;" alt="{\displaystyle s=\sigma +j\cdot \omega }"></span>. In many applications it is sufficient to set <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sigma =0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>σ<!-- σ --></mi> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sigma =0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1eb4831f1e0ca1ba7d007dc6b973e54787e1a4b4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.591ex; height:2.176ex;" alt="{\displaystyle \sigma =0}"></span> (thus <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle s=j\cdot \omega }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>s</mi> <mo>=</mo> <mi>j</mi> <mo>⋅<!-- ⋅ --></mo> <mi>ω<!-- ω --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle s=j\cdot \omega }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/51a288711d5d19b0eecc950f8b23334b1bf05b9c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:8.272ex; height:2.509ex;" alt="{\displaystyle s=j\cdot \omega }"></span>), which reduces the <a href="/wiki/Laplace_transform" title="Laplace transform">Laplace transforms</a> with complex arguments to <a href="/wiki/Fourier_transform" title="Fourier transform">Fourier transforms</a> with the real argument ω. This is common in applications primarily interested in the LTI system's steady-state response (often the case in <a href="/wiki/Signal_processing" title="Signal processing">signal processing</a> and <a href="/wiki/Communication_theory" title="Communication theory">communication theory</a>), not the fleeting turn-on and turn-off <a href="/wiki/Transient_response" title="Transient response">transient response</a> or stability issues. </p><p>For <a href="/wiki/Continuous-time" class="mw-redirect" title="Continuous-time">continuous-time</a> input signal <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x(t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x(t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d54c275db3a1e620737b58e143b0818107fa5f5c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.979ex; height:2.843ex;" alt="{\displaystyle x(t)}"></span> and output <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y(t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y(t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/397de1edef5bf2ee15c020f325d7d781a3aa7f50" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.804ex; height:2.843ex;" alt="{\displaystyle y(t)}"></span>, dividing the Laplace transform of the output, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Y(s)={\mathcal {L}}\left\{y(t)\right\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Y</mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mrow> <mo>{</mo> <mrow> <mi>y</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> <mo>}</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Y(s)={\mathcal {L}}\left\{y(t)\right\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a79669ea8d67c9720f88461e092702769feaeb2a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:15.892ex; height:2.843ex;" alt="{\displaystyle Y(s)={\mathcal {L}}\left\{y(t)\right\}}"></span>, by the Laplace transform of the input, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X(s)={\mathcal {L}}\left\{x(t)\right\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mrow> <mo>{</mo> <mrow> <mi>x</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> <mo>}</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X(s)={\mathcal {L}}\left\{x(t)\right\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/38c5baf3780558f202ce0b982fa02f0771a678b8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:16.273ex; height:2.843ex;" alt="{\displaystyle X(s)={\mathcal {L}}\left\{x(t)\right\}}"></span>, yields the system's transfer function <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle H(s)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>H</mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle H(s)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f1b91390324fc9c33ec00fe57e3924ad7118cc1e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.963ex; height:2.843ex;" alt="{\displaystyle H(s)}"></span>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle H(s)={\frac {Y(s)}{X(s)}}={\frac {{\mathcal {L}}\left\{y(t)\right\}}{{\mathcal {L}}\left\{x(t)\right\}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>H</mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>Y</mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>X</mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mrow> <mo>{</mo> <mrow> <mi>y</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> <mo>}</mo> </mrow> </mrow> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mrow> <mo>{</mo> <mrow> <mi>x</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> <mo>}</mo> </mrow> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle H(s)={\frac {Y(s)}{X(s)}}={\frac {{\mathcal {L}}\left\{y(t)\right\}}{{\mathcal {L}}\left\{x(t)\right\}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c6b6ef964e38af4f4540b354028f45e085c11faf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:26.007ex; height:6.509ex;" alt="{\displaystyle H(s)={\frac {Y(s)}{X(s)}}={\frac {{\mathcal {L}}\left\{y(t)\right\}}{{\mathcal {L}}\left\{x(t)\right\}}}}"></span></dd></dl> <p>which can be rearranged as: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Y(s)=H(s)\;X(s)\,.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Y</mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>H</mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mspace width="thickmathspace" /> <mi>X</mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Y(s)=H(s)\;X(s)\,.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ae1e5ed76344d5cb87f929b85f937635e379d28e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:19.294ex; height:2.843ex;" alt="{\displaystyle Y(s)=H(s)\;X(s)\,.}"></span></dd></dl> <div class="mw-heading mw-heading3"><h3 id="Discrete-time">Discrete-time</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Transfer_function&action=edit&section=3" title="Edit section: Discrete-time"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">See also: <a href="/wiki/Z-transform#Linear_constant-coefficient_difference_equation" title="Z-transform">Z-transform § Linear constant-coefficient difference equation</a></div> <p><a href="/wiki/Discrete-time" class="mw-redirect" title="Discrete-time">Discrete-time</a> signals may be notated as arrays indexed by an <a href="/wiki/Integer" title="Integer">integer</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span> (e.g. <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x[n]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo stretchy="false">[</mo> <mi>n</mi> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x[n]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/864cbbefbdcb55af4d9390911de1bf70167c4a3d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.018ex; height:2.843ex;" alt="{\displaystyle x[n]}"></span> for input and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y[n]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> <mo stretchy="false">[</mo> <mi>n</mi> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y[n]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/305428e6d1fb59cd0163a7a96ace52292a262afa" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.844ex; height:2.843ex;" alt="{\displaystyle y[n]}"></span> for output). Instead of using the Laplace transform (which is better for continuous-time signals), discrete-time signals are dealt with using the <a href="/wiki/Z-transform" title="Z-transform">z-transform</a> (notated with a corresponding capital letter, like <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X(z)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X(z)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/727fb275ca22820bf91e526120c4939a1d38a2b0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.877ex; height:2.843ex;" alt="{\displaystyle X(z)}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Y(z)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Y</mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Y(z)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1529e80a525ae5701df402042a02b40f0bd7d1a4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.671ex; height:2.843ex;" alt="{\displaystyle Y(z)}"></span>), so a discrete-time system's transfer function can be written as: </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle H(z)={\frac {Y(z)}{X(z)}}={\frac {{\mathcal {Z}}\{y[n]\}}{{\mathcal {Z}}\{x[n]\}}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>H</mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>Y</mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>X</mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">Z</mi> </mrow> </mrow> <mo fence="false" stretchy="false">{</mo> <mi>y</mi> <mo stretchy="false">[</mo> <mi>n</mi> <mo stretchy="false">]</mo> <mo fence="false" stretchy="false">}</mo> </mrow> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">Z</mi> </mrow> </mrow> <mo fence="false" stretchy="false">{</mo> <mi>x</mi> <mo stretchy="false">[</mo> <mi>n</mi> <mo stretchy="false">]</mo> <mo fence="false" stretchy="false">}</mo> </mrow> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle H(z)={\frac {Y(z)}{X(z)}}={\frac {{\mathcal {Z}}\{y[n]\}}{{\mathcal {Z}}\{x[n]\}}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f769303ffaaa6d3f6a437a67bb0eb751f535ca14" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:26.48ex; height:6.509ex;" alt="{\displaystyle H(z)={\frac {Y(z)}{X(z)}}={\frac {{\mathcal {Z}}\{y[n]\}}{{\mathcal {Z}}\{x[n]\}}}.}"></span> </p> <div class="mw-heading mw-heading3"><h3 id="Direct_derivation_from_differential_equations">Direct derivation from differential equations</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Transfer_function&action=edit&section=4" title="Edit section: Direct derivation from differential equations"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>A <a href="/wiki/Linear_differential_equation" title="Linear differential equation">linear differential equation</a> with constant coefficients </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L[u]={\frac {d^{n}u}{dt^{n}}}+a_{1}{\frac {d^{n-1}u}{dt^{n-1}}}+\dotsb +a_{n-1}{\frac {du}{dt}}+a_{n}u=r(t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>L</mi> <mo stretchy="false">[</mo> <mi>u</mi> <mo stretchy="false">]</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mi>u</mi> </mrow> <mrow> <mi>d</mi> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>+</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mi>u</mi> </mrow> <mrow> <mi>d</mi> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>+</mo> <mo>⋯<!-- ⋯ --></mo> <mo>+</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mi>u</mi> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> </mrow> <mo>+</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mi>u</mi> <mo>=</mo> <mi>r</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L[u]={\frac {d^{n}u}{dt^{n}}}+a_{1}{\frac {d^{n-1}u}{dt^{n-1}}}+\dotsb +a_{n-1}{\frac {du}{dt}}+a_{n}u=r(t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4f1504bd7d731876d14d76c5d4746a68e98d9f12" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:53.483ex; height:6.009ex;" alt="{\displaystyle L[u]={\frac {d^{n}u}{dt^{n}}}+a_{1}{\frac {d^{n-1}u}{dt^{n-1}}}+\dotsb +a_{n-1}{\frac {du}{dt}}+a_{n}u=r(t)}"></span></dd></dl> <p>where <i>u</i> and <i>r</i> are suitably smooth functions of <i>t</i>, and <i>L</i> is the operator defined on the relevant function space transforms <i>u</i> into <i>r</i>. That kind of equation can be used to constrain the output function <i>u</i> in terms of the <i>forcing</i> function <i>r</i>. The transfer function can be used to define an operator <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F[r]=u}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> <mo stretchy="false">[</mo> <mi>r</mi> <mo stretchy="false">]</mo> <mo>=</mo> <mi>u</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F[r]=u}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/876c77d0dadd2671e078abf7c6d7532580222970" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.511ex; height:2.843ex;" alt="{\displaystyle F[r]=u}"></span> that serves as a right inverse of <i>L</i>, meaning that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L[F[r]]=r}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>L</mi> <mo stretchy="false">[</mo> <mi>F</mi> <mo stretchy="false">[</mo> <mi>r</mi> <mo stretchy="false">]</mo> <mo stretchy="false">]</mo> <mo>=</mo> <mi>r</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L[F[r]]=r}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d4513a4d4543e0afac921bb6153fd3a8b93dcf60" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.107ex; height:2.843ex;" alt="{\displaystyle L[F[r]]=r}"></span>. </p><p>Solutions of the homogeneous <a href="/wiki/Linear_differential_equation#Homogeneous_equations_with_constant_coefficients" title="Linear differential equation">constant-coefficient differential equation</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L[u]=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>L</mi> <mo stretchy="false">[</mo> <mi>u</mi> <mo stretchy="false">]</mo> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L[u]=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/990bc74c22611d6fea8f4e1ef3d2bc1a16260f78" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.467ex; height:2.843ex;" alt="{\displaystyle L[u]=0}"></span> can be found by trying <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle u=e^{\lambda t}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>u</mi> <mo>=</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>λ<!-- λ --></mi> <mi>t</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle u=e^{\lambda t}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/584a2d0e5b79b2dc3c8cf0f19edd6d9c667c12e9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.296ex; height:2.676ex;" alt="{\displaystyle u=e^{\lambda t}}"></span>. That substitution yields the <a href="/wiki/Characteristic_equation_(calculus)" title="Characteristic equation (calculus)">characteristic polynomial</a> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p_{L}(\lambda )=\lambda ^{n}+a_{1}\lambda ^{n-1}+\dotsb +a_{n-1}\lambda +a_{n}\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>L</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>λ<!-- λ --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <msup> <mi>λ<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>+</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msup> <mi>λ<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>+</mo> <mo>⋯<!-- ⋯ --></mo> <mo>+</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msub> <mi>λ<!-- λ --></mi> <mo>+</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p_{L}(\lambda )=\lambda ^{n}+a_{1}\lambda ^{n-1}+\dotsb +a_{n-1}\lambda +a_{n}\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e6762393f3439806c1aee7e100a3f451dfb727a0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; margin-left: -0.089ex; width:41.23ex; height:3.176ex;" alt="{\displaystyle p_{L}(\lambda )=\lambda ^{n}+a_{1}\lambda ^{n-1}+\dotsb +a_{n-1}\lambda +a_{n}\,}"></span></dd></dl> <p>The inhomogeneous case can be easily solved if the input function <i>r</i> is also of the form <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r(t)=e^{st}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>r</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> <mi>t</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r(t)=e^{st}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/633583032db6bc1ad227f438cd84249abde2f0a8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.477ex; height:3.009ex;" alt="{\displaystyle r(t)=e^{st}}"></span>. By substituting <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle u=H(s)e^{st}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>u</mi> <mo>=</mo> <mi>H</mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> <mi>t</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle u=H(s)e^{st}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/aa9614c995441ccc2dbe7b013e09750f11a40a58" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.072ex; height:3.009ex;" alt="{\displaystyle u=H(s)e^{st}}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L[H(s)e^{st}]=e^{st}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>L</mi> <mo stretchy="false">[</mo> <mi>H</mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> <mi>t</mi> </mrow> </msup> <mo stretchy="false">]</mo> <mo>=</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> <mi>t</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L[H(s)e^{st}]=e^{st}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3bcdcfff13fb52c9dd094cbac10390cce1e50977" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:16.299ex; height:3.009ex;" alt="{\displaystyle L[H(s)e^{st}]=e^{st}}"></span> if we define </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle H(s)={\frac {1}{p_{L}(s)}}\qquad {\text{wherever }}\quad p_{L}(s)\neq 0.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>H</mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>L</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mspace width="2em" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>wherever </mtext> </mrow> <mspace width="1em" /> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>L</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mo>≠<!-- ≠ --></mo> <mn>0.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle H(s)={\frac {1}{p_{L}(s)}}\qquad {\text{wherever }}\quad p_{L}(s)\neq 0.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2e5bc212bebc14311da654c65489b906635a858a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:41.314ex; height:6.009ex;" alt="{\displaystyle H(s)={\frac {1}{p_{L}(s)}}\qquad {\text{wherever }}\quad p_{L}(s)\neq 0.}"></span></dd></dl> <p>Other definitions of the transfer function are used, for example <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1/p_{L}(ik).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>L</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>i</mi> <mi>k</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1/p_{L}(ik).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a98f2fa53746c9b7baa11ff5285c3e9898d1abaa" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.316ex; height:2.843ex;" alt="{\displaystyle 1/p_{L}(ik).}"></span><sup id="cite_ref-5" class="reference"><a href="#cite_note-5"><span class="cite-bracket">[</span>5<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Gain,_transient_behavior_and_stability"><span id="Gain.2C_transient_behavior_and_stability"></span>Gain, transient behavior and stability</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Transfer_function&action=edit&section=5" title="Edit section: Gain, transient behavior and stability"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>A general sinusoidal input to a system of frequency <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \omega _{0}/(2\pi )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>ω<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mo stretchy="false">(</mo> <mn>2</mn> <mi>π<!-- π --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \omega _{0}/(2\pi )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3e5542a3053fca1aae13bbf978a9042df27adadb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.966ex; height:2.843ex;" alt="{\displaystyle \omega _{0}/(2\pi )}"></span> may be written <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \exp(j\omega _{0}t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>exp</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>j</mi> <msub> <mi>ω<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \exp(j\omega _{0}t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/88c3e91066730c22c893afa793f994cfba1534c4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.659ex; height:2.843ex;" alt="{\displaystyle \exp(j\omega _{0}t)}"></span>. The response of a system to a sinusoidal input beginning at time <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>t</mi> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/43469ec032d858feae5aa87029e22eaaf0109e9c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.101ex; height:2.176ex;" alt="{\displaystyle t=0}"></span> will consist of the sum of the steady-state response and a transient response. The steady-state response is the output of the system in the limit of infinite time, and the transient response is the difference between the response and the steady-state response; it corresponds to the homogeneous solution of the <a href="/wiki/Differential_equation" title="Differential equation">differential equation</a>. The transfer function for an LTI system may be written as the product: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle H(s)=\prod _{i=1}^{N}{\frac {1}{s-s_{P_{i}}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>H</mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mo>=</mo> <munderover> <mo>∏<!-- ∏ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi>s</mi> <mo>−<!-- − --></mo> <msub> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mrow> </msub> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle H(s)=\prod _{i=1}^{N}{\frac {1}{s-s_{P_{i}}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/26e85dd8993226df8589c3711f4689747d6cbb52" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:19.188ex; height:7.343ex;" alt="{\displaystyle H(s)=\prod _{i=1}^{N}{\frac {1}{s-s_{P_{i}}}}}"></span></dd></dl> <p>where <i>s<sub>P<sub>i</sub></sub></i> are the <i>N</i> roots of the characteristic polynomial and will be the <a href="/wiki/Pole_(complex_analysis)" class="mw-redirect" title="Pole (complex analysis)">poles</a> of the transfer function. In a transfer function with a single pole <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle H(s)={\frac {1}{s-s_{P}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>H</mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi>s</mi> <mo>−<!-- − --></mo> <msub> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>P</mi> </mrow> </msub> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle H(s)={\frac {1}{s-s_{P}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/642b755d27eb69066f920837a919bd2d37d18796" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:15.386ex; height:5.509ex;" alt="{\displaystyle H(s)={\frac {1}{s-s_{P}}}}"></span> where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle s_{P}=\sigma _{P}+j\omega _{P}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>P</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>σ<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>P</mi> </mrow> </msub> <mo>+</mo> <mi>j</mi> <msub> <mi>ω<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>P</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle s_{P}=\sigma _{P}+j\omega _{P}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9040b9d6959247607be5fdf9f637454623e15244" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:15.16ex; height:2.509ex;" alt="{\displaystyle s_{P}=\sigma _{P}+j\omega _{P}}"></span>, the Laplace transform of a general sinusoid of unit amplitude will be <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {1}{s-j\omega _{i}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi>s</mi> <mo>−<!-- − --></mo> <mi>j</mi> <msub> <mi>ω<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {1}{s-j\omega _{i}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c9cfdf06f5e372a847dfbc8c2dd3bf49df9f7a69" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:7.971ex; height:5.676ex;" alt="{\displaystyle {\frac {1}{s-j\omega _{i}}}}"></span>. The Laplace transform of the output will be <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {H(s)}{s-j\omega _{0}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>H</mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>s</mi> <mo>−<!-- − --></mo> <mi>j</mi> <msub> <mi>ω<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {H(s)}{s-j\omega _{0}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/244eb1869f6b62a2b3fb93822e6a9427f49d6f16" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:8.225ex; height:6.176ex;" alt="{\displaystyle {\frac {H(s)}{s-j\omega _{0}}}}"></span>, and the temporal output will be the inverse Laplace transform of that function: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g(t)={\frac {e^{j\,\omega _{0}\,t}-e^{(\sigma _{P}+j\,\omega _{P})t}}{-\sigma _{P}+j(\omega _{0}-\omega _{P})}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mspace width="thinmathspace" /> <msub> <mi>ω<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mspace width="thinmathspace" /> <mi>t</mi> </mrow> </msup> <mo>−<!-- − --></mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <msub> <mi>σ<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>P</mi> </mrow> </msub> <mo>+</mo> <mi>j</mi> <mspace width="thinmathspace" /> <msub> <mi>ω<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>P</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mi>t</mi> </mrow> </msup> </mrow> <mrow> <mo>−<!-- − --></mo> <msub> <mi>σ<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>P</mi> </mrow> </msub> <mo>+</mo> <mi>j</mi> <mo stretchy="false">(</mo> <msub> <mi>ω<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>−<!-- − --></mo> <msub> <mi>ω<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>P</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g(t)={\frac {e^{j\,\omega _{0}\,t}-e^{(\sigma _{P}+j\,\omega _{P})t}}{-\sigma _{P}+j(\omega _{0}-\omega _{P})}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/34790f910e35995f9f2ad644b5d85fdfcd39c9ca" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:26.162ex; height:6.509ex;" alt="{\displaystyle g(t)={\frac {e^{j\,\omega _{0}\,t}-e^{(\sigma _{P}+j\,\omega _{P})t}}{-\sigma _{P}+j(\omega _{0}-\omega _{P})}}}"></span></dd></dl> <p>The second term in the numerator is the transient response, and in the limit of infinite time it will diverge to infinity if <i>σ<sub>P</sub></i> is positive. For a system to be stable, its transfer function must have no poles whose real parts are positive. If the transfer function is strictly stable, the real parts of all poles will be negative and the transient behavior will tend to zero in the limit of infinite time. The steady-state output will be: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g(\infty )={\frac {e^{j\,\omega _{0}\,t}}{-\sigma _{P}+j(\omega _{0}-\omega _{P})}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> <mo stretchy="false">(</mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mspace width="thinmathspace" /> <msub> <mi>ω<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mspace width="thinmathspace" /> <mi>t</mi> </mrow> </msup> <mrow> <mo>−<!-- − --></mo> <msub> <mi>σ<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>P</mi> </mrow> </msub> <mo>+</mo> <mi>j</mi> <mo stretchy="false">(</mo> <msub> <mi>ω<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>−<!-- − --></mo> <msub> <mi>ω<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>P</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g(\infty )={\frac {e^{j\,\omega _{0}\,t}}{-\sigma _{P}+j(\omega _{0}-\omega _{P})}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0c81a081921ff4e13fb2193e8a3bc3938fc33114" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:27.646ex; height:6.509ex;" alt="{\displaystyle g(\infty )={\frac {e^{j\,\omega _{0}\,t}}{-\sigma _{P}+j(\omega _{0}-\omega _{P})}}}"></span></dd></dl> <p>The <a href="/wiki/Frequency_response" title="Frequency response">frequency response</a> (or "gain") <i>G</i> of the system is defined as the absolute value of the ratio of the output amplitude to the steady-state input amplitude: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G(\omega _{i})=\left|{\frac {1}{-\sigma _{P}+j(\omega _{0}-\omega _{P})}}\right|={\frac {1}{\sqrt {\sigma _{P}^{2}+(\omega _{P}-\omega _{0})^{2}}}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>G</mi> <mo stretchy="false">(</mo> <msub> <mi>ω<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>=</mo> <mrow> <mo>|</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mo>−<!-- − --></mo> <msub> <mi>σ<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>P</mi> </mrow> </msub> <mo>+</mo> <mi>j</mi> <mo stretchy="false">(</mo> <msub> <mi>ω<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>−<!-- − --></mo> <msub> <mi>ω<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>P</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mo>|</mo> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msqrt> <msubsup> <mi>σ<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>P</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>+</mo> <mo stretchy="false">(</mo> <msub> <mi>ω<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>P</mi> </mrow> </msub> <mo>−<!-- − --></mo> <msub> <mi>ω<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mfrac> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle G(\omega _{i})=\left|{\frac {1}{-\sigma _{P}+j(\omega _{0}-\omega _{P})}}\right|={\frac {1}{\sqrt {\sigma _{P}^{2}+(\omega _{P}-\omega _{0})^{2}}}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/62dad3adf90546fe83b51d6898d89ef4fc028d81" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.671ex; width:53.228ex; height:8.509ex;" alt="{\displaystyle G(\omega _{i})=\left|{\frac {1}{-\sigma _{P}+j(\omega _{0}-\omega _{P})}}\right|={\frac {1}{\sqrt {\sigma _{P}^{2}+(\omega _{P}-\omega _{0})^{2}}}},}"></span></dd></dl> <p>which is the absolute value of the transfer function <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle H(s)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>H</mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle H(s)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f1b91390324fc9c33ec00fe57e3924ad7118cc1e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.963ex; height:2.843ex;" alt="{\displaystyle H(s)}"></span> evaluated at <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle j\omega _{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>j</mi> <msub> <mi>ω<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle j\omega _{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81ca5d6a7d81c631caf5aadc8e264c97c0d73134" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.027ex; width:3.23ex; height:2.509ex;" alt="{\displaystyle j\omega _{i}}"></span>. This result is valid for any number of transfer-function poles. </p> <div class="mw-heading mw-heading2"><h2 id="Signal_processing">Signal processing</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Transfer_function&action=edit&section=6" title="Edit section: Signal processing"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x(t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x(t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d54c275db3a1e620737b58e143b0818107fa5f5c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.979ex; height:2.843ex;" alt="{\displaystyle x(t)}"></span> is the input to a general <a href="/wiki/LTI_system_theory" class="mw-redirect" title="LTI system theory">linear time-invariant system</a>, and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y(t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y(t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/397de1edef5bf2ee15c020f325d7d781a3aa7f50" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.804ex; height:2.843ex;" alt="{\displaystyle y(t)}"></span> is the output, and the <a href="/wiki/Bilateral_Laplace_transform" class="mw-redirect" title="Bilateral Laplace transform">bilateral Laplace transform</a> of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x(t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x(t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d54c275db3a1e620737b58e143b0818107fa5f5c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.979ex; height:2.843ex;" alt="{\displaystyle x(t)}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y(t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y(t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/397de1edef5bf2ee15c020f325d7d781a3aa7f50" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.804ex; height:2.843ex;" alt="{\displaystyle y(t)}"></span> is </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}X(s)&={\mathcal {L}}\left\{x(t)\right\}\ {\stackrel {\mathrm {def} }{=}}\ \int _{-\infty }^{\infty }x(t)e^{-st}\,dt,\\Y(s)&={\mathcal {L}}\left\{y(t)\right\}\ {\stackrel {\mathrm {def} }{=}}\ \int _{-\infty }^{\infty }y(t)e^{-st}\,dt.\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mi>X</mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mrow> <mo>{</mo> <mrow> <mi>x</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> <mo>}</mo> </mrow> <mtext> </mtext> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-REL"> <mover> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <mo>=</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> <mi mathvariant="normal">e</mi> <mi mathvariant="normal">f</mi> </mrow> </mrow> </mover> </mrow> </mrow> <mtext> </mtext> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </msubsup> <mi>x</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mi>s</mi> <mi>t</mi> </mrow> </msup> <mspace width="thinmathspace" /> <mi>d</mi> <mi>t</mi> <mo>,</mo> </mtd> </mtr> <mtr> <mtd> <mi>Y</mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mrow> <mo>{</mo> <mrow> <mi>y</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> <mo>}</mo> </mrow> <mtext> </mtext> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-REL"> <mover> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <mo>=</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> <mi mathvariant="normal">e</mi> <mi mathvariant="normal">f</mi> </mrow> </mrow> </mover> </mrow> </mrow> <mtext> </mtext> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </msubsup> <mi>y</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mi>s</mi> <mi>t</mi> </mrow> </msup> <mspace width="thinmathspace" /> <mi>d</mi> <mi>t</mi> <mo>.</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}X(s)&={\mathcal {L}}\left\{x(t)\right\}\ {\stackrel {\mathrm {def} }{=}}\ \int _{-\infty }^{\infty }x(t)e^{-st}\,dt,\\Y(s)&={\mathcal {L}}\left\{y(t)\right\}\ {\stackrel {\mathrm {def} }{=}}\ \int _{-\infty }^{\infty }y(t)e^{-st}\,dt.\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6a7e80dde6188c84112122d593a04294b7b42ba1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -5.505ex; width:37.076ex; height:12.176ex;" alt="{\displaystyle {\begin{aligned}X(s)&={\mathcal {L}}\left\{x(t)\right\}\ {\stackrel {\mathrm {def} }{=}}\ \int _{-\infty }^{\infty }x(t)e^{-st}\,dt,\\Y(s)&={\mathcal {L}}\left\{y(t)\right\}\ {\stackrel {\mathrm {def} }{=}}\ \int _{-\infty }^{\infty }y(t)e^{-st}\,dt.\end{aligned}}}"></span></dd></dl> <p>The output is related to the input by the transfer function <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle H(s)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>H</mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle H(s)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f1b91390324fc9c33ec00fe57e3924ad7118cc1e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.963ex; height:2.843ex;" alt="{\displaystyle H(s)}"></span> as </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Y(s)=H(s)X(s)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Y</mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>H</mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mi>X</mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Y(s)=H(s)X(s)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/52d03acf1580643b32259a9fc2aad66a9de6f1fc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:17.615ex; height:2.843ex;" alt="{\displaystyle Y(s)=H(s)X(s)}"></span></dd></dl> <p>and the transfer function itself is </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle H(s)={\frac {Y(s)}{X(s)}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>H</mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>Y</mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>X</mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle H(s)={\frac {Y(s)}{X(s)}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/235f5bbcc16fe659b18b7101de324f66fca1d0ac" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:14.425ex; height:6.509ex;" alt="{\displaystyle H(s)={\frac {Y(s)}{X(s)}}.}"></span></dd></dl> <p>If a <a href="/wiki/Complex_number" title="Complex number">complex</a> <a href="/wiki/Harmonic" title="Harmonic">harmonic</a> <a href="/wiki/Signal_(information_theory)" class="mw-redirect" title="Signal (information theory)">signal</a> with a <a href="/wiki/Sinusoidal" class="mw-redirect" title="Sinusoidal">sinusoidal</a> component with <a href="/wiki/Amplitude" title="Amplitude">amplitude</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |X|}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |X|}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ffa803ac0386dbd3c04054a71776b4edc435151c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.274ex; height:2.843ex;" alt="{\displaystyle |X|}"></span>, <a href="/wiki/Angular_frequency" title="Angular frequency">angular frequency</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \omega }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ω<!-- ω --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \omega }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/48eff443f9de7a985bb94ca3bde20813ea737be8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.446ex; height:1.676ex;" alt="{\displaystyle \omega }"></span> and <a href="/wiki/Phase_(waves)" title="Phase (waves)">phase</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \arg(X)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>arg</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>X</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \arg(X)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bb80e08ffc71f5c54f7a4137ca462cb009852b72" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.026ex; height:2.843ex;" alt="{\displaystyle \arg(X)}"></span>, where arg is the <a href="/wiki/Argument_(complex_analysis)" title="Argument (complex analysis)">argument</a> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x(t)=Xe^{j\omega t}=|X|e^{j(\omega t+\arg(X))}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>X</mi> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mi>ω<!-- ω --></mi> <mi>t</mi> </mrow> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mo stretchy="false">(</mo> <mi>ω<!-- ω --></mi> <mi>t</mi> <mo>+</mo> <mi>arg</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>X</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x(t)=Xe^{j\omega t}=|X|e^{j(\omega t+\arg(X))}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/923029bae4c1f212f77b0782d73529e3e4251cd0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:30.174ex; height:3.343ex;" alt="{\displaystyle x(t)=Xe^{j\omega t}=|X|e^{j(\omega t+\arg(X))}}"></span></dd></dl> <dl><dd>where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X=|X|e^{j\arg(X)}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mi>arg</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>X</mi> <mo stretchy="false">)</mo> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X=|X|e^{j\arg(X)}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7b1f88439dd7a00453d614d4aeafbda17e8b3ec8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:15.7ex; height:3.343ex;" alt="{\displaystyle X=|X|e^{j\arg(X)}}"></span></dd></dl> <p>is input to a <a href="/wiki/Linear" class="mw-redirect" title="Linear">linear</a> time-invariant system, the corresponding component in the output is: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}y(t)&=Ye^{j\omega t}=|Y|e^{j(\omega t+\arg(Y))},\\Y&=|Y|e^{j\arg(Y)}.\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mi>y</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>Y</mi> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mi>ω<!-- ω --></mi> <mi>t</mi> </mrow> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>Y</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mo stretchy="false">(</mo> <mi>ω<!-- ω --></mi> <mi>t</mi> <mo>+</mo> <mi>arg</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>Y</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mrow> </msup> <mo>,</mo> </mtd> </mtr> <mtr> <mtd> <mi>Y</mi> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>Y</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mi>arg</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>Y</mi> <mo stretchy="false">)</mo> </mrow> </msup> <mo>.</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}y(t)&=Ye^{j\omega t}=|Y|e^{j(\omega t+\arg(Y))},\\Y&=|Y|e^{j\arg(Y)}.\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b3b271c000c617e78987e0d715fd4a19111b7640" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.838ex; width:30.838ex; height:6.843ex;" alt="{\displaystyle {\begin{aligned}y(t)&=Ye^{j\omega t}=|Y|e^{j(\omega t+\arg(Y))},\\Y&=|Y|e^{j\arg(Y)}.\end{aligned}}}"></span></dd></dl> <p>In a linear time-invariant system, the input frequency <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \omega }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ω<!-- ω --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \omega }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/48eff443f9de7a985bb94ca3bde20813ea737be8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.446ex; height:1.676ex;" alt="{\displaystyle \omega }"></span> has not changed; only the amplitude and phase angle of the sinusoid have been changed by the system. The <a href="/wiki/Frequency_response" title="Frequency response">frequency response</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle H(j\omega )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>H</mi> <mo stretchy="false">(</mo> <mi>j</mi> <mi>ω<!-- ω --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle H(j\omega )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/54b9cf918573394f5d6d888c7c8519bfc73eb7a7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.277ex; height:2.843ex;" alt="{\displaystyle H(j\omega )}"></span> describes this change for every frequency <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \omega }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ω<!-- ω --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \omega }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/48eff443f9de7a985bb94ca3bde20813ea737be8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.446ex; height:1.676ex;" alt="{\displaystyle \omega }"></span> in terms of gain </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G(\omega )={\frac {|Y|}{|X|}}=|H(j\omega )|}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>G</mi> <mo stretchy="false">(</mo> <mi>ω<!-- ω --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>Y</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>H</mi> <mo stretchy="false">(</mo> <mi>j</mi> <mi>ω<!-- ω --></mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle G(\omega )={\frac {|Y|}{|X|}}=|H(j\omega )|}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1f34b36876f68c240606d3ea8d1073722db45235" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:22.959ex; height:6.509ex;" alt="{\displaystyle G(\omega )={\frac {|Y|}{|X|}}=|H(j\omega )|}"></span></dd></dl> <p>and phase shift </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \phi (\omega )=\arg(Y)-\arg(X)=\arg(H(j\omega )).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ϕ<!-- ϕ --></mi> <mo stretchy="false">(</mo> <mi>ω<!-- ω --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>arg</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>Y</mi> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <mi>arg</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>X</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>arg</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>H</mi> <mo stretchy="false">(</mo> <mi>j</mi> <mi>ω<!-- ω --></mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \phi (\omega )=\arg(Y)-\arg(X)=\arg(H(j\omega )).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/576cb1d01253ebfd1e01ce9a6adcf36efbcfe0fd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:39.492ex; height:2.843ex;" alt="{\displaystyle \phi (\omega )=\arg(Y)-\arg(X)=\arg(H(j\omega )).}"></span></dd></dl> <p>The <a href="/wiki/Phase_delay" class="mw-redirect" title="Phase delay">phase delay</a> (the frequency-dependent amount of delay introduced to the sinusoid by the transfer function) is </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \tau _{\phi }(\omega )=-{\frac {\phi (\omega )}{\omega }}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>τ<!-- τ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>ϕ<!-- ϕ --></mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>ω<!-- ω --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>ϕ<!-- ϕ --></mi> <mo stretchy="false">(</mo> <mi>ω<!-- ω --></mi> <mo stretchy="false">)</mo> </mrow> <mi>ω<!-- ω --></mi> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \tau _{\phi }(\omega )=-{\frac {\phi (\omega )}{\omega }}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b4a4d08a6c5cfa63b538b9e8b82d51aaf1f836db" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:16.513ex; height:5.676ex;" alt="{\displaystyle \tau _{\phi }(\omega )=-{\frac {\phi (\omega )}{\omega }}.}"></span></dd></dl> <p>The <a href="/wiki/Group_delay" class="mw-redirect" title="Group delay">group delay</a> (the frequency-dependent amount of delay introduced to the envelope of the sinusoid by the transfer function) is found by computing the derivative of the phase shift with respect to angular frequency <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \omega }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ω<!-- ω --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \omega }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/48eff443f9de7a985bb94ca3bde20813ea737be8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.446ex; height:1.676ex;" alt="{\displaystyle \omega }"></span>, </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \tau _{g}(\omega )=-{\frac {d\phi (\omega )}{d\omega }}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>τ<!-- τ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>g</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>ω<!-- ω --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mi>ϕ<!-- ϕ --></mi> <mo stretchy="false">(</mo> <mi>ω<!-- ω --></mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>d</mi> <mi>ω<!-- ω --></mi> </mrow> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \tau _{g}(\omega )=-{\frac {d\phi (\omega )}{d\omega }}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/989cae39e39c08a3b9525161c37fcc5c6477550b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:17.539ex; height:5.843ex;" alt="{\displaystyle \tau _{g}(\omega )=-{\frac {d\phi (\omega )}{d\omega }}.}"></span></dd></dl> <p>The transfer function can also be shown using the <a href="/wiki/Fourier_transform" title="Fourier transform">Fourier transform</a>, a special case of <a href="/wiki/Bilateral_Laplace_transform" class="mw-redirect" title="Bilateral Laplace transform">bilateral Laplace transform</a> where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle s=j\omega }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>s</mi> <mo>=</mo> <mi>j</mi> <mi>ω<!-- ω --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle s=j\omega }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/114e5dcfb07325a06ed4329e3690d8225eadf422" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.593ex; height:2.509ex;" alt="{\displaystyle s=j\omega }"></span>. </p> <div class="mw-heading mw-heading3"><h3 id="Common_transfer-function_families"><span class="anchor" id="Common_transfer_function_families"></span>Common transfer-function families</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Transfer_function&action=edit&section=7" title="Edit section: Common transfer-function families"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Although any LTI system can be described by some transfer function, "families" of special transfer functions are commonly used: </p> <ul><li><a href="/wiki/Butterworth_filter" title="Butterworth filter">Butterworth filter</a> – maximally flat in passband and stopband for the given order</li> <li><a href="/wiki/Chebyshev_filter" title="Chebyshev filter">Chebyshev filter (Type I)</a> – maximally flat in stopband, sharper cutoff than a Butterworth filter of the same order</li> <li>Chebyshev filter (Type II) – maximally flat in passband, sharper cutoff than a Butterworth filter of the same order</li> <li><a href="/wiki/Bessel_filter" title="Bessel filter">Bessel filter</a> – maximally constant <a href="/wiki/Group_delay" class="mw-redirect" title="Group delay">group delay</a> for a given order</li> <li><a href="/wiki/Elliptic_filter" title="Elliptic filter">Elliptic filter</a> – sharpest cutoff (narrowest transition between passband and stopband) for the given order</li> <li><a href="/wiki/Optimum_%22L%22_filter" title="Optimum "L" filter">Optimum "L" filter</a></li> <li><a href="/wiki/Gaussian_filter" title="Gaussian filter">Gaussian filter</a> – minimum group delay; gives no overshoot to a step function</li> <li><a href="/wiki/Raised-cosine_filter" title="Raised-cosine filter">Raised-cosine filter</a></li></ul> <div class="mw-heading mw-heading2"><h2 id="Control_engineering">Control engineering</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Transfer_function&action=edit&section=8" title="Edit section: Control engineering"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In <a href="/wiki/Control_engineering" title="Control engineering">control engineering</a> and <a href="/wiki/Control_theory" title="Control theory">control theory</a>, the transfer function is derived with the <a href="/wiki/Laplace_transform" title="Laplace transform">Laplace transform</a>. The transfer function was the primary tool used in classical control engineering. A <a href="/wiki/Transfer_function_matrix" title="Transfer function matrix">transfer matrix</a> can be obtained for any linear system to analyze its dynamics and other properties; each element of a transfer matrix is a transfer function relating a particular input variable to an output variable. A representation bridging <a href="/wiki/State_space" class="mw-redirect" title="State space">state space</a> and transfer function methods was proposed by <a href="/wiki/Howard_Harry_Rosenbrock" title="Howard Harry Rosenbrock">Howard H. Rosenbrock</a>, and is known as the <a href="/wiki/Rosenbrock_system_matrix" title="Rosenbrock system matrix">Rosenbrock system matrix</a>. </p> <div class="mw-heading mw-heading2"><h2 id="Imaging">Imaging</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Transfer_function&action=edit&section=9" title="Edit section: Imaging"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Transfer_functions_in_imaging" title="Transfer functions in imaging">Transfer functions in imaging</a></div> <p>In <a href="/wiki/Imaging" title="Imaging">imaging</a>, transfer functions are used to describe the relationship between the scene light, the image signal and the displayed light. </p> <div class="mw-heading mw-heading2"><h2 id="Non-linear_systems">Non-linear systems</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Transfer_function&action=edit&section=10" title="Edit section: Non-linear systems"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Transfer functions do not exist for many <a href="/wiki/Nonlinear_control" title="Nonlinear control">non-linear systems</a>, such as <a href="/wiki/Relaxation_oscillator" title="Relaxation oscillator">relaxation oscillators</a>;<sup id="cite_ref-Dehaene_6-0" class="reference"><a href="#cite_note-Dehaene-6"><span class="cite-bracket">[</span>6<span class="cite-bracket">]</span></a></sup> however, <a href="/wiki/Describing_function" title="Describing function">describing functions</a> can sometimes be used to approximate such nonlinear time-invariant systems. </p> <div class="mw-heading mw-heading2"><h2 id="See_also">See also</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Transfer_function&action=edit&section=11" title="Edit section: See also"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1184024115">.mw-parser-output .div-col{margin-top:0.3em;column-width:30em}.mw-parser-output .div-col-small{font-size:90%}.mw-parser-output .div-col-rules{column-rule:1px solid #aaa}.mw-parser-output .div-col dl,.mw-parser-output .div-col ol,.mw-parser-output .div-col ul{margin-top:0}.mw-parser-output .div-col li,.mw-parser-output .div-col dd{page-break-inside:avoid;break-inside:avoid-column}</style><div class="div-col" style="column-width: 14em;"> <ul><li><a href="/wiki/Analog_computer" title="Analog computer">Analog computer</a></li> <li><a href="/wiki/Black_box" title="Black box">Black box</a></li> <li><a href="/wiki/Bode_plot" title="Bode plot">Bode plot</a></li> <li><a href="/wiki/Convolution" title="Convolution">Convolution</a></li> <li><a href="/wiki/Duhamel%27s_principle" title="Duhamel's principle">Duhamel's principle</a></li> <li><a href="/wiki/Frequency_response" title="Frequency response">Frequency response</a></li> <li><a href="/wiki/Impulse_response" title="Impulse response">Impulse response</a></li> <li><a href="/wiki/Laplace_transform" title="Laplace transform">Laplace transform</a></li> <li><a href="/wiki/Linear_time-invariant_system" title="Linear time-invariant system">LTI system theory</a></li> <li><a href="/wiki/Nyquist_plot" class="mw-redirect" title="Nyquist plot">Nyquist plot</a></li> <li><a href="/wiki/Operational_amplifier" title="Operational amplifier">Operational amplifier</a></li> <li><a href="/wiki/Optical_transfer_function" title="Optical transfer function">Optical transfer function</a></li> <li><a href="/wiki/Proper_transfer_function" title="Proper transfer function">Proper transfer function</a></li> <li><a href="/wiki/Rosenbrock_system_matrix" title="Rosenbrock system matrix">Rosenbrock system matrix</a></li> <li><a href="/wiki/Semi-log_plot" title="Semi-log plot">Semi-log plot</a></li> <li><a href="/wiki/Signal-flow_graph" title="Signal-flow graph">Signal-flow graph</a></li> <li><a href="/wiki/Signal_transfer_function" title="Signal transfer function">Signal transfer function</a></li></ul></div> <div class="mw-heading mw-heading2"><h2 id="References">References</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Transfer_function&action=edit&section=12" title="Edit section: References"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist reflist-columns references-column-width" style="column-width: 25em;"> <ol class="references"> <li id="cite_note-1"><span class="mw-cite-backlink"><b><a href="#cite_ref-1">^</a></b></span> <span class="reference-text"><a href="/wiki/Bernd_Girod" title="Bernd Girod">Bernd Girod</a>, Rudolf Rabenstein, Alexander Stenger, <i>Signals and systems</i>, 2nd ed., Wiley, 2001, <style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-471-98800-6" title="Special:BookSources/0-471-98800-6">0-471-98800-6</a> p. 50</span> </li> <li id="cite_note-LaughtonWarne2002-2"><span class="mw-cite-backlink"><b><a href="#cite_ref-LaughtonWarne2002_2-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFM._A._LaughtonD.F._Warne2002" class="citation book cs1">M. A. Laughton; D.F. Warne (27 September 2002). <i>Electrical Engineer's Reference Book</i> (16 ed.). Newnes. pp. 14/9–14/10. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-08-052354-5" title="Special:BookSources/978-0-08-052354-5"><bdi>978-0-08-052354-5</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Electrical+Engineer%27s+Reference+Book&rft.pages=14%2F9-14%2F10&rft.edition=16&rft.pub=Newnes&rft.date=2002-09-27&rft.isbn=978-0-08-052354-5&rft.au=M.+A.+Laughton&rft.au=D.F.+Warne&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATransfer+function" class="Z3988"></span></span> </li> <li id="cite_note-Parr1993-3"><span class="mw-cite-backlink"><b><a href="#cite_ref-Parr1993_3-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFE._A._Parr1993" class="citation book cs1">E. A. Parr (1993). <i>Logic Designer's Handbook: Circuits and Systems</i> (2nd ed.). Newness. pp. 65–66. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-1-4832-9280-9" title="Special:BookSources/978-1-4832-9280-9"><bdi>978-1-4832-9280-9</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Logic+Designer%27s+Handbook%3A+Circuits+and+Systems&rft.pages=65-66&rft.edition=2nd&rft.pub=Newness&rft.date=1993&rft.isbn=978-1-4832-9280-9&rft.au=E.+A.+Parr&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATransfer+function" class="Z3988"></span></span> </li> <li id="cite_note-SinclairDunton2007-4"><span class="mw-cite-backlink"><b><a href="#cite_ref-SinclairDunton2007_4-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFIan_SinclairJohn_Dunton2007" class="citation book cs1">Ian Sinclair; John Dunton (2007). <i>Electronic and Electrical Servicing: Consumer and Commercial Electronics</i>. Routledge. p. 172. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-7506-6988-7" title="Special:BookSources/978-0-7506-6988-7"><bdi>978-0-7506-6988-7</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Electronic+and+Electrical+Servicing%3A+Consumer+and+Commercial+Electronics&rft.pages=172&rft.pub=Routledge&rft.date=2007&rft.isbn=978-0-7506-6988-7&rft.au=Ian+Sinclair&rft.au=John+Dunton&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATransfer+function" class="Z3988"></span></span> </li> <li id="cite_note-5"><span class="mw-cite-backlink"><b><a href="#cite_ref-5">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBirkhoffRota,_Gian-Carlo1978" class="citation book cs1">Birkhoff, Garrett; Rota, Gian-Carlo (1978). <i>Ordinary differential equations</i>. New York: John Wiley & Sons. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-471-05224-1" title="Special:BookSources/978-0-471-05224-1"><bdi>978-0-471-05224-1</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Ordinary+differential+equations&rft.place=New+York&rft.pub=John+Wiley+%26+Sons&rft.date=1978&rft.isbn=978-0-471-05224-1&rft.aulast=Birkhoff&rft.aufirst=Garrett&rft.au=Rota%2C+Gian-Carlo&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATransfer+function" class="Z3988"></span><sup class="noprint Inline-Template" style="white-space:nowrap;">[<i><a href="/wiki/Wikipedia:Citing_sources" title="Wikipedia:Citing sources"><span title="This citation requires a reference to the specific page or range of pages in which the material appears. (April 2013)">page needed</span></a></i>]</sup></span> </li> <li id="cite_note-Dehaene-6"><span class="mw-cite-backlink"><b><a href="#cite_ref-Dehaene_6-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFValentijn_De_Smedt,_Georges_Gielen_and_Wim_Dehaene2015" class="citation book cs1">Valentijn De Smedt, Georges Gielen and Wim Dehaene (2015). <i>Temperature- and Supply Voltage-Independent Time References for Wireless Sensor Networks</i>. Springer. p. 47. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-3-319-09003-0" title="Special:BookSources/978-3-319-09003-0"><bdi>978-3-319-09003-0</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Temperature-+and+Supply+Voltage-Independent+Time+References+for+Wireless+Sensor+Networks&rft.pages=47&rft.pub=Springer&rft.date=2015&rft.isbn=978-3-319-09003-0&rft.au=Valentijn+De+Smedt%2C+Georges+Gielen+and+Wim+Dehaene&rfr_id=info%3Asid%2Fen.wikipedia.org%3ATransfer+function" class="Z3988"></span></span> </li> </ol></div> <div class="mw-heading mw-heading2"><h2 id="External_links">External links</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Transfer_function&action=edit&section=13" title="Edit section: External links"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a rel="nofollow" class="external text" href="http://www.tedpavlic.com/teaching/osu/ece209/support/circuits_sys_review.pdf">ECE 209: Review of Circuits as LTI Systems</a> — Short primer on the mathematical analysis of (electrical) LTI systems.</li></ul> <div class="navbox-styles"><style data-mw-deduplicate="TemplateStyles:r1129693374">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><style data-mw-deduplicate="TemplateStyles:r1236075235">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{line-height:1.5em;border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}body.skin--responsive .mw-parser-output .navbox-image img{max-width:none!important}@media print{body.ns-0 .mw-parser-output .navbox{display:none!important}}</style><style data-mw-deduplicate="TemplateStyles:r1038841319">.mw-parser-output .tooltip-dotted{border-bottom:1px dotted;cursor:help}</style></div><div role="navigation" class="navbox authority-control" aria-labelledby="Authority_control_databases_frameless&#124;text-top&#124;10px&#124;alt=Edit_this_at_Wikidata&#124;link=https&#58;//www.wikidata.org/wiki/Q334269#identifiers&#124;class=noprint&#124;Edit_this_at_Wikidata" style="padding:3px"><table class="nowraplinks hlist mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><div id="Authority_control_databases_frameless&#124;text-top&#124;10px&#124;alt=Edit_this_at_Wikidata&#124;link=https&#58;//www.wikidata.org/wiki/Q334269#identifiers&#124;class=noprint&#124;Edit_this_at_Wikidata" style="font-size:114%;margin:0 4em"><a href="/wiki/Help:Authority_control" title="Help:Authority control">Authority control databases</a> <span class="mw-valign-text-top noprint" typeof="mw:File/Frameless"><a href="https://www.wikidata.org/wiki/Q334269#identifiers" title="Edit this at Wikidata"><img alt="Edit this at Wikidata" src="//upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/10px-OOjs_UI_icon_edit-ltr-progressive.svg.png" decoding="async" width="10" height="10" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/15px-OOjs_UI_icon_edit-ltr-progressive.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/20px-OOjs_UI_icon_edit-ltr-progressive.svg.png 2x" data-file-width="20" data-file-height="20" /></a></span></div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%">International</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"><ul><li><span class="uid"><a rel="nofollow" class="external text" href="http://id.worldcat.org/fast/1154604/">FAST</a></span></li></ul></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">National</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"><ul><li><span class="uid"><a rel="nofollow" class="external text" href="https://d-nb.info/gnd/4186647-2">Germany</a></span></li><li><span class="uid"><span class="rt-commentedText tooltip tooltip-dotted" title="Transfer functions"><a rel="nofollow" class="external text" href="https://id.loc.gov/authorities/sh85136905">United States</a></span></span></li><li><span class="uid"><a rel="nofollow" class="external text" href="https://catalogue.bnf.fr/ark:/12148/cb121754727">France</a></span></li><li><span class="uid"><a rel="nofollow" class="external text" href="https://data.bnf.fr/ark:/12148/cb121754727">BnF data</a></span></li><li><span class="uid"><a rel="nofollow" class="external text" href="http://olduli.nli.org.il/F/?func=find-b&local_base=NLX10&find_code=UID&request=987007546197905171">Israel</a></span></li></ul></div></td></tr></tbody></table></div> <!-- NewPP limit report Parsed by mw‐web.codfw.main‐f69cdc8f6‐l65hk Cached time: 20241122141023 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 0.415 seconds Real time usage: 0.629 seconds Preprocessor visited node count: 1553/1000000 Post‐expand include size: 19952/2097152 bytes Template argument size: 2775/2097152 bytes Highest expansion depth: 19/100 Expensive parser function count: 5/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 29439/5000000 bytes Lua time usage: 0.234/10.000 seconds Lua memory usage: 5226551/52428800 bytes Number of Wikibase entities loaded: 1/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 439.784 1 -total 43.55% 191.546 1 Template:Reflist 23.82% 104.778 1 Template:Authority_control 19.12% 84.102 1 Template:Short_description 19.08% 83.920 5 Template:Cite_book 11.46% 50.381 2 Template:Pagetype 10.45% 45.973 1 Template:Page_needed 9.12% 40.118 1 Template:Fix 9.06% 39.852 1 Template:ISBN 7.52% 33.079 1 Template:Catalog_lookup_link --> <!-- Saved in parser cache with key enwiki:pcache:idhash:31146-0!canonical and timestamp 20241122141023 and revision id 1253921914. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=Transfer_function&oldid=1253921914">https://en.wikipedia.org/w/index.php?title=Transfer_function&oldid=1253921914</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Categories</a>: <ul><li><a href="/wiki/Category:Electrical_circuits" title="Category:Electrical circuits">Electrical circuits</a></li><li><a href="/wiki/Category:Transfer_functions" title="Category:Transfer functions">Transfer functions</a></li><li><a href="/wiki/Category:Frequency-domain_analysis" title="Category:Frequency-domain analysis">Frequency-domain analysis</a></li><li><a href="/wiki/Category:Types_of_functions" title="Category:Types of functions">Types of functions</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Hidden categories: <ul><li><a href="/wiki/Category:Wikipedia_articles_needing_page_number_citations_from_April_2013" title="Category:Wikipedia articles needing page number citations from April 2013">Wikipedia articles needing page number citations from April 2013</a></li><li><a href="/wiki/Category:Articles_with_short_description" title="Category:Articles with short description">Articles with short description</a></li><li><a href="/wiki/Category:Short_description_matches_Wikidata" title="Category:Short description matches Wikidata">Short description matches Wikidata</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 28 October 2024, at 15:49<span class="anonymous-show"> (UTC)</span>.</li> <li id="footer-info-copyright">Text is available under the <a href="/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" title="Wikipedia:Text of the Creative Commons Attribution-ShareAlike 4.0 International License">Creative Commons Attribution-ShareAlike 4.0 License</a>; additional terms may apply. By using this site, you agree to the <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use" class="extiw" title="foundation:Special:MyLanguage/Policy:Terms of Use">Terms of Use</a> and <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy" class="extiw" title="foundation:Special:MyLanguage/Policy:Privacy policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=Transfer_function&mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-f69cdc8f6-bmh6q","wgBackendResponseTime":129,"wgPageParseReport":{"limitreport":{"cputime":"0.415","walltime":"0.629","ppvisitednodes":{"value":1553,"limit":1000000},"postexpandincludesize":{"value":19952,"limit":2097152},"templateargumentsize":{"value":2775,"limit":2097152},"expansiondepth":{"value":19,"limit":100},"expensivefunctioncount":{"value":5,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":29439,"limit":5000000},"entityaccesscount":{"value":1,"limit":400},"timingprofile":["100.00% 439.784 1 -total"," 43.55% 191.546 1 Template:Reflist"," 23.82% 104.778 1 Template:Authority_control"," 19.12% 84.102 1 Template:Short_description"," 19.08% 83.920 5 Template:Cite_book"," 11.46% 50.381 2 Template:Pagetype"," 10.45% 45.973 1 Template:Page_needed"," 9.12% 40.118 1 Template:Fix"," 9.06% 39.852 1 Template:ISBN"," 7.52% 33.079 1 Template:Catalog_lookup_link"]},"scribunto":{"limitreport-timeusage":{"value":"0.234","limit":"10.000"},"limitreport-memusage":{"value":5226551,"limit":52428800}},"cachereport":{"origin":"mw-web.codfw.main-f69cdc8f6-l65hk","timestamp":"20241122141023","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Transfer function","url":"https:\/\/en.wikipedia.org\/wiki\/Transfer_function","sameAs":"http:\/\/www.wikidata.org\/entity\/Q334269","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q334269","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2001-11-18T20:31:55Z","dateModified":"2024-10-28T15:49:39Z","headline":"function specifying the behavior of a component in an electronic or control system"}</script> </body> </html>