CINXE.COM
Metric space - Wikipedia
<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>Metric space - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy", "wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"1a35c897-1bd2-4c67-9af0-561abf8569b7","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Metric_space","wgTitle":"Metric space","wgCurRevisionId":1245905585,"wgRevisionId":1245905585,"wgArticleId":20018,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["Webarchive template wayback links","Articles with short description","Short description is different from Wikidata","Use dmy dates from December 2020","Metric spaces","Mathematical analysis","Mathematical structures","Topology","Topological spaces","Uniform spaces"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName":"Metric_space","wgRelevantArticleId":20018,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true, "wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":80000,"wgRelatedArticlesCompat":[],"wgCentralAuthMobileDomain":false,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q180953","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false, "wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.math.styles":"ready","ext.cite.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","jquery.makeCollapsible.styles":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","mediawiki.page.media","ext.scribunto.logs","site","mediawiki.page.ready","jquery.makeCollapsible","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.ReferenceTooltips","ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin", "mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.quicksurveys.init","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cjquery.makeCollapsible.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&only=styles&skin=vector-2022"> <script async="" src="/w/load.php?lang=en&modules=startup&only=scripts&raw=1&skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&modules=site.styles&only=styles&skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.4"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/0/08/Manhattan_distance.svg/1200px-Manhattan_distance.svg.png"> <meta property="og:image:width" content="1200"> <meta property="og:image:height" content="1200"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/0/08/Manhattan_distance.svg/800px-Manhattan_distance.svg.png"> <meta property="og:image:width" content="800"> <meta property="og:image:height" content="800"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/0/08/Manhattan_distance.svg/640px-Manhattan_distance.svg.png"> <meta property="og:image:width" content="640"> <meta property="og:image:height" content="640"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Metric space - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/Metric_space"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=Metric_space&action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Metric_space"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Metric_space rootpage-Metric_space skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page's font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_en.wikipedia.org&uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&returnto=Metric+space" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&returnto=Metric+space" title="You're encouraged to log in; however, it's not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_en.wikipedia.org&uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&returnto=Metric+space" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&returnto=Metric+space" title="You're encouraged to log in; however, it's not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contents" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contents</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(Top)</div> </a> </li> <li id="toc-Definition_and_illustration" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Definition_and_illustration"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Definition and illustration</span> </div> </a> <button aria-controls="toc-Definition_and_illustration-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Definition and illustration subsection</span> </button> <ul id="toc-Definition_and_illustration-sublist" class="vector-toc-list"> <li id="toc-Motivation" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Motivation"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.1</span> <span>Motivation</span> </div> </a> <ul id="toc-Motivation-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Definition" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Definition"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.2</span> <span>Definition</span> </div> </a> <ul id="toc-Definition-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Simple_examples" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Simple_examples"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.3</span> <span>Simple examples</span> </div> </a> <ul id="toc-Simple_examples-sublist" class="vector-toc-list"> <li id="toc-The_real_numbers" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#The_real_numbers"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.3.1</span> <span>The real numbers</span> </div> </a> <ul id="toc-The_real_numbers-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Metrics_on_Euclidean_spaces" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Metrics_on_Euclidean_spaces"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.3.2</span> <span>Metrics on Euclidean spaces</span> </div> </a> <ul id="toc-Metrics_on_Euclidean_spaces-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Subspaces" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Subspaces"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.3.3</span> <span>Subspaces</span> </div> </a> <ul id="toc-Subspaces-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> </ul> </li> <li id="toc-History" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#History"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>History</span> </div> </a> <ul id="toc-History-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Basic_notions" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Basic_notions"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Basic notions</span> </div> </a> <button aria-controls="toc-Basic_notions-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Basic notions subsection</span> </button> <ul id="toc-Basic_notions-sublist" class="vector-toc-list"> <li id="toc-The_topology_of_a_metric_space" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#The_topology_of_a_metric_space"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.1</span> <span>The topology of a metric space</span> </div> </a> <ul id="toc-The_topology_of_a_metric_space-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Convergence" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Convergence"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.2</span> <span>Convergence</span> </div> </a> <ul id="toc-Convergence-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Completeness" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Completeness"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.3</span> <span>Completeness</span> </div> </a> <ul id="toc-Completeness-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Bounded_and_totally_bounded_spaces" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Bounded_and_totally_bounded_spaces"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.4</span> <span>Bounded and totally bounded spaces</span> </div> </a> <ul id="toc-Bounded_and_totally_bounded_spaces-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Compactness" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Compactness"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.5</span> <span>Compactness</span> </div> </a> <ul id="toc-Compactness-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Functions_between_metric_spaces" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Functions_between_metric_spaces"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Functions between metric spaces</span> </div> </a> <button aria-controls="toc-Functions_between_metric_spaces-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Functions between metric spaces subsection</span> </button> <ul id="toc-Functions_between_metric_spaces-sublist" class="vector-toc-list"> <li id="toc-Isometries" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Isometries"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.1</span> <span>Isometries</span> </div> </a> <ul id="toc-Isometries-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Continuous_maps" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Continuous_maps"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.2</span> <span>Continuous maps</span> </div> </a> <ul id="toc-Continuous_maps-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Uniformly_continuous_maps" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Uniformly_continuous_maps"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.3</span> <span>Uniformly continuous maps</span> </div> </a> <ul id="toc-Uniformly_continuous_maps-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Lipschitz_maps_and_contractions" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Lipschitz_maps_and_contractions"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.4</span> <span>Lipschitz maps and contractions</span> </div> </a> <ul id="toc-Lipschitz_maps_and_contractions-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Quasi-isometries" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Quasi-isometries"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.5</span> <span>Quasi-isometries</span> </div> </a> <ul id="toc-Quasi-isometries-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Notions_of_metric_space_equivalence" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Notions_of_metric_space_equivalence"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.6</span> <span>Notions of metric space equivalence</span> </div> </a> <ul id="toc-Notions_of_metric_space_equivalence-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Metric_spaces_with_additional_structure" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Metric_spaces_with_additional_structure"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Metric spaces with additional structure</span> </div> </a> <button aria-controls="toc-Metric_spaces_with_additional_structure-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Metric spaces with additional structure subsection</span> </button> <ul id="toc-Metric_spaces_with_additional_structure-sublist" class="vector-toc-list"> <li id="toc-Normed_vector_spaces" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Normed_vector_spaces"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.1</span> <span>Normed vector spaces</span> </div> </a> <ul id="toc-Normed_vector_spaces-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Length_spaces" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Length_spaces"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.2</span> <span>Length spaces</span> </div> </a> <ul id="toc-Length_spaces-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Riemannian_manifolds" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Riemannian_manifolds"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.3</span> <span>Riemannian manifolds</span> </div> </a> <ul id="toc-Riemannian_manifolds-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Metric_measure_spaces" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Metric_measure_spaces"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.4</span> <span>Metric measure spaces</span> </div> </a> <ul id="toc-Metric_measure_spaces-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Further_examples_and_applications" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Further_examples_and_applications"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>Further examples and applications</span> </div> </a> <button aria-controls="toc-Further_examples_and_applications-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Further examples and applications subsection</span> </button> <ul id="toc-Further_examples_and_applications-sublist" class="vector-toc-list"> <li id="toc-Graphs_and_finite_metric_spaces" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Graphs_and_finite_metric_spaces"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.1</span> <span>Graphs and finite metric spaces</span> </div> </a> <ul id="toc-Graphs_and_finite_metric_spaces-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Distances_between_mathematical_objects" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Distances_between_mathematical_objects"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.2</span> <span>Distances between mathematical objects</span> </div> </a> <ul id="toc-Distances_between_mathematical_objects-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Hausdorff_and_Gromov–Hausdorff_distance" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Hausdorff_and_Gromov–Hausdorff_distance"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.3</span> <span>Hausdorff and Gromov–Hausdorff distance</span> </div> </a> <ul id="toc-Hausdorff_and_Gromov–Hausdorff_distance-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Miscellaneous_examples" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Miscellaneous_examples"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.4</span> <span>Miscellaneous examples</span> </div> </a> <ul id="toc-Miscellaneous_examples-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Constructions" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Constructions"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>Constructions</span> </div> </a> <button aria-controls="toc-Constructions-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Constructions subsection</span> </button> <ul id="toc-Constructions-sublist" class="vector-toc-list"> <li id="toc-Product_metric_spaces" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Product_metric_spaces"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.1</span> <span>Product metric spaces</span> </div> </a> <ul id="toc-Product_metric_spaces-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Quotient_metric_spaces" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Quotient_metric_spaces"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.2</span> <span>Quotient metric spaces</span> </div> </a> <ul id="toc-Quotient_metric_spaces-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Generalizations_of_metric_spaces" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Generalizations_of_metric_spaces"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>Generalizations of metric spaces</span> </div> </a> <button aria-controls="toc-Generalizations_of_metric_spaces-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Generalizations of metric spaces subsection</span> </button> <ul id="toc-Generalizations_of_metric_spaces-sublist" class="vector-toc-list"> <li id="toc-Extended_metrics" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Extended_metrics"> <div class="vector-toc-text"> <span class="vector-toc-numb">8.1</span> <span>Extended metrics</span> </div> </a> <ul id="toc-Extended_metrics-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Metrics_valued_in_structures_other_than_the_real_numbers" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Metrics_valued_in_structures_other_than_the_real_numbers"> <div class="vector-toc-text"> <span class="vector-toc-numb">8.2</span> <span>Metrics valued in structures other than the real numbers</span> </div> </a> <ul id="toc-Metrics_valued_in_structures_other_than_the_real_numbers-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Pseudometrics" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Pseudometrics"> <div class="vector-toc-text"> <span class="vector-toc-numb">8.3</span> <span>Pseudometrics</span> </div> </a> <ul id="toc-Pseudometrics-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Quasimetrics" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Quasimetrics"> <div class="vector-toc-text"> <span class="vector-toc-numb">8.4</span> <span>Quasimetrics</span> </div> </a> <ul id="toc-Quasimetrics-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Metametrics_or_partial_metrics" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Metametrics_or_partial_metrics"> <div class="vector-toc-text"> <span class="vector-toc-numb">8.5</span> <span>Metametrics or partial metrics</span> </div> </a> <ul id="toc-Metametrics_or_partial_metrics-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Semimetrics" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Semimetrics"> <div class="vector-toc-text"> <span class="vector-toc-numb">8.6</span> <span>Semimetrics</span> </div> </a> <ul id="toc-Semimetrics-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Premetrics" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Premetrics"> <div class="vector-toc-text"> <span class="vector-toc-numb">8.7</span> <span>Premetrics</span> </div> </a> <ul id="toc-Premetrics-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Pseudoquasimetrics" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Pseudoquasimetrics"> <div class="vector-toc-text"> <span class="vector-toc-numb">8.8</span> <span>Pseudoquasimetrics</span> </div> </a> <ul id="toc-Pseudoquasimetrics-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Metrics_on_multisets" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Metrics_on_multisets"> <div class="vector-toc-text"> <span class="vector-toc-numb">8.9</span> <span>Metrics on multisets</span> </div> </a> <ul id="toc-Metrics_on_multisets-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-See_also" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#See_also"> <div class="vector-toc-text"> <span class="vector-toc-numb">9</span> <span>See also</span> </div> </a> <ul id="toc-See_also-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Notes" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Notes"> <div class="vector-toc-text"> <span class="vector-toc-numb">10</span> <span>Notes</span> </div> </a> <ul id="toc-Notes-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Citations" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Citations"> <div class="vector-toc-text"> <span class="vector-toc-numb">11</span> <span>Citations</span> </div> </a> <ul id="toc-Citations-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-References" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#References"> <div class="vector-toc-text"> <span class="vector-toc-numb">12</span> <span>References</span> </div> </a> <ul id="toc-References-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-External_links" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#External_links"> <div class="vector-toc-text"> <span class="vector-toc-numb">13</span> <span>External links</span> </div> </a> <ul id="toc-External_links-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Metric space</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Go to an article in another language. Available in 61 languages" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-61" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">61 languages</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D9%81%D8%B6%D8%A7%D8%A1_%D9%85%D8%AA%D8%B1%D9%8A" title="فضاء متري – Arabic" lang="ar" hreflang="ar" data-title="فضاء متري" data-language-autonym="العربية" data-language-local-name="Arabic" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-ast mw-list-item"><a href="https://ast.wikipedia.org/wiki/Espaciu_m%C3%A9tricu" title="Espaciu métricu – Asturian" lang="ast" hreflang="ast" data-title="Espaciu métricu" data-language-autonym="Asturianu" data-language-local-name="Asturian" class="interlanguage-link-target"><span>Asturianu</span></a></li><li class="interlanguage-link interwiki-bg mw-list-item"><a href="https://bg.wikipedia.org/wiki/%D0%9C%D0%B5%D1%82%D1%80%D0%B8%D1%87%D0%BD%D0%BE_%D0%BF%D1%80%D0%BE%D1%81%D1%82%D1%80%D0%B0%D0%BD%D1%81%D1%82%D0%B2%D0%BE" title="Метрично пространство – Bulgarian" lang="bg" hreflang="bg" data-title="Метрично пространство" data-language-autonym="Български" data-language-local-name="Bulgarian" class="interlanguage-link-target"><span>Български</span></a></li><li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/Espai_m%C3%A8tric" title="Espai mètric – Catalan" lang="ca" hreflang="ca" data-title="Espai mètric" data-language-autonym="Català" data-language-local-name="Catalan" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-cv mw-list-item"><a href="https://cv.wikipedia.org/wiki/%D0%9C%D0%B5%D1%82%D1%80%D0%B8%D0%BA%C4%83%D0%BB%D0%BB%C4%83_%D1%83%C3%A7%D0%BB%C4%83%D1%85" title="Метрикăллă уçлăх – Chuvash" lang="cv" hreflang="cv" data-title="Метрикăллă уçлăх" data-language-autonym="Чӑвашла" data-language-local-name="Chuvash" class="interlanguage-link-target"><span>Чӑвашла</span></a></li><li class="interlanguage-link interwiki-cs mw-list-item"><a href="https://cs.wikipedia.org/wiki/Metrick%C3%BD_prostor" title="Metrický prostor – Czech" lang="cs" hreflang="cs" data-title="Metrický prostor" data-language-autonym="Čeština" data-language-local-name="Czech" class="interlanguage-link-target"><span>Čeština</span></a></li><li class="interlanguage-link interwiki-cy mw-list-item"><a href="https://cy.wikipedia.org/wiki/Gofod_metrig" title="Gofod metrig – Welsh" lang="cy" hreflang="cy" data-title="Gofod metrig" data-language-autonym="Cymraeg" data-language-local-name="Welsh" class="interlanguage-link-target"><span>Cymraeg</span></a></li><li class="interlanguage-link interwiki-da mw-list-item"><a href="https://da.wikipedia.org/wiki/Metrisk_rum" title="Metrisk rum – Danish" lang="da" hreflang="da" data-title="Metrisk rum" data-language-autonym="Dansk" data-language-local-name="Danish" class="interlanguage-link-target"><span>Dansk</span></a></li><li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Metrischer_Raum" title="Metrischer Raum – German" lang="de" hreflang="de" data-title="Metrischer Raum" data-language-autonym="Deutsch" data-language-local-name="German" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-et mw-list-item"><a href="https://et.wikipedia.org/wiki/Meetriline_ruum" title="Meetriline ruum – Estonian" lang="et" hreflang="et" data-title="Meetriline ruum" data-language-autonym="Eesti" data-language-local-name="Estonian" class="interlanguage-link-target"><span>Eesti</span></a></li><li class="interlanguage-link interwiki-el mw-list-item"><a href="https://el.wikipedia.org/wiki/%CE%9C%CE%B5%CF%84%CF%81%CE%B9%CE%BA%CF%8C%CF%82_%CF%87%CF%8E%CF%81%CE%BF%CF%82" title="Μετρικός χώρος – Greek" lang="el" hreflang="el" data-title="Μετρικός χώρος" data-language-autonym="Ελληνικά" data-language-local-name="Greek" class="interlanguage-link-target"><span>Ελληνικά</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Espacio_m%C3%A9trico" title="Espacio métrico – Spanish" lang="es" hreflang="es" data-title="Espacio métrico" data-language-autonym="Español" data-language-local-name="Spanish" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-eo mw-list-item"><a href="https://eo.wikipedia.org/wiki/Metrika_spaco" title="Metrika spaco – Esperanto" lang="eo" hreflang="eo" data-title="Metrika spaco" data-language-autonym="Esperanto" data-language-local-name="Esperanto" class="interlanguage-link-target"><span>Esperanto</span></a></li><li class="interlanguage-link interwiki-eu mw-list-item"><a href="https://eu.wikipedia.org/wiki/Espazio_metriko" title="Espazio metriko – Basque" lang="eu" hreflang="eu" data-title="Espazio metriko" data-language-autonym="Euskara" data-language-local-name="Basque" class="interlanguage-link-target"><span>Euskara</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D9%81%D8%B6%D8%A7%DB%8C_%D9%85%D8%AA%D8%B1%DB%8C" title="فضای متری – Persian" lang="fa" hreflang="fa" data-title="فضای متری" data-language-autonym="فارسی" data-language-local-name="Persian" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Espace_m%C3%A9trique" title="Espace métrique – French" lang="fr" hreflang="fr" data-title="Espace métrique" data-language-autonym="Français" data-language-local-name="French" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-ga mw-list-item"><a href="https://ga.wikipedia.org/wiki/Sp%C3%A1s_m%C3%A9adrach" title="Spás méadrach – Irish" lang="ga" hreflang="ga" data-title="Spás méadrach" data-language-autonym="Gaeilge" data-language-local-name="Irish" class="interlanguage-link-target"><span>Gaeilge</span></a></li><li class="interlanguage-link interwiki-gl mw-list-item"><a href="https://gl.wikipedia.org/wiki/Espazo_m%C3%A9trico" title="Espazo métrico – Galician" lang="gl" hreflang="gl" data-title="Espazo métrico" data-language-autonym="Galego" data-language-local-name="Galician" class="interlanguage-link-target"><span>Galego</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%EA%B1%B0%EB%A6%AC_%EA%B3%B5%EA%B0%84" title="거리 공간 – Korean" lang="ko" hreflang="ko" data-title="거리 공간" data-language-autonym="한국어" data-language-local-name="Korean" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-hy mw-list-item"><a href="https://hy.wikipedia.org/wiki/%D5%84%D5%A5%D5%BF%D6%80%D5%AB%D5%AF%D5%A1%D5%AF%D5%A1%D5%B6_%D5%BF%D5%A1%D6%80%D5%A1%D5%AE%D5%B8%D6%82%D5%A9%D5%B5%D5%B8%D6%82%D5%B6" title="Մետրիկական տարածություն – Armenian" lang="hy" hreflang="hy" data-title="Մետրիկական տարածություն" data-language-autonym="Հայերեն" data-language-local-name="Armenian" class="interlanguage-link-target"><span>Հայերեն</span></a></li><li class="interlanguage-link interwiki-hr mw-list-item"><a href="https://hr.wikipedia.org/wiki/Metri%C4%8Dki_prostor" title="Metrički prostor – Croatian" lang="hr" hreflang="hr" data-title="Metrički prostor" data-language-autonym="Hrvatski" data-language-local-name="Croatian" class="interlanguage-link-target"><span>Hrvatski</span></a></li><li class="interlanguage-link interwiki-id mw-list-item"><a href="https://id.wikipedia.org/wiki/Ruang_metrik" title="Ruang metrik – Indonesian" lang="id" hreflang="id" data-title="Ruang metrik" data-language-autonym="Bahasa Indonesia" data-language-local-name="Indonesian" class="interlanguage-link-target"><span>Bahasa Indonesia</span></a></li><li class="interlanguage-link interwiki-is mw-list-item"><a href="https://is.wikipedia.org/wiki/Fir%C3%B0r%C3%BAm" title="Firðrúm – Icelandic" lang="is" hreflang="is" data-title="Firðrúm" data-language-autonym="Íslenska" data-language-local-name="Icelandic" class="interlanguage-link-target"><span>Íslenska</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Spazio_metrico" title="Spazio metrico – Italian" lang="it" hreflang="it" data-title="Spazio metrico" data-language-autonym="Italiano" data-language-local-name="Italian" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-he mw-list-item"><a href="https://he.wikipedia.org/wiki/%D7%9E%D7%A8%D7%97%D7%91_%D7%9E%D7%98%D7%A8%D7%99" title="מרחב מטרי – Hebrew" lang="he" hreflang="he" data-title="מרחב מטרי" data-language-autonym="עברית" data-language-local-name="Hebrew" class="interlanguage-link-target"><span>עברית</span></a></li><li class="interlanguage-link interwiki-kn mw-list-item"><a href="https://kn.wikipedia.org/wiki/%E0%B2%AE%E0%B3%86%E0%B2%9F%E0%B3%8D%E0%B2%B0%E0%B2%BF%E0%B2%95%E0%B3%8D_%E0%B2%86%E0%B2%95%E0%B2%BE%E0%B2%B6" title="ಮೆಟ್ರಿಕ್ ಆಕಾಶ – Kannada" lang="kn" hreflang="kn" data-title="ಮೆಟ್ರಿಕ್ ಆಕಾಶ" data-language-autonym="ಕನ್ನಡ" data-language-local-name="Kannada" class="interlanguage-link-target"><span>ಕನ್ನಡ</span></a></li><li class="interlanguage-link interwiki-ka mw-list-item"><a href="https://ka.wikipedia.org/wiki/%E1%83%9B%E1%83%94%E1%83%A2%E1%83%A0%E1%83%98%E1%83%99%E1%83%A3%E1%83%9A%E1%83%98_%E1%83%A1%E1%83%98%E1%83%95%E1%83%A0%E1%83%AA%E1%83%94" title="მეტრიკული სივრცე – Georgian" lang="ka" hreflang="ka" data-title="მეტრიკული სივრცე" data-language-autonym="ქართული" data-language-local-name="Georgian" class="interlanguage-link-target"><span>ქართული</span></a></li><li class="interlanguage-link interwiki-kk mw-list-item"><a href="https://kk.wikipedia.org/wiki/%D0%9C%D0%B5%D1%82%D1%80%D0%B8%D0%BA%D0%B0%D0%BB%D1%8B%D2%9B_%D0%BA%D0%B5%D2%A3%D1%96%D1%81%D1%82%D1%96%D0%BA" title="Метрикалық кеңістік – Kazakh" lang="kk" hreflang="kk" data-title="Метрикалық кеңістік" data-language-autonym="Қазақша" data-language-local-name="Kazakh" class="interlanguage-link-target"><span>Қазақша</span></a></li><li class="interlanguage-link interwiki-lb mw-list-item"><a href="https://lb.wikipedia.org/wiki/Metresche_Raum" title="Metresche Raum – Luxembourgish" lang="lb" hreflang="lb" data-title="Metresche Raum" data-language-autonym="Lëtzebuergesch" data-language-local-name="Luxembourgish" class="interlanguage-link-target"><span>Lëtzebuergesch</span></a></li><li class="interlanguage-link interwiki-lt mw-list-item"><a href="https://lt.wikipedia.org/wiki/Metrin%C4%97_erdv%C4%97" title="Metrinė erdvė – Lithuanian" lang="lt" hreflang="lt" data-title="Metrinė erdvė" data-language-autonym="Lietuvių" data-language-local-name="Lithuanian" class="interlanguage-link-target"><span>Lietuvių</span></a></li><li class="interlanguage-link interwiki-hu mw-list-item"><a href="https://hu.wikipedia.org/wiki/Metrikus_t%C3%A9r" title="Metrikus tér – Hungarian" lang="hu" hreflang="hu" data-title="Metrikus tér" data-language-autonym="Magyar" data-language-local-name="Hungarian" class="interlanguage-link-target"><span>Magyar</span></a></li><li class="interlanguage-link interwiki-mk mw-list-item"><a href="https://mk.wikipedia.org/wiki/%D0%9C%D0%B5%D1%82%D1%80%D0%B8%D1%87%D0%BA%D0%B8_%D0%BF%D1%80%D0%BE%D1%81%D1%82%D0%BE%D1%80" title="Метрички простор – Macedonian" lang="mk" hreflang="mk" data-title="Метрички простор" data-language-autonym="Македонски" data-language-local-name="Macedonian" class="interlanguage-link-target"><span>Македонски</span></a></li><li class="interlanguage-link interwiki-ms mw-list-item"><a href="https://ms.wikipedia.org/wiki/Ruang_metrik" title="Ruang metrik – Malay" lang="ms" hreflang="ms" data-title="Ruang metrik" data-language-autonym="Bahasa Melayu" data-language-local-name="Malay" class="interlanguage-link-target"><span>Bahasa Melayu</span></a></li><li class="interlanguage-link interwiki-my mw-list-item"><a href="https://my.wikipedia.org/wiki/%E1%80%A1%E1%80%90%E1%80%AD%E1%80%AF%E1%80%84%E1%80%BA%E1%80%B8%E1%80%86" title="အတိုင်းဆ – Burmese" lang="my" hreflang="my" data-title="အတိုင်းဆ" data-language-autonym="မြန်မာဘာသာ" data-language-local-name="Burmese" class="interlanguage-link-target"><span>မြန်မာဘာသာ</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Metrische_ruimte" title="Metrische ruimte – Dutch" lang="nl" hreflang="nl" data-title="Metrische ruimte" data-language-autonym="Nederlands" data-language-local-name="Dutch" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E8%B7%9D%E9%9B%A2%E7%A9%BA%E9%96%93" title="距離空間 – Japanese" lang="ja" hreflang="ja" data-title="距離空間" data-language-autonym="日本語" data-language-local-name="Japanese" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-no mw-list-item"><a href="https://no.wikipedia.org/wiki/Metrisk_rom" title="Metrisk rom – Norwegian Bokmål" lang="nb" hreflang="nb" data-title="Metrisk rom" data-language-autonym="Norsk bokmål" data-language-local-name="Norwegian Bokmål" class="interlanguage-link-target"><span>Norsk bokmål</span></a></li><li class="interlanguage-link interwiki-nn mw-list-item"><a href="https://nn.wikipedia.org/wiki/Metrisk_rom" title="Metrisk rom – Norwegian Nynorsk" lang="nn" hreflang="nn" data-title="Metrisk rom" data-language-autonym="Norsk nynorsk" data-language-local-name="Norwegian Nynorsk" class="interlanguage-link-target"><span>Norsk nynorsk</span></a></li><li class="interlanguage-link interwiki-pms mw-list-item"><a href="https://pms.wikipedia.org/wiki/Spassi_m%C3%A9trich" title="Spassi métrich – Piedmontese" lang="pms" hreflang="pms" data-title="Spassi métrich" data-language-autonym="Piemontèis" data-language-local-name="Piedmontese" class="interlanguage-link-target"><span>Piemontèis</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/Przestrze%C5%84_metryczna" title="Przestrzeń metryczna – Polish" lang="pl" hreflang="pl" data-title="Przestrzeń metryczna" data-language-autonym="Polski" data-language-local-name="Polish" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/Espa%C3%A7o_m%C3%A9trico" title="Espaço métrico – Portuguese" lang="pt" hreflang="pt" data-title="Espaço métrico" data-language-autonym="Português" data-language-local-name="Portuguese" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-ro mw-list-item"><a href="https://ro.wikipedia.org/wiki/Spa%C8%9Biu_metric" title="Spațiu metric – Romanian" lang="ro" hreflang="ro" data-title="Spațiu metric" data-language-autonym="Română" data-language-local-name="Romanian" class="interlanguage-link-target"><span>Română</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%9C%D0%B5%D1%82%D1%80%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%BE%D0%B5_%D0%BF%D1%80%D0%BE%D1%81%D1%82%D1%80%D0%B0%D0%BD%D1%81%D1%82%D0%B2%D0%BE" title="Метрическое пространство – Russian" lang="ru" hreflang="ru" data-title="Метрическое пространство" data-language-autonym="Русский" data-language-local-name="Russian" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-simple mw-list-item"><a href="https://simple.wikipedia.org/wiki/Metric_space" title="Metric space – Simple English" lang="en-simple" hreflang="en-simple" data-title="Metric space" data-language-autonym="Simple English" data-language-local-name="Simple English" class="interlanguage-link-target"><span>Simple English</span></a></li><li class="interlanguage-link interwiki-sk mw-list-item"><a href="https://sk.wikipedia.org/wiki/Metrick%C3%BD_priestor" title="Metrický priestor – Slovak" lang="sk" hreflang="sk" data-title="Metrický priestor" data-language-autonym="Slovenčina" data-language-local-name="Slovak" class="interlanguage-link-target"><span>Slovenčina</span></a></li><li class="interlanguage-link interwiki-sl mw-list-item"><a href="https://sl.wikipedia.org/wiki/Metri%C4%8Dni_prostor" title="Metrični prostor – Slovenian" lang="sl" hreflang="sl" data-title="Metrični prostor" data-language-autonym="Slovenščina" data-language-local-name="Slovenian" class="interlanguage-link-target"><span>Slovenščina</span></a></li><li class="interlanguage-link interwiki-ckb mw-list-item"><a href="https://ckb.wikipedia.org/wiki/%D8%A8%DB%86%D8%B4%D8%A7%DB%8C%DB%8C%DB%8C_%D9%85%DB%95%D8%AA%D8%B1%DB%8C" title="بۆشاییی مەتری – Central Kurdish" lang="ckb" hreflang="ckb" data-title="بۆشاییی مەتری" data-language-autonym="کوردی" data-language-local-name="Central Kurdish" class="interlanguage-link-target"><span>کوردی</span></a></li><li class="interlanguage-link interwiki-sr mw-list-item"><a href="https://sr.wikipedia.org/wiki/%D0%9C%D0%B5%D1%82%D1%80%D0%B8%D1%87%D0%BA%D0%B8_%D0%BF%D1%80%D0%BE%D1%81%D1%82%D0%BE%D1%80" title="Метрички простор – Serbian" lang="sr" hreflang="sr" data-title="Метрички простор" data-language-autonym="Српски / srpski" data-language-local-name="Serbian" class="interlanguage-link-target"><span>Српски / srpski</span></a></li><li class="interlanguage-link interwiki-fi mw-list-item"><a href="https://fi.wikipedia.org/wiki/Metrinen_avaruus" title="Metrinen avaruus – Finnish" lang="fi" hreflang="fi" data-title="Metrinen avaruus" data-language-autonym="Suomi" data-language-local-name="Finnish" class="interlanguage-link-target"><span>Suomi</span></a></li><li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://sv.wikipedia.org/wiki/Metriskt_rum" title="Metriskt rum – Swedish" lang="sv" hreflang="sv" data-title="Metriskt rum" data-language-autonym="Svenska" data-language-local-name="Swedish" class="interlanguage-link-target"><span>Svenska</span></a></li><li class="interlanguage-link interwiki-ta mw-list-item"><a href="https://ta.wikipedia.org/wiki/%E0%AE%AE%E0%AF%86%E0%AE%9F%E0%AF%8D%E0%AE%B0%E0%AE%BF%E0%AE%95%E0%AF%8D_%E0%AE%B5%E0%AF%86%E0%AE%B3%E0%AE%BF" title="மெட்ரிக் வெளி – Tamil" lang="ta" hreflang="ta" data-title="மெட்ரிக் வெளி" data-language-autonym="தமிழ்" data-language-local-name="Tamil" class="interlanguage-link-target"><span>தமிழ்</span></a></li><li class="interlanguage-link interwiki-tr mw-list-item"><a href="https://tr.wikipedia.org/wiki/Metrik_uzay" title="Metrik uzay – Turkish" lang="tr" hreflang="tr" data-title="Metrik uzay" data-language-autonym="Türkçe" data-language-local-name="Turkish" class="interlanguage-link-target"><span>Türkçe</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%9C%D0%B5%D1%82%D1%80%D0%B8%D1%87%D0%BD%D0%B8%D0%B9_%D0%BF%D1%80%D0%BE%D1%81%D1%82%D1%96%D1%80" title="Метричний простір – Ukrainian" lang="uk" hreflang="uk" data-title="Метричний простір" data-language-autonym="Українська" data-language-local-name="Ukrainian" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-ur mw-list-item"><a href="https://ur.wikipedia.org/wiki/%D8%A8%D8%AD%D8%B1_%D9%81%D8%B6%D8%A7" title="بحر فضا – Urdu" lang="ur" hreflang="ur" data-title="بحر فضا" data-language-autonym="اردو" data-language-local-name="Urdu" class="interlanguage-link-target"><span>اردو</span></a></li><li class="interlanguage-link interwiki-vec mw-list-item"><a href="https://vec.wikipedia.org/wiki/Spassio_m%C3%A8trico" title="Spassio mètrico – Venetian" lang="vec" hreflang="vec" data-title="Spassio mètrico" data-language-autonym="Vèneto" data-language-local-name="Venetian" class="interlanguage-link-target"><span>Vèneto</span></a></li><li class="interlanguage-link interwiki-vi mw-list-item"><a href="https://vi.wikipedia.org/wiki/Kh%C3%B4ng_gian_m%C3%AAtric" title="Không gian mêtric – Vietnamese" lang="vi" hreflang="vi" data-title="Không gian mêtric" data-language-autonym="Tiếng Việt" data-language-local-name="Vietnamese" class="interlanguage-link-target"><span>Tiếng Việt</span></a></li><li class="interlanguage-link interwiki-fiu-vro mw-list-item"><a href="https://fiu-vro.wikipedia.org/wiki/Meetriline_ruum" title="Meetriline ruum – Võro" lang="vro" hreflang="vro" data-title="Meetriline ruum" data-language-autonym="Võro" data-language-local-name="Võro" class="interlanguage-link-target"><span>Võro</span></a></li><li class="interlanguage-link interwiki-zh-classical mw-list-item"><a href="https://zh-classical.wikipedia.org/wiki/%E5%BA%A6%E9%87%8F%E7%A9%BA%E9%96%93" title="度量空間 – Literary Chinese" lang="lzh" hreflang="lzh" data-title="度量空間" data-language-autonym="文言" data-language-local-name="Literary Chinese" class="interlanguage-link-target"><span>文言</span></a></li><li class="interlanguage-link interwiki-wuu mw-list-item"><a href="https://wuu.wikipedia.org/wiki/%E5%BA%A6%E9%87%8F%E7%A9%BA%E9%97%B4" title="度量空间 – Wu" lang="wuu" hreflang="wuu" data-title="度量空间" data-language-autonym="吴语" data-language-local-name="Wu" class="interlanguage-link-target"><span>吴语</span></a></li><li class="interlanguage-link interwiki-zh-yue mw-list-item"><a href="https://zh-yue.wikipedia.org/wiki/%E5%BA%A6%E9%87%8F%E7%A9%BA%E9%96%93" title="度量空間 – Cantonese" lang="yue" hreflang="yue" data-title="度量空間" data-language-autonym="粵語" data-language-local-name="Cantonese" class="interlanguage-link-target"><span>粵語</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E5%BA%A6%E9%87%8F%E7%A9%BA%E9%97%B4" title="度量空间 – Chinese" lang="zh" hreflang="zh" data-title="度量空间" data-language-autonym="中文" data-language-local-name="Chinese" class="interlanguage-link-target"><span>中文</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q180953#sitelinks-wikipedia" title="Edit interlanguage links" class="wbc-editpage">Edit links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Metric_space" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:Metric_space" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Metric_space"><span>Read</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Metric_space&action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Metric_space&action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Metric_space"><span>Read</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Metric_space&action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Metric_space&action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/Metric_space" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/Metric_space" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages" title="A list of all special pages [q]" accesskey="q"><span>Special pages</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Metric_space&oldid=1245905585" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Metric_space&action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&page=Metric_space&id=1245905585&wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FMetric_space"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FMetric_space"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&page=Metric_space&action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Metric_space&printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="wb-otherproject-link wb-otherproject-commons mw-list-item"><a href="https://commons.wikimedia.org/wiki/Category:Metric_geometry" hreflang="en"><span>Wikimedia Commons</span></a></li><li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q180953" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><div class="shortdescription nomobile noexcerpt noprint searchaux" style="display:none">Mathematical space with a notion of distance</div> <p class="mw-empty-elt"> </p> <figure typeof="mw:File/Thumb"><a href="/wiki/File:Manhattan_distance.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/0/08/Manhattan_distance.svg/200px-Manhattan_distance.svg.png" decoding="async" width="200" height="200" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/0/08/Manhattan_distance.svg/300px-Manhattan_distance.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/0/08/Manhattan_distance.svg/400px-Manhattan_distance.svg.png 2x" data-file-width="283" data-file-height="283" /></a><figcaption>The <a href="/wiki/Two-dimensional_Euclidean_space" class="mw-redirect" title="Two-dimensional Euclidean space">plane</a> (a set of points) can be equipped with different metrics. In the <a href="/wiki/Taxicab_geometry" title="Taxicab geometry">taxicab metric</a> the red, yellow and blue paths have the same <a href="/wiki/Arc_length" title="Arc length">length</a> (12), and are all shortest paths. In the <a href="/wiki/Euclidean_metric" class="mw-redirect" title="Euclidean metric">Euclidean metric</a>, the green path has length <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 6{\sqrt {2}}\approx 8.49}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>6</mn> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>2</mn> </msqrt> </mrow> <mo>≈<!-- ≈ --></mo> <mn>8.49</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 6{\sqrt {2}}\approx 8.49}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6d4363249f648e42df783c885be8eb92338f2af2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:11.493ex; height:3.009ex;" alt="{\displaystyle 6{\sqrt {2}}\approx 8.49}"></span>, and is the unique shortest path, whereas the red, yellow, and blue paths still have length 12.</figcaption></figure> <p>In <a href="/wiki/Mathematics" title="Mathematics">mathematics</a>, a <b>metric space</b> is a <a href="/wiki/Set_(mathematics)" title="Set (mathematics)">set</a> together with a notion of <i><a href="/wiki/Distance" title="Distance">distance</a></i> between its <a href="/wiki/Element_(mathematics)" title="Element (mathematics)">elements</a>, usually called <a href="/wiki/Point_(geometry)" title="Point (geometry)">points</a>. The distance is measured by a <a href="/wiki/Function_(mathematics)" title="Function (mathematics)">function</a> called a <b>metric</b> or <b>distance function</b>.<sup id="cite_ref-FOOTNOTEČech196942_1-0" class="reference"><a href="#cite_note-FOOTNOTEČech196942-1"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup> Metric spaces are the most general setting for studying many of the concepts of <a href="/wiki/Mathematical_analysis" title="Mathematical analysis">mathematical analysis</a> and <a href="/wiki/Geometry" title="Geometry">geometry</a>. </p><p>The most familiar example of a metric space is <a href="/wiki/3-dimensional_Euclidean_space" class="mw-redirect" title="3-dimensional Euclidean space">3-dimensional Euclidean space</a> with its usual notion of distance. Other well-known examples are a <a href="/wiki/Sphere" title="Sphere">sphere</a> equipped with the <a href="/wiki/Angular_distance" title="Angular distance">angular distance</a> and the <a href="/wiki/Hyperbolic_plane" class="mw-redirect" title="Hyperbolic plane">hyperbolic plane</a>. A metric may correspond to a <a href="/wiki/Conceptual_metaphor" title="Conceptual metaphor">metaphorical</a>, rather than physical, notion of distance: for example, the set of 100-character Unicode strings can be equipped with the <a href="/wiki/Hamming_distance" title="Hamming distance">Hamming distance</a>, which measures the number of characters that need to be changed to get from one string to another. </p><p>Since they are very general, metric spaces are a tool used in many different branches of mathematics. Many types of mathematical objects have a natural notion of distance and therefore admit the structure of a metric space, including <a href="/wiki/Riemannian_manifold" title="Riemannian manifold">Riemannian manifolds</a>, <a href="/wiki/Normed_vector_space" title="Normed vector space">normed vector spaces</a>, and <a href="/wiki/Graph_(discrete_mathematics)" title="Graph (discrete mathematics)">graphs</a>. In <a href="/wiki/Abstract_algebra" title="Abstract algebra">abstract algebra</a>, the <a href="/wiki/P-adic_numbers" class="mw-redirect" title="P-adic numbers"><i>p</i>-adic numbers</a> arise as elements of the <a href="/wiki/Completion_(metric_space)" class="mw-redirect" title="Completion (metric space)">completion</a> of a metric structure on the <a href="/wiki/Rational_numbers" class="mw-redirect" title="Rational numbers">rational numbers</a>. Metric spaces are also studied in their own right in <b>metric geometry</b><sup id="cite_ref-FOOTNOTEBuragoBuragoIvanov2001_2-0" class="reference"><a href="#cite_note-FOOTNOTEBuragoBuragoIvanov2001-2"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup> and <b>analysis on metric spaces</b>.<sup id="cite_ref-FOOTNOTEHeinonen2001_3-0" class="reference"><a href="#cite_note-FOOTNOTEHeinonen2001-3"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup> </p><p>Many of the basic notions of <a href="/wiki/Mathematical_analysis" title="Mathematical analysis">mathematical analysis</a>, including <a href="/wiki/Ball_(mathematics)" title="Ball (mathematics)">balls</a>, <a href="/wiki/Complete_metric_space" title="Complete metric space">completeness</a>, as well as <a href="/wiki/Uniform_continuity" title="Uniform continuity">uniform</a>, <a href="/wiki/Lipschitz_continuity" title="Lipschitz continuity">Lipschitz</a>, and <a href="/wiki/H%C3%B6lder_continuity" class="mw-redirect" title="Hölder continuity">Hölder continuity</a>, can be defined in the setting of metric spaces. Other notions, such as <a href="/wiki/Continuous_function" title="Continuous function">continuity</a>, <a href="/wiki/Compactness" class="mw-redirect" title="Compactness">compactness</a>, and <a href="/wiki/Open_set" title="Open set">open</a> and <a href="/wiki/Closed_set" title="Closed set">closed sets</a>, can be defined for metric spaces, but also in the even more general setting of <a href="/wiki/Topological_space" title="Topological space">topological spaces</a>. </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Definition_and_illustration">Definition and illustration</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Metric_space&action=edit&section=1" title="Edit section: Definition and illustration"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Motivation">Motivation</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Metric_space&action=edit&section=2" title="Edit section: Motivation"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Great-circle_distance_vs_straight_line_distance.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/5/5f/Great-circle_distance_vs_straight_line_distance.svg/220px-Great-circle_distance_vs_straight_line_distance.svg.png" decoding="async" width="220" height="220" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/5/5f/Great-circle_distance_vs_straight_line_distance.svg/330px-Great-circle_distance_vs_straight_line_distance.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/5/5f/Great-circle_distance_vs_straight_line_distance.svg/440px-Great-circle_distance_vs_straight_line_distance.svg.png 2x" data-file-width="298" data-file-height="298" /></a><figcaption>A diagram illustrating the great-circle distance (in cyan) and the straight-line distance (in red) between two points <span class="texhtml mvar" style="font-style:italic;">P</span> and <span class="texhtml mvar" style="font-style:italic;">Q</span> on a sphere.</figcaption></figure> <p>To see the utility of different notions of distance, consider the <a href="/wiki/Surface_of_the_Earth" class="mw-redirect" title="Surface of the Earth">surface of the Earth</a> as a set of points. We can measure the distance between two such points by the length of the <a href="/wiki/Great-circle_distance" title="Great-circle distance">shortest path along the surface</a>, "<a href="/wiki/As_the_crow_flies" title="As the crow flies">as the crow flies</a>"; this is particularly useful for shipping and aviation. We can also measure the straight-line distance between two points through the Earth's interior; this notion is, for example, natural in <a href="/wiki/Seismology" title="Seismology">seismology</a>, since it roughly corresponds to the length of time it takes for seismic waves to travel between those two points. </p><p>The notion of distance encoded by the metric space axioms has relatively few requirements. This generality gives metric spaces a lot of flexibility. At the same time, the notion is strong enough to encode many intuitive facts about what distance means. This means that general results about metric spaces can be applied in many different contexts. </p><p>Like many fundamental mathematical concepts, the metric on a metric space can be interpreted in many different ways. A particular metric may not be best thought of as measuring physical distance, but, instead, as the cost of changing from one state to another (as with <a href="/wiki/Wasserstein_metric" title="Wasserstein metric">Wasserstein metrics</a> on spaces of <a href="/wiki/Measure_(mathematics)" title="Measure (mathematics)">measures</a>) or the degree of difference between two objects (for example, the <a href="/wiki/Hamming_distance" title="Hamming distance">Hamming distance</a> between two strings of characters, or the <a href="/wiki/Gromov%E2%80%93Hausdorff_convergence" title="Gromov–Hausdorff convergence">Gromov–Hausdorff distance</a> between metric spaces themselves). </p> <div class="mw-heading mw-heading3"><h3 id="Definition">Definition</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Metric_space&action=edit&section=3" title="Edit section: Definition"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Formally, a <b>metric space</b> is an <a href="/wiki/Ordered_pair" title="Ordered pair">ordered pair</a> <span class="texhtml">(<i>M</i>, <i>d</i>)</span> where <span class="texhtml mvar" style="font-style:italic;">M</span> is a set and <span class="texhtml mvar" style="font-style:italic;">d</span> is a <b>metric</b> on <span class="texhtml mvar" style="font-style:italic;">M</span>, i.e., a <a href="/wiki/Function_(mathematics)" title="Function (mathematics)">function</a><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d\,\colon M\times M\to \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mspace width="thinmathspace" /> <mo>:<!-- : --></mo> <mi>M</mi> <mo>×<!-- × --></mo> <mi>M</mi> <mo stretchy="false">→<!-- → --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d\,\colon M\times M\to \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fa7a2e6b602e9a9325d834170bf5b841bf3bf9cf" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:15.654ex; height:2.176ex;" alt="{\displaystyle d\,\colon M\times M\to \mathbb {R} }"></span>satisfying the following axioms for all points <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x,y,z\in M}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>,</mo> <mi>z</mi> <mo>∈<!-- ∈ --></mo> <mi>M</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x,y,z\in M}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ba283a127121ad64c98d3f69ced0ac4a86ec6414" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.924ex; height:2.509ex;" alt="{\displaystyle x,y,z\in M}"></span>:<sup id="cite_ref-FOOTNOTEBuragoBuragoIvanov20011_4-0" class="reference"><a href="#cite_note-FOOTNOTEBuragoBuragoIvanov20011-4"><span class="cite-bracket">[</span>4<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-FOOTNOTEGromov2007xv_5-0" class="reference"><a href="#cite_note-FOOTNOTEGromov2007xv-5"><span class="cite-bracket">[</span>5<span class="cite-bracket">]</span></a></sup> </p> <ol><li>The distance from a point to itself is zero: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d(x,x)=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d(x,x)=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f8b0b392db0a4abf6c47dcd5b35f90592401e756" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.979ex; height:2.843ex;" alt="{\displaystyle d(x,x)=0}"></span></li> <li>(Positivity) The distance between two distinct points is always positive: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\text{If }}x\neq y{\text{, then }}d(x,y)>0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtext>If </mtext> </mrow> <mi>x</mi> <mo>≠<!-- ≠ --></mo> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>, then </mtext> </mrow> <mi>d</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo>></mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\text{If }}x\neq y{\text{, then }}d(x,y)>0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/14c273c8a68c3cbc06a20d236f26fb83043fd941" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:24.851ex; height:2.843ex;" alt="{\displaystyle {\text{If }}x\neq y{\text{, then }}d(x,y)>0}"></span></li> <li>(<a href="/wiki/Symmetric_function" title="Symmetric function">Symmetry</a>) The distance from <span class="texhtml mvar" style="font-style:italic;">x</span> to <span class="texhtml mvar" style="font-style:italic;">y</span> is always the same as the distance from <span class="texhtml mvar" style="font-style:italic;">y</span> to <span class="texhtml mvar" style="font-style:italic;">x</span>: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d(x,y)=d(y,x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>d</mi> <mo stretchy="false">(</mo> <mi>y</mi> <mo>,</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d(x,y)=d(y,x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c7fea33d0e60116abd16287351eb6bf142a61fdd" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:16.187ex; height:2.843ex;" alt="{\displaystyle d(x,y)=d(y,x)}"></span></li> <li>The <a href="/wiki/Triangle_inequality" title="Triangle inequality">triangle inequality</a> holds: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d(x,z)\leq d(x,y)+d(y,z)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>≤<!-- ≤ --></mo> <mi>d</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mi>d</mi> <mo stretchy="false">(</mo> <mi>y</mi> <mo>,</mo> <mi>z</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d(x,z)\leq d(x,y)+d(y,z)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/43ae751284c2944886e1effbfe4e0c1293f98419" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:25.263ex; height:2.843ex;" alt="{\displaystyle d(x,z)\leq d(x,y)+d(y,z)}"></span>This is a natural property of both physical and metaphorical notions of distance: you can arrive at <span class="texhtml mvar" style="font-style:italic;">z</span> from <span class="texhtml mvar" style="font-style:italic;">x</span> by taking a detour through <span class="texhtml mvar" style="font-style:italic;">y</span>, but this will not make your journey any shorter than the direct path.</li></ol> <p>If the metric <span class="texhtml mvar" style="font-style:italic;">d</span> is unambiguous, one often refers by <a href="/wiki/Abuse_of_notation" title="Abuse of notation">abuse of notation</a> to "the metric space <span class="texhtml mvar" style="font-style:italic;">M</span>". </p><p>By taking all axioms except the second, one can show that distance is always non-negative:<span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0=d(x,x)\leq d(x,y)+d(y,x)=2d(x,y)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> <mo>=</mo> <mi>d</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>≤<!-- ≤ --></mo> <mi>d</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mi>d</mi> <mo stretchy="false">(</mo> <mi>y</mi> <mo>,</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>2</mn> <mi>d</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0=d(x,x)\leq d(x,y)+d(y,x)=2d(x,y)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dbb5c81eebd08b8155f33c70761a4f619b436e6d" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:40.812ex; height:2.843ex;" alt="{\displaystyle 0=d(x,x)\leq d(x,y)+d(y,x)=2d(x,y)}"></span>Therefore the second axiom can be weakened to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle {\text{If }}x\neq y{\text{, then }}d(x,y)\neq 0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtext>If </mtext> </mrow> <mi>x</mi> <mo>≠<!-- ≠ --></mo> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>, then </mtext> </mrow> <mi>d</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo>≠<!-- ≠ --></mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle {\text{If }}x\neq y{\text{, then }}d(x,y)\neq 0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a711db1f66ee741f7620e40bafcf4c905c6d7f21" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:24.851ex; height:2.843ex;" alt="{\textstyle {\text{If }}x\neq y{\text{, then }}d(x,y)\neq 0}"></span> and combined with the first to make <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle d(x,y)=0\iff x=y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>d</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>0</mn> <mspace width="thickmathspace" /> <mo stretchy="false">⟺<!-- ⟺ --></mo> <mspace width="thickmathspace" /> <mi>x</mi> <mo>=</mo> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle d(x,y)=0\iff x=y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8f45cfc9536a8e2fc8a1a5a7128fc148c4fbb125" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:23.286ex; height:2.843ex;" alt="{\textstyle d(x,y)=0\iff x=y}"></span>.<sup id="cite_ref-6" class="reference"><a href="#cite_note-6"><span class="cite-bracket">[</span>6<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Simple_examples">Simple examples</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Metric_space&action=edit&section=4" title="Edit section: Simple examples"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading4"><h4 id="The_real_numbers">The real numbers</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Metric_space&action=edit&section=5" title="Edit section: The real numbers"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The <a href="/wiki/Real_number" title="Real number">real numbers</a> with the distance function <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d(x,y)=|y-x|}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>y</mi> <mo>−<!-- − --></mo> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d(x,y)=|y-x|}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d4ccdaa16fa9887b70273ee18e3b1b2f20d61d3f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:16.262ex; height:2.843ex;" alt="{\displaystyle d(x,y)=|y-x|}"></span> given by the <a href="/wiki/Absolute_difference" title="Absolute difference">absolute difference</a> form a metric space. Many properties of metric spaces and functions between them are generalizations of concepts in <a href="/wiki/Real_analysis" title="Real analysis">real analysis</a> and coincide with those concepts when applied to the real line. </p> <div class="mw-heading mw-heading4"><h4 id="Metrics_on_Euclidean_spaces">Metrics on Euclidean spaces</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Metric_space&action=edit&section=6" title="Edit section: Metrics on Euclidean spaces"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Minkowski_distance_examples.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/e/eb/Minkowski_distance_examples.svg/220px-Minkowski_distance_examples.svg.png" decoding="async" width="220" height="220" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/e/eb/Minkowski_distance_examples.svg/330px-Minkowski_distance_examples.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/e/eb/Minkowski_distance_examples.svg/440px-Minkowski_distance_examples.svg.png 2x" data-file-width="512" data-file-height="512" /></a><figcaption>Comparison of Chebyshev, Euclidean and taxicab distances for the hypotenuse of a 3-4-5 triangle on a chessboard</figcaption></figure> <p>The Euclidean plane <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} ^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} ^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e150115ab9f63023215109595b76686a1ff890fd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.732ex; height:2.676ex;" alt="{\displaystyle \mathbb {R} ^{2}}"></span> can be equipped with many different metrics. The <a href="/wiki/Euclidean_distance" title="Euclidean distance">Euclidean distance</a> familiar from school mathematics can be defined by <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d_{2}((x_{1},y_{1}),(x_{2},y_{2}))={\sqrt {(x_{2}-x_{1})^{2}+(y_{2}-y_{1})^{2}}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>,</mo> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>−<!-- − --></mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mo stretchy="false">(</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>−<!-- − --></mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d_{2}((x_{1},y_{1}),(x_{2},y_{2}))={\sqrt {(x_{2}-x_{1})^{2}+(y_{2}-y_{1})^{2}}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ea0ba1812589f13bde6abe0610dd32061edb0f1d" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.671ex; width:49.42ex; height:4.843ex;" alt="{\displaystyle d_{2}((x_{1},y_{1}),(x_{2},y_{2}))={\sqrt {(x_{2}-x_{1})^{2}+(y_{2}-y_{1})^{2}}}.}"></span> </p><p>The <a href="/wiki/Taxicab_geometry" title="Taxicab geometry"><i>taxicab</i> or <i>Manhattan</i> distance</a> is defined by <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d_{1}((x_{1},y_{1}),(x_{2},y_{2}))=|x_{2}-x_{1}|+|y_{2}-y_{1}|}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>,</mo> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>−<!-- − --></mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>−<!-- − --></mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d_{1}((x_{1},y_{1}),(x_{2},y_{2}))=|x_{2}-x_{1}|+|y_{2}-y_{1}|}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e7b3acf7666b59a8c0c458360ec598ea129f1777" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:43.309ex; height:2.843ex;" alt="{\displaystyle d_{1}((x_{1},y_{1}),(x_{2},y_{2}))=|x_{2}-x_{1}|+|y_{2}-y_{1}|}"></span> and can be thought of as the distance you need to travel along horizontal and vertical lines to get from one point to the other, as illustrated at the top of the article. </p><p>The <i>maximum</i>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L^{\infty }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L^{\infty }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b9ab400cc4dfd865180cd84c72dc894ca457671f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.458ex; height:2.343ex;" alt="{\displaystyle L^{\infty }}"></span>, or <i><a href="/wiki/Chebyshev_distance" title="Chebyshev distance">Chebyshev distance</a></i> is defined by <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d_{\infty }((x_{1},y_{1}),(x_{2},y_{2}))=\max\{|x_{2}-x_{1}|,|y_{2}-y_{1}|\}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </msub> <mo stretchy="false">(</mo> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>,</mo> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>=</mo> <mo movablelimits="true" form="prefix">max</mo> <mo fence="false" stretchy="false">{</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>−<!-- − --></mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>−<!-- − --></mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo fence="false" stretchy="false">}</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d_{\infty }((x_{1},y_{1}),(x_{2},y_{2}))=\max\{|x_{2}-x_{1}|,|y_{2}-y_{1}|\}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7af57ea864a570149bc3a0482a3a7111812c7905" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:49.622ex; height:2.843ex;" alt="{\displaystyle d_{\infty }((x_{1},y_{1}),(x_{2},y_{2}))=\max\{|x_{2}-x_{1}|,|y_{2}-y_{1}|\}.}"></span> This distance does not have an easy explanation in terms of paths in the plane, but it still satisfies the metric space axioms. It can be thought of similarly to the number of moves a <a href="/wiki/King_(chess)" title="King (chess)">king</a> would have to make on a <a href="/wiki/Chess" title="Chess">chess</a> <a href="/wiki/Board_game" title="Board game">board</a> to travel from one point to another on the given space. </p><p>In fact, these three distances, while they have distinct properties, are similar in some ways. Informally, points that are close in one are close in the others, too. This observation can be quantified with the formula <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d_{\infty }(p,q)\leq d_{2}(p,q)\leq d_{1}(p,q)\leq 2d_{\infty }(p,q),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>p</mi> <mo>,</mo> <mi>q</mi> <mo stretchy="false">)</mo> <mo>≤<!-- ≤ --></mo> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>p</mi> <mo>,</mo> <mi>q</mi> <mo stretchy="false">)</mo> <mo>≤<!-- ≤ --></mo> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>p</mi> <mo>,</mo> <mi>q</mi> <mo stretchy="false">)</mo> <mo>≤<!-- ≤ --></mo> <mn>2</mn> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>p</mi> <mo>,</mo> <mi>q</mi> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d_{\infty }(p,q)\leq d_{2}(p,q)\leq d_{1}(p,q)\leq 2d_{\infty }(p,q),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c5ef8a8fb50768d565fbf6cec4727b4fda84fc56" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:42.128ex; height:2.843ex;" alt="{\displaystyle d_{\infty }(p,q)\leq d_{2}(p,q)\leq d_{1}(p,q)\leq 2d_{\infty }(p,q),}"></span> which holds for every pair of points <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p,q\in \mathbb {R} ^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> <mo>,</mo> <mi>q</mi> <mo>∈<!-- ∈ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p,q\in \mathbb {R} ^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1ee72fcef6aa20ae237e8d7242fef4eb83de566e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:8.935ex; height:3.009ex;" alt="{\displaystyle p,q\in \mathbb {R} ^{2}}"></span>. </p><p>A radically different distance can be defined by setting <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d(p,q)={\begin{cases}0,&{\text{if }}p=q,\\1,&{\text{otherwise.}}\end{cases}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mo stretchy="false">(</mo> <mi>p</mi> <mo>,</mo> <mi>q</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>{</mo> <mtable columnalign="left left" rowspacing=".2em" columnspacing="1em" displaystyle="false"> <mtr> <mtd> <mn>0</mn> <mo>,</mo> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext>if </mtext> </mrow> <mi>p</mi> <mo>=</mo> <mi>q</mi> <mo>,</mo> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> <mo>,</mo> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext>otherwise.</mtext> </mrow> </mtd> </mtr> </mtable> <mo fence="true" stretchy="true" symmetric="true"></mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d(p,q)={\begin{cases}0,&{\text{if }}p=q,\\1,&{\text{otherwise.}}\end{cases}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/765a68868cb7a61922dced5212dc20949d561cb1" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:26.247ex; height:6.176ex;" alt="{\displaystyle d(p,q)={\begin{cases}0,&{\text{if }}p=q,\\1,&{\text{otherwise.}}\end{cases}}}"></span> Using <a href="/wiki/Iverson_bracket" title="Iverson bracket">Iverson brackets</a>, <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d(p,q)=[p\neq q]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mo stretchy="false">(</mo> <mi>p</mi> <mo>,</mo> <mi>q</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo stretchy="false">[</mo> <mi>p</mi> <mo>≠<!-- ≠ --></mo> <mi>q</mi> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d(p,q)=[p\neq q]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e025bbb02a33d44a0c2373007bd8e878240f2dc4" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:16.028ex; height:2.843ex;" alt="{\displaystyle d(p,q)=[p\neq q]}"></span> In this <i>discrete metric</i>, all distinct points are 1 unit apart: none of them are close to each other, and none of them are very far away from each other either. Intuitively, the discrete metric no longer remembers that the set is a plane, but treats it just as an undifferentiated set of points. </p><p>All of these metrics make sense on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} ^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} ^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c510b63578322050121fe966f2e5770bea43308d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.897ex; height:2.343ex;" alt="{\displaystyle \mathbb {R} ^{n}}"></span> as well as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} ^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} ^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e150115ab9f63023215109595b76686a1ff890fd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.732ex; height:2.676ex;" alt="{\displaystyle \mathbb {R} ^{2}}"></span>. </p> <div class="mw-heading mw-heading4"><h4 id="Subspaces">Subspaces</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Metric_space&action=edit&section=7" title="Edit section: Subspaces"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Given a metric space <span class="texhtml">(<i>M</i>, <i>d</i>)</span> and a <a href="/wiki/Subset" title="Subset">subset</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A\subseteq M}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>⊆<!-- ⊆ --></mo> <mi>M</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A\subseteq M}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3817146332479574af6e80d38b1247eada04ae83" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:7.284ex; height:2.343ex;" alt="{\displaystyle A\subseteq M}"></span>, we can consider <span class="texhtml mvar" style="font-style:italic;">A</span> to be a metric space by measuring distances the same way we would in <span class="texhtml mvar" style="font-style:italic;">M</span>. Formally, the <i>induced metric</i> on <span class="texhtml mvar" style="font-style:italic;">A</span> is a function <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d_{A}:A\times A\to \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> </mrow> </msub> <mo>:</mo> <mi>A</mi> <mo>×<!-- × --></mo> <mi>A</mi> <mo stretchy="false">→<!-- → --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d_{A}:A\times A\to \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d1d52f04717ef0fb3463da72303831852a125990" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:16.23ex; height:2.509ex;" alt="{\displaystyle d_{A}:A\times A\to \mathbb {R} }"></span> defined by <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d_{A}(x,y)=d(x,y).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>d</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d_{A}(x,y)=d(x,y).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/382fe6588674cd4853889d6b327c321d3fd01039" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.292ex; height:2.843ex;" alt="{\displaystyle d_{A}(x,y)=d(x,y).}"></span> For example, if we take the two-dimensional sphere <span class="texhtml">S<sup>2</sup></span> as a subset of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} ^{3}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} ^{3}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f936ddf584f8f3dd2a0ed08917001b7a404c10b5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.732ex; height:2.676ex;" alt="{\displaystyle \mathbb {R} ^{3}}"></span>, the Euclidean metric on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} ^{3}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} ^{3}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f936ddf584f8f3dd2a0ed08917001b7a404c10b5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.732ex; height:2.676ex;" alt="{\displaystyle \mathbb {R} ^{3}}"></span> induces the straight-line metric on <span class="texhtml">S<sup>2</sup></span> described above. Two more useful examples are the open interval <span class="texhtml">(0, 1)</span> and the closed interval <span class="texhtml">[0, 1]</span> thought of as subspaces of the real line. </p> <div class="mw-heading mw-heading2"><h2 id="History">History</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Metric_space&action=edit&section=8" title="Edit section: History"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><a href="/wiki/Arthur_Cayley" title="Arthur Cayley">Arthur Cayley</a>, in his article "On Distance", extended metric concepts beyond Euclidean geometry into domains bounded by a conic in a projective space. His <a href="/wiki/Distance" title="Distance">distance</a> was given by logarithm of a <a href="/wiki/Cross_ratio" class="mw-redirect" title="Cross ratio">cross ratio</a>. Any projectivity leaving the conic stable also leaves the cross ratio constant, so isometries are implicit. This method provides models for <a href="/wiki/Elliptic_geometry" title="Elliptic geometry">elliptic geometry</a> and <a href="/wiki/Hyperbolic_geometry" title="Hyperbolic geometry">hyperbolic geometry</a>, and <a href="/wiki/Felix_Klein" title="Felix Klein">Felix Klein</a>, in several publications, established the field of <a href="/wiki/Non-euclidean_geometry" class="mw-redirect" title="Non-euclidean geometry">non-euclidean geometry</a> through the use of the <a href="/wiki/Cayley-Klein_metric" class="mw-redirect" title="Cayley-Klein metric">Cayley-Klein metric</a>. </p><p>The idea of an abstract space with metric properties was addressed in 1906 by <a href="/wiki/Ren%C3%A9_Maurice_Fr%C3%A9chet" title="René Maurice Fréchet">René Maurice Fréchet</a><sup id="cite_ref-7" class="reference"><a href="#cite_note-7"><span class="cite-bracket">[</span>7<span class="cite-bracket">]</span></a></sup> and the term <i>metric space</i> was coined by <a href="/wiki/Felix_Hausdorff" title="Felix Hausdorff">Felix Hausdorff</a> in 1914.<sup id="cite_ref-8" class="reference"><a href="#cite_note-8"><span class="cite-bracket">[</span>8<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-9" class="reference"><a href="#cite_note-9"><span class="cite-bracket">[</span>9<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-10" class="reference"><a href="#cite_note-10"><span class="cite-bracket">[</span>10<span class="cite-bracket">]</span></a></sup> </p><p>Fréchet's work laid the foundation for understanding <a href="/wiki/Convergence_of_random_variables" title="Convergence of random variables">convergence</a>, <a href="/wiki/Continuity_equation" title="Continuity equation">continuity</a>, and other key concepts in non-geometric spaces. This allowed mathematicians to study functions and sequences in a broader and more flexible way. This was important for the growing field of functional analysis. Mathematicians like Hausdorff and <a href="/wiki/Stefan_Banach" title="Stefan Banach">Stefan Banach</a> further refined and expanded the framework of metric spaces. Hausdorff introduced <a href="/wiki/Topological_space" title="Topological space">topological spaces</a> as a generalization of metric spaces. Banach's work in <a href="/wiki/Functional_analysis" title="Functional analysis">functional analysis</a> heavily relied on the metric structure. Over time, metric spaces became a central part of <a href="/wiki/History_of_mathematics" title="History of mathematics">modern mathematics</a>. They have influenced various fields including <a href="/wiki/Topology" title="Topology">topology</a>, <a href="/wiki/Geometry" title="Geometry">geometry</a>, and <a href="/wiki/Applied_mathematics" title="Applied mathematics">applied mathematics</a>. Metric spaces continue to play a crucial role in the study of abstract mathematical concepts. </p> <div class="mw-heading mw-heading2"><h2 id="Basic_notions">Basic notions</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Metric_space&action=edit&section=9" title="Edit section: Basic notions"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>A distance function is enough to define notions of closeness and convergence that were first developed in <a href="/wiki/Real_analysis" title="Real analysis">real analysis</a>. Properties that depend on the structure of a metric space are referred to as <i>metric properties</i>. Every metric space is also a <a href="/wiki/Topological_space" title="Topological space">topological space</a>, and some metric properties can also be rephrased without reference to distance in the language of topology; that is, they are really <a href="/wiki/Topological_property" title="Topological property">topological properties</a>. </p> <div class="mw-heading mw-heading3"><h3 id="The_topology_of_a_metric_space">The topology of a metric space</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Metric_space&action=edit&section=10" title="Edit section: The topology of a metric space"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>For any point <span class="texhtml mvar" style="font-style:italic;">x</span> in a metric space <span class="texhtml mvar" style="font-style:italic;">M</span> and any real number <span class="texhtml"><i>r</i> > 0</span>, the <a href="/wiki/Ball_(mathematics)" title="Ball (mathematics)"><i>open ball</i></a> of radius <span class="texhtml mvar" style="font-style:italic;">r</span> around <span class="texhtml mvar" style="font-style:italic;">x</span> is defined to be the set of points that are strictly less than distance <span class="texhtml mvar" style="font-style:italic;">r</span> from <span class="texhtml mvar" style="font-style:italic;">x</span>: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B_{r}(x)=\{y\in M:d(x,y)<r\}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo fence="false" stretchy="false">{</mo> <mi>y</mi> <mo>∈<!-- ∈ --></mo> <mi>M</mi> <mo>:</mo> <mi>d</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo><</mo> <mi>r</mi> <mo fence="false" stretchy="false">}</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B_{r}(x)=\{y\in M:d(x,y)<r\}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1c23ac48e61a11d09e030c3fbbee290b9eaea2c8" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:31.014ex; height:2.843ex;" alt="{\displaystyle B_{r}(x)=\{y\in M:d(x,y)<r\}.}"></span> This is a natural way to define a set of points that are relatively close to <span class="texhtml mvar" style="font-style:italic;">x</span>. Therefore, a set <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle N\subseteq M}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>N</mi> <mo>⊆<!-- ⊆ --></mo> <mi>M</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle N\subseteq M}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cfe9ab1adee54a74e4a9595b31e0f3302b9e4c2e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:7.604ex; height:2.343ex;" alt="{\displaystyle N\subseteq M}"></span> is a <a href="/wiki/Neighborhood_(mathematics)" class="mw-redirect" title="Neighborhood (mathematics)"><i>neighborhood</i></a> of <span class="texhtml mvar" style="font-style:italic;">x</span> (informally, it contains all points "close enough" to <span class="texhtml mvar" style="font-style:italic;">x</span>) if it contains an open ball of radius <span class="texhtml mvar" style="font-style:italic;">r</span> around <span class="texhtml mvar" style="font-style:italic;">x</span> for some <span class="texhtml"><i>r</i> > 0</span>. </p><p>An <i>open set</i> is a set which is a neighborhood of all its points. It follows that the open balls form a <a href="/wiki/Base_(topology)" title="Base (topology)">base</a> for a topology on <span class="texhtml mvar" style="font-style:italic;">M</span>. In other words, the open sets of <span class="texhtml mvar" style="font-style:italic;">M</span> are exactly the unions of open balls. As in any topology, <a href="/wiki/Closed_set" title="Closed set">closed sets</a> are the complements of open sets. Sets may be both open and closed as well as neither open nor closed. </p><p>This topology does not carry all the information about the metric space. For example, the distances <span class="texhtml"><i>d</i><sub>1</sub></span>, <span class="texhtml"><i>d</i><sub>2</sub></span>, and <span class="texhtml"><i>d</i><sub>∞</sub></span> defined above all induce the same topology on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} ^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} ^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e150115ab9f63023215109595b76686a1ff890fd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.732ex; height:2.676ex;" alt="{\displaystyle \mathbb {R} ^{2}}"></span>, although they behave differently in many respects. Similarly, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/786849c765da7a84dbc3cce43e96aad58a5868dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {R} }"></span> with the Euclidean metric and its subspace the interval <span class="texhtml">(0, 1)</span> with the induced metric are <a href="/wiki/Homeomorphism" title="Homeomorphism">homeomorphic</a> but have very different metric properties. </p><p>Conversely, not every topological space can be given a metric. Topological spaces which are compatible with a metric are called <a href="/wiki/Metrizable_space" title="Metrizable space"><i>metrizable</i></a> and are particularly well-behaved in many ways: in particular, they are <a href="/wiki/Paracompact_space" title="Paracompact space">paracompact</a><sup id="cite_ref-11" class="reference"><a href="#cite_note-11"><span class="cite-bracket">[</span>11<span class="cite-bracket">]</span></a></sup> <a href="/wiki/Hausdorff_space" title="Hausdorff space">Hausdorff spaces</a> (hence <a href="/wiki/Normal_space" title="Normal space">normal</a>) and <a href="/wiki/First-countable_space" title="First-countable space">first-countable</a>.<sup id="cite_ref-12" class="reference"><a href="#cite_note-12"><span class="cite-bracket">[</span>a<span class="cite-bracket">]</span></a></sup> The <a href="/wiki/Nagata%E2%80%93Smirnov_metrization_theorem" title="Nagata–Smirnov metrization theorem">Nagata–Smirnov metrization theorem</a> gives a characterization of metrizability in terms of other topological properties, without reference to metrics. </p> <div class="mw-heading mw-heading3"><h3 id="Convergence">Convergence</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Metric_space&action=edit&section=11" title="Edit section: Convergence"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><a href="/wiki/Limit_of_a_sequence" title="Limit of a sequence">Convergence of sequences</a> in Euclidean space is defined as follows: </p> <dl><dd>A sequence <span class="texhtml">(<i>x<sub>n</sub></i>)</span> converges to a point <span class="texhtml mvar" style="font-style:italic;">x</span> if for every <span class="texhtml">ε > 0</span> there is an integer <span class="texhtml mvar" style="font-style:italic;">N</span> such that for all <span class="texhtml"><i>n</i> > <i>N</i></span>, <span class="texhtml"><i>d</i>(<i>x<sub>n</sub></i>, <i>x</i>) < ε</span>.</dd></dl> <p>Convergence of sequences in a topological space is defined as follows: </p> <dl><dd>A sequence <span class="texhtml">(<i>x<sub>n</sub></i>)</span> converges to a point <span class="texhtml mvar" style="font-style:italic;">x</span> if for every open set <span class="texhtml mvar" style="font-style:italic;">U</span> containing <span class="texhtml mvar" style="font-style:italic;">x</span> there is an integer <span class="texhtml mvar" style="font-style:italic;">N</span> such that for all <span class="texhtml"><i>n</i> > <i>N</i></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{n}\in U}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>∈<!-- ∈ --></mo> <mi>U</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{n}\in U}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9552d871d5e5c3d4f0cdee55ea24cf6253ed5e85" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.171ex; height:2.509ex;" alt="{\displaystyle x_{n}\in U}"></span>.</dd></dl> <p>In metric spaces, both of these definitions make sense and they are equivalent. This is a general pattern for <a href="/wiki/Topological_property" title="Topological property">topological properties</a> of metric spaces: while they can be defined in a purely topological way, there is often a way that uses the metric which is easier to state or more familiar from real analysis. </p> <div class="mw-heading mw-heading3"><h3 id="Completeness">Completeness</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Metric_space&action=edit&section=12" title="Edit section: Completeness"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1236090951">.mw-parser-output .hatnote{font-style:italic}.mw-parser-output div.hatnote{padding-left:1.6em;margin-bottom:0.5em}.mw-parser-output .hatnote i{font-style:normal}.mw-parser-output .hatnote+link+.hatnote{margin-top:-0.5em}@media print{body.ns-0 .mw-parser-output .hatnote{display:none!important}}</style><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Complete_metric_space" title="Complete metric space">Complete metric space</a></div> <p>Informally, a metric space is <i>complete</i> if it has no "missing points": every sequence that looks like it should converge to something actually converges. </p><p>To make this precise: a sequence <span class="texhtml">(<i>x<sub>n</sub></i>)</span> in a metric space <span class="texhtml mvar" style="font-style:italic;">M</span> is <a href="/wiki/Cauchy_sequence" title="Cauchy sequence"><i>Cauchy</i></a> if for every <span class="texhtml">ε > 0</span> there is an integer <span class="texhtml mvar" style="font-style:italic;">N</span> such that for all <span class="texhtml"><i>m</i>, <i>n</i> > <i>N</i></span>, <span class="texhtml"><i>d</i>(<i>x<sub>m</sub></i>, <i>x<sub>n</sub></i>) < ε</span>. By the triangle inequality, any convergent sequence is Cauchy: if <span class="texhtml mvar" style="font-style:italic;">x<sub>m</sub></span> and <span class="texhtml mvar" style="font-style:italic;">x<sub>n</sub></span> are both less than <span class="texhtml">ε</span> away from the limit, then they are less than <span class="texhtml">2ε</span> away from each other. If the converse is true—every Cauchy sequence in <span class="texhtml mvar" style="font-style:italic;">M</span> converges—then <span class="texhtml mvar" style="font-style:italic;">M</span> is complete. </p><p>Euclidean spaces are complete, as is <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} ^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} ^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e150115ab9f63023215109595b76686a1ff890fd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.732ex; height:2.676ex;" alt="{\displaystyle \mathbb {R} ^{2}}"></span> with the other metrics described above. Two examples of spaces which are not complete are <span class="texhtml">(0, 1)</span> and the rationals, each with the metric induced from <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/786849c765da7a84dbc3cce43e96aad58a5868dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {R} }"></span>. One can think of <span class="texhtml">(0, 1)</span> as "missing" its endpoints 0 and 1. The rationals are missing all the irrationals, since any irrational has a sequence of rationals converging to it in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/786849c765da7a84dbc3cce43e96aad58a5868dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {R} }"></span> (for example, its successive decimal approximations). These examples show that completeness is <i>not</i> a topological property, since <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/786849c765da7a84dbc3cce43e96aad58a5868dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {R} }"></span> is complete but the homeomorphic space <span class="texhtml">(0, 1)</span> is not. </p><p>This notion of "missing points" can be made precise. In fact, every metric space has a unique <a href="/wiki/Completion_(metric_space)" class="mw-redirect" title="Completion (metric space)"><i>completion</i></a>, which is a complete space that contains the given space as a <a href="/wiki/Dense_set" title="Dense set">dense</a> subset. For example, <span class="texhtml">[0, 1]</span> is the completion of <span class="texhtml">(0, 1)</span>, and the real numbers are the completion of the rationals. </p><p>Since complete spaces are generally easier to work with, completions are important throughout mathematics. For example, in abstract algebra, the <a href="/wiki/P-adic_numbers" class="mw-redirect" title="P-adic numbers"><i>p</i>-adic numbers</a> are defined as the completion of the rationals under a different metric. Completion is particularly common as a tool in <a href="/wiki/Functional_analysis" title="Functional analysis">functional analysis</a>. Often one has a set of nice functions and a way of measuring distances between them. Taking the completion of this metric space gives a new set of functions which may be less nice, but nevertheless useful because they behave similarly to the original nice functions in important ways. For example, <a href="/wiki/Weak_solution" title="Weak solution">weak solutions</a> to <a href="/wiki/Differential_equation" title="Differential equation">differential equations</a> typically live in a completion (a <a href="/wiki/Sobolev_space" title="Sobolev space">Sobolev space</a>) rather than the original space of nice functions for which the differential equation actually makes sense. </p> <div class="mw-heading mw-heading3"><h3 id="Bounded_and_totally_bounded_spaces">Bounded and totally bounded spaces</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Metric_space&action=edit&section=13" title="Edit section: Bounded and totally bounded spaces"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Diameter_of_a_Set.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/f/fc/Diameter_of_a_Set.svg/220px-Diameter_of_a_Set.svg.png" decoding="async" width="220" height="262" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/fc/Diameter_of_a_Set.svg/330px-Diameter_of_a_Set.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/fc/Diameter_of_a_Set.svg/440px-Diameter_of_a_Set.svg.png 2x" data-file-width="344" data-file-height="409" /></a><figcaption>Diameter of a set.</figcaption></figure> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">See also: <a href="/wiki/Bounded_set" title="Bounded set">Bounded set</a></div> <p>A metric space <span class="texhtml mvar" style="font-style:italic;">M</span> is <i>bounded</i> if there is an <span class="texhtml mvar" style="font-style:italic;">r</span> such that no pair of points in <span class="texhtml mvar" style="font-style:italic;">M</span> is more than distance <span class="texhtml mvar" style="font-style:italic;">r</span> apart.<sup id="cite_ref-13" class="reference"><a href="#cite_note-13"><span class="cite-bracket">[</span>b<span class="cite-bracket">]</span></a></sup> The least such <span class="texhtml mvar" style="font-style:italic;">r</span> is called the <i><style data-mw-deduplicate="TemplateStyles:r1238216509">.mw-parser-output .vanchor>:target~.vanchor-text{background-color:#b1d2ff}@media screen{html.skin-theme-clientpref-night .mw-parser-output .vanchor>:target~.vanchor-text{background-color:#0f4dc9}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .vanchor>:target~.vanchor-text{background-color:#0f4dc9}}</style><span class="vanchor"><span id="[[diameter]]"></span><span id="Diameter_of_a_metric_space"></span><span class="vanchor-text"><a href="/wiki/Diameter" title="Diameter">diameter</a></span></span></i> of <span class="texhtml mvar" style="font-style:italic;">M</span>. </p><p>The space <span class="texhtml mvar" style="font-style:italic;">M</span> is called <i>precompact</i> or <i><a href="/wiki/Totally_bounded" class="mw-redirect" title="Totally bounded">totally bounded</a></i> if for every <span class="texhtml"><i>r</i> > 0</span> there is a finite <a href="/wiki/Cover_(topology)" title="Cover (topology)">cover</a> of <span class="texhtml mvar" style="font-style:italic;">M</span> by open balls of radius <span class="texhtml mvar" style="font-style:italic;">r</span>. Every totally bounded space is bounded. To see this, start with a finite cover by <span class="texhtml mvar" style="font-style:italic;">r</span>-balls for some arbitrary <span class="texhtml mvar" style="font-style:italic;">r</span>. Since the subset of <span class="texhtml mvar" style="font-style:italic;">M</span> consisting of the centers of these balls is finite, it has finite diameter, say <span class="texhtml mvar" style="font-style:italic;">D</span>. By the triangle inequality, the diameter of the whole space is at most <span class="texhtml"><i>D</i> + 2<i>r</i></span>. The converse does not hold: an example of a metric space that is bounded but not totally bounded is <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} ^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} ^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e150115ab9f63023215109595b76686a1ff890fd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.732ex; height:2.676ex;" alt="{\displaystyle \mathbb {R} ^{2}}"></span> (or any other infinite set) with the discrete metric. </p> <div class="mw-heading mw-heading3"><h3 id="Compactness">Compactness</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Metric_space&action=edit&section=14" title="Edit section: Compactness"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Compact_space" title="Compact space">Compact space</a></div> <p>Compactness is a topological property which generalizes the properties of a closed and bounded subset of Euclidean space. There are several equivalent definitions of compactness in metric spaces: </p> <ol><li>A metric space <span class="texhtml mvar" style="font-style:italic;">M</span> is compact if every open cover has a finite subcover (the usual topological definition).</li> <li>A metric space <span class="texhtml mvar" style="font-style:italic;">M</span> is compact if every sequence has a convergent subsequence. (For general topological spaces this is called <a href="/wiki/Sequentially_compact_space" title="Sequentially compact space">sequential compactness</a> and is not equivalent to compactness.)</li> <li>A metric space <span class="texhtml mvar" style="font-style:italic;">M</span> is compact if it is complete and totally bounded. (This definition is written in terms of metric properties and does not make sense for a general topological space, but it is nevertheless topologically invariant since it is equivalent to compactness.)</li></ol> <p>One example of a compact space is the closed interval <span class="texhtml">[0, 1]</span>. </p><p>Compactness is important for similar reasons to completeness: it makes it easy to find limits. Another important tool is <a href="/wiki/Lebesgue%27s_number_lemma" title="Lebesgue's number lemma">Lebesgue's number lemma</a>, which shows that for any open cover of a compact space, every point is relatively deep inside one of the sets of the cover. </p> <div class="mw-heading mw-heading2"><h2 id="Functions_between_metric_spaces">Functions between metric spaces</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Metric_space&action=edit&section=15" title="Edit section: Functions between metric spaces"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Functions_between_metric_spaces.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/9/9c/Functions_between_metric_spaces.svg/280px-Functions_between_metric_spaces.svg.png" decoding="async" width="280" height="210" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/9/9c/Functions_between_metric_spaces.svg/420px-Functions_between_metric_spaces.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/9/9c/Functions_between_metric_spaces.svg/560px-Functions_between_metric_spaces.svg.png 2x" data-file-width="540" data-file-height="405" /></a><figcaption><a href="/wiki/Euler_diagram" title="Euler diagram">Euler diagram</a> of types of functions between metric spaces.</figcaption></figure> <p>Unlike in the case of topological spaces or algebraic structures such as <a href="/wiki/Group_(mathematics)" title="Group (mathematics)">groups</a> or <a href="/wiki/Ring_(mathematics)" title="Ring (mathematics)">rings</a>, there is no single "right" type of <a href="/wiki/Morphism" title="Morphism">structure-preserving function</a> between metric spaces. Instead, one works with different types of functions depending on one's goals. Throughout this section, suppose that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (M_{1},d_{1})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (M_{1},d_{1})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/94d3c0aca0772489db301d6c287dc52c5545bc75" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.415ex; height:2.843ex;" alt="{\displaystyle (M_{1},d_{1})}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (M_{2},d_{2})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (M_{2},d_{2})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b05a4c68a67ff10c60270286f08ee4917de29200" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.415ex; height:2.843ex;" alt="{\displaystyle (M_{2},d_{2})}"></span> are two metric spaces. The words "function" and "map" are used interchangeably. </p> <div class="mw-heading mw-heading3"><h3 id="Isometries">Isometries</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Metric_space&action=edit&section=16" title="Edit section: Isometries"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Isometry" title="Isometry">Isometry</a></div> <p>One interpretation of a "structure-preserving" map is one that fully preserves the distance function: </p> <dl><dd>A function <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f:M_{1}\to M_{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>:</mo> <msub> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">→<!-- → --></mo> <msub> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f:M_{1}\to M_{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/46f53db9ee82416bb7380eee882afeb7533bf639" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:13.446ex; height:2.509ex;" alt="{\displaystyle f:M_{1}\to M_{2}}"></span> is <i>distance-preserving</i><sup id="cite_ref-FOOTNOTEBuragoBuragoIvanov20012_14-0" class="reference"><a href="#cite_note-FOOTNOTEBuragoBuragoIvanov20012-14"><span class="cite-bracket">[</span>12<span class="cite-bracket">]</span></a></sup> if for every pair of points <span class="texhtml mvar" style="font-style:italic;">x</span> and <span class="texhtml mvar" style="font-style:italic;">y</span> in <span class="texhtml"><i>M</i><sub>1</sub></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d_{2}(f(x),f(y))=d_{1}(x,y).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>,</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d_{2}(f(x),f(y))=d_{1}(x,y).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bab26e06458a11228b6022d106fe307a480a0d66" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:25.104ex; height:2.843ex;" alt="{\displaystyle d_{2}(f(x),f(y))=d_{1}(x,y).}"></span></dd></dl> <p>It follows from the metric space axioms that a distance-preserving function is injective. A bijective distance-preserving function is called an <i>isometry</i>.<sup id="cite_ref-15" class="reference"><a href="#cite_note-15"><span class="cite-bracket">[</span>13<span class="cite-bracket">]</span></a></sup> One perhaps non-obvious example of an isometry between spaces described in this article is the map <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f:(\mathbb {R} ^{2},d_{1})\to (\mathbb {R} ^{2},d_{\infty })}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>:</mo> <mo stretchy="false">(</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>,</mo> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo stretchy="false">→<!-- → --></mo> <mo stretchy="false">(</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>,</mo> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f:(\mathbb {R} ^{2},d_{1})\to (\mathbb {R} ^{2},d_{\infty })}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d98ff99747477211f9aa50fc39961e47c4b9613a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:23.328ex; height:3.176ex;" alt="{\displaystyle f:(\mathbb {R} ^{2},d_{1})\to (\mathbb {R} ^{2},d_{\infty })}"></span> defined by <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x,y)=(x+y,x-y).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo>+</mo> <mi>y</mi> <mo>,</mo> <mi>x</mi> <mo>−<!-- − --></mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x,y)=(x+y,x-y).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b5a6fc13924420432747020d500f1f2aefbad8dd" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:23.847ex; height:2.843ex;" alt="{\displaystyle f(x,y)=(x+y,x-y).}"></span> </p><p>If there is an isometry between the spaces <span class="texhtml"><i>M</i><sub>1</sub></span> and <span class="texhtml"><i>M</i><sub>2</sub></span>, they are said to be <i>isometric</i>. Metric spaces that are isometric are <a href="/wiki/Isomorphism" title="Isomorphism">essentially identical</a>. </p> <div class="mw-heading mw-heading3"><h3 id="Continuous_maps">Continuous maps</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Metric_space&action=edit&section=17" title="Edit section: Continuous maps"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Continuous_function_(topology)" class="mw-redirect" title="Continuous function (topology)">Continuous function (topology)</a></div> <p>On the other end of the spectrum, one can forget entirely about the metric structure and study <a href="/wiki/Continuous_function_(topology)" class="mw-redirect" title="Continuous function (topology)">continuous maps</a>, which only preserve topological structure. There are several equivalent definitions of continuity for metric spaces. The most important are: </p> <ul><li><b>Topological definition.</b> A function <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f\,\colon M_{1}\to M_{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mspace width="thinmathspace" /> <mo>:<!-- : --></mo> <msub> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">→<!-- → --></mo> <msub> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f\,\colon M_{1}\to M_{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6aa1f72d391488d26c0f48c7c0ace1aa256daa7e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:12.93ex; height:2.509ex;" alt="{\displaystyle f\,\colon M_{1}\to M_{2}}"></span> is continuous if for every open set <span class="texhtml mvar" style="font-style:italic;">U</span> in <span class="texhtml"><i>M</i><sub>2</sub></span>, the <a href="/wiki/Preimage" class="mw-redirect" title="Preimage">preimage</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f^{-1}(U)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f^{-1}(U)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b8467d2b1831e3e4ef040a899742a9d6db350f90" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.245ex; height:3.176ex;" alt="{\displaystyle f^{-1}(U)}"></span> is open.</li> <li><b><a href="/wiki/Sequential_continuity" class="mw-redirect" title="Sequential continuity">Sequential continuity</a>.</b> A function <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f\,\colon M_{1}\to M_{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mspace width="thinmathspace" /> <mo>:<!-- : --></mo> <msub> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">→<!-- → --></mo> <msub> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f\,\colon M_{1}\to M_{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6aa1f72d391488d26c0f48c7c0ace1aa256daa7e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:12.93ex; height:2.509ex;" alt="{\displaystyle f\,\colon M_{1}\to M_{2}}"></span> is continuous if whenever a sequence <span class="texhtml">(<i>x<sub>n</sub></i>)</span> converges to a point <span class="texhtml mvar" style="font-style:italic;">x</span> in <span class="texhtml"><i>M</i><sub>1</sub></span>, the sequence <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x_{1}),f(x_{2}),\ldots }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>,</mo> <mi>f</mi> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>,</mo> <mo>…<!-- … --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x_{1}),f(x_{2}),\ldots }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6fbef3751f2171351fb9383c14c9993bec6eef30" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:15.735ex; height:2.843ex;" alt="{\displaystyle f(x_{1}),f(x_{2}),\ldots }"></span> converges to the point <span class="texhtml"><i>f</i>(<i>x</i>)</span> in <span class="texhtml"><i>M</i><sub>2</sub></span>.</li></ul> <dl><dd>(These first two definitions are <i>not</i> equivalent for all topological spaces.)</dd></dl> <ul><li><b>ε–δ definition.</b> A function <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f\,\colon M_{1}\to M_{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mspace width="thinmathspace" /> <mo>:<!-- : --></mo> <msub> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">→<!-- → --></mo> <msub> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f\,\colon M_{1}\to M_{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6aa1f72d391488d26c0f48c7c0ace1aa256daa7e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:12.93ex; height:2.509ex;" alt="{\displaystyle f\,\colon M_{1}\to M_{2}}"></span> is continuous if for every point <span class="texhtml mvar" style="font-style:italic;">x</span> in <span class="texhtml"><i>M</i><sub>1</sub></span> and every <span class="texhtml">ε > 0</span> there exists <span class="texhtml">δ > 0</span> such that for all <span class="texhtml mvar" style="font-style:italic;">y</span> in <span class="texhtml"><i>M</i><sub>1</sub></span> we have <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d_{1}(x,y)<\delta \implies d_{2}(f(x),f(y))<\varepsilon .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo><</mo> <mi>δ<!-- δ --></mi> <mspace width="thickmathspace" /> <mo stretchy="false">⟹<!-- ⟹ --></mo> <mspace width="thickmathspace" /> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>,</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo><</mo> <mi>ε<!-- ε --></mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d_{1}(x,y)<\delta \implies d_{2}(f(x),f(y))<\varepsilon .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/687b9947d7d93aee4b5878bf8ab3e46555f210ac" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:36.721ex; height:2.843ex;" alt="{\displaystyle d_{1}(x,y)<\delta \implies d_{2}(f(x),f(y))<\varepsilon .}"></span></li></ul> <p>A <i><a href="/wiki/Homeomorphism" title="Homeomorphism">homeomorphism</a></i> is a continuous bijection whose inverse is also continuous; if there is a homeomorphism between <span class="texhtml"><i>M</i><sub>1</sub></span> and <span class="texhtml"><i>M</i><sub>2</sub></span>, they are said to be <i>homeomorphic</i>. Homeomorphic spaces are the same from the point of view of topology, but may have very different metric properties. For example, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/786849c765da7a84dbc3cce43e96aad58a5868dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {R} }"></span> is unbounded and complete, while <span class="texhtml">(0, 1)</span> is bounded but not complete. </p> <div class="mw-heading mw-heading3"><h3 id="Uniformly_continuous_maps">Uniformly continuous maps</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Metric_space&action=edit&section=18" title="Edit section: Uniformly continuous maps"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Uniform_continuity" title="Uniform continuity">Uniform continuity</a></div> <p>A function <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f\,\colon M_{1}\to M_{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mspace width="thinmathspace" /> <mo>:<!-- : --></mo> <msub> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">→<!-- → --></mo> <msub> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f\,\colon M_{1}\to M_{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6aa1f72d391488d26c0f48c7c0ace1aa256daa7e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:12.93ex; height:2.509ex;" alt="{\displaystyle f\,\colon M_{1}\to M_{2}}"></span> is <i><a href="/wiki/Uniform_continuity" title="Uniform continuity">uniformly continuous</a></i> if for every real number <span class="texhtml">ε > 0</span> there exists <span class="texhtml">δ > 0</span> such that for all points <span class="texhtml mvar" style="font-style:italic;">x</span> and <span class="texhtml mvar" style="font-style:italic;">y</span> in <span class="texhtml"><i>M</i><sub>1</sub></span> such that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d(x,y)<\delta }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo><</mo> <mi>δ<!-- δ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d(x,y)<\delta }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/95e7bd68b6630a4968db4b0e2152b76a75056a23" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.691ex; height:2.843ex;" alt="{\displaystyle d(x,y)<\delta }"></span>, we have <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d_{2}(f(x),f(y))<\varepsilon .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>,</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo><</mo> <mi>ε<!-- ε --></mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d_{2}(f(x),f(y))<\varepsilon .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8140d93a391f5eb8705fd6ad6322faa406771ae7" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.596ex; height:2.843ex;" alt="{\displaystyle d_{2}(f(x),f(y))<\varepsilon .}"></span> </p><p>The only difference between this definition and the ε–δ definition of continuity is the order of quantifiers: the choice of δ must depend only on ε and not on the point <span class="texhtml mvar" style="font-style:italic;">x</span>. However, this subtle change makes a big difference. For example, uniformly continuous maps take Cauchy sequences in <span class="texhtml"><i>M</i><sub>1</sub></span> to Cauchy sequences in <span class="texhtml"><i>M</i><sub>2</sub></span>. In other words, uniform continuity preserves some metric properties which are not purely topological. </p><p>On the other hand, the <a href="/wiki/Heine%E2%80%93Cantor_theorem" title="Heine–Cantor theorem">Heine–Cantor theorem</a> states that if <span class="texhtml"><i>M</i><sub>1</sub></span> is compact, then every continuous map is uniformly continuous. In other words, uniform continuity cannot distinguish any non-topological features of compact metric spaces. </p> <div class="mw-heading mw-heading3"><h3 id="Lipschitz_maps_and_contractions">Lipschitz maps and contractions</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Metric_space&action=edit&section=19" title="Edit section: Lipschitz maps and contractions"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Lipschitz_continuity" title="Lipschitz continuity">Lipschitz continuity</a></div> <p>A <a href="/wiki/Lipschitz_continuity" title="Lipschitz continuity">Lipschitz map</a> is one that stretches distances by at most a bounded factor. Formally, given a real number <span class="texhtml"><i>K</i> > 0</span>, the map <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f\,\colon M_{1}\to M_{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mspace width="thinmathspace" /> <mo>:<!-- : --></mo> <msub> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">→<!-- → --></mo> <msub> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f\,\colon M_{1}\to M_{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6aa1f72d391488d26c0f48c7c0ace1aa256daa7e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:12.93ex; height:2.509ex;" alt="{\displaystyle f\,\colon M_{1}\to M_{2}}"></span> is <span class="texhtml mvar" style="font-style:italic;">K</span>-<i>Lipschitz</i> if <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d_{2}(f(x),f(y))\leq Kd_{1}(x,y)\quad {\text{for all}}\quad x,y\in M_{1}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>,</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>≤<!-- ≤ --></mo> <mi>K</mi> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mspace width="1em" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>for all</mtext> </mrow> <mspace width="1em" /> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>∈<!-- ∈ --></mo> <msub> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d_{2}(f(x),f(y))\leq Kd_{1}(x,y)\quad {\text{for all}}\quad x,y\in M_{1}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a8dd7e0a4bcf513c8571bcb3fae31fcc35f7a8cd" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:47.306ex; height:2.843ex;" alt="{\displaystyle d_{2}(f(x),f(y))\leq Kd_{1}(x,y)\quad {\text{for all}}\quad x,y\in M_{1}.}"></span> Lipschitz maps are particularly important in metric geometry, since they provide more flexibility than distance-preserving maps, but still make essential use of the metric.<sup id="cite_ref-FOOTNOTEGromov2007xvii_16-0" class="reference"><a href="#cite_note-FOOTNOTEGromov2007xvii-16"><span class="cite-bracket">[</span>14<span class="cite-bracket">]</span></a></sup> For example, a curve in a metric space is <a href="/wiki/Arc_length" title="Arc length">rectifiable</a> (has finite length) if and only if it has a Lipschitz reparametrization. </p><p>A 1-Lipschitz map is sometimes called a <i>nonexpanding</i> or <i><a href="/wiki/Metric_map" title="Metric map">metric map</a></i>. Metric maps are commonly taken to be the morphisms of the <a href="/wiki/Category_of_metric_spaces" title="Category of metric spaces">category of metric spaces</a>. </p><p>A <span class="texhtml mvar" style="font-style:italic;">K</span>-Lipschitz map for <span class="texhtml"><i>K</i> < 1</span> is called a <i><a href="/wiki/Contraction_mapping" title="Contraction mapping">contraction</a></i>. The <a href="/wiki/Banach_fixed-point_theorem" title="Banach fixed-point theorem">Banach fixed-point theorem</a> states that if <span class="texhtml mvar" style="font-style:italic;">M</span> is a complete metric space, then every contraction <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f:M\to M}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>:</mo> <mi>M</mi> <mo stretchy="false">→<!-- → --></mo> <mi>M</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f:M\to M}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9887c379b4c7403189b8bd4c2eae331f47d33717" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:11.714ex; height:2.509ex;" alt="{\displaystyle f:M\to M}"></span> admits a unique <a href="/wiki/Fixed_point_(mathematics)" title="Fixed point (mathematics)">fixed point</a>. If the metric space <span class="texhtml mvar" style="font-style:italic;">M</span> is compact, the result holds for a slightly weaker condition on <span class="texhtml mvar" style="font-style:italic;">f</span>: a map <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f:M\to M}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>:</mo> <mi>M</mi> <mo stretchy="false">→<!-- → --></mo> <mi>M</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f:M\to M}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9887c379b4c7403189b8bd4c2eae331f47d33717" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:11.714ex; height:2.509ex;" alt="{\displaystyle f:M\to M}"></span> admits a unique fixed point if <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d(f(x),f(y))<d(x,y)\quad {\mbox{for all}}\quad x\neq y\in M_{1}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>,</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo><</mo> <mi>d</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mspace width="1em" /> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mtext>for all</mtext> </mstyle> </mrow> <mspace width="1em" /> <mi>x</mi> <mo>≠<!-- ≠ --></mo> <mi>y</mi> <mo>∈<!-- ∈ --></mo> <msub> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d(f(x),f(y))<d(x,y)\quad {\mbox{for all}}\quad x\neq y\in M_{1}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fc66e3706c76037136fec484554f245e2ed76ea2" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:45.21ex; height:2.843ex;" alt="{\displaystyle d(f(x),f(y))<d(x,y)\quad {\mbox{for all}}\quad x\neq y\in M_{1}.}"></span> </p> <div class="mw-heading mw-heading3"><h3 id="Quasi-isometries">Quasi-isometries</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Metric_space&action=edit&section=20" title="Edit section: Quasi-isometries"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Quasi-isometry" title="Quasi-isometry">Quasi-isometry</a></div> <p>A <a href="/wiki/Quasi-isometry" title="Quasi-isometry">quasi-isometry</a> is a map that preserves the "large-scale structure" of a metric space. Quasi-isometries need not be continuous. For example, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} ^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} ^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e150115ab9f63023215109595b76686a1ff890fd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.732ex; height:2.676ex;" alt="{\displaystyle \mathbb {R} ^{2}}"></span> and its subspace <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {Z} ^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {Z} ^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a807ab4cb3de13a66771b5a303aca31e0391e6aa" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.605ex; height:2.676ex;" alt="{\displaystyle \mathbb {Z} ^{2}}"></span> are quasi-isometric, even though one is connected and the other is discrete. The equivalence relation of quasi-isometry is important in <a href="/wiki/Geometric_group_theory" title="Geometric group theory">geometric group theory</a>: the <a href="/wiki/%C5%A0varc%E2%80%93Milnor_lemma" title="Švarc–Milnor lemma">Švarc–Milnor lemma</a> states that all spaces on which a group <a href="/wiki/Geometric_group_action" title="Geometric group action">acts geometrically</a> are quasi-isometric.<sup id="cite_ref-FOOTNOTEMargalitThomas2017_17-0" class="reference"><a href="#cite_note-FOOTNOTEMargalitThomas2017-17"><span class="cite-bracket">[</span>15<span class="cite-bracket">]</span></a></sup> </p><p>Formally, the map <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f\,\colon M_{1}\to M_{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mspace width="thinmathspace" /> <mo>:<!-- : --></mo> <msub> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">→<!-- → --></mo> <msub> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f\,\colon M_{1}\to M_{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6aa1f72d391488d26c0f48c7c0ace1aa256daa7e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:12.93ex; height:2.509ex;" alt="{\displaystyle f\,\colon M_{1}\to M_{2}}"></span> is a <i>quasi-isometric embedding</i> if there exist constants <span class="texhtml"><i>A</i> ≥ 1</span> and <span class="texhtml"><i>B</i> ≥ 0</span> such that <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {1}{A}}d_{2}(f(x),f(y))-B\leq d_{1}(x,y)\leq Ad_{2}(f(x),f(y))+B\quad {\text{ for all }}\quad x,y\in M_{1}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>A</mi> </mfrac> </mrow> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>,</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <mi>B</mi> <mo>≤<!-- ≤ --></mo> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo>≤<!-- ≤ --></mo> <mi>A</mi> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>,</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>+</mo> <mi>B</mi> <mspace width="1em" /> <mrow class="MJX-TeXAtom-ORD"> <mtext> for all </mtext> </mrow> <mspace width="1em" /> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>∈<!-- ∈ --></mo> <msub> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {1}{A}}d_{2}(f(x),f(y))-B\leq d_{1}(x,y)\leq Ad_{2}(f(x),f(y))+B\quad {\text{ for all }}\quad x,y\in M_{1}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/86d80138a711860401a8e82fedc649d7d086de93" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:76.798ex; height:5.343ex;" alt="{\displaystyle {\frac {1}{A}}d_{2}(f(x),f(y))-B\leq d_{1}(x,y)\leq Ad_{2}(f(x),f(y))+B\quad {\text{ for all }}\quad x,y\in M_{1}.}"></span> It is a <i>quasi-isometry</i> if in addition it is <i>quasi-surjective</i>, i.e. there is a constant <span class="texhtml"><i>C</i> ≥ 0</span> such that every point in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M_{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M_{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0d5d4dffae5ee0db4cc433e252ee9ed7530e5cf0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.308ex; height:2.509ex;" alt="{\displaystyle M_{2}}"></span> is at distance at most <span class="texhtml mvar" style="font-style:italic;">C</span> from some point in the image <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(M_{1})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <msub> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(M_{1})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1c16e62abf9983afb653dbdfc69e9da5319b27f9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.396ex; height:2.843ex;" alt="{\displaystyle f(M_{1})}"></span>. </p> <div class="mw-heading mw-heading3"><h3 id="Notions_of_metric_space_equivalence">Notions of metric space equivalence</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Metric_space&action=edit&section=21" title="Edit section: Notions of metric space equivalence"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">See also: <a href="/wiki/Equivalence_of_metrics" title="Equivalence of metrics">Equivalence of metrics</a></div> <p>Given two metric spaces <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (M_{1},d_{1})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (M_{1},d_{1})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/94d3c0aca0772489db301d6c287dc52c5545bc75" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.415ex; height:2.843ex;" alt="{\displaystyle (M_{1},d_{1})}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (M_{2},d_{2})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (M_{2},d_{2})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b05a4c68a67ff10c60270286f08ee4917de29200" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.415ex; height:2.843ex;" alt="{\displaystyle (M_{2},d_{2})}"></span>: </p> <ul><li>They are called <b>homeomorphic</b> (topologically isomorphic) if there is a <a href="/wiki/Homeomorphism" title="Homeomorphism">homeomorphism</a> between them (i.e., a continuous <a href="/wiki/Bijection" title="Bijection">bijection</a> with a continuous inverse). If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M_{1}=M_{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M_{1}=M_{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8513d91a8cca09687f54732350d1b5a2128d8a2d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:9.715ex; height:2.509ex;" alt="{\displaystyle M_{1}=M_{2}}"></span> and the identity map is a homeomorphism, then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d_{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d_{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4cccb5a6a2f1acab4ca255e0be86c224ed82282a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.263ex; height:2.509ex;" alt="{\displaystyle d_{1}}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d_{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d_{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9276f8f68c5c23329de74ad76e69f6801358fb1f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.263ex; height:2.509ex;" alt="{\displaystyle d_{2}}"></span> are said to be <b>topologically equivalent</b>.</li> <li>They are called <b>uniformic</b> (uniformly isomorphic) if there is a <a href="/wiki/Uniform_isomorphism" title="Uniform isomorphism">uniform isomorphism</a> between them (i.e., a uniformly continuous bijection with a uniformly continuous inverse).</li> <li>They are called <b>bilipschitz homeomorphic</b> if there is a bilipschitz bijection between them (i.e., a Lipschitz bijection with a Lipschitz inverse).</li> <li>They are called <b>isometric</b> if there is a (bijective) <a href="/wiki/Isometry" title="Isometry">isometry</a> between them. In this case, the two metric spaces are essentially identical.</li> <li>They are called <b>quasi-isometric</b> if there is a <a href="/wiki/Quasi-isometry" title="Quasi-isometry">quasi-isometry</a> between them.</li></ul> <div class="mw-heading mw-heading2"><h2 id="Metric_spaces_with_additional_structure">Metric spaces with additional structure</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Metric_space&action=edit&section=22" title="Edit section: Metric spaces with additional structure"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Normed_vector_spaces">Normed vector spaces</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Metric_space&action=edit&section=23" title="Edit section: Normed vector spaces"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><span class="anchor" id="Norm_induced_metric"></span><span class="anchor" id="Relation_of_norms_and_metrics"></span> </p> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Normed_vector_space" title="Normed vector space">Normed vector space</a></div> <p>A <a href="/wiki/Normed_vector_space" title="Normed vector space">normed vector space</a> is a vector space equipped with a <i><a href="/wiki/Norm_(mathematics)" title="Norm (mathematics)">norm</a></i>, which is a function that measures the length of vectors. The norm of a vector <span class="texhtml mvar" style="font-style:italic;">v</span> is typically denoted by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lVert v\rVert }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">‖<!-- ‖ --></mo> <mi>v</mi> <mo fence="false" stretchy="false">‖<!-- ‖ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lVert v\rVert }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e373cfcd31951e395710bc6b431120c3c3931745" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.453ex; height:2.843ex;" alt="{\displaystyle \lVert v\rVert }"></span>. Any normed vector space can be equipped with a metric in which the distance between two vectors <span class="texhtml mvar" style="font-style:italic;">x</span> and <span class="texhtml mvar" style="font-style:italic;">y</span> is given by <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d(x,y):=\lVert x-y\rVert .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo>:=</mo> <mo fence="false" stretchy="false">‖<!-- ‖ --></mo> <mi>x</mi> <mo>−<!-- − --></mo> <mi>y</mi> <mo fence="false" stretchy="false">‖<!-- ‖ --></mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d(x,y):=\lVert x-y\rVert .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fa80d85ddbb90dda9fde16b8d5e4058857c1d2a2" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.587ex; height:2.843ex;" alt="{\displaystyle d(x,y):=\lVert x-y\rVert .}"></span> The metric <span class="texhtml mvar" style="font-style:italic;">d</span> is said to be <i>induced</i> by the norm <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lVert {\cdot }\rVert }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">‖<!-- ‖ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo>⋅<!-- ⋅ --></mo> </mrow> <mo fence="false" stretchy="false">‖<!-- ‖ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lVert {\cdot }\rVert }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7d4e4508f912075db0aca27e0e828fbcadd9e067" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:2.972ex; height:2.843ex;" alt="{\displaystyle \lVert {\cdot }\rVert }"></span>. Conversely,<sup id="cite_ref-FOOTNOTENariciBeckenstein201147–66_18-0" class="reference"><a href="#cite_note-FOOTNOTENariciBeckenstein201147–66-18"><span class="cite-bracket">[</span>16<span class="cite-bracket">]</span></a></sup> if a metric <span class="texhtml mvar" style="font-style:italic;">d</span> on a <a href="/wiki/Vector_space" title="Vector space">vector space</a> <span class="texhtml mvar" style="font-style:italic;">X</span> is </p> <ul><li>translation invariant: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d(x,y)=d(x+a,y+a)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>d</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>+</mo> <mi>a</mi> <mo>,</mo> <mi>y</mi> <mo>+</mo> <mi>a</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d(x,y)=d(x+a,y+a)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b177c9d38083f4e7e19df135504670d7213d3887" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:24.327ex; height:2.843ex;" alt="{\displaystyle d(x,y)=d(x+a,y+a)}"></span> for every <span class="texhtml mvar" style="font-style:italic;">x</span>, <span class="texhtml mvar" style="font-style:italic;">y</span>, and <span class="texhtml mvar" style="font-style:italic;">a</span> in <span class="texhtml mvar" style="font-style:italic;">X</span>; and</li> <li><a href="/wiki/Absolute_homogeneity" class="mw-redirect" title="Absolute homogeneity"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238216509"><span class="vanchor"><span id="absolutely_homogeneous"></span><span id="Homogeneous_metric"></span><span class="vanchor-text">absolutely homogeneous</span></span></a>: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d(\alpha x,\alpha y)=|\alpha |d(x,y)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mo stretchy="false">(</mo> <mi>α<!-- α --></mi> <mi>x</mi> <mo>,</mo> <mi>α<!-- α --></mi> <mi>y</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>α<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>d</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d(\alpha x,\alpha y)=|\alpha |d(x,y)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1ae5f628515d47184a8d50a5bbb1caf78f454d29" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:21.944ex; height:2.843ex;" alt="{\displaystyle d(\alpha x,\alpha y)=|\alpha |d(x,y)}"></span> for every <span class="texhtml mvar" style="font-style:italic;">x</span> and <span class="texhtml mvar" style="font-style:italic;">y</span> in <span class="texhtml mvar" style="font-style:italic;">X</span> and real number <span class="texhtml">α</span>;</li></ul> <p>then it is the metric induced by the norm <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lVert x\rVert :=d(x,0).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">‖<!-- ‖ --></mo> <mi>x</mi> <mo fence="false" stretchy="false">‖<!-- ‖ --></mo> <mo>:=</mo> <mi>d</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mn>0</mn> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lVert x\rVert :=d(x,0).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dc798453419e3222a827999903ce8bc240459937" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.598ex; height:2.843ex;" alt="{\displaystyle \lVert x\rVert :=d(x,0).}"></span> A similar relationship holds between <a href="/wiki/Seminorm" title="Seminorm">seminorms</a> and <a href="/wiki/Pseudometric_space" title="Pseudometric space">pseudometrics</a>. </p><p>Among examples of metrics induced by a norm are the metrics <span class="texhtml"><i>d</i><sub>1</sub></span>, <span class="texhtml"><i>d</i><sub>2</sub></span>, and <span class="texhtml"><i>d</i><sub>∞</sub></span> on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} ^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} ^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e150115ab9f63023215109595b76686a1ff890fd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.732ex; height:2.676ex;" alt="{\displaystyle \mathbb {R} ^{2}}"></span>, which are induced by the <a href="/wiki/Manhattan_norm" class="mw-redirect" title="Manhattan norm">Manhattan norm</a>, the <a href="/wiki/Euclidean_norm" class="mw-redirect" title="Euclidean norm">Euclidean norm</a>, and the <a href="/wiki/Maximum_norm" class="mw-redirect" title="Maximum norm">maximum norm</a>, respectively. More generally, the <a href="/wiki/Kuratowski_embedding" title="Kuratowski embedding">Kuratowski embedding</a> allows one to see any metric space as a subspace of a normed vector space. </p><p>Infinite-dimensional normed vector spaces, particularly spaces of functions, are studied in <a href="/wiki/Functional_analysis" title="Functional analysis">functional analysis</a>. Completeness is particularly important in this context: a complete normed vector space is known as a <a href="/wiki/Banach_space" title="Banach space">Banach space</a>. An unusual property of normed vector spaces is that <a href="/wiki/Linear_transformation" class="mw-redirect" title="Linear transformation">linear transformations</a> between them are continuous if and only if they are Lipschitz. Such transformations are known as <a href="/wiki/Bounded_operator" title="Bounded operator">bounded operators</a>. </p> <div class="mw-heading mw-heading3"><h3 id="Length_spaces">Length spaces</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Metric_space&action=edit&section=24" title="Edit section: Length spaces"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Approximate_arc_length.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/1/11/Approximate_arc_length.svg/220px-Approximate_arc_length.svg.png" decoding="async" width="220" height="220" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/1/11/Approximate_arc_length.svg/330px-Approximate_arc_length.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/1/11/Approximate_arc_length.svg/440px-Approximate_arc_length.svg.png 2x" data-file-width="360" data-file-height="360" /></a><figcaption>One possible approximation for the arc length of a curve. The approximation is never longer than the arc length, justifying the definition of arc length as a <a href="/wiki/Supremum" class="mw-redirect" title="Supremum">supremum</a>.</figcaption></figure> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Intrinsic_metric" title="Intrinsic metric">Intrinsic metric</a></div> <p>A <a href="/wiki/Curve" title="Curve">curve</a> in a metric space <span class="texhtml">(<i>M</i>, <i>d</i>)</span> is a continuous function <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \gamma :[0,T]\to M}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>γ<!-- γ --></mi> <mo>:</mo> <mo stretchy="false">[</mo> <mn>0</mn> <mo>,</mo> <mi>T</mi> <mo stretchy="false">]</mo> <mo stretchy="false">→<!-- → --></mo> <mi>M</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \gamma :[0,T]\to M}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f51598fa2d3e48c963d4e56c0af969afaa51f549" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.382ex; height:2.843ex;" alt="{\displaystyle \gamma :[0,T]\to M}"></span>. The <a href="/wiki/Arc_length" title="Arc length">length</a> of <span class="texhtml">γ</span> is measured by <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L(\gamma )=\sup _{0=x_{0}<x_{1}<\cdots <x_{n}=T}\left\{\sum _{k=1}^{n}d(\gamma (x_{k-1}),\gamma (x_{k}))\right\}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>L</mi> <mo stretchy="false">(</mo> <mi>γ<!-- γ --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <munder> <mo movablelimits="true" form="prefix">sup</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> <mo>=</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo><</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo><</mo> <mo>⋯<!-- ⋯ --></mo> <mo><</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>=</mo> <mi>T</mi> </mrow> </munder> <mrow> <mo>{</mo> <mrow> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <mi>d</mi> <mo stretchy="false">(</mo> <mi>γ<!-- γ --></mi> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>,</mo> <mi>γ<!-- γ --></mi> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mrow> <mo>}</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L(\gamma )=\sup _{0=x_{0}<x_{1}<\cdots <x_{n}=T}\left\{\sum _{k=1}^{n}d(\gamma (x_{k-1}),\gamma (x_{k}))\right\}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/57fa5c5287e046af0e8484e05fa038b82aae6d36" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:49.548ex; height:7.509ex;" alt="{\displaystyle L(\gamma )=\sup _{0=x_{0}<x_{1}<\cdots <x_{n}=T}\left\{\sum _{k=1}^{n}d(\gamma (x_{k-1}),\gamma (x_{k}))\right\}.}"></span> In general, this supremum may be infinite; a curve of finite length is called <i>rectifiable</i>.<sup id="cite_ref-FOOTNOTEBuragoBuragoIvanov2001Definition_2.3.1_19-0" class="reference"><a href="#cite_note-FOOTNOTEBuragoBuragoIvanov2001Definition_2.3.1-19"><span class="cite-bracket">[</span>17<span class="cite-bracket">]</span></a></sup> Suppose that the length of the curve <span class="texhtml">γ</span> is equal to the distance between its endpoints—that is, it is the shortest possible path between its endpoints. After reparametrization by arc length, <span class="texhtml">γ</span> becomes a <i><a href="/wiki/Geodesic" title="Geodesic">geodesic</a></i>: a curve which is a distance-preserving function.<sup id="cite_ref-FOOTNOTEMargalitThomas2017_17-1" class="reference"><a href="#cite_note-FOOTNOTEMargalitThomas2017-17"><span class="cite-bracket">[</span>15<span class="cite-bracket">]</span></a></sup> A geodesic is a shortest possible path between any two of its points.<sup id="cite_ref-22" class="reference"><a href="#cite_note-22"><span class="cite-bracket">[</span>c<span class="cite-bracket">]</span></a></sup> </p><p>A <i>geodesic metric space</i> is a metric space which admits a geodesic between any two of its points. The spaces <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\mathbb {R} ^{2},d_{1})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>,</mo> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\mathbb {R} ^{2},d_{1})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2362b4a4d7e9b64ee7e2262dee7de30d2403e299" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.839ex; height:3.176ex;" alt="{\displaystyle (\mathbb {R} ^{2},d_{1})}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\mathbb {R} ^{2},d_{2})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>,</mo> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\mathbb {R} ^{2},d_{2})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/14ffad81c43f03ddc159b7d4a7b620dc195aafce" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.839ex; height:3.176ex;" alt="{\displaystyle (\mathbb {R} ^{2},d_{2})}"></span> are both geodesic metric spaces. In <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\mathbb {R} ^{2},d_{2})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>,</mo> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\mathbb {R} ^{2},d_{2})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/14ffad81c43f03ddc159b7d4a7b620dc195aafce" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.839ex; height:3.176ex;" alt="{\displaystyle (\mathbb {R} ^{2},d_{2})}"></span>, geodesics are unique, but in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\mathbb {R} ^{2},d_{1})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>,</mo> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\mathbb {R} ^{2},d_{1})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2362b4a4d7e9b64ee7e2262dee7de30d2403e299" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.839ex; height:3.176ex;" alt="{\displaystyle (\mathbb {R} ^{2},d_{1})}"></span>, there are often infinitely many geodesics between two points, as shown in the figure at the top of the article. </p><p>The space <span class="texhtml mvar" style="font-style:italic;">M</span> is a <i><a href="/wiki/Length_space" class="mw-redirect" title="Length space">length space</a></i> (or the metric <span class="texhtml mvar" style="font-style:italic;">d</span> is <i>intrinsic</i>) if the distance between any two points <span class="texhtml mvar" style="font-style:italic;">x</span> and <span class="texhtml mvar" style="font-style:italic;">y</span> is the infimum of lengths of paths between them. Unlike in a geodesic metric space, the infimum does not have to be attained. An example of a length space which is not geodesic is the Euclidean plane minus the origin: the points <span class="texhtml">(1, 0)</span> and <span class="texhtml">(-1, 0)</span> can be joined by paths of length arbitrarily close to 2, but not by a path of length 2. An example of a metric space which is not a length space is given by the straight-line metric on the sphere: the straight line between two points through the center of the Earth is shorter than any path along the surface. </p><p>Given any metric space <span class="texhtml">(<i>M</i>, <i>d</i>)</span>, one can define a new, intrinsic distance function <span class="texhtml"><i>d</i><sub>intrinsic</sub></span> on <span class="texhtml mvar" style="font-style:italic;">M</span> by setting the distance between points <span class="texhtml mvar" style="font-style:italic;">x</span> and <span class="texhtml mvar" style="font-style:italic;">y</span> to be the infimum of the <span class="texhtml mvar" style="font-style:italic;">d</span>-lengths of paths between them. For instance, if <span class="texhtml mvar" style="font-style:italic;">d</span> is the straight-line distance on the sphere, then <span class="texhtml"><i>d</i><sub>intrinsic</sub></span> is the great-circle distance. However, in some cases <span class="texhtml"><i>d</i><sub>intrinsic</sub></span> may have infinite values. For example, if <span class="texhtml mvar" style="font-style:italic;">M</span> is the <a href="/wiki/Koch_snowflake" title="Koch snowflake">Koch snowflake</a> with the subspace metric <span class="texhtml mvar" style="font-style:italic;">d</span> induced from <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} ^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} ^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e150115ab9f63023215109595b76686a1ff890fd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.732ex; height:2.676ex;" alt="{\displaystyle \mathbb {R} ^{2}}"></span>, then the resulting intrinsic distance is infinite for any pair of distinct points. </p> <div class="mw-heading mw-heading3"><h3 id="Riemannian_manifolds">Riemannian manifolds</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Metric_space&action=edit&section=25" title="Edit section: Riemannian manifolds"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Riemannian_manifold" title="Riemannian manifold">Riemannian manifold</a></div> <p>A <a href="/wiki/Riemannian_manifold" title="Riemannian manifold">Riemannian manifold</a> is a space equipped with a Riemannian <a href="/wiki/Metric_tensor" title="Metric tensor">metric tensor</a>, which determines lengths of <a href="/wiki/Tangent_space" title="Tangent space">tangent vectors</a> at every point. This can be thought of defining a notion of distance infinitesimally. In particular, a differentiable path <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \gamma :[0,T]\to M}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>γ<!-- γ --></mi> <mo>:</mo> <mo stretchy="false">[</mo> <mn>0</mn> <mo>,</mo> <mi>T</mi> <mo stretchy="false">]</mo> <mo stretchy="false">→<!-- → --></mo> <mi>M</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \gamma :[0,T]\to M}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f51598fa2d3e48c963d4e56c0af969afaa51f549" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.382ex; height:2.843ex;" alt="{\displaystyle \gamma :[0,T]\to M}"></span> in a Riemannian manifold <span class="texhtml mvar" style="font-style:italic;">M</span> has length defined as the integral of the length of the tangent vector to the path: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L(\gamma )=\int _{0}^{T}|{\dot {\gamma }}(t)|dt.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>L</mi> <mo stretchy="false">(</mo> <mi>γ<!-- γ --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>T</mi> </mrow> </msubsup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>γ<!-- γ --></mi> <mo>˙<!-- ˙ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>d</mi> <mi>t</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L(\gamma )=\int _{0}^{T}|{\dot {\gamma }}(t)|dt.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/78f26517d50ba283d6685065612192c5f2f10d11" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:19.901ex; height:6.176ex;" alt="{\displaystyle L(\gamma )=\int _{0}^{T}|{\dot {\gamma }}(t)|dt.}"></span> On a connected Riemannian manifold, one then defines the distance between two points as the infimum of lengths of smooth paths between them. This construction generalizes to other kinds of infinitesimal metrics on manifolds, such as <a href="/wiki/Sub-Riemannian_manifold" title="Sub-Riemannian manifold">sub-Riemannian</a> and <a href="/wiki/Finsler_manifold" title="Finsler manifold">Finsler metrics</a>. </p><p>The Riemannian metric is uniquely determined by the distance function; this means that in principle, all information about a Riemannian manifold can be recovered from its distance function. One direction in metric geometry is finding purely metric (<a href="/wiki/Synthetic_geometry" title="Synthetic geometry">"synthetic"</a>) formulations of properties of Riemannian manifolds. For example, a Riemannian manifold is a <a href="/wiki/CAT(k)_space" title="CAT(k) space"><span class="texhtml">CAT(<i>k</i>)</span> space</a> (a synthetic condition which depends purely on the metric) if and only if its <a href="/wiki/Sectional_curvature" title="Sectional curvature">sectional curvature</a> is bounded above by <span class="texhtml mvar" style="font-style:italic;">k</span>.<sup id="cite_ref-FOOTNOTEBuragoBuragoIvanov2001127_23-0" class="reference"><a href="#cite_note-FOOTNOTEBuragoBuragoIvanov2001127-23"><span class="cite-bracket">[</span>20<span class="cite-bracket">]</span></a></sup> Thus <span class="texhtml">CAT(<i>k</i>)</span> spaces generalize upper curvature bounds to general metric spaces. </p> <div class="mw-heading mw-heading3"><h3 id="Metric_measure_spaces">Metric measure spaces</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Metric_space&action=edit&section=26" title="Edit section: Metric measure spaces"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Real analysis makes use of both the metric on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} ^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} ^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c510b63578322050121fe966f2e5770bea43308d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.897ex; height:2.343ex;" alt="{\displaystyle \mathbb {R} ^{n}}"></span> and the <a href="/wiki/Lebesgue_measure" title="Lebesgue measure">Lebesgue measure</a>. Therefore, generalizations of many ideas from analysis naturally reside in <a href="/w/index.php?title=Metric_measure_space&action=edit&redlink=1" class="new" title="Metric measure space (page does not exist)">metric measure spaces</a>: spaces that have both a <a href="/wiki/Measure_(mathematics)" title="Measure (mathematics)">measure</a> and a metric which are compatible with each other. Formally, a <i>metric measure space</i> is a metric space equipped with a <a href="/wiki/Borel_regular_measure" title="Borel regular measure">Borel regular measure</a> such that every ball has positive measure.<sup id="cite_ref-FOOTNOTEHeinonen2007191_24-0" class="reference"><a href="#cite_note-FOOTNOTEHeinonen2007191-24"><span class="cite-bracket">[</span>21<span class="cite-bracket">]</span></a></sup> For example Euclidean spaces of dimension <span class="texhtml mvar" style="font-style:italic;">n</span>, and more generally <span class="texhtml mvar" style="font-style:italic;">n</span>-dimensional Riemannian manifolds, naturally have the structure of a metric measure space, equipped with the <a href="/wiki/Lebesgue_measure" title="Lebesgue measure">Lebesgue measure</a>. Certain <a href="/wiki/Fractal" title="Fractal">fractal</a> metric spaces such as the <a href="/wiki/Sierpi%C5%84ski_gasket" class="mw-redirect" title="Sierpiński gasket">Sierpiński gasket</a> can be equipped with the α-dimensional <a href="/wiki/Hausdorff_measure" title="Hausdorff measure">Hausdorff measure</a> where α is the <a href="/wiki/Hausdorff_dimension" title="Hausdorff dimension">Hausdorff dimension</a>. In general, however, a metric space may not have an "obvious" choice of measure. </p><p>One application of metric measure spaces is generalizing the notion of <a href="/wiki/Ricci_curvature" title="Ricci curvature">Ricci curvature</a> beyond Riemannian manifolds. Just as <span class="texhtml">CAT(<i>k</i>)</span> and <a href="/wiki/Alexandrov_space" title="Alexandrov space">Alexandrov spaces</a> generalize sectional curvature bounds, <a href="/w/index.php?title=RCD_space&action=edit&redlink=1" class="new" title="RCD space (page does not exist)">RCD spaces</a> are a class of metric measure spaces which generalize lower bounds on Ricci curvature.<sup id="cite_ref-25" class="reference"><a href="#cite_note-25"><span class="cite-bracket">[</span>22<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Further_examples_and_applications">Further examples and applications</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Metric_space&action=edit&section=27" title="Edit section: Further examples and applications"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Graphs_and_finite_metric_spaces">Graphs and finite metric spaces</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Metric_space&action=edit&section=28" title="Edit section: Graphs and finite metric spaces"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>A <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238216509"><span class="vanchor"><span id="metric_space_is_''discrete''"></span><span id="Discrete_metric_space"></span><span class="vanchor-text">metric space is <i>discrete</i></span></span> if its induced topology is the <a href="/wiki/Discrete_topology" class="mw-redirect" title="Discrete topology">discrete topology</a>. Although many concepts, such as completeness and compactness, are not interesting for such spaces, they are nevertheless an object of study in several branches of mathematics. In particular, <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238216509"><span class="vanchor"><span id="finite_metric_spaces"></span><span id="Finite_metric_space"></span><span class="vanchor-text">finite metric spaces</span></span> (those having a <a href="/wiki/Finite_set" title="Finite set">finite</a> number of points) are studied in <a href="/wiki/Combinatorics" title="Combinatorics">combinatorics</a> and <a href="/wiki/Theoretical_computer_science" title="Theoretical computer science">theoretical computer science</a>.<sup id="cite_ref-26" class="reference"><a href="#cite_note-26"><span class="cite-bracket">[</span>23<span class="cite-bracket">]</span></a></sup> Embeddings in other metric spaces are particularly well-studied. For example, not every finite metric space can be <a href="/wiki/Isometry" title="Isometry">isometrically embedded</a> in a Euclidean space or in <a href="/wiki/Hilbert_space" title="Hilbert space">Hilbert space</a>. On the other hand, in the worst case the required distortion (bilipschitz constant) is only logarithmic in the number of points.<sup id="cite_ref-27" class="reference"><a href="#cite_note-27"><span class="cite-bracket">[</span>24<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-28" class="reference"><a href="#cite_note-28"><span class="cite-bracket">[</span>25<span class="cite-bracket">]</span></a></sup> </p><p>For any <a href="/wiki/Graph_(discrete_mathematics)" title="Graph (discrete mathematics)">undirected connected graph</a> <span class="texhtml mvar" style="font-style:italic;">G</span>, the set <span class="texhtml mvar" style="font-style:italic;">V</span> of vertices of <span class="texhtml mvar" style="font-style:italic;">G</span> can be turned into a metric space by defining the <a href="/wiki/Distance_(graph_theory)" title="Distance (graph theory)">distance</a> between vertices <span class="texhtml mvar" style="font-style:italic;">x</span> and <span class="texhtml mvar" style="font-style:italic;">y</span> to be the length of the shortest edge path connecting them. This is also called <i>shortest-path distance</i> or <i>geodesic distance</i>. In <a href="/wiki/Geometric_group_theory" title="Geometric group theory">geometric group theory</a> this construction is applied to the <a href="/wiki/Cayley_graph" title="Cayley graph">Cayley graph</a> of a (typically infinite) <a href="/wiki/Finitely-generated_group" class="mw-redirect" title="Finitely-generated group">finitely-generated group</a>, yielding the <a href="/wiki/Word_metric" title="Word metric">word metric</a>. Up to a bilipschitz homeomorphism, the word metric depends only on the group and not on the chosen finite generating set.<sup id="cite_ref-FOOTNOTEMargalitThomas2017_17-2" class="reference"><a href="#cite_note-FOOTNOTEMargalitThomas2017-17"><span class="cite-bracket">[</span>15<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Distances_between_mathematical_objects">Distances between mathematical objects</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Metric_space&action=edit&section=29" title="Edit section: Distances between mathematical objects"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In modern mathematics, one often studies spaces whose points are themselves mathematical objects. A distance function on such a space generally aims to measure the dissimilarity between two objects. Here are some examples: </p> <ul><li><b>Functions to a metric space.</b> If <span class="texhtml mvar" style="font-style:italic;">X</span> is any set and <span class="texhtml mvar" style="font-style:italic;">M</span> is a metric space, then the set of all <a href="/wiki/Bounded_function" title="Bounded function">bounded functions</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f\colon X\to M}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>:<!-- : --></mo> <mi>X</mi> <mo stretchy="false">→<!-- → --></mo> <mi>M</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f\colon X\to M}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/01174240f796f3f567c3a311ff2fddc1e05edd9f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.349ex; height:2.509ex;" alt="{\displaystyle f\colon X\to M}"></span> (i.e. those functions whose image is a <a href="/wiki/Bounded_subset" class="mw-redirect" title="Bounded subset">bounded subset</a> of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>M</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f82cade9898ced02fdd08712e5f0c0151758a0dd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.442ex; height:2.176ex;" alt="{\displaystyle M}"></span>) can be turned into a metric space by defining the distance between two bounded functions <span class="texhtml mvar" style="font-style:italic;">f</span> and <span class="texhtml mvar" style="font-style:italic;">g</span> to be <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d(f,g)=\sup _{x\in X}d(f(x),g(x)).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mo stretchy="false">(</mo> <mi>f</mi> <mo>,</mo> <mi>g</mi> <mo stretchy="false">)</mo> <mo>=</mo> <munder> <mo movablelimits="true" form="prefix">sup</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> <mo>∈<!-- ∈ --></mo> <mi>X</mi> </mrow> </munder> <mi>d</mi> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>,</mo> <mi>g</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d(f,g)=\sup _{x\in X}d(f(x),g(x)).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d88e98e11dc5c2deab1273d66dc5596b19d21aea" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:26.819ex; height:4.509ex;" alt="{\displaystyle d(f,g)=\sup _{x\in X}d(f(x),g(x)).}"></span> This metric is called the <a href="/wiki/Uniform_metric" class="mw-redirect" title="Uniform metric">uniform metric</a> or supremum metric.<sup id="cite_ref-FOOTNOTEÓ_Searcóid2006107_29-0" class="reference"><a href="#cite_note-FOOTNOTEÓ_Searcóid2006107-29"><span class="cite-bracket">[</span>26<span class="cite-bracket">]</span></a></sup> If <span class="texhtml mvar" style="font-style:italic;">M</span> is complete, then this <a href="/wiki/Function_space" title="Function space">function space</a> is complete as well; moreover, if <span class="texhtml mvar" style="font-style:italic;">X</span> is also a topological space, then the subspace consisting of all bounded <a href="/wiki/Continuous_function_(topology)" class="mw-redirect" title="Continuous function (topology)">continuous</a> functions from <span class="texhtml mvar" style="font-style:italic;">X</span> to <span class="texhtml mvar" style="font-style:italic;">M</span> is also complete. When <span class="texhtml mvar" style="font-style:italic;">X</span> is a subspace of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} ^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} ^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c510b63578322050121fe966f2e5770bea43308d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.897ex; height:2.343ex;" alt="{\displaystyle \mathbb {R} ^{n}}"></span>, this function space is known as a <a href="/wiki/Classical_Wiener_space" title="Classical Wiener space">classical Wiener space</a>.</li> <li><b><a href="/wiki/String_metric" title="String metric">String metrics</a> and <a href="/wiki/Edit_distance" title="Edit distance">edit distances</a>.</b> There are many ways of measuring distances between <a href="/wiki/String_(computer_science)" title="String (computer science)">strings of characters</a>, which may represent <a href="/wiki/Sentence_(linguistics)" title="Sentence (linguistics)">sentences</a> in <a href="/wiki/Computational_linguistics" title="Computational linguistics">computational linguistics</a> or <a href="/wiki/Code_word_(communication)" title="Code word (communication)">code words</a> in <a href="/wiki/Coding_theory" title="Coding theory">coding theory</a>. <i>Edit distances</i> attempt to measure the number of changes necessary to get from one string to another. For example, the <a href="/wiki/Hamming_distance" title="Hamming distance">Hamming distance</a> measures the minimal number of substitutions needed, while the <a href="/wiki/Levenshtein_distance" title="Levenshtein distance">Levenshtein distance</a> measures the minimal number of deletions, insertions, and substitutions; both of these can be thought of as distances in an appropriate graph.</li> <li><a href="/wiki/Graph_edit_distance" title="Graph edit distance">Graph edit distance</a> is a measure of dissimilarity between two <a href="/wiki/Graph_(discrete_mathematics)" title="Graph (discrete mathematics)">graphs</a>, defined as the minimal number of <a href="/wiki/Graph_operations" title="Graph operations">graph edit operations</a> required to transform one graph into another.</li> <li><a href="/wiki/Wasserstein_metric" title="Wasserstein metric">Wasserstein metrics</a> measure the distance between two <a href="/wiki/Measure_(mathematics)" title="Measure (mathematics)">measures</a> on the same metric space. The Wasserstein distance between two measures is, roughly speaking, the <a href="/wiki/Optimal_transport" class="mw-redirect" title="Optimal transport">cost of transporting</a> one to the other.</li> <li>The set of all <span class="texhtml mvar" style="font-style:italic;">m</span> by <span class="texhtml mvar" style="font-style:italic;">n</span> <a href="/wiki/Matrix_(mathematics)" title="Matrix (mathematics)">matrices</a> over some <a href="/wiki/Field_(mathematics)" title="Field (mathematics)">field</a> is a metric space with respect to the <a href="/wiki/Rank_(linear_algebra)" title="Rank (linear algebra)">rank</a> distance <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d(A,B)=\mathrm {rank} (B-A)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mo stretchy="false">(</mo> <mi>A</mi> <mo>,</mo> <mi>B</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">r</mi> <mi mathvariant="normal">a</mi> <mi mathvariant="normal">n</mi> <mi mathvariant="normal">k</mi> </mrow> <mo stretchy="false">(</mo> <mi>B</mi> <mo>−<!-- − --></mo> <mi>A</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d(A,B)=\mathrm {rank} (B-A)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cb439fd4e5e09a4306d1c8840918ba4e0cc19175" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:23.416ex; height:2.843ex;" alt="{\displaystyle d(A,B)=\mathrm {rank} (B-A)}"></span>.</li> <li>The <a href="/wiki/Helly_metric" title="Helly metric">Helly metric</a> in <a href="/wiki/Game_theory" title="Game theory">game theory</a> measures the difference between <a href="/wiki/Strategy_(game_theory)" title="Strategy (game theory)">strategies</a> in a game.</li></ul> <div class="mw-heading mw-heading3"><h3 id="Hausdorff_and_Gromov–Hausdorff_distance"><span id="Hausdorff_and_Gromov.E2.80.93Hausdorff_distance"></span>Hausdorff and Gromov–Hausdorff distance</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Metric_space&action=edit&section=30" title="Edit section: Hausdorff and Gromov–Hausdorff distance"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The idea of spaces of mathematical objects can also be applied to subsets of a metric space, as well as metric spaces themselves. <a href="/wiki/Hausdorff_distance" title="Hausdorff distance">Hausdorff</a> and <a href="/wiki/Gromov%E2%80%93Hausdorff_convergence" title="Gromov–Hausdorff convergence">Gromov–Hausdorff distance</a> define metrics on the set of compact subsets of a metric space and the set of compact metric spaces, respectively. </p><p><span class="anchor" id="Distance_to_a_set"></span> Suppose <span class="texhtml">(<i>M</i>, <i>d</i>)</span> is a metric space, and let <span class="texhtml mvar" style="font-style:italic;">S</span> be a subset of <span class="texhtml mvar" style="font-style:italic;">M</span>. The <i>distance from <span class="texhtml mvar" style="font-style:italic;">S</span> to a point <span class="texhtml mvar" style="font-style:italic;">x</span> of <span class="texhtml mvar" style="font-style:italic;">M</span></i> is, informally, the distance from <span class="texhtml mvar" style="font-style:italic;">x</span> to the closest point of <span class="texhtml mvar" style="font-style:italic;">S</span>. However, since there may not be a single closest point, it is defined via an <a href="/wiki/Infimum" class="mw-redirect" title="Infimum">infimum</a>: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d(x,S)=\inf\{d(x,s):s\in S\}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>S</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo movablelimits="true" form="prefix">inf</mo> <mo fence="false" stretchy="false">{</mo> <mi>d</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mo>:</mo> <mi>s</mi> <mo>∈<!-- ∈ --></mo> <mi>S</mi> <mo fence="false" stretchy="false">}</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d(x,S)=\inf\{d(x,s):s\in S\}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c7c78d84b87b3cf79cd3426d990c4e625822f42e" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:29.456ex; height:2.843ex;" alt="{\displaystyle d(x,S)=\inf\{d(x,s):s\in S\}.}"></span> In particular, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d(x,S)=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>S</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d(x,S)=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7357226d0d09b20f4b272e471a5ea3399b2603ef" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.149ex; height:2.843ex;" alt="{\displaystyle d(x,S)=0}"></span> if and only if <span class="texhtml mvar" style="font-style:italic;">x</span> belongs to the <a href="/wiki/Closure_(topology)" title="Closure (topology)">closure</a> of <span class="texhtml mvar" style="font-style:italic;">S</span>. Furthermore, distances between points and sets satisfy a version of the triangle inequality: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d(x,S)\leq d(x,y)+d(y,S),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>S</mi> <mo stretchy="false">)</mo> <mo>≤<!-- ≤ --></mo> <mi>d</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mi>d</mi> <mo stretchy="false">(</mo> <mi>y</mi> <mo>,</mo> <mi>S</mi> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d(x,S)\leq d(x,y)+d(y,S),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8ba425307ff730dd52b36f126ee6676d41d026ad" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:26.732ex; height:2.843ex;" alt="{\displaystyle d(x,S)\leq d(x,y)+d(y,S),}"></span> and therefore the map <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d_{S}:M\to \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>S</mi> </mrow> </msub> <mo>:</mo> <mi>M</mi> <mo stretchy="false">→<!-- → --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d_{S}:M\to \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0a8df407542bad947427e70703c6028999759187" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:12.173ex; height:2.509ex;" alt="{\displaystyle d_{S}:M\to \mathbb {R} }"></span> defined by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d_{S}(x)=d(x,S)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>S</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>d</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>S</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d_{S}(x)=d(x,S)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e00ad46069facc42cde980592537671262b7dd65" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:15.627ex; height:2.843ex;" alt="{\displaystyle d_{S}(x)=d(x,S)}"></span> is continuous. Incidentally, this shows that metric spaces are <a href="/wiki/Completely_regular" class="mw-redirect" title="Completely regular">completely regular</a>. </p><p>Given two subsets <span class="texhtml mvar" style="font-style:italic;">S</span> and <span class="texhtml mvar" style="font-style:italic;">T</span> of <span class="texhtml mvar" style="font-style:italic;">M</span>, their <i>Hausdorff distance</i> is <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d_{H}(S,T)=\max\{\sup\{d(s,T):s\in S\},\sup\{d(t,S):t\in T\}\}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>H</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>S</mi> <mo>,</mo> <mi>T</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo movablelimits="true" form="prefix">max</mo> <mo fence="false" stretchy="false">{</mo> <mo movablelimits="true" form="prefix">sup</mo> <mo fence="false" stretchy="false">{</mo> <mi>d</mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo>,</mo> <mi>T</mi> <mo stretchy="false">)</mo> <mo>:</mo> <mi>s</mi> <mo>∈<!-- ∈ --></mo> <mi>S</mi> <mo fence="false" stretchy="false">}</mo> <mo>,</mo> <mo movablelimits="true" form="prefix">sup</mo> <mo fence="false" stretchy="false">{</mo> <mi>d</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo>,</mo> <mi>S</mi> <mo stretchy="false">)</mo> <mo>:</mo> <mi>t</mi> <mo>∈<!-- ∈ --></mo> <mi>T</mi> <mo fence="false" stretchy="false">}</mo> <mo fence="false" stretchy="false">}</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d_{H}(S,T)=\max\{\sup\{d(s,T):s\in S\},\sup\{d(t,S):t\in T\}\}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2eb121a92a05c5a675982e5faf4a8fe14ba42f8d" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:59.767ex; height:2.843ex;" alt="{\displaystyle d_{H}(S,T)=\max\{\sup\{d(s,T):s\in S\},\sup\{d(t,S):t\in T\}\}.}"></span> Informally, two sets <span class="texhtml mvar" style="font-style:italic;">S</span> and <span class="texhtml mvar" style="font-style:italic;">T</span> are close to each other in the Hausdorff distance if no element of <span class="texhtml mvar" style="font-style:italic;">S</span> is too far from <span class="texhtml mvar" style="font-style:italic;">T</span> and vice versa. For example, if <span class="texhtml mvar" style="font-style:italic;">S</span> is an open set in Euclidean space <span class="texhtml mvar" style="font-style:italic;">T</span> is an <a href="/wiki/Delone_set" title="Delone set">ε-net</a> inside <span class="texhtml mvar" style="font-style:italic;">S</span>, then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d_{H}(S,T)<\varepsilon }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>H</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>S</mi> <mo>,</mo> <mi>T</mi> <mo stretchy="false">)</mo> <mo><</mo> <mi>ε<!-- ε --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d_{H}(S,T)<\varepsilon }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b65dfd5e4eff2be6eb7c2beec013433876581277" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.061ex; height:2.843ex;" alt="{\displaystyle d_{H}(S,T)<\varepsilon }"></span>. In general, the Hausdorff distance <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d_{H}(S,T)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>H</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>S</mi> <mo>,</mo> <mi>T</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d_{H}(S,T)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/29ec1b199a5dd18b8b7e005111a5ab00583a899e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.879ex; height:2.843ex;" alt="{\displaystyle d_{H}(S,T)}"></span> can be infinite or zero. However, the Hausdorff distance between two distinct compact sets is always positive and finite. Thus the Hausdorff distance defines a metric on the set of compact subsets of <span class="texhtml mvar" style="font-style:italic;">M</span>. </p><p>The Gromov–Hausdorff metric defines a distance between (isometry classes of) compact metric spaces. The <i>Gromov–Hausdorff distance</i> between compact spaces <span class="texhtml mvar" style="font-style:italic;">X</span> and <span class="texhtml mvar" style="font-style:italic;">Y</span> is the infimum of the Hausdorff distance over all metric spaces <span class="texhtml mvar" style="font-style:italic;">Z</span> that contain <span class="texhtml mvar" style="font-style:italic;">X</span> and <span class="texhtml mvar" style="font-style:italic;">Y</span> as subspaces. While the exact value of the Gromov–Hausdorff distance is rarely useful to know, the resulting topology has found many applications. </p> <div class="mw-heading mw-heading3"><h3 id="Miscellaneous_examples">Miscellaneous examples</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Metric_space&action=edit&section=31" title="Edit section: Miscellaneous examples"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li>Given a metric space <span class="texhtml">(<i>X</i>, <i>d</i>)</span> and an increasing <a href="/wiki/Concave_function" title="Concave function">concave function</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f\colon [0,\infty )\to [0,\infty )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>:<!-- : --></mo> <mo stretchy="false">[</mo> <mn>0</mn> <mo>,</mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> <mo stretchy="false">)</mo> <mo stretchy="false">→<!-- → --></mo> <mo stretchy="false">[</mo> <mn>0</mn> <mo>,</mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f\colon [0,\infty )\to [0,\infty )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f22e0e3813ce78c9a62957e81da67e89a05b6b47" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.07ex; height:2.843ex;" alt="{\displaystyle f\colon [0,\infty )\to [0,\infty )}"></span> such that <span class="texhtml"><i>f</i>(<i>t</i>) = 0</span> if and only if <span class="texhtml"><i>t</i> = 0</span>, then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d_{f}(x,y)=f(d(x,y))}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>f</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>d</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d_{f}(x,y)=f(d(x,y))}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f3b5fce607ab2bbad59ca435efa8e8bdc89529ef" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:20.404ex; height:3.009ex;" alt="{\displaystyle d_{f}(x,y)=f(d(x,y))}"></span> is also a metric on <span class="texhtml mvar" style="font-style:italic;">X</span>. If <span class="texhtml"><i>f</i>(<i>t</i>) = <i>t</i><sup>α</sup></span> for some real number <span class="texhtml">α < 1</span>, such a metric is known as a <b>snowflake</b> of <span class="texhtml mvar" style="font-style:italic;">d</span>.<sup id="cite_ref-30" class="reference"><a href="#cite_note-30"><span class="cite-bracket">[</span>27<span class="cite-bracket">]</span></a></sup></li> <li>The <a href="/wiki/Tight_span" title="Tight span">tight span</a> of a metric space is another metric space which can be thought of as an abstract version of the <a href="/wiki/Convex_hull" title="Convex hull">convex hull</a>.</li> <li>The <i>knight's move metric</i>, the minimal number of knight's moves to reach one point in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {Z} ^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {Z} ^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a807ab4cb3de13a66771b5a303aca31e0391e6aa" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.605ex; height:2.676ex;" alt="{\displaystyle \mathbb {Z} ^{2}}"></span> from another, is a metric on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {Z} ^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {Z} ^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a807ab4cb3de13a66771b5a303aca31e0391e6aa" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.605ex; height:2.676ex;" alt="{\displaystyle \mathbb {Z} ^{2}}"></span>.</li> <li><span class="anchor" id="SNCF"></span>The <a href="/wiki/British_Rail" title="British Rail">British Rail</a> metric (also called the "post office metric" or the "<a href="/wiki/SNCF" title="SNCF">SNCF</a> metric") on a <a href="/wiki/Normed_vector_space" title="Normed vector space">normed vector space</a> is given by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d(x,y)=\lVert x\rVert +\lVert y\rVert }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo fence="false" stretchy="false">‖<!-- ‖ --></mo> <mi>x</mi> <mo fence="false" stretchy="false">‖<!-- ‖ --></mo> <mo>+</mo> <mo fence="false" stretchy="false">‖<!-- ‖ --></mo> <mi>y</mi> <mo fence="false" stretchy="false">‖<!-- ‖ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d(x,y)=\lVert x\rVert +\lVert y\rVert }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/13e1e365ad25bd9facf08c903c6e867928f24649" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:19.618ex; height:2.843ex;" alt="{\displaystyle d(x,y)=\lVert x\rVert +\lVert y\rVert }"></span> for distinct points <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b8a6208ec717213d4317e666f1ae872e00620a0d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.155ex; height:2.009ex;" alt="{\displaystyle y}"></span>, and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d(x,x)=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d(x,x)=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f8b0b392db0a4abf6c47dcd5b35f90592401e756" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.979ex; height:2.843ex;" alt="{\displaystyle d(x,x)=0}"></span>. More generally <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lVert \cdot \rVert }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">‖<!-- ‖ --></mo> <mo>⋅<!-- ⋅ --></mo> <mo fence="false" stretchy="false">‖<!-- ‖ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lVert \cdot \rVert }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e52a20a813a9cfbc68eae56c73cad60c81deac43" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:2.972ex; height:2.843ex;" alt="{\displaystyle \lVert \cdot \rVert }"></span> can be replaced with a function <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> taking an arbitrary set <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4611d85173cd3b508e67077d4a1252c9c05abca2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.499ex; height:2.176ex;" alt="{\displaystyle S}"></span> to non-negative reals and taking the value <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2aae8864a3c1fec9585261791a809ddec1489950" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 0}"></span> at most once: then the metric is defined on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4611d85173cd3b508e67077d4a1252c9c05abca2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.499ex; height:2.176ex;" alt="{\displaystyle S}"></span> by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d(x,y)=f(x)+f(y)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>y</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d(x,y)=f(x)+f(y)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e44b8ac740a7bb352af64910a98e844862b901a9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:21.144ex; height:2.843ex;" alt="{\displaystyle d(x,y)=f(x)+f(y)}"></span> for distinct points <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b8a6208ec717213d4317e666f1ae872e00620a0d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.155ex; height:2.009ex;" alt="{\displaystyle y}"></span>, and <span class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d(x,x)=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d(x,x)=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f8b0b392db0a4abf6c47dcd5b35f90592401e756" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.979ex; height:2.843ex;" alt="{\displaystyle d(x,x)=0}"></span>.</span> The name alludes to the tendency of railway journeys to proceed via London (or Paris) irrespective of their final destination.</li> <li>The <a href="/wiki/Robinson%E2%80%93Foulds_metric" title="Robinson–Foulds metric">Robinson–Foulds metric</a> used for calculating the distances between <a href="/wiki/Phylogenetic_tree" title="Phylogenetic tree">Phylogenetic trees</a> in <a href="/wiki/Phylogenetics" title="Phylogenetics">Phylogenetics</a><sup id="cite_ref-31" class="reference"><a href="#cite_note-31"><span class="cite-bracket">[</span>28<span class="cite-bracket">]</span></a></sup></li></ul> <div class="mw-heading mw-heading2"><h2 id="Constructions">Constructions</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Metric_space&action=edit&section=32" title="Edit section: Constructions"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Product_metric_spaces">Product metric spaces</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Metric_space&action=edit&section=33" title="Edit section: Product metric spaces"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Product_metric" title="Product metric">Product metric</a></div> <p>If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (M_{1},d_{1}),\ldots ,(M_{n},d_{n})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>,</mo> <mo>…<!-- … --></mo> <mo>,</mo> <mo stretchy="false">(</mo> <msub> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (M_{1},d_{1}),\ldots ,(M_{n},d_{n})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0dc0196b8ce0cbd450496c2ae526bfb1dbec9932" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:22.336ex; height:2.843ex;" alt="{\displaystyle (M_{1},d_{1}),\ldots ,(M_{n},d_{n})}"></span> are metric spaces, and <span class="texhtml mvar" style="font-style:italic;">N</span> is the <a href="/wiki/Euclidean_norm" class="mw-redirect" title="Euclidean norm">Euclidean norm</a> on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} ^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} ^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c510b63578322050121fe966f2e5770bea43308d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.897ex; height:2.343ex;" alt="{\displaystyle \mathbb {R} ^{n}}"></span>, then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\bigl (}M_{1}\times \cdots \times M_{n},d_{\times }{\bigr )}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="1.2em" minsize="1.2em">(</mo> </mrow> </mrow> <msub> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>×<!-- × --></mo> <mo>⋯<!-- ⋯ --></mo> <mo>×<!-- × --></mo> <msub> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>×<!-- × --></mo> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="1.2em" minsize="1.2em">)</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\bigl (}M_{1}\times \cdots \times M_{n},d_{\times }{\bigr )}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/581f2973a4e207cf31674934f26a9d61dd4f569f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:21.068ex; height:3.176ex;" alt="{\displaystyle {\bigl (}M_{1}\times \cdots \times M_{n},d_{\times }{\bigr )}}"></span> is a metric space, where the <a href="/wiki/Product_metric" title="Product metric">product metric</a> is defined by <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d_{\times }{\bigl (}(x_{1},\ldots ,x_{n}),(y_{1},\ldots ,y_{n}){\bigr )}=N{\bigl (}d_{1}(x_{1},y_{1}),\ldots ,d_{n}(x_{n},y_{n}){\bigr )},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>×<!-- × --></mo> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="1.2em" minsize="1.2em">(</mo> </mrow> </mrow> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>…<!-- … --></mo> <mo>,</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>,</mo> <mo stretchy="false">(</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>…<!-- … --></mo> <mo>,</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="1.2em" minsize="1.2em">)</mo> </mrow> </mrow> <mo>=</mo> <mi>N</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="1.2em" minsize="1.2em">(</mo> </mrow> </mrow> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>,</mo> <mo>…<!-- … --></mo> <mo>,</mo> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="1.2em" minsize="1.2em">)</mo> </mrow> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d_{\times }{\bigl (}(x_{1},\ldots ,x_{n}),(y_{1},\ldots ,y_{n}){\bigr )}=N{\bigl (}d_{1}(x_{1},y_{1}),\ldots ,d_{n}(x_{n},y_{n}){\bigr )},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/185b237e4eae21a0037bfa59b3deddef95f0d915" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:62.319ex; height:3.176ex;" alt="{\displaystyle d_{\times }{\bigl (}(x_{1},\ldots ,x_{n}),(y_{1},\ldots ,y_{n}){\bigr )}=N{\bigl (}d_{1}(x_{1},y_{1}),\ldots ,d_{n}(x_{n},y_{n}){\bigr )},}"></span> and the induced topology agrees with the <a href="/wiki/Product_topology" title="Product topology">product topology</a>. By the equivalence of norms in finite dimensions, a topologically equivalent metric is obtained if <span class="texhtml mvar" style="font-style:italic;">N</span> is the <a href="/wiki/Taxicab_norm" class="mw-redirect" title="Taxicab norm">taxicab norm</a>, a <a href="/wiki/Norm_(mathematics)#p-norm" title="Norm (mathematics)">p-norm</a>, the <a href="/wiki/Maximum_norm" class="mw-redirect" title="Maximum norm">maximum norm</a>, or any other norm which is non-decreasing as the coordinates of a positive <span class="texhtml mvar" style="font-style:italic;">n</span>-tuple increase (yielding the triangle inequality). </p><p>Similarly, a metric on the topological product of countably many metric spaces can be obtained using the metric <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d(x,y)=\sum _{i=1}^{\infty }{\frac {1}{2^{i}}}{\frac {d_{i}(x_{i},y_{i})}{1+d_{i}(x_{i},y_{i})}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo>=</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msup> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> <mrow> <mn>1</mn> <mo>+</mo> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d(x,y)=\sum _{i=1}^{\infty }{\frac {1}{2^{i}}}{\frac {d_{i}(x_{i},y_{i})}{1+d_{i}(x_{i},y_{i})}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/56a5f182da6193316b6f30d0a233e308e75b77ae" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:30.589ex; height:6.843ex;" alt="{\displaystyle d(x,y)=\sum _{i=1}^{\infty }{\frac {1}{2^{i}}}{\frac {d_{i}(x_{i},y_{i})}{1+d_{i}(x_{i},y_{i})}}.}"></span> </p><p>The topological product of uncountably many metric spaces need not be metrizable. For example, an uncountable product of copies of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/786849c765da7a84dbc3cce43e96aad58a5868dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {R} }"></span> is not <a href="/wiki/First-countable_space" title="First-countable space">first-countable</a> and thus is not metrizable. </p> <div class="mw-heading mw-heading3"><h3 id="Quotient_metric_spaces">Quotient metric spaces</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Metric_space&action=edit&section=34" title="Edit section: Quotient metric spaces"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>If <span class="texhtml mvar" style="font-style:italic;">M</span> is a metric space with metric <span class="texhtml mvar" style="font-style:italic;">d</span>, and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sim }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>∼<!-- ∼ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sim }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/afcc42adfcfdc24d5c4c474869e5d8eaa78d1173" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: 0.307ex; margin-bottom: -0.478ex; width:1.808ex; height:1.343ex;" alt="{\displaystyle \sim }"></span> is an <a href="/wiki/Equivalence_relation" title="Equivalence relation">equivalence relation</a> on <span class="texhtml mvar" style="font-style:italic;">M</span>, then we can endow the quotient set <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M/\!\sim }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mspace width="negativethinmathspace" /> <mo>∼<!-- ∼ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M/\!\sim }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ff61e9b8e0301cd76db0a7491c2ef7ce60377d26" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.671ex; height:2.843ex;" alt="{\displaystyle M/\!\sim }"></span> with a pseudometric. The distance between two equivalence classes <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle [x]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">[</mo> <mi>x</mi> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle [x]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/07548563c21e128890501e14eb7c80ee2d6fda4d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:2.623ex; height:2.843ex;" alt="{\displaystyle [x]}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle [y]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">[</mo> <mi>y</mi> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle [y]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f637a17dac262ee0fc8d58e31d08ca3ebe5a0fed" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:2.449ex; height:2.843ex;" alt="{\displaystyle [y]}"></span> is defined as <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d'([x],[y])=\inf\{d(p_{1},q_{1})+d(p_{2},q_{2})+\dotsb +d(p_{n},q_{n})\},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>d</mi> <mo>′</mo> </msup> <mo stretchy="false">(</mo> <mo stretchy="false">[</mo> <mi>x</mi> <mo stretchy="false">]</mo> <mo>,</mo> <mo stretchy="false">[</mo> <mi>y</mi> <mo stretchy="false">]</mo> <mo stretchy="false">)</mo> <mo>=</mo> <mo movablelimits="true" form="prefix">inf</mo> <mo fence="false" stretchy="false">{</mo> <mi>d</mi> <mo stretchy="false">(</mo> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>+</mo> <mi>d</mi> <mo stretchy="false">(</mo> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>+</mo> <mo>⋯<!-- ⋯ --></mo> <mo>+</mo> <mi>d</mi> <mo stretchy="false">(</mo> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo fence="false" stretchy="false">}</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d'([x],[y])=\inf\{d(p_{1},q_{1})+d(p_{2},q_{2})+\dotsb +d(p_{n},q_{n})\},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c12948e3aa74a8510139fedcafd35cc2844a73d4" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:55.235ex; height:3.009ex;" alt="{\displaystyle d'([x],[y])=\inf\{d(p_{1},q_{1})+d(p_{2},q_{2})+\dotsb +d(p_{n},q_{n})\},}"></span> where the <a href="/wiki/Infimum" class="mw-redirect" title="Infimum">infimum</a> is taken over all finite sequences <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (p_{1},p_{2},\dots ,p_{n})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <mo>…<!-- … --></mo> <mo>,</mo> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (p_{1},p_{2},\dots ,p_{n})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ad0bb27c095bc998293f9ef21c05a574c16b7100" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.857ex; height:2.843ex;" alt="{\displaystyle (p_{1},p_{2},\dots ,p_{n})}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (q_{1},q_{2},\dots ,q_{n})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <mo>…<!-- … --></mo> <mo>,</mo> <msub> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (q_{1},q_{2},\dots ,q_{n})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/18cf72f1465acdf17cda70842b2b98f6e2a586b7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.46ex; height:2.843ex;" alt="{\displaystyle (q_{1},q_{2},\dots ,q_{n})}"></span> with <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p_{1}\sim x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>∼<!-- ∼ --></mo> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p_{1}\sim x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5d74c5d4ca8283557ba3b1d7a1148249f74342fc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:6.741ex; height:2.009ex;" alt="{\displaystyle p_{1}\sim x}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle q_{n}\sim y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>∼<!-- ∼ --></mo> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle q_{n}\sim y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c64a72e4d52f27cb0394f85c8640e129130ba8a2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.509ex; height:2.009ex;" alt="{\displaystyle q_{n}\sim y}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle q_{i}\sim p_{i+1},i=1,2,\dots ,n-1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>∼<!-- ∼ --></mo> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mi>i</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mo>…<!-- … --></mo> <mo>,</mo> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle q_{i}\sim p_{i+1},i=1,2,\dots ,n-1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b8b0d2b1e0e9a088d4bdea5565a8d3d4b2d348c1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:27.874ex; height:2.509ex;" alt="{\displaystyle q_{i}\sim p_{i+1},i=1,2,\dots ,n-1}"></span>.<sup id="cite_ref-FOOTNOTEBuragoBuragoIvanov2001Definition_3.1.12_32-0" class="reference"><a href="#cite_note-FOOTNOTEBuragoBuragoIvanov2001Definition_3.1.12-32"><span class="cite-bracket">[</span>29<span class="cite-bracket">]</span></a></sup> In general this will only define a <a href="/wiki/Pseudometric_space" title="Pseudometric space">pseudometric</a>, i.e. <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d'([x],[y])=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>d</mi> <mo>′</mo> </msup> <mo stretchy="false">(</mo> <mo stretchy="false">[</mo> <mi>x</mi> <mo stretchy="false">]</mo> <mo>,</mo> <mo stretchy="false">[</mo> <mi>y</mi> <mo stretchy="false">]</mo> <mo stretchy="false">)</mo> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d'([x],[y])=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4f0686af91a21fdf1ed41059fa39ffbbe883bd4f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.079ex; height:3.009ex;" alt="{\displaystyle d'([x],[y])=0}"></span> does not necessarily imply that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle [x]=[y]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">[</mo> <mi>x</mi> <mo stretchy="false">]</mo> <mo>=</mo> <mo stretchy="false">[</mo> <mi>y</mi> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle [x]=[y]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9c34866e2a1216182b168dc1e272b0b02f1aab3a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.171ex; height:2.843ex;" alt="{\displaystyle [x]=[y]}"></span>. However, for some equivalence relations (e.g., those given by gluing together polyhedra along faces), <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d'}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>d</mi> <mo>′</mo> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d'}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1f310a68106a9e308bdaf887ff8f7171c4cb9d96" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.903ex; height:2.509ex;" alt="{\displaystyle d'}"></span> is a metric. </p><p>The quotient metric <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d'}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>d</mi> <mo>′</mo> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d'}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1f310a68106a9e308bdaf887ff8f7171c4cb9d96" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.903ex; height:2.509ex;" alt="{\displaystyle d'}"></span> is characterized by the following <a href="/wiki/Universal_property" title="Universal property">universal property</a>. If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f\,\colon (M,d)\to (X,\delta )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mspace width="thinmathspace" /> <mo>:<!-- : --></mo> <mo stretchy="false">(</mo> <mi>M</mi> <mo>,</mo> <mi>d</mi> <mo stretchy="false">)</mo> <mo stretchy="false">→<!-- → --></mo> <mo stretchy="false">(</mo> <mi>X</mi> <mo>,</mo> <mi>δ<!-- δ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f\,\colon (M,d)\to (X,\delta )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/482f907df9256fc335a774b302ca80749a5acbc3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.687ex; height:2.843ex;" alt="{\displaystyle f\,\colon (M,d)\to (X,\delta )}"></span> is a metric (i.e. 1-Lipschitz) map between metric spaces satisfying <span class="texhtml"><i>f</i>(<i>x</i>) = <i>f</i>(<i>y</i>)</span> whenever <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\sim y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>∼<!-- ∼ --></mo> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x\sim y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bbd1014d850b7c883eb76301dd58c643e3c7e4eb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.584ex; height:2.009ex;" alt="{\displaystyle x\sim y}"></span>, then the induced function <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\overline {f}}\,\colon {M/\sim }\to X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo accent="false">¯<!-- ¯ --></mo> </mover> </mrow> <mspace width="thinmathspace" /> <mo>:<!-- : --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mo>∼<!-- ∼ --></mo> </mrow> <mo stretchy="false">→<!-- → --></mo> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\overline {f}}\,\colon {M/\sim }\to X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4d963c71b05c8393d1d331379f1811830d39748b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.557ex; height:3.509ex;" alt="{\displaystyle {\overline {f}}\,\colon {M/\sim }\to X}"></span>, given by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\overline {f}}([x])=f(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo accent="false">¯<!-- ¯ --></mo> </mover> </mrow> <mo stretchy="false">(</mo> <mo stretchy="false">[</mo> <mi>x</mi> <mo stretchy="false">]</mo> <mo stretchy="false">)</mo> <mo>=</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\overline {f}}([x])=f(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/aa40e344823d6033e5b82eaf6f31f3a562c6c9c6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.433ex; height:3.509ex;" alt="{\displaystyle {\overline {f}}([x])=f(x)}"></span>, is a metric map <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\overline {f}}\,\colon (M/\sim ,d')\to (X,\delta ).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo accent="false">¯<!-- ¯ --></mo> </mover> </mrow> <mspace width="thinmathspace" /> <mo>:<!-- : --></mo> <mo stretchy="false">(</mo> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mo>∼<!-- ∼ --></mo> <mo>,</mo> <msup> <mi>d</mi> <mo>′</mo> </msup> <mo stretchy="false">)</mo> <mo stretchy="false">→<!-- → --></mo> <mo stretchy="false">(</mo> <mi>X</mi> <mo>,</mo> <mi>δ<!-- δ --></mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\overline {f}}\,\colon (M/\sim ,d')\to (X,\delta ).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bea19e71e4a1f532560303795db7d528f88fd24b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:23.842ex; height:3.509ex;" alt="{\displaystyle {\overline {f}}\,\colon (M/\sim ,d')\to (X,\delta ).}"></span> </p><p>The quotient metric does not always induce the <a href="/wiki/Quotient_topology" class="mw-redirect" title="Quotient topology">quotient topology</a>. For example, the topological quotient of the metric space <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {N} \times [0,1]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">N</mi> </mrow> <mo>×<!-- × --></mo> <mo stretchy="false">[</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {N} \times [0,1]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0c5ec3356c30166cf0b83c98cb406ee5517cb93c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.171ex; height:2.843ex;" alt="{\displaystyle \mathbb {N} \times [0,1]}"></span> identifying all points of the form <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (n,0)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>n</mi> <mo>,</mo> <mn>0</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (n,0)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5fd8a7c3a302914ba5ae7cac4d8df11b59943934" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.4ex; height:2.843ex;" alt="{\displaystyle (n,0)}"></span> is not metrizable since it is not <a href="/wiki/First-countable_space" title="First-countable space">first-countable</a>, but the quotient metric is a well-defined metric on the same set which induces a <a href="/wiki/Comparison_of_topologies" title="Comparison of topologies">coarser topology</a>. Moreover, different metrics on the original topological space (a disjoint union of countably many intervals) lead to different topologies on the quotient.<sup id="cite_ref-33" class="reference"><a href="#cite_note-33"><span class="cite-bracket">[</span>30<span class="cite-bracket">]</span></a></sup> </p><p>A topological space is <a href="/wiki/Sequential_space" title="Sequential space">sequential</a> if and only if it is a (topological) quotient of a metric space.<sup id="cite_ref-34" class="reference"><a href="#cite_note-34"><span class="cite-bracket">[</span>31<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Generalizations_of_metric_spaces">Generalizations of metric spaces</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Metric_space&action=edit&section=35" title="Edit section: Generalizations of metric spaces"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>There are several notions of spaces which have less structure than a metric space, but more than a topological space. </p> <ul><li><a href="/wiki/Uniform_space" title="Uniform space">Uniform spaces</a> are spaces in which distances are not defined, but uniform continuity is.</li> <li><a href="/wiki/Approach_space" title="Approach space">Approach spaces</a> are spaces in which point-to-set distances are defined, instead of point-to-point distances. They have particularly good properties from the point of view of <a href="/wiki/Category_theory" title="Category theory">category theory</a>.</li> <li><a href="/wiki/Continuity_space" class="mw-redirect" title="Continuity space">Continuity spaces</a> are a generalization of metric spaces and <a href="/wiki/Poset" class="mw-redirect" title="Poset">posets</a> that can be used to unify the notions of metric spaces and <a href="/wiki/Domain_theory" title="Domain theory">domains</a>.</li></ul> <p>There are also numerous ways of relaxing the axioms for a metric, giving rise to various notions of generalized metric spaces. These generalizations can also be combined. The terminology used to describe them is not completely standardized. Most notably, in <a href="/wiki/Functional_analysis" title="Functional analysis">functional analysis</a> pseudometrics often come from <a href="/wiki/Seminorm" title="Seminorm">seminorms</a> on vector spaces, and so it is natural to call them "semimetrics". This conflicts with the use of the term in <a href="/wiki/Topology" title="Topology">topology</a>. </p> <div class="mw-heading mw-heading3"><h3 id="Extended_metrics">Extended metrics</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Metric_space&action=edit&section=36" title="Edit section: Extended metrics"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Some authors define metrics so as to allow the distance function <span class="texhtml mvar" style="font-style:italic;">d</span> to attain the value ∞, i.e. distances are non-negative numbers on the <a href="/wiki/Extended_real_number_line" title="Extended real number line">extended real number line</a>.<sup id="cite_ref-FOOTNOTEBuragoBuragoIvanov20011_4-1" class="reference"><a href="#cite_note-FOOTNOTEBuragoBuragoIvanov20011-4"><span class="cite-bracket">[</span>4<span class="cite-bracket">]</span></a></sup> Such a function is also called an <i>extended metric</i> or "∞-metric". Every extended metric can be replaced by a real-valued metric that is topologically equivalent. This can be done using a <a href="/wiki/Subadditive_function" class="mw-redirect" title="Subadditive function">subadditive</a> monotonically increasing bounded function which is zero at zero, e.g. <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d'(x,y)=d(x,y)/(1+d(x,y))}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>d</mi> <mo>′</mo> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>d</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mo stretchy="false">(</mo> <mn>1</mn> <mo>+</mo> <mi>d</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d'(x,y)=d(x,y)/(1+d(x,y))}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d15fa446f7d2925af23c4c3b6c0fdd77b794d863" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:30.393ex; height:3.009ex;" alt="{\displaystyle d'(x,y)=d(x,y)/(1+d(x,y))}"></span> or <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d''(x,y)=\min(1,d(x,y))}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>d</mi> <mo>″</mo> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo movablelimits="true" form="prefix">min</mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo>,</mo> <mi>d</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d''(x,y)=\min(1,d(x,y))}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2f898bd846d889bbc8f4806bdf9baa57a55fbe07" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:25.207ex; height:3.009ex;" alt="{\displaystyle d''(x,y)=\min(1,d(x,y))}"></span>. </p> <div class="mw-heading mw-heading3"><h3 id="Metrics_valued_in_structures_other_than_the_real_numbers">Metrics valued in structures other than the real numbers</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Metric_space&action=edit&section=37" title="Edit section: Metrics valued in structures other than the real numbers"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The requirement that the metric take values in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle [0,\infty )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">[</mo> <mn>0</mn> <mo>,</mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle [0,\infty )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8dc2d914c2df66bc0f7893bfb8da36766650fe47" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.072ex; height:2.843ex;" alt="{\displaystyle [0,\infty )}"></span> can be relaxed to consider metrics with values in other structures, including: </p> <ul><li><a href="/wiki/Ordered_field" title="Ordered field">Ordered fields</a>, yielding the notion of a <a href="/wiki/Generalised_metric" title="Generalised metric">generalised metric</a>.</li> <li>More general <a href="/wiki/Directed_set" title="Directed set">directed sets</a>. In the absence of an addition operation, the triangle inequality does not make sense and is replaced with an <a href="/wiki/Ultrametric_space" title="Ultrametric space">ultrametric inequality</a>. This leads to the notion of a <i>generalized ultrametric</i>.<sup id="cite_ref-FOOTNOTEHitzlerSeda2016Definition_4.3.1_35-0" class="reference"><a href="#cite_note-FOOTNOTEHitzlerSeda2016Definition_4.3.1-35"><span class="cite-bracket">[</span>32<span class="cite-bracket">]</span></a></sup></li></ul> <p>These generalizations still induce a <a href="/wiki/Uniform_space" title="Uniform space">uniform structure</a> on the space. </p> <div class="mw-heading mw-heading3"><h3 id="Pseudometrics">Pseudometrics</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Metric_space&action=edit&section=38" title="Edit section: Pseudometrics"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Pseudometric_space" title="Pseudometric space">Pseudometric space</a></div> <p>A <i>pseudometric</i> on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> is a function <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d:X\times X\to \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mo>:</mo> <mi>X</mi> <mo>×<!-- × --></mo> <mi>X</mi> <mo stretchy="false">→<!-- → --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d:X\times X\to \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cb82929b490b4868d886af0b7fd5c2bb00e13da0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:15.246ex; height:2.176ex;" alt="{\displaystyle d:X\times X\to \mathbb {R} }"></span> which satisfies the axioms for a metric, except that instead of the second (identity of indiscernibles) only <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d(x,x)=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d(x,x)=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f8b0b392db0a4abf6c47dcd5b35f90592401e756" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.979ex; height:2.843ex;" alt="{\displaystyle d(x,x)=0}"></span> for all <i><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span></i> is required.<sup id="cite_ref-FOOTNOTEHitzlerSeda2016Definition_4.2.1_36-0" class="reference"><a href="#cite_note-FOOTNOTEHitzlerSeda2016Definition_4.2.1-36"><span class="cite-bracket">[</span>33<span class="cite-bracket">]</span></a></sup> In other words, the axioms for a pseudometric are: </p> <ol><li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d(x,y)\geq 0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo>≥<!-- ≥ --></mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d(x,y)\geq 0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1309cec878e6d9effccd8a2d2ed065a8e82bfa82" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.805ex; height:2.843ex;" alt="{\displaystyle d(x,y)\geq 0}"></span></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d(x,x)=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d(x,x)=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f8b0b392db0a4abf6c47dcd5b35f90592401e756" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.979ex; height:2.843ex;" alt="{\displaystyle d(x,x)=0}"></span></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d(x,y)=d(y,x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>d</mi> <mo stretchy="false">(</mo> <mi>y</mi> <mo>,</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d(x,y)=d(y,x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c7fea33d0e60116abd16287351eb6bf142a61fdd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:16.187ex; height:2.843ex;" alt="{\displaystyle d(x,y)=d(y,x)}"></span></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d(x,z)\leq d(x,y)+d(y,z)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>≤<!-- ≤ --></mo> <mi>d</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mi>d</mi> <mo stretchy="false">(</mo> <mi>y</mi> <mo>,</mo> <mi>z</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d(x,z)\leq d(x,y)+d(y,z)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/43ae751284c2944886e1effbfe4e0c1293f98419" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:25.263ex; height:2.843ex;" alt="{\displaystyle d(x,z)\leq d(x,y)+d(y,z)}"></span>.</li></ol> <p>In some contexts, pseudometrics are referred to as <i>semimetrics</i><sup id="cite_ref-FOOTNOTEBuragoBuragoIvanov2001Definition_1.1.4_37-0" class="reference"><a href="#cite_note-FOOTNOTEBuragoBuragoIvanov2001Definition_1.1.4-37"><span class="cite-bracket">[</span>34<span class="cite-bracket">]</span></a></sup> because of their relation to <a href="/wiki/Seminorm" title="Seminorm">seminorms</a>. </p> <div class="mw-heading mw-heading3"><h3 id="Quasimetrics">Quasimetrics</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Metric_space&action=edit&section=39" title="Edit section: Quasimetrics"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Occasionally, a <b>quasimetric</b> is defined as a function that satisfies all axioms for a metric with the possible exception of symmetry.<sup id="cite_ref-38" class="reference"><a href="#cite_note-38"><span class="cite-bracket">[</span>35<span class="cite-bracket">]</span></a></sup> The name of this generalisation is not entirely standardized.<sup id="cite_ref-39" class="reference"><a href="#cite_note-39"><span class="cite-bracket">[</span>36<span class="cite-bracket">]</span></a></sup> </p> <ol><li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d(x,y)\geq 0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo>≥<!-- ≥ --></mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d(x,y)\geq 0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1309cec878e6d9effccd8a2d2ed065a8e82bfa82" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.805ex; height:2.843ex;" alt="{\displaystyle d(x,y)\geq 0}"></span></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d(x,y)=0\iff x=y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>0</mn> <mspace width="thickmathspace" /> <mo stretchy="false">⟺<!-- ⟺ --></mo> <mspace width="thickmathspace" /> <mi>x</mi> <mo>=</mo> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d(x,y)=0\iff x=y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/32fd7ce57db3ea42e1bbb4aabb703cb709c6bfec" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:23.286ex; height:2.843ex;" alt="{\displaystyle d(x,y)=0\iff x=y}"></span></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d(x,z)\leq d(x,y)+d(y,z)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>≤<!-- ≤ --></mo> <mi>d</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mi>d</mi> <mo stretchy="false">(</mo> <mi>y</mi> <mo>,</mo> <mi>z</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d(x,z)\leq d(x,y)+d(y,z)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/43ae751284c2944886e1effbfe4e0c1293f98419" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:25.263ex; height:2.843ex;" alt="{\displaystyle d(x,z)\leq d(x,y)+d(y,z)}"></span></li></ol> <p>Quasimetrics are common in real life. For example, given a set <span class="texhtml mvar" style="font-style:italic;">X</span> of mountain villages, the typical walking times between elements of <span class="texhtml mvar" style="font-style:italic;">X</span> form a quasimetric because travel uphill takes longer than travel downhill. Another example is the <a href="/wiki/Taxicab_geometry" title="Taxicab geometry">length of car rides</a> in a city with one-way streets: here, a shortest path from point <span class="texhtml mvar" style="font-style:italic;">A</span> to point <span class="texhtml mvar" style="font-style:italic;">B</span> goes along a different set of streets than a shortest path from <span class="texhtml mvar" style="font-style:italic;">B</span> to <span class="texhtml mvar" style="font-style:italic;">A</span> and may have a different length. </p><p>A quasimetric on the reals can be defined by setting <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d(x,y)={\begin{cases}x-y&{\text{if }}x\geq y,\\1&{\text{otherwise.}}\end{cases}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>{</mo> <mtable columnalign="left left" rowspacing=".2em" columnspacing="1em" displaystyle="false"> <mtr> <mtd> <mi>x</mi> <mo>−<!-- − --></mo> <mi>y</mi> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext>if </mtext> </mrow> <mi>x</mi> <mo>≥<!-- ≥ --></mo> <mi>y</mi> <mo>,</mo> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext>otherwise.</mtext> </mrow> </mtd> </mtr> </mtable> <mo fence="true" stretchy="true" symmetric="true"></mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d(x,y)={\begin{cases}x-y&{\text{if }}x\geq y,\\1&{\text{otherwise.}}\end{cases}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ae2c899c4739466aaa1c2e9aef2f0cd38f581fd5" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:30.01ex; height:6.176ex;" alt="{\displaystyle d(x,y)={\begin{cases}x-y&{\text{if }}x\geq y,\\1&{\text{otherwise.}}\end{cases}}}"></span> The 1 may be replaced, for example, by infinity or by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1+{\sqrt {y-x}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi>y</mi> <mo>−<!-- − --></mo> <mi>x</mi> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1+{\sqrt {y-x}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/46c0a8f19b8e4a2bbcec11b99f3873001e41c1e7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:11.652ex; height:3.509ex;" alt="{\displaystyle 1+{\sqrt {y-x}}}"></span> or any other <a href="/wiki/Subadditivity" title="Subadditivity">subadditive</a> function of <span class="texhtml"><i>y</i>-<i>x</i></span>. This quasimetric describes the cost of modifying a metal stick: it is easy to reduce its size by <a href="/wiki/Filing_(metalworking)" title="Filing (metalworking)">filing it down</a>, but it is difficult or impossible to grow it. </p><p>Given a quasimetric on <span class="texhtml mvar" style="font-style:italic;">X</span>, one can define an <span class="texhtml mvar" style="font-style:italic;">R</span>-ball around <span class="texhtml mvar" style="font-style:italic;">x</span> to be the set <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \{y\in X|d(x,y)\leq R\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">{</mo> <mi>y</mi> <mo>∈<!-- ∈ --></mo> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>d</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo>≤<!-- ≤ --></mo> <mi>R</mi> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \{y\in X|d(x,y)\leq R\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1871b0f2881bfac168b70b5e0674bf62d5f1382e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:20.355ex; height:2.843ex;" alt="{\displaystyle \{y\in X|d(x,y)\leq R\}}"></span>. As in the case of a metric, such balls form a basis for a topology on <span class="texhtml mvar" style="font-style:italic;">X</span>, but this topology need not be metrizable. For example, the topology induced by the quasimetric on the reals described above is the (reversed) <a href="/wiki/Sorgenfrey_line" class="mw-redirect" title="Sorgenfrey line">Sorgenfrey line</a>. </p> <div class="mw-heading mw-heading3"><h3 id="Metametrics_or_partial_metrics">Metametrics or partial metrics</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Metric_space&action=edit&section=40" title="Edit section: Metametrics or partial metrics"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In a <i>metametric</i>, all the axioms of a metric are satisfied except that the distance between identical points is not necessarily zero. In other words, the axioms for a metametric are: </p> <ol><li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d(x,y)\geq 0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo>≥<!-- ≥ --></mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d(x,y)\geq 0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1309cec878e6d9effccd8a2d2ed065a8e82bfa82" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.805ex; height:2.843ex;" alt="{\displaystyle d(x,y)\geq 0}"></span></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d(x,y)=0\implies x=y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>0</mn> <mspace width="thickmathspace" /> <mo stretchy="false">⟹<!-- ⟹ --></mo> <mspace width="thickmathspace" /> <mi>x</mi> <mo>=</mo> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d(x,y)=0\implies x=y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e9cb5aefcc6aef0b554176319ffde03fcc806576" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:22.775ex; height:2.843ex;" alt="{\displaystyle d(x,y)=0\implies x=y}"></span></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d(x,y)=d(y,x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>d</mi> <mo stretchy="false">(</mo> <mi>y</mi> <mo>,</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d(x,y)=d(y,x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c7fea33d0e60116abd16287351eb6bf142a61fdd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:16.187ex; height:2.843ex;" alt="{\displaystyle d(x,y)=d(y,x)}"></span></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d(x,z)\leq d(x,y)+d(y,z).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>≤<!-- ≤ --></mo> <mi>d</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mi>d</mi> <mo stretchy="false">(</mo> <mi>y</mi> <mo>,</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d(x,z)\leq d(x,y)+d(y,z).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1e7072502a79725a25151d5c96b7310e7dbb97a3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:25.91ex; height:2.843ex;" alt="{\displaystyle d(x,z)\leq d(x,y)+d(y,z).}"></span></li></ol> <p>Metametrics appear in the study of <a href="/wiki/%CE%94-hyperbolic_space" class="mw-redirect" title="Δ-hyperbolic space">Gromov hyperbolic metric spaces</a> and their boundaries. The <i>visual metametric</i> on such a space satisfies <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d(x,x)=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d(x,x)=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f8b0b392db0a4abf6c47dcd5b35f90592401e756" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.979ex; height:2.843ex;" alt="{\displaystyle d(x,x)=0}"></span> for points <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span> on the boundary, but otherwise <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d(x,x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d(x,x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b16cf40c69ad9e073e7a5acd8fc8cc19d85e4e9f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.718ex; height:2.843ex;" alt="{\displaystyle d(x,x)}"></span> is approximately the distance from <i><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span></i> to the boundary. Metametrics were first defined by Jussi Väisälä.<sup id="cite_ref-FOOTNOTEVäisälä2005_40-0" class="reference"><a href="#cite_note-FOOTNOTEVäisälä2005-40"><span class="cite-bracket">[</span>37<span class="cite-bracket">]</span></a></sup> In other work, a function satisfying these axioms is called a <i>partial metric</i><sup id="cite_ref-41" class="reference"><a href="#cite_note-41"><span class="cite-bracket">[</span>38<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-42" class="reference"><a href="#cite_note-42"><span class="cite-bracket">[</span>39<span class="cite-bracket">]</span></a></sup> or a <i>dislocated metric</i>.<sup id="cite_ref-FOOTNOTEHitzlerSeda2016Definition_4.2.1_36-1" class="reference"><a href="#cite_note-FOOTNOTEHitzlerSeda2016Definition_4.2.1-36"><span class="cite-bracket">[</span>33<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Semimetrics">Semimetrics</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Metric_space&action=edit&section=41" title="Edit section: Semimetrics"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>A <b>semimetric</b> on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> is a function <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d:X\times X\to \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mo>:</mo> <mi>X</mi> <mo>×<!-- × --></mo> <mi>X</mi> <mo stretchy="false">→<!-- → --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d:X\times X\to \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cb82929b490b4868d886af0b7fd5c2bb00e13da0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:15.246ex; height:2.176ex;" alt="{\displaystyle d:X\times X\to \mathbb {R} }"></span> that satisfies the first three axioms, but not necessarily the triangle inequality: </p> <ol><li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d(x,y)\geq 0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo>≥<!-- ≥ --></mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d(x,y)\geq 0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1309cec878e6d9effccd8a2d2ed065a8e82bfa82" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.805ex; height:2.843ex;" alt="{\displaystyle d(x,y)\geq 0}"></span></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d(x,y)=0\iff x=y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>0</mn> <mspace width="thickmathspace" /> <mo stretchy="false">⟺<!-- ⟺ --></mo> <mspace width="thickmathspace" /> <mi>x</mi> <mo>=</mo> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d(x,y)=0\iff x=y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/32fd7ce57db3ea42e1bbb4aabb703cb709c6bfec" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:23.286ex; height:2.843ex;" alt="{\displaystyle d(x,y)=0\iff x=y}"></span></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d(x,y)=d(y,x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>d</mi> <mo stretchy="false">(</mo> <mi>y</mi> <mo>,</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d(x,y)=d(y,x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c7fea33d0e60116abd16287351eb6bf142a61fdd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:16.187ex; height:2.843ex;" alt="{\displaystyle d(x,y)=d(y,x)}"></span></li></ol> <p>Some authors work with a weaker form of the triangle inequality, such as: </p> <dl><dd><table> <tbody><tr> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d(x,z)\leq \rho \,(d(x,y)+d(y,z))}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>≤<!-- ≤ --></mo> <mi>ρ<!-- ρ --></mi> <mspace width="thinmathspace" /> <mo stretchy="false">(</mo> <mi>d</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mi>d</mi> <mo stretchy="false">(</mo> <mi>y</mi> <mo>,</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d(x,z)\leq \rho \,(d(x,y)+d(y,z))}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/49a778e6ae464194322fa243bae534354c804d1a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:28.661ex; height:2.843ex;" alt="{\displaystyle d(x,z)\leq \rho \,(d(x,y)+d(y,z))}"></span> </td> <td>ρ-relaxed triangle inequality </td></tr> <tr> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d(x,z)\leq \rho \,\max\{d(x,y),d(y,z)\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>≤<!-- ≤ --></mo> <mi>ρ<!-- ρ --></mi> <mspace width="thinmathspace" /> <mo movablelimits="true" form="prefix">max</mo> <mo fence="false" stretchy="false">{</mo> <mi>d</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo>,</mo> <mi>d</mi> <mo stretchy="false">(</mo> <mi>y</mi> <mo>,</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d(x,z)\leq \rho \,\max\{d(x,y),d(y,z)\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f065a63a4edf244f4187c3ddf8457d343abeb207" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:32.083ex; height:2.843ex;" alt="{\displaystyle d(x,z)\leq \rho \,\max\{d(x,y),d(y,z)\}}"></span> </td> <td>ρ-inframetric inequality </td></tr></tbody></table></dd></dl> <p>The ρ-inframetric inequality implies the ρ-relaxed triangle inequality (assuming the first axiom), and the ρ-relaxed triangle inequality implies the 2ρ-inframetric inequality. Semimetrics satisfying these equivalent conditions have sometimes been referred to as <i>quasimetrics</i>,<sup id="cite_ref-FOOTNOTEXia2009_43-0" class="reference"><a href="#cite_note-FOOTNOTEXia2009-43"><span class="cite-bracket">[</span>40<span class="cite-bracket">]</span></a></sup> <i>nearmetrics</i><sup id="cite_ref-FOOTNOTEXia2008_44-0" class="reference"><a href="#cite_note-FOOTNOTEXia2008-44"><span class="cite-bracket">[</span>41<span class="cite-bracket">]</span></a></sup> or <b>inframetrics</b>.<sup id="cite_ref-FOOTNOTEFraigniaudLebharViennot2008_45-0" class="reference"><a href="#cite_note-FOOTNOTEFraigniaudLebharViennot2008-45"><span class="cite-bracket">[</span>42<span class="cite-bracket">]</span></a></sup> </p><p>The ρ-inframetric inequalities were introduced to model <a href="/wiki/Round-trip_delay_time" class="mw-redirect" title="Round-trip delay time">round-trip delay times</a> in the <a href="/wiki/Internet" title="Internet">internet</a>.<sup id="cite_ref-FOOTNOTEFraigniaudLebharViennot2008_45-1" class="reference"><a href="#cite_note-FOOTNOTEFraigniaudLebharViennot2008-45"><span class="cite-bracket">[</span>42<span class="cite-bracket">]</span></a></sup> The triangle inequality implies the 2-inframetric inequality, and the <a href="/wiki/Ultrametric_inequality" class="mw-redirect" title="Ultrametric inequality">ultrametric inequality</a> is exactly the 1-inframetric inequality. </p> <div class="mw-heading mw-heading3"><h3 id="Premetrics">Premetrics</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Metric_space&action=edit&section=42" title="Edit section: Premetrics"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Relaxing the last three axioms leads to the notion of a <b>premetric</b>, i.e. a function satisfying the following conditions: </p> <ol><li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d(x,y)\geq 0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo>≥<!-- ≥ --></mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d(x,y)\geq 0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1309cec878e6d9effccd8a2d2ed065a8e82bfa82" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.805ex; height:2.843ex;" alt="{\displaystyle d(x,y)\geq 0}"></span></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d(x,x)=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d(x,x)=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f8b0b392db0a4abf6c47dcd5b35f90592401e756" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.979ex; height:2.843ex;" alt="{\displaystyle d(x,x)=0}"></span></li></ol> <p>This is not a standard term. Sometimes it is used to refer to other generalizations of metrics such as pseudosemimetrics<sup id="cite_ref-FOOTNOTEBuldyginKozachenko2000_46-0" class="reference"><a href="#cite_note-FOOTNOTEBuldyginKozachenko2000-46"><span class="cite-bracket">[</span>43<span class="cite-bracket">]</span></a></sup> or pseudometrics;<sup id="cite_ref-FOOTNOTEHelemskii2006_47-0" class="reference"><a href="#cite_note-FOOTNOTEHelemskii2006-47"><span class="cite-bracket">[</span>44<span class="cite-bracket">]</span></a></sup> in translations of Russian books it sometimes appears as "prametric".<sup id="cite_ref-48" class="reference"><a href="#cite_note-48"><span class="cite-bracket">[</span>45<span class="cite-bracket">]</span></a></sup> A premetric that satisfies symmetry, i.e. a pseudosemimetric, is also called a distance.<sup id="cite_ref-FOOTNOTEDezaLaurent1997_49-0" class="reference"><a href="#cite_note-FOOTNOTEDezaLaurent1997-49"><span class="cite-bracket">[</span>46<span class="cite-bracket">]</span></a></sup> </p><p>Any premetric gives rise to a topology as follows. For a positive real <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>r</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0d1ecb613aa2984f0576f70f86650b7c2a132538" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.049ex; height:1.676ex;" alt="{\displaystyle r}"></span>, the <span class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>r</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0d1ecb613aa2984f0576f70f86650b7c2a132538" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.049ex; height:1.676ex;" alt="{\displaystyle r}"></span>-ball</span> centered at a point <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81eac1e205430d1f40810df36a0edffdc367af36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:1.259ex; height:2.009ex;" alt="{\displaystyle p}"></span> is defined as </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B_{r}(p)=\{x|d(x,p)<r\}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>p</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo fence="false" stretchy="false">{</mo> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>d</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>p</mi> <mo stretchy="false">)</mo> <mo><</mo> <mi>r</mi> <mo fence="false" stretchy="false">}</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B_{r}(p)=\{x|d(x,p)<r\}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a49056c2e48220a355f7943439027d76d834c5e6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:24.469ex; height:2.843ex;" alt="{\displaystyle B_{r}(p)=\{x|d(x,p)<r\}.}"></span></dd></dl> <p>A set is called <i>open</i> if for any point <i><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81eac1e205430d1f40810df36a0edffdc367af36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:1.259ex; height:2.009ex;" alt="{\displaystyle p}"></span></i> in the set there is an <span class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>r</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0d1ecb613aa2984f0576f70f86650b7c2a132538" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.049ex; height:1.676ex;" alt="{\displaystyle r}"></span>-ball</span> centered at <i><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81eac1e205430d1f40810df36a0edffdc367af36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:1.259ex; height:2.009ex;" alt="{\displaystyle p}"></span></i> which is contained in the set. Every premetric space is a topological space, and in fact a <a href="/wiki/Sequential_space" title="Sequential space">sequential space</a>. In general, the <span class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>r</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0d1ecb613aa2984f0576f70f86650b7c2a132538" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.049ex; height:1.676ex;" alt="{\displaystyle r}"></span>-balls</span> themselves need not be open sets with respect to this topology. As for metrics, the distance between two sets <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span> and <i><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/47136aad860d145f75f3eed3022df827cee94d7a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle B}"></span></i>, is defined as </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d(A,B)={\underset {x\in A,y\in B}{\inf }}d(x,y).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mo stretchy="false">(</mo> <mi>A</mi> <mo>,</mo> <mi>B</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <munder> <mo form="prefix">inf</mo> <mrow> <mi>x</mi> <mo>∈<!-- ∈ --></mo> <mi>A</mi> <mo>,</mo> <mi>y</mi> <mo>∈<!-- ∈ --></mo> <mi>B</mi> </mrow> </munder> </mrow> <mi>d</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d(A,B)={\underset {x\in A,y\in B}{\inf }}d(x,y).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/df6af580f98b86475bd0e1e89dcdb3400a777204" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:24.743ex; height:4.343ex;" alt="{\displaystyle d(A,B)={\underset {x\in A,y\in B}{\inf }}d(x,y).}"></span></dd></dl> <p>This defines a premetric on the <a href="/wiki/Power_set" title="Power set">power set</a> of a premetric space. If we start with a (pseudosemi-)metric space, we get a pseudosemimetric, i.e. a symmetric premetric. Any premetric gives rise to a <a href="/wiki/Preclosure_operator" title="Preclosure operator">preclosure operator</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle cl}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>c</mi> <mi>l</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle cl}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/85b5926255332eae23b75cddefdb4ebdebcf8549" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.7ex; height:2.176ex;" alt="{\displaystyle cl}"></span> as follows: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle cl(A)=\{x|d(x,A)=0\}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>c</mi> <mi>l</mi> <mo stretchy="false">(</mo> <mi>A</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo fence="false" stretchy="false">{</mo> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>d</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>A</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>0</mn> <mo fence="false" stretchy="false">}</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle cl(A)=\{x|d(x,A)=0\}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/212250be7f636eb5f88c49060865102aeb22382d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:24.692ex; height:2.843ex;" alt="{\displaystyle cl(A)=\{x|d(x,A)=0\}.}"></span></dd></dl> <div class="mw-heading mw-heading3"><h3 id="Pseudoquasimetrics">Pseudoquasimetrics</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Metric_space&action=edit&section=43" title="Edit section: Pseudoquasimetrics"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The prefixes <i>pseudo-</i>, <i>quasi-</i> and <i>semi-</i> can also be combined, e.g., a <b>pseudoquasimetric</b> (sometimes called <b>hemimetric</b>) relaxes both the indiscernibility axiom and the symmetry axiom and is simply a premetric satisfying the triangle inequality. For pseudoquasimetric spaces the open <span class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>r</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0d1ecb613aa2984f0576f70f86650b7c2a132538" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.049ex; height:1.676ex;" alt="{\displaystyle r}"></span>-balls</span> form a basis of open sets. A very basic example of a pseudoquasimetric space is the set <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \{0,1\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">{</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \{0,1\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/28de5781698336d21c9c560fb1cbb3fb406923eb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.684ex; height:2.843ex;" alt="{\displaystyle \{0,1\}}"></span> with the premetric given by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d(0,1)=1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mo stretchy="false">(</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d(0,1)=1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0a0431794d4df3e6afdf278f8c68ba11013fb83e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.645ex; height:2.843ex;" alt="{\displaystyle d(0,1)=1}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d(1,0)=0.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mo stretchy="false">(</mo> <mn>1</mn> <mo>,</mo> <mn>0</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mn>0.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d(1,0)=0.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cc226aba7f6599af4c67aee18615edbc6a0d4c5d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.292ex; height:2.843ex;" alt="{\displaystyle d(1,0)=0.}"></span> The associated topological space is the <a href="/wiki/Sierpi%C5%84ski_space" title="Sierpiński space">Sierpiński space</a>. </p><p>Sets equipped with an extended pseudoquasimetric were studied by <a href="/wiki/William_Lawvere" title="William Lawvere">William Lawvere</a> as "generalized metric spaces".<sup id="cite_ref-50" class="reference"><a href="#cite_note-50"><span class="cite-bracket">[</span>47<span class="cite-bracket">]</span></a></sup> From a <a href="/wiki/Category_theory" title="Category theory">categorical</a> point of view, the extended pseudometric spaces and the extended pseudoquasimetric spaces, along with their corresponding nonexpansive maps, are the best behaved of the <a href="/wiki/Category_of_metric_spaces" title="Category of metric spaces">metric space categories</a>. One can take arbitrary products and coproducts and form quotient objects within the given category. If one drops "extended", one can only take finite products and coproducts. If one drops "pseudo", one cannot take quotients. </p><p>Lawvere also gave an alternate definition of such spaces as <a href="/wiki/Enriched_category" title="Enriched category">enriched categories</a>. The ordered set <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\mathbb {R} ,\geq )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mo>,</mo> <mo>≥<!-- ≥ --></mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\mathbb {R} ,\geq )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/17c6ead871e941d70ad70f69def2e5133bca8590" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.329ex; height:2.843ex;" alt="{\displaystyle (\mathbb {R} ,\geq )}"></span> can be seen as a <a href="/wiki/Category_(mathematics)" title="Category (mathematics)">category</a> with one <a href="/wiki/Morphism" title="Morphism">morphism</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a\to b}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo stretchy="false">→<!-- → --></mo> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a\to b}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7989b7da84c001dc910a97023b8fcdcfd8f97353" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.841ex; height:2.176ex;" alt="{\displaystyle a\to b}"></span> if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a\geq b}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>≥<!-- ≥ --></mo> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a\geq b}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ed5d3957d5f94566507526017e4ebb67c02efe81" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:5.326ex; height:2.343ex;" alt="{\displaystyle a\geq b}"></span> and none otherwise. Using <span class="texhtml">+</span> as the <a href="/wiki/Tensor_product" title="Tensor product">tensor product</a> and 0 as the <a href="/wiki/Identity_element" title="Identity element">identity</a> makes this category into a <a href="/wiki/Monoidal_category" title="Monoidal category">monoidal category</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R^{*}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>∗<!-- ∗ --></mo> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R^{*}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7a74b1bc0fa98794b6460254044f8e7b75e6d84f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.818ex; height:2.343ex;" alt="{\displaystyle R^{*}}"></span>. Every (extended pseudoquasi-)metric space <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (M,d)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>M</mi> <mo>,</mo> <mi>d</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (M,d)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d78e6f2ddf5baee227ee2a9f164726ba0c23c263" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.501ex; height:2.843ex;" alt="{\displaystyle (M,d)}"></span> can now be viewed as a category <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M^{*}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>∗<!-- ∗ --></mo> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M^{*}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b6d760e72a9f5f578f8ba166127f0713d56dc589" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.553ex; height:2.343ex;" alt="{\displaystyle M^{*}}"></span> enriched over <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R^{*}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>∗<!-- ∗ --></mo> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R^{*}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7a74b1bc0fa98794b6460254044f8e7b75e6d84f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.818ex; height:2.343ex;" alt="{\displaystyle R^{*}}"></span>: </p> <ul><li>The objects of the category are the points of <span class="texhtml mvar" style="font-style:italic;">M</span>.</li> <li>For every pair of points <span class="texhtml mvar" style="font-style:italic;">x</span> and <span class="texhtml mvar" style="font-style:italic;">y</span> such that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d(x,y)<\infty }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo><</mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d(x,y)<\infty }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/55dbdc92c82bde3972f218e6c6d346250d58438b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.966ex; height:2.843ex;" alt="{\displaystyle d(x,y)<\infty }"></span>, there is a single morphism which is assigned the object <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d(x,y)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d(x,y)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3772957879a8bbf7946bddf5743c508a1d5072c0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.544ex; height:2.843ex;" alt="{\displaystyle d(x,y)}"></span> of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R^{*}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>∗<!-- ∗ --></mo> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R^{*}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7a74b1bc0fa98794b6460254044f8e7b75e6d84f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.818ex; height:2.343ex;" alt="{\displaystyle R^{*}}"></span>.</li> <li>The triangle inequality and the fact that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d(x,x)=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d(x,x)=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f8b0b392db0a4abf6c47dcd5b35f90592401e756" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.979ex; height:2.843ex;" alt="{\displaystyle d(x,x)=0}"></span> for all points <span class="texhtml mvar" style="font-style:italic;">x</span> derive from the properties of composition and identity in an enriched category.</li> <li>Since <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R^{*}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>∗<!-- ∗ --></mo> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R^{*}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7a74b1bc0fa98794b6460254044f8e7b75e6d84f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.818ex; height:2.343ex;" alt="{\displaystyle R^{*}}"></span> is a poset, all <a href="/wiki/Diagram_(category_theory)" title="Diagram (category theory)">diagrams</a> that are required for an enriched category commute automatically.</li></ul> <div class="mw-heading mw-heading3"><h3 id="Metrics_on_multisets">Metrics on multisets</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Metric_space&action=edit&section=44" title="Edit section: Metrics on multisets"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The notion of a metric can be generalized from a distance between two elements to a number assigned to a multiset of elements. A <a href="/wiki/Multiset" title="Multiset">multiset</a> is a generalization of the notion of a <a href="/wiki/Set_(mathematics)" title="Set (mathematics)">set</a> in which an element can occur more than once. Define the multiset union <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle U=XY}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>U</mi> <mo>=</mo> <mi>X</mi> <mi>Y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle U=XY}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/49a53edef3399ec8e4fff563c04f6a1a96f84563" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:8.634ex; height:2.176ex;" alt="{\displaystyle U=XY}"></span> as follows: if an element <span class="texhtml mvar" style="font-style:italic;">x</span> occurs <span class="texhtml mvar" style="font-style:italic;">m</span> times in <span class="texhtml mvar" style="font-style:italic;">X</span> and <span class="texhtml mvar" style="font-style:italic;">n</span> times in <span class="texhtml mvar" style="font-style:italic;">Y</span> then it occurs <span class="texhtml"><i>m</i> + <i>n</i></span> times in <span class="texhtml mvar" style="font-style:italic;">U</span>. A function <span class="texhtml mvar" style="font-style:italic;">d</span> on the set of nonempty finite multisets of elements of a set <span class="texhtml mvar" style="font-style:italic;">M</span> is a metric<sup id="cite_ref-FOOTNOTEVitányi2011_51-0" class="reference"><a href="#cite_note-FOOTNOTEVitányi2011-51"><span class="cite-bracket">[</span>48<span class="cite-bracket">]</span></a></sup> if </p> <ol><li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d(X)=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mo stretchy="false">(</mo> <mi>X</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d(X)=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1cb585e11d376b2037d9fd710ba5419653a5a8db" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.266ex; height:2.843ex;" alt="{\displaystyle d(X)=0}"></span> if all elements of <span class="texhtml mvar" style="font-style:italic;">X</span> are equal and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d(X)>0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mo stretchy="false">(</mo> <mi>X</mi> <mo stretchy="false">)</mo> <mo>></mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d(X)>0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c8521704ffbbd4390e7bb5eb7bc4452569a345f5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.266ex; height:2.843ex;" alt="{\displaystyle d(X)>0}"></span> otherwise (<a href="/wiki/Positive_definiteness" title="Positive definiteness">positive definiteness</a>)</li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d(X)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mo stretchy="false">(</mo> <mi>X</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d(X)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5220998dbbd96cbcc2e4fa85026a1925313ff55e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.005ex; height:2.843ex;" alt="{\displaystyle d(X)}"></span> depends only on the (unordered) multiset <span class="texhtml mvar" style="font-style:italic;">X</span> (<a href="/wiki/Symmetry" title="Symmetry">symmetry</a>)</li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d(XY)\leq d(XZ)+d(ZY)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mo stretchy="false">(</mo> <mi>X</mi> <mi>Y</mi> <mo stretchy="false">)</mo> <mo>≤<!-- ≤ --></mo> <mi>d</mi> <mo stretchy="false">(</mo> <mi>X</mi> <mi>Z</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mi>d</mi> <mo stretchy="false">(</mo> <mi>Z</mi> <mi>Y</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d(XY)\leq d(XZ)+d(ZY)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7b62bb85435fe2c989eca6f9ed62683c0040f054" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:25.882ex; height:2.843ex;" alt="{\displaystyle d(XY)\leq d(XZ)+d(ZY)}"></span> (<a href="/wiki/Triangle_inequality" title="Triangle inequality">triangle inequality</a>)</li></ol> <p>By considering the cases of axioms 1 and 2 in which the multiset <span class="texhtml mvar" style="font-style:italic;">X</span> has two elements and the case of axiom 3 in which the multisets <span class="texhtml mvar" style="font-style:italic;">X</span>, <span class="texhtml mvar" style="font-style:italic;">Y</span>, and <span class="texhtml mvar" style="font-style:italic;">Z</span> have one element each, one recovers the usual axioms for a metric. That is, every multiset metric yields an ordinary metric when restricted to sets of two elements. </p><p>A simple example is the set of all nonempty finite multisets <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> of integers with <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d(X)=\max(X)-\min(X)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mo stretchy="false">(</mo> <mi>X</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo movablelimits="true" form="prefix">max</mo> <mo stretchy="false">(</mo> <mi>X</mi> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <mo movablelimits="true" form="prefix">min</mo> <mo stretchy="false">(</mo> <mi>X</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d(X)=\max(X)-\min(X)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/232bf79cf04a896880e6ffad329137068c930a60" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:26.724ex; height:2.843ex;" alt="{\displaystyle d(X)=\max(X)-\min(X)}"></span>. More complex examples are <a href="/wiki/Information_distance" title="Information distance">information distance</a> in multisets;<sup id="cite_ref-FOOTNOTEVitányi2011_51-1" class="reference"><a href="#cite_note-FOOTNOTEVitányi2011-51"><span class="cite-bracket">[</span>48<span class="cite-bracket">]</span></a></sup> and <a href="/wiki/Normalized_compression_distance" title="Normalized compression distance">normalized compression distance</a> (NCD) in multisets.<sup id="cite_ref-FOOTNOTECohenVitányi2012_52-0" class="reference"><a href="#cite_note-FOOTNOTECohenVitányi2012-52"><span class="cite-bracket">[</span>49<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="See_also">See also</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Metric_space&action=edit&section=45" title="Edit section: See also"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/Acoustic_metric" title="Acoustic metric">Acoustic metric</a> – Tensor characterizing signal-carrying properties in a medium</li> <li><a href="/wiki/Complete_metric_space" title="Complete metric space">Complete metric space</a> – Metric geometry</li> <li><a href="/wiki/Diversity_(mathematics)" title="Diversity (mathematics)">Diversity (mathematics)</a> – Generalization of metric spaces</li> <li><a href="/wiki/Generalized_metric_space" title="Generalized metric space">Generalized metric space</a></li> <li><a href="/wiki/Hilbert%27s_fourth_problem" title="Hilbert's fourth problem">Hilbert's fourth problem</a> – Construct all metric spaces where lines resemble those on a sphere</li> <li><a href="/wiki/Metric_tree" title="Metric tree">Metric tree</a></li> <li><a href="/wiki/Minkowski_distance" title="Minkowski distance">Minkowski distance</a> – Mathematical metric in normed vector space</li> <li><a href="/wiki/Signed_distance_function" title="Signed distance function">Signed distance function</a> – Distance from a point to the boundary of a set</li> <li><a href="/wiki/Similarity_measure" title="Similarity measure">Similarity measure</a> – Real-valued function that quantifies similarity between two objects</li> <li><a href="/wiki/Space_(mathematics)" title="Space (mathematics)">Space (mathematics)</a> – Mathematical set with some added structure</li> <li><a href="/wiki/Ultrametric_space" title="Ultrametric space">Ultrametric space</a> – Type of metric space</li></ul> <div class="mw-heading mw-heading2"><h2 id="Notes">Notes</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Metric_space&action=edit&section=46" title="Edit section: Notes"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist reflist-lower-alpha"> <div class="mw-references-wrap"><ol class="references"> <li id="cite_note-12"><span class="mw-cite-backlink"><b><a href="#cite_ref-12">^</a></b></span> <span class="reference-text">Balls with rational radius around a point <span class="texhtml mvar" style="font-style:italic;">x</span> form a <a href="/wiki/Neighborhood_basis" class="mw-redirect" title="Neighborhood basis">neighborhood basis</a> for that point.</span> </li> <li id="cite_note-13"><span class="mw-cite-backlink"><b><a href="#cite_ref-13">^</a></b></span> <span class="reference-text">In the context of <a href="/wiki/Interval_(mathematics)" title="Interval (mathematics)">intervals</a> in the real line, or more generally regions in Euclidean space, bounded sets are sometimes referred to as "finite intervals" or "finite regions". However, they do not typically have a finite number of elements, and while they all have finite <a href="/wiki/Lebesgue_measure" title="Lebesgue measure">volume</a>, so do many unbounded sets. Therefore this terminology is imprecise.</span> </li> <li id="cite_note-22"><span class="mw-cite-backlink"><b><a href="#cite_ref-22">^</a></b></span> <span class="reference-text">This differs from usage in <a href="/wiki/Riemannian_geometry" title="Riemannian geometry">Riemannian geometry</a>, where geodesics are only locally shortest paths. Some authors define geodesics in metric spaces in the same way.<sup id="cite_ref-FOOTNOTEBuragoBuragoIvanov2001Definition_2.5.27_20-0" class="reference"><a href="#cite_note-FOOTNOTEBuragoBuragoIvanov2001Definition_2.5.27-20"><span class="cite-bracket">[</span>18<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-FOOTNOTEGromov2007Definition_1.9_21-0" class="reference"><a href="#cite_note-FOOTNOTEGromov2007Definition_1.9-21"><span class="cite-bracket">[</span>19<span class="cite-bracket">]</span></a></sup></span> </li> </ol></div></div> <div class="mw-heading mw-heading2"><h2 id="Citations">Citations</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Metric_space&action=edit&section=47" title="Edit section: Citations"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239543626"><div class="reflist"> <div class="mw-references-wrap mw-references-columns"><ol class="references"> <li id="cite_note-FOOTNOTEČech196942-1"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEČech196942_1-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFČech1969">Čech 1969</a>, p. 42.</span> </li> <li id="cite_note-FOOTNOTEBuragoBuragoIvanov2001-2"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEBuragoBuragoIvanov2001_2-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFBuragoBuragoIvanov2001">Burago, Burago & Ivanov 2001</a>.</span> </li> <li id="cite_note-FOOTNOTEHeinonen2001-3"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEHeinonen2001_3-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFHeinonen2001">Heinonen 2001</a>.</span> </li> <li id="cite_note-FOOTNOTEBuragoBuragoIvanov20011-4"><span class="mw-cite-backlink">^ <a href="#cite_ref-FOOTNOTEBuragoBuragoIvanov20011_4-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-FOOTNOTEBuragoBuragoIvanov20011_4-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><a href="#CITEREFBuragoBuragoIvanov2001">Burago, Burago & Ivanov 2001</a>, p. 1.</span> </li> <li id="cite_note-FOOTNOTEGromov2007xv-5"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEGromov2007xv_5-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFGromov2007">Gromov 2007</a>, p. xv.</span> </li> <li id="cite_note-6"><span class="mw-cite-backlink"><b><a href="#cite_ref-6">^</a></b></span> <span class="reference-text"><style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite id="CITEREFGleason1991" class="citation book cs1">Gleason, Andrew (1991). <i>Fundamentals of Abstract Analysis</i> (1st ed.). <a href="/wiki/Taylor_%26_Francis" title="Taylor & Francis">Taylor & Francis</a>. p. 223. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1201%2F9781315275444">10.1201/9781315275444</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/9781315275444" title="Special:BookSources/9781315275444"><bdi>9781315275444</bdi></a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:62222843">62222843</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Fundamentals+of+Abstract+Analysis&rft.pages=223&rft.edition=1st&rft.pub=Taylor+%26+Francis&rft.date=1991&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A62222843%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1201%2F9781315275444&rft.isbn=9781315275444&rft.aulast=Gleason&rft.aufirst=Andrew&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMetric+space" class="Z3988"></span></span> </li> <li id="cite_note-7"><span class="mw-cite-backlink"><b><a href="#cite_ref-7">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFréchet1906" class="citation journal cs1">Fréchet, M. (December 1906). <a rel="nofollow" class="external text" href="https://zenodo.org/record/1428464">"Sur quelques points du calcul fonctionnel"</a>. <i>Rendiconti del Circolo Matematico di Palermo</i>. <b>22</b> (1): 1–72. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2FBF03018603">10.1007/BF03018603</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:123251660">123251660</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Rendiconti+del+Circolo+Matematico+di+Palermo&rft.atitle=Sur+quelques+points+du+calcul+fonctionnel&rft.volume=22&rft.issue=1&rft.pages=1-72&rft.date=1906-12&rft_id=info%3Adoi%2F10.1007%2FBF03018603&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A123251660%23id-name%3DS2CID&rft.aulast=Fr%C3%A9chet&rft.aufirst=M.&rft_id=https%3A%2F%2Fzenodo.org%2Frecord%2F1428464&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMetric+space" class="Z3988"></span></span> </li> <li id="cite_note-8"><span class="mw-cite-backlink"><b><a href="#cite_ref-8">^</a></b></span> <span class="reference-text">F. Hausdorff (1914) <i>Grundzuge der Mengenlehre</i></span> </li> <li id="cite_note-9"><span class="mw-cite-backlink"><b><a href="#cite_ref-9">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBlumberg1927" class="citation journal cs1">Blumberg, Henry (1927). <a rel="nofollow" class="external text" href="https://doi.org/10.1090%2FS0002-9904-1920-03378-1">"Hausdorff's Grundzüge der Mengenlehre"</a>. <i>Bulletin of the American Mathematical Society</i>. <b>6</b>: 778–781. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1090%2FS0002-9904-1920-03378-1">10.1090/S0002-9904-1920-03378-1</a></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Bulletin+of+the+American+Mathematical+Society&rft.atitle=Hausdorff%27s+Grundz%C3%BCge+der+Mengenlehre&rft.volume=6&rft.pages=778-781&rft.date=1927&rft_id=info%3Adoi%2F10.1090%2FS0002-9904-1920-03378-1&rft.aulast=Blumberg&rft.aufirst=Henry&rft_id=https%3A%2F%2Fdoi.org%2F10.1090%252FS0002-9904-1920-03378-1&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMetric+space" class="Z3988"></span></span> </li> <li id="cite_note-10"><span class="mw-cite-backlink"><b><a href="#cite_ref-10">^</a></b></span> <span class="reference-text">Mohamed A. Khamsi & William A. Kirk (2001) <i>Introduction to Metric Spaces and Fixed Point Theory</i>, page 14, <a href="/wiki/John_Wiley_%26_Sons" class="mw-redirect" title="John Wiley & Sons">John Wiley & Sons</a></span> </li> <li id="cite_note-11"><span class="mw-cite-backlink"><b><a href="#cite_ref-11">^</a></b></span> <span class="reference-text">Rudin, Mary Ellen. <a rel="nofollow" class="external text" href="https://www.jstor.org/stable/2035708">A new proof that metric spaces are paracompact</a> <a rel="nofollow" class="external text" href="https://web.archive.org/web/20160412015215/http://www.jstor.org/stable/2035708">Archived</a> 2016-04-12 at the <a href="/wiki/Wayback_Machine" title="Wayback Machine">Wayback Machine</a>. Proceedings of the American Mathematical Society, Vol. 20, No. 2. (Feb., 1969), p. 603.</span> </li> <li id="cite_note-FOOTNOTEBuragoBuragoIvanov20012-14"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEBuragoBuragoIvanov20012_14-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFBuragoBuragoIvanov2001">Burago, Burago & Ivanov 2001</a>, p. 2.</span> </li> <li id="cite_note-15"><span class="mw-cite-backlink"><b><a href="#cite_ref-15">^</a></b></span> <span class="reference-text"><a href="#CITEREFBuragoBuragoIvanov2001">Burago, Burago & Ivanov 2001</a>, p. 2.<br />Some authors refer to any distance-preserving function as an isometry, e.g. <a href="#CITEREFMunkres2000">Munkres 2000</a>, p. 181.</span> </li> <li id="cite_note-FOOTNOTEGromov2007xvii-16"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEGromov2007xvii_16-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFGromov2007">Gromov 2007</a>, p. xvii.</span> </li> <li id="cite_note-FOOTNOTEMargalitThomas2017-17"><span class="mw-cite-backlink">^ <a href="#cite_ref-FOOTNOTEMargalitThomas2017_17-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-FOOTNOTEMargalitThomas2017_17-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-FOOTNOTEMargalitThomas2017_17-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><a href="#CITEREFMargalitThomas2017">Margalit & Thomas 2017</a>.</span> </li> <li id="cite_note-FOOTNOTENariciBeckenstein201147–66-18"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTENariciBeckenstein201147–66_18-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFNariciBeckenstein2011">Narici & Beckenstein 2011</a>, pp. 47–66.</span> </li> <li id="cite_note-FOOTNOTEBuragoBuragoIvanov2001Definition_2.3.1-19"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEBuragoBuragoIvanov2001Definition_2.3.1_19-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFBuragoBuragoIvanov2001">Burago, Burago & Ivanov 2001</a>, Definition 2.3.1.</span> </li> <li id="cite_note-FOOTNOTEBuragoBuragoIvanov2001Definition_2.5.27-20"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEBuragoBuragoIvanov2001Definition_2.5.27_20-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFBuragoBuragoIvanov2001">Burago, Burago & Ivanov 2001</a>, Definition 2.5.27.</span> </li> <li id="cite_note-FOOTNOTEGromov2007Definition_1.9-21"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEGromov2007Definition_1.9_21-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFGromov2007">Gromov 2007</a>, Definition 1.9.</span> </li> <li id="cite_note-FOOTNOTEBuragoBuragoIvanov2001127-23"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEBuragoBuragoIvanov2001127_23-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFBuragoBuragoIvanov2001">Burago, Burago & Ivanov 2001</a>, p. 127.</span> </li> <li id="cite_note-FOOTNOTEHeinonen2007191-24"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEHeinonen2007191_24-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFHeinonen2007">Heinonen 2007</a>, p. 191.</span> </li> <li id="cite_note-25"><span class="mw-cite-backlink"><b><a href="#cite_ref-25">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGigli2018" class="citation journal cs1">Gigli, Nicola (2018-10-18). "Lecture notes on differential calculus on RCD spaces". <i>Publications of the Research Institute for Mathematical Sciences</i>. <b>54</b> (4): 855–918. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1703.06829">1703.06829</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.4171%2FPRIMS%2F54-4-4">10.4171/PRIMS/54-4-4</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:119129867">119129867</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Publications+of+the+Research+Institute+for+Mathematical+Sciences&rft.atitle=Lecture+notes+on+differential+calculus+on+RCD+spaces&rft.volume=54&rft.issue=4&rft.pages=855-918&rft.date=2018-10-18&rft_id=info%3Aarxiv%2F1703.06829&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A119129867%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.4171%2FPRIMS%2F54-4-4&rft.aulast=Gigli&rft.aufirst=Nicola&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMetric+space" class="Z3988"></span></span> </li> <li id="cite_note-26"><span class="mw-cite-backlink"><b><a href="#cite_ref-26">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLinial2003" class="citation book cs1"><a href="/wiki/Nati_Linial" title="Nati Linial">Linial, Nathan</a> (2003). "Finite metric-spaces—combinatorics, geometry and algorithms". <i>Proceedings of the ICM, Beijing 2002</i>. Vol. 3. pp. 573–586. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/math/0304466">math/0304466</a></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Finite+metric-spaces%E2%80%94combinatorics%2C+geometry+and+algorithms&rft.btitle=Proceedings+of+the+ICM%2C+Beijing+2002&rft.pages=573-586&rft.date=2003&rft_id=info%3Aarxiv%2Fmath%2F0304466&rft.aulast=Linial&rft.aufirst=Nathan&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMetric+space" class="Z3988"></span></span> </li> <li id="cite_note-27"><span class="mw-cite-backlink"><b><a href="#cite_ref-27">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBourgain1985" class="citation journal cs1"><a href="/wiki/Jean_Bourgain" title="Jean Bourgain">Bourgain, J.</a> (1985). "On lipschitz embedding of finite metric spaces in Hilbert space". <i><a href="/wiki/Israel_Journal_of_Mathematics" title="Israel Journal of Mathematics">Israel Journal of Mathematics</a></i>. <b>52</b> (1–2): 46–52. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2FBF02776078">10.1007/BF02776078</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:121649019">121649019</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Israel+Journal+of+Mathematics&rft.atitle=On+lipschitz+embedding+of+finite+metric+spaces+in+Hilbert+space&rft.volume=52&rft.issue=1%E2%80%932&rft.pages=46-52&rft.date=1985&rft_id=info%3Adoi%2F10.1007%2FBF02776078&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A121649019%23id-name%3DS2CID&rft.aulast=Bourgain&rft.aufirst=J.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMetric+space" class="Z3988"></span></span> </li> <li id="cite_note-28"><span class="mw-cite-backlink"><b><a href="#cite_ref-28">^</a></b></span> <span class="reference-text"><a href="/wiki/Ji%C5%99%C3%AD_Matou%C5%A1ek_(mathematician)" title="Jiří Matoušek (mathematician)">Jiří Matoušek</a> and <a href="/wiki/Assaf_Naor" title="Assaf Naor">Assaf Naor</a>, ed. <a rel="nofollow" class="external text" href="http://kam.mff.cuni.cz/~matousek/metrop.ps">"Open problems on embeddings of finite metric spaces"</a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20101226232112/http://kam.mff.cuni.cz/~matousek/metrop.ps">Archived</a> 2010-12-26 at the <a href="/wiki/Wayback_Machine" title="Wayback Machine">Wayback Machine</a>.</span> </li> <li id="cite_note-FOOTNOTEÓ_Searcóid2006107-29"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEÓ_Searcóid2006107_29-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFÓ_Searcóid2006">Ó Searcóid 2006</a>, p. 107.</span> </li> <li id="cite_note-30"><span class="mw-cite-backlink"><b><a href="#cite_ref-30">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGottliebSolomon2014" class="citation conference cs1">Gottlieb, Lee-Ad; Solomon, Shay (2014-06-08). <i>Light spanners for snowflake metrics</i>. SOCG '14: Proceedings of the thirtieth annual symposium on Computational geometry. pp. 387–395. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1401.5014">1401.5014</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1145%2F2582112.2582140">10.1145/2582112.2582140</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=conference&rft.btitle=Light+spanners+for+snowflake+metrics&rft.pages=387-395&rft.date=2014-06-08&rft_id=info%3Aarxiv%2F1401.5014&rft_id=info%3Adoi%2F10.1145%2F2582112.2582140&rft.aulast=Gottlieb&rft.aufirst=Lee-Ad&rft.au=Solomon%2C+Shay&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMetric+space" class="Z3988"></span></span> </li> <li id="cite_note-31"><span class="mw-cite-backlink"><b><a href="#cite_ref-31">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRobinsonFoulds1981" class="citation journal cs1">Robinson, D.F.; Foulds, L.R. (February 1981). <span class="id-lock-subscription" title="Paid subscription required"><a rel="nofollow" class="external text" href="https://linkinghub.elsevier.com/retrieve/pii/0025556481900432">"Comparison of phylogenetic trees"</a></span>. <i>Mathematical Biosciences</i>. <b>53</b> (1–2): 131–147. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2F0025-5564%2881%2990043-2">10.1016/0025-5564(81)90043-2</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:121156920">121156920</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Mathematical+Biosciences&rft.atitle=Comparison+of+phylogenetic+trees&rft.volume=53&rft.issue=1%E2%80%932&rft.pages=131-147&rft.date=1981-02&rft_id=info%3Adoi%2F10.1016%2F0025-5564%2881%2990043-2&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A121156920%23id-name%3DS2CID&rft.aulast=Robinson&rft.aufirst=D.F.&rft.au=Foulds%2C+L.R.&rft_id=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2F0025556481900432&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMetric+space" class="Z3988"></span></span> </li> <li id="cite_note-FOOTNOTEBuragoBuragoIvanov2001Definition_3.1.12-32"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEBuragoBuragoIvanov2001Definition_3.1.12_32-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFBuragoBuragoIvanov2001">Burago, Burago & Ivanov 2001</a>, Definition 3.1.12.</span> </li> <li id="cite_note-33"><span class="mw-cite-backlink"><b><a href="#cite_ref-33">^</a></b></span> <span class="reference-text">See <a href="#CITEREFBuragoBuragoIvanov2001">Burago, Burago & Ivanov 2001</a>, Example 3.1.17, although in this book the quotient <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {N} \times [0,1]/\mathbb {N} \times \{0\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">N</mi> </mrow> <mo>×<!-- × --></mo> <mo stretchy="false">[</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo stretchy="false">]</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">N</mi> </mrow> <mo>×<!-- × --></mo> <mo fence="false" stretchy="false">{</mo> <mn>0</mn> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {N} \times [0,1]/\mathbb {N} \times \{0\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/164e745a9cdb6d724c627cfb69a25fc21f4c7902" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.339ex; height:2.843ex;" alt="{\displaystyle \mathbb {N} \times [0,1]/\mathbb {N} \times \{0\}}"></span> is incorrectly claimed to be homeomorphic to the topological quotient.</span> </li> <li id="cite_note-34"><span class="mw-cite-backlink"><b><a href="#cite_ref-34">^</a></b></span> <span class="reference-text">Goreham, Anthony. <a rel="nofollow" class="external text" href="http://at.yorku.ca/p/a/a/o/51.pdf">Sequential convergence in Topological Spaces</a> <a rel="nofollow" class="external text" href="https://web.archive.org/web/20110604232111/http://at.yorku.ca/p/a/a/o/51.pdf">Archived</a> 2011-06-04 at the <a href="/wiki/Wayback_Machine" title="Wayback Machine">Wayback Machine</a>. Honours' Dissertation, Queen's College, Oxford (April, 2001), p. 14</span> </li> <li id="cite_note-FOOTNOTEHitzlerSeda2016Definition_4.3.1-35"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEHitzlerSeda2016Definition_4.3.1_35-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFHitzlerSeda2016">Hitzler & Seda 2016</a>, Definition 4.3.1.</span> </li> <li id="cite_note-FOOTNOTEHitzlerSeda2016Definition_4.2.1-36"><span class="mw-cite-backlink">^ <a href="#cite_ref-FOOTNOTEHitzlerSeda2016Definition_4.2.1_36-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-FOOTNOTEHitzlerSeda2016Definition_4.2.1_36-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><a href="#CITEREFHitzlerSeda2016">Hitzler & Seda 2016</a>, Definition 4.2.1.</span> </li> <li id="cite_note-FOOTNOTEBuragoBuragoIvanov2001Definition_1.1.4-37"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEBuragoBuragoIvanov2001Definition_1.1.4_37-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFBuragoBuragoIvanov2001">Burago, Burago & Ivanov 2001</a>, Definition 1.1.4.</span> </li> <li id="cite_note-38"><span class="mw-cite-backlink"><b><a href="#cite_ref-38">^</a></b></span> <span class="reference-text"><a href="#CITEREFSteenSeebach1995">Steen & Seebach (1995)</a>; <a href="#CITEREFSmyth1988">Smyth (1988)</a></span> </li> <li id="cite_note-39"><span class="mw-cite-backlink"><b><a href="#cite_ref-39">^</a></b></span> <span class="reference-text"><a href="#CITEREFRolewicz1987">Rolewicz (1987)</a> calls them "semimetrics". That same term is also frequently used for two other generalizations of metrics.</span> </li> <li id="cite_note-FOOTNOTEVäisälä2005-40"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEVäisälä2005_40-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFVäisälä2005">Väisälä 2005</a>.</span> </li> <li id="cite_note-41"><span class="mw-cite-backlink"><b><a href="#cite_ref-41">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="http://www.dcs.warwick.ac.uk/pmetric/">"Partial metrics: welcome"</a>. <i>www.dcs.warwick.ac.uk</i>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20170727003912/http://www.dcs.warwick.ac.uk/pmetric/">Archived</a> from the original on 2017-07-27<span class="reference-accessdate">. Retrieved <span class="nowrap">2018-05-02</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=www.dcs.warwick.ac.uk&rft.atitle=Partial+metrics%3A+welcome&rft_id=http%3A%2F%2Fwww.dcs.warwick.ac.uk%2Fpmetric%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMetric+space" class="Z3988"></span></span> </li> <li id="cite_note-42"><span class="mw-cite-backlink"><b><a href="#cite_ref-42">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBukatinKoppermanMatthewsPajoohesh2009" class="citation journal cs1">Bukatin, Michael; Kopperman, Ralph; Matthews, Steve; Pajoohesh, Homeira (2009-10-01). <a rel="nofollow" class="external text" href="https://www.dcs.warwick.ac.uk/pmetric/monthly708-718.pdf">"Partial Metric Spaces"</a> <span class="cs1-format">(PDF)</span>. <i>American Mathematical Monthly</i>. <b>116</b> (8): 708–718. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.4169%2F193009709X460831">10.4169/193009709X460831</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:13969183">13969183</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=American+Mathematical+Monthly&rft.atitle=Partial+Metric+Spaces&rft.volume=116&rft.issue=8&rft.pages=708-718&rft.date=2009-10-01&rft_id=info%3Adoi%2F10.4169%2F193009709X460831&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A13969183%23id-name%3DS2CID&rft.aulast=Bukatin&rft.aufirst=Michael&rft.au=Kopperman%2C+Ralph&rft.au=Matthews%2C+Steve&rft.au=Pajoohesh%2C+Homeira&rft_id=https%3A%2F%2Fwww.dcs.warwick.ac.uk%2Fpmetric%2Fmonthly708-718.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMetric+space" class="Z3988"></span></span> </li> <li id="cite_note-FOOTNOTEXia2009-43"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEXia2009_43-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFXia2009">Xia 2009</a>.</span> </li> <li id="cite_note-FOOTNOTEXia2008-44"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEXia2008_44-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFXia2008">Xia 2008</a>.</span> </li> <li id="cite_note-FOOTNOTEFraigniaudLebharViennot2008-45"><span class="mw-cite-backlink">^ <a href="#cite_ref-FOOTNOTEFraigniaudLebharViennot2008_45-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-FOOTNOTEFraigniaudLebharViennot2008_45-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><a href="#CITEREFFraigniaudLebharViennot2008">Fraigniaud, Lebhar & Viennot 2008</a>.</span> </li> <li id="cite_note-FOOTNOTEBuldyginKozachenko2000-46"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEBuldyginKozachenko2000_46-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFBuldyginKozachenko2000">Buldygin & Kozachenko 2000</a>.</span> </li> <li id="cite_note-FOOTNOTEHelemskii2006-47"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEHelemskii2006_47-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFHelemskii2006">Helemskii 2006</a>.</span> </li> <li id="cite_note-48"><span class="mw-cite-backlink"><b><a href="#cite_ref-48">^</a></b></span> <span class="reference-text"><a href="#CITEREFArkhangel'skiiPontryagin1990">Arkhangel'skii & Pontryagin (1990)</a>; <a href="#CITEREFAldrovandiPereira2017">Aldrovandi & Pereira (2017)</a></span> </li> <li id="cite_note-FOOTNOTEDezaLaurent1997-49"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEDezaLaurent1997_49-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFDezaLaurent1997">Deza & Laurent 1997</a>.</span> </li> <li id="cite_note-50"><span class="mw-cite-backlink"><b><a href="#cite_ref-50">^</a></b></span> <span class="reference-text"><a href="#CITEREFLawvere1973">Lawvere (1973)</a>; <a href="#CITEREFVickers2005">Vickers (2005)</a></span> </li> <li id="cite_note-FOOTNOTEVitányi2011-51"><span class="mw-cite-backlink">^ <a href="#cite_ref-FOOTNOTEVitányi2011_51-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-FOOTNOTEVitányi2011_51-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><a href="#CITEREFVitányi2011">Vitányi 2011</a>.</span> </li> <li id="cite_note-FOOTNOTECohenVitányi2012-52"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTECohenVitányi2012_52-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFCohenVitányi2012">Cohen & Vitányi 2012</a>.</span> </li> </ol></div></div> <div class="mw-heading mw-heading2"><h2 id="References">References</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Metric_space&action=edit&section=48" title="Edit section: References"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239549316">.mw-parser-output .refbegin{margin-bottom:0.5em}.mw-parser-output .refbegin-hanging-indents>ul{margin-left:0}.mw-parser-output .refbegin-hanging-indents>ul>li{margin-left:0;padding-left:3.2em;text-indent:-3.2em}.mw-parser-output .refbegin-hanging-indents ul,.mw-parser-output .refbegin-hanging-indents ul li{list-style:none}@media(max-width:720px){.mw-parser-output .refbegin-hanging-indents>ul>li{padding-left:1.6em;text-indent:-1.6em}}.mw-parser-output .refbegin-columns{margin-top:0.3em}.mw-parser-output .refbegin-columns ul{margin-top:0}.mw-parser-output .refbegin-columns li{page-break-inside:avoid;break-inside:avoid-column}@media screen{.mw-parser-output .refbegin{font-size:90%}}</style><div class="refbegin" style=""> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAldrovandiPereira2017" class="citation cs2">Aldrovandi, Ruben; Pereira, José Geraldo (2017), <a rel="nofollow" class="external text" href="https://books.google.com/books?id=NWhtDQAAQBAJ&pg=PA20"><i>An Introduction to Geometrical Physics</i></a> (2nd ed.), Hackensack, New Jersey: World Scientific, p. 20, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-981-3146-81-5" title="Special:BookSources/978-981-3146-81-5"><bdi>978-981-3146-81-5</bdi></a>, <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=3561561">3561561</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=An+Introduction+to+Geometrical+Physics&rft.place=Hackensack%2C+New+Jersey&rft.pages=20&rft.edition=2nd&rft.pub=World+Scientific&rft.date=2017&rft.isbn=978-981-3146-81-5&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D3561561%23id-name%3DMR&rft.aulast=Aldrovandi&rft.aufirst=Ruben&rft.au=Pereira%2C+Jos%C3%A9+Geraldo&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DNWhtDQAAQBAJ%26pg%3DPA20&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMetric+space" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFArkhangel'skiiPontryagin1990" class="citation cs2"><a href="/wiki/Alexander_Arhangelskii" title="Alexander Arhangelskii">Arkhangel'skii, A. V.</a>; <a href="/wiki/Lev_Pontryagin" title="Lev Pontryagin">Pontryagin, L. S.</a> (1990), <i>General Topology I: Basic Concepts and Constructions Dimension Theory</i>, Encyclopaedia of Mathematical Sciences, <a href="/wiki/Springer_Science%2BBusiness_Media" title="Springer Science+Business Media">Springer</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/3-540-18178-4" title="Special:BookSources/3-540-18178-4"><bdi>3-540-18178-4</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=General+Topology+I%3A+Basic+Concepts+and+Constructions+Dimension+Theory&rft.series=Encyclopaedia+of+Mathematical+Sciences&rft.pub=Springer&rft.date=1990&rft.isbn=3-540-18178-4&rft.aulast=Arkhangel%27skii&rft.aufirst=A.+V.&rft.au=Pontryagin%2C+L.+S.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMetric+space" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBryant1985" class="citation book cs1">Bryant, Victor (1985). <i>Metric spaces: Iteration and application</i>. Cambridge University Press. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-521-31897-1" title="Special:BookSources/0-521-31897-1"><bdi>0-521-31897-1</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Metric+spaces%3A+Iteration+and+application&rft.pub=Cambridge+University+Press&rft.date=1985&rft.isbn=0-521-31897-1&rft.aulast=Bryant&rft.aufirst=Victor&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMetric+space" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBuldyginKozachenko2000" class="citation cs2">Buldygin, V. V.; Kozachenko, Yu. V. (2000), <span class="id-lock-subscription" title="Paid subscription required"><a rel="nofollow" class="external text" href="https://books.google.com/books?id=ePDXvIhdEjoC&pg=PA129"><i>Metric Characterization of Random Variables and Random Processes</i></a></span>, Translations of Mathematical Monographs, vol. 188, Providence, Rhode Island: American Mathematical Society, p. 129, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1090%2Fmmono%2F188">10.1090/mmono/188</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-8218-0533-9" title="Special:BookSources/0-8218-0533-9"><bdi>0-8218-0533-9</bdi></a>, <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=1743716">1743716</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Metric+Characterization+of+Random+Variables+and+Random+Processes&rft.place=Providence%2C+Rhode+Island&rft.series=Translations+of+Mathematical+Monographs&rft.pages=129&rft.pub=American+Mathematical+Society&rft.date=2000&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D1743716%23id-name%3DMR&rft_id=info%3Adoi%2F10.1090%2Fmmono%2F188&rft.isbn=0-8218-0533-9&rft.aulast=Buldygin&rft.aufirst=V.+V.&rft.au=Kozachenko%2C+Yu.+V.&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DePDXvIhdEjoC%26pg%3DPA129&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMetric+space" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBuragoBuragoIvanov2001" class="citation book cs1"><a href="/wiki/Dmitri_Burago" title="Dmitri Burago">Burago, Dmitri</a>; <a href="/wiki/Yuri_Dmitrievich_Burago" class="mw-redirect" title="Yuri Dmitrievich Burago">Burago, Yuri</a>; <a href="/wiki/Sergei_Ivanov_(mathematician)" title="Sergei Ivanov (mathematician)">Ivanov, Sergei</a> (2001). <i>A course in metric geometry</i>. Providence, RI: American Mathematical Society. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-8218-2129-6" title="Special:BookSources/0-8218-2129-6"><bdi>0-8218-2129-6</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=A+course+in+metric+geometry&rft.place=Providence%2C+RI&rft.pub=American+Mathematical+Society&rft.date=2001&rft.isbn=0-8218-2129-6&rft.aulast=Burago&rft.aufirst=Dmitri&rft.au=Burago%2C+Yuri&rft.au=Ivanov%2C+Sergei&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMetric+space" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFČech1969" class="citation book cs1"><a href="/wiki/Eduard_%C4%8Cech" title="Eduard Čech">Čech, Eduard</a> (1969). <i>Point Sets</i>. Academic Press. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0121648508" title="Special:BookSources/0121648508"><bdi>0121648508</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Point+Sets&rft.pub=Academic+Press&rft.date=1969&rft.isbn=0121648508&rft.aulast=%C4%8Cech&rft.aufirst=Eduard&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMetric+space" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCohenVitányi2012" class="citation cs2">Cohen, Andrew R.; <a href="/wiki/Paul_Vit%C3%A1nyi" title="Paul Vitányi">Vitányi, Paul M. B.</a> (2012), "Normalized compression distance of multisets with applications", <i>IEEE Transactions on Pattern Analysis and Machine Intelligence</i>, <b>37</b> (8): 1602–1614, <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1212.5711">1212.5711</a></span>, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1109%2FTPAMI.2014.2375175">10.1109/TPAMI.2014.2375175</a>, <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4566858">4566858</a></span>, <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/26352998">26352998</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=IEEE+Transactions+on+Pattern+Analysis+and+Machine+Intelligence&rft.atitle=Normalized+compression+distance+of+multisets+with+applications&rft.volume=37&rft.issue=8&rft.pages=1602-1614&rft.date=2012&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC4566858%23id-name%3DPMC&rft_id=info%3Apmid%2F26352998&rft_id=info%3Aarxiv%2F1212.5711&rft_id=info%3Adoi%2F10.1109%2FTPAMI.2014.2375175&rft.aulast=Cohen&rft.aufirst=Andrew+R.&rft.au=Vit%C3%A1nyi%2C+Paul+M.+B.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMetric+space" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDezaLaurent1997" class="citation cs2"><a href="/wiki/Michel_Deza" title="Michel Deza">Deza, Michel Marie</a>; <a href="/wiki/Monique_Laurent" title="Monique Laurent">Laurent, Monique</a> (1997), <a rel="nofollow" class="external text" href="https://books.google.com/books?id=XujvCAAAQBAJ&pg=PA27"><i>Geometry of Cuts and Metrics</i></a>, Algorithms and Combinatorics, vol. 15, Springer-Verlag, Berlin, p. 27, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2F978-3-642-04295-9">10.1007/978-3-642-04295-9</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/3-540-61611-X" title="Special:BookSources/3-540-61611-X"><bdi>3-540-61611-X</bdi></a>, <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=1460488">1460488</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Geometry+of+Cuts+and+Metrics&rft.series=Algorithms+and+Combinatorics&rft.pages=27&rft.pub=Springer-Verlag%2C+Berlin&rft.date=1997&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D1460488%23id-name%3DMR&rft_id=info%3Adoi%2F10.1007%2F978-3-642-04295-9&rft.isbn=3-540-61611-X&rft.aulast=Deza&rft.aufirst=Michel+Marie&rft.au=Laurent%2C+Monique&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DXujvCAAAQBAJ%26pg%3DPA27&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMetric+space" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFraigniaudLebharViennot2008" class="citation cs2">Fraigniaud, P.; Lebhar, E.; Viennot, L. (2008), "The inframetric model for the internet", <i>2008 IEEE INFOCOM - The 27th Conference on Computer Communications</i>, pp. 1085–1093, <a href="/wiki/CiteSeerX_(identifier)" class="mw-redirect" title="CiteSeerX (identifier)">CiteSeerX</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.113.6748">10.1.1.113.6748</a></span>, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1109%2FINFOCOM.2008.163">10.1109/INFOCOM.2008.163</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-1-4244-2026-1" title="Special:BookSources/978-1-4244-2026-1"><bdi>978-1-4244-2026-1</bdi></a>, <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:5733968">5733968</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=The+inframetric+model+for+the+internet&rft.btitle=2008+IEEE+INFOCOM+-+The+27th+Conference+on+Computer+Communications&rft.pages=1085-1093&rft.date=2008&rft_id=https%3A%2F%2Fciteseerx.ist.psu.edu%2Fviewdoc%2Fsummary%3Fdoi%3D10.1.1.113.6748%23id-name%3DCiteSeerX&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A5733968%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1109%2FINFOCOM.2008.163&rft.isbn=978-1-4244-2026-1&rft.aulast=Fraigniaud&rft.aufirst=P.&rft.au=Lebhar%2C+E.&rft.au=Viennot%2C+L.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMetric+space" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGromov2007" class="citation book cs1"><a href="/wiki/Mikhael_Gromov_(mathematician)" title="Mikhael Gromov (mathematician)">Gromov, Mikhael</a> (2007). <a href="/wiki/Metric_Structures_for_Riemannian_and_Non-Riemannian_Spaces" title="Metric Structures for Riemannian and Non-Riemannian Spaces"><i>Metric structures for Riemannian and non-Riemannian spaces</i></a>. Boston: Birkhäuser. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-8176-4582-3" title="Special:BookSources/978-0-8176-4582-3"><bdi>978-0-8176-4582-3</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Metric+structures+for+Riemannian+and+non-Riemannian+spaces&rft.place=Boston&rft.pub=Birkh%C3%A4user&rft.date=2007&rft.isbn=978-0-8176-4582-3&rft.aulast=Gromov&rft.aufirst=Mikhael&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMetric+space" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHeinonen2001" class="citation book cs1"><a href="/wiki/Juha_Heinonen" title="Juha Heinonen">Heinonen, Juha</a> (2001). <i>Lectures on analysis on metric spaces</i>. New York: Springer. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-387-95104-0" title="Special:BookSources/0-387-95104-0"><bdi>0-387-95104-0</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Lectures+on+analysis+on+metric+spaces&rft.place=New+York&rft.pub=Springer&rft.date=2001&rft.isbn=0-387-95104-0&rft.aulast=Heinonen&rft.aufirst=Juha&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMetric+space" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHeinonen2007" class="citation journal cs1"><a href="/wiki/Juha_Heinonen" title="Juha Heinonen">Heinonen, Juha</a> (2007-01-24). <a rel="nofollow" class="external text" href="https://doi.org/10.1090%2FS0273-0979-07-01140-8">"Nonsmooth calculus"</a>. <i>Bulletin of the American Mathematical Society</i>. <b>44</b> (2): 163–232. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1090%2FS0273-0979-07-01140-8">10.1090/S0273-0979-07-01140-8</a></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Bulletin+of+the+American+Mathematical+Society&rft.atitle=Nonsmooth+calculus&rft.volume=44&rft.issue=2&rft.pages=163-232&rft.date=2007-01-24&rft_id=info%3Adoi%2F10.1090%2FS0273-0979-07-01140-8&rft.aulast=Heinonen&rft.aufirst=Juha&rft_id=https%3A%2F%2Fdoi.org%2F10.1090%252FS0273-0979-07-01140-8&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMetric+space" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHelemskii2006" class="citation cs2">Helemskii, A. Ya. (2006), <a rel="nofollow" class="external text" href="https://books.google.com/books?id=wjzZCLzx6hUC&pg=PA14"><i>Lectures and Exercises on Functional Analysis</i></a>, Translations of Mathematical Monographs, vol. 233, Providence, Rhode Island: American Mathematical Society, p. 14, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1090%2Fmmono%2F233">10.1090/mmono/233</a></span>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-8218-4098-6" title="Special:BookSources/978-0-8218-4098-6"><bdi>978-0-8218-4098-6</bdi></a>, <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=2248303">2248303</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Lectures+and+Exercises+on+Functional+Analysis&rft.place=Providence%2C+Rhode+Island&rft.series=Translations+of+Mathematical+Monographs&rft.pages=14&rft.pub=American+Mathematical+Society&rft.date=2006&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D2248303%23id-name%3DMR&rft_id=info%3Adoi%2F10.1090%2Fmmono%2F233&rft.isbn=978-0-8218-4098-6&rft.aulast=Helemskii&rft.aufirst=A.+Ya.&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DwjzZCLzx6hUC%26pg%3DPA14&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMetric+space" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHitzlerSeda2016" class="citation book cs1"><a href="/wiki/Pascal_Hitzler" title="Pascal Hitzler">Hitzler, Pascal</a>; Seda, Anthony (2016-04-19). <a rel="nofollow" class="external text" href="https://library.oapen.org/handle/20.500.12657/40111"><i>Mathematical Aspects of Logic Programming Semantics</i></a>. CRC Press. <a href="/wiki/Hdl_(identifier)" class="mw-redirect" title="Hdl (identifier)">hdl</a>:<a rel="nofollow" class="external text" href="https://hdl.handle.net/20.500.12657%2F40111">20.500.12657/40111</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-1-4398-2962-2" title="Special:BookSources/978-1-4398-2962-2"><bdi>978-1-4398-2962-2</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Mathematical+Aspects+of+Logic+Programming+Semantics&rft.pub=CRC+Press&rft.date=2016-04-19&rft_id=info%3Ahdl%2F20.500.12657%2F40111&rft.isbn=978-1-4398-2962-2&rft.aulast=Hitzler&rft.aufirst=Pascal&rft.au=Seda%2C+Anthony&rft_id=https%3A%2F%2Flibrary.oapen.org%2Fhandle%2F20.500.12657%2F40111&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMetric+space" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLawvere1973" class="citation journal cs1">Lawvere, F. William (December 1973). "Metric spaces, generalized logic, and closed categories". <i>Rendiconti del Seminario Matematico e Fisico di Milano</i>. <b>43</b> (1): 135–166. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2FBF02924844">10.1007/BF02924844</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:1845177">1845177</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Rendiconti+del+Seminario+Matematico+e+Fisico+di+Milano&rft.atitle=Metric+spaces%2C+generalized+logic%2C+and+closed+categories&rft.volume=43&rft.issue=1&rft.pages=135-166&rft.date=1973-12&rft_id=info%3Adoi%2F10.1007%2FBF02924844&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A1845177%23id-name%3DS2CID&rft.aulast=Lawvere&rft.aufirst=F.+William&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMetric+space" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMargalitThomas2017" class="citation book cs1"><a href="/wiki/Dan_Margalit_(mathematician)" title="Dan Margalit (mathematician)">Margalit, Dan</a>; Thomas, Anne (2017). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=UV3yDQAAQBAJ&pg=PA125">"Office Hour 7. Quasi-isometries"</a>. <i>Office hours with a geometric group theorist</i>. Princeton University Press. pp. 125–145. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-1-4008-8539-8" title="Special:BookSources/978-1-4008-8539-8"><bdi>978-1-4008-8539-8</bdi></a>. <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a> <a rel="nofollow" class="external text" href="https://www.jstor.org/stable/j.ctt1vwmg8g.11">j.ctt1vwmg8g.11</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Office+Hour+7.+Quasi-isometries&rft.btitle=Office+hours+with+a+geometric+group+theorist&rft.pages=125-145&rft.pub=Princeton+University+Press&rft.date=2017&rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2Fj.ctt1vwmg8g.11%23id-name%3DJSTOR&rft.isbn=978-1-4008-8539-8&rft.aulast=Margalit&rft.aufirst=Dan&rft.au=Thomas%2C+Anne&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DUV3yDQAAQBAJ%26pg%3DPA125&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMetric+space" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMunkres2000" class="citation book cs1"><a href="/wiki/James_Munkres" title="James Munkres">Munkres, James R.</a> (2000). <i>Topology</i> (Second ed.). <a href="/wiki/Upper_Saddle_River,_NJ" class="mw-redirect" title="Upper Saddle River, NJ">Upper Saddle River, NJ</a>: <a href="/wiki/Prentice_Hall,_Inc" class="mw-redirect" title="Prentice Hall, Inc">Prentice Hall, Inc</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-13-181629-9" title="Special:BookSources/978-0-13-181629-9"><bdi>978-0-13-181629-9</bdi></a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/42683260">42683260</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Topology&rft.place=Upper+Saddle+River%2C+NJ&rft.edition=Second&rft.pub=Prentice+Hall%2C+Inc&rft.date=2000&rft_id=info%3Aoclcnum%2F42683260&rft.isbn=978-0-13-181629-9&rft.aulast=Munkres&rft.aufirst=James+R.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMetric+space" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFNariciBeckenstein2011" class="citation book cs2">Narici, Lawrence; Beckenstein, Edward (2011), <i>Topological Vector Spaces</i>, Pure and applied mathematics (Second ed.), Boca Raton, FL: CRC Press, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-1584888666" title="Special:BookSources/978-1584888666"><bdi>978-1584888666</bdi></a>, <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/144216834">144216834</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Topological+Vector+Spaces&rft.place=Boca+Raton%2C+FL&rft.series=Pure+and+applied+mathematics&rft.edition=Second&rft.pub=CRC+Press&rft.date=2011&rft_id=info%3Aoclcnum%2F144216834&rft.isbn=978-1584888666&rft.aulast=Narici&rft.aufirst=Lawrence&rft.au=Beckenstein%2C+Edward&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMetric+space" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFÓ_Searcóid2006" class="citation book cs1">Ó Searcóid, Mícheál (2006). <i>Metric spaces</i>. London: Springer. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/1-84628-369-8" title="Special:BookSources/1-84628-369-8"><bdi>1-84628-369-8</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Metric+spaces&rft.place=London&rft.pub=Springer&rft.date=2006&rft.isbn=1-84628-369-8&rft.aulast=%C3%93+Searc%C3%B3id&rft.aufirst=M%C3%ADche%C3%A1l&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMetric+space" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPapadopoulos2014" class="citation book cs1">Papadopoulos, Athanase (2014). <i>Metric spaces, convexity, and non-positive curvature</i> (Second ed.). Zürich, Switzerland: <a href="/wiki/European_Mathematical_Society" title="European Mathematical Society">European Mathematical Society</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-3-03719-132-3" title="Special:BookSources/978-3-03719-132-3"><bdi>978-3-03719-132-3</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Metric+spaces%2C+convexity%2C+and+non-positive+curvature&rft.place=Z%C3%BCrich%2C+Switzerland&rft.edition=Second&rft.pub=European+Mathematical+Society&rft.date=2014&rft.isbn=978-3-03719-132-3&rft.aulast=Papadopoulos&rft.aufirst=Athanase&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMetric+space" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRolewicz1987" class="citation book cs1">Rolewicz, Stefan (1987). <i>Functional Analysis and Control Theory: Linear Systems</i>. <a href="/wiki/Springer_Science%2BBusiness_Media" title="Springer Science+Business Media">Springer</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/90-277-2186-6" title="Special:BookSources/90-277-2186-6"><bdi>90-277-2186-6</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Functional+Analysis+and+Control+Theory%3A+Linear+Systems&rft.pub=Springer&rft.date=1987&rft.isbn=90-277-2186-6&rft.aulast=Rolewicz&rft.aufirst=Stefan&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMetric+space" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRudin1976" class="citation book cs1"><a href="/wiki/Walter_Rudin" title="Walter Rudin">Rudin, Walter</a> (1976). <a href="/wiki/Principles_of_Mathematical_Analysis" title="Principles of Mathematical Analysis"><i>Principles of Mathematical Analysis</i></a> (Third ed.). New York: McGraw-Hill. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-07-054235-X" title="Special:BookSources/0-07-054235-X"><bdi>0-07-054235-X</bdi></a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/1502474">1502474</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Principles+of+Mathematical+Analysis&rft.place=New+York&rft.edition=Third&rft.pub=McGraw-Hill&rft.date=1976&rft_id=info%3Aoclcnum%2F1502474&rft.isbn=0-07-054235-X&rft.aulast=Rudin&rft.aufirst=Walter&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMetric+space" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSmyth1988" class="citation cs2">Smyth, M. (1988), "Quasi uniformities: reconciling domains with metric spaces", in Main, M.; Melton, A.; Mislove, M.; Schmidt, D. (eds.), <i>Mathematical Foundations of Programming Language Semantics</i>, Lecture Notes in Computer Science, vol. 298, Springer-Verlag, pp. 236–253, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2F3-540-19020-1_12">10.1007/3-540-19020-1_12</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-3-540-19020-2" title="Special:BookSources/978-3-540-19020-2"><bdi>978-3-540-19020-2</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Quasi+uniformities%3A+reconciling+domains+with+metric+spaces&rft.btitle=Mathematical+Foundations+of+Programming+Language+Semantics&rft.series=Lecture+Notes+in+Computer+Science&rft.pages=236-253&rft.pub=Springer-Verlag&rft.date=1988&rft_id=info%3Adoi%2F10.1007%2F3-540-19020-1_12&rft.isbn=978-3-540-19020-2&rft.aulast=Smyth&rft.aufirst=M.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMetric+space" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSteenSeebach1995" class="citation book cs1">Steen, Lynn Arthur; Seebach, J. Arthur Jr. (1995) [1978]. <a href="/wiki/Counterexamples_in_Topology" title="Counterexamples in Topology"><i>Counterexamples in Topology</i></a>. <a href="/wiki/Dover_Publications" title="Dover Publications">Dover</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-486-68735-3" title="Special:BookSources/978-0-486-68735-3"><bdi>978-0-486-68735-3</bdi></a>. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=0507446">0507446</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Counterexamples+in+Topology&rft.pub=Dover&rft.date=1995&rft.isbn=978-0-486-68735-3&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D507446%23id-name%3DMR&rft.aulast=Steen&rft.aufirst=Lynn+Arthur&rft.au=Seebach%2C+J.+Arthur+Jr.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMetric+space" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFVitányi2011" class="citation journal cs1"><a href="/wiki/Paul_Vit%C3%A1nyi" title="Paul Vitányi">Vitányi, Paul M. B.</a> (2011). "Information distance in multiples". <i>IEEE Transactions on Information Theory</i>. <b>57</b> (4): 2451–2456. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/0905.3347">0905.3347</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1109%2FTIT.2011.2110130">10.1109/TIT.2011.2110130</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:6302496">6302496</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=IEEE+Transactions+on+Information+Theory&rft.atitle=Information+distance+in+multiples&rft.volume=57&rft.issue=4&rft.pages=2451-2456&rft.date=2011&rft_id=info%3Aarxiv%2F0905.3347&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A6302496%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1109%2FTIT.2011.2110130&rft.aulast=Vit%C3%A1nyi&rft.aufirst=Paul+M.+B.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMetric+space" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFVäisälä2005" class="citation journal cs1">Väisälä, Jussi (2005). <a rel="nofollow" class="external text" href="http://www.helsinki.fi/~jvaisala/grobok.pdf">"Gromov hyperbolic spaces"</a> <span class="cs1-format">(PDF)</span>. <i>Expositiones Mathematicae</i>. <b>23</b> (3): 187–231. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.exmath.2005.01.010">10.1016/j.exmath.2005.01.010</a></span>. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=2164775">2164775</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Expositiones+Mathematicae&rft.atitle=Gromov+hyperbolic+spaces&rft.volume=23&rft.issue=3&rft.pages=187-231&rft.date=2005&rft_id=info%3Adoi%2F10.1016%2Fj.exmath.2005.01.010&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D2164775%23id-name%3DMR&rft.aulast=V%C3%A4is%C3%A4l%C3%A4&rft.aufirst=Jussi&rft_id=http%3A%2F%2Fwww.helsinki.fi%2F~jvaisala%2Fgrobok.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMetric+space" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFVickers2005" class="citation journal cs1">Vickers, Steven (2005). <a rel="nofollow" class="external text" href="https://www.tac.mta.ca/tac/volumes/14/15/14-15abs.html">"Localic completion of generalized metric spaces, I"</a>. <i>Theory and Applications of Categories</i>. <b>14</b> (15): 328–356. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=2182680">2182680</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Theory+and+Applications+of+Categories&rft.atitle=Localic+completion+of+generalized+metric+spaces%2C+I&rft.volume=14&rft.issue=15&rft.pages=328-356&rft.date=2005&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D2182680%23id-name%3DMR&rft.aulast=Vickers&rft.aufirst=Steven&rft_id=https%3A%2F%2Fwww.tac.mta.ca%2Ftac%2Fvolumes%2F14%2F15%2F14-15abs.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMetric+space" class="Z3988"></span></li> <li><span class="citation mathworld" id="Reference-Mathworld-Product_Metric"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWeisstein" class="citation web cs1"><a href="/wiki/Eric_W._Weisstein" title="Eric W. Weisstein">Weisstein, Eric W.</a> <a rel="nofollow" class="external text" href="https://mathworld.wolfram.com/ProductMetric.html">"Product Metric"</a>. <i><a href="/wiki/MathWorld" title="MathWorld">MathWorld</a></i>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=MathWorld&rft.atitle=Product+Metric&rft.au=Weisstein%2C+Eric+W.&rft_id=https%3A%2F%2Fmathworld.wolfram.com%2FProductMetric.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMetric+space" class="Z3988"></span></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFXia2008" class="citation journal cs1">Xia, Qinglan (2008). "The geodesic problem in nearmetric spaces". <i>Journal of Geometric Analysis</i>. <b>19</b> (2): 452–479. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/0807.3377">0807.3377</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fs12220-008-9065-4">10.1007/s12220-008-9065-4</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:17475581">17475581</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+Geometric+Analysis&rft.atitle=The+geodesic+problem+in+nearmetric+spaces&rft.volume=19&rft.issue=2&rft.pages=452-479&rft.date=2008&rft_id=info%3Aarxiv%2F0807.3377&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A17475581%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1007%2Fs12220-008-9065-4&rft.aulast=Xia&rft.aufirst=Qinglan&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMetric+space" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFXia2009" class="citation journal cs1">Xia, Q. (2009). "The geodesic problem in quasimetric spaces". <i>Journal of Geometric Analysis</i>. <b>19</b> (2): 452–479. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/0807.3377">0807.3377</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fs12220-008-9065-4">10.1007/s12220-008-9065-4</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:17475581">17475581</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+Geometric+Analysis&rft.atitle=The+geodesic+problem+in+quasimetric+spaces&rft.volume=19&rft.issue=2&rft.pages=452-479&rft.date=2009&rft_id=info%3Aarxiv%2F0807.3377&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A17475581%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1007%2Fs12220-008-9065-4&rft.aulast=Xia&rft.aufirst=Q.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMetric+space" class="Z3988"></span></li></ul> </div> <div class="mw-heading mw-heading2"><h2 id="External_links">External links</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Metric_space&action=edit&section=49" title="Edit section: External links"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation cs2"><a rel="nofollow" class="external text" href="https://www.encyclopediaofmath.org/index.php?title=Metric_space">"Metric space"</a>, <i><a href="/wiki/Encyclopedia_of_Mathematics" title="Encyclopedia of Mathematics">Encyclopedia of Mathematics</a></i>, <a href="/wiki/European_Mathematical_Society" title="European Mathematical Society">EMS Press</a>, 2001 [1994]</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Metric+space&rft.btitle=Encyclopedia+of+Mathematics&rft.pub=EMS+Press&rft.date=2001&rft_id=https%3A%2F%2Fwww.encyclopediaofmath.org%2Findex.php%3Ftitle%3DMetric_space&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMetric+space" class="Z3988"></span></li> <li><a rel="nofollow" class="external text" href="http://www.cut-the-knot.org/do_you_know/far_near.shtml">Far and near—several examples of distance functions</a> at <a href="/wiki/Cut-the-knot" class="mw-redirect" title="Cut-the-knot">cut-the-knot</a>.</li></ul> <div class="navbox-styles"><style data-mw-deduplicate="TemplateStyles:r1129693374">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><style data-mw-deduplicate="TemplateStyles:r1236075235">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{line-height:1.5em;border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}body.skin--responsive .mw-parser-output .navbox-image img{max-width:none!important}@media print{body.ns-0 .mw-parser-output .navbox{display:none!important}}</style></div><div role="navigation" class="navbox" aria-labelledby="Topology" style="padding:3px"><table class="nowraplinks hlist mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="3"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1239400231">.mw-parser-output .navbar{display:inline;font-size:88%;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar a>span,.mw-parser-output .navbar a>abbr{text-decoration:inherit}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}html.skin-theme-clientpref-night .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}@media(prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}}@media print{.mw-parser-output .navbar{display:none!important}}</style><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Topology" title="Template:Topology"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Topology" title="Template talk:Topology"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Topology" title="Special:EditPage/Template:Topology"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Topology" style="font-size:114%;margin:0 4em"><a href="/wiki/Topology" title="Topology">Topology</a></div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%;background:#e5e5ff;">Fields</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/General_topology" title="General topology">General (point-set)</a></li> <li><a href="/wiki/Algebraic_topology" title="Algebraic topology">Algebraic</a></li> <li><a href="/wiki/Combinatorial_topology" title="Combinatorial topology">Combinatorial</a></li> <li><a href="/wiki/Continuum_(topology)" title="Continuum (topology)">Continuum</a></li> <li><a href="/wiki/Differential_topology" title="Differential topology">Differential</a></li> <li><a href="/wiki/Geometric_topology" title="Geometric topology">Geometric</a> <ul><li><a href="/wiki/Low-dimensional_topology" title="Low-dimensional topology">low-dimensional</a></li></ul></li> <li><a href="/wiki/Homology_(mathematics)" title="Homology (mathematics)">Homology</a> <ul><li><a href="/wiki/Cohomology" title="Cohomology">cohomology</a></li></ul></li> <li><a href="/wiki/Set-theoretic_topology" title="Set-theoretic topology">Set-theoretic</a></li> <li><a href="/wiki/Digital_topology" title="Digital topology">Digital</a></li></ul> </div></td><td class="noviewer navbox-image" rowspan="4" style="width:1px;padding:0 0 0 2px"><div><span typeof="mw:File"><a href="/wiki/Klein_bottle" title="Klein bottle"><img alt="Computer graphics rendering of a Klein bottle" src="//upload.wikimedia.org/wikipedia/commons/thumb/b/b9/Kleinsche_Flasche.png/60px-Kleinsche_Flasche.png" decoding="async" width="60" height="80" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/b/b9/Kleinsche_Flasche.png/90px-Kleinsche_Flasche.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/b/b9/Kleinsche_Flasche.png/120px-Kleinsche_Flasche.png 2x" data-file-width="1171" data-file-height="1561" /></a></span></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;background:#e5e5ff;">Key concepts</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Open_set" title="Open set">Open set</a> / <a href="/wiki/Closed_set" title="Closed set">Closed set</a></li> <li><a href="/wiki/Interior_(topology)" title="Interior (topology)">Interior</a></li> <li><a href="/wiki/Continuity_(topology)" class="mw-redirect" title="Continuity (topology)">Continuity</a></li> <li><a href="/wiki/Topological_space" title="Topological space">Space</a> <ul><li><a href="/wiki/Compact_space" title="Compact space">compact</a></li> <li><a href="/wiki/Connected_space" title="Connected space">connected</a></li> <li><a href="/wiki/Hausdorff_space" title="Hausdorff space">Hausdorff</a></li> <li><a class="mw-selflink selflink">metric</a></li> <li><a href="/wiki/Uniform_space" title="Uniform space">uniform</a></li></ul></li> <li><a href="/wiki/Homotopy" title="Homotopy">Homotopy</a> <ul><li><a href="/wiki/Homotopy_group" title="Homotopy group">homotopy group</a></li> <li><a href="/wiki/Fundamental_group" title="Fundamental group">fundamental group</a></li></ul></li> <li><a href="/wiki/Simplicial_complex" title="Simplicial complex">Simplicial complex</a></li> <li><a href="/wiki/CW_complex" title="CW complex">CW complex</a></li> <li><a href="/wiki/Polyhedral_complex" title="Polyhedral complex">Polyhedral complex</a></li> <li><a href="/wiki/Manifold" title="Manifold">Manifold</a></li> <li><a href="/wiki/Bundle_(mathematics)" title="Bundle (mathematics)">Bundle (mathematics)</a></li> <li><a href="/wiki/Second-countable_space" title="Second-countable space">Second-countable space</a></li> <li><a href="/wiki/Cobordism" title="Cobordism">Cobordism</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;background:#e5e5ff;">Metrics and properties</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Euler_characteristic" title="Euler characteristic">Euler characteristic</a></li> <li><a href="/wiki/Betti_number" title="Betti number">Betti number</a></li> <li><a href="/wiki/Winding_number" title="Winding number">Winding number</a></li> <li><a href="/wiki/Chern_class" title="Chern class">Chern number</a></li> <li><a href="/wiki/Orientability" title="Orientability">Orientability</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;background:#e5e5ff;"><a href="/wiki/Category:Theorems_in_topology" title="Category:Theorems in topology">Key results</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Banach_fixed-point_theorem" title="Banach fixed-point theorem">Banach fixed-point theorem</a></li> <li><a href="/wiki/De_Rham_cohomology" title="De Rham cohomology">De Rham cohomology</a></li> <li><a href="/wiki/Invariance_of_domain" title="Invariance of domain">Invariance of domain</a></li> <li><a href="/wiki/Poincar%C3%A9_conjecture" title="Poincaré conjecture">Poincaré conjecture</a></li> <li><a href="/wiki/Tychonoff%27s_theorem" title="Tychonoff's theorem">Tychonoff's theorem</a></li> <li><a href="/wiki/Urysohn%27s_lemma" title="Urysohn's lemma">Urysohn's lemma</a></li></ul> </div></td></tr><tr><td class="navbox-abovebelow" colspan="3"><div> <ul><li><span class="noviewer" typeof="mw:File"><span title="Category"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/16px-Symbol_category_class.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/23px-Symbol_category_class.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/31px-Symbol_category_class.svg.png 2x" data-file-width="180" data-file-height="185" /></span></span> <a href="/wiki/Category:Topology" title="Category:Topology">Category</a></li> <li><span class="nowrap"><span class="noviewer" typeof="mw:File"><a href="/wiki/File:Nuvola_apps_edu_mathematics_blue-p.svg" class="mw-file-description"><img alt="icon" src="//upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Nuvola_apps_edu_mathematics_blue-p.svg/28px-Nuvola_apps_edu_mathematics_blue-p.svg.png" decoding="async" width="28" height="28" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Nuvola_apps_edu_mathematics_blue-p.svg/42px-Nuvola_apps_edu_mathematics_blue-p.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Nuvola_apps_edu_mathematics_blue-p.svg/56px-Nuvola_apps_edu_mathematics_blue-p.svg.png 2x" data-file-width="128" data-file-height="128" /></a></span> </span><a href="/wiki/Portal:Mathematics" title="Portal:Mathematics">Mathematics portal</a></li> <li><span class="noviewer" typeof="mw:File"><a href="/wiki/File:Wikibooks-logo.svg" class="mw-file-description" title="Wikibooks page"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/f/fa/Wikibooks-logo.svg/16px-Wikibooks-logo.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/fa/Wikibooks-logo.svg/24px-Wikibooks-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/fa/Wikibooks-logo.svg/32px-Wikibooks-logo.svg.png 2x" data-file-width="300" data-file-height="300" /></a></span> <a href="https://en.wikibooks.org/wiki/Topology" class="extiw" title="wikibooks:Topology">Wikibook</a></li> <li><span class="noviewer" typeof="mw:File"><a href="/wiki/File:Wikiversity_logo_2017.svg" class="mw-file-description" title="Wikiversity page"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/0/0b/Wikiversity_logo_2017.svg/16px-Wikiversity_logo_2017.svg.png" decoding="async" width="16" height="13" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/0/0b/Wikiversity_logo_2017.svg/24px-Wikiversity_logo_2017.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/0/0b/Wikiversity_logo_2017.svg/32px-Wikiversity_logo_2017.svg.png 2x" data-file-width="626" data-file-height="512" /></a></span> <a href="https://en.wikiversity.org/wiki/Topology" class="extiw" title="wikiversity:Topology">Wikiversity</a></li> <li><span class="noviewer" typeof="mw:File"><span title="List-Class article"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/d/db/Symbol_list_class.svg/16px-Symbol_list_class.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/d/db/Symbol_list_class.svg/23px-Symbol_list_class.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/d/db/Symbol_list_class.svg/31px-Symbol_list_class.svg.png 2x" data-file-width="180" data-file-height="185" /></span></span> <a href="/wiki/List_of_topology_topics" title="List of topology topics">Topics</a> <ul><li><a href="/wiki/List_of_general_topology_topics" title="List of general topology topics">general</a></li> <li><a href="/wiki/List_of_algebraic_topology_topics" title="List of algebraic topology topics">algebraic</a></li> <li><a href="/wiki/List_of_geometric_topology_topics" title="List of geometric topology topics">geometric</a></li></ul></li> <li><span class="noviewer" typeof="mw:File"><span title="List-Class article"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/d/db/Symbol_list_class.svg/16px-Symbol_list_class.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/d/db/Symbol_list_class.svg/23px-Symbol_list_class.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/d/db/Symbol_list_class.svg/31px-Symbol_list_class.svg.png 2x" data-file-width="180" data-file-height="185" /></span></span> <a href="/wiki/List_of_important_publications_in_mathematics#Topology" title="List of important publications in mathematics">Publications</a></li></ul> </div></td></tr></tbody></table></div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236075235"><style data-mw-deduplicate="TemplateStyles:r1038841319">.mw-parser-output .tooltip-dotted{border-bottom:1px dotted;cursor:help}</style><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1038841319"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1038841319"></div><div role="navigation" class="navbox authority-control" aria-labelledby="Authority_control_databases_frameless&#124;text-top&#124;10px&#124;alt=Edit_this_at_Wikidata&#124;link=https&#58;//www.wikidata.org/wiki/Q180953#identifiers&#124;class=noprint&#124;Edit_this_at_Wikidata" style="padding:3px"><table class="nowraplinks hlist mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><div id="Authority_control_databases_frameless&#124;text-top&#124;10px&#124;alt=Edit_this_at_Wikidata&#124;link=https&#58;//www.wikidata.org/wiki/Q180953#identifiers&#124;class=noprint&#124;Edit_this_at_Wikidata" style="font-size:114%;margin:0 4em"><a href="/wiki/Help:Authority_control" title="Help:Authority control">Authority control databases</a> <span class="mw-valign-text-top noprint" typeof="mw:File/Frameless"><a href="https://www.wikidata.org/wiki/Q180953#identifiers" title="Edit this at Wikidata"><img alt="Edit this at Wikidata" src="//upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/10px-OOjs_UI_icon_edit-ltr-progressive.svg.png" decoding="async" width="10" height="10" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/15px-OOjs_UI_icon_edit-ltr-progressive.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/20px-OOjs_UI_icon_edit-ltr-progressive.svg.png 2x" data-file-width="20" data-file-height="20" /></a></span></div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%">National</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"><ul><li><span class="uid"><a rel="nofollow" class="external text" href="https://d-nb.info/gnd/4169745-5">Germany</a></span></li><li><span class="uid"><a rel="nofollow" class="external text" href="https://id.loc.gov/authorities/sh85084441">United States</a></span></li><li><span class="uid"><span class="rt-commentedText tooltip tooltip-dotted" title="Espaces métriques"><a rel="nofollow" class="external text" href="https://catalogue.bnf.fr/ark:/12148/cb119444311">France</a></span></span></li><li><span class="uid"><span class="rt-commentedText tooltip tooltip-dotted" title="Espaces métriques"><a rel="nofollow" class="external text" href="https://data.bnf.fr/ark:/12148/cb119444311">BnF data</a></span></span></li><li><span class="uid"><a rel="nofollow" class="external text" href="https://id.ndl.go.jp/auth/ndlna/00567250">Japan</a></span></li><li><span class="uid"><span class="rt-commentedText tooltip tooltip-dotted" title="metrické prostory"><a rel="nofollow" class="external text" href="https://aleph.nkp.cz/F/?func=find-c&local_base=aut&ccl_term=ica=ph122785&CON_LNG=ENG">Czech Republic</a></span></span></li><li><span class="uid"><a rel="nofollow" class="external text" href="http://olduli.nli.org.il/F/?func=find-b&local_base=NLX10&find_code=UID&request=987007529311005171">Israel</a></span></li></ul></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Other</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"><ul><li><span class="uid"><a rel="nofollow" class="external text" href="http://esu.com.ua/search_articles.php?id=67463">Encyclopedia of Modern Ukraine</a></span></li></ul></div></td></tr></tbody></table></div> <!-- NewPP limit report Parsed by mw‐web.codfw.main‐6b7f745dd4‐qvhjk Cached time: 20241125143410 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 1.469 seconds Real time usage: 1.954 seconds Preprocessor visited node count: 13993/1000000 Post‐expand include size: 154067/2097152 bytes Template argument size: 12284/2097152 bytes Highest expansion depth: 12/100 Expensive parser function count: 17/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 158551/5000000 bytes Lua time usage: 0.785/10.000 seconds Lua memory usage: 20753139/52428800 bytes Number of Wikibase entities loaded: 1/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 1399.442 1 -total 17.48% 244.591 2 Template:Reflist 13.23% 185.101 16 Template:Cite_book 12.85% 179.856 10 Template:Annotated_link 9.85% 137.826 34 Template:Sfn 8.24% 115.247 1 Template:Topology 8.02% 112.197 1 Template:Navbox 7.44% 104.182 1 Template:Short_description 7.43% 103.995 85 Template:Math 6.98% 97.724 13 Template:Cite_journal --> <!-- Saved in parser cache with key enwiki:pcache:idhash:20018-0!canonical and timestamp 20241125143410 and revision id 1245905585. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=Metric_space&oldid=1245905585">https://en.wikipedia.org/w/index.php?title=Metric_space&oldid=1245905585</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Categories</a>: <ul><li><a href="/wiki/Category:Metric_spaces" title="Category:Metric spaces">Metric spaces</a></li><li><a href="/wiki/Category:Mathematical_analysis" title="Category:Mathematical analysis">Mathematical analysis</a></li><li><a href="/wiki/Category:Mathematical_structures" title="Category:Mathematical structures">Mathematical structures</a></li><li><a href="/wiki/Category:Topology" title="Category:Topology">Topology</a></li><li><a href="/wiki/Category:Topological_spaces" title="Category:Topological spaces">Topological spaces</a></li><li><a href="/wiki/Category:Uniform_spaces" title="Category:Uniform spaces">Uniform spaces</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Hidden categories: <ul><li><a href="/wiki/Category:Webarchive_template_wayback_links" title="Category:Webarchive template wayback links">Webarchive template wayback links</a></li><li><a href="/wiki/Category:Articles_with_short_description" title="Category:Articles with short description">Articles with short description</a></li><li><a href="/wiki/Category:Short_description_is_different_from_Wikidata" title="Category:Short description is different from Wikidata">Short description is different from Wikidata</a></li><li><a href="/wiki/Category:Use_dmy_dates_from_December_2020" title="Category:Use dmy dates from December 2020">Use dmy dates from December 2020</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 15 September 2024, at 20:23<span class="anonymous-show"> (UTC)</span>.</li> <li id="footer-info-copyright">Text is available under the <a href="/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" title="Wikipedia:Text of the Creative Commons Attribution-ShareAlike 4.0 International License">Creative Commons Attribution-ShareAlike 4.0 License</a>; additional terms may apply. By using this site, you agree to the <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use" class="extiw" title="foundation:Special:MyLanguage/Policy:Terms of Use">Terms of Use</a> and <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy" class="extiw" title="foundation:Special:MyLanguage/Policy:Privacy policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=Metric_space&mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-688fc9465-fj59s","wgBackendResponseTime":134,"wgPageParseReport":{"limitreport":{"cputime":"1.469","walltime":"1.954","ppvisitednodes":{"value":13993,"limit":1000000},"postexpandincludesize":{"value":154067,"limit":2097152},"templateargumentsize":{"value":12284,"limit":2097152},"expansiondepth":{"value":12,"limit":100},"expensivefunctioncount":{"value":17,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":158551,"limit":5000000},"entityaccesscount":{"value":1,"limit":400},"timingprofile":["100.00% 1399.442 1 -total"," 17.48% 244.591 2 Template:Reflist"," 13.23% 185.101 16 Template:Cite_book"," 12.85% 179.856 10 Template:Annotated_link"," 9.85% 137.826 34 Template:Sfn"," 8.24% 115.247 1 Template:Topology"," 8.02% 112.197 1 Template:Navbox"," 7.44% 104.182 1 Template:Short_description"," 7.43% 103.995 85 Template:Math"," 6.98% 97.724 13 Template:Cite_journal"]},"scribunto":{"limitreport-timeusage":{"value":"0.785","limit":"10.000"},"limitreport-memusage":{"value":20753139,"limit":52428800},"limitreport-logs":"anchor_id_list = table#1 {\n [\"CITEREFAldrovandiPereira2017\"] = 1,\n [\"CITEREFArkhangel\u0026#039;skiiPontryagin1990\"] = 1,\n [\"CITEREFBlumberg1927\"] = 1,\n [\"CITEREFBourgain1985\"] = 1,\n [\"CITEREFBryant1985\"] = 1,\n [\"CITEREFBukatinKoppermanMatthewsPajoohesh2009\"] = 1,\n [\"CITEREFBuldyginKozachenko2000\"] = 1,\n [\"CITEREFBuragoBuragoIvanov2001\"] = 1,\n [\"CITEREFCohenVitányi2012\"] = 1,\n [\"CITEREFDezaLaurent1997\"] = 1,\n [\"CITEREFFraigniaudLebharViennot2008\"] = 1,\n [\"CITEREFFréchet1906\"] = 1,\n [\"CITEREFGigli2018\"] = 1,\n [\"CITEREFGleason1991\"] = 1,\n [\"CITEREFGottliebSolomon2014\"] = 1,\n [\"CITEREFGromov2007\"] = 1,\n [\"CITEREFHeinonen2001\"] = 1,\n [\"CITEREFHeinonen2007\"] = 1,\n [\"CITEREFHelemskii2006\"] = 1,\n [\"CITEREFHitzlerSeda2016\"] = 1,\n [\"CITEREFLawvere1973\"] = 1,\n [\"CITEREFLinial2003\"] = 1,\n [\"CITEREFMargalitThomas2017\"] = 1,\n [\"CITEREFPapadopoulos2014\"] = 1,\n [\"CITEREFRobinsonFoulds1981\"] = 1,\n [\"CITEREFRolewicz1987\"] = 1,\n [\"CITEREFRudin1976\"] = 1,\n [\"CITEREFSmyth1988\"] = 1,\n [\"CITEREFSteenSeebach1995\"] = 1,\n [\"CITEREFVickers2005\"] = 1,\n [\"CITEREFVitányi2011\"] = 1,\n [\"CITEREFVäisälä2005\"] = 1,\n [\"CITEREFXia2008\"] = 1,\n [\"CITEREFXia2009\"] = 1,\n [\"CITEREFÓ_Searcóid2006\"] = 1,\n [\"CITEREFČech1969\"] = 1,\n [\"Distance_to_a_set\"] = 1,\n [\"Norm_induced_metric\"] = 1,\n [\"Relation_of_norms_and_metrics\"] = 1,\n [\"SNCF\"] = 1,\n}\ntemplate_list = table#1 {\n [\"=\"] = 4,\n [\"Anchor\"] = 3,\n [\"Annotated link\"] = 10,\n [\"Authority control\"] = 1,\n [\"Citation\"] = 8,\n [\"Cite book\"] = 14,\n [\"Cite conference\"] = 1,\n [\"Cite journal\"] = 13,\n [\"Cite web\"] = 1,\n [\"Closed-closed\"] = 3,\n [\"Efn\"] = 3,\n [\"Harvnb\"] = 3,\n [\"Harvtxt\"] = 7,\n [\"Main\"] = 12,\n [\"Math\"] = 75,\n [\"Mathworld\"] = 1,\n [\"Munkres Topology\"] = 1,\n [\"Mvar\"] = 180,\n [\"Narici Beckenstein Topological Vector Spaces\"] = 1,\n [\"Nobr\"] = 4,\n [\"Notelist\"] = 1,\n [\"Nowrap\"] = 1,\n [\"Open-open\"] = 7,\n [\"Refbegin\"] = 1,\n [\"Refend\"] = 1,\n [\"Reflist\"] = 1,\n [\"See also\"] = 2,\n [\"Sfn\"] = 34,\n [\"Short description\"] = 1,\n [\"Springer\"] = 1,\n [\"Topology\"] = 1,\n [\"Use dmy dates\"] = 1,\n [\"Visible anchor\"] = 4,\n [\"Webarchive\"] = 3,\n}\narticle_whitelist = table#1 {\n}\ntable#1 {\n}\n"},"cachereport":{"origin":"mw-web.codfw.main-6b7f745dd4-qvhjk","timestamp":"20241125143410","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Metric space","url":"https:\/\/en.wikipedia.org\/wiki\/Metric_space","sameAs":"http:\/\/www.wikidata.org\/entity\/Q180953","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q180953","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2001-10-01T14:26:33Z","dateModified":"2024-09-15T20:23:50Z","image":"https:\/\/upload.wikimedia.org\/wikipedia\/commons\/0\/08\/Manhattan_distance.svg","headline":"set equipped with a metric (distance function)"}</script> </body> </html>