CINXE.COM
Just a moment...
<!DOCTYPE html><html lang="en-US"><head><title>Just a moment...</title><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><meta http-equiv="X-UA-Compatible" content="IE=Edge"><meta name="robots" content="noindex,nofollow"><meta name="viewport" content="width=device-width,initial-scale=1"><style>*{box-sizing:border-box;margin:0;padding:0}html{line-height:1.15;-webkit-text-size-adjust:100%;color:#313131;font-family:system-ui,-apple-system,BlinkMacSystemFont,Segoe UI,Roboto,Helvetica Neue,Arial,Noto Sans,sans-serif,Apple Color Emoji,Segoe UI Emoji,Segoe UI Symbol,Noto Color Emoji}body{display:flex;flex-direction:column;height:100vh;min-height:100vh}.main-content{margin:8rem auto;max-width:60rem;padding-left:1.5rem}@media (width <= 720px){.main-content{margin-top:4rem}}.h2{font-size:1.5rem;font-weight:500;line-height:2.25rem}@media (width <= 720px){.h2{font-size:1.25rem;line-height:1.5rem}}#challenge-error-text{background-image:url();background-repeat:no-repeat;background-size:contain;padding-left:34px}@media (prefers-color-scheme:dark){body{background-color:#222;color:#d9d9d9}}</style><meta http-equiv="refresh" content="390"></head><body class="no-js"><div class="main-wrapper" role="main"><div class="main-content"><noscript><div class="h2"><span id="challenge-error-text">Enable JavaScript and cookies to continue</span></div></noscript></div></div><script>(function(){window._cf_chl_opt={cvId: '3',cZone: "machinelearningmastery.com",cType: 'managed',cRay: '8e73f975896f8228',cH: 'GGIWrmTNaDU2mjH6qOQL1a_PveFldo.NuUMi5YFPsaY-1732394427-1.2.1.1-FhHumb5An63x1pkpHu9h61u_VYJR4tJ7.BcaoxFUPc3wI_M7K_L2b46l6LJ04nvk',cUPMDTk: "\/tutorial-to-implement-k-nearest-neighbors-in-python-fromscratch\/?__cf_chl_tk=hX7_MSQEOJt9xqfNMmLee4w8XEuKiU47kAfXcfogWWs-1732394427-1.0.1.1-rUivOgDAaWmKXXSevYonUteWPvrv7f.N6gQQgqCgvWQ",cFPWv: 'g',cITimeS: '1732394427',cTTimeMs: '1000',cMTimeMs: '390000',cTplC: 0,cTplV: 5,cTplB: 'cf',cK: "",fa: "\/tutorial-to-implement-k-nearest-neighbors-in-python-fromscratch\/?__cf_chl_f_tk=hX7_MSQEOJt9xqfNMmLee4w8XEuKiU47kAfXcfogWWs-1732394427-1.0.1.1-rUivOgDAaWmKXXSevYonUteWPvrv7f.N6gQQgqCgvWQ",md: "Q3C7Ie7Hk05cWHHVezPazWrq6DsQ4f3382d2n_KGy2g-1732394427-1.2.1.1-cGGioC8uF9QysK7_JBnMkMXCFLL6gdbaK8Os9QcUnITE1yTk4BX_m6Sii.QxFHxywX2BDDenk9n_L9TRLfYa44bHZ83gZAZI3AMil1JlvBaRt3AWrPIT19CAzNlPAJV8FQ.2xAwdoHq4aG8AlZuSJeXqaU4GJ7Iqqr.SjTQEpNLWXgeOX5BDP39ufNbUgfnExbpmu8Q97Zx6qF5JnenUOatZ_FlIhatZFdxbPG6KqQizW5IKPmTruhqSCp3Mx.RYYMdMMJWa1TvTB.73.nAq8Yynto.KNyzxgoCs3X83jTc3uIlq9va2SazzmBbV8cwASU7F5pUe_TCHZmNeKcrHnDLpq2_59FGrVI.nUuVKYzDIHScKf9MndciEMZ9mB.xphGvi1k.jvywJzju0CJ5YMBfL1dB1qaLEg7XH3KXr_3opHGxAu8kNtlM7v7klk0uruINjR_xfXxWBHdmk5.owKPTbeA8TeG7.FBeWv23W1HTX6igZYllCDFgc_K7LR4vQagr1txa4BmC7VYN7qSAe8ecZBh.f4NnQMFQcf0tDe28Sr0tvxcN6aMRgo4HXEslaYi3cMISbu5abKqk9_hcPQPfrKe1M_ZYAhM94CKID9YtCBzRDFPgEm9.r0pQvuBCGH41lnrBphlIWJnaJTx4pQzaj890AlFpwRM0OaKlXPtXdms9Vd.y3cvepleXguKEJRzuQMSyxUUwFsaA6L4Osze.f6w3nXdyVhn27Inx2CwkePvN1sab7i.P83U.kY3MHSARyWv14c6mEXbNcmgPjVjM8rRwdbcHJIGl90b8IXC3H7HuP7BhsASnQa5pRo0PTl.3ontFbCWIMgLnyPvSmubUa9nVF13URaoMvzgjGJ81kUnanxfu0u1L7cvwj_qAD7XCEwDDCpm2y2nxxBm2b4YgsaDxK5RbYuW72MtZLfz...eVzkktGMakmiNFiF1fwX2yVt8vN_IVdATQQYJiPzT_imrV7uut9FrKpffEFLKpIBx5TsXU6Ld_wAH68.vFKbIAf60gC2XsnVMCLIX_dHVEkjcciSynit7y0vovt9ZAYFgg8T58bt2pIqUbe5oJF1VFOTxOjkYZfBoZn5y.tFCu1AicZXNiiPhy6MFduMG.03Z2R61dFomGEtgwBRc_G6Yy9T4oFL.Mfy.ryaG4LbUVvlLJ7dmMqoTw31z7EXMJrW_gQDRhmH4sSin_y6FNhu6zpIOiqaHT.S5sS3KBC.fcJ43xUCE6qjCojUvcfL3cn4Lhxukj2B4WCyrozUjur3kjVaNa.G7y.MuCNsuxC6CNpwUmkIOYlVN4HHnkIJKSksyrGcYgoIvc2q_1d9zhP5bKW4L1pldMWVROg7vf6SBs.RmFjbFKb3PCeNmZlmsRPIf0TZRpsxpqHSi9L4o6EtALllhZeKcBQ980B88x0zZ7qdXA7KVNBfNPAZ8xqtbdP_iYV8FWc79pRsF9rcRHLzaAUFxky4puJyG6p5QJ49zlEcoC4D7vrS7ENzbSxaYDd1M6.xto0XwLlJ0ivJUTYZX8ieaIupCt2pIuxXnNreYVjzfokYwIFJj9XaKqiA0j28suVHz.DmpBdG0yGy7E2RxEfgbM0MHhSnOTQ5eo2wmfgkDzO6hI6s_auEybj_izO6Y9ChtK5Uhhm0U_Ka5Z_dRBjMK9flynbAqlbDxvepxCtBA4EHNghnoHABdcArVtI6541CRxFCFSVqpnkUxaM.eOQlR8qXqQ5wv64pj2MOeqXtcuI1dAw4VY732oPbuA5itrxfLO4jNZ8EPB5utOcX_MzuDiR2iqGfIevXvOOvX485ZN6c_imozrWycirQk5yqjKHxMFsmT9NM8Zqc07lLU17vLTFbf7YokLpROyTaiVpWh5JODAz6OWCXVsvdc7236PMyNKpEc_UZzeeSc3AB.gol2n8MF3Ms5RWiPTWvPsTYcQPPD1krH8of7DMkQ6n6nKdInOYjjVScFCqTaFAHXgROjiHzSnLvquJ9v4l45BSteyVXosBH65vtU92IhKBhsRXyAOLvHJPm0TcMAkQU1T5lvU1c6Rzv9uxOjpKakGW_jtcrPlSSuwbb7e48jynXTnpe6p.ZZ.1Op2q4eRLreVywj.lbmF8w8SSC2BceMKRU0pZlwCqFOVYAeagmN8CSpTxXqiEWfxusKIcwluEeJ5n3oh4lJOSMjRVC3qvE4jeKXH1vVxyjCN_iY51qiwML0pJeABSPLGV5w_WSbbOulcyUOY6NgXtVQA400YhBLS0ZUV0fnZP04ldhHmDAPcedmX6HIk.XBgs8Uyjce9vdUB9u.4YMp4zXaH6_88_lCK6Ju6G2wYxwF0HjPaXZbhDNP0z4ppFj4vNx.5pell4HlkK4qMQsCDA0YBTkcihJm_dlBHaLtc3RnRtOiN7L95kfUhA18lH2gS8sWxq.MNY3200.52lOYJlPj5tk49onn53NFDc6cW8x5iA17L57.NeTk2AcquMJ3JvwXrfhgehXnOEMLibMZmVwANnj8rAIbJElRoo0i3ju4M6.wxPTNyI8PP1nwyAY5P0ldAiZ7XSE5Ow9JktzRUFmPXKEKKtCVCxQ.69itAijyflRtkBn6oL2iSrKq4Y4ZhaQAhfXbmXVvCT.d7sC4t2gMGlgeMqSWZaEeXz4im4wygHVoesy4RJJ97cTGGwwRevMLjmgFsdOCE2Y4aY2oM7AzHrwIkN6SL9bMTrtRRneTkE08RVwy5TDbf7p25Z0G07H2mU5afz7iAQ3rqskP3LpKPcNhTr2BTsXG.A3GR3E0jlM7KtFJGY_DxxJNj5Tbm1l3daDVtysRiYSiqfFGvAVe8Y9EsiecXgjfMDruNcG.zXSpCq68U4vkV5spDn_j.cR2IzoiVPuh.hqWVzFdBZxkiVWtzJHjBsQzYGtYt.qUZ7yWqp2b1suKhP_aWgLzTnK9HH4cPtOGYTHaSJMzmPp7duYJKt3zKQ74j5dUpwkV2TVpBeEiEYT7_kArlWWoL_NEMnkja.j9WGawV6Xhu8yY7ys1_J4F5vXFhpOh_WcKXqcZv6cMkJ7dwMm3gHbYQkhws8d4Bx",mdrd: "bin_48vLe.LQ73TjW335AkPQVnIhamzSycE.uKDvHwo-1732394427-1.2.1.1-ojZHjMRqVE3KhE1OFFJ2L2S1_UBxOmgldrUeEGuC_RlHkmxBBfXO3dmJRqCu.ZlKgxwkTBXKTFgOv_bJzLmwWwVaw67fQtKdnzNnCxNji38Zl7rZNhYZ42pUQ3BFX_PTMAjTGF6NaVvKLfmD0.Kt.qflhKCTqOXL2WA_jdYXlB9Ehl6eQWb6.UpH86b42Y25.fVaBlk7MnDe3R1ZdohcV4vs9cFKYvy.ZlaDHG4WcNYW0QRcFtDHqHIkf3rcqGrUaC_ioLTVqsT_RuVq0l__EKU9IzSc5niZ9XnnSsNa7qEJuJZpQi3Mixs_zN3ISNUmaf3eIP4BRFKBoTEH1jytfxA.OwilQwjMAkLifJ8i0nANIZnqywLQ7azQsJLDR5y6PX_lAA73v5.O5Y0RvTfUZdwoK4cs65YUSbzcbSuTIDHj5xxHi.LO6jTdJ86LlbwNJDhS6S5Uk225KhoqaPQP9dMMWuta3IVmLOHaZtCnbZYiEm8LtyNRcqIAYUqTVHK1aAttBtuU_caAjJwnWFFDdfyYCvLD.EpM9csJWVkPRXPtDLF9oZiPf5KH47t987io9h4FzwOAWRqvWmx3qxxObbjNUf2C9Mx0kFXYyNU1HyXQF.iKMN23JvoqjY4V_.xYHEHsHGF0NBut8Zy6i82QR4CKN8AruHlJLS4KMM41T3IGqr_LFr_xM9fJGicipDvpf5ZRiMWNNPtc.6r4TngpwEjop7_OXZgM6L5UdzkKaka.CWh0m3glABRx0Luw__tljTcCT4MdS0_PQbWmQZ3wWU.rhFWy_cveuwh9_qvyva2nIku1e.cSjILKsx28sLXMmydjtZRIF4EZjBAQgAfJ534julKFl9Pxg7S_PZIZvpihs.g19MVbM6w4jyjy21h1l47Z1QddiNAOlr9eRc79Gg.YjOfqTVgKMZAVAAc7ozgb.LC6SrwdHaXOqAKbQvEj_t36dQdHiyRWwr3ouKJQOhj6s0lArv.TwEouqQLo4r4YzfMp60elKvZTT3F9SfWuvRDRk8IeEHKL0CdWU0niJuJSUbC9Yi_KmRqPr.ETlJgt64P132y1ot9_YXuLcMkl9zV_yaZyybxoCHfa81y5xCi7SuUzsnMl1WxUK3PxPMmdJS_E6dlqmKBI60W1AMwDcsKOzfUcZA.vlTKoQ90zOge9XvxypxTTqL80V2yMeomVoqTULkeF6N.cUxemunIoSxy8..8jJ5FUFy2KCo9JXMXVzvEddQB8tsfR2RKRTc71iwo3pVQP4lSp6QWkSrx_8Gvf.od9B8GCcgs0d0Xbi.FIToUyeDRj0xsO.6psoJib2QlB_q7a9_TREiENI7rrzlU3hnJ2hnZGRz_ynGNp.eDe4xLrpyYaYz5OVNBiX5jzuhUHFV03T_pP2bWdSYX4UOHfCrs3VIi4Tx.apknRpxWPseaDdf2rk56pU3ecE4mK17gBuYq45ABoZiP2qDL_xKr1GUJ0X2R1GCxcZqIIKRvNxStPzdkf87QgOGAoh44oEIDF9cS8qcGSSX1h3rTQpaCdOCFnV58YEvlwD2ovVRwf6RJLgrJknYoKZFzHczFzzoDpzzghZ6ytNfVrUbSNPZj64hUGx9qzKrl5EZqM0jidXwEgwll6oycYQpO7ehreRbZS0xgfvC923gQWkI7yXtaSbTarawQ7Xz466VG9BgY509FVDQ8nVRcXi_DeL.Xj_Le5gftFt6aXFotH6SALAxmr2k3It7T2TlcuPF3DQs9yi_vguNpJkrbfY4MqgW6dQY5qq9frXjrru7LkayxBiRhqwg4J0l8FcygIH6m.ACin.T7wtmyqQBK.cDck2dRgC8XOTjBsOHCKi3RaVWi5t8FPtIIkArhdljlI3trmf_YH4Vwu0EoHSrxRrtfyZf8R6WCY.IH2PSK9Kpy.iXhjro9M9.gavdbNp_MX2LfQDI4df4anZRxHKhVCXU5utPCKILMQc7C1OVdbq_98npcx4tMeI3y_solt18FOiZYfI39lXheCsD06gPfX1zpeHCI"};var cpo = document.createElement('script');cpo.src = '/cdn-cgi/challenge-platform/h/g/orchestrate/chl_page/v1?ray=8e73f975896f8228';window._cf_chl_opt.cOgUHash = location.hash === '' && location.href.indexOf('#') !== -1 ? '#' : location.hash;window._cf_chl_opt.cOgUQuery = location.search === '' && location.href.slice(0, location.href.length - window._cf_chl_opt.cOgUHash.length).indexOf('?') !== -1 ? '?' : location.search;if (window.history && window.history.replaceState) {var ogU = location.pathname + window._cf_chl_opt.cOgUQuery + window._cf_chl_opt.cOgUHash;history.replaceState(null, null, "\/tutorial-to-implement-k-nearest-neighbors-in-python-fromscratch\/?__cf_chl_rt_tk=hX7_MSQEOJt9xqfNMmLee4w8XEuKiU47kAfXcfogWWs-1732394427-1.0.1.1-rUivOgDAaWmKXXSevYonUteWPvrv7f.N6gQQgqCgvWQ" + window._cf_chl_opt.cOgUHash);cpo.onload = function() {history.replaceState(null, null, ogU);}}document.getElementsByTagName('head')[0].appendChild(cpo);}());</script></body></html>