CINXE.COM

Search results for: Yasuhiro Otomo

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Yasuhiro Otomo</title> <meta name="description" content="Search results for: Yasuhiro Otomo"> <meta name="keywords" content="Yasuhiro Otomo"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Yasuhiro Otomo" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Yasuhiro Otomo"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 9</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Yasuhiro Otomo</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> The Impact of Intestinal Ischaemia-Reperfusion Injury upon the Biological Function of Mesenteric Lymph</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Beth%20Taylor">Beth Taylor</a>, <a href="https://publications.waset.org/abstracts/search?q=Kojima%20Mituaki"> Kojima Mituaki</a>, <a href="https://publications.waset.org/abstracts/search?q=Atsushi%20Senda"> Atsushi Senda</a>, <a href="https://publications.waset.org/abstracts/search?q=Koji%20Morishita"> Koji Morishita</a>, <a href="https://publications.waset.org/abstracts/search?q=Yasuhiro%20Otomo"> Yasuhiro Otomo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Intestinal ischaemia-reperfusion injury drives systemic inflammation and organ failure following trauma/haemorrhagic shock (T/HS), through the release of pro-inflammatory mediators into the mesenteric lymph (ML). However, changes in the biological function of ML are not fully understood, and therefore, a specific model of intestinal ischaemia-reperfusion injury is required to obtain ML for the study of its biological function upon inflammatory cells. ML obtained from a model of intestinal ischaemia-reperfusion injury was used to assess biological function upon inflammatory cells and investigate changes in the biological function of individual ML components. An additional model was used to determine the effect of vagal nerve stimulation (VNS) upon biological function. Rat ML was obtained by mesenteric lymphatic duct cannulation before and after occlusion of the superior mesenteric artery (SMAO). ML was incubated with human polymorphonuclear neutrophils (PMNs), monocytes and lymphocytes, and the biological function of these cells was assessed. ML was then separated into supernatant, exosome and micro-vesicle components, and biological activity was compared in monocytes. A model with an additional VNS phase was developed, in which the right cervical vagal nerve was exposed and stimulated, and ML collected for comparison of biological function with the conventional model. The biological function of ML was altered by intestinal ischaemia-reperfusion injury, increasing PMN activation, monocyte activation, and lymphocyte apoptosis. Increased monocyte activation was only induced by the exosome component of ML, with no significant changes induced by the supernatant or micro-vesicle components. VNS partially attenuated monocyte activation, but no attenuation of PMN activation was observed. Intestinal ischaemia-reperfusion injury induces changes in the biological function of ML upon both innate and adaptive inflammatory cells, supporting the role of intestinal ischaemia-reperfusion injury in driving systemic inflammation following T/HS. The exosome component of ML appears to be critical to the transport of pro-inflammatory mediators in ML. VNS partially attenuates changes in innate inflammatory cell biological activity observed, presenting possibilities for future novel treatment development in multiple organ failure patients. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=exosomes" title="exosomes">exosomes</a>, <a href="https://publications.waset.org/abstracts/search?q=inflammation" title=" inflammation"> inflammation</a>, <a href="https://publications.waset.org/abstracts/search?q=intestinal%20ischaemia" title=" intestinal ischaemia"> intestinal ischaemia</a>, <a href="https://publications.waset.org/abstracts/search?q=mesenteric%20lymph" title=" mesenteric lymph"> mesenteric lymph</a>, <a href="https://publications.waset.org/abstracts/search?q=vagal%20stimulation" title=" vagal stimulation"> vagal stimulation</a> </p> <a href="https://publications.waset.org/abstracts/111415/the-impact-of-intestinal-ischaemia-reperfusion-injury-upon-the-biological-function-of-mesenteric-lymph" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/111415.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">134</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> Preliminary Evaluation of Passive UHF-Band RFID for Identifying Floating Objects on the Sea</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yasuhiro%20Sato">Yasuhiro Sato</a>, <a href="https://publications.waset.org/abstracts/search?q=Kodai%20Noma"> Kodai Noma</a>, <a href="https://publications.waset.org/abstracts/search?q=Kenta%20Sawada"> Kenta Sawada</a>, <a href="https://publications.waset.org/abstracts/search?q=Kazumasa%20Adachi"> Kazumasa Adachi</a>, <a href="https://publications.waset.org/abstracts/search?q=Yoshinori%20Matsuura"> Yoshinori Matsuura</a>, <a href="https://publications.waset.org/abstracts/search?q=Saori%20Iwanaga"> Saori Iwanaga</a> </p> <p class="card-text"><strong>Abstract:</strong></p> RFID system is used to identify objects such as passenger identification in public transportation, instead of linear or 2-dimensional barcodes. Key advantages of RFID system are to identify objects without physical contact, and to write arbitrary information into RFID tag. These advantages may help to improve maritime safety and efficiency of activity on the sea. However, utilization of RFID system for maritime scenes has not been considered. In this paper, we evaluate the availability of a generic RFID system operating on the sea. We measure RSSI between RFID tag floating on the sea and RFID antenna, and check whether a RFID reader can access a tag or not, while the distance between a floating buoy and the ship, and the angle are changed. Finally, we discuss the feasibility and the applicability of RFID system on the sea through the results of our preliminary experiment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=RFID" title="RFID">RFID</a>, <a href="https://publications.waset.org/abstracts/search?q=experimental%20evaluation" title=" experimental evaluation"> experimental evaluation</a>, <a href="https://publications.waset.org/abstracts/search?q=RSSI" title=" RSSI"> RSSI</a>, <a href="https://publications.waset.org/abstracts/search?q=maritime%20use" title=" maritime use"> maritime use</a> </p> <a href="https://publications.waset.org/abstracts/1632/preliminary-evaluation-of-passive-uhf-band-rfid-for-identifying-floating-objects-on-the-sea" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1632.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">578</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> Development of a Weed Suppression Robot for Rice Cultivation Weed Suppression and Posture Control</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shohei%20Nakai">Shohei Nakai</a>, <a href="https://publications.waset.org/abstracts/search?q=Yasuhiro%20Yamada"> Yasuhiro Yamada</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Weed suppression and weeding are necessary measures for rice cultivation. Weed suppression precedes the process of weeding. It means suppressing the growth of young weeds and creating a weed-less environment. If we suppress the growth of weeds, we can reduce the number of weeds in a paddy field. This would result in a reduction of the weeding work load. In this paper, we will show how we developed a weed suppression robot for the purpose of reducing the weeding work load. The robot has a laser range finder for autonomous mobility and a robot arm for weed suppression. It travels along the rice rows without stepping on and injuring the rice plants in a paddy field. The robot arm applies force to the weed seedlings and thereby suppresses the growth of weeds. This paper will explain the methodology of the autonomous mobile, the experiment in weed suppression, and the method of controlling the robot’s posture on uneven ground. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mobile%20robot" title="mobile robot">mobile robot</a>, <a href="https://publications.waset.org/abstracts/search?q=paddy%20field" title=" paddy field"> paddy field</a>, <a href="https://publications.waset.org/abstracts/search?q=robot%20arm" title=" robot arm"> robot arm</a>, <a href="https://publications.waset.org/abstracts/search?q=weed" title=" weed"> weed</a> </p> <a href="https://publications.waset.org/abstracts/18414/development-of-a-weed-suppression-robot-for-rice-cultivation-weed-suppression-and-posture-control" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18414.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">377</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> Theatre, Tea-Time and Harpsichords: Women’s Entertainment and Sensibility in Eighteenth-Century England </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ayako%20Otomo">Ayako Otomo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper will examines the rise of a feminine orientation regarding arts and culture associated with the notion of Sensibility during the early part of the English long eighteenth century. As is widely known, the prosperous modernisation that occurred in this period was a significant factor in the nation taking a leading role in the emergent Enlightenment via the social, political and scientific advancement of Britain. As a result, this prompted the relaxing of the strictures of class and gender hierarchies in line with the new consumerism and cosmopolitanism of the nation. Accordingly, there was a significant increase of female involvement in artistic and cultural consumption. This can be understood in terms of the notion of Sensibility, associating it further with the fields of physiology, psychology and aesthetics, indebted in their turn to British Empiricism. This paper first traces the background of how women were recognisably involved in artistic and cultural circulation within an historical perspective that is articulated by the notion of Sensibility. Then, the discussion turns to the confluence of the issues of female association, creativity and the feminisation of the aesthetic of the arts and culture employing an interdisciplinary perspective. Arts and culture can also classified by public and private social spheres and gender according to Jürgen Habermas. The relationship between women and the theatre became a public issue. Music-making such as playing the harpsichord, reading, and conversation within the ritualistic teatime space dominated many of the artistic and cultural activities within the domestic private sphere. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=theatre" title="theatre">theatre</a>, <a href="https://publications.waset.org/abstracts/search?q=arts" title=" arts"> arts</a>, <a href="https://publications.waset.org/abstracts/search?q=sensibility" title=" sensibility"> sensibility</a>, <a href="https://publications.waset.org/abstracts/search?q=18th%20century%20England" title=" 18th century England "> 18th century England </a> </p> <a href="https://publications.waset.org/abstracts/22582/theatre-tea-time-and-harpsichords-womens-entertainment-and-sensibility-in-eighteenth-century-england" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22582.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">363</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> A Challenge to Acquire Serious Victims’ Locations during Acute Period of Giant Disasters</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Keiko%20Shimazu">Keiko Shimazu</a>, <a href="https://publications.waset.org/abstracts/search?q=Yasuhiro%20Maida"> Yasuhiro Maida</a>, <a href="https://publications.waset.org/abstracts/search?q=Tetsuya%20Sugata"> Tetsuya Sugata</a>, <a href="https://publications.waset.org/abstracts/search?q=Daisuke%20Tamakoshi"> Daisuke Tamakoshi</a>, <a href="https://publications.waset.org/abstracts/search?q=Kenji%20Makabe"> Kenji Makabe</a>, <a href="https://publications.waset.org/abstracts/search?q=Haruki%20Suzuki"> Haruki Suzuki</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we report how to acquire serious victims’ locations in the Acute Stage of Large-scale Disasters, in an Emergency Information Network System designed by us. The background of our concept is based on the Great East Japan Earthquake occurred on March 11<sup>th</sup>, 2011. Through many experiences of national crises caused by earthquakes and tsunamis, we have established advanced communication systems and advanced disaster medical response systems. However, Japan was devastated by huge tsunamis swept a vast area of Tohoku causing a complete breakdown of all the infrastructures including telecommunications. Therefore, we noticed that we need interdisciplinary collaboration between science of disaster medicine, regional administrative sociology, satellite communication technology and systems engineering experts. Communication of emergency information was limited causing a serious delay in the initial rescue and medical operation. For the emergency rescue and medical operations, the most important thing is to identify the number of casualties, their locations and status and to dispatch doctors and rescue workers from multiple organizations. In the case of the Tohoku earthquake, the dispatching mechanism and/or decision support system did not exist to allocate the appropriate number of doctors and locate disaster victims. Even though the doctors and rescue workers from multiple government organizations have their own dedicated communication system, the systems are not interoperable. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=crisis%20management" title="crisis management">crisis management</a>, <a href="https://publications.waset.org/abstracts/search?q=disaster%20mitigation" title=" disaster mitigation"> disaster mitigation</a>, <a href="https://publications.waset.org/abstracts/search?q=messing" title=" messing"> messing</a>, <a href="https://publications.waset.org/abstracts/search?q=MGRS" title=" MGRS"> MGRS</a>, <a href="https://publications.waset.org/abstracts/search?q=military%20grid%20reference%20system" title=" military grid reference system"> military grid reference system</a>, <a href="https://publications.waset.org/abstracts/search?q=satellite%20communication%20system" title=" satellite communication system"> satellite communication system</a> </p> <a href="https://publications.waset.org/abstracts/92339/a-challenge-to-acquire-serious-victims-locations-during-acute-period-of-giant-disasters" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92339.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">236</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> Human Health Risk Assessment of Mercury-Contaminated Soils in Alebediah Mining Community, Sudan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Elwaleed">Ahmed Elwaleed</a>, <a href="https://publications.waset.org/abstracts/search?q=Huiho%20Jeong"> Huiho Jeong</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20H.%20Abdelbagi"> Ali H. Abdelbagi</a>, <a href="https://publications.waset.org/abstracts/search?q=Nguyen%20Thi%20Quynh"> Nguyen Thi Quynh</a>, <a href="https://publications.waset.org/abstracts/search?q=Koji%20Arizono"> Koji Arizono</a>, <a href="https://publications.waset.org/abstracts/search?q=Yasuhiro%20Ishibashi"> Yasuhiro Ishibashi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Artisanal and small-scale gold mining (ASGM) poses substantial risks to both human health and the environment, particularly through contamination of soil, water, and air. Prolonged exposure to ASGM-contaminated soils can lead to acute or chronic mercury toxicity. This study assesses the human health risks associated with mercury-contaminated soils and tailings in the Alebediah mining community in Sudan. Soil samples were collected from various locations within Alebediah, including ASGM areas, farmlands, and residential areas, along with tailings samples commonly found within ASGM sites. The evaluation of potential health risks to humans included the computation of the estimated daily intake (AvDI), the hazard quotient (HQ), and the hazard index (HI) for both adults and children. The primary exposure route identified as potentially posing a significant health risk was the volatilization of mercury from tailings samples, where mercury concentrations reached up to 25.5 mg/kg. In contrast, other samples within the ASGM area showed elevated mercury levels but did not present significant health risks, with HI values below 1. However, all areas indicated HI values above 1 for the remaining exposure routes. The study observed a decrease in mercury concentration with increasing distance from the ASGM community. Additionally, soil samples revealed elevated mercury levels exceeding background values, prompting an assessment of contamination levels using the enrichment factor (EF). The findings indicated that farmlands and residential areas exhibited depleted EF, while areas surrounding the ASGM community showed none to moderate pollution. In contrast, ASGM areas exhibited significant to extreme pollution. A GIS map was generated to visually depict the extent of mercury pollution, facilitating communication with stakeholders and decision-makers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mercury%20pollution" title="mercury pollution">mercury pollution</a>, <a href="https://publications.waset.org/abstracts/search?q=artisanal%20and%20small-scale%20gold%20mining" title=" artisanal and small-scale gold mining"> artisanal and small-scale gold mining</a>, <a href="https://publications.waset.org/abstracts/search?q=health%20risk%20assessment" title=" health risk assessment"> health risk assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=hazard%20index" title=" hazard index"> hazard index</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20and%20tailings" title=" soil and tailings"> soil and tailings</a>, <a href="https://publications.waset.org/abstracts/search?q=enrichment%20factor" title=" enrichment factor"> enrichment factor</a> </p> <a href="https://publications.waset.org/abstracts/173742/human-health-risk-assessment-of-mercury-contaminated-soils-in-alebediah-mining-community-sudan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/173742.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">83</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> Shaped Crystal Growth of Fe-Ga and Fe-Al Alloy Plates by the Micro Pulling down Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kei%20%20Kamada">Kei Kamada</a>, <a href="https://publications.waset.org/abstracts/search?q=Rikito%20Murakami"> Rikito Murakami</a>, <a href="https://publications.waset.org/abstracts/search?q=Masahiko%20Ito"> Masahiko Ito</a>, <a href="https://publications.waset.org/abstracts/search?q=Mototaka%20Arakawa"> Mototaka Arakawa</a>, <a href="https://publications.waset.org/abstracts/search?q=Yasuhiro%20Shoji"> Yasuhiro Shoji</a>, <a href="https://publications.waset.org/abstracts/search?q=Toshiyuki%20Ueno"> Toshiyuki Ueno</a>, <a href="https://publications.waset.org/abstracts/search?q=Masao%20Yoshino"> Masao Yoshino</a>, <a href="https://publications.waset.org/abstracts/search?q=Akihiro%20Yamaji"> Akihiro Yamaji</a>, <a href="https://publications.waset.org/abstracts/search?q=Shunsuke%20Kurosawa"> Shunsuke Kurosawa</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuui%20Yokota"> Yuui Yokota</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuji%20Ohashi"> Yuji Ohashi</a>, <a href="https://publications.waset.org/abstracts/search?q=Akira%20Yoshikawa"> Akira Yoshikawa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Techniques of energy harvesting y have been widely developed in recent years, due to high demand on the power supply for ‘Internet of things’ devices such as wireless sensor nodes. In these applications, conversion technique of mechanical vibration energy into electrical energy using magnetostrictive materials n have been brought to attention. Among the magnetostrictive materials, Fe-Ga and Fe-Al alloys are attractive materials due to the figure of merits such price, mechanical strength, high magnetostrictive constant. Up to now, bulk crystals of these alloys are produced by the Bridgman–Stockbarger method or the Czochralski method. Using these method big bulk crystal up to 2~3 inch diameter can be grown. However, non-uniformity of chemical composition along to the crystal growth direction cannot be avoid, which results in non-uniformity of magnetostriction constant and reduction of the production yield. The micro-pulling down (μ-PD) method has been developed as a shaped crystal growth technique. Our group have reported shaped crystal growth of oxide, fluoride single crystals with different shape such rod, plate tube, thin fiber, etc. Advantages of this method is low segregation due to high growth rate and small diffusion of melt at the solid-liquid interface, and small kerf loss due to near net shape crystal. In this presentation, we report the shaped long plate crystal growth of Fe-Ga and Fe-Al alloys using the μ-PD method. Alloy crystals were grown by the μ-PD method using calcium oxide crucible and induction heating system under the nitrogen atmosphere. The bottom hole of crucibles was 5 x 1mm² size. A <100> oriented iron-based alloy was used as a seed crystal. 5 x 1 x 320 mm³ alloy crystal plates were successfully grown. The results of crystal growth, chemical composition analysis, magnetostrictive properties and a prototype vibration energy harvester are reported. Furthermore, continuous crystal growth using powder supply system will be reported to minimize the chemical composition non-uniformity along the growth direction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=crystal%20growth" title="crystal growth">crystal growth</a>, <a href="https://publications.waset.org/abstracts/search?q=micro-pulling-down%20method" title=" micro-pulling-down method"> micro-pulling-down method</a>, <a href="https://publications.waset.org/abstracts/search?q=Fe-Ga" title=" Fe-Ga"> Fe-Ga</a>, <a href="https://publications.waset.org/abstracts/search?q=Fe-Al" title=" Fe-Al"> Fe-Al</a> </p> <a href="https://publications.waset.org/abstracts/90975/shaped-crystal-growth-of-fe-ga-and-fe-al-alloy-plates-by-the-micro-pulling-down-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90975.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">335</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> A Methodology of Using Fuzzy Logics and Data Analytics to Estimate the Life Cycle Indicators of Solar Photovoltaics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Thor%20Alexis%20Sazon">Thor Alexis Sazon</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexander%20Guzman-Urbina"> Alexander Guzman-Urbina</a>, <a href="https://publications.waset.org/abstracts/search?q=Yasuhiro%20Fukushima"> Yasuhiro Fukushima</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study outlines the method of how to develop a surrogate life cycle model based on fuzzy logic using three fuzzy inference methods: (1) the conventional Fuzzy Inference System (FIS), (2) the hybrid system of Data Analytics and Fuzzy Inference (DAFIS), which uses data clustering for defining the membership functions, and (3) the Adaptive-Neuro Fuzzy Inference System (ANFIS), a combination of fuzzy inference and artificial neural network. These methods were demonstrated with a case study where the Global Warming Potential (GWP) and the Levelized Cost of Energy (LCOE) of solar photovoltaic (PV) were estimated using Solar Irradiation, Module Efficiency, and Performance Ratio as inputs. The effects of using different fuzzy inference types, either Sugeno- or Mamdani-type, and of changing the number of input membership functions to the error between the calibration data and the model-generated outputs were also illustrated. The solution spaces of the three methods were consequently examined with a sensitivity analysis. ANFIS exhibited the lowest error while DAFIS gave slightly lower errors compared to FIS. Increasing the number of input membership functions helped with error reduction in some cases but, at times, resulted in the opposite. Sugeno-type models gave errors that are slightly lower than those of the Mamdani-type. While ANFIS is superior in terms of error minimization, it could generate solutions that are questionable, i.e. the negative GWP values of the Solar PV system when the inputs were all at the upper end of their range. This shows that the applicability of the ANFIS models highly depends on the range of cases at which it was calibrated. FIS and DAFIS generated more intuitive trends in the sensitivity runs. DAFIS demonstrated an optimal design point wherein increasing the input values does not improve the GWP and LCOE anymore. In the absence of data that could be used for calibration, conventional FIS presents a knowledge-based model that could be used for prediction. In the PV case study, conventional FIS generated errors that are just slightly higher than those of DAFIS. The inherent complexity of a Life Cycle study often hinders its widespread use in the industry and policy-making sectors. While the methodology does not guarantee a more accurate result compared to those generated by the Life Cycle Methodology, it does provide a relatively simpler way of generating knowledge- and data-based estimates that could be used during the initial design of a system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=solar%20photovoltaic" title="solar photovoltaic">solar photovoltaic</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20logic" title=" fuzzy logic"> fuzzy logic</a>, <a href="https://publications.waset.org/abstracts/search?q=inference%20system" title=" inference system"> inference system</a>, <a href="https://publications.waset.org/abstracts/search?q=artificial%20neural%20networks" title=" artificial neural networks"> artificial neural networks</a> </p> <a href="https://publications.waset.org/abstracts/114050/a-methodology-of-using-fuzzy-logics-and-data-analytics-to-estimate-the-life-cycle-indicators-of-solar-photovoltaics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/114050.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">164</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1</span> Spatial Accessibility Analysis of Kabul City Public Transport</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Idrees%20Yusofzai">Mohammad Idrees Yusofzai</a>, <a href="https://publications.waset.org/abstracts/search?q=Hirobata%20Yasuhiro"> Hirobata Yasuhiro</a>, <a href="https://publications.waset.org/abstracts/search?q=Matsuo%20Kojiro"> Matsuo Kojiro</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Kabul is the capital of Afghanistan. It is the focal point of educational, industrial, etc. of Afghanistan. Additionally, the population of Kabul has grown recently and will increase because of return of refugees and shifting of people from other province to Kabul city. However, this increase in population, the issues of urban congestion and other related problems of urban transportation in Kabul city arises. One of the problems is public transport (large buses) service and needs to be modified and enhanced especially large bus routes that are operating in each zone of the 22 zone of Kabul City. To achieve the above mentioned goal of improving public transport, Spatial Accessibility Analysis is one of the important attributes to assess the effectiveness of transportation system and urban transport policy of a city, because accessibility indicator as an alternative tool to support public policy that aims the reinforcement of sustainable urban space. The case study of this research compares the present model (present bus route) and the modified model of public transport. Furthermore, present model, the bus routes in most of the zones are active, however, with having low frequency and unpublished schedule, and accessibility result is analyzed in four cases, based on the variables of accessibility. Whereas in modified model all zones in Kabul is taken into consideration with having specified origin and high frequency. Indeed the number of frequencies is kept high; however, this number is based on the number of buses Millie Bus Enterprise Authority (MBEA) owns. The same approach of cases is applied in modified model to figure out the best accessibility for the modified model. Indeed, the modified model is having a positive impact in congestion level in Kabul city. Besides, analyses of person trip and trip distribution have been also analyzed because how people move in the study area by each mode of transportation. So, the general aims of this research are to assess the present movement of people, identify zones in need of public transport and assess equity level of accessibility in Kabul city. The framework of methodology used in this research is based on gravity analysis model of accessibility; besides, generalized cost (time) of travel and travel mode is calculated. The main data come from person trip survey, socio-economic characteristics, demographic data by Japan International Cooperation Agency, 2008, study of Kabul city and also from the previous researches on travel pattern and the remaining data regarding present bus line and routes have been from MBEA. In conclusion, this research explores zones where public transport accessibility level is high and where it is low. It was found that both models the downtown area or central zones of Kabul city is having high level accessibility. Besides, the present model is the most unfavorable compared with the modified model based on the accessibility analysis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=accessibility" title="accessibility">accessibility</a>, <a href="https://publications.waset.org/abstracts/search?q=bus%20generalized%20cost" title=" bus generalized cost"> bus generalized cost</a>, <a href="https://publications.waset.org/abstracts/search?q=gravity%20model" title=" gravity model"> gravity model</a>, <a href="https://publications.waset.org/abstracts/search?q=public%20transportation%20network" title=" public transportation network"> public transportation network</a> </p> <a href="https://publications.waset.org/abstracts/80208/spatial-accessibility-analysis-of-kabul-city-public-transport" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80208.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">194</span> </span> </div> </div> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10