CINXE.COM
Search | arXiv e-print repository
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1–50 of 938 results for author: <span class="mathjax">Collaboration</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> <div class="content"> <form method="GET" action="/search/physics" aria-role="search"> Searching in archive <strong>physics</strong>. <a href="/search/?searchtype=author&query=Collaboration">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Collaboration"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Collaboration&terms-0-field=author&size=50&order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Collaboration"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Collaboration&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Collaboration&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Collaboration&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&query=Collaboration&start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&query=Collaboration&start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&query=Collaboration&start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li><span class="pagination-ellipsis">…</span></li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.17002">arXiv:2502.17002</a> <span> [<a href="https://arxiv.org/pdf/2502.17002">pdf</a>, <a href="https://arxiv.org/format/2502.17002">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Neutron multiplicity measurement in muon capture on oxygen nuclei in the Gd-loaded Super-Kamiokande detector </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Collaboration%2C+T+S">The Super-Kamiokande Collaboration</a>, <a href="/search/physics?searchtype=author&query=%3A"> :</a>, <a href="/search/physics?searchtype=author&query=Miki%2C+S">S. Miki</a>, <a href="/search/physics?searchtype=author&query=Abe%2C+K">K. Abe</a>, <a href="/search/physics?searchtype=author&query=Abe%2C+S">S. Abe</a>, <a href="/search/physics?searchtype=author&query=Asaoka%2C+Y">Y. Asaoka</a>, <a href="/search/physics?searchtype=author&query=Bronner%2C+C">C. Bronner</a>, <a href="/search/physics?searchtype=author&query=Harada%2C+M">M. Harada</a>, <a href="/search/physics?searchtype=author&query=Hayato%2C+Y">Y. Hayato</a>, <a href="/search/physics?searchtype=author&query=Hiraide%2C+K">K. Hiraide</a>, <a href="/search/physics?searchtype=author&query=Hosokawa%2C+K">K. Hosokawa</a>, <a href="/search/physics?searchtype=author&query=Ieki%2C+K">K. Ieki</a>, <a href="/search/physics?searchtype=author&query=Ikeda%2C+M">M. Ikeda</a>, <a href="/search/physics?searchtype=author&query=Kameda%2C+J">J. Kameda</a>, <a href="/search/physics?searchtype=author&query=Kanemura%2C+Y">Y. Kanemura</a>, <a href="/search/physics?searchtype=author&query=Kaneshima%2C+R">R. Kaneshima</a>, <a href="/search/physics?searchtype=author&query=Kashiwagi%2C+Y">Y. Kashiwagi</a>, <a href="/search/physics?searchtype=author&query=Kataoka%2C+Y">Y. Kataoka</a>, <a href="/search/physics?searchtype=author&query=Mine%2C+S">S. Mine</a>, <a href="/search/physics?searchtype=author&query=Miura%2C+M">M. Miura</a>, <a href="/search/physics?searchtype=author&query=Moriyama%2C+S">S. Moriyama</a>, <a href="/search/physics?searchtype=author&query=Nakahata%2C+M">M. Nakahata</a>, <a href="/search/physics?searchtype=author&query=Nakayama%2C+S">S. Nakayama</a>, <a href="/search/physics?searchtype=author&query=Noguchi%2C+Y">Y. Noguchi</a>, <a href="/search/physics?searchtype=author&query=Okamoto%2C+K">K. Okamoto</a> , et al. (265 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.17002v1-abstract-short" style="display: inline;"> In recent neutrino detectors, neutrons produced in neutrino reactions play an important role. Muon capture on oxygen nuclei is one of the processes that produce neutrons in water Cherenkov detectors. We measured neutron multiplicity in the process using cosmic ray muons that stop in the gadolinium-loaded Super-Kamiokande detector. For this measurement, neutron detection efficiency is obtained with… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.17002v1-abstract-full').style.display = 'inline'; document.getElementById('2502.17002v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.17002v1-abstract-full" style="display: none;"> In recent neutrino detectors, neutrons produced in neutrino reactions play an important role. Muon capture on oxygen nuclei is one of the processes that produce neutrons in water Cherenkov detectors. We measured neutron multiplicity in the process using cosmic ray muons that stop in the gadolinium-loaded Super-Kamiokande detector. For this measurement, neutron detection efficiency is obtained with the muon capture events followed by gamma rays to be $50.2^{+2.0}_{-2.1}\%$. By fitting the observed multiplicity considering the detection efficiency, we measure neutron multiplicity in muon capture as $P(0)=24\pm3\%$, $P(1)=70^{+3}_{-2}\%$, $P(2)=6.1\pm0.5\%$, $P(3)=0.38\pm0.09\%$. This is the first measurement of the multiplicity of neutrons associated with muon capture without neutron energy threshold. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.17002v1-abstract-full').style.display = 'none'; document.getElementById('2502.17002v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.13215">arXiv:2502.13215</a> <span> [<a href="https://arxiv.org/pdf/2502.13215">pdf</a>, <a href="https://arxiv.org/format/2502.13215">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Performance of an Optical TPC Geant4 Simulation with Opticks GPU-Accelerated Photon Propagation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=NEXT+Collaboration"> NEXT Collaboration</a>, <a href="/search/physics?searchtype=author&query=Parmaksiz%2C+I">I. Parmaksiz</a>, <a href="/search/physics?searchtype=author&query=Mistry%2C+K">K. Mistry</a>, <a href="/search/physics?searchtype=author&query=Church%2C+E">E. Church</a>, <a href="/search/physics?searchtype=author&query=Adams%2C+C">C. Adams</a>, <a href="/search/physics?searchtype=author&query=Asaadi%2C+J">J. Asaadi</a>, <a href="/search/physics?searchtype=author&query=Baeza-Rubio%2C+J">J. Baeza-Rubio</a>, <a href="/search/physics?searchtype=author&query=Bailey%2C+K">K. Bailey</a>, <a href="/search/physics?searchtype=author&query=Byrnes%2C+N">N. Byrnes</a>, <a href="/search/physics?searchtype=author&query=Jones%2C+B+J+P">B. J. P. Jones</a>, <a href="/search/physics?searchtype=author&query=Moya%2C+I+A">I. A. Moya</a>, <a href="/search/physics?searchtype=author&query=Navarro%2C+K+E">K. E. Navarro</a>, <a href="/search/physics?searchtype=author&query=Nygren%2C+D+R">D. R. Nygren</a>, <a href="/search/physics?searchtype=author&query=Oyedele%2C+P">P. Oyedele</a>, <a href="/search/physics?searchtype=author&query=Rogers%2C+L">L. Rogers</a>, <a href="/search/physics?searchtype=author&query=Samaniego%2C+F">F. Samaniego</a>, <a href="/search/physics?searchtype=author&query=Stogsdill%2C+K">K. Stogsdill</a>, <a href="/search/physics?searchtype=author&query=Almaz%C3%A1n%2C+H">H. Almaz谩n</a>, <a href="/search/physics?searchtype=author&query=%C3%81lvarez%2C+V">V. 脕lvarez</a>, <a href="/search/physics?searchtype=author&query=Aparicio%2C+B">B. Aparicio</a>, <a href="/search/physics?searchtype=author&query=Aranburu%2C+A+I">A. I. Aranburu</a>, <a href="/search/physics?searchtype=author&query=Arazi%2C+L">L. Arazi</a>, <a href="/search/physics?searchtype=author&query=Arnquist%2C+I+J">I. J. Arnquist</a>, <a href="/search/physics?searchtype=author&query=Auria-Luna%2C+F">F. Auria-Luna</a>, <a href="/search/physics?searchtype=author&query=Ayet%2C+S">S. Ayet</a> , et al. (91 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.13215v1-abstract-short" style="display: inline;"> We investigate the performance of Opticks, an NVIDIA OptiX API 7.5 GPU-accelerated photon propagation compared with a single-threaded Geant4 simulation. We compare the simulations using an improved model of the NEXT-CRAB-0 gaseous time projection chamber. Performance results suggest that Opticks improves simulation speeds by between $58.47\pm{0.02}$ and $181.39\pm{0.28}$ times relative to a CPU-on… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.13215v1-abstract-full').style.display = 'inline'; document.getElementById('2502.13215v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.13215v1-abstract-full" style="display: none;"> We investigate the performance of Opticks, an NVIDIA OptiX API 7.5 GPU-accelerated photon propagation compared with a single-threaded Geant4 simulation. We compare the simulations using an improved model of the NEXT-CRAB-0 gaseous time projection chamber. Performance results suggest that Opticks improves simulation speeds by between $58.47\pm{0.02}$ and $181.39\pm{0.28}$ times relative to a CPU-only Geant4 simulation and these results vary between different types of GPU and CPU. A detailed comparison shows that the number of detected photons, along with their times and wavelengths, are in good agreement between Opticks and Geant4. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.13215v1-abstract-full').style.display = 'none'; document.getElementById('2502.13215v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 8 Figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.13047">arXiv:2502.13047</a> <span> [<a href="https://arxiv.org/pdf/2502.13047">pdf</a>, <a href="https://arxiv.org/format/2502.13047">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Data Analysis, Statistics and Probability">physics.data-an</span> </div> </div> <p class="title is-5 mathjax"> Development of systematic uncertainty-aware neural network trainings for binned-likelihood analyses at the LHC </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=CMS+Collaboration"> CMS Collaboration</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.13047v1-abstract-short" style="display: inline;"> We propose a neural network training method capable of accounting for the effects of systematic variations of the data model in the training process and describe its extension towards neural network multiclass classification. The procedure is evaluated on the realistic case of the measurement of Higgs boson production via gluon fusion and vector boson fusion in the $蟿蟿$ decay channel at the CMS ex… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.13047v1-abstract-full').style.display = 'inline'; document.getElementById('2502.13047v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.13047v1-abstract-full" style="display: none;"> We propose a neural network training method capable of accounting for the effects of systematic variations of the data model in the training process and describe its extension towards neural network multiclass classification. The procedure is evaluated on the realistic case of the measurement of Higgs boson production via gluon fusion and vector boson fusion in the $蟿蟿$ decay channel at the CMS experiment. The neural network output functions are used to infer the signal strengths for inclusive production of Higgs bosons as well as for their production via gluon fusion and vector boson fusion. We observe improvements of 12 and 16% in the uncertainty in the signal strengths for gluon and vector-boson fusion, respectively, compared with a conventional neural network training based on cross-entropy. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.13047v1-abstract-full').style.display = 'none'; document.getElementById('2502.13047v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted to Computing and Software for Big Science. All figures and tables can be found at http://cms-results.web.cern.ch/cms-results/public-results/publications/MLG-23-005 (CMS Public Pages)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> CMS-MLG-23-005, CERN-EP-2025-005 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.10198">arXiv:2502.10198</a> <span> [<a href="https://arxiv.org/pdf/2502.10198">pdf</a>, <a href="https://arxiv.org/format/2502.10198">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Reconstructing neutrinoless double beta decay event kinematics in a xenon gas detector with vertex tagging </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=NEXT+Collaboration"> NEXT Collaboration</a>, <a href="/search/physics?searchtype=author&query=Mart%C3%ADnez-Vara%2C+M">M. Mart铆nez-Vara</a>, <a href="/search/physics?searchtype=author&query=Mistry%2C+K">K. Mistry</a>, <a href="/search/physics?searchtype=author&query=Pompa%2C+F">F. Pompa</a>, <a href="/search/physics?searchtype=author&query=Jones%2C+B+J+P">B. J. P. Jones</a>, <a href="/search/physics?searchtype=author&query=Mart%C3%ADn-Albo%2C+J">J. Mart铆n-Albo</a>, <a href="/search/physics?searchtype=author&query=Sorel%2C+M">M. Sorel</a>, <a href="/search/physics?searchtype=author&query=Adams%2C+C">C. Adams</a>, <a href="/search/physics?searchtype=author&query=Almaz%C3%A1n%2C+H">H. Almaz谩n</a>, <a href="/search/physics?searchtype=author&query=%C3%81lvarez%2C+V">V. 脕lvarez</a>, <a href="/search/physics?searchtype=author&query=Aparicio%2C+B">B. Aparicio</a>, <a href="/search/physics?searchtype=author&query=Aranburu%2C+A+I">A. I. Aranburu</a>, <a href="/search/physics?searchtype=author&query=Arazi%2C+L">L. Arazi</a>, <a href="/search/physics?searchtype=author&query=Arnquist%2C+I+J">I. J. Arnquist</a>, <a href="/search/physics?searchtype=author&query=Auria-Luna%2C+F">F. Auria-Luna</a>, <a href="/search/physics?searchtype=author&query=Ayet%2C+S">S. Ayet</a>, <a href="/search/physics?searchtype=author&query=Azevedo%2C+C+D+R">C. D. R. Azevedo</a>, <a href="/search/physics?searchtype=author&query=Bailey%2C+K">K. Bailey</a>, <a href="/search/physics?searchtype=author&query=Ballester%2C+F">F. Ballester</a>, <a href="/search/physics?searchtype=author&query=del+Barrio-Torregrosa%2C+M">M. del Barrio-Torregrosa</a>, <a href="/search/physics?searchtype=author&query=Bayo%2C+A">A. Bayo</a>, <a href="/search/physics?searchtype=author&query=Benlloch-Rodr%C3%ADguez%2C+J+M">J. M. Benlloch-Rodr铆guez</a>, <a href="/search/physics?searchtype=author&query=Borges%2C+F+I+G+M">F. I. G. M. Borges</a>, <a href="/search/physics?searchtype=author&query=Brodolin%2C+A">A. Brodolin</a>, <a href="/search/physics?searchtype=author&query=Byrnes%2C+N">N. Byrnes</a> , et al. (86 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.10198v1-abstract-short" style="display: inline;"> If neutrinoless double beta decay is discovered, the next natural step would be understanding the lepton number violating physics responsible for it. Several alternatives exist beyond the exchange of light neutrinos. Some of these mechanisms can be distinguished by measuring phase-space observables, namely the opening angle $\cos胃$ among the two decay electrons, and the electron energy spectra,… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.10198v1-abstract-full').style.display = 'inline'; document.getElementById('2502.10198v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.10198v1-abstract-full" style="display: none;"> If neutrinoless double beta decay is discovered, the next natural step would be understanding the lepton number violating physics responsible for it. Several alternatives exist beyond the exchange of light neutrinos. Some of these mechanisms can be distinguished by measuring phase-space observables, namely the opening angle $\cos胃$ among the two decay electrons, and the electron energy spectra, $T_1$ and $T_2$. In this work, we study the statistical accuracy and precision in measuring these kinematic observables in a future xenon gas detector with the added capability to precisely locate the decay vertex. For realistic detector conditions (a gas pressure of 10 bar and spatial resolution of 4 mm), we find that the average $\overline{\cos胃}$ and $\overline{T_1}$ values can be reconstructed with a precision of 0.19 and 110 keV, respectively, assuming that only 10 neutrinoless double beta decay events are detected. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.10198v1-abstract-full').style.display = 'none'; document.getElementById('2502.10198v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.10188">arXiv:2502.10188</a> <span> [<a href="https://arxiv.org/pdf/2502.10188">pdf</a>, <a href="https://arxiv.org/format/2502.10188">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Installation and performance of the 3rd Veto plane at the SND@LHC detector </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Collaboration%2C+T+S">The SND@LHC Collaboration</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.10188v1-abstract-short" style="display: inline;"> During 2022/2023 the optimal inefficiency of the Veto system of the SND@LHC detector was measured to be $(7.8\pm2.8)\times10^{-8}$. To reduce this inefficiency, a third Veto plane was installed during the 2023-2024 Year End Technical Stop. In addition, the Veto system was lowered to cover the target fully, thereby increasing acceptance. This paper describes how the inefficiency of the Veto system… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.10188v1-abstract-full').style.display = 'inline'; document.getElementById('2502.10188v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.10188v1-abstract-full" style="display: none;"> During 2022/2023 the optimal inefficiency of the Veto system of the SND@LHC detector was measured to be $(7.8\pm2.8)\times10^{-8}$. To reduce this inefficiency, a third Veto plane was installed during the 2023-2024 Year End Technical Stop. In addition, the Veto system was lowered to cover the target fully, thereby increasing acceptance. This paper describes how the inefficiency of the Veto system was reduced from $7.8\times10^{-8}$ with an acceptance of about $64\%$ of the target area in 2022-2023 to $(8.7\pm3.5)\times10^{-9}$ on the full area in 2024. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.10188v1-abstract-full').style.display = 'none'; document.getElementById('2502.10188v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 13 figures. To be published in JINST</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.18690">arXiv:2501.18690</a> <span> [<a href="https://arxiv.org/pdf/2501.18690">pdf</a>, <a href="https://arxiv.org/format/2501.18690">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Ion Transport on Phased Radiofrequency Carpets in Xenon Gas </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Dey%2C+E">E. Dey</a>, <a href="/search/physics?searchtype=author&query=Jones%2C+B+J+P">B. J. P. Jones</a>, <a href="/search/physics?searchtype=author&query=Mei%2C+Y">Y. Mei</a>, <a href="/search/physics?searchtype=author&query=Brodeur%2C+M">M. Brodeur</a>, <a href="/search/physics?searchtype=author&query=Chirayath%2C+V+A">V. A. Chirayath</a>, <a href="/search/physics?searchtype=author&query=Coward%2C+N">N. Coward</a>, <a href="/search/physics?searchtype=author&query=Foss%2C+F+W">F. W. Foss</a>, <a href="/search/physics?searchtype=author&query=Navarro%2C+K+E">K. E. Navarro</a>, <a href="/search/physics?searchtype=author&query=Parmaksiz%2C+I">I. Parmaksiz</a>, <a href="/search/physics?searchtype=author&query=Collaboration%2C+T+N">The NEXT Collaboration</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.18690v1-abstract-short" style="display: inline;"> We present the design and performance of a four-phased radiofrequency (RF) carpet system for ion transport in high-pressure xenon gas. The RF carpet, designed with a 160 $渭$m pitch, is applied to the lateral collection of ions in xenon at pressures up to 600 mbar. We demonstrate transport efficiency of caesium ions across varying pressures, and compare with microscopic simulations made in the SIMI… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.18690v1-abstract-full').style.display = 'inline'; document.getElementById('2501.18690v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.18690v1-abstract-full" style="display: none;"> We present the design and performance of a four-phased radiofrequency (RF) carpet system for ion transport in high-pressure xenon gas. The RF carpet, designed with a 160 $渭$m pitch, is applied to the lateral collection of ions in xenon at pressures up to 600 mbar. We demonstrate transport efficiency of caesium ions across varying pressures, and compare with microscopic simulations made in the SIMION package. The novel use of an N-phased RF carpet at high pressure can achieve ion levitation and controlled lateral motion in a denser environment than is typical for RF ion transport in gases. This feature makes such carpets strong candidates for ion transport to single ion sensors envisaged for future neutrinoless double-beta decay experiments in xenon gas. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.18690v1-abstract-full').style.display = 'none'; document.getElementById('2501.18690v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.13755">arXiv:2501.13755</a> <span> [<a href="https://arxiv.org/pdf/2501.13755">pdf</a>, <a href="https://arxiv.org/format/2501.13755">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> </div> <p class="title is-5 mathjax"> The Impact of Helium Exposure on the PMTs of the SuperNEMO Experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=SuperNEMO+Collaboration"> SuperNEMO Collaboration</a>, <a href="/search/physics?searchtype=author&query=Aguerre%2C+X">X. Aguerre</a>, <a href="/search/physics?searchtype=author&query=Barabash%2C+A+S">A. S. Barabash</a>, <a href="/search/physics?searchtype=author&query=Basharina-Freshville%2C+A">A. Basharina-Freshville</a>, <a href="/search/physics?searchtype=author&query=Bongrand%2C+M">M. Bongrand</a>, <a href="/search/physics?searchtype=author&query=Bourgeois%2C+C">Ch. Bourgeois</a>, <a href="/search/physics?searchtype=author&query=Breton%2C+D">D. Breton</a>, <a href="/search/physics?searchtype=author&query=Breier%2C+R">R. Breier</a>, <a href="/search/physics?searchtype=author&query=Busto%2C+J">J. Busto</a>, <a href="/search/physics?searchtype=author&query=Cerna%2C+C">C. Cerna</a>, <a href="/search/physics?searchtype=author&query=Ceschia%2C+M">M. Ceschia</a>, <a href="/search/physics?searchtype=author&query=Chauveau%2C+E">E. Chauveau</a>, <a href="/search/physics?searchtype=author&query=Chopra%2C+A">A. Chopra</a>, <a href="/search/physics?searchtype=author&query=Dawson%2C+L">L. Dawson</a>, <a href="/search/physics?searchtype=author&query=Duchesneau%2C+D">D. Duchesneau</a>, <a href="/search/physics?searchtype=author&query=Evans%2C+J+J">J. J. Evans</a>, <a href="/search/physics?searchtype=author&query=Filosofov%2C+D">D. Filosofov</a>, <a href="/search/physics?searchtype=author&query=Garrido%2C+X">X. Garrido</a>, <a href="/search/physics?searchtype=author&query=Girard-Carillo%2C+C">C. Girard-Carillo</a>, <a href="/search/physics?searchtype=author&query=Granjon%2C+M">M. Granjon</a>, <a href="/search/physics?searchtype=author&query=Hoballah%2C+M">M. Hoballah</a>, <a href="/search/physics?searchtype=author&query=Hod%C3%A1k%2C+R">R. Hod谩k</a>, <a href="/search/physics?searchtype=author&query=Horner%2C+G">G. Horner</a>, <a href="/search/physics?searchtype=author&query=Hussain%2C+M+H">M. H. Hussain</a>, <a href="/search/physics?searchtype=author&query=Islam%2C+A">A. Islam</a> , et al. (28 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.13755v3-abstract-short" style="display: inline;"> The performance of Hamamatsu 8" photomultiplier tubes (PMTs) of the type used in the SuperNEMO neutrinoless double-beta decay experiment (R5912-MOD), is investigated as a function of exposure to helium (He) gas. Two PMTs were monitored for over a year, one exposed to varying concentrations of He, and the other kept in standard atmospheric conditions as a control. Both PMTs were exposed to light si… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.13755v3-abstract-full').style.display = 'inline'; document.getElementById('2501.13755v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.13755v3-abstract-full" style="display: none;"> The performance of Hamamatsu 8" photomultiplier tubes (PMTs) of the type used in the SuperNEMO neutrinoless double-beta decay experiment (R5912-MOD), is investigated as a function of exposure to helium (He) gas. Two PMTs were monitored for over a year, one exposed to varying concentrations of He, and the other kept in standard atmospheric conditions as a control. Both PMTs were exposed to light signals generated by a Bi-207 radioactive source that provided consistent large input PMT signals similar to those that are typical of the SuperNEMO experiment. The energy resolution of PMT signals corresponding to 1 MeV energy scale determined from the Bi-207 decay spectrum, shows a negligible degradation with He exposure; however the rate of after-pulsing shows a clear increase with He exposure, which is modelled and compared to diffusion theory. A method for reconstructing the partial pressure of He within the PMT and a method for determining the He breakdown point, are introduced. The implications for long-term SuperNEMO operations are briefly discussed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.13755v3-abstract-full').style.display = 'none'; document.getElementById('2501.13755v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.13196">arXiv:2501.13196</a> <span> [<a href="https://arxiv.org/pdf/2501.13196">pdf</a>, <a href="https://arxiv.org/format/2501.13196">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Direct Measurement of the $^{39}$Ar Half-life from 3.4 Years of Data with the DEAP-3600 Detector </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=DEAP+Collaboration"> DEAP Collaboration</a>, <a href="/search/physics?searchtype=author&query=Adhikari%2C+P">P. Adhikari</a>, <a href="/search/physics?searchtype=author&query=Ajaj%2C+R">R. Ajaj</a>, <a href="/search/physics?searchtype=author&query=Alp%C3%ADzar-Venegas%2C+M">M. Alp铆zar-Venegas</a>, <a href="/search/physics?searchtype=author&query=Amaudruz%2C+P+-">P. -A. Amaudruz</a>, <a href="/search/physics?searchtype=author&query=Anstey%2C+J">J. Anstey</a>, <a href="/search/physics?searchtype=author&query=Auty%2C+D+J">D. J. Auty</a>, <a href="/search/physics?searchtype=author&query=Batygov%2C+M">M. Batygov</a>, <a href="/search/physics?searchtype=author&query=Beltran%2C+B">B. Beltran</a>, <a href="/search/physics?searchtype=author&query=Bina%2C+C+E">C. E. Bina</a>, <a href="/search/physics?searchtype=author&query=Bonivento%2C+W+M">W. M. Bonivento</a>, <a href="/search/physics?searchtype=author&query=Boulay%2C+M+G">M. G. Boulay</a>, <a href="/search/physics?searchtype=author&query=Bueno%2C+J+F">J. F. Bueno</a>, <a href="/search/physics?searchtype=author&query=Cadeddu%2C+M">M. Cadeddu</a>, <a href="/search/physics?searchtype=author&query=Cai%2C+B">B. Cai</a>, <a href="/search/physics?searchtype=author&query=C%C3%A1rdenas-Montes%2C+M">M. C谩rdenas-Montes</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+Y">Y. Chen</a>, <a href="/search/physics?searchtype=author&query=Choudhary%2C+S">S. Choudhary</a>, <a href="/search/physics?searchtype=author&query=Cleveland%2C+B+T">B. T. Cleveland</a>, <a href="/search/physics?searchtype=author&query=Crampton%2C+R">R. Crampton</a>, <a href="/search/physics?searchtype=author&query=Daugherty%2C+S">S. Daugherty</a>, <a href="/search/physics?searchtype=author&query=DelGobbo%2C+P">P. DelGobbo</a>, <a href="/search/physics?searchtype=author&query=Di+Stefano%2C+P">P. Di Stefano</a>, <a href="/search/physics?searchtype=author&query=Dolganov%2C+G">G. Dolganov</a>, <a href="/search/physics?searchtype=author&query=Doria%2C+L">L. Doria</a> , et al. (89 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.13196v1-abstract-short" style="display: inline;"> The half-life of $^{39}$Ar is measured using the DEAP-3600 detector located 2 km underground at SNOLAB. In 2016-2020, DEAP-3600 used a target mass of (3269 $\pm$ 24) kg of liquid argon distilled from the atmosphere in a direct-detection dark matter search. Such an argon mass also enables direct measurements of argon isotope properties. The decay of $^{39}$Ar in DEAP-3600 is the dominant source of… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.13196v1-abstract-full').style.display = 'inline'; document.getElementById('2501.13196v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.13196v1-abstract-full" style="display: none;"> The half-life of $^{39}$Ar is measured using the DEAP-3600 detector located 2 km underground at SNOLAB. In 2016-2020, DEAP-3600 used a target mass of (3269 $\pm$ 24) kg of liquid argon distilled from the atmosphere in a direct-detection dark matter search. Such an argon mass also enables direct measurements of argon isotope properties. The decay of $^{39}$Ar in DEAP-3600 is the dominant source of triggers by two orders of magnitude, ensuring high statistics and making DEAP-3600 well-suited for measuring this isotope's half-life. Use of the pulse-shape discrimination technique in DEAP-3600 allows for powerful discrimination between nuclear recoils and electron recoils, resulting in the selection of a clean sample of $^{39}$Ar decays. Observing over a period of 3.4 years, the $^{39}$Ar half-life is measured to be $(302 \pm 8_{\rm stat} \pm 6_{\rm sys})$ years. This new direct measurement suggests that the half-life of $^{39}$Ar may be significantly longer than the accepted value, with potential implications for measurements using this isotope's half-life as input. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.13196v1-abstract-full').style.display = 'none'; document.getElementById('2501.13196v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.12297">arXiv:2501.12297</a> <span> [<a href="https://arxiv.org/pdf/2501.12297">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> ESSnuSB status </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Fanourakis%2C+G">George Fanourakis</a>, <a href="/search/physics?searchtype=author&query=Collaboration%2C+E">ESSnuSB Collaboration</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.12297v1-abstract-short" style="display: inline;"> ESSnuSB (the European Spallation neutrino Super Beam) is a design study for a long-baseline neutrino experiment to precisely measure the CP violation in the leptonic sector, at the second neutrino oscillation maximum, using a beam driven by the uniquely powerful ESS linear accelerator. The ESSnuSB CDR showed that after 10 years, about 72% of the possible CP violating phase range will be covered wi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.12297v1-abstract-full').style.display = 'inline'; document.getElementById('2501.12297v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.12297v1-abstract-full" style="display: none;"> ESSnuSB (the European Spallation neutrino Super Beam) is a design study for a long-baseline neutrino experiment to precisely measure the CP violation in the leptonic sector, at the second neutrino oscillation maximum, using a beam driven by the uniquely powerful ESS linear accelerator. The ESSnuSB CDR showed that after 10 years, about 72% of the possible CP violating phase range will be covered with 5 sigma C.L. to reject the no CP violation hypothesis. The expected precision for the CP violating phase is better than 8 degrees for all allowed values, making it the most precise proposed experiment in the field. The extension project, ESSnuSB+, aims in designing two new facilities, a Low Energy nuSTORM and a Low Energy Monitored Neutrino Beam to use them to precisely measure the neutrino-nucleus cross-section in the energy range of 0.2 to 0.6 GeV. A new water Cherenkov detector will also be designed to measure cross sections and serve to explore the sterile neutrino case. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.12297v1-abstract-full').style.display = 'none'; document.getElementById('2501.12297v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Contribution to the 25th International Workshop on Neutrinos from Accelerators proceedings</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.04531">arXiv:2501.04531</a> <span> [<a href="https://arxiv.org/pdf/2501.04531">pdf</a>, <a href="https://arxiv.org/format/2501.04531">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> The ENUBET monitored neutrino beam and its implementation at CERN </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=ENUBET+collaboration"> ENUBET collaboration</a>, <a href="/search/physics?searchtype=author&query=Hali%C4%87%2C+L">L. Hali膰</a>, <a href="/search/physics?searchtype=author&query=Acerbi%2C+F">F. Acerbi</a>, <a href="/search/physics?searchtype=author&query=Angelis%2C+I">I. Angelis</a>, <a href="/search/physics?searchtype=author&query=Bomben%2C+L">L. Bomben</a>, <a href="/search/physics?searchtype=author&query=Bonesini%2C+M">M. Bonesini</a>, <a href="/search/physics?searchtype=author&query=Bramati%2C+F">F. Bramati</a>, <a href="/search/physics?searchtype=author&query=Branca%2C+A">A. Branca</a>, <a href="/search/physics?searchtype=author&query=Brizzolari%2C+C">C. Brizzolari</a>, <a href="/search/physics?searchtype=author&query=Brunetti%2C+G">G. Brunetti</a>, <a href="/search/physics?searchtype=author&query=Calviani%2C+M">M. Calviani</a>, <a href="/search/physics?searchtype=author&query=Capelli%2C+S">S. Capelli</a>, <a href="/search/physics?searchtype=author&query=Capitani%2C+M">M. Capitani</a>, <a href="/search/physics?searchtype=author&query=Carturan%2C+S">S. Carturan</a>, <a href="/search/physics?searchtype=author&query=Catanesi%2C+M+G">M. G. Catanesi</a>, <a href="/search/physics?searchtype=author&query=Cecchini%2C+S">S. Cecchini</a>, <a href="/search/physics?searchtype=author&query=Charitonidis%2C+N">N. Charitonidis</a>, <a href="/search/physics?searchtype=author&query=Cindolo%2C+F">F. Cindolo</a>, <a href="/search/physics?searchtype=author&query=Cogo%2C+G">G. Cogo</a>, <a href="/search/physics?searchtype=author&query=Collazuol%2C+G">G. Collazuol</a>, <a href="/search/physics?searchtype=author&query=Corso%2C+F+D">F. Dal Corso</a>, <a href="/search/physics?searchtype=author&query=Delogu%2C+C">C. Delogu</a>, <a href="/search/physics?searchtype=author&query=De+Rosa%2C+G">G. De Rosa</a>, <a href="/search/physics?searchtype=author&query=Falcone%2C+A">A. Falcone</a>, <a href="/search/physics?searchtype=author&query=Goddard%2C+B">B. Goddard</a> , et al. (52 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.04531v1-abstract-short" style="display: inline;"> The ENUBET project recently concluded the R&D for a site independent design of a monitored neutrino beam for high precision cross section measurements, in which the neutrino flux is inferred from the measurement of charged leptons in an instrumented decay tunnel. In this phase three fundamental results were obtained and will be discussed here: 1) a beamline not requiring a horn and relying on stat… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.04531v1-abstract-full').style.display = 'inline'; document.getElementById('2501.04531v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.04531v1-abstract-full" style="display: none;"> The ENUBET project recently concluded the R&D for a site independent design of a monitored neutrino beam for high precision cross section measurements, in which the neutrino flux is inferred from the measurement of charged leptons in an instrumented decay tunnel. In this phase three fundamental results were obtained and will be discussed here: 1) a beamline not requiring a horn and relying on static focusing elements allows to perform a $谓_e$ cross section measurement in the DUNE energy range with 1% statistical uncertainty employing $10^{20}$ 400 GeV protons on target (pot) and a neutrino detector of the size of ProtoDUNE; 2) the instrumentation of the decay tunnel, based on a cost effective sampling calorimeter solution, has been tested with a large scale prototype achieving the performance required to identify positrons and muons from kaon decays with high signal-to-noise ratio; 3) the systematics budget on the neutrino flux is constrained at the 1% level by fitting the charged leptons observables measured in the decay tunnel. Based on these successful results ENUBET is now pursuing a study for a site dependent implementation at CERN in the framework of Physics Beyond Colliders. In this context a new beamline, able to enrich the neutrino flux at the energy of HK and to reduce by more than a factor 3 the needed pot, has been designed and is being optimized. The civil engineering and radioprotection studies for the siting of ENUBET in the North Area towards the two ProtoDUNEs are also in the scope of this work, with the goal of proposing a neutrino cross section experiment in 2026. The combined use of both the neutrino detectors and of the improved beamline would allow to perform cross section measurements with unprecedented precision in about 5 years with a proton request compatible with the needs of other users after CERN Long Shutdown 3. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.04531v1-abstract-full').style.display = 'none'; document.getElementById('2501.04531v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Conference proceedings for the 25th International Workshop on Neutrinos from Accelerators (NuFact 2024)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.04471">arXiv:2501.04471</a> <span> [<a href="https://arxiv.org/pdf/2501.04471">pdf</a>, <a href="https://arxiv.org/format/2501.04471">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Decoupling Pulse Tube Vibrations from a Dry Dilution Refrigerator at milli-Kelvin Temperatures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=The+NUCLEUS+collaboration"> The NUCLEUS collaboration</a>, <a href="/search/physics?searchtype=author&query=Wex%2C+A">A. Wex</a>, <a href="/search/physics?searchtype=author&query=Rothe%2C+J">J. Rothe</a>, <a href="/search/physics?searchtype=author&query=Peters%2C+L">L. Peters</a>, <a href="/search/physics?searchtype=author&query=Abele%2C+H">H. Abele</a>, <a href="/search/physics?searchtype=author&query=Angloher%2C+G">G. Angloher</a>, <a href="/search/physics?searchtype=author&query=Arnold%2C+B">B. Arnold</a>, <a href="/search/physics?searchtype=author&query=Corona%2C+M+A">M. Atzori Corona</a>, <a href="/search/physics?searchtype=author&query=Bento%2C+A">A. Bento</a>, <a href="/search/physics?searchtype=author&query=Bossio%2C+E">E. Bossio</a>, <a href="/search/physics?searchtype=author&query=Burkhart%2C+J">J. Burkhart</a>, <a href="/search/physics?searchtype=author&query=Canonica%2C+L">L. Canonica</a>, <a href="/search/physics?searchtype=author&query=Cappella%2C+F">F. Cappella</a>, <a href="/search/physics?searchtype=author&query=Cappelli%2C+M">M. Cappelli</a>, <a href="/search/physics?searchtype=author&query=Casali%2C+N">N. Casali</a>, <a href="/search/physics?searchtype=author&query=Cerulli%2C+R">R. Cerulli</a>, <a href="/search/physics?searchtype=author&query=Cruciani%2C+A">A. Cruciani</a>, <a href="/search/physics?searchtype=author&query=Del+Castello%2C+G">G. Del Castello</a>, <a href="/search/physics?searchtype=author&query=Roccagiovine%2C+M+d+G">M. del Gallo Roccagiovine</a>, <a href="/search/physics?searchtype=author&query=Doblhammer%2C+A">A. Doblhammer</a>, <a href="/search/physics?searchtype=author&query=Dorer%2C+S">S. Dorer</a>, <a href="/search/physics?searchtype=author&query=Erhart%2C+A">A. Erhart</a>, <a href="/search/physics?searchtype=author&query=Friedl%2C+M">M. Friedl</a>, <a href="/search/physics?searchtype=author&query=Fichtinger%2C+S">S. Fichtinger</a>, <a href="/search/physics?searchtype=author&query=Garai%2C+A">A. Garai</a> , et al. (43 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.04471v1-abstract-short" style="display: inline;"> With the rising adoption of dry dilution refrigerators across scientific and industrial domains, there has been a pressing demand for highly efficient vibration decoupling systems capable of operation at cryogenic temperatures in order to achieve the low vibration levels required for operation of sensitive equipment like cryogenic detectors or quantum devices. As part of the NUCLEUS experiment, a… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.04471v1-abstract-full').style.display = 'inline'; document.getElementById('2501.04471v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.04471v1-abstract-full" style="display: none;"> With the rising adoption of dry dilution refrigerators across scientific and industrial domains, there has been a pressing demand for highly efficient vibration decoupling systems capable of operation at cryogenic temperatures in order to achieve the low vibration levels required for operation of sensitive equipment like cryogenic detectors or quantum devices. As part of the NUCLEUS experiment, a cryogenic spring pendulum has been engineered to effectively isolate pulse tube vibrations by establishing an autonomous frame of reference for the experimental volume, while sustaining temperatures below 10 mK. Attaining attenuation of up to two orders of magnitude within the region of interest of the NUCLEUS cryogenic detectors, we achieved displacement RMS values in the order of 1 nm in the axial direction and 100 pm radially, thereby reducing vibrations below typical environmental levels. Our successful detector operation across multiple cooldown cycles demonstrated negligible sensitivity to pulse tube induced vibrations, culminating in the achievement of an ultra-low $(6.22 \pm 0.07)$ eV baseline resolution on a gram-scale CaWO$_4$ cryogenic calorimeter during continuous pulse tube operation over the course of several weeks. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.04471v1-abstract-full').style.display = 'none'; document.getElementById('2501.04471v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.15090">arXiv:2412.15090</a> <span> [<a href="https://arxiv.org/pdf/2412.15090">pdf</a>, <a href="https://arxiv.org/format/2412.15090">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/20/02/P02018">10.1088/1748-0221/20/02/P02018 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Expected Tracking Performance of the ATLAS Inner Tracker at the High-Luminosity LHC </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=ATLAS+Collaboration"> ATLAS Collaboration</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.15090v2-abstract-short" style="display: inline;"> The high-luminosity phase of LHC operations (HL-LHC), will feature a large increase in simultaneous proton-proton interactions per bunch crossing up to 200, compared with a typical leveling target of 64 in Run 3. Such an increase will create a very challenging environment in which to perform charged particle trajectory reconstruction, a task crucial for the success of the ATLAS physics program, an… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.15090v2-abstract-full').style.display = 'inline'; document.getElementById('2412.15090v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.15090v2-abstract-full" style="display: none;"> The high-luminosity phase of LHC operations (HL-LHC), will feature a large increase in simultaneous proton-proton interactions per bunch crossing up to 200, compared with a typical leveling target of 64 in Run 3. Such an increase will create a very challenging environment in which to perform charged particle trajectory reconstruction, a task crucial for the success of the ATLAS physics program, and will exceed the capabilities of the current ATLAS Inner Detector (ID). A new all-silicon Inner Tracker (ITk) will replace the current ID in time for the start of the HL-LHC. To ensure successful use of the ITk capabilities in Run 4 and beyond, the ATLAS tracking software has been successfully adapted to achieve state-of-the-art track reconstruction in challenging high-luminosity conditions with the ITk detector. This paper presents the expected tracking performance of the ATLAS ITk based on the latest available developments since the ITk technical design reports. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.15090v2-abstract-full').style.display = 'none'; document.getElementById('2412.15090v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">52 pages in total, author list starting page 35, 28 figures, 6 tables, published in JINST. All figures including auxiliary figures are available at https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/IDTR-2023-01/</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> CERN-EP-2024-342 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JINST 20 (2025) P02018 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.13707">arXiv:2412.13707</a> <span> [<a href="https://arxiv.org/pdf/2412.13707">pdf</a>, <a href="https://arxiv.org/format/2412.13707">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Background characterization of the CONUS+ experimental location </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=CONUS+Collaboration"> CONUS Collaboration</a>, <a href="/search/physics?searchtype=author&query=Garcia%2C+E+S">E. Sanchez Garcia</a>, <a href="/search/physics?searchtype=author&query=Ackermann%2C+N">N. Ackermann</a>, <a href="/search/physics?searchtype=author&query=Armbruster%2C+S">S. Armbruster</a>, <a href="/search/physics?searchtype=author&query=Bonet%2C+H">H. Bonet</a>, <a href="/search/physics?searchtype=author&query=Buck%2C+C">C. Buck</a>, <a href="/search/physics?searchtype=author&query=Fulber%2C+K">K. Fulber</a>, <a href="/search/physics?searchtype=author&query=Hakenmuller%2C+J">J. Hakenmuller</a>, <a href="/search/physics?searchtype=author&query=Hempfling%2C+J">J. Hempfling</a>, <a href="/search/physics?searchtype=author&query=Heusser%2C+G">G. Heusser</a>, <a href="/search/physics?searchtype=author&query=Hohmann%2C+E">E. Hohmann</a>, <a href="/search/physics?searchtype=author&query=Lindner%2C+M">M. Lindner</a>, <a href="/search/physics?searchtype=author&query=Maneschg%2C+W">W. Maneschg</a>, <a href="/search/physics?searchtype=author&query=Ni%2C+K">K. Ni</a>, <a href="/search/physics?searchtype=author&query=Rank%2C+M">M. Rank</a>, <a href="/search/physics?searchtype=author&query=Rink%2C+T">T. Rink</a>, <a href="/search/physics?searchtype=author&query=Stalder%2C+I">I. Stalder</a>, <a href="/search/physics?searchtype=author&query=Strecker%2C+H">H. Strecker</a>, <a href="/search/physics?searchtype=author&query=Wink%2C+R">R. Wink</a>, <a href="/search/physics?searchtype=author&query=Woenckhaus%2C+J">J. Woenckhaus</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.13707v1-abstract-short" style="display: inline;"> CONUS+ is an experiment aiming at detecting coherent elastic neutrino-nucleus scattering (CE$谓$NS) of reactor antineutrinos on germanium nuclei in the fully coherent regime, continuing the CONUS physics program conducted at the Brokdorf nuclear power plant (KBR), Germany. The CONUS+ experiment is installed in the Leibstadt nuclear power plant (KKL), Switzerland, at a distance of 20.7 m from the 3.… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.13707v1-abstract-full').style.display = 'inline'; document.getElementById('2412.13707v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.13707v1-abstract-full" style="display: none;"> CONUS+ is an experiment aiming at detecting coherent elastic neutrino-nucleus scattering (CE$谓$NS) of reactor antineutrinos on germanium nuclei in the fully coherent regime, continuing the CONUS physics program conducted at the Brokdorf nuclear power plant (KBR), Germany. The CONUS+ experiment is installed in the Leibstadt nuclear power plant (KKL), Switzerland, at a distance of 20.7 m from the 3.6 GW reactor core, where the antineutrino flux is $1.5\cdot 10^{13}$~s$^{-1}$cm$^{-2}$. The CE$谓$NS signature will be measured with four point-contact high-purity low energy threshold germanium (HPGe) detectors. A good understanding of the background is crucial, especially events correlated with the reactor thermal power are troublesome. A large background characterization campaign was conducted during reactor on and off times to find the best location for the CONUS+ setup. On-site measurements revealed a correlated, highly thermalized neutron field with a maximum fluence rate of $(2.3\pm0.1)\cdot 10^{4}$~neutrons~d$^{-1}$cm$^{-2}$ during reactor operation. The $纬$-ray background was studied with a HPGe detector without shield. The muon flux was examined using a liquid scintillator detector measuring (107$\pm$3)~muons~s$^{-1}$m$^{-2}$, which corresponds to an average overburden of 7.4~m of water equivalent. The new background conditions in CONUS+ are compared to the previous CONUS ones, showing a 30 times higher flux of neutrons, but a 26 times lower component of reactor thermal power correlated $纬$-rays over 2.7 MeV. The lower CONUS+ overburden increases the number of muon-induced neutrons by 2.3 times and the flux of cosmogenic neutrons. Finally, all the measured rates are discussed in the context of the CONUS+ background, together with the CONUS+ modifications performed to reduce the impact of the new background conditions at KKL. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.13707v1-abstract-full').style.display = 'none'; document.getElementById('2412.13707v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 15 figures, 6 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.10451">arXiv:2412.10451</a> <span> [<a href="https://arxiv.org/pdf/2412.10451">pdf</a>, <a href="https://arxiv.org/format/2412.10451">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Low-Energy Nuclear Recoil Calibration of XENONnT with a $^{88}$YBe Photoneutron Source </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=XENON+Collaboration"> XENON Collaboration</a>, <a href="/search/physics?searchtype=author&query=Aprile%2C+E">E. Aprile</a>, <a href="/search/physics?searchtype=author&query=Aalbers%2C+J">J. Aalbers</a>, <a href="/search/physics?searchtype=author&query=Abe%2C+K">K. Abe</a>, <a href="/search/physics?searchtype=author&query=Maouloud%2C+S+A">S. Ahmed Maouloud</a>, <a href="/search/physics?searchtype=author&query=Althueser%2C+L">L. Althueser</a>, <a href="/search/physics?searchtype=author&query=Andrieu%2C+B">B. Andrieu</a>, <a href="/search/physics?searchtype=author&query=Angelino%2C+E">E. Angelino</a>, <a href="/search/physics?searchtype=author&query=Ant%2C+D">D. Ant</a>, <a href="/search/physics?searchtype=author&query=Arneodo%2C+F">F. Arneodo</a>, <a href="/search/physics?searchtype=author&query=Baudis%2C+L">L. Baudis</a>, <a href="/search/physics?searchtype=author&query=Bazyk%2C+M">M. Bazyk</a>, <a href="/search/physics?searchtype=author&query=Bellagamba%2C+L">L. Bellagamba</a>, <a href="/search/physics?searchtype=author&query=Biondi%2C+R">R. Biondi</a>, <a href="/search/physics?searchtype=author&query=Bismark%2C+A">A. Bismark</a>, <a href="/search/physics?searchtype=author&query=Boese%2C+K">K. Boese</a>, <a href="/search/physics?searchtype=author&query=Brown%2C+A">A. Brown</a>, <a href="/search/physics?searchtype=author&query=Bruno%2C+G">G. Bruno</a>, <a href="/search/physics?searchtype=author&query=Budnik%2C+R">R. Budnik</a>, <a href="/search/physics?searchtype=author&query=Cai%2C+C">C. Cai</a>, <a href="/search/physics?searchtype=author&query=Capelli%2C+C">C. Capelli</a>, <a href="/search/physics?searchtype=author&query=Cardoso%2C+J+M+R">J. M. R. Cardoso</a>, <a href="/search/physics?searchtype=author&query=Ch%2C+A+P+C">A. P. Cimental Ch</a>, <a href="/search/physics?searchtype=author&query=Colijn%2C+A+P">A. P. Colijn</a>, <a href="/search/physics?searchtype=author&query=Conrad%2C+J">J. Conrad</a> , et al. (147 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.10451v1-abstract-short" style="display: inline;"> Characterizing low-energy (O(1keV)) nuclear recoils near the detector threshold is one of the major challenges for large direct dark matter detectors. To that end, we have successfully used a Yttrium-Beryllium photoneutron source that emits 152 keV neutrons for the calibration of the light and charge yields of the XENONnT experiment for the first time. After data selection, we accumulated 474 even… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.10451v1-abstract-full').style.display = 'inline'; document.getElementById('2412.10451v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.10451v1-abstract-full" style="display: none;"> Characterizing low-energy (O(1keV)) nuclear recoils near the detector threshold is one of the major challenges for large direct dark matter detectors. To that end, we have successfully used a Yttrium-Beryllium photoneutron source that emits 152 keV neutrons for the calibration of the light and charge yields of the XENONnT experiment for the first time. After data selection, we accumulated 474 events from 183 hours of exposure with this source. The expected background was $55 \pm 12$ accidental coincidence events, estimated using a dedicated 152 hour background calibration run with a Yttrium-PVC gamma-only source and data-driven modeling. From these calibrations, we extracted the light yield and charge yield for liquid xenon at our field strength of 23 V/cm between 0.5 keV$_{\rm NR}$ and 5.0 keV$_{\rm NR}$ (nuclear recoil energy in keV). This calibration is crucial for accurately measuring the solar $^8$B neutrino coherent elastic neutrino-nucleus scattering and searching for light dark matter particles with masses below 12 GeV/c$^2$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.10451v1-abstract-full').style.display = 'none'; document.getElementById('2412.10451v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.05264">arXiv:2412.05264</a> <span> [<a href="https://arxiv.org/pdf/2412.05264">pdf</a>, <a href="https://arxiv.org/format/2412.05264">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> The neutron veto of the XENONnT experiment: Results with demineralized water </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=XENON+Collaboration"> XENON Collaboration</a>, <a href="/search/physics?searchtype=author&query=Aprile%2C+E">E. Aprile</a>, <a href="/search/physics?searchtype=author&query=Aalbers%2C+J">J. Aalbers</a>, <a href="/search/physics?searchtype=author&query=Abe%2C+K">K. Abe</a>, <a href="/search/physics?searchtype=author&query=Maouloud%2C+S+A">S. Ahmed Maouloud</a>, <a href="/search/physics?searchtype=author&query=Althueser%2C+L">L. Althueser</a>, <a href="/search/physics?searchtype=author&query=Andrieu%2C+B">B. Andrieu</a>, <a href="/search/physics?searchtype=author&query=Angelino%2C+E">E. Angelino</a>, <a href="/search/physics?searchtype=author&query=Martin%2C+D+A">D. Ant贸n Martin</a>, <a href="/search/physics?searchtype=author&query=Arneodo%2C+F">F. Arneodo</a>, <a href="/search/physics?searchtype=author&query=Baudis%2C+L">L. Baudis</a>, <a href="/search/physics?searchtype=author&query=Bazyk%2C+M">M. Bazyk</a>, <a href="/search/physics?searchtype=author&query=Bellagamba%2C+L">L. Bellagamba</a>, <a href="/search/physics?searchtype=author&query=Biondi%2C+R">R. Biondi</a>, <a href="/search/physics?searchtype=author&query=Bismark%2C+A">A. Bismark</a>, <a href="/search/physics?searchtype=author&query=Boese%2C+K">K. Boese</a>, <a href="/search/physics?searchtype=author&query=Brown%2C+A">A. Brown</a>, <a href="/search/physics?searchtype=author&query=Bruno%2C+G">G. Bruno</a>, <a href="/search/physics?searchtype=author&query=Budnik%2C+R">R. Budnik</a>, <a href="/search/physics?searchtype=author&query=Cai%2C+C">C. Cai</a>, <a href="/search/physics?searchtype=author&query=Capelli%2C+C">C. Capelli</a>, <a href="/search/physics?searchtype=author&query=Cardoso%2C+J+M+R">J. M. R. Cardoso</a>, <a href="/search/physics?searchtype=author&query=Ch%C3%A1vez%2C+A+P+C">A. P. Cimental Ch谩vez</a>, <a href="/search/physics?searchtype=author&query=Colijn%2C+A+P">A. P. Colijn</a>, <a href="/search/physics?searchtype=author&query=Conrad%2C+J">J. Conrad</a> , et al. (145 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.05264v3-abstract-short" style="display: inline;"> Radiogenic neutrons emitted by detector materials are one of the most challenging backgrounds for the direct search of dark matter in the form of weakly interacting massive particles (WIMPs). To mitigate this background, the XENONnT experiment is equipped with a novel gadolinium-doped water Cherenkov detector, which encloses the xenon dual-phase time projection chamber (TPC). The neutron veto (NV)… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.05264v3-abstract-full').style.display = 'inline'; document.getElementById('2412.05264v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.05264v3-abstract-full" style="display: none;"> Radiogenic neutrons emitted by detector materials are one of the most challenging backgrounds for the direct search of dark matter in the form of weakly interacting massive particles (WIMPs). To mitigate this background, the XENONnT experiment is equipped with a novel gadolinium-doped water Cherenkov detector, which encloses the xenon dual-phase time projection chamber (TPC). The neutron veto (NV) tags neutrons via their capture on gadolinium or hydrogen, which release $纬$-rays that are subsequently detected as Cherenkov light. In this work, we present the key features and the first results of the XENONnT NV when operated with demineralized water in the initial phase of the experiment. Its efficiency for detecting neutrons is $(82\pm 1)\,\%$, the highest neutron detection efficiency achieved in a water Cherenkov detector. This enables a high efficiency of $(53\pm 3)\,\%$ for the tagging of WIMP-like neutron signals, inside a tagging time window of $250\,\mathrm{渭s}$ between TPC and NV, leading to a livetime loss of $1.6\,\%$ during the first science run of XENONnT. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.05264v3-abstract-full').style.display = 'none'; document.getElementById('2412.05264v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.19749">arXiv:2411.19749</a> <span> [<a href="https://arxiv.org/pdf/2411.19749">pdf</a>, <a href="https://arxiv.org/format/2411.19749">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Proton reconstruction with the TOTEM Roman pot detectors for high-$尾^*$ LHC data </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=CMS+Collaboration"> CMS Collaboration</a>, <a href="/search/physics?searchtype=author&query=TOTEM+Collaboration"> TOTEM Collaboration</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.19749v1-abstract-short" style="display: inline;"> The TOTEM Roman pot detectors are used to reconstruct the transverse momentum of scattered protons and to estimate the transverse location of the primary interaction. This paper presents new methods of track reconstruction, measurements of strip-level detection efficiencies, cross-checks of the LHC beam optics, and detector alignment techniques, along with their application in the selection of sig… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.19749v1-abstract-full').style.display = 'inline'; document.getElementById('2411.19749v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.19749v1-abstract-full" style="display: none;"> The TOTEM Roman pot detectors are used to reconstruct the transverse momentum of scattered protons and to estimate the transverse location of the primary interaction. This paper presents new methods of track reconstruction, measurements of strip-level detection efficiencies, cross-checks of the LHC beam optics, and detector alignment techniques, along with their application in the selection of signal collision events. The track reconstruction is performed by exploiting hit cluster information through a novel method using a common polygonal area in the intercept-slope plane. The technique is applied in the relative alignment of detector layers with $渭$m precision. A tag-and-probe method is used to extract strip-level detection efficiencies. The alignment of the Roman pot system is performed through time-dependent adjustments, resulting in a position accuracy of 3 $渭$m in the horizontal and 60 $渭$m in the vertical directions. The goal is to provide an optimal reconstruction tool for central exclusive physics analyses based on the high-$尾^*$ data-taking period at $\sqrt{s}$ = 13 TeV in 2018. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.19749v1-abstract-full').style.display = 'none'; document.getElementById('2411.19749v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted to the Journal of Instrumentation. All figures and tables can be found at http://cms-results.web.cern.ch/cms-results/public-results/publications/SMP-23-006 (CMS Public Pages)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> CMS-SMP-23-006, TOTEM 2024-002, CERN-EP-2024-273 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.10428">arXiv:2411.10428</a> <span> [<a href="https://arxiv.org/pdf/2411.10428">pdf</a>, <a href="https://arxiv.org/format/2411.10428">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> BICEP/Keck XIX: Extremely Thin Composite Polymer Vacuum Windows for BICEP and Other High Throughput Millimeter Wave Telescopes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Collaboration%2C+B">BICEP/Keck Collaboration</a>, <a href="/search/physics?searchtype=author&query=%3A"> :</a>, <a href="/search/physics?searchtype=author&query=Ade%2C+P+A+R">P. A. R. Ade</a>, <a href="/search/physics?searchtype=author&query=Ahmed%2C+Z">Z. Ahmed</a>, <a href="/search/physics?searchtype=author&query=Amiri%2C+M">M. Amiri</a>, <a href="/search/physics?searchtype=author&query=Barkats%2C+D">D. Barkats</a>, <a href="/search/physics?searchtype=author&query=Thakur%2C+R+B">R. Basu Thakur</a>, <a href="/search/physics?searchtype=author&query=Bischoff%2C+C+A">C. A. Bischoff</a>, <a href="/search/physics?searchtype=author&query=Beck%2C+D">D. Beck</a>, <a href="/search/physics?searchtype=author&query=Bock%2C+J+J">J. J. Bock</a>, <a href="/search/physics?searchtype=author&query=Boenish%2C+H">H. Boenish</a>, <a href="/search/physics?searchtype=author&query=Buza%2C+V">V. Buza</a>, <a href="/search/physics?searchtype=author&query=Carter%2C+K">K. Carter</a>, <a href="/search/physics?searchtype=author&query=Cheshire%2C+J+R">J. R. Cheshire IV</a>, <a href="/search/physics?searchtype=author&query=Connors%2C+J">J. Connors</a>, <a href="/search/physics?searchtype=author&query=Cornelison%2C+J">J. Cornelison</a>, <a href="/search/physics?searchtype=author&query=Corrigan%2C+L">L. Corrigan</a>, <a href="/search/physics?searchtype=author&query=Crumrine%2C+M">M. Crumrine</a>, <a href="/search/physics?searchtype=author&query=Crystian%2C+S">S. Crystian</a>, <a href="/search/physics?searchtype=author&query=Cukierman%2C+A+J">A. J. Cukierman</a>, <a href="/search/physics?searchtype=author&query=Denison%2C+E">E. Denison</a>, <a href="/search/physics?searchtype=author&query=Duband%2C+L">L. Duband</a>, <a href="/search/physics?searchtype=author&query=Echter%2C+M">M. Echter</a>, <a href="/search/physics?searchtype=author&query=Eiben%2C+M">M. Eiben</a>, <a href="/search/physics?searchtype=author&query=Elwood%2C+B+D">B. D. Elwood</a> , et al. (69 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.10428v1-abstract-short" style="display: inline;"> Millimeter-wave refracting telescopes targeting the degree-scale structure of the cosmic microwave background (CMB) have recently grown to diffraction-limited apertures of over 0.5 meters. These instruments are entirely housed in vacuum cryostats to support their sub-kelvin bolometric detectors and to minimize radiative loading from thermal emission due to absorption loss in their transmissive opt… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.10428v1-abstract-full').style.display = 'inline'; document.getElementById('2411.10428v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.10428v1-abstract-full" style="display: none;"> Millimeter-wave refracting telescopes targeting the degree-scale structure of the cosmic microwave background (CMB) have recently grown to diffraction-limited apertures of over 0.5 meters. These instruments are entirely housed in vacuum cryostats to support their sub-kelvin bolometric detectors and to minimize radiative loading from thermal emission due to absorption loss in their transmissive optical elements. The large vacuum window is the only optical element in the system at ambient temperature, and therefore minimizing loss in the window is crucial for maximizing detector sensitivity. This motivates the use of low-loss polymer materials and a window as thin as practicable. However, the window must simultaneously meet the requirement to keep sufficient vacuum, and therefore must limit gas permeation and remain mechanically robust against catastrophic failure under pressure. We report on the development of extremely thin composite polyethylene window technology that meets these goals. Two windows have been deployed for two full observing seasons on the BICEP3 and BA150 CMB telescopes at the South Pole. On BICEP3, the window has demonstrated a 6% improvement in detector sensitivity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.10428v1-abstract-full').style.display = 'none'; document.getElementById('2411.10428v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 12 figures, 4 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.08740">arXiv:2411.08740</a> <span> [<a href="https://arxiv.org/pdf/2411.08740">pdf</a>, <a href="https://arxiv.org/format/2411.08740">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Characterisation of analogue MAPS produced in the 65 nm TPSCo process </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Ploerer%2C+E">Eduardo Ploerer</a>, <a href="/search/physics?searchtype=author&query=Baba%2C+H">Hitoshi Baba</a>, <a href="/search/physics?searchtype=author&query=Baudot%2C+J">Jerome Baudot</a>, <a href="/search/physics?searchtype=author&query=Besson%2C+A">Auguste Besson</a>, <a href="/search/physics?searchtype=author&query=Bugiel%2C+S">Szymon Bugiel</a>, <a href="/search/physics?searchtype=author&query=Chujo%2C+T">Tatsuya Chujo</a>, <a href="/search/physics?searchtype=author&query=Colledani%2C+C">Claude Colledani</a>, <a href="/search/physics?searchtype=author&query=Dorokhov%2C+A">Andrei Dorokhov</a>, <a href="/search/physics?searchtype=author&query=Bitar%2C+Z+E">Ziad El Bitar</a>, <a href="/search/physics?searchtype=author&query=Goffe%2C+M">Mathieu Goffe</a>, <a href="/search/physics?searchtype=author&query=Gunji%2C+T">Taku Gunji</a>, <a href="/search/physics?searchtype=author&query=Hu-Guo%2C+C">Christine Hu-Guo</a>, <a href="/search/physics?searchtype=author&query=Ilg%2C+A">Armin Ilg</a>, <a href="/search/physics?searchtype=author&query=Jaaskelainen%2C+K">Kimmo Jaaskelainen</a>, <a href="/search/physics?searchtype=author&query=Katsuno%2C+T">Towa Katsuno</a>, <a href="/search/physics?searchtype=author&query=Kluge%2C+A">Alexander Kluge</a>, <a href="/search/physics?searchtype=author&query=Kostina%2C+A">Anhelina Kostina</a>, <a href="/search/physics?searchtype=author&query=Kumar%2C+A">Ajit Kumar</a>, <a href="/search/physics?searchtype=author&query=Lorenzetti%2C+A">Alessandra Lorenzetti</a>, <a href="/search/physics?searchtype=author&query=Macchiolo%2C+A">Anna Macchiolo</a>, <a href="/search/physics?searchtype=author&query=Mager%2C+M">Magnus Mager</a>, <a href="/search/physics?searchtype=author&query=Park%2C+J">Jonghan Park</a>, <a href="/search/physics?searchtype=author&query=Sakai%2C+S">Shingo Sakai</a>, <a href="/search/physics?searchtype=author&query=Senyukov%2C+S">Serhiy Senyukov</a>, <a href="/search/physics?searchtype=author&query=Shamas%2C+H">Hasan Shamas</a> , et al. (9 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.08740v1-abstract-short" style="display: inline;"> Within the context of the ALICE ITS3 collaboration, a set of MAPS small-scale test structures were developed using the 65 nm TPSCo CMOS imaging process with the upgrade of the ALICE inner tracking system as its primary focus. One such sensor, the Circuit Exploratoire 65 nm (CE-65), and its evolution the CE-65v2, were developed to explore charge collection properties for varying configurations incl… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.08740v1-abstract-full').style.display = 'inline'; document.getElementById('2411.08740v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.08740v1-abstract-full" style="display: none;"> Within the context of the ALICE ITS3 collaboration, a set of MAPS small-scale test structures were developed using the 65 nm TPSCo CMOS imaging process with the upgrade of the ALICE inner tracking system as its primary focus. One such sensor, the Circuit Exploratoire 65 nm (CE-65), and its evolution the CE-65v2, were developed to explore charge collection properties for varying configurations including collection layer process (standard, blanket, modified with gap), pixel pitch (15, 18, \SI{22.5}{\micro\meter}), and pixel geometry (square vs hexagonal/staggered). In this work the characterisation of the CE-65v2 chip, based on $^{55}$Fe lab measurements and test beams at CERN SPS, is presented. Matrix gain uniformity up to the $\mathcal{O}$(5\%) level was demonstrated for all considered chip configurations. The CE-65v2 chip achieves a spatial resolution of under \SI{2}{\micro\meter} during beam tests. Process modifications allowing for faster charge collection and less charge sharing result in decreased spatial resolution, but a considerably wider range of operation, with both the \SI{15}{\micro\meter} and \SI{22.5}{\micro\meter} chips achieving over 99\% efficiency up to a $\sim$180 e$^{-}$ seed threshold. The results serve to validate the 65 nm TPSCo CMOS process, as well as to motivate design choices in future particle detection experiments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.08740v1-abstract-full').style.display = 'none'; document.getElementById('2411.08740v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 12 figures; Proceedings for iWoRiD 2024 (Lisbon)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.03023">arXiv:2411.03023</a> <span> [<a href="https://arxiv.org/pdf/2411.03023">pdf</a>, <a href="https://arxiv.org/format/2411.03023">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Reweighting simulated events using machine-learning techniques in the CMS experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=CMS+Collaboration"> CMS Collaboration</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.03023v1-abstract-short" style="display: inline;"> Data analyses in particle physics rely on an accurate simulation of particle collisions and a detailed simulation of detector effects to extract physics knowledge from the recorded data. Event generators together with a GEANT-based simulation of the detectors are used to produce large samples of simulated events for analysis by the LHC experiments. These simulations come at a high computational co… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.03023v1-abstract-full').style.display = 'inline'; document.getElementById('2411.03023v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.03023v1-abstract-full" style="display: none;"> Data analyses in particle physics rely on an accurate simulation of particle collisions and a detailed simulation of detector effects to extract physics knowledge from the recorded data. Event generators together with a GEANT-based simulation of the detectors are used to produce large samples of simulated events for analysis by the LHC experiments. These simulations come at a high computational cost, where the detector simulation and reconstruction algorithms have the largest CPU demands. This article describes how machine-learning (ML) techniques are used to reweight simulated samples obtained with a given set of model parameters to samples with different parameters or samples obtained from entirely different models. The ML reweighting method avoids the need for simulating the detector response multiple times by incorporating the relevant information in a single sample through event weights. Results are presented for reweighting to model variations and higher-order calculations in simulated top quark pair production at the LHC. This ML-based reweighting is an important element of the future computing model of the CMS experiment and will facilitate precision measurements at the High-Luminosity LHC. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.03023v1-abstract-full').style.display = 'none'; document.getElementById('2411.03023v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted to Computing and Software for Big Science. All figures and tables can be found at http://cms-results.web.cern.ch/cms-results/public-results/publications/MLG-24-001 (CMS Public Pages)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> CMS-MLG-24-001, CERN-EP-2024-269 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.00130">arXiv:2411.00130</a> <span> [<a href="https://arxiv.org/pdf/2411.00130">pdf</a>, <a href="https://arxiv.org/format/2411.00130">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nuclphysbps.2024.10.008">10.1016/j.nuclphysbps.2024.10.008 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Recent results and upgrade of the ALICE muon spectrometer </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Quaglia%2C+L">Luca Quaglia</a>, <a href="/search/physics?searchtype=author&query=collaboration%2C+A">ALICE collaboration</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.00130v1-abstract-short" style="display: inline;"> The ALICE experiment at the CERN Large Hadron Collider (LHC) is a multi-purpose particle detector, mainly focused on the study of quark-gluon plasma (QGP) in heavy-ion collisions. In the forward rapidity region, 2.5 $<$ y $<$ 4, ALICE is equipped with a muon spectrometer (MS), which allows to study quarkonia and open heavy-flavor particles, both key probes to investigate QGP properties. Although… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.00130v1-abstract-full').style.display = 'inline'; document.getElementById('2411.00130v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.00130v1-abstract-full" style="display: none;"> The ALICE experiment at the CERN Large Hadron Collider (LHC) is a multi-purpose particle detector, mainly focused on the study of quark-gluon plasma (QGP) in heavy-ion collisions. In the forward rapidity region, 2.5 $<$ y $<$ 4, ALICE is equipped with a muon spectrometer (MS), which allows to study quarkonia and open heavy-flavor particles, both key probes to investigate QGP properties. Although in LHC Run 1 and 2 many important results were achieved, the front absorber of the MS represented a limit to the physics program, due to the multiple scattering and energy loss in the material. To assess this limitation, a new forward vertex tracker (Muon Forward Tracker, MFT) was installed between the inner tracking system (ITS) and the front absorber. This has enhanced the MS physics performance, enabling the separation of prompt/non-prompt charmonium production at forward rapidity. It will also allow one to reduce the combinatorial background from semi-leptonic decays of kaons and pions. Finally, it will greatly improve the invariant-mass resolution of the low-mass dimuon pairs. Moreover, during the ongoing LHC Run 3, the rate of Pb\textendash{}Pb collisions has been increased from 10~kHz (in Run 2) up to 50~kHz, allowing to collect a data sample about 5 times larger than the one recorded in Run 2. This contribution will provide a brief overview of the MS upgrades and it will focus on the expected physics performance during the LHC Run 3. Some of the preliminary results already obtained will also be shown. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.00130v1-abstract-full').style.display = 'none'; document.getElementById('2411.00130v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.22973">arXiv:2410.22973</a> <span> [<a href="https://arxiv.org/pdf/2410.22973">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> </div> <p class="title is-5 mathjax"> International comparison of optical frequencies with transportable optical lattice clocks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Clock%2C+I">International Clock</a>, <a href="/search/physics?searchtype=author&query=Networking%2C+O">Oscillator Networking</a>, <a href="/search/physics?searchtype=author&query=Collaboration"> Collaboration</a>, <a href="/search/physics?searchtype=author&query=%3A"> :</a>, <a href="/search/physics?searchtype=author&query=Amy-Klein%2C+A">Anne Amy-Klein</a>, <a href="/search/physics?searchtype=author&query=Benkler%2C+E">Erik Benkler</a>, <a href="/search/physics?searchtype=author&query=Blond%C3%A9%2C+P">Pascal Blond茅</a>, <a href="/search/physics?searchtype=author&query=Bongs%2C+K">Kai Bongs</a>, <a href="/search/physics?searchtype=author&query=Cantin%2C+E">Etienne Cantin</a>, <a href="/search/physics?searchtype=author&query=Chardonnet%2C+C">Christian Chardonnet</a>, <a href="/search/physics?searchtype=author&query=Denker%2C+H">Heiner Denker</a>, <a href="/search/physics?searchtype=author&query=D%C3%B6rscher%2C+S">S枚ren D枚rscher</a>, <a href="/search/physics?searchtype=author&query=Feng%2C+C">Chen-Hao Feng</a>, <a href="/search/physics?searchtype=author&query=Gaudron%2C+J">Jacques-Olivier Gaudron</a>, <a href="/search/physics?searchtype=author&query=Gill%2C+P">Patrick Gill</a>, <a href="/search/physics?searchtype=author&query=Hill%2C+I+R">Ian R Hill</a>, <a href="/search/physics?searchtype=author&query=Huang%2C+W">Wei Huang</a>, <a href="/search/physics?searchtype=author&query=Johnson%2C+M+Y+H">Matthew Y H Johnson</a>, <a href="/search/physics?searchtype=author&query=Kale%2C+Y+B">Yogeshwar B Kale</a>, <a href="/search/physics?searchtype=author&query=Katori%2C+H">Hidetoshi Katori</a>, <a href="/search/physics?searchtype=author&query=Klose%2C+J">Joshua Klose</a>, <a href="/search/physics?searchtype=author&query=Kronj%C3%A4ger%2C+J">Jochen Kronj盲ger</a>, <a href="/search/physics?searchtype=author&query=Kuhl%2C+A">Alexander Kuhl</a>, <a href="/search/physics?searchtype=author&query=Targat%2C+R+L">Rodolphe Le Targat</a>, <a href="/search/physics?searchtype=author&query=Lisdat%2C+C">Christian Lisdat</a> , et al. (15 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.22973v1-abstract-short" style="display: inline;"> Optical clocks have improved their frequency stability and estimated accuracy by more than two orders of magnitude over the best caesium microwave clocks that realise the SI second. Accordingly, an optical redefinition of the second has been widely discussed, prompting a need for the consistency of optical clocks to be verified worldwide. While satellite frequency links are sufficient to compare m… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.22973v1-abstract-full').style.display = 'inline'; document.getElementById('2410.22973v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.22973v1-abstract-full" style="display: none;"> Optical clocks have improved their frequency stability and estimated accuracy by more than two orders of magnitude over the best caesium microwave clocks that realise the SI second. Accordingly, an optical redefinition of the second has been widely discussed, prompting a need for the consistency of optical clocks to be verified worldwide. While satellite frequency links are sufficient to compare microwave clocks, a suitable method for comparing high-performance optical clocks over intercontinental distances is missing. Furthermore, remote comparisons over frequency links face fractional uncertainties of a few $10^{-18}$ due to imprecise knowledge of each clock's relativistic redshift, which stems from uncertainty in the geopotential determined at each distant location. Here, we report a landmark campaign towards the era of optical clocks, where, for the first time, state-of-the-art transportable optical clocks from Japan and Europe are brought together to demonstrate international comparisons that require neither a high-performance frequency link nor information on the geopotential difference between remote sites. Conversely, the reproducibility of the clocks after being transported between countries was sufficient to determine geopotential height offsets at the level of 4 cm. Our campaign paves the way for redefining the SI second and has a significant impact on various applications, including tests of general relativity, geodetic sensing for geosciences, precise navigation, and future timing networks. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.22973v1-abstract-full').style.display = 'none'; document.getElementById('2410.22973v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">29 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.19016">arXiv:2410.19016</a> <span> [<a href="https://arxiv.org/pdf/2410.19016">pdf</a>, <a href="https://arxiv.org/format/2410.19016">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> </div> <p class="title is-5 mathjax"> Neutrinoless Double Beta Decay Sensitivity of the XLZD Rare Event Observatory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=XLZD+Collaboration"> XLZD Collaboration</a>, <a href="/search/physics?searchtype=author&query=Aalbers%2C+J">J. Aalbers</a>, <a href="/search/physics?searchtype=author&query=Abe%2C+K">K. Abe</a>, <a href="/search/physics?searchtype=author&query=Adrover%2C+M">M. Adrover</a>, <a href="/search/physics?searchtype=author&query=Maouloud%2C+S+A">S. Ahmed Maouloud</a>, <a href="/search/physics?searchtype=author&query=Akerib%2C+D+S">D. S. Akerib</a>, <a href="/search/physics?searchtype=author&query=Musalhi%2C+A+K+A">A. K. Al Musalhi</a>, <a href="/search/physics?searchtype=author&query=Alder%2C+F">F. Alder</a>, <a href="/search/physics?searchtype=author&query=Althueser%2C+L">L. Althueser</a>, <a href="/search/physics?searchtype=author&query=Amaral%2C+D+W+P">D. W. P. Amaral</a>, <a href="/search/physics?searchtype=author&query=Amarasinghe%2C+C+S">C. S. Amarasinghe</a>, <a href="/search/physics?searchtype=author&query=Ames%2C+A">A. Ames</a>, <a href="/search/physics?searchtype=author&query=Andrieu%2C+B">B. Andrieu</a>, <a href="/search/physics?searchtype=author&query=Angelides%2C+N">N. Angelides</a>, <a href="/search/physics?searchtype=author&query=Angelino%2C+E">E. Angelino</a>, <a href="/search/physics?searchtype=author&query=Antunovic%2C+B">B. Antunovic</a>, <a href="/search/physics?searchtype=author&query=Aprile%2C+E">E. Aprile</a>, <a href="/search/physics?searchtype=author&query=Ara%C3%BAjo%2C+H+M">H. M. Ara煤jo</a>, <a href="/search/physics?searchtype=author&query=Armstrong%2C+J+E">J. E. Armstrong</a>, <a href="/search/physics?searchtype=author&query=Arthurs%2C+M">M. Arthurs</a>, <a href="/search/physics?searchtype=author&query=Babicz%2C+M">M. Babicz</a>, <a href="/search/physics?searchtype=author&query=Bajpai%2C+D">D. Bajpai</a>, <a href="/search/physics?searchtype=author&query=Baker%2C+A">A. Baker</a>, <a href="/search/physics?searchtype=author&query=Balzer%2C+M">M. Balzer</a>, <a href="/search/physics?searchtype=author&query=Bang%2C+J">J. Bang</a> , et al. (419 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.19016v1-abstract-short" style="display: inline;"> The XLZD collaboration is developing a two-phase xenon time projection chamber with an active mass of 60 to 80 t capable of probing the remaining WIMP-nucleon interaction parameter space down to the so-called neutrino fog. In this work we show that, based on the performance of currently operating detectors using the same technology and a realistic reduction of radioactivity in detector materials,… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.19016v1-abstract-full').style.display = 'inline'; document.getElementById('2410.19016v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.19016v1-abstract-full" style="display: none;"> The XLZD collaboration is developing a two-phase xenon time projection chamber with an active mass of 60 to 80 t capable of probing the remaining WIMP-nucleon interaction parameter space down to the so-called neutrino fog. In this work we show that, based on the performance of currently operating detectors using the same technology and a realistic reduction of radioactivity in detector materials, such an experiment will also be able to competitively search for neutrinoless double beta decay in $^{136}$Xe using a natural-abundance xenon target. XLZD can reach a 3$蟽$ discovery potential half-life of 5.7$\times$10$^{27}$ yr (and a 90% CL exclusion of 1.3$\times$10$^{28}$ yr) with 10 years of data taking, corresponding to a Majorana mass range of 7.3-31.3 meV (4.8-20.5 meV). XLZD will thus exclude the inverted neutrino mass ordering parameter space and will start to probe the normal ordering region for most of the nuclear matrix elements commonly considered by the community. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.19016v1-abstract-full').style.display = 'none'; document.getElementById('2410.19016v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">29 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.17137">arXiv:2410.17137</a> <span> [<a href="https://arxiv.org/pdf/2410.17137">pdf</a>, <a href="https://arxiv.org/format/2410.17137">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> The XLZD Design Book: Towards the Next-Generation Liquid Xenon Observatory for Dark Matter and Neutrino Physics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=XLZD+Collaboration"> XLZD Collaboration</a>, <a href="/search/physics?searchtype=author&query=Aalbers%2C+J">J. Aalbers</a>, <a href="/search/physics?searchtype=author&query=Abe%2C+K">K. Abe</a>, <a href="/search/physics?searchtype=author&query=Adrover%2C+M">M. Adrover</a>, <a href="/search/physics?searchtype=author&query=Maouloud%2C+S+A">S. Ahmed Maouloud</a>, <a href="/search/physics?searchtype=author&query=Akerib%2C+D+S">D. S. Akerib</a>, <a href="/search/physics?searchtype=author&query=Musalhi%2C+A+K+A">A. K. Al Musalhi</a>, <a href="/search/physics?searchtype=author&query=Alder%2C+F">F. Alder</a>, <a href="/search/physics?searchtype=author&query=Althueser%2C+L">L. Althueser</a>, <a href="/search/physics?searchtype=author&query=Amaral%2C+D+W+P">D. W. P. Amaral</a>, <a href="/search/physics?searchtype=author&query=Amarasinghe%2C+C+S">C. S. Amarasinghe</a>, <a href="/search/physics?searchtype=author&query=Ames%2C+A">A. Ames</a>, <a href="/search/physics?searchtype=author&query=Andrieu%2C+B">B. Andrieu</a>, <a href="/search/physics?searchtype=author&query=Angelides%2C+N">N. Angelides</a>, <a href="/search/physics?searchtype=author&query=Angelino%2C+E">E. Angelino</a>, <a href="/search/physics?searchtype=author&query=Antunovic%2C+B">B. Antunovic</a>, <a href="/search/physics?searchtype=author&query=Aprile%2C+E">E. Aprile</a>, <a href="/search/physics?searchtype=author&query=Ara%C3%BAjo%2C+H+M">H. M. Ara煤jo</a>, <a href="/search/physics?searchtype=author&query=Armstrong%2C+J+E">J. E. Armstrong</a>, <a href="/search/physics?searchtype=author&query=Arthurs%2C+M">M. Arthurs</a>, <a href="/search/physics?searchtype=author&query=Babicz%2C+M">M. Babicz</a>, <a href="/search/physics?searchtype=author&query=Bajpai%2C+D">D. Bajpai</a>, <a href="/search/physics?searchtype=author&query=Baker%2C+A">A. Baker</a>, <a href="/search/physics?searchtype=author&query=Balzer%2C+M">M. Balzer</a>, <a href="/search/physics?searchtype=author&query=Bang%2C+J">J. Bang</a> , et al. (419 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.17137v1-abstract-short" style="display: inline;"> This report describes the experimental strategy and technologies for a next-generation xenon observatory sensitive to dark matter and neutrino physics. The detector will have an active liquid xenon target mass of 60-80 tonnes and is proposed by the XENON-LUX-ZEPLIN-DARWIN (XLZD) collaboration. The design is based on the mature liquid xenon time projection chamber technology of the current-generati… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.17137v1-abstract-full').style.display = 'inline'; document.getElementById('2410.17137v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.17137v1-abstract-full" style="display: none;"> This report describes the experimental strategy and technologies for a next-generation xenon observatory sensitive to dark matter and neutrino physics. The detector will have an active liquid xenon target mass of 60-80 tonnes and is proposed by the XENON-LUX-ZEPLIN-DARWIN (XLZD) collaboration. The design is based on the mature liquid xenon time projection chamber technology of the current-generation experiments, LZ and XENONnT. A baseline design and opportunities for further optimization of the individual detector components are discussed. The experiment envisaged here has the capability to explore parameter space for Weakly Interacting Massive Particle (WIMP) dark matter down to the neutrino fog, with a 3$蟽$ evidence potential for the spin-independent WIMP-nucleon cross sections as low as $3\times10^{-49}\rm cm^2$ (at 40 GeV/c$^2$ WIMP mass). The observatory is also projected to have a 3$蟽$ observation potential of neutrinoless double-beta decay of $^{136}$Xe at a half-life of up to $5.7\times 10^{27}$ years. Additionally, it is sensitive to astrophysical neutrinos from the atmosphere, sun, and galactic supernovae. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.17137v1-abstract-full').style.display = 'none'; document.getElementById('2410.17137v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">32 pages, 14 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.17038">arXiv:2410.17038</a> <span> [<a href="https://arxiv.org/pdf/2410.17038">pdf</a>, <a href="https://arxiv.org/format/2410.17038">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/19/11/P11021">10.1088/1748-0221/19/11/P11021 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Performance of the CMS high-level trigger during LHC Run 2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=CMS+Collaboration"> CMS Collaboration</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.17038v2-abstract-short" style="display: inline;"> The CERN LHC provided proton and heavy ion collisions during its Run 2 operation period from 2015 to 2018. Proton-proton collisions reached a peak instantaneous luminosity of 2.1 $\times$ 10$^{34}$ cm$^{-2}$s$^{-1}$, twice the initial design value, at $\sqrt{s}$ = 13 TeV. The CMS experiment records a subset of the collisions for further processing as part of its online selection of data for physic… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.17038v2-abstract-full').style.display = 'inline'; document.getElementById('2410.17038v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.17038v2-abstract-full" style="display: none;"> The CERN LHC provided proton and heavy ion collisions during its Run 2 operation period from 2015 to 2018. Proton-proton collisions reached a peak instantaneous luminosity of 2.1 $\times$ 10$^{34}$ cm$^{-2}$s$^{-1}$, twice the initial design value, at $\sqrt{s}$ = 13 TeV. The CMS experiment records a subset of the collisions for further processing as part of its online selection of data for physics analyses, using a two-level trigger system: the Level-1 trigger, implemented in custom-designed electronics, and the high-level trigger, a streamlined version of the offline reconstruction software running on a large computer farm. This paper presents the performance of the CMS high-level trigger system during LHC Run 2 for physics objects, such as leptons, jets, and missing transverse momentum, which meet the broad needs of the CMS physics program and the challenge of the evolving LHC and detector conditions. Sophisticated algorithms that were originally used in offline reconstruction were deployed online. Highlights include a machine-learning b tagging algorithm and a reconstruction algorithm for tau leptons that decay hadronically. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.17038v2-abstract-full').style.display = 'none'; document.getElementById('2410.17038v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Replaced with the published version. Added the journal reference and the DOI. All the figures and tables can be found at http://cms-results.web.cern.ch/cms-results/public-results/publications/TRG-19-001 (CMS Public Pages)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> CMS-TRG-19-001, CERN-EP-2024-259 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JINST 19 (2024) P11021 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.13457">arXiv:2410.13457</a> <span> [<a href="https://arxiv.org/pdf/2410.13457">pdf</a>, <a href="https://arxiv.org/format/2410.13457">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Geophysics">physics.geo-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202450764">10.1051/0004-6361/202450764 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Large Interferometer For Exoplanets (LIFE). XIV. Finding terrestrial protoplanets in the galactic neighborhood </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Cesario%2C+L">Lorenzo Cesario</a>, <a href="/search/physics?searchtype=author&query=Lichtenberg%2C+T">Tim Lichtenberg</a>, <a href="/search/physics?searchtype=author&query=Alei%2C+E">Eleonora Alei</a>, <a href="/search/physics?searchtype=author&query=Carri%C3%B3n-Gonz%C3%A1lez%2C+%C3%93">脫scar Carri贸n-Gonz谩lez</a>, <a href="/search/physics?searchtype=author&query=Dannert%2C+F+A">Felix A. Dannert</a>, <a href="/search/physics?searchtype=author&query=Defr%C3%A8re%2C+D">Denis Defr猫re</a>, <a href="/search/physics?searchtype=author&query=Ertel%2C+S">Steve Ertel</a>, <a href="/search/physics?searchtype=author&query=Fortier%2C+A">Andrea Fortier</a>, <a href="/search/physics?searchtype=author&query=Mu%C3%B1oz%2C+A+G">A. Garc铆a Mu帽oz</a>, <a href="/search/physics?searchtype=author&query=Glauser%2C+A+M">Adrian M. Glauser</a>, <a href="/search/physics?searchtype=author&query=Hansen%2C+J+T">Jonah T. Hansen</a>, <a href="/search/physics?searchtype=author&query=Helled%2C+R">Ravit Helled</a>, <a href="/search/physics?searchtype=author&query=Huber%2C+P+A">Philipp A. Huber</a>, <a href="/search/physics?searchtype=author&query=Ireland%2C+M+J">Michael J. Ireland</a>, <a href="/search/physics?searchtype=author&query=Kammerer%2C+J">Jens Kammerer</a>, <a href="/search/physics?searchtype=author&query=Laugier%2C+R">Romain Laugier</a>, <a href="/search/physics?searchtype=author&query=Lillo-Box%2C+J">Jorge Lillo-Box</a>, <a href="/search/physics?searchtype=author&query=Menti%2C+F">Franziska Menti</a>, <a href="/search/physics?searchtype=author&query=Meyer%2C+M+R">Michael R. Meyer</a>, <a href="/search/physics?searchtype=author&query=Noack%2C+L">Lena Noack</a>, <a href="/search/physics?searchtype=author&query=Quanz%2C+S+P">Sascha P. Quanz</a>, <a href="/search/physics?searchtype=author&query=Quirrenbach%2C+A">Andreas Quirrenbach</a>, <a href="/search/physics?searchtype=author&query=Rugheimer%2C+S">Sarah Rugheimer</a>, <a href="/search/physics?searchtype=author&query=van+der+Tak%2C+F">Floris van der Tak</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+H+S">Haiyang S. Wang</a> , et al. (40 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.13457v1-abstract-short" style="display: inline;"> The increased brightness temperature of young rocky protoplanets during their magma ocean epoch makes them potentially amenable to atmospheric characterization to distances from the solar system far greater than thermally equilibrated terrestrial exoplanets, offering observational opportunities for unique insights into the origin of secondary atmospheres and the near surface conditions of prebioti… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.13457v1-abstract-full').style.display = 'inline'; document.getElementById('2410.13457v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.13457v1-abstract-full" style="display: none;"> The increased brightness temperature of young rocky protoplanets during their magma ocean epoch makes them potentially amenable to atmospheric characterization to distances from the solar system far greater than thermally equilibrated terrestrial exoplanets, offering observational opportunities for unique insights into the origin of secondary atmospheres and the near surface conditions of prebiotic environments. The Large Interferometer For Exoplanets (LIFE) mission will employ a space-based mid-infrared nulling interferometer to directly measure the thermal emission of terrestrial exoplanets. Here, we seek to assess the capabilities of various instrumental design choices of the LIFE mission concept for the detection of cooling protoplanets with transient high-temperature magma ocean atmospheres, in young stellar associations in particular. Using the LIFE mission instrument simulator (LIFEsim) we assess how specific instrumental parameters and design choices, such as wavelength coverage, aperture diameter, and photon throughput, facilitate or disadvantage the detection of protoplanets. We focus on the observational sensitivities of distance to the observed planetary system, protoplanet brightness temperature using a blackbody assumption, and orbital distance of the potential protoplanets around both G- and M-dwarf stars. Our simulations suggest that LIFE will be able to detect (S/N $\geq$ 7) hot protoplanets in young stellar associations up to distances of $\approx$100 pc from the solar system for reasonable integration times (up to $\sim$hours). Detection of an Earth-sized protoplanet orbiting a solar-sized host star at 1 AU requires less than 30 minutes of integration time. M-dwarfs generally need shorter integration times. The contribution from wavelength regions $<$6 $渭$m is important for decreasing the detection threshold and discriminating emission temperatures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.13457v1-abstract-full').style.display = 'none'; document.getElementById('2410.13457v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 19 figures; accepted for publication in A&A</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&A 692, A172 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.09064">arXiv:2410.09064</a> <span> [<a href="https://arxiv.org/pdf/2410.09064">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Space Physics">physics.space-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.xinn.2024.100695">10.1016/j.xinn.2024.100695 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Monitoring the daily variation of Sun-Earth magnetic fields using galactic cosmic rays </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=The+LHAASO+Collaboration"> The LHAASO Collaboration</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.09064v1-abstract-short" style="display: inline;"> The interplanetary magnetic field (IMF) between the Sun and Earth is an extension of the solar magnetic field carried by the solar wind into interplanetary space. Monitoring variations in the IMF upstream of the Earth would provide very important information for the prediction of space weather effects, such as effects of solar storms and the solar wind, on human activity. In this study, the IMF be… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.09064v1-abstract-full').style.display = 'inline'; document.getElementById('2410.09064v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.09064v1-abstract-full" style="display: none;"> The interplanetary magnetic field (IMF) between the Sun and Earth is an extension of the solar magnetic field carried by the solar wind into interplanetary space. Monitoring variations in the IMF upstream of the Earth would provide very important information for the prediction of space weather effects, such as effects of solar storms and the solar wind, on human activity. In this study, the IMF between the Sun and Earth was measured daily for the first time using a cosmic-ray observatory. Cosmic rays mainly consist of charged particles that are deflected as they pass through a magnetic field.Therefore, the cosmic-ray Sun shadow, caused by high-energy charged cosmic rays blocked by the Sun and deflected by the magnetic field, can be used to explore the transverse IMF between the Sun and Earth. By employing the powerful kilometer-square array at the Large High Altitude Air Shower Observatory, the cosmic-ray Sun shadows were observed daily with high significance for the first time. The displacement of the Sun shadow measured in 2021 correlates well with the transverse IMF component measured in situ by spacecraft near the Earth, with a time lag of 3:31 $\pm$ 0:12 days. The displacement of the Sun shadow was also simulated using Parker's classic IMF model, yielding a time lag of 2:06 $\pm$ 0:04 days. This deviation may provide valuable insights into the magnetic field structure, which can improve space weather research. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.09064v1-abstract-full').style.display = 'none'; document.getElementById('2410.09064v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.18288">arXiv:2409.18288</a> <span> [<a href="https://arxiv.org/pdf/2409.18288">pdf</a>, <a href="https://arxiv.org/format/2409.18288">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> The track-length extension fitting algorithm for energy measurement of interacting particles in liquid argon TPCs and its performance with ProtoDUNE-SP data </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=DUNE+Collaboration"> DUNE Collaboration</a>, <a href="/search/physics?searchtype=author&query=Abud%2C+A+A">A. Abed Abud</a>, <a href="/search/physics?searchtype=author&query=Abi%2C+B">B. Abi</a>, <a href="/search/physics?searchtype=author&query=Acciarri%2C+R">R. Acciarri</a>, <a href="/search/physics?searchtype=author&query=Acero%2C+M+A">M. A. Acero</a>, <a href="/search/physics?searchtype=author&query=Adames%2C+M+R">M. R. Adames</a>, <a href="/search/physics?searchtype=author&query=Adamov%2C+G">G. Adamov</a>, <a href="/search/physics?searchtype=author&query=Adamowski%2C+M">M. Adamowski</a>, <a href="/search/physics?searchtype=author&query=Adams%2C+D">D. Adams</a>, <a href="/search/physics?searchtype=author&query=Adinolfi%2C+M">M. Adinolfi</a>, <a href="/search/physics?searchtype=author&query=Adriano%2C+C">C. Adriano</a>, <a href="/search/physics?searchtype=author&query=Aduszkiewicz%2C+A">A. Aduszkiewicz</a>, <a href="/search/physics?searchtype=author&query=Aguilar%2C+J">J. Aguilar</a>, <a href="/search/physics?searchtype=author&query=Akbar%2C+F">F. Akbar</a>, <a href="/search/physics?searchtype=author&query=Alex%2C+N+S">N. S. Alex</a>, <a href="/search/physics?searchtype=author&query=Allison%2C+K">K. Allison</a>, <a href="/search/physics?searchtype=author&query=Monsalve%2C+S+A">S. Alonso Monsalve</a>, <a href="/search/physics?searchtype=author&query=Alrashed%2C+M">M. Alrashed</a>, <a href="/search/physics?searchtype=author&query=Alton%2C+A">A. Alton</a>, <a href="/search/physics?searchtype=author&query=Alvarez%2C+R">R. Alvarez</a>, <a href="/search/physics?searchtype=author&query=Alves%2C+T">T. Alves</a>, <a href="/search/physics?searchtype=author&query=Amar%2C+H">H. Amar</a>, <a href="/search/physics?searchtype=author&query=Amedo%2C+P">P. Amedo</a>, <a href="/search/physics?searchtype=author&query=Anderson%2C+J">J. Anderson</a>, <a href="/search/physics?searchtype=author&query=Andreopoulos%2C+C">C. Andreopoulos</a> , et al. (1348 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.18288v3-abstract-short" style="display: inline;"> This paper introduces a novel track-length extension fitting algorithm for measuring the kinetic energies of inelastically interacting particles in liquid argon time projection chambers (LArTPCs). The algorithm finds the most probable offset in track length for a track-like object by comparing the measured ionization density as a function of position with a theoretical prediction of the energy los… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.18288v3-abstract-full').style.display = 'inline'; document.getElementById('2409.18288v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.18288v3-abstract-full" style="display: none;"> This paper introduces a novel track-length extension fitting algorithm for measuring the kinetic energies of inelastically interacting particles in liquid argon time projection chambers (LArTPCs). The algorithm finds the most probable offset in track length for a track-like object by comparing the measured ionization density as a function of position with a theoretical prediction of the energy loss as a function of the energy, including models of electron recombination and detector response. The algorithm can be used to measure the energies of particles that interact before they stop, such as charged pions that are absorbed by argon nuclei. The algorithm's energy measurement resolutions and fractional biases are presented as functions of particle kinetic energy and number of track hits using samples of stopping secondary charged pions in data collected by the ProtoDUNE-SP detector, and also in a detailed simulation. Additional studies describe the impact of the dE/dx model on energy measurement performance. The method described in this paper to characterize the energy measurement performance can be repeated in any LArTPC experiment using stopping secondary charged pions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.18288v3-abstract-full').style.display = 'none'; document.getElementById('2409.18288v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-24-0561-LBNF-PPD, CERN-EP-2024-256 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.08778">arXiv:2409.08778</a> <span> [<a href="https://arxiv.org/pdf/2409.08778">pdf</a>, <a href="https://arxiv.org/format/2409.08778">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Data Analysis, Statistics and Probability">physics.data-an</span> </div> </div> <p class="title is-5 mathjax"> XENONnT Analysis: Signal Reconstruction, Calibration and Event Selection </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=XENON+Collaboration"> XENON Collaboration</a>, <a href="/search/physics?searchtype=author&query=Aprile%2C+E">E. Aprile</a>, <a href="/search/physics?searchtype=author&query=Aalbers%2C+J">J. Aalbers</a>, <a href="/search/physics?searchtype=author&query=Abe%2C+K">K. Abe</a>, <a href="/search/physics?searchtype=author&query=Maouloud%2C+S+A">S. Ahmed Maouloud</a>, <a href="/search/physics?searchtype=author&query=Althueser%2C+L">L. Althueser</a>, <a href="/search/physics?searchtype=author&query=Andrieu%2C+B">B. Andrieu</a>, <a href="/search/physics?searchtype=author&query=Angelino%2C+E">E. Angelino</a>, <a href="/search/physics?searchtype=author&query=Angevaare%2C+J+R">J. R. Angevaare</a>, <a href="/search/physics?searchtype=author&query=Martin%2C+D+A">D. Ant贸n Martin</a>, <a href="/search/physics?searchtype=author&query=Arneodo%2C+F">F. Arneodo</a>, <a href="/search/physics?searchtype=author&query=Baudis%2C+L">L. Baudis</a>, <a href="/search/physics?searchtype=author&query=Bazyk%2C+M">M. Bazyk</a>, <a href="/search/physics?searchtype=author&query=Bellagamba%2C+L">L. Bellagamba</a>, <a href="/search/physics?searchtype=author&query=Biondi%2C+R">R. Biondi</a>, <a href="/search/physics?searchtype=author&query=Bismark%2C+A">A. Bismark</a>, <a href="/search/physics?searchtype=author&query=Boese%2C+K">K. Boese</a>, <a href="/search/physics?searchtype=author&query=Brown%2C+A">A. Brown</a>, <a href="/search/physics?searchtype=author&query=Bruno%2C+G">G. Bruno</a>, <a href="/search/physics?searchtype=author&query=Budnik%2C+R">R. Budnik</a>, <a href="/search/physics?searchtype=author&query=Cardoso%2C+J+M+R">J. M. R. Cardoso</a>, <a href="/search/physics?searchtype=author&query=Ch%C3%A1vez%2C+A+P+C">A. P. Cimental Ch谩vez</a>, <a href="/search/physics?searchtype=author&query=Colijn%2C+A+P">A. P. Colijn</a>, <a href="/search/physics?searchtype=author&query=Conrad%2C+J">J. Conrad</a>, <a href="/search/physics?searchtype=author&query=Cuenca-Garc%C3%ADa%2C+J+J">J. J. Cuenca-Garc铆a</a> , et al. (143 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.08778v1-abstract-short" style="display: inline;"> The XENONnT experiment, located at the INFN Laboratori Nazionali del Gran Sasso, Italy, features a 5.9 tonne liquid xenon time projection chamber surrounded by an instrumented neutron veto, all of which is housed within a muon veto water tank. Due to extensive shielding and advanced purification to mitigate natural radioactivity, an exceptionally low background level of (15.8 $\pm$ 1.3) events/(to… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.08778v1-abstract-full').style.display = 'inline'; document.getElementById('2409.08778v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.08778v1-abstract-full" style="display: none;"> The XENONnT experiment, located at the INFN Laboratori Nazionali del Gran Sasso, Italy, features a 5.9 tonne liquid xenon time projection chamber surrounded by an instrumented neutron veto, all of which is housed within a muon veto water tank. Due to extensive shielding and advanced purification to mitigate natural radioactivity, an exceptionally low background level of (15.8 $\pm$ 1.3) events/(tonne$\cdot$year$\cdot$keV) in the (1, 30) keV region is reached in the inner part of the TPC. XENONnT is thus sensitive to a wide range of rare phenomena related to Dark Matter and Neutrino interactions, both within and beyond the Standard Model of particle physics, with a focus on the direct detection of Dark Matter in the form of weakly interacting massive particles (WIMPs). From May 2021 to December 2021, XENONnT accumulated data in rare-event search mode with a total exposure of one tonne $\cdot$ year. This paper provides a detailed description of the signal reconstruction methods, event selection procedure, and detector response calibration, as well as an overview of the detector performance in this time frame. This work establishes the foundational framework for the `blind analysis' methodology we are using when reporting XENONnT physics results. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.08778v1-abstract-full').style.display = 'none'; document.getElementById('2409.08778v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">27 pages, 23 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.14071">arXiv:2408.14071</a> <span> [<a href="https://arxiv.org/pdf/2408.14071">pdf</a>, <a href="https://arxiv.org/format/2408.14071">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/20/02/P02016">10.1088/1748-0221/20/02/P02016 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Benchmarking the design of the cryogenics system for the underground argon in DarkSide-20k </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Collaboration%2C+D">DarkSide-20k Collaboration</a>, <a href="/search/physics?searchtype=author&query=%3A"> :</a>, <a href="/search/physics?searchtype=author&query=Acerbi%2C+F">F. Acerbi</a>, <a href="/search/physics?searchtype=author&query=Adhikari%2C+P">P. Adhikari</a>, <a href="/search/physics?searchtype=author&query=Agnes%2C+P">P. Agnes</a>, <a href="/search/physics?searchtype=author&query=Ahmad%2C+I">I. Ahmad</a>, <a href="/search/physics?searchtype=author&query=Albergo%2C+S">S. Albergo</a>, <a href="/search/physics?searchtype=author&query=Albuquerque%2C+I+F+M">I. F. M. Albuquerque</a>, <a href="/search/physics?searchtype=author&query=Alexander%2C+T">T. Alexander</a>, <a href="/search/physics?searchtype=author&query=Alton%2C+A+K">A. K. Alton</a>, <a href="/search/physics?searchtype=author&query=Amaudruz%2C+P">P. Amaudruz</a>, <a href="/search/physics?searchtype=author&query=Angiolilli%2C+M">M. Angiolilli</a>, <a href="/search/physics?searchtype=author&query=Aprile%2C+E">E. Aprile</a>, <a href="/search/physics?searchtype=author&query=Ardito%2C+R">R. Ardito</a>, <a href="/search/physics?searchtype=author&query=Corona%2C+M+A">M. Atzori Corona</a>, <a href="/search/physics?searchtype=author&query=Auty%2C+D+J">D. J. Auty</a>, <a href="/search/physics?searchtype=author&query=Ave%2C+M">M. Ave</a>, <a href="/search/physics?searchtype=author&query=Avetisov%2C+I+C">I. C. Avetisov</a>, <a href="/search/physics?searchtype=author&query=Azzolini%2C+O">O. Azzolini</a>, <a href="/search/physics?searchtype=author&query=Back%2C+H+O">H. O. Back</a>, <a href="/search/physics?searchtype=author&query=Balmforth%2C+Z">Z. Balmforth</a>, <a href="/search/physics?searchtype=author&query=Olmedo%2C+A+B">A. Barrado Olmedo</a>, <a href="/search/physics?searchtype=author&query=Barrillon%2C+P">P. Barrillon</a>, <a href="/search/physics?searchtype=author&query=Batignani%2C+G">G. Batignani</a>, <a href="/search/physics?searchtype=author&query=Bhowmick%2C+P">P. Bhowmick</a> , et al. (294 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.14071v2-abstract-short" style="display: inline;"> DarkSide-20k (DS-20k) is a dark matter detection experiment under construction at the Laboratori Nazionali del Gran Sasso (LNGS) in Italy. It utilises ~100 t of low radioactivity argon from an underground source (UAr) in its inner detector, with half serving as target in a dual-phase time projection chamber (TPC). The UAr cryogenics system must maintain stable thermodynamic conditions throughout t… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.14071v2-abstract-full').style.display = 'inline'; document.getElementById('2408.14071v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.14071v2-abstract-full" style="display: none;"> DarkSide-20k (DS-20k) is a dark matter detection experiment under construction at the Laboratori Nazionali del Gran Sasso (LNGS) in Italy. It utilises ~100 t of low radioactivity argon from an underground source (UAr) in its inner detector, with half serving as target in a dual-phase time projection chamber (TPC). The UAr cryogenics system must maintain stable thermodynamic conditions throughout the experiment's lifetime of over 10 years. Continuous removal of impurities and radon from the UAr is essential for maximising signal yield and mitigating background. We are developing an efficient and powerful cryogenics system with a gas purification loop with a target circulation rate of 1000 slpm. Central to its design is a condenser operated with liquid nitrogen which is paired with a gas heat exchanger cascade, delivering a combined cooling power of more than 8 kW. Here we present the design choices in view of the DS-20k requirements, in particular the condenser's working principle and the cooling control, and we show test results obtained with a dedicated benchmarking platform at CERN and LNGS. We find that the thermal efficiency of the recirculation loop, defined in terms of nitrogen consumption per argon flow rate, is 95 % and the pressure in the test cryostat can be maintained within $\pm$(0.1-0.2) mbar. We further detail a 5-day cool-down procedure of the test cryostat, maintaining a cooling rate typically within -2 K/h, as required for the DS-20k inner detector. Additionally, we assess the circuit's flow resistance, and the heat transfer capabilities of two heat exchanger geometries for argon phase change, used to provide gas for recirculation. We conclude by discussing how our findings influence the finalisation of the system design, including necessary modifications to meet requirements and ongoing testing activities. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.14071v2-abstract-full').style.display = 'none'; document.getElementById('2408.14071v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">44 pages, 25 figures, 1 table. Updated to match the published journal version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JINST 20 P02016 (2025) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.12725">arXiv:2408.12725</a> <span> [<a href="https://arxiv.org/pdf/2408.12725">pdf</a>, <a href="https://arxiv.org/format/2408.12725">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> DUNE Phase II: Scientific Opportunities, Detector Concepts, Technological Solutions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=DUNE+Collaboration"> DUNE Collaboration</a>, <a href="/search/physics?searchtype=author&query=Abud%2C+A+A">A. Abed Abud</a>, <a href="/search/physics?searchtype=author&query=Abi%2C+B">B. Abi</a>, <a href="/search/physics?searchtype=author&query=Acciarri%2C+R">R. Acciarri</a>, <a href="/search/physics?searchtype=author&query=Acero%2C+M+A">M. A. Acero</a>, <a href="/search/physics?searchtype=author&query=Adames%2C+M+R">M. R. Adames</a>, <a href="/search/physics?searchtype=author&query=Adamov%2C+G">G. Adamov</a>, <a href="/search/physics?searchtype=author&query=Adamowski%2C+M">M. Adamowski</a>, <a href="/search/physics?searchtype=author&query=Adams%2C+D">D. Adams</a>, <a href="/search/physics?searchtype=author&query=Adinolfi%2C+M">M. Adinolfi</a>, <a href="/search/physics?searchtype=author&query=Adriano%2C+C">C. Adriano</a>, <a href="/search/physics?searchtype=author&query=Aduszkiewicz%2C+A">A. Aduszkiewicz</a>, <a href="/search/physics?searchtype=author&query=Aguilar%2C+J">J. Aguilar</a>, <a href="/search/physics?searchtype=author&query=Akbar%2C+F">F. Akbar</a>, <a href="/search/physics?searchtype=author&query=Allison%2C+K">K. Allison</a>, <a href="/search/physics?searchtype=author&query=Monsalve%2C+S+A">S. Alonso Monsalve</a>, <a href="/search/physics?searchtype=author&query=Alrashed%2C+M">M. Alrashed</a>, <a href="/search/physics?searchtype=author&query=Alton%2C+A">A. Alton</a>, <a href="/search/physics?searchtype=author&query=Alvarez%2C+R">R. Alvarez</a>, <a href="/search/physics?searchtype=author&query=Alves%2C+T">T. Alves</a>, <a href="/search/physics?searchtype=author&query=Amar%2C+H">H. Amar</a>, <a href="/search/physics?searchtype=author&query=Amedo%2C+P">P. Amedo</a>, <a href="/search/physics?searchtype=author&query=Anderson%2C+J">J. Anderson</a>, <a href="/search/physics?searchtype=author&query=Andreopoulos%2C+C">C. Andreopoulos</a>, <a href="/search/physics?searchtype=author&query=Andreotti%2C+M">M. Andreotti</a> , et al. (1347 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.12725v1-abstract-short" style="display: inline;"> The international collaboration designing and constructing the Deep Underground Neutrino Experiment (DUNE) at the Long-Baseline Neutrino Facility (LBNF) has developed a two-phase strategy toward the implementation of this leading-edge, large-scale science project. The 2023 report of the US Particle Physics Project Prioritization Panel (P5) reaffirmed this vision and strongly endorsed DUNE Phase I… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.12725v1-abstract-full').style.display = 'inline'; document.getElementById('2408.12725v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.12725v1-abstract-full" style="display: none;"> The international collaboration designing and constructing the Deep Underground Neutrino Experiment (DUNE) at the Long-Baseline Neutrino Facility (LBNF) has developed a two-phase strategy toward the implementation of this leading-edge, large-scale science project. The 2023 report of the US Particle Physics Project Prioritization Panel (P5) reaffirmed this vision and strongly endorsed DUNE Phase I and Phase II, as did the European Strategy for Particle Physics. While the construction of the DUNE Phase I is well underway, this White Paper focuses on DUNE Phase II planning. DUNE Phase-II consists of a third and fourth far detector (FD) module, an upgraded near detector complex, and an enhanced 2.1 MW beam. The fourth FD module is conceived as a "Module of Opportunity", aimed at expanding the physics opportunities, in addition to supporting the core DUNE science program, with more advanced technologies. This document highlights the increased science opportunities offered by the DUNE Phase II near and far detectors, including long-baseline neutrino oscillation physics, neutrino astrophysics, and physics beyond the standard model. It describes the DUNE Phase II near and far detector technologies and detector design concepts that are currently under consideration. A summary of key R&D goals and prototyping phases needed to realize the Phase II detector technical designs is also provided. DUNE's Phase II detectors, along with the increased beam power, will complete the full scope of DUNE, enabling a multi-decadal program of groundbreaking science with neutrinos. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.12725v1-abstract-full').style.display = 'none'; document.getElementById('2408.12725v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-TM-2833-LBNF </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.08720">arXiv:2408.08720</a> <span> [<a href="https://arxiv.org/pdf/2408.08720">pdf</a>, <a href="https://arxiv.org/format/2408.08720">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Latest activities and results from T2K </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Litchfield%2C+R+P">R. P. Litchfield</a>, <a href="/search/physics?searchtype=author&query=Collaboration%2C+f+t+T">for the T2K Collaboration</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.08720v3-abstract-short" style="display: inline;"> The T2K neutrino oscillation experiment has gone through a period of renewal over the last couple of years, with several upgrades designed to improve sensitivity to leptonic CP violation. The change that most affects future analyses is the ND280 upgrade, which will constrain interaction models in new ways. At the same time the analysis continues to be developed, both by combining with the Super-Ka… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.08720v3-abstract-full').style.display = 'inline'; document.getElementById('2408.08720v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.08720v3-abstract-full" style="display: none;"> The T2K neutrino oscillation experiment has gone through a period of renewal over the last couple of years, with several upgrades designed to improve sensitivity to leptonic CP violation. The change that most affects future analyses is the ND280 upgrade, which will constrain interaction models in new ways. At the same time the analysis continues to be developed, both by combining with the Super-Kamiokande atmospheric measurements and with refinements to the T2K-only analysis. This proceedings describes the highlights of these analyses, and the status of the various T2K upgrades. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.08720v3-abstract-full').style.display = 'none'; document.getElementById('2408.08720v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Contribution to the 2024 Electroweak session of the 58th Rencontres de Moriond</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.00582">arXiv:2408.00582</a> <span> [<a href="https://arxiv.org/pdf/2408.00582">pdf</a>, <a href="https://arxiv.org/format/2408.00582">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.110.092011">10.1103/PhysRevD.110.092011 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> First Measurement of the Total Inelastic Cross-Section of Positively-Charged Kaons on Argon at Energies Between 5.0 and 7.5 GeV </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=DUNE+Collaboration"> DUNE Collaboration</a>, <a href="/search/physics?searchtype=author&query=Abud%2C+A+A">A. Abed Abud</a>, <a href="/search/physics?searchtype=author&query=Abi%2C+B">B. Abi</a>, <a href="/search/physics?searchtype=author&query=Acciarri%2C+R">R. Acciarri</a>, <a href="/search/physics?searchtype=author&query=Acero%2C+M+A">M. A. Acero</a>, <a href="/search/physics?searchtype=author&query=Adames%2C+M+R">M. R. Adames</a>, <a href="/search/physics?searchtype=author&query=Adamov%2C+G">G. Adamov</a>, <a href="/search/physics?searchtype=author&query=Adamowski%2C+M">M. Adamowski</a>, <a href="/search/physics?searchtype=author&query=Adams%2C+D">D. Adams</a>, <a href="/search/physics?searchtype=author&query=Adinolfi%2C+M">M. Adinolfi</a>, <a href="/search/physics?searchtype=author&query=Adriano%2C+C">C. Adriano</a>, <a href="/search/physics?searchtype=author&query=Aduszkiewicz%2C+A">A. Aduszkiewicz</a>, <a href="/search/physics?searchtype=author&query=Aguilar%2C+J">J. Aguilar</a>, <a href="/search/physics?searchtype=author&query=Akbar%2C+F">F. Akbar</a>, <a href="/search/physics?searchtype=author&query=Allison%2C+K">K. Allison</a>, <a href="/search/physics?searchtype=author&query=Monsalve%2C+S+A">S. Alonso Monsalve</a>, <a href="/search/physics?searchtype=author&query=Alrashed%2C+M">M. Alrashed</a>, <a href="/search/physics?searchtype=author&query=Alton%2C+A">A. Alton</a>, <a href="/search/physics?searchtype=author&query=Alvarez%2C+R">R. Alvarez</a>, <a href="/search/physics?searchtype=author&query=Alves%2C+T">T. Alves</a>, <a href="/search/physics?searchtype=author&query=Amar%2C+H">H. Amar</a>, <a href="/search/physics?searchtype=author&query=Amedo%2C+P">P. Amedo</a>, <a href="/search/physics?searchtype=author&query=Anderson%2C+J">J. Anderson</a>, <a href="/search/physics?searchtype=author&query=Andreopoulos%2C+C">C. Andreopoulos</a>, <a href="/search/physics?searchtype=author&query=Andreotti%2C+M">M. Andreotti</a> , et al. (1341 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.00582v1-abstract-short" style="display: inline;"> ProtoDUNE Single-Phase (ProtoDUNE-SP) is a 770-ton liquid argon time projection chamber that operated in a hadron test beam at the CERN Neutrino Platform in 2018. We present a measurement of the total inelastic cross section of charged kaons on argon as a function of kaon energy using 6 and 7 GeV/$c$ beam momentum settings. The flux-weighted average of the extracted inelastic cross section at each… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.00582v1-abstract-full').style.display = 'inline'; document.getElementById('2408.00582v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.00582v1-abstract-full" style="display: none;"> ProtoDUNE Single-Phase (ProtoDUNE-SP) is a 770-ton liquid argon time projection chamber that operated in a hadron test beam at the CERN Neutrino Platform in 2018. We present a measurement of the total inelastic cross section of charged kaons on argon as a function of kaon energy using 6 and 7 GeV/$c$ beam momentum settings. The flux-weighted average of the extracted inelastic cross section at each beam momentum setting was measured to be 380$\pm$26 mbarns for the 6 GeV/$c$ setting and 379$\pm$35 mbarns for the 7 GeV/$c$ setting. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.00582v1-abstract-full').style.display = 'none'; document.getElementById('2408.00582v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> CERN-EP-2024-211, FERMILAB-PUB-24-0216-V </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 110, (2024) 092011 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.13721">arXiv:2407.13721</a> <span> [<a href="https://arxiv.org/pdf/2407.13721">pdf</a>, <a href="https://arxiv.org/format/2407.13721">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/19/10/P10023">10.1088/1748-0221/19/10/P10023 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Measurement of the fractional radiation length of a pixel module for the CMS Phase-2 upgrade via the multiple scattering of positrons </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=The+Tracker+Group+of+the+CMS+Collaboration"> The Tracker Group of the CMS Collaboration</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.13721v3-abstract-short" style="display: inline;"> High-luminosity particle collider experiments such as the ones planned at the High-Luminosity Large Hadron Collider require ever-greater vertexing precision of the tracking detectors, necessitating also reductions in the material budget of the detectors. Traditionally, the fractional radiation length ($x/X_0$) of detectors is either estimated using known properties of the constituent materials, or… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.13721v3-abstract-full').style.display = 'inline'; document.getElementById('2407.13721v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.13721v3-abstract-full" style="display: none;"> High-luminosity particle collider experiments such as the ones planned at the High-Luminosity Large Hadron Collider require ever-greater vertexing precision of the tracking detectors, necessitating also reductions in the material budget of the detectors. Traditionally, the fractional radiation length ($x/X_0$) of detectors is either estimated using known properties of the constituent materials, or measured in dedicated runs of the final detector. In this paper, we present a method of direct measurement of the material budget of a CMS prototype module designed for the Phase-2 upgrade of the CMS detector using a 40-65 MeV positron beam. A total of 630 million events were collected at the Paul Scherrer Institut PiE1 experimental area using a three-plane telescope consisting of the prototype module as the central plane, surrounded by two MALTA monolithic pixel detectors. Fractional radiation lengths were extracted from scattering angle distributions using the Highland approximation for multiple scattering. A statistical technique recovered runs suffering from trigger desynchronisation, and several corrections were introduced to compensate for local inefficiencies related to geometric and beam shape constraints. Two regions of the module were surveyed and yielded average $x/X_0$ values of $(0.72 \pm 0.05)\%$ and $(0.95 \pm 0.09)\%$, which are compatible with empirical estimates for these regions computed from known material properties of 0.753% and 0.892%, respectively. Higher-granularity maps of the fractional radiation length were produced for both rectangular regions and regions of uniform material composition. The results bode well for the CMS Phase-2 upgrade modules, which will play a key role in the minimisation of the material budget of the upgraded detector. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.13721v3-abstract-full').style.display = 'none'; document.getElementById('2407.13721v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">42 pages, 19 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> CERN-CMS-NOTE-2024-005 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JINST 19 P10023 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.12969">arXiv:2407.12969</a> <span> [<a href="https://arxiv.org/pdf/2407.12969">pdf</a>, <a href="https://arxiv.org/format/2407.12969">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Angular dependent measurement of electron-ion recombination in liquid argon for ionization calorimetry in the ICARUS liquid argon time projection chamber </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=ICARUS+collaboration"> ICARUS collaboration</a>, <a href="/search/physics?searchtype=author&query=Abratenko%2C+P">P. Abratenko</a>, <a href="/search/physics?searchtype=author&query=Abrego-Martinez%2C+N">N. Abrego-Martinez</a>, <a href="/search/physics?searchtype=author&query=Aduszkiewic%2C+A">A. Aduszkiewic</a>, <a href="/search/physics?searchtype=author&query=Akbar%2C+F">F. Akbar</a>, <a href="/search/physics?searchtype=author&query=Soplin%2C+L+A">L. Aliaga Soplin</a>, <a href="/search/physics?searchtype=author&query=Pons%2C+M+A">M. Artero Pons</a>, <a href="/search/physics?searchtype=author&query=Asaadi%2C+J">J. Asaadi</a>, <a href="/search/physics?searchtype=author&query=Badgett%2C+W+F">W. F. Badgett</a>, <a href="/search/physics?searchtype=author&query=Baibussinov%2C+B">B. Baibussinov</a>, <a href="/search/physics?searchtype=author&query=Behera%2C+B">B. Behera</a>, <a href="/search/physics?searchtype=author&query=Bellini%2C+V">V. Bellini</a>, <a href="/search/physics?searchtype=author&query=Benocci%2C+R">R. Benocci</a>, <a href="/search/physics?searchtype=author&query=Berger%2C+J">J. Berger</a>, <a href="/search/physics?searchtype=author&query=Berkman%2C+S">S. Berkman</a>, <a href="/search/physics?searchtype=author&query=Bertolucci%2C+S">S. Bertolucci</a>, <a href="/search/physics?searchtype=author&query=Betancourt%2C+M">M. Betancourt</a>, <a href="/search/physics?searchtype=author&query=Bonesini%2C+M">M. Bonesini</a>, <a href="/search/physics?searchtype=author&query=Boone%2C+T">T. Boone</a>, <a href="/search/physics?searchtype=author&query=Bottino%2C+B">B. Bottino</a>, <a href="/search/physics?searchtype=author&query=Braggiotti%2C+A">A. Braggiotti</a>, <a href="/search/physics?searchtype=author&query=Brailsford%2C+D">D. Brailsford</a>, <a href="/search/physics?searchtype=author&query=Brice%2C+S+J">S. J. Brice</a>, <a href="/search/physics?searchtype=author&query=Brio%2C+V">V. Brio</a>, <a href="/search/physics?searchtype=author&query=Brizzolari%2C+C">C. Brizzolari</a> , et al. (156 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.12969v2-abstract-short" style="display: inline;"> This paper reports on a measurement of electron-ion recombination in liquid argon in the ICARUS liquid argon time projection chamber (LArTPC). A clear dependence of recombination on the angle of the ionizing particle track relative to the drift electric field is observed. An ellipsoid modified box (EMB) model of recombination describes the data across all measured angles. These measurements are us… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.12969v2-abstract-full').style.display = 'inline'; document.getElementById('2407.12969v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.12969v2-abstract-full" style="display: none;"> This paper reports on a measurement of electron-ion recombination in liquid argon in the ICARUS liquid argon time projection chamber (LArTPC). A clear dependence of recombination on the angle of the ionizing particle track relative to the drift electric field is observed. An ellipsoid modified box (EMB) model of recombination describes the data across all measured angles. These measurements are used for the calorimetric energy scale calibration of the ICARUS TPC, which is also presented. The impact of the EMB model is studied on calorimetric particle identification, as well as muon and proton energy measurements. Accounting for the angular dependence in EMB recombination improves the accuracy and precision of these measurements. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.12969v2-abstract-full').style.display = 'none'; document.getElementById('2407.12969v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-24-0332-PPD </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.11925">arXiv:2407.11925</a> <span> [<a href="https://arxiv.org/pdf/2407.11925">pdf</a>, <a href="https://arxiv.org/format/2407.11925">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Calibration and simulation of ionization signal and electronics noise in the ICARUS liquid argon time projection chamber </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=ICARUS+collaboration"> ICARUS collaboration</a>, <a href="/search/physics?searchtype=author&query=Abratenko%2C+P">P. Abratenko</a>, <a href="/search/physics?searchtype=author&query=Abrego-Martinez%2C+N">N. Abrego-Martinez</a>, <a href="/search/physics?searchtype=author&query=Aduszkiewic%2C+A">A. Aduszkiewic</a>, <a href="/search/physics?searchtype=author&query=Akbar%2C+F">F. Akbar</a>, <a href="/search/physics?searchtype=author&query=Soplin%2C+L+A">L. Aliaga Soplin</a>, <a href="/search/physics?searchtype=author&query=Pons%2C+M+A">M. Artero Pons</a>, <a href="/search/physics?searchtype=author&query=Asaadi%2C+J">J. Asaadi</a>, <a href="/search/physics?searchtype=author&query=Badgett%2C+W+F">W. F. Badgett</a>, <a href="/search/physics?searchtype=author&query=Baibussinov%2C+B">B. Baibussinov</a>, <a href="/search/physics?searchtype=author&query=Behera%2C+B">B. Behera</a>, <a href="/search/physics?searchtype=author&query=Bellini%2C+V">V. Bellini</a>, <a href="/search/physics?searchtype=author&query=Benocci%2C+R">R. Benocci</a>, <a href="/search/physics?searchtype=author&query=Berger%2C+J">J. Berger</a>, <a href="/search/physics?searchtype=author&query=Berkman%2C+S">S. Berkman</a>, <a href="/search/physics?searchtype=author&query=Bertolucci%2C+S">S. Bertolucci</a>, <a href="/search/physics?searchtype=author&query=Betancourt%2C+M">M. Betancourt</a>, <a href="/search/physics?searchtype=author&query=Bonesini%2C+M">M. Bonesini</a>, <a href="/search/physics?searchtype=author&query=Boone%2C+T">T. Boone</a>, <a href="/search/physics?searchtype=author&query=Bottino%2C+B">B. Bottino</a>, <a href="/search/physics?searchtype=author&query=Braggiotti%2C+A">A. Braggiotti</a>, <a href="/search/physics?searchtype=author&query=Brailsford%2C+D">D. Brailsford</a>, <a href="/search/physics?searchtype=author&query=Brice%2C+S+J">S. J. Brice</a>, <a href="/search/physics?searchtype=author&query=Brio%2C+V">V. Brio</a>, <a href="/search/physics?searchtype=author&query=Brizzolari%2C+C">C. Brizzolari</a> , et al. (156 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.11925v3-abstract-short" style="display: inline;"> The ICARUS liquid argon time projection chamber (LArTPC) neutrino detector has been taking physics data since 2022 as part of the Short-Baseline Neutrino (SBN) Program. This paper details the equalization of the response to charge in the ICARUS time projection chamber (TPC), as well as data-driven tuning of the simulation of ionization charge signals and electronics noise. The equalization procedu… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.11925v3-abstract-full').style.display = 'inline'; document.getElementById('2407.11925v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.11925v3-abstract-full" style="display: none;"> The ICARUS liquid argon time projection chamber (LArTPC) neutrino detector has been taking physics data since 2022 as part of the Short-Baseline Neutrino (SBN) Program. This paper details the equalization of the response to charge in the ICARUS time projection chamber (TPC), as well as data-driven tuning of the simulation of ionization charge signals and electronics noise. The equalization procedure removes non-uniformities in the ICARUS TPC response to charge in space and time. This work leverages the copious number of cosmic ray muons available to ICARUS at the surface. The ionization signal shape simulation applies a novel procedure that tunes the simulation to match what is measured in data. The end result of the equalization procedure and simulation tuning allows for a comparison of charge measurements in ICARUS between Monte Carlo simulation and data, showing good performance with minimal residual bias between the two. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.11925v3-abstract-full').style.display = 'none'; document.getElementById('2407.11925v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-24-0330-PPD </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.10716">arXiv:2407.10716</a> <span> [<a href="https://arxiv.org/pdf/2407.10716">pdf</a>, <a href="https://arxiv.org/format/2407.10716">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/19/11/T11002">10.1088/1748-0221/19/11/T11002 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> First mechanical realization of a tunable dielectric haloscope for the MADMAX axion search experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=The+MADMAX+Collaboration"> The MADMAX Collaboration</a>, <a href="/search/physics?searchtype=author&query=Garcia%2C+B+A+D+S">B. Ary Dos Santos Garcia</a>, <a href="/search/physics?searchtype=author&query=Bergermann%2C+D">D. Bergermann</a>, <a href="/search/physics?searchtype=author&query=Caldwell%2C+A">A. Caldwell</a>, <a href="/search/physics?searchtype=author&query=Dabhi%2C+V">V. Dabhi</a>, <a href="/search/physics?searchtype=author&query=Diaconu%2C+C">C. Diaconu</a>, <a href="/search/physics?searchtype=author&query=Diehl%2C+J">J. Diehl</a>, <a href="/search/physics?searchtype=author&query=Dvali%2C+G">G. Dvali</a>, <a href="/search/physics?searchtype=author&query=Egge%2C+J">J. Egge</a>, <a href="/search/physics?searchtype=author&query=Ekmedzic%2C+M">M. Ekmedzic</a>, <a href="/search/physics?searchtype=author&query=Gallo%2C+F">F. Gallo</a>, <a href="/search/physics?searchtype=author&query=Garutti%2C+E">E. Garutti</a>, <a href="/search/physics?searchtype=author&query=Heyminck%2C+S">S. Heyminck</a>, <a href="/search/physics?searchtype=author&query=Hubaut%2C+F">F. Hubaut</a>, <a href="/search/physics?searchtype=author&query=Ivanov%2C+A">A. Ivanov</a>, <a href="/search/physics?searchtype=author&query=Jochum%2C+J">J. Jochum</a>, <a href="/search/physics?searchtype=author&query=Karst%2C+P">P. Karst</a>, <a href="/search/physics?searchtype=author&query=Kramer%2C+M">M. Kramer</a>, <a href="/search/physics?searchtype=author&query=Kreikemeyer-Lorenzo%2C+D">D. Kreikemeyer-Lorenzo</a>, <a href="/search/physics?searchtype=author&query=Krieger%2C+C">C. Krieger</a>, <a href="/search/physics?searchtype=author&query=Leppla-Weber%2C+D">D. Leppla-Weber</a>, <a href="/search/physics?searchtype=author&query=Lindner%2C+A">A. Lindner</a>, <a href="/search/physics?searchtype=author&query=Maldonado%2C+J">J. Maldonado</a>, <a href="/search/physics?searchtype=author&query=Majorovits%2C+B">B. Majorovits</a>, <a href="/search/physics?searchtype=author&query=Martens%2C+S">S. Martens</a> , et al. (14 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.10716v3-abstract-short" style="display: inline;"> MADMAX, a future experiment to search for axion dark matter, is based on a novel detection concept called the dielectric haloscope. It consists of a booster composed of several dielectric disks positioned with $渭$m precision. A prototype composed of one movable disk was built to demonstrate the mechanical feasibility of such a booster in the challenging environment of the experiment: high magnetic… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.10716v3-abstract-full').style.display = 'inline'; document.getElementById('2407.10716v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.10716v3-abstract-full" style="display: none;"> MADMAX, a future experiment to search for axion dark matter, is based on a novel detection concept called the dielectric haloscope. It consists of a booster composed of several dielectric disks positioned with $渭$m precision. A prototype composed of one movable disk was built to demonstrate the mechanical feasibility of such a booster in the challenging environment of the experiment: high magnetic field to convert the axions into photons and cryogenic temperature to reduce the thermal noise. It was tested both inside a strong magnetic field up to 1.6 T and at cryogenic temperatures down to 35K. The measurements of the velocity and positioning accuracy of the disk are shown and are found to match the MADMAX requirements. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.10716v3-abstract-full').style.display = 'none'; document.getElementById('2407.10716v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 9 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JINST 19 T11002 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.10339">arXiv:2407.10339</a> <span> [<a href="https://arxiv.org/pdf/2407.10339">pdf</a>, <a href="https://arxiv.org/format/2407.10339">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Supernova Pointing Capabilities of DUNE </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=DUNE+Collaboration"> DUNE Collaboration</a>, <a href="/search/physics?searchtype=author&query=Abud%2C+A+A">A. Abed Abud</a>, <a href="/search/physics?searchtype=author&query=Abi%2C+B">B. Abi</a>, <a href="/search/physics?searchtype=author&query=Acciarri%2C+R">R. Acciarri</a>, <a href="/search/physics?searchtype=author&query=Acero%2C+M+A">M. A. Acero</a>, <a href="/search/physics?searchtype=author&query=Adames%2C+M+R">M. R. Adames</a>, <a href="/search/physics?searchtype=author&query=Adamov%2C+G">G. Adamov</a>, <a href="/search/physics?searchtype=author&query=Adamowski%2C+M">M. Adamowski</a>, <a href="/search/physics?searchtype=author&query=Adams%2C+D">D. Adams</a>, <a href="/search/physics?searchtype=author&query=Adinolfi%2C+M">M. Adinolfi</a>, <a href="/search/physics?searchtype=author&query=Adriano%2C+C">C. Adriano</a>, <a href="/search/physics?searchtype=author&query=Aduszkiewicz%2C+A">A. Aduszkiewicz</a>, <a href="/search/physics?searchtype=author&query=Aguilar%2C+J">J. Aguilar</a>, <a href="/search/physics?searchtype=author&query=Aimard%2C+B">B. Aimard</a>, <a href="/search/physics?searchtype=author&query=Akbar%2C+F">F. Akbar</a>, <a href="/search/physics?searchtype=author&query=Allison%2C+K">K. Allison</a>, <a href="/search/physics?searchtype=author&query=Monsalve%2C+S+A">S. Alonso Monsalve</a>, <a href="/search/physics?searchtype=author&query=Alrashed%2C+M">M. Alrashed</a>, <a href="/search/physics?searchtype=author&query=Alton%2C+A">A. Alton</a>, <a href="/search/physics?searchtype=author&query=Alvarez%2C+R">R. Alvarez</a>, <a href="/search/physics?searchtype=author&query=Alves%2C+T">T. Alves</a>, <a href="/search/physics?searchtype=author&query=Amar%2C+H">H. Amar</a>, <a href="/search/physics?searchtype=author&query=Amedo%2C+P">P. Amedo</a>, <a href="/search/physics?searchtype=author&query=Anderson%2C+J">J. Anderson</a>, <a href="/search/physics?searchtype=author&query=Andrade%2C+D+A">D. A. Andrade</a> , et al. (1340 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.10339v1-abstract-short" style="display: inline;"> The determination of the direction of a stellar core collapse via its neutrino emission is crucial for the identification of the progenitor for a multimessenger follow-up. A highly effective method of reconstructing supernova directions within the Deep Underground Neutrino Experiment (DUNE) is introduced. The supernova neutrino pointing resolution is studied by simulating and reconstructing electr… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.10339v1-abstract-full').style.display = 'inline'; document.getElementById('2407.10339v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.10339v1-abstract-full" style="display: none;"> The determination of the direction of a stellar core collapse via its neutrino emission is crucial for the identification of the progenitor for a multimessenger follow-up. A highly effective method of reconstructing supernova directions within the Deep Underground Neutrino Experiment (DUNE) is introduced. The supernova neutrino pointing resolution is studied by simulating and reconstructing electron-neutrino charged-current absorption on $^{40}$Ar and elastic scattering of neutrinos on electrons. Procedures to reconstruct individual interactions, including a newly developed technique called ``brems flipping'', as well as the burst direction from an ensemble of interactions are described. Performance of the burst direction reconstruction is evaluated for supernovae happening at a distance of 10 kpc for a specific supernova burst flux model. The pointing resolution is found to be 3.4 degrees at 68% coverage for a perfect interaction-channel classification and a fiducial mass of 40 kton, and 6.6 degrees for a 10 kton fiducial mass respectively. Assuming a 4% rate of charged-current interactions being misidentified as elastic scattering, DUNE's burst pointing resolution is found to be 4.3 degrees (8.7 degrees) at 68% coverage. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.10339v1-abstract-full').style.display = 'none'; document.getElementById('2407.10339v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">25 pages, 16 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-24-0319-LBNF </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.08085">arXiv:2407.08085</a> <span> [<a href="https://arxiv.org/pdf/2407.08085">pdf</a>, <a href="https://arxiv.org/format/2407.08085">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Light Dark Matter Constraints from SuperCDMS HVeV Detectors Operated Underground with an Anticoincidence Event Selection </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=SuperCDMS+Collaboration"> SuperCDMS Collaboration</a>, <a href="/search/physics?searchtype=author&query=Albakry%2C+M+F">M. F. Albakry</a>, <a href="/search/physics?searchtype=author&query=Alkhatib%2C+I">I. Alkhatib</a>, <a href="/search/physics?searchtype=author&query=Alonso-Gonz%C3%A1lez%2C+D">D. Alonso-Gonz谩lez</a>, <a href="/search/physics?searchtype=author&query=Amaral%2C+D+W+P">D. W. P. Amaral</a>, <a href="/search/physics?searchtype=author&query=Anczarski%2C+J">J. Anczarski</a>, <a href="/search/physics?searchtype=author&query=Aralis%2C+T">T. Aralis</a>, <a href="/search/physics?searchtype=author&query=Aramaki%2C+T">T. Aramaki</a>, <a href="/search/physics?searchtype=author&query=Arnquist%2C+I+J">I. J. Arnquist</a>, <a href="/search/physics?searchtype=author&query=Langroudy%2C+I+A">I. Ataee Langroudy</a>, <a href="/search/physics?searchtype=author&query=Azadbakht%2C+E">E. Azadbakht</a>, <a href="/search/physics?searchtype=author&query=Bathurst%2C+C">C. Bathurst</a>, <a href="/search/physics?searchtype=author&query=Bhattacharyya%2C+R">R. Bhattacharyya</a>, <a href="/search/physics?searchtype=author&query=Biffl%2C+A+J">A. J. Biffl</a>, <a href="/search/physics?searchtype=author&query=Brink%2C+P+L">P. L. Brink</a>, <a href="/search/physics?searchtype=author&query=Buchanan%2C+M">M. Buchanan</a>, <a href="/search/physics?searchtype=author&query=Bunker%2C+R">R. Bunker</a>, <a href="/search/physics?searchtype=author&query=Cabrera%2C+B">B. Cabrera</a>, <a href="/search/physics?searchtype=author&query=Calkins%2C+R">R. Calkins</a>, <a href="/search/physics?searchtype=author&query=Cameron%2C+R+A">R. A. Cameron</a>, <a href="/search/physics?searchtype=author&query=Cartaro%2C+C">C. Cartaro</a>, <a href="/search/physics?searchtype=author&query=Cerde%C3%B1o%2C+D+G">D. G. Cerde帽o</a>, <a href="/search/physics?searchtype=author&query=Chang%2C+Y+-">Y. -Y. Chang</a>, <a href="/search/physics?searchtype=author&query=Chaudhuri%2C+M">M. Chaudhuri</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+J+-">J. -H. Chen</a> , et al. (117 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.08085v4-abstract-short" style="display: inline;"> This article presents constraints on dark-matter-electron interactions obtained from the first underground data-taking campaign with multiple SuperCDMS HVeV detectors operated in the same housing. An exposure of 7.63 g-days is used to set upper limits on the dark-matter-electron scattering cross section for dark matter masses between 0.5 and 1000 MeV/$c^2$, as well as upper limits on dark photon k… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.08085v4-abstract-full').style.display = 'inline'; document.getElementById('2407.08085v4-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.08085v4-abstract-full" style="display: none;"> This article presents constraints on dark-matter-electron interactions obtained from the first underground data-taking campaign with multiple SuperCDMS HVeV detectors operated in the same housing. An exposure of 7.63 g-days is used to set upper limits on the dark-matter-electron scattering cross section for dark matter masses between 0.5 and 1000 MeV/$c^2$, as well as upper limits on dark photon kinetic mixing and axion-like particle axioelectric coupling for masses between 1.2 and 23.3 eV/$c^2$. Compared to an earlier HVeV search, sensitivity was improved as a result of an increased overburden of 225 meters of water equivalent, an anticoincidence event selection, and better pile-up rejection. In the case of dark-matter-electron scattering via a heavy mediator, an improvement by up to a factor of 25 in cross-section sensitivity was achieved. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.08085v4-abstract-full').style.display = 'none'; document.getElementById('2407.08085v4-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages + title and references, 4 figures, and 1 table</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.05999">arXiv:2407.05999</a> <span> [<a href="https://arxiv.org/pdf/2407.05999">pdf</a>, <a href="https://arxiv.org/format/2407.05999">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Combining Hybrid and Opaque Scintillator Techniques in the Search for Double Beta Plus Decays </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Collaboration%2C+N">NuDoubt++ Collaboration</a>, <a href="/search/physics?searchtype=author&query=%3A"> :</a>, <a href="/search/physics?searchtype=author&query=B%C3%B6hles%2C+M">Manuel B枚hles</a>, <a href="/search/physics?searchtype=author&query=B%C3%B6ser%2C+S">Sebastian B枚ser</a>, <a href="/search/physics?searchtype=author&query=Eisenhuth%2C+M">Magdalena Eisenhuth</a>, <a href="/search/physics?searchtype=author&query=Girard-Carillo%2C+C">Clo茅 Girard-Carillo</a>, <a href="/search/physics?searchtype=author&query=Curiel%2C+K+M+H">Kitzia M. Hernandez Curiel</a>, <a href="/search/physics?searchtype=author&query=Ke%C3%9Fler%2C+B">Bastian Ke脽ler</a>, <a href="/search/physics?searchtype=author&query=Mossel%2C+K">Kyra Mossel</a>, <a href="/search/physics?searchtype=author&query=Palu%C5%A1ov%C3%A1%2C+V">Veronika Palu拧ov谩</a>, <a href="/search/physics?searchtype=author&query=Schoppmann%2C+S">Stefan Schoppmann</a>, <a href="/search/physics?searchtype=author&query=Weber%2C+A">Alfons Weber</a>, <a href="/search/physics?searchtype=author&query=Wurm%2C+M">Michael Wurm</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.05999v2-abstract-short" style="display: inline;"> Double beta plus decay is a rare nuclear disintegration process. Difficulties in its measurement arise from suppressed decay probabilities, experimentally challenging decay signatures and low natural abundances of suitable candidate nuclei. In this article, we propose a new detector concept to overcome these challenges. It is based on the first-time combination of hybrid and opaque scintillation d… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.05999v2-abstract-full').style.display = 'inline'; document.getElementById('2407.05999v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.05999v2-abstract-full" style="display: none;"> Double beta plus decay is a rare nuclear disintegration process. Difficulties in its measurement arise from suppressed decay probabilities, experimentally challenging decay signatures and low natural abundances of suitable candidate nuclei. In this article, we propose a new detector concept to overcome these challenges. It is based on the first-time combination of hybrid and opaque scintillation detector technology paired with novel light read-out techniques. This approach is particularly suitable detecting positrons (beta plus) signatures. We expect to discover two-neutrino double beta plus decay modes within 1 tonne-week exposure and are able to probe neutrinoless double beta plus decays at several orders of magnitude improved significance compared to current experimental limits. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.05999v2-abstract-full').style.display = 'none'; document.getElementById('2407.05999v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 pages, 9 figures, 3 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.05716">arXiv:2407.05716</a> <span> [<a href="https://arxiv.org/pdf/2407.05716">pdf</a>, <a href="https://arxiv.org/format/2407.05716">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/19/10/P10008">10.1088/1748-0221/19/10/P10008 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Sensor response and radiation damage effects for 3D pixels in the ATLAS IBL Detector </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=ATLAS+Collaboration"> ATLAS Collaboration</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.05716v2-abstract-short" style="display: inline;"> Pixel sensors in 3D technology equip the outer ends of the staves of the Insertable B Layer (IBL), the innermost layer of the ATLAS Pixel Detector, which was installed before the start of LHC Run 2 in 2015. 3D pixel sensors are expected to exhibit more tolerance to radiation damage and are the technology of choice for the innermost layer in the ATLAS tracker upgrade for the HL-LHC programme. While… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.05716v2-abstract-full').style.display = 'inline'; document.getElementById('2407.05716v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.05716v2-abstract-full" style="display: none;"> Pixel sensors in 3D technology equip the outer ends of the staves of the Insertable B Layer (IBL), the innermost layer of the ATLAS Pixel Detector, which was installed before the start of LHC Run 2 in 2015. 3D pixel sensors are expected to exhibit more tolerance to radiation damage and are the technology of choice for the innermost layer in the ATLAS tracker upgrade for the HL-LHC programme. While the LHC has delivered an integrated luminosity of $\simeq$ 235 fb$^{-1}$ since the start of Run 2, the 3D sensors have received a non-ionising energy deposition corresponding to a fluence of ${\simeq} 8.5\times10^{14}$ 1 MeV neutron-equivalent cm$^{-2}$ averaged over the sensor area. This paper presents results of measurements of the 3D pixel sensors' response during Run 2 and the first two years of Run 3, with predictions of its evolution until the end of Run 3 in 2025. Data are compared with radiation damage simulations, based on detailed maps of the electric field in the Si substrate, at various fluence levels and bias voltage values. These results illustrate the potential of 3D technology for pixel applications in high-radiation environments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.05716v2-abstract-full').style.display = 'none'; document.getElementById('2407.05716v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">42 pages in total, author list starting page 25, 15 figures, 1 table, published by JINST</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> CERN-EP-2024-156 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JINST 19 (2024) P10008 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.19416">arXiv:2406.19416</a> <span> [<a href="https://arxiv.org/pdf/2406.19416">pdf</a>, <a href="https://arxiv.org/format/2406.19416">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nima.2024.169924">10.1016/j.nima.2024.169924 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Lightweight Thermal Management Strategies for the Silicon Detectors of CBM at FAIR </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Matejcek%2C+F">Franz Matejcek</a>, <a href="/search/physics?searchtype=author&query=Agarwal%2C+K">Kshitij Agarwal</a>, <a href="/search/physics?searchtype=author&query=Collaboration%2C+C">CBM Collaboration</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.19416v2-abstract-short" style="display: inline;"> Lightweight thermal management is central to the design of the all-silicon Inner Tracker of the Compressed Baryonic Matter Experiment (CBM) at the Facility for Antiproton and Ion Research (FAIR). This experiment aims to study strongly interacting matter at neutron star core densities through fixed-target Au-Au collisions ($\sqrt{s_{NN}} = 2.9 - 4.9$\,GeV; up to 10$^7$ beam-target interactions per… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.19416v2-abstract-full').style.display = 'inline'; document.getElementById('2406.19416v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.19416v2-abstract-full" style="display: none;"> Lightweight thermal management is central to the design of the all-silicon Inner Tracker of the Compressed Baryonic Matter Experiment (CBM) at the Facility for Antiproton and Ion Research (FAIR). This experiment aims to study strongly interacting matter at neutron star core densities through fixed-target Au-Au collisions ($\sqrt{s_{NN}} = 2.9 - 4.9$\,GeV; up to 10$^7$ beam-target interactions per second; polar angular acceptance of $2.5^{\circ} \leq 螛\leq 25^{\circ}$). Studies with thermal demonstrators for both the pixel-based Micro Vertex Detector and the strip-based Silicon Tracking System have validated their thermal management strategies, preparing them for series production now and global commissioning in 2028. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.19416v2-abstract-full').style.display = 'none'; document.getElementById('2406.19416v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">3 pages, 9 figures, Revised and Accepted Proceedings for 16th Pisa Meeting on Advanced Detectors Submitted to NIM A</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Volume 1069, 2024, 169924, ISSN 0168-9002 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.18597">arXiv:2406.18597</a> <span> [<a href="https://arxiv.org/pdf/2406.18597">pdf</a>, <a href="https://arxiv.org/format/2406.18597">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Relative Measurement and Extrapolation of the Scintillation Quenching Factor of $伪$-Particles in Liquid Argon using DEAP-3600 Data </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=The+DEAP+Collaboration"> The DEAP Collaboration</a>, <a href="/search/physics?searchtype=author&query=Adhikari%2C+P">P. Adhikari</a>, <a href="/search/physics?searchtype=author&query=Alp%C3%ADzar-Venegas%2C+M">M. Alp铆zar-Venegas</a>, <a href="/search/physics?searchtype=author&query=Amaudruz%2C+P+-">P. -A. Amaudruz</a>, <a href="/search/physics?searchtype=author&query=Anstey%2C+J">J. Anstey</a>, <a href="/search/physics?searchtype=author&query=Auty%2C+D+J">D. J. Auty</a>, <a href="/search/physics?searchtype=author&query=Batygov%2C+M">M. Batygov</a>, <a href="/search/physics?searchtype=author&query=Beltran%2C+B">B. Beltran</a>, <a href="/search/physics?searchtype=author&query=Bina%2C+C+E">C. E. Bina</a>, <a href="/search/physics?searchtype=author&query=Bonivento%2C+W">W. Bonivento</a>, <a href="/search/physics?searchtype=author&query=Boulay%2C+M+G">M. G. Boulay</a>, <a href="/search/physics?searchtype=author&query=Bueno%2C+J+F">J. F. Bueno</a>, <a href="/search/physics?searchtype=author&query=Cai%2C+B">B. Cai</a>, <a href="/search/physics?searchtype=author&query=C%C3%A1rdenas-Montes%2C+M">M. C谩rdenas-Montes</a>, <a href="/search/physics?searchtype=author&query=Choudhary%2C+S">S. Choudhary</a>, <a href="/search/physics?searchtype=author&query=Cleveland%2C+B+T">B. T. Cleveland</a>, <a href="/search/physics?searchtype=author&query=Crampton%2C+R">R. Crampton</a>, <a href="/search/physics?searchtype=author&query=Daugherty%2C+S">S. Daugherty</a>, <a href="/search/physics?searchtype=author&query=DelGobbo%2C+P">P. DelGobbo</a>, <a href="/search/physics?searchtype=author&query=Di+Stefano%2C+P">P. Di Stefano</a>, <a href="/search/physics?searchtype=author&query=Dolganov%2C+G">G. Dolganov</a>, <a href="/search/physics?searchtype=author&query=Doria%2C+L">L. Doria</a>, <a href="/search/physics?searchtype=author&query=Duncan%2C+F+A">F. A. Duncan</a>, <a href="/search/physics?searchtype=author&query=Dunford%2C+M">M. Dunford</a>, <a href="/search/physics?searchtype=author&query=Ellingwood%2C+E">E. Ellingwood</a> , et al. (79 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.18597v2-abstract-short" style="display: inline;"> The knowledge of scintillation quenching of $伪$-particles plays a paramount role in understanding $伪$-induced backgrounds and improving the sensitivity of liquid argon-based direct detection of dark matter experiments. We performed a relative measurement of scintillation quenching in the MeV energy region using radioactive isotopes ($^{222}$Rn, $^{218}$Po and $^{214}$Po isotopes) present in trace… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.18597v2-abstract-full').style.display = 'inline'; document.getElementById('2406.18597v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.18597v2-abstract-full" style="display: none;"> The knowledge of scintillation quenching of $伪$-particles plays a paramount role in understanding $伪$-induced backgrounds and improving the sensitivity of liquid argon-based direct detection of dark matter experiments. We performed a relative measurement of scintillation quenching in the MeV energy region using radioactive isotopes ($^{222}$Rn, $^{218}$Po and $^{214}$Po isotopes) present in trace amounts in the DEAP-3600 detector and quantified the uncertainty of extrapolating the quenching factor to the low-energy region. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.18597v2-abstract-full').style.display = 'none'; document.getElementById('2406.18597v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 6 figures (added 1 figure, revised 3 figures), 2 tables, revised sections 3, 4, 5. Accepted in Eur. Phys. J. C</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.16361">arXiv:2406.16361</a> <span> [<a href="https://arxiv.org/pdf/2406.16361">pdf</a>, <a href="https://arxiv.org/format/2406.16361">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> </div> </div> <p class="title is-5 mathjax"> Experimental Observation of Motion of Ions in a Resonantly Driven Plasma Wakefield Accelerator </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Turner%2C+M">M. Turner</a>, <a href="/search/physics?searchtype=author&query=Walter%2C+E">E. Walter</a>, <a href="/search/physics?searchtype=author&query=Amoedo%2C+C">C. Amoedo</a>, <a href="/search/physics?searchtype=author&query=Torrado%2C+N">N. Torrado</a>, <a href="/search/physics?searchtype=author&query=Lopes%2C+N">N. Lopes</a>, <a href="/search/physics?searchtype=author&query=Sublet%2C+A">A. Sublet</a>, <a href="/search/physics?searchtype=author&query=Bergamaschi%2C+M">M. Bergamaschi</a>, <a href="/search/physics?searchtype=author&query=Pucek%2C+J">J. Pucek</a>, <a href="/search/physics?searchtype=author&query=Mezger%2C+J">J. Mezger</a>, <a href="/search/physics?searchtype=author&query=van+Gils%2C+N">N. van Gils</a>, <a href="/search/physics?searchtype=author&query=Verra%2C+L">L. Verra</a>, <a href="/search/physics?searchtype=author&query=Della+Porta%2C+G+Z">G. Zevi Della Porta</a>, <a href="/search/physics?searchtype=author&query=Farmer%2C+J">J. Farmer</a>, <a href="/search/physics?searchtype=author&query=Clairembaud%2C+A">A. Clairembaud</a>, <a href="/search/physics?searchtype=author&query=Pannell%2C+F">F. Pannell</a>, <a href="/search/physics?searchtype=author&query=Gschwendtner%2C+E">E. Gschwendtner</a>, <a href="/search/physics?searchtype=author&query=Muggli%2C+P">P. Muggli</a>, <a href="/search/physics?searchtype=author&query=Collaboration%2C+t+A">the AWAKE Collaboration</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.16361v3-abstract-short" style="display: inline;"> We show experimentally that an effect of motion of ions, observed in a plasma-based accelerator, depends inversely on the plasma ion mass. The effect appears within a single wakefield event and manifests itself as a bunch tail, occurring only when sufficient motion of ions suppresses wakefields. Wakefields are driven resonantly by multiple bunches, and simulation results indicate that the ponderom… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.16361v3-abstract-full').style.display = 'inline'; document.getElementById('2406.16361v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.16361v3-abstract-full" style="display: none;"> We show experimentally that an effect of motion of ions, observed in a plasma-based accelerator, depends inversely on the plasma ion mass. The effect appears within a single wakefield event and manifests itself as a bunch tail, occurring only when sufficient motion of ions suppresses wakefields. Wakefields are driven resonantly by multiple bunches, and simulation results indicate that the ponderomotive force causes the motion of ions. In this case, the effect is also expected to depend on the amplitude of the wakefields, experimentally confirmed through variations in the drive bunch charge. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.16361v3-abstract-full').style.display = 'none'; document.getElementById('2406.16361v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.15422">arXiv:2406.15422</a> <span> [<a href="https://arxiv.org/pdf/2406.15422">pdf</a>, <a href="https://arxiv.org/format/2406.15422">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> </div> <p class="title is-5 mathjax"> Fluorescence Imaging of Individual Ions and Molecules in Pressurized Noble Gases for Barium Tagging in $^{136}$Xe </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=NEXT+Collaboration"> NEXT Collaboration</a>, <a href="/search/physics?searchtype=author&query=Byrnes%2C+N">N. Byrnes</a>, <a href="/search/physics?searchtype=author&query=Dey%2C+E">E. Dey</a>, <a href="/search/physics?searchtype=author&query=Foss%2C+F+W">F. W. Foss</a>, <a href="/search/physics?searchtype=author&query=Jones%2C+B+J+P">B. J. P. Jones</a>, <a href="/search/physics?searchtype=author&query=Madigan%2C+R">R. Madigan</a>, <a href="/search/physics?searchtype=author&query=McDonald%2C+A">A. McDonald</a>, <a href="/search/physics?searchtype=author&query=Miller%2C+R+L">R. L. Miller</a>, <a href="/search/physics?searchtype=author&query=Navarro%2C+K+E">K. E. Navarro</a>, <a href="/search/physics?searchtype=author&query=Norman%2C+L+R">L. R. Norman</a>, <a href="/search/physics?searchtype=author&query=Nygren%2C+D+R">D. R. Nygren</a>, <a href="/search/physics?searchtype=author&query=Adams%2C+C">C. Adams</a>, <a href="/search/physics?searchtype=author&query=Almaz%C3%A1n%2C+H">H. Almaz谩n</a>, <a href="/search/physics?searchtype=author&query=%C3%81lvarez%2C+V">V. 脕lvarez</a>, <a href="/search/physics?searchtype=author&query=Aparicio%2C+B">B. Aparicio</a>, <a href="/search/physics?searchtype=author&query=Aranburu%2C+A+I">A. I. Aranburu</a>, <a href="/search/physics?searchtype=author&query=Arazi%2C+L">L. Arazi</a>, <a href="/search/physics?searchtype=author&query=Arnquist%2C+I+J">I. J. Arnquist</a>, <a href="/search/physics?searchtype=author&query=Auria-Luna%2C+F">F. Auria-Luna</a>, <a href="/search/physics?searchtype=author&query=Ayet%2C+S">S. Ayet</a>, <a href="/search/physics?searchtype=author&query=Azevedo%2C+C+D+R">C. D. R. Azevedo</a>, <a href="/search/physics?searchtype=author&query=Barcelon%2C+J+E">J. E. Barcelon</a>, <a href="/search/physics?searchtype=author&query=Bailey%2C+K">K. Bailey</a>, <a href="/search/physics?searchtype=author&query=Ballester%2C+F">F. Ballester</a>, <a href="/search/physics?searchtype=author&query=del+Barrio-Torregrosa%2C+M">M. del Barrio-Torregrosa</a> , et al. (90 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.15422v1-abstract-short" style="display: inline;"> The imaging of individual Ba$^{2+}$ ions in high pressure xenon gas is one possible way to attain background-free sensitivity to neutrinoless double beta decay and hence establish the Majorana nature of the neutrino. In this paper we demonstrate selective single Ba$^{2+}$ ion imaging inside a high-pressure xenon gas environment. Ba$^{2+}$ ions chelated with molecular chemosensors are resolved at t… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.15422v1-abstract-full').style.display = 'inline'; document.getElementById('2406.15422v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.15422v1-abstract-full" style="display: none;"> The imaging of individual Ba$^{2+}$ ions in high pressure xenon gas is one possible way to attain background-free sensitivity to neutrinoless double beta decay and hence establish the Majorana nature of the neutrino. In this paper we demonstrate selective single Ba$^{2+}$ ion imaging inside a high-pressure xenon gas environment. Ba$^{2+}$ ions chelated with molecular chemosensors are resolved at the gas-solid interface using a diffraction-limited imaging system with scan area of 1$\times$1~cm$^2$ located inside 10~bar of xenon gas. This new form of microscopy represents an important enabling step in the development of barium tagging for neutrinoless double beta decay searches in $^{136}$Xe, as well as a new tool for studying the photophysics of fluorescent molecules and chemosensors at the solid-gas interface. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.15422v1-abstract-full').style.display = 'none'; document.getElementById('2406.15422v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.13638">arXiv:2406.13638</a> <span> [<a href="https://arxiv.org/pdf/2406.13638">pdf</a>, <a href="https://arxiv.org/format/2406.13638">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Data Analysis, Statistics and Probability">physics.data-an</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> XENONnT WIMP Search: Signal & Background Modeling and Statistical Inference </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=XENON+Collaboration"> XENON Collaboration</a>, <a href="/search/physics?searchtype=author&query=Aprile%2C+E">E. Aprile</a>, <a href="/search/physics?searchtype=author&query=Aalbers%2C+J">J. Aalbers</a>, <a href="/search/physics?searchtype=author&query=Abe%2C+K">K. Abe</a>, <a href="/search/physics?searchtype=author&query=Maouloud%2C+S+A">S. Ahmed Maouloud</a>, <a href="/search/physics?searchtype=author&query=Althueser%2C+L">L. Althueser</a>, <a href="/search/physics?searchtype=author&query=Andrieu%2C+B">B. Andrieu</a>, <a href="/search/physics?searchtype=author&query=Angelino%2C+E">E. Angelino</a>, <a href="/search/physics?searchtype=author&query=Martin%2C+D+A">D. Ant贸n Martin</a>, <a href="/search/physics?searchtype=author&query=Arneodo%2C+F">F. Arneodo</a>, <a href="/search/physics?searchtype=author&query=Baudis%2C+L">L. Baudis</a>, <a href="/search/physics?searchtype=author&query=Bazyk%2C+M">M. Bazyk</a>, <a href="/search/physics?searchtype=author&query=Bellagamba%2C+L">L. Bellagamba</a>, <a href="/search/physics?searchtype=author&query=Biondi%2C+R">R. Biondi</a>, <a href="/search/physics?searchtype=author&query=Bismark%2C+A">A. Bismark</a>, <a href="/search/physics?searchtype=author&query=Boese%2C+K">K. Boese</a>, <a href="/search/physics?searchtype=author&query=Brown%2C+A">A. Brown</a>, <a href="/search/physics?searchtype=author&query=Bruno%2C+G">G. Bruno</a>, <a href="/search/physics?searchtype=author&query=Budnik%2C+R">R. Budnik</a>, <a href="/search/physics?searchtype=author&query=Cardoso%2C+J+M+R">J. M. R. Cardoso</a>, <a href="/search/physics?searchtype=author&query=Ch%C3%A1vez%2C+A+P+C">A. P. Cimental Ch谩vez</a>, <a href="/search/physics?searchtype=author&query=Colijn%2C+A+P">A. P. Colijn</a>, <a href="/search/physics?searchtype=author&query=Conrad%2C+J">J. Conrad</a>, <a href="/search/physics?searchtype=author&query=Cuenca-Garc%C3%ADa%2C+J+J">J. J. Cuenca-Garc铆a</a>, <a href="/search/physics?searchtype=author&query=D%27Andrea%2C+V">V. D'Andrea</a> , et al. (139 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.13638v1-abstract-short" style="display: inline;"> The XENONnT experiment searches for weakly-interacting massive particle (WIMP) dark matter scattering off a xenon nucleus. In particular, XENONnT uses a dual-phase time projection chamber with a 5.9-tonne liquid xenon target, detecting both scintillation and ionization signals to reconstruct the energy, position, and type of recoil. A blind search for nuclear recoil WIMPs with an exposure of 1.1 t… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.13638v1-abstract-full').style.display = 'inline'; document.getElementById('2406.13638v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.13638v1-abstract-full" style="display: none;"> The XENONnT experiment searches for weakly-interacting massive particle (WIMP) dark matter scattering off a xenon nucleus. In particular, XENONnT uses a dual-phase time projection chamber with a 5.9-tonne liquid xenon target, detecting both scintillation and ionization signals to reconstruct the energy, position, and type of recoil. A blind search for nuclear recoil WIMPs with an exposure of 1.1 tonne-years yielded no signal excess over background expectations, from which competitive exclusion limits were derived on WIMP-nucleon elastic scatter cross sections, for WIMP masses ranging from 6 GeV/$c^2$ up to the TeV/$c^2$ scale. This work details the modeling and statistical methods employed in this search. By means of calibration data, we model the detector response, which is then used to derive background and signal models. The construction and validation of these models is discussed, alongside additional purely data-driven backgrounds. We also describe the statistical inference framework, including the definition of the likelihood function and the construction of confidence intervals. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.13638v1-abstract-full').style.display = 'none'; document.getElementById('2406.13638v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 10 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.13054">arXiv:2406.13054</a> <span> [<a href="https://arxiv.org/pdf/2406.13054">pdf</a>, <a href="https://arxiv.org/format/2406.13054">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nima.2024.170075">10.1016/j.nima.2024.170075 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Characterization of a radiation detector based on opaque water-based liquid scintillator </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=LiquidO+Collaboration"> LiquidO Collaboration</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.13054v2-abstract-short" style="display: inline;"> We present the characterization of a novel radiation detector based on an opaque water-based liquid scintillator. Opaque scintillators, also known as LiquidO, are made to be highly scattering, such that the scintillation light is effectively confined, and read out through wavelength-shifting fibers. The 1-liter, 32-channel prototype demonstrates the capability for both spectroscopy and topological… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.13054v2-abstract-full').style.display = 'inline'; document.getElementById('2406.13054v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.13054v2-abstract-full" style="display: none;"> We present the characterization of a novel radiation detector based on an opaque water-based liquid scintillator. Opaque scintillators, also known as LiquidO, are made to be highly scattering, such that the scintillation light is effectively confined, and read out through wavelength-shifting fibers. The 1-liter, 32-channel prototype demonstrates the capability for both spectroscopy and topological reconstruction of point-like events. The design, construction, and evaluation of the detector are described, including modeling of the scintillation liquid optical properties and the detector's response to gamma rays of several energies. A mean position reconstruction error of 4.4 mm for 1.6 MeV-equivalent events and 7.4 mm for 0.8 MeV-equivalent events is demonstrated using a simple reconstruction approach analogous to center-of-mass. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.13054v2-abstract-full').style.display = 'none'; document.getElementById('2406.13054v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">41 pages, 15 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.12880">arXiv:2406.12880</a> <span> [<a href="https://arxiv.org/pdf/2406.12880">pdf</a>, <a href="https://arxiv.org/format/2406.12880">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Technical design report for the CODEX-$尾$ demonstrator </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=collaboration%2C+C">CODEX-b collaboration</a>, <a href="/search/physics?searchtype=author&query=%3A"> :</a>, <a href="/search/physics?searchtype=author&query=Aielli%2C+G">Giulio Aielli</a>, <a href="/search/physics?searchtype=author&query=Alimena%2C+J">Juliette Alimena</a>, <a href="/search/physics?searchtype=author&query=Beacham%2C+J">James Beacham</a>, <a href="/search/physics?searchtype=author&query=Haim%2C+E+B">Eli Ben Haim</a>, <a href="/search/physics?searchtype=author&query=Burucs%2C+A">Andras Burucs</a>, <a href="/search/physics?searchtype=author&query=Cardarelli%2C+R">Roberto Cardarelli</a>, <a href="/search/physics?searchtype=author&query=Charles%2C+M">Matthew Charles</a>, <a href="/search/physics?searchtype=author&query=Vidal%2C+X+C">Xabier Cid Vidal</a>, <a href="/search/physics?searchtype=author&query=De+Roeck%2C+A">Albert De Roeck</a>, <a href="/search/physics?searchtype=author&query=Dey%2C+B">Biplab Dey</a>, <a href="/search/physics?searchtype=author&query=Dobrescu%2C+S">Silviu Dobrescu</a>, <a href="/search/physics?searchtype=author&query=Durmus%2C+O">Ozgur Durmus</a>, <a href="/search/physics?searchtype=author&query=Elashri%2C+M">Mohamed Elashri</a>, <a href="/search/physics?searchtype=author&query=Gligorov%2C+V">Vladimir Gligorov</a>, <a href="/search/physics?searchtype=author&query=Suarez%2C+R+G">Rebeca Gonzalez Suarez</a>, <a href="/search/physics?searchtype=author&query=Gorordo%2C+T">Thomas Gorordo</a>, <a href="/search/physics?searchtype=author&query=Gray%2C+Z">Zarria Gray</a>, <a href="/search/physics?searchtype=author&query=Henderson%2C+C">Conor Henderson</a>, <a href="/search/physics?searchtype=author&query=Henry%2C+L">Louis Henry</a>, <a href="/search/physics?searchtype=author&query=Ilten%2C+P">Philip Ilten</a>, <a href="/search/physics?searchtype=author&query=Johnson%2C+D">Daniel Johnson</a>, <a href="/search/physics?searchtype=author&query=Kautz%2C+J">Jacob Kautz</a>, <a href="/search/physics?searchtype=author&query=Knapen%2C+S">Simon Knapen</a> , et al. (28 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.12880v1-abstract-short" style="display: inline;"> The CODEX-$尾$ apparatus is a demonstrator for the proposed future CODEX-b experiment, a long-lived-particle detector foreseen for operation at IP8 during HL-LHC data-taking. The demonstrator project, intended to collect data in 2025, is described, with a particular focus on the design, construction, and installation of the new apparatus. </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.12880v1-abstract-full" style="display: none;"> The CODEX-$尾$ apparatus is a demonstrator for the proposed future CODEX-b experiment, a long-lived-particle detector foreseen for operation at IP8 during HL-LHC data-taking. The demonstrator project, intended to collect data in 2025, is described, with a particular focus on the design, construction, and installation of the new apparatus. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.12880v1-abstract-full').style.display = 'none'; document.getElementById('2406.12880v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.12380">arXiv:2406.12380</a> <span> [<a href="https://arxiv.org/pdf/2406.12380">pdf</a>, <a href="https://arxiv.org/format/2406.12380">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Search for fractionally charged particles with CUORE </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=CUORE+Collaboration"> CUORE Collaboration</a>, <a href="/search/physics?searchtype=author&query=Adams%2C+D+Q">D. Q. Adams</a>, <a href="/search/physics?searchtype=author&query=Alduino%2C+C">C. Alduino</a>, <a href="/search/physics?searchtype=author&query=Alfonso%2C+K">K. Alfonso</a>, <a href="/search/physics?searchtype=author&query=Avignone%2C+F+T">F. T. Avignone III</a>, <a href="/search/physics?searchtype=author&query=Azzolini%2C+O">O. Azzolini</a>, <a href="/search/physics?searchtype=author&query=Bari%2C+G">G. Bari</a>, <a href="/search/physics?searchtype=author&query=Bellini%2C+F">F. Bellini</a>, <a href="/search/physics?searchtype=author&query=Benato%2C+G">G. Benato</a>, <a href="/search/physics?searchtype=author&query=Beretta%2C+M">M. Beretta</a>, <a href="/search/physics?searchtype=author&query=Biassoni%2C+M">M. Biassoni</a>, <a href="/search/physics?searchtype=author&query=Branca%2C+A">A. Branca</a>, <a href="/search/physics?searchtype=author&query=Brofferio%2C+C">C. Brofferio</a>, <a href="/search/physics?searchtype=author&query=Bucci%2C+C">C. Bucci</a>, <a href="/search/physics?searchtype=author&query=Camilleri%2C+J">J. Camilleri</a>, <a href="/search/physics?searchtype=author&query=Caminata%2C+A">A. Caminata</a>, <a href="/search/physics?searchtype=author&query=Campani%2C+A">A. Campani</a>, <a href="/search/physics?searchtype=author&query=Cao%2C+J">J. Cao</a>, <a href="/search/physics?searchtype=author&query=Capelli%2C+S">S. Capelli</a>, <a href="/search/physics?searchtype=author&query=Capelli%2C+C">C. Capelli</a>, <a href="/search/physics?searchtype=author&query=Cappelli%2C+L">L. Cappelli</a>, <a href="/search/physics?searchtype=author&query=Cardani%2C+L">L. Cardani</a>, <a href="/search/physics?searchtype=author&query=Carniti%2C+P">P. Carniti</a>, <a href="/search/physics?searchtype=author&query=Casali%2C+N">N. Casali</a>, <a href="/search/physics?searchtype=author&query=Celi%2C+E">E. Celi</a> , et al. (95 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.12380v1-abstract-short" style="display: inline;"> The Cryogenic Underground Observatory for Rare Events (CUORE) is a detector array comprised by 988 5$\;$cm$\times$5$\;$cm$\times$5$\;$cm TeO$_2$ crystals held below 20 mK, primarily searching for neutrinoless double-beta decay in $^{130}$Te. Unprecedented in size amongst cryogenic calorimetric experiments, CUORE provides a promising setting for the study of exotic through-going particles. Using th… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.12380v1-abstract-full').style.display = 'inline'; document.getElementById('2406.12380v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.12380v1-abstract-full" style="display: none;"> The Cryogenic Underground Observatory for Rare Events (CUORE) is a detector array comprised by 988 5$\;$cm$\times$5$\;$cm$\times$5$\;$cm TeO$_2$ crystals held below 20 mK, primarily searching for neutrinoless double-beta decay in $^{130}$Te. Unprecedented in size amongst cryogenic calorimetric experiments, CUORE provides a promising setting for the study of exotic through-going particles. Using the first tonne-year of CUORE's exposure, we perform a search for hypothesized fractionally charged particles (FCPs), which are well-motivated by various Standard Model extensions and would have suppressed interactions with matter. No excess of FCP candidate tracks is observed over background, setting leading limits on the underground FCP flux with charges between $e/24-e/5$ at 90\% confidence level. Using the low background environment and segmented geometry of CUORE, we establish the sensitivity of tonne-scale sub-Kelvin detectors to diverse signatures of new physics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.12380v1-abstract-full').style.display = 'none'; document.getElementById('2406.12380v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.10123">arXiv:2406.10123</a> <span> [<a href="https://arxiv.org/pdf/2406.10123">pdf</a>, <a href="https://arxiv.org/format/2406.10123">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Improving neutrino energy estimation of charged-current interaction events with recurrent neural networks in MicroBooNE </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=MicroBooNE+collaboration"> MicroBooNE collaboration</a>, <a href="/search/physics?searchtype=author&query=Abratenko%2C+P">P. Abratenko</a>, <a href="/search/physics?searchtype=author&query=Alterkait%2C+O">O. Alterkait</a>, <a href="/search/physics?searchtype=author&query=Aldana%2C+D+A">D. Andrade Aldana</a>, <a href="/search/physics?searchtype=author&query=Arellano%2C+L">L. Arellano</a>, <a href="/search/physics?searchtype=author&query=Asaadi%2C+J">J. Asaadi</a>, <a href="/search/physics?searchtype=author&query=Ashkenazi%2C+A">A. Ashkenazi</a>, <a href="/search/physics?searchtype=author&query=Balasubramanian%2C+S">S. Balasubramanian</a>, <a href="/search/physics?searchtype=author&query=Baller%2C+B">B. Baller</a>, <a href="/search/physics?searchtype=author&query=Barnard%2C+A">A. Barnard</a>, <a href="/search/physics?searchtype=author&query=Barr%2C+G">G. Barr</a>, <a href="/search/physics?searchtype=author&query=Barrow%2C+D">D. Barrow</a>, <a href="/search/physics?searchtype=author&query=Barrow%2C+J">J. Barrow</a>, <a href="/search/physics?searchtype=author&query=Basque%2C+V">V. Basque</a>, <a href="/search/physics?searchtype=author&query=Bateman%2C+J">J. Bateman</a>, <a href="/search/physics?searchtype=author&query=Rodrigues%2C+O+B">O. Benevides Rodrigues</a>, <a href="/search/physics?searchtype=author&query=Berkman%2C+S">S. Berkman</a>, <a href="/search/physics?searchtype=author&query=Bhanderi%2C+A">A. Bhanderi</a>, <a href="/search/physics?searchtype=author&query=Bhat%2C+A">A. Bhat</a>, <a href="/search/physics?searchtype=author&query=Bhattacharya%2C+M">M. Bhattacharya</a>, <a href="/search/physics?searchtype=author&query=Bishai%2C+M">M. Bishai</a>, <a href="/search/physics?searchtype=author&query=Blake%2C+A">A. Blake</a>, <a href="/search/physics?searchtype=author&query=Bogart%2C+B">B. Bogart</a>, <a href="/search/physics?searchtype=author&query=Bolton%2C+T">T. Bolton</a>, <a href="/search/physics?searchtype=author&query=Book%2C+J+Y">J. Y. Book</a> , et al. (164 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.10123v1-abstract-short" style="display: inline;"> We present a deep learning-based method for estimating the neutrino energy of charged-current neutrino-argon interactions. We employ a recurrent neural network (RNN) architecture for neutrino energy estimation in the MicroBooNE experiment, utilizing liquid argon time projection chamber (LArTPC) detector technology. Traditional energy estimation approaches in LArTPCs, which largely rely on reconstr… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.10123v1-abstract-full').style.display = 'inline'; document.getElementById('2406.10123v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.10123v1-abstract-full" style="display: none;"> We present a deep learning-based method for estimating the neutrino energy of charged-current neutrino-argon interactions. We employ a recurrent neural network (RNN) architecture for neutrino energy estimation in the MicroBooNE experiment, utilizing liquid argon time projection chamber (LArTPC) detector technology. Traditional energy estimation approaches in LArTPCs, which largely rely on reconstructing and summing visible energies, often experience sizable biases and resolution smearing because of the complex nature of neutrino interactions and the detector response. The estimation of neutrino energy can be improved after considering the kinematics information of reconstructed final-state particles. Utilizing kinematic information of reconstructed particles, the deep learning-based approach shows improved resolution and reduced bias for the muon neutrino Monte Carlo simulation sample compared to the traditional approach. In order to address the common concern about the effectiveness of this method on experimental data, the RNN-based energy estimator is further examined and validated with dedicated data-simulation consistency tests using MicroBooNE data. We also assess its potential impact on a neutrino oscillation study after accounting for all statistical and systematic uncertainties and show that it enhances physics sensitivity. This method has good potential to improve the performance of other physics analyses. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.10123v1-abstract-full').style.display = 'none'; document.getElementById('2406.10123v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-24-0287 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.07514">arXiv:2406.07514</a> <span> [<a href="https://arxiv.org/pdf/2406.07514">pdf</a>, <a href="https://arxiv.org/format/2406.07514">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjc/s10052-024-13306-3">10.1140/epjc/s10052-024-13306-3 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Scintillation Light in SBND: Simulation, Reconstruction, and Expected Performance of the Photon Detection System </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=SBND+Collaboration"> SBND Collaboration</a>, <a href="/search/physics?searchtype=author&query=Abratenko%2C+P">P. Abratenko</a>, <a href="/search/physics?searchtype=author&query=Acciarri%2C+R">R. Acciarri</a>, <a href="/search/physics?searchtype=author&query=Adams%2C+C">C. Adams</a>, <a href="/search/physics?searchtype=author&query=Aliaga-Soplin%2C+L">L. Aliaga-Soplin</a>, <a href="/search/physics?searchtype=author&query=Alterkait%2C+O">O. Alterkait</a>, <a href="/search/physics?searchtype=author&query=Alvarez-Garrote%2C+R">R. Alvarez-Garrote</a>, <a href="/search/physics?searchtype=author&query=Andreopoulos%2C+C">C. Andreopoulos</a>, <a href="/search/physics?searchtype=author&query=Antonakis%2C+A">A. Antonakis</a>, <a href="/search/physics?searchtype=author&query=Arellano%2C+L">L. Arellano</a>, <a href="/search/physics?searchtype=author&query=Asaadi%2C+J">J. Asaadi</a>, <a href="/search/physics?searchtype=author&query=Badgett%2C+W">W. Badgett</a>, <a href="/search/physics?searchtype=author&query=Balasubramanian%2C+S">S. Balasubramanian</a>, <a href="/search/physics?searchtype=author&query=Basque%2C+V">V. Basque</a>, <a href="/search/physics?searchtype=author&query=Beever%2C+A">A. Beever</a>, <a href="/search/physics?searchtype=author&query=Behera%2C+B">B. Behera</a>, <a href="/search/physics?searchtype=author&query=Belchior%2C+E">E. Belchior</a>, <a href="/search/physics?searchtype=author&query=Betancourt%2C+M">M. Betancourt</a>, <a href="/search/physics?searchtype=author&query=Bhat%2C+A">A. Bhat</a>, <a href="/search/physics?searchtype=author&query=Bishai%2C+M">M. Bishai</a>, <a href="/search/physics?searchtype=author&query=Blake%2C+A">A. Blake</a>, <a href="/search/physics?searchtype=author&query=Bogart%2C+B">B. Bogart</a>, <a href="/search/physics?searchtype=author&query=Bogenschuetz%2C+J">J. Bogenschuetz</a>, <a href="/search/physics?searchtype=author&query=Brailsford%2C+D">D. Brailsford</a>, <a href="/search/physics?searchtype=author&query=Brandt%2C+A">A. Brandt</a> , et al. (158 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.07514v1-abstract-short" style="display: inline;"> SBND is the near detector of the Short-Baseline Neutrino program at Fermilab. Its location near to the Booster Neutrino Beam source and relatively large mass will allow the study of neutrino interactions on argon with unprecedented statistics. This paper describes the expected performance of the SBND photon detection system, using a simulated sample of beam neutrinos and cosmogenic particles. Its… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.07514v1-abstract-full').style.display = 'inline'; document.getElementById('2406.07514v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.07514v1-abstract-full" style="display: none;"> SBND is the near detector of the Short-Baseline Neutrino program at Fermilab. Its location near to the Booster Neutrino Beam source and relatively large mass will allow the study of neutrino interactions on argon with unprecedented statistics. This paper describes the expected performance of the SBND photon detection system, using a simulated sample of beam neutrinos and cosmogenic particles. Its design is a dual readout concept combining a system of 120 photomultiplier tubes, used for triggering, with a system of 192 X-ARAPUCA devices, located behind the anode wire planes. Furthermore, covering the cathode plane with highly-reflective panels coated with a wavelength-shifting compound recovers part of the light emitted towards the cathode, where no optical detectors exist. We show how this new design provides a high light yield and a more uniform detection efficiency, an excellent timing resolution and an independent 3D-position reconstruction using only the scintillation light. Finally, the whole reconstruction chain is applied to recover the temporal structure of the beam spill, which is resolved with a resolution on the order of nanoseconds. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.07514v1-abstract-full').style.display = 'none'; document.getElementById('2406.07514v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 17 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-24-0303-PPD </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Eur. Phys. J. C 84, 1046 (2024) </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Collaboration&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Collaboration&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Collaboration&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&query=Collaboration&start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&query=Collaboration&start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&query=Collaboration&start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li><span class="pagination-ellipsis">…</span></li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>