CINXE.COM
Booth's multiplication algorithm - Wikipedia
<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>Booth's multiplication algorithm - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy", "wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"e5d8bf2a-f8c8-4c8a-839e-e0bfa71fa804","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Booth's_multiplication_algorithm","wgTitle":"Booth's multiplication algorithm","wgCurRevisionId":1216045027,"wgRevisionId":1216045027,"wgArticleId":1617661,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["Articles with short description","Short description is different from Wikidata","Use dmy dates from April 2022","1950 introductions","1950 in London","1950 in science","Binary arithmetic","Computer arithmetic algorithms","Multiplication","Birkbeck, University of London"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName":"Booth's_multiplication_algorithm","wgRelevantArticleId":1617661, "wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":10000,"wgRelatedArticlesCompat":[],"wgCentralAuthMobileDomain":false,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q477049","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"], "GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.cite.styles":"ready","ext.math.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","mediawiki.page.media","site","mediawiki.page.ready","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.ReferenceTooltips","ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap", "ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&only=styles&skin=vector-2022"> <script async="" src="/w/load.php?lang=en&modules=startup&only=scripts&raw=1&skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&modules=site.styles&only=styles&skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.4"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Booth's multiplication algorithm - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/Booth%27s_multiplication_algorithm"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=Booth%27s_multiplication_algorithm&action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Booth%27s_multiplication_algorithm"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Booth_s_multiplication_algorithm rootpage-Booth_s_multiplication_algorithm skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page's font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_en.wikipedia.org&uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&returnto=Booth%27s+multiplication+algorithm" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&returnto=Booth%27s+multiplication+algorithm" title="You're encouraged to log in; however, it's not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_en.wikipedia.org&uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&returnto=Booth%27s+multiplication+algorithm" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&returnto=Booth%27s+multiplication+algorithm" title="You're encouraged to log in; however, it's not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contents" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contents</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(Top)</div> </a> </li> <li id="toc-The_algorithm" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#The_algorithm"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>The algorithm</span> </div> </a> <ul id="toc-The_algorithm-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-A_typical_implementation" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#A_typical_implementation"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>A typical implementation</span> </div> </a> <ul id="toc-A_typical_implementation-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Example" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Example"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Example</span> </div> </a> <ul id="toc-Example-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-How_it_works" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#How_it_works"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>How it works</span> </div> </a> <ul id="toc-How_it_works-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-See_also" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#See_also"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>See also</span> </div> </a> <ul id="toc-See_also-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-References" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#References"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>References</span> </div> </a> <ul id="toc-References-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Further_reading" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Further_reading"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>Further reading</span> </div> </a> <ul id="toc-Further_reading-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-External_links" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#External_links"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>External links</span> </div> </a> <ul id="toc-External_links-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Booth's multiplication algorithm</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Go to an article in another language. Available in 16 languages" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-16" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">16 languages</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D8%AE%D9%88%D8%A7%D8%B1%D8%B2%D9%85%D9%8A%D8%A9_%D8%A8%D9%88%D9%88%D8%AB_%D9%84%D9%84%D8%B6%D8%B1%D8%A8" title="خوارزمية بووث للضرب – Arabic" lang="ar" hreflang="ar" data-title="خوارزمية بووث للضرب" data-language-autonym="العربية" data-language-local-name="Arabic" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/Algorisme_de_Booth" title="Algorisme de Booth – Catalan" lang="ca" hreflang="ca" data-title="Algorisme de Booth" data-language-autonym="Català" data-language-local-name="Catalan" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-cs mw-list-item"><a href="https://cs.wikipedia.org/wiki/Booth%C5%AFv_algoritmus" title="Boothův algoritmus – Czech" lang="cs" hreflang="cs" data-title="Boothův algoritmus" data-language-autonym="Čeština" data-language-local-name="Czech" class="interlanguage-link-target"><span>Čeština</span></a></li><li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Booth-Algorithmus" title="Booth-Algorithmus – German" lang="de" hreflang="de" data-title="Booth-Algorithmus" data-language-autonym="Deutsch" data-language-local-name="German" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-et mw-list-item"><a href="https://et.wikipedia.org/wiki/Boothi_algoritm" title="Boothi algoritm – Estonian" lang="et" hreflang="et" data-title="Boothi algoritm" data-language-autonym="Eesti" data-language-local-name="Estonian" class="interlanguage-link-target"><span>Eesti</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Algoritmo_de_Booth" title="Algoritmo de Booth – Spanish" lang="es" hreflang="es" data-title="Algoritmo de Booth" data-language-autonym="Español" data-language-local-name="Spanish" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D8%A7%D9%84%DA%AF%D9%88%D8%B1%DB%8C%D8%AA%D9%85_%D8%A8%D9%88%D8%AB" title="الگوریتم بوث – Persian" lang="fa" hreflang="fa" data-title="الگوریتم بوث" data-language-autonym="فارسی" data-language-local-name="Persian" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Algorithme_de_multiplication_de_Booth" title="Algorithme de multiplication de Booth – French" lang="fr" hreflang="fr" data-title="Algorithme de multiplication de Booth" data-language-autonym="Français" data-language-local-name="French" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Algoritmo_di_Booth" title="Algoritmo di Booth – Italian" lang="it" hreflang="it" data-title="Algoritmo di Booth" data-language-autonym="Italiano" data-language-local-name="Italian" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-lv mw-list-item"><a href="https://lv.wikipedia.org/wiki/Buta_algoritms" title="Buta algoritms – Latvian" lang="lv" hreflang="lv" data-title="Buta algoritms" data-language-autonym="Latviešu" data-language-local-name="Latvian" class="interlanguage-link-target"><span>Latviešu</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E3%83%96%E3%83%BC%E3%82%B9%E3%81%AE%E4%B9%97%E7%AE%97%E3%82%A2%E3%83%AB%E3%82%B4%E3%83%AA%E3%82%BA%E3%83%A0" title="ブースの乗算アルゴリズム – Japanese" lang="ja" hreflang="ja" data-title="ブースの乗算アルゴリズム" data-language-autonym="日本語" data-language-local-name="Japanese" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/Algoritmo_de_multiplica%C3%A7%C3%A3o_de_Booth" title="Algoritmo de multiplicação de Booth – Portuguese" lang="pt" hreflang="pt" data-title="Algoritmo de multiplicação de Booth" data-language-autonym="Português" data-language-local-name="Portuguese" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%90%D0%BB%D0%B3%D0%BE%D1%80%D0%B8%D1%82%D0%BC_%D0%91%D1%83%D1%82%D0%B0" title="Алгоритм Бута – Russian" lang="ru" hreflang="ru" data-title="Алгоритм Бута" data-language-autonym="Русский" data-language-local-name="Russian" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-sr mw-list-item"><a href="https://sr.wikipedia.org/wiki/%D0%91%D1%83%D1%82%D0%BE%D0%B2_%D0%B0%D0%BB%D0%B3%D0%BE%D1%80%D0%B8%D1%82%D0%B0%D0%BC" title="Бутов алгоритам – Serbian" lang="sr" hreflang="sr" data-title="Бутов алгоритам" data-language-autonym="Српски / srpski" data-language-local-name="Serbian" class="interlanguage-link-target"><span>Српски / srpski</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%90%D0%BB%D0%B3%D0%BE%D1%80%D0%B8%D1%82%D0%BC_%D0%91%D1%83%D1%82%D0%B0" title="Алгоритм Бута – Ukrainian" lang="uk" hreflang="uk" data-title="Алгоритм Бута" data-language-autonym="Українська" data-language-local-name="Ukrainian" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E5%B8%83%E6%96%AF%E4%B9%98%E6%B3%95%E7%AE%97%E6%B3%95" title="布斯乘法算法 – Chinese" lang="zh" hreflang="zh" data-title="布斯乘法算法" data-language-autonym="中文" data-language-local-name="Chinese" class="interlanguage-link-target"><span>中文</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q477049#sitelinks-wikipedia" title="Edit interlanguage links" class="wbc-editpage">Edit links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Booth%27s_multiplication_algorithm" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:Booth%27s_multiplication_algorithm" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Booth%27s_multiplication_algorithm"><span>Read</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Booth%27s_multiplication_algorithm&action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Booth%27s_multiplication_algorithm&action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Booth%27s_multiplication_algorithm"><span>Read</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Booth%27s_multiplication_algorithm&action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Booth%27s_multiplication_algorithm&action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/Booth%27s_multiplication_algorithm" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/Booth%27s_multiplication_algorithm" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages" title="A list of all special pages [q]" accesskey="q"><span>Special pages</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Booth%27s_multiplication_algorithm&oldid=1216045027" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Booth%27s_multiplication_algorithm&action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&page=Booth%27s_multiplication_algorithm&id=1216045027&wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FBooth%2527s_multiplication_algorithm"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FBooth%2527s_multiplication_algorithm"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&page=Booth%27s_multiplication_algorithm&action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Booth%27s_multiplication_algorithm&printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q477049" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><div class="shortdescription nomobile noexcerpt noprint searchaux" style="display:none">Algorithm that multiplies two signed binary numbers in two's complement notation</div> <p> <b>Booth's multiplication algorithm</b> is a <a href="/wiki/Multiplication_algorithm" title="Multiplication algorithm">multiplication algorithm</a> that multiplies two signed <a href="/wiki/Base_2" class="mw-redirect" title="Base 2">binary</a> numbers in <a href="/wiki/Two%27s_complement" title="Two's complement">two's complement notation</a>. The <a href="/wiki/Algorithm" title="Algorithm">algorithm</a> was invented by <a href="/wiki/Andrew_Donald_Booth" title="Andrew Donald Booth">Andrew Donald Booth</a> in 1950 while doing research on <a href="/wiki/Crystallography" title="Crystallography">crystallography</a> at <a href="/wiki/Birkbeck,_University_of_London" title="Birkbeck, University of London">Birkbeck College</a> in <a href="/wiki/Bloomsbury" title="Bloomsbury">Bloomsbury</a>, <a href="/wiki/London" title="London">London</a>.<sup id="cite_ref-Booth_1951_1-0" class="reference"><a href="#cite_note-Booth_1951-1"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup> Booth's algorithm is of interest in the study of <a href="/wiki/Computer_architecture" title="Computer architecture">computer architecture</a>. </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="The_algorithm">The algorithm</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Booth%27s_multiplication_algorithm&action=edit&section=1" title="Edit section: The algorithm"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Booth's algorithm examines adjacent pairs of <a href="/wiki/Bit" title="Bit">bits</a> of the 'N'-bit multiplier <i>Y</i> in signed <a href="/wiki/Two%27s_complement" title="Two's complement">two's complement</a> representation, including an implicit bit below the <a href="/wiki/Least_significant_bit" class="mw-redirect" title="Least significant bit">least significant bit</a>, <i>y</i><sub>−1</sub> = 0. For each bit <i>y</i><sub><i>i</i></sub>, for <i>i</i> running from 0 to <i>N</i> − 1, the bits <i>y</i><sub><i>i</i></sub> and <i>y</i><sub><i>i</i>−1</sub> are considered. Where these two bits are equal, the product accumulator <i>P</i> is left unchanged. Where <i>y</i><sub><i>i</i></sub> = 0 and <i>y</i><sub><i>i</i>−1</sub> = 1, the multiplicand times 2<sup><i>i</i></sup> is added to <i>P</i>; and where <i>y</i><sub>i</sub> = 1 and <i>y</i><sub>i−1</sub> = 0, the multiplicand times 2<sup><i>i</i></sup> is subtracted from <i>P</i>. The final value of <i>P</i> is the signed product. </p><p>The representations of the multiplicand and product are not specified; typically, these are both also in two's complement representation, like the multiplier, but any number system that supports addition and subtraction will work as well. As stated here, the order of the steps is not determined. Typically, it proceeds from <a href="/wiki/Least_significant_bit" class="mw-redirect" title="Least significant bit">LSB</a> to <a href="/wiki/Most_significant_bit" class="mw-redirect" title="Most significant bit">MSB</a>, starting at <i>i</i> = 0; the multiplication by 2<sup><i>i</i></sup> is then typically replaced by incremental shifting of the <i>P</i> accumulator to the right between steps; low bits can be shifted out, and subsequent additions and subtractions can then be done just on the highest <i>N</i> bits of <i>P</i>.<sup id="cite_ref-Chen_1992_2-0" class="reference"><a href="#cite_note-Chen_1992-2"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup> There are many variations and optimizations on these details. </p><p>The algorithm is often described as converting strings of 1s in the multiplier to a high-order +1 and a low-order −1 at the ends of the string. When a string runs through the MSB, there is no high-order +1, and the net effect is interpretation as a negative of the appropriate value. </p> <div class="mw-heading mw-heading2"><h2 id="A_typical_implementation">A typical implementation</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Booth%27s_multiplication_algorithm&action=edit&section=2" title="Edit section: A typical implementation"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Calculator_walther_hg.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/c/c4/Calculator_walther_hg.jpg/220px-Calculator_walther_hg.jpg" decoding="async" width="220" height="165" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/c/c4/Calculator_walther_hg.jpg/330px-Calculator_walther_hg.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/c/c4/Calculator_walther_hg.jpg/440px-Calculator_walther_hg.jpg 2x" data-file-width="2560" data-file-height="1920" /></a><figcaption>A Walther WSR160 <a href="/wiki/Odhner_Arithmometer" title="Odhner Arithmometer">arithmometer</a> from 1960. Each turn of the crank handle adds <i>(up)</i> or subtracts <i>(down)</i> the operand set to the top register from the value in the accumulator register at the bottom. <a href="/wiki/Arithmetic_shift" title="Arithmetic shift">Shifting</a> the adder left or right multiplies the effect by ten.</figcaption></figure> <p>Booth's algorithm can be implemented by repeatedly adding (with ordinary unsigned binary addition) one of two predetermined values <i>A</i> and <i>S</i> to a product <i>P</i>, then performing a rightward <a href="/wiki/Arithmetic_shift" title="Arithmetic shift">arithmetic shift</a> on <i>P</i>. Let <b>m</b> and <b>r</b> be the <a href="/wiki/Multiplicand" class="mw-redirect" title="Multiplicand">multiplicand</a> and <a href="/wiki/Multiplication#Terminology" title="Multiplication">multiplier</a>, respectively; and let <i>x</i> and <i>y</i> represent the number of bits in <b>m</b> and <b>r</b>. </p> <ol><li>Determine the values of <i>A</i> and <i>S</i>, and the initial value of <i>P</i>. All of these numbers should have a length equal to (<i>x</i> + <i>y</i> + 1). <ol><li>A: Fill the most significant (leftmost) bits with the value of <b>m</b>. Fill the remaining (<i>y</i> + 1) bits with zeros.</li> <li>S: Fill the most significant bits with the value of (−<b>m</b>) in two's complement notation. Fill the remaining (<i>y</i> + 1) bits with zeros.</li> <li>P: Fill the most significant <i>x</i> bits with zeros. To the right of this, append the value of <b>r</b>. Fill the least significant (rightmost) bit with a zero.</li></ol></li> <li>Determine the two least significant (rightmost) bits of <i>P</i>. <ol><li>If they are 01, find the value of <i>P</i> + <i>A</i>. Ignore any overflow.</li> <li>If they are 10, find the value of <i>P</i> + <i>S</i>. Ignore any overflow.</li> <li>If they are 00, do nothing. Use <i>P</i> directly in the next step.</li> <li>If they are 11, do nothing. Use <i>P</i> directly in the next step.</li></ol></li> <li><a href="/wiki/Arithmetic_shift" title="Arithmetic shift">Arithmetically shift</a> the value obtained in the 2nd step by a single place to the right. Let <i>P</i> now equal this new value.</li> <li>Repeat steps 2 and 3 until they have been done <i>y</i> times.</li> <li>Drop the least significant (rightmost) bit from <i>P</i>. This is the product of <b>m</b> and <b>r</b>.</li></ol> <div class="mw-heading mw-heading2"><h2 id="Example">Example</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Booth%27s_multiplication_algorithm&action=edit&section=3" title="Edit section: Example"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Find 3 × (−4), with <b>m</b> = 3 and <b>r</b> = −4, and <i>x</i> = 4 and <i>y</i> = 4: </p> <ul><li>m = 0011, -m = 1101, r = 1100</li> <li>A = 0011 0000 0</li> <li>S = 1101 0000 0</li> <li>P = 0000 1100 0</li> <li>Perform the loop four times: <ol><li>P = 0000 110<b>0 0</b>. The last two bits are 00. <ul><li>P = 0000 0110 0. Arithmetic right shift.</li></ul></li> <li>P = 0000 011<b>0 0</b>. The last two bits are 00. <ul><li>P = 0000 0011 0. Arithmetic right shift.</li></ul></li> <li>P = 0000 001<b>1 0</b>. The last two bits are 10. <ul><li>P = 1101 0011 0. P = P + S.</li> <li>P = 1110 1001 1. Arithmetic right shift.</li></ul></li> <li>P = 1110 100<b>1 1</b>. The last two bits are 11. <ul><li>P = 1111 0100 1. Arithmetic right shift.</li></ul></li></ol></li> <li>The product is 1111 0100, which is −12.</li></ul> <p>The above-mentioned technique is inadequate when the multiplicand is the <a href="/wiki/Two%27s_complement#Most_negative_number" title="Two's complement">most negative number</a> that can be represented (e.g. if the multiplicand has 4 bits then this value is −8). This is because then an overflow occurs when computing -m, the negation of the multiplicand, which is needed in order to set S. One possible correction to this problem is to extend A, S, and P by one bit each, while they still represent the same number. That is, while −8 was previously represented in four bits by 1000, it is now represented in 5 bits by 1 1000. This then follows the implementation described above, with modifications in determining the bits of A and S; e.g., the value of <b>m</b>, originally assigned to the first <i>x</i> bits of A, will be now be extended to <i>x</i>+1 bits and assigned to the first <i>x</i>+1 bits of A. Below, the improved technique is demonstrated by multiplying −8 by 2 using 4 bits for the multiplicand and the multiplier: </p> <ul><li>A = 1 1000 0000 0</li> <li>S = 0 1000 0000 0</li> <li>P = 0 0000 0010 0</li> <li>Perform the loop four times: <ol><li>P = 0 0000 001<b>0 0</b>. The last two bits are 00. <ul><li>P = 0 0000 0001 0. Right shift.</li></ul></li> <li>P = 0 0000 000<b>1 0</b>. The last two bits are 10. <ul><li>P = 0 1000 0001 0. P = P + S.</li> <li>P = 0 0100 0000 1. Right shift.</li></ul></li> <li>P = 0 0100 000<b>0 1</b>. The last two bits are 01. <ul><li>P = 1 1100 0000 1. P = P + A.</li> <li>P = 1 1110 0000 0. Right shift.</li></ul></li> <li>P = 1 1110 000<b>0 0</b>. The last two bits are 00. <ul><li>P = 1 1111 0000 0. Right shift.</li></ul></li></ol></li> <li>The product is 11110000 (after discarding the first and the last bit) which is −16.</li></ul> <div class="mw-heading mw-heading2"><h2 id="How_it_works">How it works</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Booth%27s_multiplication_algorithm&action=edit&section=4" title="Edit section: How it works"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Consider a positive multiplier consisting of a block of 1s surrounded by 0s. For example, 00111110. The product is given by: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M\times \,^{\prime \prime }0\;0\;1\;1\;1\;1\;1\;0\,^{\prime \prime }=M\times (2^{5}+2^{4}+2^{3}+2^{2}+2^{1})=M\times 62}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>M</mi> <mo>×<!-- × --></mo> <msup> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">′<!-- ′ --></mi> <mi class="MJX-variant" mathvariant="normal">′<!-- ′ --></mi> </mrow> </msup> <mn>0</mn> <mspace width="thickmathspace" /> <mn>0</mn> <mspace width="thickmathspace" /> <mn>1</mn> <mspace width="thickmathspace" /> <mn>1</mn> <mspace width="thickmathspace" /> <mn>1</mn> <mspace width="thickmathspace" /> <mn>1</mn> <mspace width="thickmathspace" /> <mn>1</mn> <mspace width="thickmathspace" /> <mn>0</mn> <msup> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">′<!-- ′ --></mi> <mi class="MJX-variant" mathvariant="normal">′<!-- ′ --></mi> </mrow> </msup> <mo>=</mo> <mi>M</mi> <mo>×<!-- × --></mo> <mo stretchy="false">(</mo> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>5</mn> </mrow> </msup> <mo>+</mo> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msup> <mo>+</mo> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mo>+</mo> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msup> <mo stretchy="false">)</mo> <mo>=</mo> <mi>M</mi> <mo>×<!-- × --></mo> <mn>62</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M\times \,^{\prime \prime }0\;0\;1\;1\;1\;1\;1\;0\,^{\prime \prime }=M\times (2^{5}+2^{4}+2^{3}+2^{2}+2^{1})=M\times 62}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6cf549eb3981a5cdddb3f14f17a416af773b8b56" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:65.488ex; height:3.176ex;" alt="{\displaystyle M\times \,^{\prime \prime }0\;0\;1\;1\;1\;1\;1\;0\,^{\prime \prime }=M\times (2^{5}+2^{4}+2^{3}+2^{2}+2^{1})=M\times 62}"></span> where M is the multiplicand. The number of operations can be reduced to two by rewriting the same as <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M\times \,^{\prime \prime }0\;1\;0\;0\;0\;0{\mbox{-1}}\;0\;^{\prime \prime }=M\times (2^{6}-2^{1})=M\times 62.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>M</mi> <mo>×<!-- × --></mo> <msup> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">′<!-- ′ --></mi> <mi class="MJX-variant" mathvariant="normal">′<!-- ′ --></mi> </mrow> </msup> <mn>0</mn> <mspace width="thickmathspace" /> <mn>1</mn> <mspace width="thickmathspace" /> <mn>0</mn> <mspace width="thickmathspace" /> <mn>0</mn> <mspace width="thickmathspace" /> <mn>0</mn> <mspace width="thickmathspace" /> <mn>0</mn> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mtext>-1</mtext> </mstyle> </mrow> <mspace width="thickmathspace" /> <mn>0</mn> <msup> <mspace width="thickmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">′<!-- ′ --></mi> <mi class="MJX-variant" mathvariant="normal">′<!-- ′ --></mi> </mrow> </msup> <mo>=</mo> <mi>M</mi> <mo>×<!-- × --></mo> <mo stretchy="false">(</mo> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>6</mn> </mrow> </msup> <mo>−<!-- − --></mo> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msup> <mo stretchy="false">)</mo> <mo>=</mo> <mi>M</mi> <mo>×<!-- × --></mo> <mn>62.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M\times \,^{\prime \prime }0\;1\;0\;0\;0\;0{\mbox{-1}}\;0\;^{\prime \prime }=M\times (2^{6}-2^{1})=M\times 62.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6fe529e88b4897da098fa90d0586523342625931" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:51.351ex; height:3.176ex;" alt="{\displaystyle M\times \,^{\prime \prime }0\;1\;0\;0\;0\;0{\mbox{-1}}\;0\;^{\prime \prime }=M\times (2^{6}-2^{1})=M\times 62.}"></span> </p><p>In fact, it can be shown that any sequence of 1s in a binary number can be broken into the difference of two binary numbers: </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\ldots 0\overbrace {1\ldots 1} ^{n}0\ldots )_{2}\equiv (\ldots 1\overbrace {0\ldots 0} ^{n}0\ldots )_{2}-(\ldots 0\overbrace {0\ldots 1} ^{n}0\ldots )_{2}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mo>…<!-- … --></mo> <mn>0</mn> <mover> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <mover> <mrow> <mn>1</mn> <mo>…<!-- … --></mo> <mn>1</mn> </mrow> <mo>⏞<!-- ⏞ --></mo> </mover> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </mover> <mn>0</mn> <mo>…<!-- … --></mo> <msub> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>≡<!-- ≡ --></mo> <mo stretchy="false">(</mo> <mo>…<!-- … --></mo> <mn>1</mn> <mover> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <mover> <mrow> <mn>0</mn> <mo>…<!-- … --></mo> <mn>0</mn> </mrow> <mo>⏞<!-- ⏞ --></mo> </mover> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </mover> <mn>0</mn> <mo>…<!-- … --></mo> <msub> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>−<!-- − --></mo> <mo stretchy="false">(</mo> <mo>…<!-- … --></mo> <mn>0</mn> <mover> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <mover> <mrow> <mn>0</mn> <mo>…<!-- … --></mo> <mn>1</mn> </mrow> <mo>⏞<!-- ⏞ --></mo> </mover> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </mover> <mn>0</mn> <mo>…<!-- … --></mo> <msub> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\ldots 0\overbrace {1\ldots 1} ^{n}0\ldots )_{2}\equiv (\ldots 1\overbrace {0\ldots 0} ^{n}0\ldots )_{2}-(\ldots 0\overbrace {0\ldots 1} ^{n}0\ldots )_{2}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b66a7ba976185c7dc2ad64dd760ff420be473e8e" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:58.28ex; height:5.509ex;" alt="{\displaystyle (\ldots 0\overbrace {1\ldots 1} ^{n}0\ldots )_{2}\equiv (\ldots 1\overbrace {0\ldots 0} ^{n}0\ldots )_{2}-(\ldots 0\overbrace {0\ldots 1} ^{n}0\ldots )_{2}.}"></span> </p><p>Hence, the multiplication can actually be replaced by the string of ones in the original number by simpler operations, adding the multiplier, shifting the partial product thus formed by appropriate places, and then finally subtracting the multiplier. It is making use of the fact that it is not necessary to do anything but shift while dealing with 0s in a binary multiplier, and is similar to using the mathematical property that 99 = 100 − 1 while multiplying by 99. </p><p>This scheme can be extended to any number of blocks of 1s in a multiplier (including the case of a single 1 in a block). Thus, </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M\times \,^{\prime \prime }0\;0\;1\;1\;1\;0\;1\;0\,^{\prime \prime }=M\times (2^{5}+2^{4}+2^{3}+2^{1})=M\times 58}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>M</mi> <mo>×<!-- × --></mo> <msup> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">′<!-- ′ --></mi> <mi class="MJX-variant" mathvariant="normal">′<!-- ′ --></mi> </mrow> </msup> <mn>0</mn> <mspace width="thickmathspace" /> <mn>0</mn> <mspace width="thickmathspace" /> <mn>1</mn> <mspace width="thickmathspace" /> <mn>1</mn> <mspace width="thickmathspace" /> <mn>1</mn> <mspace width="thickmathspace" /> <mn>0</mn> <mspace width="thickmathspace" /> <mn>1</mn> <mspace width="thickmathspace" /> <mn>0</mn> <msup> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">′<!-- ′ --></mi> <mi class="MJX-variant" mathvariant="normal">′<!-- ′ --></mi> </mrow> </msup> <mo>=</mo> <mi>M</mi> <mo>×<!-- × --></mo> <mo stretchy="false">(</mo> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>5</mn> </mrow> </msup> <mo>+</mo> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msup> <mo>+</mo> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mo>+</mo> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msup> <mo stretchy="false">)</mo> <mo>=</mo> <mi>M</mi> <mo>×<!-- × --></mo> <mn>58</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M\times \,^{\prime \prime }0\;0\;1\;1\;1\;0\;1\;0\,^{\prime \prime }=M\times (2^{5}+2^{4}+2^{3}+2^{1})=M\times 58}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4b5ff6f4ec10f44e164474db1dc4a80cb4c18c35" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:60.431ex; height:3.176ex;" alt="{\displaystyle M\times \,^{\prime \prime }0\;0\;1\;1\;1\;0\;1\;0\,^{\prime \prime }=M\times (2^{5}+2^{4}+2^{3}+2^{1})=M\times 58}"></span> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M\times \,^{\prime \prime }0\;1\;0\;0{\mbox{-1}}\;1{\mbox{-1}}\;0\,^{\prime \prime }=M\times (2^{6}-2^{3}+2^{2}-2^{1})=M\times 58.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>M</mi> <mo>×<!-- × --></mo> <msup> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">′<!-- ′ --></mi> <mi class="MJX-variant" mathvariant="normal">′<!-- ′ --></mi> </mrow> </msup> <mn>0</mn> <mspace width="thickmathspace" /> <mn>1</mn> <mspace width="thickmathspace" /> <mn>0</mn> <mspace width="thickmathspace" /> <mn>0</mn> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mtext>-1</mtext> </mstyle> </mrow> <mspace width="thickmathspace" /> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mtext>-1</mtext> </mstyle> </mrow> <mspace width="thickmathspace" /> <mn>0</mn> <msup> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">′<!-- ′ --></mi> <mi class="MJX-variant" mathvariant="normal">′<!-- ′ --></mi> </mrow> </msup> <mo>=</mo> <mi>M</mi> <mo>×<!-- × --></mo> <mo stretchy="false">(</mo> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>6</mn> </mrow> </msup> <mo>−<!-- − --></mo> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mo>+</mo> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>−<!-- − --></mo> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msup> <mo stretchy="false">)</mo> <mo>=</mo> <mi>M</mi> <mo>×<!-- × --></mo> <mn>58.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M\times \,^{\prime \prime }0\;1\;0\;0{\mbox{-1}}\;1{\mbox{-1}}\;0\,^{\prime \prime }=M\times (2^{6}-2^{3}+2^{2}-2^{1})=M\times 58.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/11c8e92ecb8708af423162ac03f348f2c26bfa0a" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:61.337ex; height:3.176ex;" alt="{\displaystyle M\times \,^{\prime \prime }0\;1\;0\;0{\mbox{-1}}\;1{\mbox{-1}}\;0\,^{\prime \prime }=M\times (2^{6}-2^{3}+2^{2}-2^{1})=M\times 58.}"></span> </p><p>Booth's algorithm follows this old scheme by performing an addition when it encounters the first digit of a block of ones (0 1) and subtraction when it encounters the end of the block (1 0). This works for a negative multiplier as well. When the ones in a multiplier are grouped into long blocks, Booth's algorithm performs fewer additions and subtractions than the normal multiplication algorithm. </p> <div class="mw-heading mw-heading2"><h2 id="See_also">See also</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Booth%27s_multiplication_algorithm&action=edit&section=5" title="Edit section: See also"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/Binary_multiplier" title="Binary multiplier">Binary multiplier</a></li> <li><a href="/wiki/Non-adjacent_form" title="Non-adjacent form">Non-adjacent form</a></li> <li><a href="/wiki/Redundant_binary_representation" title="Redundant binary representation">Redundant binary representation</a></li> <li><a href="/wiki/Wallace_tree" title="Wallace tree">Wallace tree</a></li> <li><a href="/wiki/Dadda_multiplier" title="Dadda multiplier">Dadda multiplier</a></li></ul> <div class="mw-heading mw-heading2"><h2 id="References">References</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Booth%27s_multiplication_algorithm&action=edit&section=6" title="Edit section: References"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist"> <div class="mw-references-wrap"><ol class="references"> <li id="cite_note-Booth_1951-1"><span class="mw-cite-backlink"><b><a href="#cite_ref-Booth_1951_1-0">^</a></b></span> <span class="reference-text"><style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite id="CITEREFBooth1951" class="citation journal cs1"><a href="/wiki/Andrew_Donald_Booth" title="Andrew Donald Booth">Booth, Andrew Donald</a> (1951) [1950-08-01]. <a rel="nofollow" class="external text" href="http://bwrc.eecs.berkeley.edu/Classes/icdesign/ee241_s00/PAPERS/archive/booth51.pdf">"A Signed Binary Multiplication Technique"</a> <span class="cs1-format">(PDF)</span>. <i>The Quarterly Journal of Mechanics and Applied Mathematics</i>. <b>IV</b> (2): 236–240. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20180716222422/http://bwrcs.eecs.berkeley.edu/Classes/icdesign/ee241_s00/PAPERS/archive/booth51.pdf">Archived</a> <span class="cs1-format">(PDF)</span> from the original on 16 July 2018<span class="reference-accessdate">. Retrieved <span class="nowrap">16 July</span> 2018</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=The+Quarterly+Journal+of+Mechanics+and+Applied+Mathematics&rft.atitle=A+Signed+Binary+Multiplication+Technique&rft.volume=IV&rft.issue=2&rft.pages=236-240&rft.date=1951&rft.aulast=Booth&rft.aufirst=Andrew+Donald&rft_id=http%3A%2F%2Fbwrc.eecs.berkeley.edu%2FClasses%2Ficdesign%2Fee241_s00%2FPAPERS%2Farchive%2Fbooth51.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3ABooth%27s+multiplication+algorithm" class="Z3988"></span> Reprinted in <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBooth" class="citation book cs1"><a href="/wiki/Andrew_Donald_Booth" title="Andrew Donald Booth">Booth, Andrew Donald</a>. <i>A Signed Binary Multiplication Technique</i>. <a href="/wiki/Oxford_University_Press" title="Oxford University Press">Oxford University Press</a>. pp. 100–104.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=A+Signed+Binary+Multiplication+Technique&rft.pages=100-104&rft.pub=Oxford+University+Press&rft.aulast=Booth&rft.aufirst=Andrew+Donald&rfr_id=info%3Asid%2Fen.wikipedia.org%3ABooth%27s+multiplication+algorithm" class="Z3988"></span></span> </li> <li id="cite_note-Chen_1992-2"><span class="mw-cite-backlink"><b><a href="#cite_ref-Chen_1992_2-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFChen1992" class="citation book cs1">Chen, Chi-hau (1992). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=10Pi0MRbaOYC&pg=PA234"><i>Signal processing handbook</i></a>. <a href="/wiki/CRC_Press" title="CRC Press">CRC Press</a>. p. 234. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-8247-7956-6" title="Special:BookSources/978-0-8247-7956-6"><bdi>978-0-8247-7956-6</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Signal+processing+handbook&rft.pages=234&rft.pub=CRC+Press&rft.date=1992&rft.isbn=978-0-8247-7956-6&rft.aulast=Chen&rft.aufirst=Chi-hau&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D10Pi0MRbaOYC%26pg%3DPA234&rfr_id=info%3Asid%2Fen.wikipedia.org%3ABooth%27s+multiplication+algorithm" class="Z3988"></span></span> </li> </ol></div></div> <div class="mw-heading mw-heading2"><h2 id="Further_reading">Further reading</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Booth%27s_multiplication_algorithm&action=edit&section=7" title="Edit section: Further reading"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCollin1993" class="citation journal cs1">Collin, Andrew (Spring 1993). <a rel="nofollow" class="external text" href="http://www.cs.man.ac.uk./CCS/res/res05.htm#e">"Andrew Booth's Computers at Birkbeck College"</a>. <i>Resurrection</i> (5). London: <a href="/wiki/Computer_Conservation_Society" title="Computer Conservation Society">Computer Conservation Society</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Resurrection&rft.atitle=Andrew+Booth%27s+Computers+at+Birkbeck+College&rft.ssn=spring&rft.issue=5&rft.date=1993&rft.aulast=Collin&rft.aufirst=Andrew&rft_id=http%3A%2F%2Fwww.cs.man.ac.uk.%2FCCS%2Fres%2Fres05.htm%23e&rfr_id=info%3Asid%2Fen.wikipedia.org%3ABooth%27s+multiplication+algorithm" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPattersonHennessy1998" class="citation book cs1"><a href="/wiki/David_Patterson_(computer_scientist)" title="David Patterson (computer scientist)">Patterson, David Andrew</a>; <a href="/wiki/John_L._Hennessy" title="John L. Hennessy">Hennessy, John Leroy</a> (1998). <a rel="nofollow" class="external text" href="https://archive.org/details/computerorganiz000henn"><i>Computer Organization and Design: The Hardware/Software Interface</i></a> (Second ed.). San Francisco, California, USA: <a href="/wiki/Morgan_Kaufmann_Publishers" title="Morgan Kaufmann Publishers">Morgan Kaufmann Publishers</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/1-55860-428-6" title="Special:BookSources/1-55860-428-6"><bdi>1-55860-428-6</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Computer+Organization+and+Design%3A+The+Hardware%2FSoftware+Interface&rft.place=San+Francisco%2C+California%2C+USA&rft.edition=Second&rft.pub=Morgan+Kaufmann+Publishers&rft.date=1998&rft.isbn=1-55860-428-6&rft.aulast=Patterson&rft.aufirst=David+Andrew&rft.au=Hennessy%2C+John+Leroy&rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fcomputerorganiz000henn&rfr_id=info%3Asid%2Fen.wikipedia.org%3ABooth%27s+multiplication+algorithm" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFStallings2000" class="citation book cs1"><a href="/wiki/William_Stallings" title="William Stallings">Stallings, William</a> (2000). <a rel="nofollow" class="external text" href="https://archive.org/details/computerorganiza00will"><i>Computer Organization and Architecture: Designing for performance</i></a> (Fifth ed.). New Jersey: <a href="/wiki/Prentice-Hall,_Inc." class="mw-redirect" title="Prentice-Hall, Inc.">Prentice-Hall, Inc.</a> <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-13-081294-3" title="Special:BookSources/0-13-081294-3"><bdi>0-13-081294-3</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Computer+Organization+and+Architecture%3A+Designing+for+performance&rft.place=New+Jersey&rft.edition=Fifth&rft.pub=Prentice-Hall%2C+Inc.&rft.date=2000&rft.isbn=0-13-081294-3&rft.aulast=Stallings&rft.aufirst=William&rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fcomputerorganiza00will&rfr_id=info%3Asid%2Fen.wikipedia.org%3ABooth%27s+multiplication+algorithm" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSavard2018" class="citation web cs1">Savard, John J. G. (2018) [2006]. <a rel="nofollow" class="external text" href="http://www.quadibloc.com/comp/cp0202.htm">"Advanced Arithmetic Techniques"</a>. <i>quadibloc</i>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20180703001722/http://www.quadibloc.com/comp/cp0202.htm">Archived</a> from the original on 3 July 2018<span class="reference-accessdate">. Retrieved <span class="nowrap">16 July</span> 2018</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=quadibloc&rft.atitle=Advanced+Arithmetic+Techniques&rft.date=2018&rft.aulast=Savard&rft.aufirst=John+J.+G.&rft_id=http%3A%2F%2Fwww.quadibloc.com%2Fcomp%2Fcp0202.htm&rfr_id=info%3Asid%2Fen.wikipedia.org%3ABooth%27s+multiplication+algorithm" class="Z3988"></span></li></ul> <div class="mw-heading mw-heading2"><h2 id="External_links">External links</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Booth%27s_multiplication_algorithm&action=edit&section=8" title="Edit section: External links"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a rel="nofollow" class="external text" href="http://www.geoffknagge.com/fyp/booth.shtml">Radix-4 Booth Encoding</a></li> <li><a rel="nofollow" class="external text" href="https://web.archive.org/web/20171017093721/http://www.russinoff.com/libman/text/node65.html">Radix-8 Booth Encoding</a> in <a rel="nofollow" class="external text" href="https://web.archive.org/web/20070927194831/http://www.russinoff.com/libman/">A Formal Theory of RTL and Computer Arithmetic</a></li> <li><a rel="nofollow" class="external text" href="http://www.ecs.umass.edu/ece/koren/arith/simulator/Booth/">Booth's Algorithm JavaScript Simulator</a></li> <li><a rel="nofollow" class="external text" href="http://philosophyforprogrammers.blogspot.com/2011/05/booths-multiplication-algorithm-in.html">Implementation in Python</a></li></ul> <!-- NewPP limit report Parsed by mw‐web.codfw.main‐f69cdc8f6‐cbh7h Cached time: 20241122142320 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 0.224 seconds Real time usage: 0.340 seconds Preprocessor visited node count: 673/1000000 Post‐expand include size: 14743/2097152 bytes Template argument size: 1190/2097152 bytes Highest expansion depth: 12/100 Expensive parser function count: 2/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 20173/5000000 bytes Lua time usage: 0.127/10.000 seconds Lua memory usage: 4489485/52428800 bytes Number of Wikibase entities loaded: 0/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 258.045 1 -total 47.46% 122.475 1 Template:Reflist 37.81% 97.572 2 Template:Cite_journal 36.04% 93.002 1 Template:Short_description 19.05% 49.149 2 Template:Pagetype 11.13% 28.716 4 Template:Main_other 10.16% 26.217 1 Template:SDcat 8.04% 20.737 4 Template:Cite_book 6.31% 16.288 1 Template:Use_dmy_dates 4.21% 10.858 1 Template:DMCA --> <!-- Saved in parser cache with key enwiki:pcache:idhash:1617661-0!canonical and timestamp 20241122142320 and revision id 1216045027. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=Booth%27s_multiplication_algorithm&oldid=1216045027">https://en.wikipedia.org/w/index.php?title=Booth%27s_multiplication_algorithm&oldid=1216045027</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Categories</a>: <ul><li><a href="/wiki/Category:1950_introductions" title="Category:1950 introductions">1950 introductions</a></li><li><a href="/wiki/Category:1950_in_London" title="Category:1950 in London">1950 in London</a></li><li><a href="/wiki/Category:1950_in_science" title="Category:1950 in science">1950 in science</a></li><li><a href="/wiki/Category:Binary_arithmetic" title="Category:Binary arithmetic">Binary arithmetic</a></li><li><a href="/wiki/Category:Computer_arithmetic_algorithms" title="Category:Computer arithmetic algorithms">Computer arithmetic algorithms</a></li><li><a href="/wiki/Category:Multiplication" title="Category:Multiplication">Multiplication</a></li><li><a href="/wiki/Category:Birkbeck,_University_of_London" title="Category:Birkbeck, University of London">Birkbeck, University of London</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Hidden categories: <ul><li><a href="/wiki/Category:Articles_with_short_description" title="Category:Articles with short description">Articles with short description</a></li><li><a href="/wiki/Category:Short_description_is_different_from_Wikidata" title="Category:Short description is different from Wikidata">Short description is different from Wikidata</a></li><li><a href="/wiki/Category:Use_dmy_dates_from_April_2022" title="Category:Use dmy dates from April 2022">Use dmy dates from April 2022</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 28 March 2024, at 18:15<span class="anonymous-show"> (UTC)</span>.</li> <li id="footer-info-copyright">Text is available under the <a href="/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" title="Wikipedia:Text of the Creative Commons Attribution-ShareAlike 4.0 International License">Creative Commons Attribution-ShareAlike 4.0 License</a>; additional terms may apply. By using this site, you agree to the <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use" class="extiw" title="foundation:Special:MyLanguage/Policy:Terms of Use">Terms of Use</a> and <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy" class="extiw" title="foundation:Special:MyLanguage/Policy:Privacy policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=Booth%27s_multiplication_algorithm&mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-f69cdc8f6-67tlc","wgBackendResponseTime":130,"wgPageParseReport":{"limitreport":{"cputime":"0.224","walltime":"0.340","ppvisitednodes":{"value":673,"limit":1000000},"postexpandincludesize":{"value":14743,"limit":2097152},"templateargumentsize":{"value":1190,"limit":2097152},"expansiondepth":{"value":12,"limit":100},"expensivefunctioncount":{"value":2,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":20173,"limit":5000000},"entityaccesscount":{"value":0,"limit":400},"timingprofile":["100.00% 258.045 1 -total"," 47.46% 122.475 1 Template:Reflist"," 37.81% 97.572 2 Template:Cite_journal"," 36.04% 93.002 1 Template:Short_description"," 19.05% 49.149 2 Template:Pagetype"," 11.13% 28.716 4 Template:Main_other"," 10.16% 26.217 1 Template:SDcat"," 8.04% 20.737 4 Template:Cite_book"," 6.31% 16.288 1 Template:Use_dmy_dates"," 4.21% 10.858 1 Template:DMCA"]},"scribunto":{"limitreport-timeusage":{"value":"0.127","limit":"10.000"},"limitreport-memusage":{"value":4489485,"limit":52428800}},"cachereport":{"origin":"mw-web.codfw.main-f69cdc8f6-cbh7h","timestamp":"20241122142320","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Booth's multiplication algorithm","url":"https:\/\/en.wikipedia.org\/wiki\/Booth%27s_multiplication_algorithm","sameAs":"http:\/\/www.wikidata.org\/entity\/Q477049","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q477049","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2005-03-18T05:19:37Z","dateModified":"2024-03-28T18:15:43Z","headline":"algorithm invented by Andrew D. Booth"}</script> </body> </html>