CINXE.COM

Nature Photonics

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:prism="http://prismstandard.org/namespaces/basic/2.0/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:content="http://purl.org/rss/1.0/modules/content/" xmlns="http://purl.org/rss/1.0/" xmlns:admin="http://webns.net/mvcb/"> <channel rdf:about="http://feeds.nature.com/nphoton/rss/current"> <title>Nature Photonics</title> <description>Launched in January 2007, Nature Photonics is a monthly journal dedicated to publishing topquality, peer-reviewed research in all areas of light generation, manipulation and detection. Coverage extends from research into the fundamental properties of light and how it interacts with matter through to the latest designs of optoelectronic devices and emerging applications that exploit photons.</description> <link>http://feeds.nature.com/nphoton/rss/current</link> <admin:generatorAgent rdf:resource="https://www.nature.com/"/> <admin:errorReportsTo rdf:resource="mailto:feedback@nature.com"/> <dc:publisher>Nature Publishing Group</dc:publisher> <dc:language>en</dc:language> <dc:rights>© 2024 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.</dc:rights> <prism:publicationName>Nature Photonics</prism:publicationName> <prism:copyright>© 2024 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.</prism:copyright> <prism:rightsAgent>permissions@nature.com</prism:rightsAgent> <image rdf:resource="https://www.nature.com/uploads/product/nphoton/rss.gif"/> <items> <rdf:Seq> <rdf:li rdf:resource="https://www.nature.com/articles/s41566-024-01564-2"/> <rdf:li rdf:resource="https://www.nature.com/articles/s41566-024-01563-3"/> <rdf:li rdf:resource="https://www.nature.com/articles/s41566-024-01585-x"/> <rdf:li rdf:resource="https://www.nature.com/articles/s41566-024-01561-5"/> <rdf:li rdf:resource="https://www.nature.com/articles/s41566-024-01556-2"/> <rdf:li rdf:resource="https://www.nature.com/articles/s41566-024-01555-3"/> <rdf:li rdf:resource="https://www.nature.com/articles/s41566-024-01560-6"/> <rdf:li rdf:resource="https://www.nature.com/articles/s41566-024-01554-4"/> </rdf:Seq> </items> </channel> <image rdf:about="https://www.nature.com/uploads/product/nphoton/rss.gif"> <title>Nature Photonics</title> <url>https://www.nature.com/uploads/product/nphoton/rss.gif</url> <link>http://feeds.nature.com/nphoton/rss/current</link> </image> <item rdf:about="https://www.nature.com/articles/s41566-024-01564-2"> <title><![CDATA[Topological orbital angular momentum extraction and twofold protection of vortex transport]]></title> <link>https://www.nature.com/articles/s41566-024-01564-2</link> <content:encoded> <![CDATA[<p>Nature Photonics, Published online: 20 November 2024; <a href="https://www.nature.com/articles/s41566-024-01564-2">doi:10.1038/s41566-024-01564-2</a></p>Topological protection in disclination lattices that relies on non-trivial winding in momentum space and real space is used to confine and guide vortices that feature arbitrary high-order charges. This approach could help in the development of orbital angular momentum-based photonic devices.]]></content:encoded> <dc:title><![CDATA[Topological orbital angular momentum extraction and twofold protection of vortex transport]]></dc:title> <dc:creator>Zhichan Hu</dc:creator><dc:creator>Domenico Bongiovanni</dc:creator><dc:creator>Ziteng Wang</dc:creator><dc:creator>Xiangdong Wang</dc:creator><dc:creator>Daohong Song</dc:creator><dc:creator>Jingjun Xu</dc:creator><dc:creator>Roberto Morandotti</dc:creator><dc:creator>Hrvoje Buljan</dc:creator><dc:creator>Zhigang Chen</dc:creator> <dc:identifier>doi:10.1038/s41566-024-01564-2</dc:identifier> <dc:source>Nature Photonics, Published online: 2024-11-20; | doi:10.1038/s41566-024-01564-2</dc:source> <dc:date>2024-11-20</dc:date> <prism:publicationName>Nature Photonics</prism:publicationName> <prism:doi>10.1038/s41566-024-01564-2</prism:doi> <prism:url>https://www.nature.com/articles/s41566-024-01564-2</prism:url> </item> <item rdf:about="https://www.nature.com/articles/s41566-024-01563-3"> <title><![CDATA[Expanding momentum bandgaps in photonic time crystals through resonances]]></title> <link>https://www.nature.com/articles/s41566-024-01563-3</link> <content:encoded> <![CDATA[<p>Nature Photonics, Published online: 12 November 2024; <a href="https://www.nature.com/articles/s41566-024-01563-3">doi:10.1038/s41566-024-01563-3</a></p>Optical realization of photonic time crystals can be achieved by using temporal variations in a resonant material to expand the momentum bandgap, even at low modulation strengths, with known low-loss materials and realistic laser pump powers.]]></content:encoded> <dc:title><![CDATA[Expanding momentum bandgaps in photonic time crystals through resonances]]></dc:title> <dc:creator>X. Wang</dc:creator><dc:creator>P. Garg</dc:creator><dc:creator>M. S. Mirmoosa</dc:creator><dc:creator>A. G. Lamprianidis</dc:creator><dc:creator>C. Rockstuhl</dc:creator><dc:creator>V. S. Asadchy</dc:creator> <dc:identifier>doi:10.1038/s41566-024-01563-3</dc:identifier> <dc:source>Nature Photonics, Published online: 2024-11-12; | doi:10.1038/s41566-024-01563-3</dc:source> <dc:date>2024-11-12</dc:date> <prism:publicationName>Nature Photonics</prism:publicationName> <prism:doi>10.1038/s41566-024-01563-3</prism:doi> <prism:url>https://www.nature.com/articles/s41566-024-01563-3</prism:url> </item> <item rdf:about="https://www.nature.com/articles/s41566-024-01585-x"> <title><![CDATA[Author Correction: Image-guided computational holographic wavefront shaping]]></title> <link>https://www.nature.com/articles/s41566-024-01585-x</link> <content:encoded> <![CDATA[<p>Nature Photonics, Published online: 06 November 2024; <a href="https://www.nature.com/articles/s41566-024-01585-x">doi:10.1038/s41566-024-01585-x</a></p>Author Correction: Image-guided computational holographic wavefront shaping]]></content:encoded> <dc:title><![CDATA[Author Correction: Image-guided computational holographic wavefront shaping]]></dc:title> <dc:creator>Omri Haim</dc:creator><dc:creator>Jeremy Boger-Lombard</dc:creator><dc:creator>Ori Katz</dc:creator> <dc:identifier>doi:10.1038/s41566-024-01585-x</dc:identifier> <dc:source>Nature Photonics, Published online: 2024-11-06; | doi:10.1038/s41566-024-01585-x</dc:source> <dc:date>2024-11-06</dc:date> <prism:publicationName>Nature Photonics</prism:publicationName> <prism:doi>10.1038/s41566-024-01585-x</prism:doi> <prism:url>https://www.nature.com/articles/s41566-024-01585-x</prism:url> </item> <item rdf:about="https://www.nature.com/articles/s41566-024-01561-5"> <title><![CDATA[Efficient and stable perovskite-silicon tandem solar cells with copper thiocyanate-embedded perovskite on textured silicon]]></title> <link>https://www.nature.com/articles/s41566-024-01561-5</link> <content:encoded> <![CDATA[<p>Nature Photonics, Published online: 04 November 2024; <a href="https://www.nature.com/articles/s41566-024-01561-5">doi:10.1038/s41566-024-01561-5</a></p>Co-deposition of copper thiocyanate with perovskite on textured silicon enables an efficient perovskite-silicon tandem solar cell with a certified power conversion efficiency of 31.46% for 1 cm2 area devices.]]></content:encoded> <dc:title><![CDATA[Efficient and stable perovskite-silicon tandem solar cells with copper thiocyanate-embedded perovskite on textured silicon]]></dc:title> <dc:creator>Chenxia Kan</dc:creator><dc:creator>Pengjie Hang</dc:creator><dc:creator>Shibo Wang</dc:creator><dc:creator>Biao Li</dc:creator><dc:creator>Xuegong Yu</dc:creator><dc:creator>Xinbo Yang</dc:creator><dc:creator>Yuxin Yao</dc:creator><dc:creator>Wei Shi</dc:creator><dc:creator>Stefaan De Wolf</dc:creator><dc:creator>Jun Yin</dc:creator><dc:creator>Daoyong Zhang</dc:creator><dc:creator>Degong Ding</dc:creator><dc:creator>Cao Yu</dc:creator><dc:creator>Shaofei Yang</dc:creator><dc:creator>Jiteng Zhang</dc:creator><dc:creator>Jia Yao</dc:creator><dc:creator>Xiaohong Zhang</dc:creator><dc:creator>Deren Yang</dc:creator> <dc:identifier>doi:10.1038/s41566-024-01561-5</dc:identifier> <dc:source>Nature Photonics, Published online: 2024-11-04; | doi:10.1038/s41566-024-01561-5</dc:source> <dc:date>2024-11-04</dc:date> <prism:publicationName>Nature Photonics</prism:publicationName> <prism:doi>10.1038/s41566-024-01561-5</prism:doi> <prism:url>https://www.nature.com/articles/s41566-024-01561-5</prism:url> </item> <item rdf:about="https://www.nature.com/articles/s41566-024-01556-2"> <title><![CDATA[Attosecond transient interferometry]]></title> <link>https://www.nature.com/articles/s41566-024-01556-2</link> <content:encoded> <![CDATA[<p>Nature Photonics, Published online: 01 November 2024; <a href="https://www.nature.com/articles/s41566-024-01556-2">doi:10.1038/s41566-024-01556-2</a></p>Sub-cycle phase-resolved attosecond interferometry is developed. The obtained phase information enables us to decouple the multiple quantum paths induced in a light-driven system, isolating their coherent contribution and retrieving their temporal evolution.]]></content:encoded> <dc:title><![CDATA[Attosecond transient interferometry]]></dc:title> <dc:creator>Omer Kneller</dc:creator><dc:creator>Chen Mor</dc:creator><dc:creator>Nikolai D. Klimkin</dc:creator><dc:creator>Noa Yaffe</dc:creator><dc:creator>Michael Krüger</dc:creator><dc:creator>Doron Azoury</dc:creator><dc:creator>Ayelet J. Uzan-Narovlansky</dc:creator><dc:creator>Yotam Federman</dc:creator><dc:creator>Debobrata Rajak</dc:creator><dc:creator>Barry D. Bruner</dc:creator><dc:creator>Olga Smirnova</dc:creator><dc:creator>Serguei Patchkovskii</dc:creator><dc:creator>Yann Mairesse</dc:creator><dc:creator>Misha Ivanov</dc:creator><dc:creator>Nirit Dudovich</dc:creator> <dc:identifier>doi:10.1038/s41566-024-01556-2</dc:identifier> <dc:source>Nature Photonics, Published online: 2024-11-01; | doi:10.1038/s41566-024-01556-2</dc:source> <dc:date>2024-11-01</dc:date> <prism:publicationName>Nature Photonics</prism:publicationName> <prism:doi>10.1038/s41566-024-01556-2</prism:doi> <prism:url>https://www.nature.com/articles/s41566-024-01556-2</prism:url> </item> <item rdf:about="https://www.nature.com/articles/s41566-024-01555-3"> <title><![CDATA[Minute-scale Schrödinger-cat state of spin-5/2 atoms]]></title> <link>https://www.nature.com/articles/s41566-024-01555-3</link> <content:encoded> <![CDATA[<p>Nature Photonics, Published online: 01 November 2024; <a href="https://www.nature.com/articles/s41566-024-01555-3">doi:10.1038/s41566-024-01555-3</a></p>Using spin-5/2 nuclei of 173Yb atoms trapped in an optical lattice, a Schrödinger-cat state persists for a coherence time of 1.4 × 103 s. In measuring external magnetic fields, the cat state exhibits a sensitivity approaching the Heisenberg limit.]]></content:encoded> <dc:title><![CDATA[Minute-scale Schrödinger-cat state of spin-5/2 atoms]]></dc:title> <dc:creator>Y. A. Yang</dc:creator><dc:creator>W.-T. Luo</dc:creator><dc:creator>J.-L. Zhang</dc:creator><dc:creator>S.-Z. Wang</dc:creator><dc:creator>Chang-Ling Zou</dc:creator><dc:creator>T. Xia</dc:creator><dc:creator>Z.-T. Lu</dc:creator> <dc:identifier>doi:10.1038/s41566-024-01555-3</dc:identifier> <dc:source>Nature Photonics, Published online: 2024-11-01; | doi:10.1038/s41566-024-01555-3</dc:source> <dc:date>2024-11-01</dc:date> <prism:publicationName>Nature Photonics</prism:publicationName> <prism:doi>10.1038/s41566-024-01555-3</prism:doi> <prism:url>https://www.nature.com/articles/s41566-024-01555-3</prism:url> </item> <item rdf:about="https://www.nature.com/articles/s41566-024-01560-6"> <title><![CDATA[Photon-trapping detector]]></title> <link>https://www.nature.com/articles/s41566-024-01560-6</link> <content:encoded> <![CDATA[<p>Nature Photonics, Published online: 31 October 2024; <a href="https://www.nature.com/articles/s41566-024-01560-6">doi:10.1038/s41566-024-01560-6</a></p>Photon-trapping detector]]></content:encoded> <dc:title><![CDATA[Photon-trapping detector]]></dc:title> <dc:creator>Noriaki Horiuchi</dc:creator> <dc:identifier>doi:10.1038/s41566-024-01560-6</dc:identifier> <dc:source>Nature Photonics, Published online: 2024-10-31; | doi:10.1038/s41566-024-01560-6</dc:source> <dc:date>2024-10-31</dc:date> <prism:publicationName>Nature Photonics</prism:publicationName> <prism:doi>10.1038/s41566-024-01560-6</prism:doi> <prism:url>https://www.nature.com/articles/s41566-024-01560-6</prism:url> </item> <item rdf:about="https://www.nature.com/articles/s41566-024-01554-4"> <title><![CDATA[Light–matter interactions driven by lasers at highest intensities]]></title> <link>https://www.nature.com/articles/s41566-024-01554-4</link> <content:encoded> <![CDATA[<p>Nature Photonics, Published online: 31 October 2024; <a href="https://www.nature.com/articles/s41566-024-01554-4">doi:10.1038/s41566-024-01554-4</a></p>The interaction of electrons and photons lies at the very foundation of quantum electrodynamics. However, if an electron is able to scatter off several hundred photons, provided by a high-power laser, new physical phenomena come into play. This might pave a way for future light sources and photon–photon colliders.]]></content:encoded> <dc:title><![CDATA[Light–matter interactions driven by lasers at highest intensities]]></dc:title> <dc:creator>Stepan Bulanov</dc:creator> <dc:identifier>doi:10.1038/s41566-024-01554-4</dc:identifier> <dc:source>Nature Photonics, Published online: 2024-10-31; | doi:10.1038/s41566-024-01554-4</dc:source> <dc:date>2024-10-31</dc:date> <prism:publicationName>Nature Photonics</prism:publicationName> <prism:doi>10.1038/s41566-024-01554-4</prism:doi> <prism:url>https://www.nature.com/articles/s41566-024-01554-4</prism:url> </item> </rdf:RDF>

Pages: 1 2 3 4 5 6 7 8 9 10