CINXE.COM
Search results for: learning vector quantization
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: learning vector quantization</title> <meta name="description" content="Search results for: learning vector quantization"> <meta name="keywords" content="learning vector quantization"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="learning vector quantization" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="learning vector quantization"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 8068</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: learning vector quantization</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8068</span> Voltage Problem Location Classification Using Performance of Least Squares Support Vector Machine LS-SVM and Learning Vector Quantization LVQ</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Khaled%20Abduesslam">M. Khaled Abduesslam</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Ali"> Mohammed Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Basher%20H.%20Alsdai"> Basher H. Alsdai</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Nizam%20Inayati"> Muhammad Nizam Inayati</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the voltage problem location classification using performance of Least Squares Support Vector Machine (LS-SVM) and Learning Vector Quantization (LVQ) in electrical power system for proper voltage problem location implemented by IEEE 39 bus New-England. The data was collected from the time domain simulation by using Power System Analysis Toolbox (PSAT). Outputs from simulation data such as voltage, phase angle, real power and reactive power were taken as input to estimate voltage stability at particular buses based on Power Transfer Stability Index (PTSI).The simulation data was carried out on the IEEE 39 bus test system by considering load bus increased on the system. To verify of the proposed LS-SVM its performance was compared to Learning Vector Quantization (LVQ). The results showed that LS-SVM is faster and better as compared to LVQ. The results also demonstrated that the LS-SVM was estimated by 0% misclassification whereas LVQ had 7.69% misclassification. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=IEEE%2039%20bus" title="IEEE 39 bus">IEEE 39 bus</a>, <a href="https://publications.waset.org/abstracts/search?q=least%20squares%20support%20vector%20machine" title=" least squares support vector machine"> least squares support vector machine</a>, <a href="https://publications.waset.org/abstracts/search?q=learning%20vector%20quantization" title=" learning vector quantization"> learning vector quantization</a>, <a href="https://publications.waset.org/abstracts/search?q=voltage%20collapse" title=" voltage collapse"> voltage collapse</a> </p> <a href="https://publications.waset.org/abstracts/11211/voltage-problem-location-classification-using-performance-of-least-squares-support-vector-machine-ls-svm-and-learning-vector-quantization-lvq" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11211.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">441</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8067</span> Vector Quantization Based on Vector Difference Scheme for Image Enhancement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Biji%20Jacob">Biji Jacob</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Vector quantization algorithm which uses minimum distance calculation for codebook generation, a time consuming calculation performed on each pixel values leads to computation complexity. The codebook is updated by comparing the distance of each vector to their centroid vector and measure for their closeness. In this paper vector quantization is modified based on vector difference algorithm for image enhancement purpose. In the proposed scheme, vector differences between the vectors are considered as the new generation vectors or new codebook vectors. The codebook is updated by comparing the new generation vector with a threshold value having minimum error with the parent vector. The minimum error decides the fitness of each newly generated vector. Thus the codebook is generated in an adaptive manner and the fitness value is determined for the suppression of the degraded portion of the image and thereby leads to the enhancement of the image through the adaptive searching capability of the vector quantization through vector difference algorithm. Experimental results shows that the vector difference scheme efficiently modifies the vector quantization algorithm for enhancing the image with peak signal to noise ratio (PSNR), mean square error (MSE), Euclidean distance (E_dist) as the performance parameters. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=codebook" title="codebook">codebook</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20enhancement" title=" image enhancement"> image enhancement</a>, <a href="https://publications.waset.org/abstracts/search?q=vector%20difference" title=" vector difference"> vector difference</a>, <a href="https://publications.waset.org/abstracts/search?q=vector%20quantization" title=" vector quantization"> vector quantization</a> </p> <a href="https://publications.waset.org/abstracts/39597/vector-quantization-based-on-vector-difference-scheme-for-image-enhancement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39597.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">267</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8066</span> Data Hiding by Vector Quantization in Color Image</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yung%20Gi%20Wu">Yung Gi Wu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With the growing of computer and network, digital data can be spread to anywhere in the world quickly. In addition, digital data can also be copied or tampered easily so that the security issue becomes an important topic in the protection of digital data. Digital watermark is a method to protect the ownership of digital data. Embedding the watermark will influence the quality certainly. In this paper, Vector Quantization (VQ) is used to embed the watermark into the image to fulfill the goal of data hiding. This kind of watermarking is invisible which means that the users will not conscious the existing of embedded watermark even though the embedded image has tiny difference compared to the original image. Meanwhile, VQ needs a lot of computation burden so that we adopt a fast VQ encoding scheme by partial distortion searching (PDS) and mean approximation scheme to speed up the data hiding process. The watermarks we hide to the image could be gray, bi-level and color images. Texts are also can be regarded as watermark to embed. In order to test the robustness of the system, we adopt Photoshop to fulfill sharpen, cropping and altering to check if the extracted watermark is still recognizable. Experimental results demonstrate that the proposed system can resist the above three kinds of tampering in general cases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=data%20hiding" title="data hiding">data hiding</a>, <a href="https://publications.waset.org/abstracts/search?q=vector%20quantization" title=" vector quantization"> vector quantization</a>, <a href="https://publications.waset.org/abstracts/search?q=watermark" title=" watermark"> watermark</a>, <a href="https://publications.waset.org/abstracts/search?q=color%20image" title=" color image"> color image</a> </p> <a href="https://publications.waset.org/abstracts/28889/data-hiding-by-vector-quantization-in-color-image" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28889.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">364</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8065</span> Fast Adjustable Threshold for Uniform Neural Network Quantization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alexander%20Goncharenko">Alexander Goncharenko</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrey%20Denisov"> Andrey Denisov</a>, <a href="https://publications.waset.org/abstracts/search?q=Sergey%20Alyamkin"> Sergey Alyamkin</a>, <a href="https://publications.waset.org/abstracts/search?q=Evgeny%20Terentev"> Evgeny Terentev</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The neural network quantization is highly desired procedure to perform before running neural networks on mobile devices. Quantization without fine-tuning leads to accuracy drop of the model, whereas commonly used training with quantization is done on the full set of the labeled data and therefore is both time- and resource-consuming. Real life applications require simplification and acceleration of quantization procedure that will maintain accuracy of full-precision neural network, especially for modern mobile neural network architectures like Mobilenet-v1, MobileNet-v2 and MNAS. Here we present a method to significantly optimize training with quantization procedure by introducing the trained scale factors for discretization thresholds that are separate for each filter. Using the proposed technique, we quantize the modern mobile architectures of neural networks with the set of train data of only ∼ 10% of the total ImageNet 2012 sample. Such reduction of train dataset size and small number of trainable parameters allow to fine-tune the network for several hours while maintaining the high accuracy of quantized model (accuracy drop was less than 0.5%). Ready-for-use models and code are available in the GitHub repository. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=distillation" title="distillation">distillation</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=neural%20networks" title=" neural networks"> neural networks</a>, <a href="https://publications.waset.org/abstracts/search?q=quantization" title=" quantization"> quantization</a> </p> <a href="https://publications.waset.org/abstracts/107507/fast-adjustable-threshold-for-uniform-neural-network-quantization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/107507.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">325</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8064</span> Attitude Stabilization of Satellites Using Random Dither Quantization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kazuma%20Okada">Kazuma Okada</a>, <a href="https://publications.waset.org/abstracts/search?q=Tomoaki%20Hashimoto"> Tomoaki Hashimoto</a>, <a href="https://publications.waset.org/abstracts/search?q=Hirokazu%20Tahara"> Hirokazu Tahara</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recently, the effectiveness of random dither quantization method for linear feedback control systems has been shown in several papers. However, the random dither quantization method has not yet been applied to nonlinear feedback control systems. The objective of this paper is to verify the effectiveness of random dither quantization method for nonlinear feedback control systems. For this purpose, we consider the attitude stabilization problem of satellites using discrete-level actuators. Namely, this paper provides a control method based on the random dither quantization method for stabilizing the attitude of satellites using discrete-level actuators. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=quantized%20control" title="quantized control">quantized control</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20systems" title=" nonlinear systems"> nonlinear systems</a>, <a href="https://publications.waset.org/abstracts/search?q=random%20dither%20quantization" title=" random dither quantization"> random dither quantization</a> </p> <a href="https://publications.waset.org/abstracts/76853/attitude-stabilization-of-satellites-using-random-dither-quantization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76853.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">242</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8063</span> An Improved Face Recognition Algorithm Using Histogram-Based Features in Spatial and Frequency Domains</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Qiu%20Chen">Qiu Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Koji%20Kotani"> Koji Kotani</a>, <a href="https://publications.waset.org/abstracts/search?q=Feifei%20Lee"> Feifei Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Tadahiro%20Ohmi"> Tadahiro Ohmi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we propose an improved face recognition algorithm using histogram-based features in spatial and frequency domains. For adding spatial information of the face to improve recognition performance, a region-division (RD) method is utilized. The facial area is firstly divided into several regions, then feature vectors of each facial part are generated by Binary Vector Quantization (BVQ) histogram using DCT coefficients in low frequency domains, as well as Local Binary Pattern (LBP) histogram in spatial domain. Recognition results with different regions are first obtained separately and then fused by weighted averaging. Publicly available ORL database is used for the evaluation of our proposed algorithm, which is consisted of 40 subjects with 10 images per subject containing variations in lighting, posing, and expressions. It is demonstrated that face recognition using RD method can achieve much higher recognition rate. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=binary%20vector%20quantization%20%28BVQ%29" title="binary vector quantization (BVQ)">binary vector quantization (BVQ)</a>, <a href="https://publications.waset.org/abstracts/search?q=DCT%20coefficients" title="DCT coefficients">DCT coefficients</a>, <a href="https://publications.waset.org/abstracts/search?q=face%20recognition" title=" face recognition"> face recognition</a>, <a href="https://publications.waset.org/abstracts/search?q=local%20binary%20patterns%20%28LBP%29" title=" local binary patterns (LBP)"> local binary patterns (LBP)</a> </p> <a href="https://publications.waset.org/abstracts/44892/an-improved-face-recognition-algorithm-using-histogram-based-features-in-spatial-and-frequency-domains" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44892.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">349</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8062</span> Numerical Simulations on Feasibility of Stochastic Model Predictive Control for Linear Discrete-Time Systems with Random Dither Quantization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Taiki%20Baba">Taiki Baba</a>, <a href="https://publications.waset.org/abstracts/search?q=Tomoaki%20Hashimoto"> Tomoaki Hashimoto</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The random dither quantization method enables us to achieve much better performance than the simple uniform quantization method for the design of quantized control systems. Motivated by this fact, the stochastic model predictive control method in which a performance index is minimized subject to probabilistic constraints imposed on the state variables of systems has been proposed for linear feedback control systems with random dither quantization. In other words, a method for solving optimal control problems subject to probabilistic state constraints for linear discrete-time control systems with random dither quantization has been already established. To our best knowledge, however, the feasibility of such a kind of optimal control problems has not yet been studied. Our objective in this paper is to investigate the feasibility of stochastic model predictive control problems for linear discrete-time control systems with random dither quantization. To this end, we provide the results of numerical simulations that verify the feasibility of stochastic model predictive control problems for linear discrete-time control systems with random dither quantization. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=model%20predictive%20control" title="model predictive control">model predictive control</a>, <a href="https://publications.waset.org/abstracts/search?q=stochastic%20systems" title=" stochastic systems"> stochastic systems</a>, <a href="https://publications.waset.org/abstracts/search?q=probabilistic%20constraints" title=" probabilistic constraints"> probabilistic constraints</a>, <a href="https://publications.waset.org/abstracts/search?q=random%20dither%20quantization" title=" random dither quantization"> random dither quantization</a> </p> <a href="https://publications.waset.org/abstracts/78538/numerical-simulations-on-feasibility-of-stochastic-model-predictive-control-for-linear-discrete-time-systems-with-random-dither-quantization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78538.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">282</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8061</span> Enabling Non-invasive Diagnosis of Thyroid Nodules with High Specificity and Sensitivity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sai%20Maniveer%20Adapa">Sai Maniveer Adapa</a>, <a href="https://publications.waset.org/abstracts/search?q=Sai%20Guptha%20Perla"> Sai Guptha Perla</a>, <a href="https://publications.waset.org/abstracts/search?q=Adithya%20Reddy%20P."> Adithya Reddy P.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Thyroid nodules can often be diagnosed with ultrasound imaging, although differentiating between benign and malignant nodules can be challenging for medical professionals. This work suggests a novel approach to increase the precision of thyroid nodule identification by combining machine learning and deep learning. The new approach first extracts information from the ultrasound pictures using a deep learning method known as a convolutional autoencoder. A support vector machine, a type of machine learning model, is then trained using these features. With an accuracy of 92.52%, the support vector machine can differentiate between benign and malignant nodules. This innovative technique may decrease the need for pointless biopsies and increase the accuracy of thyroid nodule detection. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=thyroid%20tumor%20diagnosis" title="thyroid tumor diagnosis">thyroid tumor diagnosis</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasound%20images" title=" ultrasound images"> ultrasound images</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20learning" title=" deep learning"> deep learning</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=convolutional%20auto-encoder" title=" convolutional auto-encoder"> convolutional auto-encoder</a>, <a href="https://publications.waset.org/abstracts/search?q=support%20vector%20machine" title=" support vector machine"> support vector machine</a> </p> <a href="https://publications.waset.org/abstracts/182971/enabling-non-invasive-diagnosis-of-thyroid-nodules-with-high-specificity-and-sensitivity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/182971.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">58</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8060</span> Energy States of Some Diatomic Molecules: Exact Quantization Rule Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Babatunde%20J.%20Falaye">Babatunde J. Falaye</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, we obtain the approximate analytical solutions of the radial Schrödinger equation for the Deng-Fan diatomic molecular potential by using exact quantization rule approach. The wave functions have been expressed by hypergeometric functions via the functional analysis approach. An extension to rotational-vibrational energy eigenvalues of some diatomic molecules are also presented. It is shown that the calculated energy levels are in good agreement with the ones obtained previously E_nl-D (shifted Deng-Fan). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Schr%C3%B6dinger%20equation" title="Schrödinger equation">Schrödinger equation</a>, <a href="https://publications.waset.org/abstracts/search?q=exact%20quantization%20rule" title=" exact quantization rule"> exact quantization rule</a>, <a href="https://publications.waset.org/abstracts/search?q=functional%20analysis" title=" functional analysis"> functional analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=Deng-Fan%20potential" title=" Deng-Fan potential"> Deng-Fan potential</a> </p> <a href="https://publications.waset.org/abstracts/17622/energy-states-of-some-diatomic-molecules-exact-quantization-rule-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17622.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">499</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8059</span> Instance Selection for MI-Support Vector Machines</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amy%20M.%20Kwon">Amy M. Kwon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Support vector machine (SVM) is a well-known algorithm in machine learning due to its superior performance, and it also functions well in multiple-instance (MI) problems. Our study proposes a schematic algorithm to select instances based on Hausdorff distance, which can be adapted to SVMs as input vectors under the MI setting. Based on experiments on five benchmark datasets, our strategy for adapting representation outperformed in comparison with original approach. In addition, task execution times (TETs) were reduced by more than 80% based on MissSVM. Hence, it is noteworthy to consider this representation adaptation to SVMs under MI-setting. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=support%20vector%20machine" title="support vector machine">support vector machine</a>, <a href="https://publications.waset.org/abstracts/search?q=Margin" title=" Margin"> Margin</a>, <a href="https://publications.waset.org/abstracts/search?q=Hausdorff%20distance" title=" Hausdorff distance"> Hausdorff distance</a>, <a href="https://publications.waset.org/abstracts/search?q=representation%20selection" title=" representation selection"> representation selection</a>, <a href="https://publications.waset.org/abstracts/search?q=multiple-instance%20learning" title=" multiple-instance learning"> multiple-instance learning</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a> </p> <a href="https://publications.waset.org/abstracts/186528/instance-selection-for-mi-support-vector-machines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/186528.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">34</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8058</span> Stochastic Model Predictive Control for Linear Discrete-Time Systems with Random Dither Quantization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tomoaki%20Hashimoto">Tomoaki Hashimoto</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recently, feedback control systems using random dither quantizers have been proposed for linear discrete-time systems. However, the constraints imposed on state and control variables have not yet been taken into account for the design of feedback control systems with random dither quantization. Model predictive control is a kind of optimal feedback control in which control performance over a finite future is optimized with a performance index that has a moving initial and terminal time. An important advantage of model predictive control is its ability to handle constraints imposed on state and control variables. Based on the model predictive control approach, the objective of this paper is to present a control method that satisfies probabilistic state constraints for linear discrete-time feedback control systems with random dither quantization. In other words, this paper provides a method for solving the optimal control problems subject to probabilistic state constraints for linear discrete-time feedback control systems with random dither quantization. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=optimal%20control" title="optimal control">optimal control</a>, <a href="https://publications.waset.org/abstracts/search?q=stochastic%20systems" title=" stochastic systems"> stochastic systems</a>, <a href="https://publications.waset.org/abstracts/search?q=random%20dither" title=" random dither"> random dither</a>, <a href="https://publications.waset.org/abstracts/search?q=quantization" title=" quantization"> quantization</a> </p> <a href="https://publications.waset.org/abstracts/63970/stochastic-model-predictive-control-for-linear-discrete-time-systems-with-random-dither-quantization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63970.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">444</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8057</span> Evolving Knowledge Extraction from Online Resources</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhibo%20Xiao">Zhibo Xiao</a>, <a href="https://publications.waset.org/abstracts/search?q=Tharini%20Nayanika%20de%20Silva"> Tharini Nayanika de Silva</a>, <a href="https://publications.waset.org/abstracts/search?q=Kezhi%20Mao"> Kezhi Mao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we present an evolving knowledge extraction system named AKEOS (Automatic Knowledge Extraction from Online Sources). AKEOS consists of two modules, including a one-time learning module and an evolving learning module. The one-time learning module takes in user input query, and automatically harvests knowledge from online unstructured resources in an unsupervised way. The output of the one-time learning is a structured vector representing the harvested knowledge. The evolving learning module automatically schedules and performs repeated one-time learning to extract the newest information and track the development of an event. In addition, the evolving learning module summarizes the knowledge learned at different time points to produce a final knowledge vector about the event. With the evolving learning, we are able to visualize the key information of the event, discover the trends, and track the development of an event. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=evolving%20learning" title="evolving learning">evolving learning</a>, <a href="https://publications.waset.org/abstracts/search?q=knowledge%20extraction" title=" knowledge extraction"> knowledge extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=knowledge%20graph" title=" knowledge graph"> knowledge graph</a>, <a href="https://publications.waset.org/abstracts/search?q=text%20mining" title=" text mining"> text mining</a> </p> <a href="https://publications.waset.org/abstracts/61571/evolving-knowledge-extraction-from-online-resources" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61571.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">458</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8056</span> Using Support Vector Machines for Measuring Democracy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tommy%20Krieger">Tommy Krieger</a>, <a href="https://publications.waset.org/abstracts/search?q=Klaus%20Gruendler"> Klaus Gruendler </a> </p> <p class="card-text"><strong>Abstract:</strong></p> We present a novel approach for measuring democracy, which enables a very detailed and sensitive index. This method is based on Support Vector Machines, a mathematical algorithm for pattern recognition. Our implementation evaluates 188 countries in the period between 1981 and 2011. The Support Vector Machines Democracy Index (SVMDI) is continuously on the 0-1-Interval and robust to variations in the numerical process parameters. The algorithm introduced here can be used for every concept of democracy without additional adjustments, and due to its flexibility it is also a valuable tool for comparison studies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=democracy" title="democracy">democracy</a>, <a href="https://publications.waset.org/abstracts/search?q=democracy%20index" title=" democracy index"> democracy index</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=support%20vector%20machines" title=" support vector machines"> support vector machines</a> </p> <a href="https://publications.waset.org/abstracts/31697/using-support-vector-machines-for-measuring-democracy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31697.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">378</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8055</span> Stabilization of Rotational Motion of Spacecrafts Using Quantized Two Torque Inputs Based on Random Dither</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yusuke%20Kuramitsu">Yusuke Kuramitsu</a>, <a href="https://publications.waset.org/abstracts/search?q=Tomoaki%20Hashimoto"> Tomoaki Hashimoto</a>, <a href="https://publications.waset.org/abstracts/search?q=Hirokazu%20Tahara"> Hirokazu Tahara</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The control problem of underactuated spacecrafts has attracted a considerable amount of interest. The control method for a spacecraft equipped with less than three control torques is useful when one of the three control torques had failed. On the other hand, the quantized control of systems is one of the important research topics in recent years. The random dither quantization method that transforms a given continuous signal to a discrete signal by adding artificial random noise to the continuous signal before quantization has also attracted a considerable amount of interest. The objective of this study is to develop the control method based on random dither quantization method for stabilizing the rotational motion of a rigid spacecraft with two control inputs. In this paper, the effectiveness of random dither quantization control method for the stabilization of rotational motion of spacecrafts with two torque inputs is verified by numerical simulations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=spacecraft%20control" title="spacecraft control">spacecraft control</a>, <a href="https://publications.waset.org/abstracts/search?q=quantized%20control" title=" quantized control"> quantized control</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20control" title=" nonlinear control"> nonlinear control</a>, <a href="https://publications.waset.org/abstracts/search?q=random%20dither%20method" title=" random dither method"> random dither method</a> </p> <a href="https://publications.waset.org/abstracts/99540/stabilization-of-rotational-motion-of-spacecrafts-using-quantized-two-torque-inputs-based-on-random-dither" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99540.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">180</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8054</span> Exploring Deep Neural Network Compression: An Overview</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ghorab%20Sara">Ghorab Sara</a>, <a href="https://publications.waset.org/abstracts/search?q=Meziani%20Lila"> Meziani Lila</a>, <a href="https://publications.waset.org/abstracts/search?q=Rubin%20Harvey%20Stuart"> Rubin Harvey Stuart</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The rapid growth of deep learning has led to intricate and resource-intensive deep neural networks widely used in computer vision tasks. However, their complexity results in high computational demands and memory usage, hindering real-time application. To address this, research focuses on model compression techniques. The paper provides an overview of recent advancements in compressing neural networks and categorizes the various methods into four main approaches: network pruning, quantization, network decomposition, and knowledge distillation. This paper aims to provide a comprehensive outline of both the advantages and limitations of each method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=model%20compression" title="model compression">model compression</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20neural%20network" title=" deep neural network"> deep neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=pruning" title=" pruning"> pruning</a>, <a href="https://publications.waset.org/abstracts/search?q=knowledge%20distillation" title=" knowledge distillation"> knowledge distillation</a>, <a href="https://publications.waset.org/abstracts/search?q=quantization" title=" quantization"> quantization</a>, <a href="https://publications.waset.org/abstracts/search?q=low-rank%20decomposition" title=" low-rank decomposition"> low-rank decomposition</a> </p> <a href="https://publications.waset.org/abstracts/185803/exploring-deep-neural-network-compression-an-overview" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/185803.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">43</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8053</span> Optimization of Machine Learning Regression Results: An Application on Health Expenditures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Songul%20Cinaroglu">Songul Cinaroglu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Machine learning regression methods are recommended as an alternative to classical regression methods in the existence of variables which are difficult to model. Data for health expenditure is typically non-normal and have a heavily skewed distribution. This study aims to compare machine learning regression methods by hyperparameter tuning to predict health expenditure per capita. A multiple regression model was conducted and performance results of Lasso Regression, Random Forest Regression and Support Vector Machine Regression recorded when different hyperparameters are assigned. Lambda (λ) value for Lasso Regression, number of trees for Random Forest Regression, epsilon (ε) value for Support Vector Regression was determined as hyperparameters. Study results performed by using 'k' fold cross validation changed from 5 to 50, indicate the difference between machine learning regression results in terms of R², RMSE and MAE values that are statistically significant (p < 0.001). Study results reveal that Random Forest Regression (R² ˃ 0.7500, RMSE ≤ 0.6000 ve MAE ≤ 0.4000) outperforms other machine learning regression methods. It is highly advisable to use machine learning regression methods for modelling health expenditures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title="machine learning">machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=lasso%20regression" title=" lasso regression"> lasso regression</a>, <a href="https://publications.waset.org/abstracts/search?q=random%20forest%20regression" title=" random forest regression"> random forest regression</a>, <a href="https://publications.waset.org/abstracts/search?q=support%20vector%20regression" title=" support vector regression"> support vector regression</a>, <a href="https://publications.waset.org/abstracts/search?q=hyperparameter%20tuning" title=" hyperparameter tuning"> hyperparameter tuning</a>, <a href="https://publications.waset.org/abstracts/search?q=health%20expenditure" title=" health expenditure"> health expenditure</a> </p> <a href="https://publications.waset.org/abstracts/97629/optimization-of-machine-learning-regression-results-an-application-on-health-expenditures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97629.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">226</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8052</span> Quantization of Damped Systems Based on the Doubling of Degrees of Freedom</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khaled%20I.%20Nawafleh">Khaled I. Nawafleh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, it provide the canonical approach for studying dissipated oscillators based on the doubling of degrees of freedom. Clearly, expressions for Lagrangians of the elementary modes of the system are given, which ends with the familiar classical equations of motion for the dissipative oscillator. The equation for one variable is the time reversed of the motion of the second variable. it discuss in detail the extended Bateman Lagrangian specifically for a dual extended damped oscillator time-dependent. A Hamilton-Jacobi analysis showing the equivalence with the Lagrangian approach is also obtained. For that purpose, the techniques of separation of variables were applied, and the quantization process was achieved. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=doubling%20of%20degrees%20of%20freedom" title="doubling of degrees of freedom">doubling of degrees of freedom</a>, <a href="https://publications.waset.org/abstracts/search?q=dissipated%20harmonic%20oscillator" title=" dissipated harmonic oscillator"> dissipated harmonic oscillator</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamilton-Jacobi" title=" Hamilton-Jacobi"> Hamilton-Jacobi</a>, <a href="https://publications.waset.org/abstracts/search?q=time-dependent%20lagrangians" title=" time-dependent lagrangians"> time-dependent lagrangians</a>, <a href="https://publications.waset.org/abstracts/search?q=quantization" title=" quantization"> quantization</a> </p> <a href="https://publications.waset.org/abstracts/171405/quantization-of-damped-systems-based-on-the-doubling-of-degrees-of-freedom" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/171405.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">68</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8051</span> Imprecise Vector: The Case of Subnormality</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dhruba%20Das">Dhruba Das</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this article, the author has put forward the actual mathematical explanation of subnormal imprecise vector. Every subnormal imprecise vector has to be defined with reference to a membership surface. The membership surface of normal imprecise vector has already defined based on Randomness-Impreciseness Consistency Principle. The Randomness- Impreciseness Consistency Principle leads to defining a normal law of impreciseness using two different laws of randomness. A normal imprecise vector is a special case of subnormal imprecise vector. Nothing however is available in the literature about the membership surface when a subnormal imprecise vector is defined. The author has shown here how to construct the membership surface of a subnormal imprecise vector. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=imprecise%20vector" title="imprecise vector">imprecise vector</a>, <a href="https://publications.waset.org/abstracts/search?q=membership%20surface" title=" membership surface"> membership surface</a>, <a href="https://publications.waset.org/abstracts/search?q=subnormal%20imprecise%20number" title=" subnormal imprecise number"> subnormal imprecise number</a>, <a href="https://publications.waset.org/abstracts/search?q=subnormal%20imprecise%20vector" title=" subnormal imprecise vector"> subnormal imprecise vector</a> </p> <a href="https://publications.waset.org/abstracts/44144/imprecise-vector-the-case-of-subnormality" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44144.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">320</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8050</span> The Asymmetric Proximal Support Vector Machine Based on Multitask Learning for Classification</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Qing%20Wu">Qing Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Fei-Yan%20Li"> Fei-Yan Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Heng-Chang%20Zhang"> Heng-Chang Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Multitask learning support vector machines (SVMs) have recently attracted increasing research attention. Given several related tasks, the single-task learning methods trains each task separately and ignore the inner cross-relationship among tasks. However, multitask learning can capture the correlation information among tasks and achieve better performance by training all tasks simultaneously. In addition, the asymmetric squared loss function can better improve the generalization ability of the models on the most asymmetric distributed data. In this paper, we first make two assumptions on the relatedness among tasks and propose two multitask learning proximal support vector machine algorithms, named MTL-a-PSVM and EMTL-a-PSVM, respectively. MTL-a-PSVM seeks a trade-off between the maximum expectile distance for each task model and the closeness of each task model to the general model. As an extension of the MTL-a-PSVM, EMTL-a-PSVM can select appropriate kernel functions for shared information and private information. Besides, two corresponding special cases named MTL-PSVM and EMTLPSVM are proposed by analyzing the asymmetric squared loss function, which can be easily implemented by solving linear systems. Experimental analysis of three classification datasets demonstrates the effectiveness and superiority of our proposed multitask learning algorithms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=multitask%20learning" title="multitask learning">multitask learning</a>, <a href="https://publications.waset.org/abstracts/search?q=asymmetric%20squared%20loss" title=" asymmetric squared loss"> asymmetric squared loss</a>, <a href="https://publications.waset.org/abstracts/search?q=EMTL-a-PSVM" title=" EMTL-a-PSVM"> EMTL-a-PSVM</a>, <a href="https://publications.waset.org/abstracts/search?q=classification" title=" classification"> classification</a> </p> <a href="https://publications.waset.org/abstracts/159613/the-asymmetric-proximal-support-vector-machine-based-on-multitask-learning-for-classification" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/159613.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">133</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8049</span> Efficient Human Motion Detection Feature Set by Using Local Phase Quantization Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arwa%20Alzughaibi">Arwa Alzughaibi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Human Motion detection is a challenging task due to a number of factors including variable appearance, posture and a wide range of illumination conditions and background. So, the first need of such a model is a reliable feature set that can discriminate between a human and a non-human form with a fair amount of confidence even under difficult conditions. By having richer representations, the classification task becomes easier and improved results can be achieved. The Aim of this paper is to investigate the reliable and accurate human motion detection models that are able to detect the human motions accurately under varying illumination levels and backgrounds. Different sets of features are tried and tested including Histogram of Oriented Gradients (HOG), Deformable Parts Model (DPM), Local Decorrelated Channel Feature (LDCF) and Aggregate Channel Feature (ACF). However, we propose an efficient and reliable human motion detection approach by combining Histogram of oriented gradients (HOG) and local phase quantization (LPQ) as the feature set, and implementing search pruning algorithm based on optical flow to reduce the number of false positive. Experimental results show the effectiveness of combining local phase quantization descriptor and the histogram of gradient to perform perfectly well for a large range of illumination conditions and backgrounds than the state-of-the-art human detectors. Areaunder th ROC Curve (AUC) of the proposed method achieved 0.781 for UCF dataset and 0.826 for CDW dataset which indicates that it performs comparably better than HOG, DPM, LDCF and ACF methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=human%20motion%20detection" title="human motion detection">human motion detection</a>, <a href="https://publications.waset.org/abstracts/search?q=histograms%20of%20oriented%20gradient" title=" histograms of oriented gradient"> histograms of oriented gradient</a>, <a href="https://publications.waset.org/abstracts/search?q=local%20phase%20quantization" title=" local phase quantization"> local phase quantization</a>, <a href="https://publications.waset.org/abstracts/search?q=local%20phase%20quantization" title=" local phase quantization"> local phase quantization</a> </p> <a href="https://publications.waset.org/abstracts/48160/efficient-human-motion-detection-feature-set-by-using-local-phase-quantization-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48160.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">257</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8048</span> The Boundary Element Method in Excel for Teaching Vector Calculus and Simulation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Stephen%20Kirkup">Stephen Kirkup</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper discusses the implementation of the boundary element method (BEM) on an Excel spreadsheet and how it can be used in teaching vector calculus and simulation. There are two separate spreadheets, within which Laplace equation is solved by the BEM in two dimensions (LIBEM2) and axisymmetric three dimensions (LBEMA). The main algorithms are implemented in the associated programming language within Excel, Visual Basic for Applications (VBA). The BEM only requires a boundary mesh and hence it is a relatively accessible method. The BEM in the open spreadsheet environment is demonstrated as being useful as an aid to teaching and learning. The application of the BEM implemented on a spreadsheet for educational purposes in introductory vector calculus and simulation is explored. The development of assignment work is discussed, and sample results from student work are given. The spreadsheets were found to be useful tools in developing the students’ understanding of vector calculus and in simulating heat conduction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=boundary%20element%20method" title="boundary element method">boundary element method</a>, <a href="https://publications.waset.org/abstracts/search?q=Laplace%E2%80%99s%20equation" title=" Laplace’s equation"> Laplace’s equation</a>, <a href="https://publications.waset.org/abstracts/search?q=vector%20calculus" title=" vector calculus"> vector calculus</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=education" title=" education"> education</a> </p> <a href="https://publications.waset.org/abstracts/95383/the-boundary-element-method-in-excel-for-teaching-vector-calculus-and-simulation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/95383.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">163</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8047</span> AI Peer Review Challenge: Standard Model of Physics vs 4D GEM EOS</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=David%20A.%20Harness">David A. Harness</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Natural evolution of ATP cognitive systems is to meet AI peer review standards. ATP process of axiom selection from Mizar to prove a conjecture would be further refined, as in all human and machine learning, by solving the real world problem of the proposed AI peer review challenge: Determine which conjecture forms the higher confidence level constructive proof between Standard Model of Physics SU(n) lattice gauge group operation vs. present non-standard 4D GEM EOS SU(n) lattice gauge group spatially extended operation in which the photon and electron are the first two trace angular momentum invariants of a gravitoelectromagnetic (GEM) energy momentum density tensor wavetrain integration spin-stress pressure-volume equation of state (EOS), initiated via 32 lines of Mathematica code. Resulting gravitoelectromagnetic spectrum ranges from compressive through rarefactive of the central cosmological constant vacuum energy density in units of pascals. Said self-adjoint group operation exclusively operates on the stress energy momentum tensor of the Einstein field equations, introducing quantization directly on the 4D spacetime level, essentially reformulating the Yang-Mills virtual superpositioned particle compounded lattice gauge groups quantization of the vacuum—into a single hyper-complex multi-valued GEM U(1) × SU(1,3) lattice gauge group Planck spacetime mesh quantization of the vacuum. Thus the Mizar corpus already contains all of the axioms required for relevant DeepMath premise selection and unambiguous formal natural language parsing in context deep learning. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=automated%20theorem%20proving" title="automated theorem proving">automated theorem proving</a>, <a href="https://publications.waset.org/abstracts/search?q=constructive%20quantum%20field%20theory" title=" constructive quantum field theory"> constructive quantum field theory</a>, <a href="https://publications.waset.org/abstracts/search?q=information%20theory" title=" information theory"> information theory</a>, <a href="https://publications.waset.org/abstracts/search?q=neural%20networks" title=" neural networks"> neural networks</a> </p> <a href="https://publications.waset.org/abstracts/74654/ai-peer-review-challenge-standard-model-of-physics-vs-4d-gem-eos" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74654.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">179</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8046</span> An Automated R-Peak Detection Method Using Common Vector Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Kirkbas">Ali Kirkbas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> R peaks in an electrocardiogram (ECG) are signs of cardiac activity in individuals that reveal valuable information about cardiac abnormalities, which can lead to mortalities in some cases. This paper examines the problem of detecting R-peaks in ECG signals, which is a two-class pattern classification problem in fact. To handle this problem with a reliable high accuracy, we propose to use the common vector approach which is a successful machine learning algorithm. The dataset used in the proposed method is obtained from MIT-BIH, which is publicly available. The results are compared with the other popular methods under the performance metrics. The obtained results show that the proposed method shows good performance than that of the other. methods compared in the meaning of diagnosis accuracy and simplicity which can be operated on wearable devices. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ECG" title="ECG">ECG</a>, <a href="https://publications.waset.org/abstracts/search?q=R-peak%20classification" title=" R-peak classification"> R-peak classification</a>, <a href="https://publications.waset.org/abstracts/search?q=common%20vector%20approach" title=" common vector approach"> common vector approach</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a> </p> <a href="https://publications.waset.org/abstracts/182217/an-automated-r-peak-detection-method-using-common-vector-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/182217.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">64</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8045</span> Using Machine Learning Techniques for Autism Spectrum Disorder Analysis and Detection in Children</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Norah%20Mohammed%20Alshahrani">Norah Mohammed Alshahrani</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdulaziz%20Almaleh"> Abdulaziz Almaleh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Autism Spectrum Disorder (ASD) is a condition related to issues with brain development that affects how a person recognises and communicates with others which results in difficulties with interaction and communication socially and it is constantly growing. Early recognition of ASD allows children to lead safe and healthy lives and helps doctors with accurate diagnoses and management of conditions. Therefore, it is crucial to develop a method that will achieve good results and with high accuracy for the measurement of ASD in children. In this paper, ASD datasets of toddlers and children have been analyzed. We employed the following machine learning techniques to attempt to explore ASD and they are Random Forest (RF), Decision Tree (DT), Na¨ıve Bayes (NB) and Support Vector Machine (SVM). Then Feature selection was used to provide fewer attributes from ASD datasets while preserving model performance. As a result, we found that the best result has been provided by the Support Vector Machine (SVM), achieving 0.98% in the toddler dataset and 0.99% in the children dataset. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=autism%20spectrum%20disorder" title="autism spectrum disorder">autism spectrum disorder</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=feature%20selection" title=" feature selection"> feature selection</a>, <a href="https://publications.waset.org/abstracts/search?q=support%20vector%20machine" title=" support vector machine"> support vector machine</a> </p> <a href="https://publications.waset.org/abstracts/151270/using-machine-learning-techniques-for-autism-spectrum-disorder-analysis-and-detection-in-children" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/151270.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">151</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8044</span> Detection Method of Federated Learning Backdoor Based on Weighted K-Medoids</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xun%20Li">Xun Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Haojie%20Wang"> Haojie Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Federated learning is a kind of distributed training and centralized training mode, which is of great value in the protection of user privacy. In order to solve the problem that the model is vulnerable to backdoor attacks in federated learning, a backdoor attack detection method based on a weighted k-medoids algorithm is proposed. First of all, this paper collates the update parameters of the client to construct a vector group, then uses the principal components analysis (PCA) algorithm to extract the corresponding feature information from the vector group, and finally uses the improved k-medoids clustering algorithm to identify the normal and backdoor update parameters. In this paper, the backdoor is implanted in the federation learning model through the model replacement attack method in the simulation experiment, and the update parameters from the attacker are effectively detected and removed by the defense method proposed in this paper. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=federated%20learning" title="federated learning">federated learning</a>, <a href="https://publications.waset.org/abstracts/search?q=backdoor%20attack" title=" backdoor attack"> backdoor attack</a>, <a href="https://publications.waset.org/abstracts/search?q=PCA" title=" PCA"> PCA</a>, <a href="https://publications.waset.org/abstracts/search?q=k-medoids" title=" k-medoids"> k-medoids</a>, <a href="https://publications.waset.org/abstracts/search?q=backdoor%20defense" title=" backdoor defense"> backdoor defense</a> </p> <a href="https://publications.waset.org/abstracts/168344/detection-method-of-federated-learning-backdoor-based-on-weighted-k-medoids" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168344.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">114</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8043</span> Support Vector Machine Based Retinal Therapeutic for Glaucoma Using Machine Learning Algorithm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20S.%20Jagadeesh%20Kumar">P. S. Jagadeesh Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Mingmin%20Pan"> Mingmin Pan</a>, <a href="https://publications.waset.org/abstracts/search?q=Yang%20Yung"> Yang Yung</a>, <a href="https://publications.waset.org/abstracts/search?q=Tracy%20Lin%20Huan"> Tracy Lin Huan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Glaucoma is a group of visual maladies represented by the scheduled optic nerve neuropathy; means to the increasing dwindling in vision ground, resulting in loss of sight. In this paper, a novel support vector machine based retinal therapeutic for glaucoma using machine learning algorithm is conservative. The algorithm has fitting pragmatism; subsequently sustained on correlation clustering mode, it visualizes perfect computations in the multi-dimensional space. Support vector clustering turns out to be comparable to the scale-space advance that investigates the cluster organization by means of a kernel density estimation of the likelihood distribution, where cluster midpoints are idiosyncratic by the neighborhood maxima of the concreteness. The predicted planning has 91% attainment rate on data set deterrent on a consolidation of 500 realistic images of resolute and glaucoma retina; therefore, the computational benefit of depending on the cluster overlapping system pedestal on machine learning algorithm has complete performance in glaucoma therapeutic. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=machine%20learning%20algorithm" title="machine learning algorithm">machine learning algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=correlation%20clustering%20mode" title=" correlation clustering mode"> correlation clustering mode</a>, <a href="https://publications.waset.org/abstracts/search?q=cluster%20overlapping%20system" title=" cluster overlapping system"> cluster overlapping system</a>, <a href="https://publications.waset.org/abstracts/search?q=glaucoma" title=" glaucoma"> glaucoma</a>, <a href="https://publications.waset.org/abstracts/search?q=kernel%20density%20estimation" title=" kernel density estimation"> kernel density estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=retinal%20therapeutic" title=" retinal therapeutic"> retinal therapeutic</a> </p> <a href="https://publications.waset.org/abstracts/80153/support-vector-machine-based-retinal-therapeutic-for-glaucoma-using-machine-learning-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80153.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">254</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8042</span> Intracellular Strategies for Gene Delivery into Mammalian Cells Using Bacteria as a Vector</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kumaran%20Narayanan">Kumaran Narayanan</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrew%20N.%20Osahor"> Andrew N. Osahor</a> </p> <p class="card-text"><strong>Abstract:</strong></p> E. coli has been engineered by our group and by others as a vector to deliver DNA into cultured human and animal cells. However, so far conditions to improve gene delivery using this vector have not been investigated, resulting in a major gap in our understanding of the requirements for this vector to function optimally. Our group recently published novel data showing that simple addition of the DNA transfection reagent Lipofectamine increased the efficiency of the E. coli vector by almost 3-fold, providing the first strong evidence that further optimization of bactofection is possible. This presentation will discuss advances that demonstrate the effects of several intracellular strategies that improve the efficiency of this vector. Conditions that promote endosomal escape of internalized bacteria to evade lysosomal destruction after entry in the cell, a known obstacle limiting this vector, are elucidated. Further, treatments that increase bacterial lysis so that the vector can release its transgene into the mammalian environment for expression will be discussed. These experiments will provide valuable new insight to advance this E. coli system as an important class of vector technology for genetic correction of human disease models in cells and whole animals. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DNA" title="DNA">DNA</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20coli" title=" E. coli"> E. coli</a>, <a href="https://publications.waset.org/abstracts/search?q=gene%20expression" title=" gene expression"> gene expression</a>, <a href="https://publications.waset.org/abstracts/search?q=vector" title=" vector"> vector</a> </p> <a href="https://publications.waset.org/abstracts/45408/intracellular-strategies-for-gene-delivery-into-mammalian-cells-using-bacteria-as-a-vector" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45408.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">358</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8041</span> Data Mining in Medicine Domain Using Decision Trees and Vector Support Machine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Djamila%20Benhaddouche">Djamila Benhaddouche</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelkader%20Benyettou"> Abdelkader Benyettou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we used data mining to extract biomedical knowledge. In general, complex biomedical data collected in studies of populations are treated by statistical methods, although they are robust, they are not sufficient in themselves to harness the potential wealth of data. For that you used in step two learning algorithms: the Decision Trees and Support Vector Machine (SVM). These supervised classification methods are used to make the diagnosis of thyroid disease. In this context, we propose to promote the study and use of symbolic data mining techniques. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biomedical%20data" title="biomedical data">biomedical data</a>, <a href="https://publications.waset.org/abstracts/search?q=learning" title=" learning"> learning</a>, <a href="https://publications.waset.org/abstracts/search?q=classifier" title=" classifier"> classifier</a>, <a href="https://publications.waset.org/abstracts/search?q=algorithms%20decision%20tree" title=" algorithms decision tree"> algorithms decision tree</a>, <a href="https://publications.waset.org/abstracts/search?q=knowledge%20extraction" title=" knowledge extraction"> knowledge extraction</a> </p> <a href="https://publications.waset.org/abstracts/15138/data-mining-in-medicine-domain-using-decision-trees-and-vector-support-machine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15138.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">559</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8040</span> Speed up Vector Median Filtering by Quasi Euclidean Norm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vinai%20K.%20Singh">Vinai K. Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> For reducing impulsive noise without degrading image contours, median filtering is a powerful tool. In multiband images as for example colour images or vector fields obtained by optic flow computation, a vector median filter can be used. Vector median filters are defined on the basis of a suitable distance, the best performing distance being the Euclidean. Euclidean distance is evaluated by using the Euclidean norms which is quite demanding from the point of view of computation given that a square root is required. In this paper an optimal piece-wise linear approximation of the Euclidean norm is presented which is applied to vector median filtering. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=euclidean%20norm" title="euclidean norm">euclidean norm</a>, <a href="https://publications.waset.org/abstracts/search?q=quasi%20euclidean%20norm" title=" quasi euclidean norm"> quasi euclidean norm</a>, <a href="https://publications.waset.org/abstracts/search?q=vector%20median%20filtering" title=" vector median filtering"> vector median filtering</a>, <a href="https://publications.waset.org/abstracts/search?q=applied%20mathematics" title=" applied mathematics"> applied mathematics</a> </p> <a href="https://publications.waset.org/abstracts/21942/speed-up-vector-median-filtering-by-quasi-euclidean-norm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21942.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">474</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8039</span> Unequal Error Protection of VQ Image Transmission System </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khelifi%20Mustapha">Khelifi Mustapha</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Moulay%20lakhdar"> A. Moulay lakhdar</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Elawady"> I. Elawady </a> </p> <p class="card-text"><strong>Abstract:</strong></p> We will study the unequal error protection for VQ image. We have used the Reed Solomon (RS) Codes as Channel coding because they offer better performance in terms of channel error correction over a binary output channel. One such channel (binary input and output) should be considered if it is the case of the application layer, because it includes all the features of the layers located below and on the what it is usually not feasible to make changes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=vector%20quantization" title="vector quantization">vector quantization</a>, <a href="https://publications.waset.org/abstracts/search?q=channel%20error%20correction" title=" channel error correction"> channel error correction</a>, <a href="https://publications.waset.org/abstracts/search?q=Reed-Solomon%20channel%20coding" title=" Reed-Solomon channel coding"> Reed-Solomon channel coding</a>, <a href="https://publications.waset.org/abstracts/search?q=application" title=" application"> application</a> </p> <a href="https://publications.waset.org/abstracts/21372/unequal-error-protection-of-vq-image-transmission-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21372.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">365</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=learning%20vector%20quantization&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=learning%20vector%20quantization&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=learning%20vector%20quantization&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=learning%20vector%20quantization&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=learning%20vector%20quantization&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=learning%20vector%20quantization&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=learning%20vector%20quantization&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=learning%20vector%20quantization&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=learning%20vector%20quantization&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=learning%20vector%20quantization&page=268">268</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=learning%20vector%20quantization&page=269">269</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=learning%20vector%20quantization&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>