CINXE.COM
Površ – Wikipedija/Википедија
<!doctype html> <html class="client-nojs mf-expand-sections-clientpref-0 mf-font-size-clientpref-small mw-mf-amc-clientpref-0" lang="sh-Latn" dir="ltr"> <head> <base href="https://sh.m.wikipedia.org/wiki/Povr%C5%A1"> <meta charset="UTF-8"> <title>Površ – Wikipedija/Википедија</title> <script>(function(){var className="client-js mf-expand-sections-clientpref-0 mf-font-size-clientpref-small mw-mf-amc-clientpref-0";var cookie=document.cookie.match(/(?:^|; )shwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":[",\t.",".\t,"],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy sh-latn","wgMonthNames":["","januar","februar","mart","april","maj","juni","juli","august","septembar","oktobar","novembar","decembar"],"wgRequestId":"1e21f3a3-c19d-42b3-93ff-ce2ceda5886a","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Površ","wgTitle":"Površ","wgCurRevisionId":41688388,"wgRevisionId":41688388,"wgArticleId":4556799,"wgIsArticle":true,"wgIsRedirect": false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgPageViewLanguage":"sh-latn","wgPageContentLanguage":"sh-latn","wgPageContentModel":"wikitext","wgRelevantPageName":"Površ","wgRelevantArticleId":4556799,"wgTempUserName":null,"wgUserVariant":"sh-latn","wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"sh","pageLanguageDir":"ltr","pageVariantFallbacks":"sh-latn"},"wgMFMode":"stable","wgMFAmc":false,"wgMFAmcOutreachActive":false,"wgMFAmcOutreachUserEligible":false,"wgMFLazyLoadImages":true,"wgMFEditNoticesFeatureConflict":false,"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":true,"nearby":true},"wgMFIsSupportedEditRequest":true,"wgMFScriptPath":"","wgWMESchemaEditAttemptStepOversample":false, "wgWMEPageLength":20000,"wgRelatedArticlesCompat":[],"wgCentralAuthMobileDomain":true,"wgEditSubmitButtonLabelPublish":true,"wgSectionTranslationMissingLanguages":[{"lang":"ace","autonym":"Acèh","dir":"ltr"},{"lang":"ady","autonym":"адыгабзэ","dir":"ltr"},{"lang":"alt","autonym":"алтай тил","dir":"ltr"},{"lang":"am","autonym":"አማርኛ","dir":"ltr"},{"lang":"ami","autonym":"Pangcah","dir":"ltr"},{"lang":"ang","autonym":"Ænglisc","dir":"ltr"},{"lang":"ann","autonym":"Obolo","dir":"ltr"},{"lang":"anp","autonym":"अंगिका","dir":"ltr"},{"lang":"ary","autonym":"الدارجة","dir":"rtl"},{"lang":"arz","autonym":"مصرى","dir":"rtl"},{"lang":"as","autonym":"অসমীয়া","dir":"ltr"},{"lang":"av","autonym":"авар","dir":"ltr"},{"lang":"avk","autonym":"Kotava","dir":"ltr"},{"lang":"awa","autonym":"अवधी","dir":"ltr"},{"lang":"ay","autonym":"Aymar aru","dir":"ltr"},{"lang":"azb","autonym":"تۆرکجه","dir":"rtl"},{"lang":"ba","autonym" :"башҡортса","dir":"ltr"},{"lang":"ban","autonym":"Basa Bali","dir":"ltr"},{"lang":"bar","autonym":"Boarisch","dir":"ltr"},{"lang":"bbc","autonym":"Batak Toba","dir":"ltr"},{"lang":"bcl","autonym":"Bikol Central","dir":"ltr"},{"lang":"bdr","autonym":"Bajau Sama","dir":"ltr"},{"lang":"bew","autonym":"Betawi","dir":"ltr"},{"lang":"bho","autonym":"भोजपुरी","dir":"ltr"},{"lang":"bi","autonym":"Bislama","dir":"ltr"},{"lang":"bjn","autonym":"Banjar","dir":"ltr"},{"lang":"blk","autonym":"ပအိုဝ်ႏဘာႏသာႏ","dir":"ltr"},{"lang":"bm","autonym":"bamanankan","dir":"ltr"},{"lang":"bo","autonym":"བོད་ཡིག","dir":"ltr"},{"lang":"bpy","autonym":"বিষ্ণুপ্রিয়া মণিপুরী","dir":"ltr"},{"lang":"br","autonym":"brezhoneg","dir":"ltr"},{"lang":"btm","autonym":"Batak Mandailing","dir":"ltr"},{"lang":"bug","autonym":"Basa Ugi","dir":"ltr"},{"lang":"cdo","autonym":"閩東語 / Mìng-dĕ̤ng-ngṳ̄","dir":"ltr"},{ "lang":"ce","autonym":"нохчийн","dir":"ltr"},{"lang":"ceb","autonym":"Cebuano","dir":"ltr"},{"lang":"ch","autonym":"Chamoru","dir":"ltr"},{"lang":"chr","autonym":"ᏣᎳᎩ","dir":"ltr"},{"lang":"co","autonym":"corsu","dir":"ltr"},{"lang":"cr","autonym":"Nēhiyawēwin / ᓀᐦᐃᔭᐍᐏᐣ","dir":"ltr"},{"lang":"crh","autonym":"qırımtatarca","dir":"ltr"},{"lang":"cu","autonym":"словѣньскъ / ⰔⰎⰑⰂⰡⰐⰠⰔⰍⰟ","dir":"ltr"},{"lang":"cy","autonym":"Cymraeg","dir":"ltr"},{"lang":"da","autonym":"dansk","dir":"ltr"},{"lang":"dag","autonym":"dagbanli","dir":"ltr"},{"lang":"de","autonym":"Deutsch","dir":"ltr"},{"lang":"dga","autonym":"Dagaare","dir":"ltr"},{"lang":"din","autonym":"Thuɔŋjäŋ","dir":"ltr"},{"lang":"diq","autonym":"Zazaki","dir":"ltr"},{"lang":"dsb","autonym":"dolnoserbski","dir":"ltr"},{"lang":"dtp","autonym":"Kadazandusun","dir":"ltr"},{"lang":"dv","autonym":"ދިވެހިބަސް","dir":"rtl"},{"lang":"dz","autonym":"ཇོང་ཁ","dir": "ltr"},{"lang":"ee","autonym":"eʋegbe","dir":"ltr"},{"lang":"el","autonym":"Ελληνικά","dir":"ltr"},{"lang":"eml","autonym":"emiliàn e rumagnòl","dir":"ltr"},{"lang":"fat","autonym":"mfantse","dir":"ltr"},{"lang":"ff","autonym":"Fulfulde","dir":"ltr"},{"lang":"fj","autonym":"Na Vosa Vakaviti","dir":"ltr"},{"lang":"fo","autonym":"føroyskt","dir":"ltr"},{"lang":"fon","autonym":"fɔ̀ngbè","dir":"ltr"},{"lang":"frp","autonym":"arpetan","dir":"ltr"},{"lang":"frr","autonym":"Nordfriisk","dir":"ltr"},{"lang":"fy","autonym":"Frysk","dir":"ltr"},{"lang":"gag","autonym":"Gagauz","dir":"ltr"},{"lang":"gan","autonym":"贛語","dir":"ltr"},{"lang":"gcr","autonym":"kriyòl gwiyannen","dir":"ltr"},{"lang":"glk","autonym":"گیلکی","dir":"rtl"},{"lang":"gn","autonym":"Avañe'ẽ","dir":"ltr"},{"lang":"gom","autonym":"गोंयची कोंकणी / Gõychi Konknni","dir":"ltr"},{"lang":"gor","autonym":"Bahasa Hulontalo","dir":"ltr"},{"lang":"gpe","autonym":"Ghanaian Pidgin", "dir":"ltr"},{"lang":"gu","autonym":"ગુજરાતી","dir":"ltr"},{"lang":"guc","autonym":"wayuunaiki","dir":"ltr"},{"lang":"gur","autonym":"farefare","dir":"ltr"},{"lang":"guw","autonym":"gungbe","dir":"ltr"},{"lang":"gv","autonym":"Gaelg","dir":"ltr"},{"lang":"ha","autonym":"Hausa","dir":"ltr"},{"lang":"hak","autonym":"客家語 / Hak-kâ-ngî","dir":"ltr"},{"lang":"haw","autonym":"Hawaiʻi","dir":"ltr"},{"lang":"hif","autonym":"Fiji Hindi","dir":"ltr"},{"lang":"hsb","autonym":"hornjoserbsce","dir":"ltr"},{"lang":"ht","autonym":"Kreyòl ayisyen","dir":"ltr"},{"lang":"hyw","autonym":"Արեւմտահայերէն","dir":"ltr"},{"lang":"iba","autonym":"Jaku Iban","dir":"ltr"},{"lang":"ie","autonym":"Interlingue","dir":"ltr"},{"lang":"ig","autonym":"Igbo","dir":"ltr"},{"lang":"igl","autonym":"Igala","dir":"ltr"},{"lang":"ilo","autonym":"Ilokano","dir":"ltr"},{"lang":"iu","autonym":"ᐃᓄᒃᑎᑐᑦ / inuktitut","dir":"ltr"},{"lang":"jam","autonym":"Patois","dir":"ltr"},{"lang": "jv","autonym":"Jawa","dir":"ltr"},{"lang":"ka","autonym":"ქართული","dir":"ltr"},{"lang":"kaa","autonym":"Qaraqalpaqsha","dir":"ltr"},{"lang":"kab","autonym":"Taqbaylit","dir":"ltr"},{"lang":"kbd","autonym":"адыгэбзэ","dir":"ltr"},{"lang":"kbp","autonym":"Kabɩyɛ","dir":"ltr"},{"lang":"kcg","autonym":"Tyap","dir":"ltr"},{"lang":"kg","autonym":"Kongo","dir":"ltr"},{"lang":"kge","autonym":"Kumoring","dir":"ltr"},{"lang":"ki","autonym":"Gĩkũyũ","dir":"ltr"},{"lang":"kl","autonym":"kalaallisut","dir":"ltr"},{"lang":"km","autonym":"ភាសាខ្មែរ","dir":"ltr"},{"lang":"kn","autonym":"ಕನ್ನಡ","dir":"ltr"},{"lang":"koi","autonym":"перем коми","dir":"ltr"},{"lang":"krc","autonym":"къарачай-малкъар","dir":"ltr"},{"lang":"ks","autonym":"कॉशुर / کٲشُر","dir":"rtl"},{"lang":"ku","autonym":"kurdî","dir":"ltr"},{"lang":"kus","autonym":"Kʋsaal","dir":"ltr"},{"lang":"kv","autonym":"коми","dir":"ltr"},{"lang": "kw","autonym":"kernowek","dir":"ltr"},{"lang":"lad","autonym":"Ladino","dir":"ltr"},{"lang":"lb","autonym":"Lëtzebuergesch","dir":"ltr"},{"lang":"lez","autonym":"лезги","dir":"ltr"},{"lang":"lg","autonym":"Luganda","dir":"ltr"},{"lang":"li","autonym":"Limburgs","dir":"ltr"},{"lang":"lld","autonym":"Ladin","dir":"ltr"},{"lang":"lmo","autonym":"lombard","dir":"ltr"},{"lang":"ln","autonym":"lingála","dir":"ltr"},{"lang":"lo","autonym":"ລາວ","dir":"ltr"},{"lang":"ltg","autonym":"latgaļu","dir":"ltr"},{"lang":"mad","autonym":"Madhurâ","dir":"ltr"},{"lang":"mai","autonym":"मैथिली","dir":"ltr"},{"lang":"map-bms","autonym":"Basa Banyumasan","dir":"ltr"},{"lang":"mdf","autonym":"мокшень","dir":"ltr"},{"lang":"mg","autonym":"Malagasy","dir":"ltr"},{"lang":"mhr","autonym":"олык марий","dir":"ltr"},{"lang":"mi","autonym":"Māori","dir":"ltr"},{"lang":"min","autonym":"Minangkabau","dir":"ltr"},{"lang":"mk","autonym":"македонски","dir":"ltr"},{ "lang":"ml","autonym":"മലയാളം","dir":"ltr"},{"lang":"mn","autonym":"монгол","dir":"ltr"},{"lang":"mni","autonym":"ꯃꯤꯇꯩ ꯂꯣꯟ","dir":"ltr"},{"lang":"mnw","autonym":"ဘာသာမန်","dir":"ltr"},{"lang":"mos","autonym":"moore","dir":"ltr"},{"lang":"mrj","autonym":"кырык мары","dir":"ltr"},{"lang":"ms","autonym":"Bahasa Melayu","dir":"ltr"},{"lang":"mt","autonym":"Malti","dir":"ltr"},{"lang":"mwl","autonym":"Mirandés","dir":"ltr"},{"lang":"my","autonym":"မြန်မာဘာသာ","dir":"ltr"},{"lang":"myv","autonym":"эрзянь","dir":"ltr"},{"lang":"mzn","autonym":"مازِرونی","dir":"rtl"},{"lang":"nah","autonym":"Nāhuatl","dir":"ltr"},{"lang":"nan","autonym":"閩南語 / Bân-lâm-gú","dir":"ltr"},{"lang":"nap","autonym":"Napulitano","dir":"ltr"},{"lang":"nb","autonym":"norsk bokmål","dir":"ltr"},{"lang":"nds","autonym":"Plattdüütsch","dir":"ltr"},{"lang":"nds-nl","autonym":"Nedersaksies","dir":"ltr"},{"lang":"ne", "autonym":"नेपाली","dir":"ltr"},{"lang":"new","autonym":"नेपाल भाषा","dir":"ltr"},{"lang":"nia","autonym":"Li Niha","dir":"ltr"},{"lang":"nqo","autonym":"ߒߞߏ","dir":"rtl"},{"lang":"nr","autonym":"isiNdebele seSewula","dir":"ltr"},{"lang":"nso","autonym":"Sesotho sa Leboa","dir":"ltr"},{"lang":"ny","autonym":"Chi-Chewa","dir":"ltr"},{"lang":"om","autonym":"Oromoo","dir":"ltr"},{"lang":"or","autonym":"ଓଡ଼ିଆ","dir":"ltr"},{"lang":"os","autonym":"ирон","dir":"ltr"},{"lang":"pa","autonym":"ਪੰਜਾਬੀ","dir":"ltr"},{"lang":"pag","autonym":"Pangasinan","dir":"ltr"},{"lang":"pam","autonym":"Kapampangan","dir":"ltr"},{"lang":"pap","autonym":"Papiamentu","dir":"ltr"},{"lang":"pcd","autonym":"Picard","dir":"ltr"},{"lang":"pcm","autonym":"Naijá","dir":"ltr"},{"lang":"pdc","autonym":"Deitsch","dir":"ltr"},{"lang":"pnb","autonym":"پنجابی","dir":"rtl"},{"lang":"ps","autonym":"پښتو","dir":"rtl"},{"lang":"pwn","autonym":"pinayuanan", "dir":"ltr"},{"lang":"qu","autonym":"Runa Simi","dir":"ltr"},{"lang":"rm","autonym":"rumantsch","dir":"ltr"},{"lang":"rn","autonym":"ikirundi","dir":"ltr"},{"lang":"rue","autonym":"русиньскый","dir":"ltr"},{"lang":"rup","autonym":"armãneashti","dir":"ltr"},{"lang":"rw","autonym":"Ikinyarwanda","dir":"ltr"},{"lang":"sa","autonym":"संस्कृतम्","dir":"ltr"},{"lang":"sah","autonym":"саха тыла","dir":"ltr"},{"lang":"sat","autonym":"ᱥᱟᱱᱛᱟᱲᱤ","dir":"ltr"},{"lang":"sc","autonym":"sardu","dir":"ltr"},{"lang":"scn","autonym":"sicilianu","dir":"ltr"},{"lang":"sco","autonym":"Scots","dir":"ltr"},{"lang":"sd","autonym":"سنڌي","dir":"rtl"},{"lang":"se","autonym":"davvisámegiella","dir":"ltr"},{"lang":"sg","autonym":"Sängö","dir":"ltr"},{"lang":"sgs","autonym":"žemaitėška","dir":"ltr"},{"lang":"shi","autonym":"Taclḥit","dir":"ltr"},{"lang":"shn","autonym":"ၽႃႇသႃႇတႆး ","dir":"ltr"},{"lang":"si","autonym":"සිංහල", "dir":"ltr"},{"lang":"skr","autonym":"سرائیکی","dir":"rtl"},{"lang":"sm","autonym":"Gagana Samoa","dir":"ltr"},{"lang":"smn","autonym":"anarâškielâ","dir":"ltr"},{"lang":"sq","autonym":"shqip","dir":"ltr"},{"lang":"srn","autonym":"Sranantongo","dir":"ltr"},{"lang":"ss","autonym":"SiSwati","dir":"ltr"},{"lang":"st","autonym":"Sesotho","dir":"ltr"},{"lang":"stq","autonym":"Seeltersk","dir":"ltr"},{"lang":"su","autonym":"Sunda","dir":"ltr"},{"lang":"sw","autonym":"Kiswahili","dir":"ltr"},{"lang":"szl","autonym":"ślůnski","dir":"ltr"},{"lang":"ta","autonym":"தமிழ்","dir":"ltr"},{"lang":"tay","autonym":"Tayal","dir":"ltr"},{"lang":"tcy","autonym":"ತುಳು","dir":"ltr"},{"lang":"tdd","autonym":"ᥖᥭᥰ ᥖᥬᥲ ᥑᥨᥒᥰ","dir":"ltr"},{"lang":"tet","autonym":"tetun","dir":"ltr"},{"lang":"tg","autonym":"тоҷикӣ","dir":"ltr"},{"lang":"th","autonym":"ไทย","dir":"ltr"},{"lang":"ti","autonym":"ትግርኛ","dir":"ltr"},{"lang":"tk","autonym": "Türkmençe","dir":"ltr"},{"lang":"tl","autonym":"Tagalog","dir":"ltr"},{"lang":"tly","autonym":"tolışi","dir":"ltr"},{"lang":"tn","autonym":"Setswana","dir":"ltr"},{"lang":"to","autonym":"lea faka-Tonga","dir":"ltr"},{"lang":"tpi","autonym":"Tok Pisin","dir":"ltr"},{"lang":"trv","autonym":"Seediq","dir":"ltr"},{"lang":"ts","autonym":"Xitsonga","dir":"ltr"},{"lang":"tt","autonym":"татарча / tatarça","dir":"ltr"},{"lang":"tum","autonym":"chiTumbuka","dir":"ltr"},{"lang":"tw","autonym":"Twi","dir":"ltr"},{"lang":"ty","autonym":"reo tahiti","dir":"ltr"},{"lang":"tyv","autonym":"тыва дыл","dir":"ltr"},{"lang":"udm","autonym":"удмурт","dir":"ltr"},{"lang":"ve","autonym":"Tshivenda","dir":"ltr"},{"lang":"vep","autonym":"vepsän kel’","dir":"ltr"},{"lang":"vls","autonym":"West-Vlams","dir":"ltr"},{"lang":"vo","autonym":"Volapük","dir":"ltr"},{"lang":"vro","autonym":"võro","dir":"ltr"},{"lang":"wa","autonym":"walon","dir":"ltr"},{"lang":"war","autonym":"Winaray", "dir":"ltr"},{"lang":"wo","autonym":"Wolof","dir":"ltr"},{"lang":"xal","autonym":"хальмг","dir":"ltr"},{"lang":"xh","autonym":"isiXhosa","dir":"ltr"},{"lang":"xmf","autonym":"მარგალური","dir":"ltr"},{"lang":"yi","autonym":"ייִדיש","dir":"rtl"},{"lang":"yo","autonym":"Yorùbá","dir":"ltr"},{"lang":"yue","autonym":"粵語","dir":"ltr"},{"lang":"za","autonym":"Vahcuengh","dir":"ltr"},{"lang":"zgh","autonym":"ⵜⴰⵎⴰⵣⵉⵖⵜ ⵜⴰⵏⴰⵡⴰⵢⵜ","dir":"ltr"},{"lang":"zu","autonym":"isiZulu","dir":"ltr"}],"wgSectionTranslationTargetLanguages":["ace","ady","alt","am","ami","an","ang","ann","anp","ar","ary","arz","as","ast","av","avk","awa","ay","az","azb","ba","ban","bar","bbc","bcl","bdr","be","bew","bg","bho","bi","bjn","blk","bm","bn","bo","bpy","br","bs","btm","bug","ca","cdo","ce","ceb","ch","chr","ckb","co","cr","crh","cs","cu","cy","da","dag","de","dga","din","diq","dsb","dtp","dv","dz","ee","el","eml","eo","es","et","eu","fa","fat","ff", "fi","fj","fo","fon","fr","frp","frr","fur","fy","gag","gan","gcr","gl","glk","gn","gom","gor","gpe","gu","guc","gur","guw","gv","ha","hak","haw","he","hi","hif","hr","hsb","ht","hu","hy","hyw","ia","iba","ie","ig","igl","ilo","io","is","it","iu","ja","jam","jv","ka","kaa","kab","kbd","kbp","kcg","kg","kge","ki","kk","kl","km","kn","ko","koi","krc","ks","ku","kus","kv","kw","ky","lad","lb","lez","lg","li","lij","lld","lmo","ln","lo","lt","ltg","lv","mad","mai","map-bms","mdf","mg","mhr","mi","min","mk","ml","mn","mni","mnw","mos","mr","mrj","ms","mt","mwl","my","myv","mzn","nah","nan","nap","nb","nds","nds-nl","ne","new","nia","nl","nn","nqo","nr","nso","ny","oc","om","or","os","pa","pag","pam","pap","pcd","pcm","pdc","pl","pms","pnb","ps","pt","pwn","qu","rm","rn","ro","rsk","rue","rup","rw","sa","sah","sat","sc","scn","sco","sd","se","sg","sgs","sh","shi","shn","si","sk","skr","sl","sm","smn","sn","so","sq","sr","srn","ss","st","stq","su","sv","sw","szl","ta","tay","tcy","tdd","te", "tet","tg","th","ti","tk","tl","tly","tn","to","tpi","tr","trv","ts","tt","tum","tw","ty","tyv","udm","ur","uz","ve","vec","vep","vi","vls","vo","vro","wa","war","wo","wuu","xal","xh","xmf","yi","yo","yue","za","zgh","zh","zu"],"isLanguageSearcherCXEntrypointEnabled":true,"mintEntrypointLanguages":["ace","ast","azb","bcl","bjn","bh","crh","ff","fon","ig","is","ki","ks","lmo","min","sat","ss","tn","vec"],"wgWikibaseItemId":"Q484298","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false,"wgMinervaPermissions":{"watchable":true,"watch":false},"wgMinervaFeatures":{"beta":false,"donate":true,"mobileOptionsLink":true,"categories":false,"pageIssues":true,"talkAtTop":false,"historyInPageActions":false,"overflowSubmenu":false,"tabsOnSpecials" :true,"personalMenu":false,"mainMenuExpanded":false,"echo":true,"nightMode":false},"wgMinervaDownloadNamespaces":[0],"wgSiteNoticeId":"2.8"};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.math.styles":"ready","mediawiki.page.gallery.styles":"ready","skins.minerva.styles":"ready","skins.minerva.content.styles.images":"ready","mediawiki.hlist":"ready","skins.minerva.codex.styles":"ready","skins.minerva.icons":"ready","ext.wikimediamessages.styles":"ready","mobile.init.styles":"ready","ext.relatedArticles.styles":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready","ext.dismissableSiteNotice.styles":"ready"};RLPAGEMODULES=["site","mediawiki.page.ready","skins.minerva.scripts","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.charinsert","ext.urlShortener.toolbar","ext.centralauth.centralautologin","ext.popups","mobile.init", "ext.echo.centralauth","ext.relatedArticles.readMore.bootstrap","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.cx.eventlogging.campaigns","ext.cx.entrypoints.mffrequentlanguages","ext.cx.entrypoints.languagesearcher.init","mw.externalguidance.init","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking","ext.dismissableSiteNotice"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"});mw.user.options.set({"language":"sh-latn"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=sh-latn&modules=ext.dismissableSiteNotice.styles%7Cext.math.styles%7Cext.relatedArticles.styles%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cmediawiki.hlist%7Cmediawiki.page.gallery.styles%7Cmobile.init.styles%7Cskins.minerva.codex.styles%7Cskins.minerva.content.styles.images%7Cskins.minerva.icons%2Cstyles%7Cwikibase.client.init&only=styles&skin=minerva"> <script async src="/w/load.php?lang=sh-latn&modules=startup&only=scripts&raw=1&skin=minerva"></script> <meta name="generator" content="MediaWiki 1.44.0-wmf.4"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta name="theme-color" content="#eaecf0"> <meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes, minimum-scale=0.25, maximum-scale=5.0"> <meta property="og:title" content="Površ – Wikipedija/Википедија"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="manifest" href="/w/api.php?action=webapp-manifest"> <link rel="alternate" type="application/x-wiki" title="Uredi" href="/w/index.php?title=Povr%C5%A1&action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedija (sh)"> <link rel="EditURI" type="application/rsd+xml" href="//sh.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://sh.wikipedia.org/wiki/Povr%C5%A1"> <link rel="alternate" hreflang="sh" href="https://sh.wikipedia.org/wiki/Povr%C5%A1"> <link rel="alternate" hreflang="sh-Cyrl" href="https://sh.wikipedia.org/w/index.php?title=Povr%C5%A1&variant=sh-cyrl"> <link rel="alternate" hreflang="sh-Latn" href="https://sh.wikipedia.org/w/index.php?title=Povr%C5%A1&variant=sh-latn"> <link rel="alternate" hreflang="x-default" href="https://sh.wikipedia.org/wiki/Povr%C5%A1"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.sh"> <link rel="dns-prefetch" href="//meta.wikimedia.org"> <link rel="dns-prefetch" href="//login.wikimedia.org"> <meta http-equiv="X-Translated-By" content="Google"> <meta http-equiv="X-Translated-To" content="en"> <script type="text/javascript" src="https://www.gstatic.com/_/translate_http/_/js/k=translate_http.tr.en_GB.WgGHrg8C9fE.O/am=DgY/d=1/rs=AN8SPfpNfjzpGCAsUUJ5X-GCaxSfec_Eng/m=corsproxy" data-sourceurl="https://sh.m.wikipedia.org/wiki/Povr%C5%A1"></script> <link href="https://fonts.googleapis.com/css2?family=Material+Symbols+Outlined:opsz,wght,FILL,GRAD@20..48,100..700,0..1,-50..200" rel="stylesheet"> <script type="text/javascript" src="https://www.gstatic.com/_/translate_http/_/js/k=translate_http.tr.en_GB.WgGHrg8C9fE.O/am=DgY/d=1/exm=corsproxy/ed=1/rs=AN8SPfpNfjzpGCAsUUJ5X-GCaxSfec_Eng/m=phishing_protection" data-phishing-protection-enabled="false" data-forms-warning-enabled="true" data-source-url="https://sh.m.wikipedia.org/wiki/Povr%C5%A1"></script> <meta name="robots" content="none"> </head> <body class="mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Površ rootpage-Površ stable issues-group-B skin-minerva action-view skin--responsive mw-mf-amc-disabled mw-mf"> <script type="text/javascript" src="https://www.gstatic.com/_/translate_http/_/js/k=translate_http.tr.en_GB.WgGHrg8C9fE.O/am=DgY/d=1/exm=corsproxy,phishing_protection/ed=1/rs=AN8SPfpNfjzpGCAsUUJ5X-GCaxSfec_Eng/m=navigationui" data-environment="prod" data-proxy-url="https://sh-m-wikipedia-org.translate.goog" data-proxy-full-url="https://sh-m-wikipedia-org.translate.goog/wiki/Povr%C5%A1?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" data-source-url="https://sh.m.wikipedia.org/wiki/Povr%C5%A1" data-source-language="auto" data-target-language="en" data-display-language="en-GB" data-detected-source-language="bs" data-is-source-untranslated="false" data-source-untranslated-url="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://sh.m.wikipedia.org/wiki/Povr%25C5%25A1&anno=2" data-client="tr"></script> <div id="mw-mf-viewport"> <div id="mw-mf-page-center"><a class="mw-mf-page-center__mask" href="https://sh-m-wikipedia-org.translate.goog/wiki/Povr%C5%A1?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#"></a> <header class="header-container header-chrome"> <div class="minerva-header"> <nav class="navigation-drawer toggle-list view-border-box"><input type="checkbox" id="main-menu-input" class="toggle-list__checkbox" role="button" aria-haspopup="true" aria-expanded="false" aria-labelledby="mw-mf-main-menu-button"> <label role="button" for="main-menu-input" id="mw-mf-main-menu-button" aria-hidden="true" data-event-name="ui.mainmenu" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet toggle-list__toggle"> <span class="minerva-icon minerva-icon--menu"></span> <span></span> </label> <div id="mw-mf-page-left" class="menu view-border-box"> <ul id="p-navigation" class="toggle-list__list"> <li class="toggle-list-item "><a class="toggle-list-item__anchor menu__item--home" href="https://sh-m-wikipedia-org.translate.goog/wiki/Glavna_stranica?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" data-mw="interface"> <span class="minerva-icon minerva-icon--home"></span> <span class="toggle-list-item__label">Početna</span> </a></li> <li class="toggle-list-item "><a class="toggle-list-item__anchor menu__item--random" href="https://sh-m-wikipedia-org.translate.goog/wiki/Posebno:Slu%C4%8Dajna_stranica?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" data-mw="interface"> <span class="minerva-icon minerva-icon--die"></span> <span class="toggle-list-item__label">Nasumična</span> </a></li> <li class="toggle-list-item skin-minerva-list-item-jsonly"><a class="toggle-list-item__anchor menu__item--nearby" href="https://sh-m-wikipedia-org.translate.goog/wiki/Posebno:U_blizini?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" data-event-name="menu.nearby" data-mw="interface"> <span class="minerva-icon minerva-icon--mapPin"></span> <span class="toggle-list-item__label">U blizini</span> </a></li> </ul> <ul id="p-personal" class="toggle-list__list"> <li class="toggle-list-item "><a class="toggle-list-item__anchor menu__item--login" href="https://sh-m-wikipedia-org.translate.goog/w/index.php?title=Posebno:Korisni%C4%8Dka_prijava&returnto=Povr%C5%A1&_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" data-event-name="menu.login" data-mw="interface"> <span class="minerva-icon minerva-icon--logIn"></span> <span class="toggle-list-item__label">Prijavi me</span> </a></li> </ul> <ul id="pt-preferences" class="toggle-list__list"> <li class="toggle-list-item skin-minerva-list-item-jsonly"><a class="toggle-list-item__anchor menu__item--settings" href="https://sh-m-wikipedia-org.translate.goog/w/index.php?title=Posebno:MobilnaPode%C5%A1avanja&returnto=Povr%C5%A1&_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" data-event-name="menu.settings" data-mw="interface"> <span class="minerva-icon minerva-icon--settings"></span> <span class="toggle-list-item__label">Postavke</span> </a></li> </ul> <ul id="p-donation" class="toggle-list__list"> <li class="toggle-list-item "><a class="toggle-list-item__anchor menu__item--donate" href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source%3Ddonate%26utm_medium%3Dsidebar%26utm_campaign%3DC13_sh.wikipedia.org%26uselang%3Dsh%26utm_key%3Dminerva" data-event-name="menu.donate" data-mw="interface"> <span class="minerva-icon minerva-icon--heart"></span> <span class="toggle-list-item__label">Donacije</span> </a></li> </ul> <ul class="hlist"> <li class="toggle-list-item "><a class="toggle-list-item__anchor menu__item--about" href="https://sh-m-wikipedia-org.translate.goog/wiki/Wikipedija:O_projektu?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" data-mw="interface"> <span class="toggle-list-item__label">O projektu</span> </a></li> <li class="toggle-list-item "><a class="toggle-list-item__anchor menu__item--disclaimers" href="https://sh-m-wikipedia-org.translate.goog/wiki/Wikipedija:Op%C4%87e_odricanje_odgovornosti?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" data-mw="interface"> <span class="toggle-list-item__label">Odricanje odgovornosti</span> </a></li> </ul> </div><label class="main-menu-mask" for="main-menu-input"></label> </nav> <div class="branding-box"><a href="https://sh-m-wikipedia-org.translate.goog/wiki/Glavna_stranica?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB"> <span><img src="/static/images/mobile/copyright/wikipedia-wordmark-sh-latn.svg" alt="Wikipedija" width="120" height="32" style="width: 7.5em; height: 2em;"> </span> </a> </div> <form action="/w/index.php" method="get" class="minerva-search-form"> <div class="search-box"><input type="hidden" name="title" value="Posebno:Traži"> <input class="search skin-minerva-search-trigger" id="searchInput" type="search" name="search" placeholder="Pretražite Wikipediju" aria-label="Pretražite Wikipediju" autocapitalize="sentences" title="Pretražite Wikipediju [f]" accesskey="f"> <span class="search-box-icon-overlay"><span class="minerva-icon minerva-icon--search"></span> </span> </div><button id="searchIcon" class="cdx-button cdx-button--size-large cdx-button--icon-only cdx-button--weight-quiet skin-minerva-search-trigger"> <span class="minerva-icon minerva-icon--search"></span> <span>Pretraži</span> </button> </form> <nav class="minerva-user-navigation" aria-label="Korisnička navigacija"> </nav> </div> </header> <main id="content" class="mw-body"> <div class="banner-container"> <div id="siteNotice"></div> </div> <div class="pre-content heading-holder"> <div class="page-heading"> <h1 id="firstHeading" class="firstHeading mw-first-heading" lang="sh-Latn" dir="ltr"><span class="mw-page-title-main">Površ</span></h1> <div class="tagline"></div> </div> <nav class="page-actions-menu"> <ul id="p-views" class="page-actions-menu__list"> <li id="language-selector" class="page-actions-menu__list-item"><a role="button" href="https://sh-m-wikipedia-org.translate.goog/wiki/Povr%C5%A1?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#p-lang" data-mw="interface" data-event-name="menu.languages" title="Jezik" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet language-selector"> <span class="minerva-icon minerva-icon--language"></span> <span>Jezik</span> </a></li> <li id="page-actions-watch" class="page-actions-menu__list-item"><a role="button" id="ca-watch" href="https://sh-m-wikipedia-org.translate.goog/w/index.php?title=Posebno:Korisni%C4%8Dka_prijava&returnto=Povr%C5%A1&_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" data-event-name="menu.watch" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet menu__item--page-actions-watch"> <span class="minerva-icon minerva-icon--star"></span> <span>Prati</span> </a></li> <li id="page-actions-edit" class="page-actions-menu__list-item"><a role="button" id="ca-edit" href="https://sh-m-wikipedia-org.translate.goog/w/index.php?title=Povr%C5%A1&action=edit&_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" data-event-name="menu.edit" data-mw="interface" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet edit-page menu__item--page-actions-edit"> <span class="minerva-icon minerva-icon--edit"></span> <span>Uredi</span> </a></li> </ul> </nav><!-- version 1.0.2 (change every time you update a partial) --> <div id="mw-content-subtitle" lang="sh-Latn" dir="ltr"></div> </div> <div id="bodyContent" class="content"> <div id="mw-content-text" class="mw-body-content"> <script>function mfTempOpenSection(id){var block=document.getElementById("mf-section-"+id);block.className+=" open-block";block.previousSibling.className+=" open-block";}</script> <div class="mw-content-ltr mw-parser-output" lang="sh-Latn" dir="ltr"> <section class="mf-section-0" id="mf-section-0"> <p><b>Površ</b> je dvoparametarski skup tačaka u <a href="https://sh-m-wikipedia-org.translate.goog/wiki/Prostor?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Prostor">prostoru</a>, tj. skup tačaka prostora čije su koordinate funkcije dva parametra <i>u</i> i <i>v</i>. Naprimjer, funkcije krivolinijskih koordinata tačke na površi. U ovom se pretpostavlja da ove funkcije imaju <a href="https://sh-m-wikipedia-org.translate.goog/wiki/Izvod?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Izvod">izvode</a> do nekog reda. Ako su <i>u</i> i <i>v</i> krivolinijske koordinate na površi, onda se površ može odrediti <a href="https://sh-m-wikipedia-org.translate.goog/wiki/Jedna%C4%8Dina?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Jednačina">jednačinama</a>:</p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x=x(u,v),\;y=y(u,v),\;z=z(u,v),}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> x </mi> <mo> = </mo> <mi> x </mi> <mo stretchy="false"> ( </mo> <mi> u </mi> <mo> , </mo> <mi> v </mi> <mo stretchy="false"> ) </mo> <mo> , </mo> <mspace width="thickmathspace"></mspace> <mi> y </mi> <mo> = </mo> <mi> y </mi> <mo stretchy="false"> ( </mo> <mi> u </mi> <mo> , </mo> <mi> v </mi> <mo stretchy="false"> ) </mo> <mo> , </mo> <mspace width="thickmathspace"></mspace> <mi> z </mi> <mo> = </mo> <mi> z </mi> <mo stretchy="false"> ( </mo> <mi> u </mi> <mo> , </mo> <mi> v </mi> <mo stretchy="false"> ) </mo> <mo> , </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle x=x(u,v),\;y=y(u,v),\;z=z(u,v),} </annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/aa8a1656973ee4810dff44f2e18c3660c3411bd5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:36.349ex; height:2.843ex;" alt="{\displaystyle x=x(u,v),\;y=y(u,v),\;z=z(u,v),}"></span> </dd> </dl> <p>gdje su <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> x </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle x} </annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y,}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> y </mi> <mo> , </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle y,} </annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/99bd9829c9ef4adcb0f9f5d53b27463a873a8e88" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.802ex; height:2.009ex;" alt="{\displaystyle y,}"></span> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> z </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle z} </annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bf368e72c009decd9b6686ee84a375632e11de98" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.088ex; height:1.676ex;" alt="{\displaystyle z}"></span> diferencijabilne skalarne funkcije.</p> <p>odnosno</p> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r(u,v)=x(u,v)i+y(u,v)j+z(u,v)k}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> r </mi> <mo stretchy="false"> ( </mo> <mi> u </mi> <mo> , </mo> <mi> v </mi> <mo stretchy="false"> ) </mo> <mo> = </mo> <mi> x </mi> <mo stretchy="false"> ( </mo> <mi> u </mi> <mo> , </mo> <mi> v </mi> <mo stretchy="false"> ) </mo> <mi> i </mi> <mo> + </mo> <mi> y </mi> <mo stretchy="false"> ( </mo> <mi> u </mi> <mo> , </mo> <mi> v </mi> <mo stretchy="false"> ) </mo> <mi> j </mi> <mo> + </mo> <mi> z </mi> <mo stretchy="false"> ( </mo> <mi> u </mi> <mo> , </mo> <mi> v </mi> <mo stretchy="false"> ) </mo> <mi> k </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle r(u,v)=x(u,v)i+y(u,v)j+z(u,v)k} </annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/34070a624d52d7b2b396cec883401b52de9e6812" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:37.575ex; height:2.843ex;" alt="{\displaystyle r(u,v)=x(u,v)i+y(u,v)j+z(u,v)k}"></span> gdje su <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> x </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle x} </annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y,}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> y </mi> <mo> , </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle y,} </annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/99bd9829c9ef4adcb0f9f5d53b27463a873a8e88" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.802ex; height:2.009ex;" alt="{\displaystyle y,}"></span> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> z </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle z} </annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bf368e72c009decd9b6686ee84a375632e11de98" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.088ex; height:1.676ex;" alt="{\displaystyle z}"></span> realne funkcije klase <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C^{1}(U)}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi> C </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 1 </mn> </mrow> </msup> <mo stretchy="false"> ( </mo> <mi> U </mi> <mo stretchy="false"> ) </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle C^{1}(U)} </annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e14c03a15fa07db857bf734188a60efa6136184b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.444ex; height:3.176ex;" alt="{\displaystyle C^{1}(U)}"></span> tj. imaju neprekidne prve parcijalne derivacije na <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle U}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> U </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle U} </annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/458a728f53b9a0274f059cd695e067c430956025" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.783ex; height:2.176ex;" alt="{\displaystyle U}"></span>.</p> <p>koje se nazivaju parametarske jednačine površi.</p> <p>Površ drugog reda je skup svih tacaka trodimenzionalnog prostora koje zadovoljavaju jednačinu</p> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Ax^{2}+By^{2}+Cz^{2}+Dxy+Exz+Fyz+Gx+Hy+Iz+K=0}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> A </mi> <msup> <mi> x </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <mo> + </mo> <mi> B </mi> <msup> <mi> y </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <mo> + </mo> <mi> C </mi> <msup> <mi> z </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <mo> + </mo> <mi> D </mi> <mi> x </mi> <mi> y </mi> <mo> + </mo> <mi> E </mi> <mi> x </mi> <mi> z </mi> <mo> + </mo> <mi> F </mi> <mi> y </mi> <mi> z </mi> <mo> + </mo> <mi> G </mi> <mi> x </mi> <mo> + </mo> <mi> H </mi> <mi> y </mi> <mo> + </mo> <mi> I </mi> <mi> z </mi> <mo> + </mo> <mi> K </mi> <mo> = </mo> <mn> 0 </mn> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle Ax^{2}+By^{2}+Cz^{2}+Dxy+Exz+Fyz+Gx+Hy+Iz+K=0} </annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c8b215d3817aa4067193b65e71cb034ff297df1e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:65.13ex; height:3.009ex;" alt="{\displaystyle Ax^{2}+By^{2}+Cz^{2}+Dxy+Exz+Fyz+Gx+Hy+Iz+K=0}"></span></p> <p>za bar jedan <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A,B,C,D,E\neq 0}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> A </mi> <mo> , </mo> <mi> B </mi> <mo> , </mo> <mi> C </mi> <mo> , </mo> <mi> D </mi> <mo> , </mo> <mi> E </mi> <mo> ≠<!-- ≠ --> </mo> <mn> 0 </mn> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle A,B,C,D,E\neq 0} </annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f5484c4b8196f5ca81ac54c435c08a55d889a7e7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:17.37ex; height:2.676ex;" alt="{\displaystyle A,B,C,D,E\neq 0}"></span> tj. u formuli postoji barem jedan netrivijalni nelinearni član.</p> <dl> <dt> primjer </dt> </dl> <p><a href="https://sh-m-wikipedia-org.translate.goog/wiki/Sfera?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Sfera">sfera</a> O(R) se može odrediti parametarskim jednačinama:</p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x=R\cos u\cos v,\quad y=R\cos u\sin v,\quad z=R\sin u,}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> x </mi> <mo> = </mo> <mi> R </mi> <mi> cos </mi> <mo> <!-- --> </mo> <mi> u </mi> <mi> cos </mi> <mo> <!-- --> </mo> <mi> v </mi> <mo> , </mo> <mspace width="1em"></mspace> <mi> y </mi> <mo> = </mo> <mi> R </mi> <mi> cos </mi> <mo> <!-- --> </mo> <mi> u </mi> <mi> sin </mi> <mo> <!-- --> </mo> <mi> v </mi> <mo> , </mo> <mspace width="1em"></mspace> <mi> z </mi> <mo> = </mo> <mi> R </mi> <mi> sin </mi> <mo> <!-- --> </mo> <mi> u </mi> <mo> , </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle x=R\cos u\cos v,\quad y=R\cos u\sin v,\quad z=R\sin u,} </annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7ddffbd51a22fb1644bcab638be41cad3c54bd63" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:50.68ex; height:2.509ex;" alt="{\displaystyle x=R\cos u\cos v,\quad y=R\cos u\sin v,\quad z=R\sin u,}"></span> </dd> </dl> <p>gdje je <i>u</i> širina, <i>v</i> dužina tačke na sferi. Eliminisanjem (isključenjem) <i>u</i> i <i>v</i> iz ovih jednačina dobija se poznata jednačina sfere:</p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x^{2}+y^{2}+z^{2}=R^{2}.\,}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi> x </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <mo> + </mo> <msup> <mi> y </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <mo> + </mo> <msup> <mi> z </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <mo> = </mo> <msup> <mi> R </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <mo> . </mo> <mspace width="thinmathspace"></mspace> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle x^{2}+y^{2}+z^{2}=R^{2}.\,} </annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/33f588b25794b1cb9eb9a3079c75864ceb21afdf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:19.375ex; height:3.009ex;" alt="{\displaystyle x^{2}+y^{2}+z^{2}=R^{2}.\,}"></span> </dd> </dl> <p>Jednačina<a href="https://sh-m-wikipedia-org.translate.goog/wiki/Lopta?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Lopta"> sfere </a>(loptine površi) radijusa <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> r </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle r} </annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0d1ecb613aa2984f0576f70f86650b7c2a132538" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.049ex; height:1.676ex;" alt="{\displaystyle r}"></span> s centrom u tački <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (x_{0},y_{0},z_{0})}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false"> ( </mo> <msub> <mi> x </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> <mo> , </mo> <msub> <mi> y </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> <mo> , </mo> <msub> <mi> z </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> <mo stretchy="false"> ) </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle (x_{0},y_{0},z_{0})} </annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/39177ddeeb9f9a393b664e522bc8e3bf0face153" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.59ex; height:2.843ex;" alt="{\displaystyle (x_{0},y_{0},z_{0})}"></span> data je sa</p> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \displaystyle (x-x_{0})^{2}+(y-y_{0})^{2}+(z-z_{0})^{2}=r^{2}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false"> ( </mo> <mi> x </mi> <mo> −<!-- − --> </mo> <msub> <mi> x </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> <msup> <mo stretchy="false"> ) </mo> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <mo> + </mo> <mo stretchy="false"> ( </mo> <mi> y </mi> <mo> −<!-- − --> </mo> <msub> <mi> y </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> <msup> <mo stretchy="false"> ) </mo> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <mo> + </mo> <mo stretchy="false"> ( </mo> <mi> z </mi> <mo> −<!-- − --> </mo> <msub> <mi> z </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> <msup> <mo stretchy="false"> ) </mo> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <mo> = </mo> <msup> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \displaystyle (x-x_{0})^{2}+(y-y_{0})^{2}+(z-z_{0})^{2}=r^{2}} </annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0fe3c1006772c8f083c1a2676562608cb46ee51c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:38.28ex; height:3.176ex;" alt="{\displaystyle \displaystyle (x-x_{0})^{2}+(y-y_{0})^{2}+(z-z_{0})^{2}=r^{2}}"></span></p> <p>Ovom formulom su zadane dvije<a href="https://sh-m-wikipedia-org.translate.goog/wiki/Funkcija?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Funkcija"> funkcije</a> dvije varijable:</p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z=f_{1}(x,y)=z_{0}+{\sqrt {r^{2}-(x-x_{0})^{2}-(y-y_{0})^{2}}}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> z </mi> <mo> = </mo> <msub> <mi> f </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 1 </mn> </mrow> </msub> <mo stretchy="false"> ( </mo> <mi> x </mi> <mo> , </mo> <mi> y </mi> <mo stretchy="false"> ) </mo> <mo> = </mo> <msub> <mi> z </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> <mo> + </mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <msup> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <mo> −<!-- − --> </mo> <mo stretchy="false"> ( </mo> <mi> x </mi> <mo> −<!-- − --> </mo> <msub> <mi> x </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> <msup> <mo stretchy="false"> ) </mo> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <mo> −<!-- − --> </mo> <mo stretchy="false"> ( </mo> <mi> y </mi> <mo> −<!-- − --> </mo> <msub> <mi> y </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> <msup> <mo stretchy="false"> ) </mo> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle z=f_{1}(x,y)=z_{0}+{\sqrt {r^{2}-(x-x_{0})^{2}-(y-y_{0})^{2}}}} </annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a80c3bc197a20d04748a7bcf5601cd67f1c8bffa" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.671ex; width:48.361ex; height:4.843ex;" alt="{\displaystyle z=f_{1}(x,y)=z_{0}+{\sqrt {r^{2}-(x-x_{0})^{2}-(y-y_{0})^{2}}}}"></span> </dd> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z=f_{2}(x,y)=z_{0}-{\sqrt {r^{2}-(x-x_{0})^{2}-(y-y_{0})^{2}}}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> z </mi> <mo> = </mo> <msub> <mi> f </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msub> <mo stretchy="false"> ( </mo> <mi> x </mi> <mo> , </mo> <mi> y </mi> <mo stretchy="false"> ) </mo> <mo> = </mo> <msub> <mi> z </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> <mo> −<!-- − --> </mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <msup> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <mo> −<!-- − --> </mo> <mo stretchy="false"> ( </mo> <mi> x </mi> <mo> −<!-- − --> </mo> <msub> <mi> x </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> <msup> <mo stretchy="false"> ) </mo> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <mo> −<!-- − --> </mo> <mo stretchy="false"> ( </mo> <mi> y </mi> <mo> −<!-- − --> </mo> <msub> <mi> y </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> <msup> <mo stretchy="false"> ) </mo> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle z=f_{2}(x,y)=z_{0}-{\sqrt {r^{2}-(x-x_{0})^{2}-(y-y_{0})^{2}}}} </annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/da236ce5a206e0bdbf6f8994b66dc3a28bb640a9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.671ex; width:48.361ex; height:4.843ex;" alt="{\displaystyle z=f_{2}(x,y)=z_{0}-{\sqrt {r^{2}-(x-x_{0})^{2}-(y-y_{0})^{2}}}}"></span> </dd> </dl> <p>Nivo-površi sfere (presjeci s <a href="https://sh-m-wikipedia-org.translate.goog/wiki/Ravan?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Ravan">ravnima paralelnim</a> s <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle xy}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> x </mi> <mi> y </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle xy} </annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c72eb345e496513fb8b2fa4aa8c4d89b855f9a01" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.485ex; height:2.009ex;" alt="{\displaystyle xy}"></span> ravni) i presjeci s ravnima paralelnim s <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle xz}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> x </mi> <mi> z </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle xz} </annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/97005bee6e83614cf6ce64d4e68e5ab2ac280709" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.418ex; height:1.676ex;" alt="{\displaystyle xz}"></span> i <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle yz}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> y </mi> <mi> z </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle yz} </annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a9c7cbe4344a9d72acfc98a97e2b3ec44bb48d1f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.244ex; height:2.009ex;" alt="{\displaystyle yz}"></span> ravnima su <a href="https://sh-m-wikipedia-org.translate.goog/w/index.php?title=Kruznica&action=edit&redlink=1&_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" class="new" title="Kruznica (stranica ne postoji)">kruznice</a>.</p> <p>Jednačina površi se može zadati i u drugim oblicima, naprimjer, u obliku:</p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x,y,z)=0,\,}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> f </mi> <mo stretchy="false"> ( </mo> <mi> x </mi> <mo> , </mo> <mi> y </mi> <mo> , </mo> <mi> z </mi> <mo stretchy="false"> ) </mo> <mo> = </mo> <mn> 0 </mn> <mo> , </mo> <mspace width="thinmathspace"></mspace> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle f(x,y,z)=0,\,} </annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c05e392ae3113b911e829e715be0da5cffb01897" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.024ex; height:2.843ex;" alt="{\displaystyle f(x,y,z)=0,\,}"></span> ili <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z=f(x,y).\,}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> z </mi> <mo> = </mo> <mi> f </mi> <mo stretchy="false"> ( </mo> <mi> x </mi> <mo> , </mo> <mi> y </mi> <mo stretchy="false"> ) </mo> <mo> . </mo> <mspace width="thinmathspace"></mspace> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle z=f(x,y).\,} </annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3ccae6558d4e7bda59eb34e2014e934e4e049d70" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.828ex; height:2.843ex;" alt="{\displaystyle z=f(x,y).\,}"></span> </dd> </dl> <div id="toc" class="toc" role="navigation" aria-labelledby="mw-toc-heading"> <input type="checkbox" role="button" id="toctogglecheckbox" class="toctogglecheckbox" style="display:none"> <div class="toctitle" lang="sh-Latn" dir="ltr"> <h2 id="mw-toc-heading">Sadržaj</h2><span class="toctogglespan"><label class="toctogglelabel" for="toctogglecheckbox"></label></span> </div> <ul> <li class="toclevel-1 tocsection-1"><a href="https://sh-m-wikipedia-org.translate.goog/wiki/Povr%C5%A1?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#Regularne_i_singularne_ta%C4%8Dke_povr%C5%A1i"><span class="tocnumber">1</span> <span class="toctext">Regularne i singularne tačke površi</span></a></li> <li class="toclevel-1 tocsection-2"><a href="https://sh-m-wikipedia-org.translate.goog/wiki/Povr%C5%A1?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#Krivolinijski_ili_Gaussov_koordinatni_sistem_na_povr%C5%A1"><span class="tocnumber">2</span> <span class="toctext">Krivolinijski ili Gaussov koordinatni sistem na površ</span></a></li> <li class="toclevel-1 tocsection-3"><a href="https://sh-m-wikipedia-org.translate.goog/wiki/Povr%C5%A1?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#Eksplicitna_jedna%C4%8Dina_povr%C5%A1i"><span class="tocnumber">3</span> <span class="toctext">Eksplicitna jednačina površi</span></a></li> <li class="toclevel-1 tocsection-4"><a href="https://sh-m-wikipedia-org.translate.goog/wiki/Povr%C5%A1?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#Implicitna_jedna%C4%8Dina_povr%C5%A1i"><span class="tocnumber">4</span> <span class="toctext">Implicitna jednačina površi</span></a></li> <li class="toclevel-1 tocsection-5"><a href="https://sh-m-wikipedia-org.translate.goog/wiki/Povr%C5%A1?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#Tangentna_ravan_i_normala_na_povr%C5%A1"><span class="tocnumber">5</span> <span class="toctext">Tangentna ravan i normala na površ</span></a></li> <li class="toclevel-1 tocsection-6"><a href="https://sh-m-wikipedia-org.translate.goog/wiki/Povr%C5%A1?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#Linijske_povr%C5%A1i"><span class="tocnumber">6</span> <span class="toctext">Linijske površi</span></a></li> <li class="toclevel-1 tocsection-7"><a href="https://sh-m-wikipedia-org.translate.goog/wiki/Povr%C5%A1?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#Elipsoid"><span class="tocnumber">7</span> <span class="toctext">Elipsoid</span></a></li> <li class="toclevel-1 tocsection-8"><a href="https://sh-m-wikipedia-org.translate.goog/wiki/Povr%C5%A1?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#Hiperboloid"><span class="tocnumber">8</span> <span class="toctext">Hiperboloid</span></a></li> <li class="toclevel-1 tocsection-9"><a href="https://sh-m-wikipedia-org.translate.goog/wiki/Povr%C5%A1?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#Konusne_povr%C5%A1i"><span class="tocnumber">9</span> <span class="toctext">Konusne površi</span></a></li> <li class="toclevel-1 tocsection-10"><a href="https://sh-m-wikipedia-org.translate.goog/wiki/Povr%C5%A1?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#Valjkaste_povr%C5%A1i"><span class="tocnumber">10</span> <span class="toctext">Valjkaste površi</span></a></li> <li class="toclevel-1 tocsection-11"><a href="https://sh-m-wikipedia-org.translate.goog/wiki/Povr%C5%A1?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#Rotacione_povr%C5%A1i"><span class="tocnumber">11</span> <span class="toctext">Rotacione površi</span></a></li> <li class="toclevel-1 tocsection-12"><a href="https://sh-m-wikipedia-org.translate.goog/wiki/Povr%C5%A1?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#Izvori"><span class="tocnumber">12</span> <span class="toctext">Izvori</span></a></li> </ul> </div> </section> <div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(1)"> <span class="indicator mf-icon mf-icon-expand mf-icon--small"></span> <h2 id="Regularne_i_singularne_tačke_površi"><span id="Regularne_i_singularne_ta.C4.8Dke_povr.C5.A1i"></span>Regularne i singularne tačke površi</h2><span class="mw-editsection"> <a role="button" href="https://sh-m-wikipedia-org.translate.goog/w/index.php?title=Povr%C5%A1&action=edit&section=1&_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Uredi odjeljak Regularne i singularne tačke površi" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>uredi</span> </a> </span> </div> <section class="mf-section-1 collapsible-block" id="mf-section-1"> <p>Parcijalne derivacije vektorske funkcije</p> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r(u,v)=x(u,v)i+y(u,v)j+z(u,v)k}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> r </mi> <mo stretchy="false"> ( </mo> <mi> u </mi> <mo> , </mo> <mi> v </mi> <mo stretchy="false"> ) </mo> <mo> = </mo> <mi> x </mi> <mo stretchy="false"> ( </mo> <mi> u </mi> <mo> , </mo> <mi> v </mi> <mo stretchy="false"> ) </mo> <mi> i </mi> <mo> + </mo> <mi> y </mi> <mo stretchy="false"> ( </mo> <mi> u </mi> <mo> , </mo> <mi> v </mi> <mo stretchy="false"> ) </mo> <mi> j </mi> <mo> + </mo> <mi> z </mi> <mo stretchy="false"> ( </mo> <mi> u </mi> <mo> , </mo> <mi> v </mi> <mo stretchy="false"> ) </mo> <mi> k </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle r(u,v)=x(u,v)i+y(u,v)j+z(u,v)k} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/34070a624d52d7b2b396cec883401b52de9e6812" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:37.575ex; height:2.843ex;" alt="{\displaystyle r(u,v)=x(u,v)i+y(u,v)j+z(u,v)k}"> </noscript><span class="lazy-image-placeholder" style="width: 37.575ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/34070a624d52d7b2b396cec883401b52de9e6812" data-alt="{\displaystyle r(u,v)=x(u,v)i+y(u,v)j+z(u,v)k}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span>) su, prema pretpostavci, neprekidne vektorske funkcije <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r_{u},r_{v}:U\to R^{3}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> u </mi> </mrow> </msub> <mo> , </mo> <msub> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> v </mi> </mrow> </msub> <mo> : </mo> <mi> U </mi> <mo stretchy="false"> →<!-- → --> </mo> <msup> <mi> R </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 3 </mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle r_{u},r_{v}:U\to R^{3}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4de6aebc3c87dbec52290aa5417a00b7c62caf16" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:15.485ex; height:3.009ex;" alt="{\displaystyle r_{u},r_{v}:U\to R^{3}}"> </noscript><span class="lazy-image-placeholder" style="width: 15.485ex;height: 3.009ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4de6aebc3c87dbec52290aa5417a00b7c62caf16" data-alt="{\displaystyle r_{u},r_{v}:U\to R^{3}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> date formulama:</p> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r_{u}(u,v)=x_{u}(u,v)i+y_{u}(u,v)j+z_{u}(u,v)k}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> u </mi> </mrow> </msub> <mo stretchy="false"> ( </mo> <mi> u </mi> <mo> , </mo> <mi> v </mi> <mo stretchy="false"> ) </mo> <mo> = </mo> <msub> <mi> x </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> u </mi> </mrow> </msub> <mo stretchy="false"> ( </mo> <mi> u </mi> <mo> , </mo> <mi> v </mi> <mo stretchy="false"> ) </mo> <mi> i </mi> <mo> + </mo> <msub> <mi> y </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> u </mi> </mrow> </msub> <mo stretchy="false"> ( </mo> <mi> u </mi> <mo> , </mo> <mi> v </mi> <mo stretchy="false"> ) </mo> <mi> j </mi> <mo> + </mo> <msub> <mi> z </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> u </mi> </mrow> </msub> <mo stretchy="false"> ( </mo> <mi> u </mi> <mo> , </mo> <mi> v </mi> <mo stretchy="false"> ) </mo> <mi> k </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle r_{u}(u,v)=x_{u}(u,v)i+y_{u}(u,v)j+z_{u}(u,v)k} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/093f87b79571885798afe072afb224c68ec2f3c0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:42.242ex; height:2.843ex;" alt="{\displaystyle r_{u}(u,v)=x_{u}(u,v)i+y_{u}(u,v)j+z_{u}(u,v)k}"> </noscript><span class="lazy-image-placeholder" style="width: 42.242ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/093f87b79571885798afe072afb224c68ec2f3c0" data-alt="{\displaystyle r_{u}(u,v)=x_{u}(u,v)i+y_{u}(u,v)j+z_{u}(u,v)k}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span></p> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r_{v}(u,v)=x_{v}(u,v)i+y_{v}(u,v)j+z_{v}(u,v)k}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> v </mi> </mrow> </msub> <mo stretchy="false"> ( </mo> <mi> u </mi> <mo> , </mo> <mi> v </mi> <mo stretchy="false"> ) </mo> <mo> = </mo> <msub> <mi> x </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> v </mi> </mrow> </msub> <mo stretchy="false"> ( </mo> <mi> u </mi> <mo> , </mo> <mi> v </mi> <mo stretchy="false"> ) </mo> <mi> i </mi> <mo> + </mo> <msub> <mi> y </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> v </mi> </mrow> </msub> <mo stretchy="false"> ( </mo> <mi> u </mi> <mo> , </mo> <mi> v </mi> <mo stretchy="false"> ) </mo> <mi> j </mi> <mo> + </mo> <msub> <mi> z </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> v </mi> </mrow> </msub> <mo stretchy="false"> ( </mo> <mi> u </mi> <mo> , </mo> <mi> v </mi> <mo stretchy="false"> ) </mo> <mi> k </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle r_{v}(u,v)=x_{v}(u,v)i+y_{v}(u,v)j+z_{v}(u,v)k} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0b04a3ce7076946689e61c92605bb84721c110da" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:41.67ex; height:2.843ex;" alt="{\displaystyle r_{v}(u,v)=x_{v}(u,v)i+y_{v}(u,v)j+z_{v}(u,v)k}"> </noscript><span class="lazy-image-placeholder" style="width: 41.67ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0b04a3ce7076946689e61c92605bb84721c110da" data-alt="{\displaystyle r_{v}(u,v)=x_{v}(u,v)i+y_{v}(u,v)j+z_{v}(u,v)k}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span></p> <p>Jacobijeva matrica parametrizacije <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (U,r)}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false"> ( </mo> <mi> U </mi> <mo> , </mo> <mi> r </mi> <mo stretchy="false"> ) </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle (U,r)} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5532c8f8d85bb9de3cf6ac04619290d6bc122b3e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.674ex; height:2.843ex;" alt="{\displaystyle (U,r)}"> </noscript><span class="lazy-image-placeholder" style="width: 5.674ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5532c8f8d85bb9de3cf6ac04619290d6bc122b3e" data-alt="{\displaystyle (U,r)}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> je matrica oblika:</p> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathfrak {J}}(r)={\begin{bmatrix}r_{u}(u,v\\r_{v}(u,v\\\end{bmatrix}}={\begin{bmatrix}x_{u}(u,v)\ y_{u}(u,v)\ z_{u}(u,v)\\x_{v}(u,v)\ y_{v}(u,v)\ z_{v}(u,v)\end{bmatrix}}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur"> J </mi> </mrow> </mrow> <mo stretchy="false"> ( </mo> <mi> r </mi> <mo stretchy="false"> ) </mo> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo> [ </mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <msub> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> u </mi> </mrow> </msub> <mo stretchy="false"> ( </mo> <mi> u </mi> <mo> , </mo> <mi> v </mi> </mtd> </mtr> <mtr> <mtd> <msub> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> v </mi> </mrow> </msub> <mo stretchy="false"> ( </mo> <mi> u </mi> <mo> , </mo> <mi> v </mi> </mtd> </mtr> </mtable> <mo> ] </mo> </mrow> </mrow> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo> [ </mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <msub> <mi> x </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> u </mi> </mrow> </msub> <mo stretchy="false"> ( </mo> <mi> u </mi> <mo> , </mo> <mi> v </mi> <mo stretchy="false"> ) </mo> <mtext> </mtext> <msub> <mi> y </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> u </mi> </mrow> </msub> <mo stretchy="false"> ( </mo> <mi> u </mi> <mo> , </mo> <mi> v </mi> <mo stretchy="false"> ) </mo> <mtext> </mtext> <msub> <mi> z </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> u </mi> </mrow> </msub> <mo stretchy="false"> ( </mo> <mi> u </mi> <mo> , </mo> <mi> v </mi> <mo stretchy="false"> ) </mo> </mtd> </mtr> <mtr> <mtd> <msub> <mi> x </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> v </mi> </mrow> </msub> <mo stretchy="false"> ( </mo> <mi> u </mi> <mo> , </mo> <mi> v </mi> <mo stretchy="false"> ) </mo> <mtext> </mtext> <msub> <mi> y </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> v </mi> </mrow> </msub> <mo stretchy="false"> ( </mo> <mi> u </mi> <mo> , </mo> <mi> v </mi> <mo stretchy="false"> ) </mo> <mtext> </mtext> <msub> <mi> z </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> v </mi> </mrow> </msub> <mo stretchy="false"> ( </mo> <mi> u </mi> <mo> , </mo> <mi> v </mi> <mo stretchy="false"> ) </mo> </mtd> </mtr> </mtable> <mo> ] </mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\mathfrak {J}}(r)={\begin{bmatrix}r_{u}(u,v\\r_{v}(u,v\\\end{bmatrix}}={\begin{bmatrix}x_{u}(u,v)\ y_{u}(u,v)\ z_{u}(u,v)\\x_{v}(u,v)\ y_{v}(u,v)\ z_{v}(u,v)\end{bmatrix}}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/645f9c6083db4685f13ce05ab34becacff16868a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; margin-left: -0.022ex; width:47.521ex; height:6.176ex;" alt="{\displaystyle {\mathfrak {J}}(r)={\begin{bmatrix}r_{u}(u,v\\r_{v}(u,v\\\end{bmatrix}}={\begin{bmatrix}x_{u}(u,v)\ y_{u}(u,v)\ z_{u}(u,v)\\x_{v}(u,v)\ y_{v}(u,v)\ z_{v}(u,v)\end{bmatrix}}}"> </noscript><span class="lazy-image-placeholder" style="width: 47.521ex;height: 6.176ex;vertical-align: -2.505ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/645f9c6083db4685f13ce05ab34becacff16868a" data-alt="{\displaystyle {\mathfrak {J}}(r)={\begin{bmatrix}r_{u}(u,v\\r_{v}(u,v\\\end{bmatrix}}={\begin{bmatrix}x_{u}(u,v)\ y_{u}(u,v)\ z_{u}(u,v)\\x_{v}(u,v)\ y_{v}(u,v)\ z_{v}(u,v)\end{bmatrix}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span></p> <p>Sljedeće četiri tvrdnje su ekvivalentne:</p> <ol> <li>Vektori <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r_{u}(u,v)}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> u </mi> </mrow> </msub> <mo stretchy="false"> ( </mo> <mi> u </mi> <mo> , </mo> <mi> v </mi> <mo stretchy="false"> ) </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle r_{u}(u,v)} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cce536584293b18b52da4849d7d58964ab4f0832" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.522ex; height:2.843ex;" alt="{\displaystyle r_{u}(u,v)}"> </noscript><span class="lazy-image-placeholder" style="width: 7.522ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cce536584293b18b52da4849d7d58964ab4f0832" data-alt="{\displaystyle r_{u}(u,v)}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> i <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r_{v}(u,v)}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> v </mi> </mrow> </msub> <mo stretchy="false"> ( </mo> <mi> u </mi> <mo> , </mo> <mi> v </mi> <mo stretchy="false"> ) </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle r_{v}(u,v)} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a7a92f3512403a37e6fe3b9e3a83efffef36a899" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.379ex; height:2.843ex;" alt="{\displaystyle r_{v}(u,v)}"> </noscript><span class="lazy-image-placeholder" style="width: 7.379ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a7a92f3512403a37e6fe3b9e3a83efffef36a899" data-alt="{\displaystyle r_{v}(u,v)}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> linearno su nezavisni.</li> <li><b>r_u(u, v) × r_v(u, v)≠ 0</b></li> <li>Matrica <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathfrak {J}}(r)(u,v)}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur"> J </mi> </mrow> </mrow> <mo stretchy="false"> ( </mo> <mi> r </mi> <mo stretchy="false"> ) </mo> <mo stretchy="false"> ( </mo> <mi> u </mi> <mo> , </mo> <mi> v </mi> <mo stretchy="false"> ) </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\mathfrak {J}}(r)(u,v)} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c08aaacd2eb3dcd8a3e16f9f7a37a9c7aa6715a2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; margin-left: -0.022ex; width:9.464ex; height:2.843ex;" alt="{\displaystyle {\mathfrak {J}}(r)(u,v)}"> </noscript><span class="lazy-image-placeholder" style="width: 9.464ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c08aaacd2eb3dcd8a3e16f9f7a37a9c7aa6715a2" data-alt="{\displaystyle {\mathfrak {J}}(r)(u,v)}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> je ranga 2.</li> <li>Barem jedna od funkcijskih determinanti</li> </ol> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{vmatrix}x_{u}(u,v)\ y_{u}(u,v)\\x_{v}(u,v)\ y_{v}(u,v\end{vmatrix}}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo> | </mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <msub> <mi> x </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> u </mi> </mrow> </msub> <mo stretchy="false"> ( </mo> <mi> u </mi> <mo> , </mo> <mi> v </mi> <mo stretchy="false"> ) </mo> <mtext> </mtext> <msub> <mi> y </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> u </mi> </mrow> </msub> <mo stretchy="false"> ( </mo> <mi> u </mi> <mo> , </mo> <mi> v </mi> <mo stretchy="false"> ) </mo> </mtd> </mtr> <mtr> <mtd> <msub> <mi> x </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> v </mi> </mrow> </msub> <mo stretchy="false"> ( </mo> <mi> u </mi> <mo> , </mo> <mi> v </mi> <mo stretchy="false"> ) </mo> <mtext> </mtext> <msub> <mi> y </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> v </mi> </mrow> </msub> <mo stretchy="false"> ( </mo> <mi> u </mi> <mo> , </mo> <mi> v </mi> </mtd> </mtr> </mtable> <mo> | </mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\begin{vmatrix}x_{u}(u,v)\ y_{u}(u,v)\\x_{v}(u,v)\ y_{v}(u,v\end{vmatrix}}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/336b70291d51a67a1e2f45cbebd5458690f42b9f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:18.041ex; height:6.176ex;" alt="{\displaystyle {\begin{vmatrix}x_{u}(u,v)\ y_{u}(u,v)\\x_{v}(u,v)\ y_{v}(u,v\end{vmatrix}}}"> </noscript><span class="lazy-image-placeholder" style="width: 18.041ex;height: 6.176ex;vertical-align: -2.505ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/336b70291d51a67a1e2f45cbebd5458690f42b9f" data-alt="{\displaystyle {\begin{vmatrix}x_{u}(u,v)\ y_{u}(u,v)\\x_{v}(u,v)\ y_{v}(u,v\end{vmatrix}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{vmatrix}x_{u}(u,v)\ z_{u}(u,v)\\x_{v}(u,v)\ z_{v}(u,v\end{vmatrix}}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo> | </mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <msub> <mi> x </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> u </mi> </mrow> </msub> <mo stretchy="false"> ( </mo> <mi> u </mi> <mo> , </mo> <mi> v </mi> <mo stretchy="false"> ) </mo> <mtext> </mtext> <msub> <mi> z </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> u </mi> </mrow> </msub> <mo stretchy="false"> ( </mo> <mi> u </mi> <mo> , </mo> <mi> v </mi> <mo stretchy="false"> ) </mo> </mtd> </mtr> <mtr> <mtd> <msub> <mi> x </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> v </mi> </mrow> </msub> <mo stretchy="false"> ( </mo> <mi> u </mi> <mo> , </mo> <mi> v </mi> <mo stretchy="false"> ) </mo> <mtext> </mtext> <msub> <mi> z </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> v </mi> </mrow> </msub> <mo stretchy="false"> ( </mo> <mi> u </mi> <mo> , </mo> <mi> v </mi> </mtd> </mtr> </mtable> <mo> | </mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\begin{vmatrix}x_{u}(u,v)\ z_{u}(u,v)\\x_{v}(u,v)\ z_{v}(u,v\end{vmatrix}}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/de5bca78b58c3b3d2d2289d5e805844d29cf8c4c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:17.983ex; height:6.176ex;" alt="{\displaystyle {\begin{vmatrix}x_{u}(u,v)\ z_{u}(u,v)\\x_{v}(u,v)\ z_{v}(u,v\end{vmatrix}}}"> </noscript><span class="lazy-image-placeholder" style="width: 17.983ex;height: 6.176ex;vertical-align: -2.505ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/de5bca78b58c3b3d2d2289d5e805844d29cf8c4c" data-alt="{\displaystyle {\begin{vmatrix}x_{u}(u,v)\ z_{u}(u,v)\\x_{v}(u,v)\ z_{v}(u,v\end{vmatrix}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{vmatrix}y_{u}(u,v)\ z_{u}(u,v)\\y_{v}(u,v)\ z_{v}(u,v\end{vmatrix}}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo> | </mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <msub> <mi> y </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> u </mi> </mrow> </msub> <mo stretchy="false"> ( </mo> <mi> u </mi> <mo> , </mo> <mi> v </mi> <mo stretchy="false"> ) </mo> <mtext> </mtext> <msub> <mi> z </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> u </mi> </mrow> </msub> <mo stretchy="false"> ( </mo> <mi> u </mi> <mo> , </mo> <mi> v </mi> <mo stretchy="false"> ) </mo> </mtd> </mtr> <mtr> <mtd> <msub> <mi> y </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> v </mi> </mrow> </msub> <mo stretchy="false"> ( </mo> <mi> u </mi> <mo> , </mo> <mi> v </mi> <mo stretchy="false"> ) </mo> <mtext> </mtext> <msub> <mi> z </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> v </mi> </mrow> </msub> <mo stretchy="false"> ( </mo> <mi> u </mi> <mo> , </mo> <mi> v </mi> </mtd> </mtr> </mtable> <mo> | </mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\begin{vmatrix}y_{u}(u,v)\ z_{u}(u,v)\\y_{v}(u,v)\ z_{v}(u,v\end{vmatrix}}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d094443c125e5f190eff4af87affc11b6557513b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:17.792ex; height:6.176ex;" alt="{\displaystyle {\begin{vmatrix}y_{u}(u,v)\ z_{u}(u,v)\\y_{v}(u,v)\ z_{v}(u,v\end{vmatrix}}}"> </noscript><span class="lazy-image-placeholder" style="width: 17.792ex;height: 6.176ex;vertical-align: -2.505ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d094443c125e5f190eff4af87affc11b6557513b" data-alt="{\displaystyle {\begin{vmatrix}y_{u}(u,v)\ z_{u}(u,v)\\y_{v}(u,v)\ z_{v}(u,v\end{vmatrix}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> je različita od nule.</p> <p>Za tačku T površi F koja odgovara uređenom paru <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (u_{0},v_{0})}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false"> ( </mo> <msub> <mi> u </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> <mo> , </mo> <msub> <mi> v </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> <mo stretchy="false"> ) </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle (u_{0},v_{0})} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1b729d790fa6e280ed610be112ba3348172aec62" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.409ex; height:2.843ex;" alt="{\displaystyle (u_{0},v_{0})}"> </noscript><span class="lazy-image-placeholder" style="width: 7.409ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1b729d790fa6e280ed610be112ba3348172aec62" data-alt="{\displaystyle (u_{0},v_{0})}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> kažemo da je regularna tačka parametrizacije <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (U,r)}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false"> ( </mo> <mi> U </mi> <mo> , </mo> <mi> r </mi> <mo stretchy="false"> ) </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle (U,r)} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5532c8f8d85bb9de3cf6ac04619290d6bc122b3e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.674ex; height:2.843ex;" alt="{\displaystyle (U,r)}"> </noscript><span class="lazy-image-placeholder" style="width: 5.674ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5532c8f8d85bb9de3cf6ac04619290d6bc122b3e" data-alt="{\displaystyle (U,r)}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> ako je</p> <p><b>r_u(u_0, v_0) × r_v(u_0, v_0)≠ 0</b></p> <p>Za tačku T površi F koja odgovara uređenom paru <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (u_{0},v_{0})}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false"> ( </mo> <msub> <mi> u </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> <mo> , </mo> <msub> <mi> v </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> <mo stretchy="false"> ) </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle (u_{0},v_{0})} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1b729d790fa6e280ed610be112ba3348172aec62" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.409ex; height:2.843ex;" alt="{\displaystyle (u_{0},v_{0})}"> </noscript><span class="lazy-image-placeholder" style="width: 7.409ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1b729d790fa6e280ed610be112ba3348172aec62" data-alt="{\displaystyle (u_{0},v_{0})}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> kažemo da je singularna tačka parametrizacije <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (U,r)}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false"> ( </mo> <mi> U </mi> <mo> , </mo> <mi> r </mi> <mo stretchy="false"> ) </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle (U,r)} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5532c8f8d85bb9de3cf6ac04619290d6bc122b3e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.674ex; height:2.843ex;" alt="{\displaystyle (U,r)}"> </noscript><span class="lazy-image-placeholder" style="width: 5.674ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5532c8f8d85bb9de3cf6ac04619290d6bc122b3e" data-alt="{\displaystyle (U,r)}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> ako je</p> <p><b>r_u(u_0, v_0) × r_v(u_0, v_0)= 0</b></p> <p>Neka površ <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathfrak {F}}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur"> F </mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\mathfrak {F}}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ec863025da8f3844272a146530208eb001c3dddb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.423ex; height:2.509ex;" alt="{\displaystyle {\mathfrak {F}}}"> </noscript><span class="lazy-image-placeholder" style="width: 1.423ex;height: 2.509ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ec863025da8f3844272a146530208eb001c3dddb" data-alt="{\displaystyle {\mathfrak {F}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> može imati više različitih parametrizacija. Tačka površi koja je singularna za jednu parametrizaciju nemora biti singularna i za ostale njezine parametrizacije.</p> <p>Za površ <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathfrak {F}}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur"> F </mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\mathfrak {F}}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ec863025da8f3844272a146530208eb001c3dddb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.423ex; height:2.509ex;" alt="{\displaystyle {\mathfrak {F}}}"> </noscript><span class="lazy-image-placeholder" style="width: 1.423ex;height: 2.509ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ec863025da8f3844272a146530208eb001c3dddb" data-alt="{\displaystyle {\mathfrak {F}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> kažemo da je regularna ako svaka njezina tačka ima u <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathfrak {F}}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur"> F </mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\mathfrak {F}}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ec863025da8f3844272a146530208eb001c3dddb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.423ex; height:2.509ex;" alt="{\displaystyle {\mathfrak {F}}}"> </noscript><span class="lazy-image-placeholder" style="width: 1.423ex;height: 2.509ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ec863025da8f3844272a146530208eb001c3dddb" data-alt="{\displaystyle {\mathfrak {F}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> okolinu s regularnom parametrizacijom.</p> <p>Za tačku <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S\in {\mathfrak {F}}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> S </mi> <mo> ∈<!-- ∈ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur"> F </mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle S\in {\mathfrak {F}}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a5d4ed3ab55239781a2f72c597466bd938f9d611" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.762ex; height:2.509ex;" alt="{\displaystyle S\in {\mathfrak {F}}}"> </noscript><span class="lazy-image-placeholder" style="width: 5.762ex;height: 2.509ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a5d4ed3ab55239781a2f72c597466bd938f9d611" data-alt="{\displaystyle S\in {\mathfrak {F}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> kažemo da je singularna tačka površi ako je ona singularna tačka svake njene parametrizacije.</p> <p>Sfera je primjer regularne površi koja se ne može pokriti jednom regularnom parametrizacijom.</p> <p>Standardna parametrizacija sfere poluprečnika <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> r </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle r} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0d1ecb613aa2984f0576f70f86650b7c2a132538" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.049ex; height:1.676ex;" alt="{\displaystyle r}"> </noscript><span class="lazy-image-placeholder" style="width: 1.049ex;height: 1.676ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0d1ecb613aa2984f0576f70f86650b7c2a132538" data-alt="{\displaystyle r}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> je</p> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (u,v)\to r(cosusinv,sinusinv,cosv)}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false"> ( </mo> <mi> u </mi> <mo> , </mo> <mi> v </mi> <mo stretchy="false"> ) </mo> <mo stretchy="false"> →<!-- → --> </mo> <mi> r </mi> <mo stretchy="false"> ( </mo> <mi> c </mi> <mi> o </mi> <mi> s </mi> <mi> u </mi> <mi> s </mi> <mi> i </mi> <mi> n </mi> <mi> v </mi> <mo> , </mo> <mi> s </mi> <mi> i </mi> <mi> n </mi> <mi> u </mi> <mi> s </mi> <mi> i </mi> <mi> n </mi> <mi> v </mi> <mo> , </mo> <mi> c </mi> <mi> o </mi> <mi> s </mi> <mi> v </mi> <mo stretchy="false"> ) </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle (u,v)\to r(cosusinv,sinusinv,cosv)} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f98cb4eebac14784a1e22fd073571f21d1d46ec0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:36.195ex; height:2.843ex;" alt="{\displaystyle (u,v)\to r(cosusinv,sinusinv,cosv)}"> </noscript><span class="lazy-image-placeholder" style="width: 36.195ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f98cb4eebac14784a1e22fd073571f21d1d46ec0" data-alt="{\displaystyle (u,v)\to r(cosusinv,sinusinv,cosv)}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span></p> <p>gdje je <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (u,v)\in [0,2\pi ]}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false"> ( </mo> <mi> u </mi> <mo> , </mo> <mi> v </mi> <mo stretchy="false"> ) </mo> <mo> ∈<!-- ∈ --> </mo> <mo stretchy="false"> [ </mo> <mn> 0 </mn> <mo> , </mo> <mn> 2 </mn> <mi> π<!-- π --> </mi> <mo stretchy="false"> ] </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle (u,v)\in [0,2\pi ]} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f2bf31652846f3049a2337f007836f8449ec0b0f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.126ex; height:2.843ex;" alt="{\displaystyle (u,v)\in [0,2\pi ]}"> </noscript><span class="lazy-image-placeholder" style="width: 14.126ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f2bf31652846f3049a2337f007836f8449ec0b0f" data-alt="{\displaystyle (u,v)\in [0,2\pi ]}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> × <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle [-\pi /2,\pi /2]}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false"> [ </mo> <mo> −<!-- − --> </mo> <mi> π<!-- π --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mo> / </mo> </mrow> <mn> 2 </mn> <mo> , </mo> <mi> π<!-- π --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mo> / </mo> </mrow> <mn> 2 </mn> <mo stretchy="false"> ] </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle [-\pi /2,\pi /2]} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cd702a5a7041be010f870c0e23750d98ba9919f5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.45ex; height:2.843ex;" alt="{\displaystyle [-\pi /2,\pi /2]}"> </noscript><span class="lazy-image-placeholder" style="width: 11.45ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cd702a5a7041be010f870c0e23750d98ba9919f5" data-alt="{\displaystyle [-\pi /2,\pi /2]}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span>.</p> <p>Pri toj parametrizaciji u-krive (v je konstanta) nazivamo paralelama, a v-krive (u je konstanta) meridijanima. Polovi, tj. tačke <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (0,0,\pm r)}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false"> ( </mo> <mn> 0 </mn> <mo> , </mo> <mn> 0 </mn> <mo> , </mo> <mo> ±<!-- ± --> </mo> <mi> r </mi> <mo stretchy="false"> ) </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle (0,0,\pm r)} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c8893c496c6b0a6e50aa3838ad140490cadd38f6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.059ex; height:2.843ex;" alt="{\displaystyle (0,0,\pm r)}"> </noscript><span class="lazy-image-placeholder" style="width: 9.059ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c8893c496c6b0a6e50aa3838ad140490cadd38f6" data-alt="{\displaystyle (0,0,\pm r)}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span>, singularne su tačke te parametrizacije. Međutim, svaka se sfera može pokriti već s dvije regularne parametrizacije.</p> <p>U sigularnoj tački površ samu sebe siječe, dodiruje i sl. Ako su sve toačke neke krive na površi singularne, onda takvu liniju nazivamo singularnom linijom površi.</p> </section> <div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(2)"> <span class="indicator mf-icon mf-icon-expand mf-icon--small"></span> <h2 id="Krivolinijski_ili_Gaussov_koordinatni_sistem_na_površ"><span id="Krivolinijski_ili_Gaussov_koordinatni_sistem_na_povr.C5.A1"></span>Krivolinijski ili Gaussov koordinatni sistem na površ</h2><span class="mw-editsection"> <a role="button" href="https://sh-m-wikipedia-org.translate.goog/w/index.php?title=Povr%C5%A1&action=edit&section=2&_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Uredi odjeljak Krivolinijski ili Gaussov koordinatni sistem na površ" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>uredi</span> </a> </span> </div> <section class="mf-section-2 collapsible-block" id="mf-section-2"> <p>Ako se u jednačinama</p> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x=x(u,v)}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> x </mi> <mo> = </mo> <mi> x </mi> <mo stretchy="false"> ( </mo> <mi> u </mi> <mo> , </mo> <mi> v </mi> <mo stretchy="false"> ) </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle x=x(u,v)} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5fdd605515e00cc0a45af42ba3df16046defac9b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.058ex; height:2.843ex;" alt="{\displaystyle x=x(u,v)}"> </noscript><span class="lazy-image-placeholder" style="width: 11.058ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5fdd605515e00cc0a45af42ba3df16046defac9b" data-alt="{\displaystyle x=x(u,v)}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y=y(u,v)}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> y </mi> <mo> = </mo> <mi> y </mi> <mo stretchy="false"> ( </mo> <mi> u </mi> <mo> , </mo> <mi> v </mi> <mo stretchy="false"> ) </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle y=y(u,v)} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1dc932826f9f3a969aee6da3cf579aad8966ffb8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.71ex; height:2.843ex;" alt="{\displaystyle y=y(u,v)}"> </noscript><span class="lazy-image-placeholder" style="width: 10.71ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1dc932826f9f3a969aee6da3cf579aad8966ffb8" data-alt="{\displaystyle y=y(u,v)}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z=z(u,v)}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> z </mi> <mo> = </mo> <mi> z </mi> <mo stretchy="false"> ( </mo> <mi> u </mi> <mo> , </mo> <mi> v </mi> <mo stretchy="false"> ) </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle z=z(u,v)} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e263aebd2eeba9e55fd1072eb87e251125d01faf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.575ex; height:2.843ex;" alt="{\displaystyle z=z(u,v)}"> </noscript><span class="lazy-image-placeholder" style="width: 10.575ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e263aebd2eeba9e55fd1072eb87e251125d01faf" data-alt="{\displaystyle z=z(u,v)}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span></p> <p>za jedan parametar uzme konstanta, dok drugi mijenja vrijednosti unutar područja <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle U}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> U </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle U} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/458a728f53b9a0274f059cd695e067c430956025" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.783ex; height:2.176ex;" alt="{\displaystyle U}"> </noscript><span class="lazy-image-placeholder" style="width: 1.783ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/458a728f53b9a0274f059cd695e067c430956025" data-alt="{\displaystyle U}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span>, parametarski je zadana prostorna kriva koja leži na zadanoj površi.</p> <p>Tako je za <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle v=v_{0}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> v </mi> <mo> = </mo> <msub> <mi> v </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle v=v_{0}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/600f1fced4041372dcb68ef2f69706559e45c024" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.408ex; height:2.009ex;" alt="{\displaystyle v=v_{0}}"> </noscript><span class="lazy-image-placeholder" style="width: 6.408ex;height: 2.009ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/600f1fced4041372dcb68ef2f69706559e45c024" data-alt="{\displaystyle v=v_{0}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> jednačina</p> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x=x(u,v_{0})}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> x </mi> <mo> = </mo> <mi> x </mi> <mo stretchy="false"> ( </mo> <mi> u </mi> <mo> , </mo> <msub> <mi> v </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> <mo stretchy="false"> ) </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle x=x(u,v_{0})} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cbdd7f12cb71063563742a47262536c3a03bb1a8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.113ex; height:2.843ex;" alt="{\displaystyle x=x(u,v_{0})}"> </noscript><span class="lazy-image-placeholder" style="width: 12.113ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cbdd7f12cb71063563742a47262536c3a03bb1a8" data-alt="{\displaystyle x=x(u,v_{0})}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y=y(u,v_{0})}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> y </mi> <mo> = </mo> <mi> y </mi> <mo stretchy="false"> ( </mo> <mi> u </mi> <mo> , </mo> <msub> <mi> v </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> <mo stretchy="false"> ) </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle y=y(u,v_{0})} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ae161bdd3192edb6fec661f97eeb805a424efe91" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.764ex; height:2.843ex;" alt="{\displaystyle y=y(u,v_{0})}"> </noscript><span class="lazy-image-placeholder" style="width: 11.764ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ae161bdd3192edb6fec661f97eeb805a424efe91" data-alt="{\displaystyle y=y(u,v_{0})}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z=z(u,v_{0})}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> z </mi> <mo> = </mo> <mi> z </mi> <mo stretchy="false"> ( </mo> <mi> u </mi> <mo> , </mo> <msub> <mi> v </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> <mo stretchy="false"> ) </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle z=z(u,v_{0})} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/665755d407fee5cfcddf45a317ee8f846cddbbc3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.63ex; height:2.843ex;" alt="{\displaystyle z=z(u,v_{0})}"> </noscript><span class="lazy-image-placeholder" style="width: 11.63ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/665755d407fee5cfcddf45a317ee8f846cddbbc3" data-alt="{\displaystyle z=z(u,v_{0})}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span></p> <p>parametarski zadana tzv. u − kriva površi, a za <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle u=u_{0}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> u </mi> <mo> = </mo> <msub> <mi> u </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle u=u_{0}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e2ffea3ef298f4e8ccd41b4c77b931c7e9ad356f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.812ex; height:2.009ex;" alt="{\displaystyle u=u_{0}}"> </noscript><span class="lazy-image-placeholder" style="width: 6.812ex;height: 2.009ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e2ffea3ef298f4e8ccd41b4c77b931c7e9ad356f" data-alt="{\displaystyle u=u_{0}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> jednačina</p> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x=x(u_{0},v)}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> x </mi> <mo> = </mo> <mi> x </mi> <mo stretchy="false"> ( </mo> <msub> <mi> u </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> <mo> , </mo> <mi> v </mi> <mo stretchy="false"> ) </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle x=x(u_{0},v)} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1b501b1ef3e2b5132608ee59fd7124684bd8105f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.113ex; height:2.843ex;" alt="{\displaystyle x=x(u_{0},v)}"> </noscript><span class="lazy-image-placeholder" style="width: 12.113ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1b501b1ef3e2b5132608ee59fd7124684bd8105f" data-alt="{\displaystyle x=x(u_{0},v)}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y=y(u_{0},v)}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> y </mi> <mo> = </mo> <mi> y </mi> <mo stretchy="false"> ( </mo> <msub> <mi> u </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> <mo> , </mo> <mi> v </mi> <mo stretchy="false"> ) </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle y=y(u_{0},v)} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7b676fee647c42706d9e8f19a62d7a4f743fcbec" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.764ex; height:2.843ex;" alt="{\displaystyle y=y(u_{0},v)}"> </noscript><span class="lazy-image-placeholder" style="width: 11.764ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7b676fee647c42706d9e8f19a62d7a4f743fcbec" data-alt="{\displaystyle y=y(u_{0},v)}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z=z(u_{0},v)}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> z </mi> <mo> = </mo> <mi> z </mi> <mo stretchy="false"> ( </mo> <msub> <mi> u </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> <mo> , </mo> <mi> v </mi> <mo stretchy="false"> ) </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle z=z(u_{0},v)} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/93df0f101e659fba9abc8b7f9bc77b2423d6554a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.63ex; height:2.843ex;" alt="{\displaystyle z=z(u_{0},v)}"> </noscript><span class="lazy-image-placeholder" style="width: 11.63ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/93df0f101e659fba9abc8b7f9bc77b2423d6554a" data-alt="{\displaystyle z=z(u_{0},v)}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span></p> <p>parametarski je zadana tzv. v − kriva površi. Na taj način će za različite konstante <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle u=u_{i}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> u </mi> <mo> = </mo> <msub> <mi> u </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle u=u_{i}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d9c54f001c21f6e35b360a81ee2105cf274da807" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.558ex; height:2.009ex;" alt="{\displaystyle u=u_{i}}"> </noscript><span class="lazy-image-placeholder" style="width: 6.558ex;height: 2.009ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d9c54f001c21f6e35b360a81ee2105cf274da807" data-alt="{\displaystyle u=u_{i}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle v=v_{k}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> v </mi> <mo> = </mo> <msub> <mi> v </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle v=v_{k}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/88d98846e052707be81e4a35af17d91d6a3f6da7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.442ex; height:2.009ex;" alt="{\displaystyle v=v_{k}}"> </noscript><span class="lazy-image-placeholder" style="width: 6.442ex;height: 2.009ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/88d98846e052707be81e4a35af17d91d6a3f6da7" data-alt="{\displaystyle v=v_{k}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span>, (<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle i,k\in R}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> i </mi> <mo> , </mo> <mi> k </mi> <mo> ∈<!-- ∈ --> </mo> <mi> R </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle i,k\in R} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4097cdebd11c4ce06ad07644e397b5c912600dcf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.652ex; height:2.509ex;" alt="{\displaystyle i,k\in R}"> </noscript><span class="lazy-image-placeholder" style="width: 7.652ex;height: 2.509ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4097cdebd11c4ce06ad07644e397b5c912600dcf" data-alt="{\displaystyle i,k\in R}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span>) na zadanoj površi nastati dva sistema prostornih krivi pri čemu svaka kriva jednog sistema siječe svaku krivu drugog sistema u jednoj i samo jednoj toački.</p> <p>Svaka tačka na površii biće određena sjecištem dviju prostornih kriviiz različitih sistema. Takve krive nazivamo koordinatnim ili parametarskim krivama površi. Odabirom po jedne krive iz svakog sistema za koordinantne ose, a njihovog sjecišta za ishodište, uspostavlja se krivolinijski ili Gaussov koordinatni sistem na površi. Svakoj tački površi pridružena su dva realna broja <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle u_{0}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi> u </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle u_{0}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9c7425f9c7ab645587060423c0af62f8a61fbc65" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.384ex; height:2.009ex;" alt="{\displaystyle u_{0}}"> </noscript><span class="lazy-image-placeholder" style="width: 2.384ex;height: 2.009ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9c7425f9c7ab645587060423c0af62f8a61fbc65" data-alt="{\displaystyle u_{0}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> i <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle v_{0}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi> v </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle v_{0}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/60faad24775635f4722ccc438093dbbfe05f34ae" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.182ex; height:2.009ex;" alt="{\displaystyle v_{0}}"> </noscript><span class="lazy-image-placeholder" style="width: 2.182ex;height: 2.009ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/60faad24775635f4722ccc438093dbbfe05f34ae" data-alt="{\displaystyle v_{0}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span>, tzv. krivolinijske ili Gaussove koordinate tačke, koje određuju krive prvog i drugog sistema koje se sijeku u toj tački.</p> <p>Prema pretpostavci, funkcije iz jednačine</p> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x=x(u,v)}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> x </mi> <mo> = </mo> <mi> x </mi> <mo stretchy="false"> ( </mo> <mi> u </mi> <mo> , </mo> <mi> v </mi> <mo stretchy="false"> ) </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle x=x(u,v)} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5fdd605515e00cc0a45af42ba3df16046defac9b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.058ex; height:2.843ex;" alt="{\displaystyle x=x(u,v)}"> </noscript><span class="lazy-image-placeholder" style="width: 11.058ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5fdd605515e00cc0a45af42ba3df16046defac9b" data-alt="{\displaystyle x=x(u,v)}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y=y(u,v)}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> y </mi> <mo> = </mo> <mi> y </mi> <mo stretchy="false"> ( </mo> <mi> u </mi> <mo> , </mo> <mi> v </mi> <mo stretchy="false"> ) </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle y=y(u,v)} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1dc932826f9f3a969aee6da3cf579aad8966ffb8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.71ex; height:2.843ex;" alt="{\displaystyle y=y(u,v)}"> </noscript><span class="lazy-image-placeholder" style="width: 10.71ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1dc932826f9f3a969aee6da3cf579aad8966ffb8" data-alt="{\displaystyle y=y(u,v)}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z=z(u,v)}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> z </mi> <mo> = </mo> <mi> z </mi> <mo stretchy="false"> ( </mo> <mi> u </mi> <mo> , </mo> <mi> v </mi> <mo stretchy="false"> ) </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle z=z(u,v)} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e263aebd2eeba9e55fd1072eb87e251125d01faf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.575ex; height:2.843ex;" alt="{\displaystyle z=z(u,v)}"> </noscript><span class="lazy-image-placeholder" style="width: 10.575ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e263aebd2eeba9e55fd1072eb87e251125d01faf" data-alt="{\displaystyle z=z(u,v)}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span></p> <p>imaju neprekidne prve parcijalne derivacije po <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle u}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> u </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle u} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c3e6bb763d22c20916ed4f0bb6bd49d7470cffd8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle u}"> </noscript><span class="lazy-image-placeholder" style="width: 1.33ex;height: 1.676ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c3e6bb763d22c20916ed4f0bb6bd49d7470cffd8" data-alt="{\displaystyle u}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> i po <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle v}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> v </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle v} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e07b00e7fc0847fbd16391c778d65bc25c452597" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.128ex; height:1.676ex;" alt="{\displaystyle v}"> </noscript><span class="lazy-image-placeholder" style="width: 1.128ex;height: 1.676ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e07b00e7fc0847fbd16391c778d65bc25c452597" data-alt="{\displaystyle v}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span>, koordinatne krive u svakoj svojoj tački imaju tangentu.</p> <p>Vektori</p> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r_{u}(u,v)=x_{u}(u,v)i+y_{u}(u,v)j+z_{u}(u,v)k}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> u </mi> </mrow> </msub> <mo stretchy="false"> ( </mo> <mi> u </mi> <mo> , </mo> <mi> v </mi> <mo stretchy="false"> ) </mo> <mo> = </mo> <msub> <mi> x </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> u </mi> </mrow> </msub> <mo stretchy="false"> ( </mo> <mi> u </mi> <mo> , </mo> <mi> v </mi> <mo stretchy="false"> ) </mo> <mi> i </mi> <mo> + </mo> <msub> <mi> y </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> u </mi> </mrow> </msub> <mo stretchy="false"> ( </mo> <mi> u </mi> <mo> , </mo> <mi> v </mi> <mo stretchy="false"> ) </mo> <mi> j </mi> <mo> + </mo> <msub> <mi> z </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> u </mi> </mrow> </msub> <mo stretchy="false"> ( </mo> <mi> u </mi> <mo> , </mo> <mi> v </mi> <mo stretchy="false"> ) </mo> <mi> k </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle r_{u}(u,v)=x_{u}(u,v)i+y_{u}(u,v)j+z_{u}(u,v)k} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/093f87b79571885798afe072afb224c68ec2f3c0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:42.242ex; height:2.843ex;" alt="{\displaystyle r_{u}(u,v)=x_{u}(u,v)i+y_{u}(u,v)j+z_{u}(u,v)k}"> </noscript><span class="lazy-image-placeholder" style="width: 42.242ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/093f87b79571885798afe072afb224c68ec2f3c0" data-alt="{\displaystyle r_{u}(u,v)=x_{u}(u,v)i+y_{u}(u,v)j+z_{u}(u,v)k}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span></p> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r_{v}(u,v)=x_{v}(u,v)i+y_{v}(u,v)j+z_{v}(u,v)k}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> v </mi> </mrow> </msub> <mo stretchy="false"> ( </mo> <mi> u </mi> <mo> , </mo> <mi> v </mi> <mo stretchy="false"> ) </mo> <mo> = </mo> <msub> <mi> x </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> v </mi> </mrow> </msub> <mo stretchy="false"> ( </mo> <mi> u </mi> <mo> , </mo> <mi> v </mi> <mo stretchy="false"> ) </mo> <mi> i </mi> <mo> + </mo> <msub> <mi> y </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> v </mi> </mrow> </msub> <mo stretchy="false"> ( </mo> <mi> u </mi> <mo> , </mo> <mi> v </mi> <mo stretchy="false"> ) </mo> <mi> j </mi> <mo> + </mo> <msub> <mi> z </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> v </mi> </mrow> </msub> <mo stretchy="false"> ( </mo> <mi> u </mi> <mo> , </mo> <mi> v </mi> <mo stretchy="false"> ) </mo> <mi> k </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle r_{v}(u,v)=x_{v}(u,v)i+y_{v}(u,v)j+z_{v}(u,v)k} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0b04a3ce7076946689e61c92605bb84721c110da" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:41.67ex; height:2.843ex;" alt="{\displaystyle r_{v}(u,v)=x_{v}(u,v)i+y_{v}(u,v)j+z_{v}(u,v)k}"> </noscript><span class="lazy-image-placeholder" style="width: 41.67ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0b04a3ce7076946689e61c92605bb84721c110da" data-alt="{\displaystyle r_{v}(u,v)=x_{v}(u,v)i+y_{v}(u,v)j+z_{v}(u,v)k}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span></p> <p>vektori su tangenata koordinatnih krivi. Njihove su dužine:</p> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |ru|={\sqrt {(x_{u})^{2}+(y_{u})^{2}+(z_{u})^{2}}}={\sqrt {(x_{v})^{2}+(y_{v})^{2}+(z_{v})^{2}}}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false"> | </mo> </mrow> <mi> r </mi> <mi> u </mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false"> | </mo> </mrow> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mo stretchy="false"> ( </mo> <msub> <mi> x </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> u </mi> </mrow> </msub> <msup> <mo stretchy="false"> ) </mo> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <mo> + </mo> <mo stretchy="false"> ( </mo> <msub> <mi> y </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> u </mi> </mrow> </msub> <msup> <mo stretchy="false"> ) </mo> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <mo> + </mo> <mo stretchy="false"> ( </mo> <msub> <mi> z </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> u </mi> </mrow> </msub> <msup> <mo stretchy="false"> ) </mo> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> </msqrt> </mrow> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mo stretchy="false"> ( </mo> <msub> <mi> x </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> v </mi> </mrow> </msub> <msup> <mo stretchy="false"> ) </mo> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <mo> + </mo> <mo stretchy="false"> ( </mo> <msub> <mi> y </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> v </mi> </mrow> </msub> <msup> <mo stretchy="false"> ) </mo> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <mo> + </mo> <mo stretchy="false"> ( </mo> <msub> <mi> z </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> v </mi> </mrow> </msub> <msup> <mo stretchy="false"> ) </mo> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle |ru|={\sqrt {(x_{u})^{2}+(y_{u})^{2}+(z_{u})^{2}}}={\sqrt {(x_{v})^{2}+(y_{v})^{2}+(z_{v})^{2}}}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7e0ef6e6ad8d26f0ccc350053984b2a18ee8c806" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.671ex; width:56.766ex; height:4.843ex;" alt="{\displaystyle |ru|={\sqrt {(x_{u})^{2}+(y_{u})^{2}+(z_{u})^{2}}}={\sqrt {(x_{v})^{2}+(y_{v})^{2}+(z_{v})^{2}}}}"> </noscript><span class="lazy-image-placeholder" style="width: 56.766ex;height: 4.843ex;vertical-align: -1.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7e0ef6e6ad8d26f0ccc350053984b2a18ee8c806" data-alt="{\displaystyle |ru|={\sqrt {(x_{u})^{2}+(y_{u})^{2}+(z_{u})^{2}}}={\sqrt {(x_{v})^{2}+(y_{v})^{2}+(z_{v})^{2}}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span></p> </section> <div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(3)"> <span class="indicator mf-icon mf-icon-expand mf-icon--small"></span> <h2 id="Eksplicitna_jednačina_površi"><span id="Eksplicitna_jedna.C4.8Dina_povr.C5.A1i"></span>Eksplicitna jednačina površi</h2><span class="mw-editsection"> <a role="button" href="https://sh-m-wikipedia-org.translate.goog/w/index.php?title=Povr%C5%A1&action=edit&section=3&_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Uredi odjeljak Eksplicitna jednačina površi" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>uredi</span> </a> </span> </div> <section class="mf-section-3 collapsible-block" id="mf-section-3"> <p>Neka je <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathfrak {U}}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur"> U </mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\mathfrak {U}}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/042ea9f1b7b1e435446133c8cc8bc5a204766da5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; margin-left: -0.057ex; width:1.603ex; height:2.176ex;" alt="{\displaystyle {\mathfrak {U}}}"> </noscript><span class="lazy-image-placeholder" style="width: 1.603ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/042ea9f1b7b1e435446133c8cc8bc5a204766da5" data-alt="{\displaystyle {\mathfrak {U}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> područje (otvoren i povezan skup) u <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R^{2}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi> R </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle R^{2}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5ce07e278be3e058a6303de8359f8b4a4288264a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.818ex; height:2.676ex;" alt="{\displaystyle R^{2}}"> </noscript><span class="lazy-image-placeholder" style="width: 2.818ex;height: 2.676ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5ce07e278be3e058a6303de8359f8b4a4288264a" data-alt="{\displaystyle R^{2}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> i neka <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f:U\to R}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> f </mi> <mo> : </mo> <mi> U </mi> <mo stretchy="false"> →<!-- → --> </mo> <mi> R </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle f:U\to R} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/85805459a88397440c2a4cf468c64237081018f4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.376ex; height:2.509ex;" alt="{\displaystyle f:U\to R}"> </noscript><span class="lazy-image-placeholder" style="width: 10.376ex;height: 2.509ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/85805459a88397440c2a4cf468c64237081018f4" data-alt="{\displaystyle f:U\to R}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> ima na <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathfrak {U}}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur"> U </mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\mathfrak {U}}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/042ea9f1b7b1e435446133c8cc8bc5a204766da5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; margin-left: -0.057ex; width:1.603ex; height:2.176ex;" alt="{\displaystyle {\mathfrak {U}}}"> </noscript><span class="lazy-image-placeholder" style="width: 1.603ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/042ea9f1b7b1e435446133c8cc8bc5a204766da5" data-alt="{\displaystyle {\mathfrak {U}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> neprekidne prve parcijalne derivacije po <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> x </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle x} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"> </noscript><span class="lazy-image-placeholder" style="width: 1.33ex;height: 1.676ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" data-alt="{\displaystyle x}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> i <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> y </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle y} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b8a6208ec717213d4317e666f1ae872e00620a0d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.155ex; height:2.009ex;" alt="{\displaystyle y}"> </noscript><span class="lazy-image-placeholder" style="width: 1.155ex;height: 2.009ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b8a6208ec717213d4317e666f1ae872e00620a0d" data-alt="{\displaystyle y}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> . Graf funkcije <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> f </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle f} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"> </noscript><span class="lazy-image-placeholder" style="width: 1.279ex;height: 2.509ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" data-alt="{\displaystyle f}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> nazivamo regularnom (glatkom) površi.</p> <p>Jednačinu takve površi nazivamo eksplicitnom i ona glasi <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z=f(x,y)}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> z </mi> <mo> = </mo> <mi> f </mi> <mo stretchy="false"> ( </mo> <mi> x </mi> <mo> , </mo> <mi> y </mi> <mo stretchy="false"> ) </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle z=f(x,y)} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1eefb2840000f404c8c0f3f5d6d72f2624854591" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.794ex; height:2.843ex;" alt="{\displaystyle z=f(x,y)}"> </noscript><span class="lazy-image-placeholder" style="width: 10.794ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1eefb2840000f404c8c0f3f5d6d72f2624854591" data-alt="{\displaystyle z=f(x,y)}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> Da bi se s parametarskog oblika zadavanja površi moglo preči na eksplicitan oblik barem jedna od funkcijskih determinanti (iv) mora biti različita od nule.</p> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{vmatrix}x_{u}(u_{0},v_{0})&y_{u}(u_{0},v_{0})\\x_{v}(u_{0},v_{0})&x_{v}(u_{0},v_{0})\end{vmatrix}}\neq 0}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo> | </mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <msub> <mi> x </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> u </mi> </mrow> </msub> <mo stretchy="false"> ( </mo> <msub> <mi> u </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> <mo> , </mo> <msub> <mi> v </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> <mo stretchy="false"> ) </mo> </mtd> <mtd> <msub> <mi> y </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> u </mi> </mrow> </msub> <mo stretchy="false"> ( </mo> <msub> <mi> u </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> <mo> , </mo> <msub> <mi> v </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> <mo stretchy="false"> ) </mo> </mtd> </mtr> <mtr> <mtd> <msub> <mi> x </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> v </mi> </mrow> </msub> <mo stretchy="false"> ( </mo> <msub> <mi> u </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> <mo> , </mo> <msub> <mi> v </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> <mo stretchy="false"> ) </mo> </mtd> <mtd> <msub> <mi> x </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> v </mi> </mrow> </msub> <mo stretchy="false"> ( </mo> <msub> <mi> u </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> <mo> , </mo> <msub> <mi> v </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> <mo stretchy="false"> ) </mo> </mtd> </mtr> </mtable> <mo> | </mo> </mrow> </mrow> <mo> ≠<!-- ≠ --> </mo> <mn> 0 </mn> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\begin{vmatrix}x_{u}(u_{0},v_{0})&y_{u}(u_{0},v_{0})\\x_{v}(u_{0},v_{0})&x_{v}(u_{0},v_{0})\end{vmatrix}}\neq 0} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a75e2d3508cad8e32a9defe294d056a4eadddf39" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:28.308ex; height:6.176ex;" alt="{\displaystyle {\begin{vmatrix}x_{u}(u_{0},v_{0})&y_{u}(u_{0},v_{0})\\x_{v}(u_{0},v_{0})&x_{v}(u_{0},v_{0})\end{vmatrix}}\neq 0}"> </noscript><span class="lazy-image-placeholder" style="width: 28.308ex;height: 6.176ex;vertical-align: -2.505ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a75e2d3508cad8e32a9defe294d056a4eadddf39" data-alt="{\displaystyle {\begin{vmatrix}x_{u}(u_{0},v_{0})&y_{u}(u_{0},v_{0})\\x_{v}(u_{0},v_{0})&x_{v}(u_{0},v_{0})\end{vmatrix}}\neq 0}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span></p> <p>Možemo izvršiti inverziju prvih dviju jednačina od <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x=x(u,v),\;y=y(u,v),\;z=z(u,v),}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> x </mi> <mo> = </mo> <mi> x </mi> <mo stretchy="false"> ( </mo> <mi> u </mi> <mo> , </mo> <mi> v </mi> <mo stretchy="false"> ) </mo> <mo> , </mo> <mspace width="thickmathspace"></mspace> <mi> y </mi> <mo> = </mo> <mi> y </mi> <mo stretchy="false"> ( </mo> <mi> u </mi> <mo> , </mo> <mi> v </mi> <mo stretchy="false"> ) </mo> <mo> , </mo> <mspace width="thickmathspace"></mspace> <mi> z </mi> <mo> = </mo> <mi> z </mi> <mo stretchy="false"> ( </mo> <mi> u </mi> <mo> , </mo> <mi> v </mi> <mo stretchy="false"> ) </mo> <mo> , </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle x=x(u,v),\;y=y(u,v),\;z=z(u,v),} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/aa8a1656973ee4810dff44f2e18c3660c3411bd5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:36.349ex; height:2.843ex;" alt="{\displaystyle x=x(u,v),\;y=y(u,v),\;z=z(u,v),}"> </noscript><span class="lazy-image-placeholder" style="width: 36.349ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/aa8a1656973ee4810dff44f2e18c3660c3411bd5" data-alt="{\displaystyle x=x(u,v),\;y=y(u,v),\;z=z(u,v),}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> i postaviti dvije nove, jednoznačine, neprekidne funkcije <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle u(x,y)}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> u </mi> <mo stretchy="false"> ( </mo> <mi> x </mi> <mo> , </mo> <mi> y </mi> <mo stretchy="false"> ) </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle u(x,y)} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b57461332078df873c81bca2a395fd13f78bef50" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.658ex; height:2.843ex;" alt="{\displaystyle u(x,y)}"> </noscript><span class="lazy-image-placeholder" style="width: 6.658ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b57461332078df873c81bca2a395fd13f78bef50" data-alt="{\displaystyle u(x,y)}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> i <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle v(x,y)}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> v </mi> <mo stretchy="false"> ( </mo> <mi> x </mi> <mo> , </mo> <mi> y </mi> <mo stretchy="false"> ) </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle v(x,y)} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ca1cc47d643640c35af2867bd47f907af79574d4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.456ex; height:2.843ex;" alt="{\displaystyle v(x,y)}"> </noscript><span class="lazy-image-placeholder" style="width: 6.456ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ca1cc47d643640c35af2867bd47f907af79574d4" data-alt="{\displaystyle v(x,y)}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span>koje imaju neprekidne prve parcijalne derivacije u okolini tačke <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (x_{0},y_{0}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false"> ( </mo> <msub> <mi> x </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> <mo> , </mo> <msub> <mi> y </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle (x_{0},y_{0}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/383c2fc56c722e2619ac09ed579e3275c56730fc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.516ex; height:2.843ex;" alt="{\displaystyle (x_{0},y_{0}}"> </noscript><span class="lazy-image-placeholder" style="width: 6.516ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/383c2fc56c722e2619ac09ed579e3275c56730fc" data-alt="{\displaystyle (x_{0},y_{0}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> koja odgovara tački <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (u_{0},v_{0})}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false"> ( </mo> <msub> <mi> u </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> <mo> , </mo> <msub> <mi> v </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> <mo stretchy="false"> ) </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle (u_{0},v_{0})} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1b729d790fa6e280ed610be112ba3348172aec62" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.409ex; height:2.843ex;" alt="{\displaystyle (u_{0},v_{0})}"> </noscript><span class="lazy-image-placeholder" style="width: 7.409ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1b729d790fa6e280ed610be112ba3348172aec62" data-alt="{\displaystyle (u_{0},v_{0})}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span>.</p> <p>Pri tome vrijedi</p> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle u(x_{0},y_{0})=u_{0}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> u </mi> <mo stretchy="false"> ( </mo> <msub> <mi> x </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> <mo> , </mo> <msub> <mi> y </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> <mo stretchy="false"> ) </mo> <mo> = </mo> <msub> <mi> u </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle u(x_{0},y_{0})=u_{0}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5a49f2c38a774164912ac964ceceb037a5dd18c1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.233ex; height:2.843ex;" alt="{\displaystyle u(x_{0},y_{0})=u_{0}}"> </noscript><span class="lazy-image-placeholder" style="width: 14.233ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5a49f2c38a774164912ac964ceceb037a5dd18c1" data-alt="{\displaystyle u(x_{0},y_{0})=u_{0}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> i <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle v(x_{0},y_{0})=v_{0}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> v </mi> <mo stretchy="false"> ( </mo> <msub> <mi> x </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> <mo> , </mo> <msub> <mi> y </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> <mo stretchy="false"> ) </mo> <mo> = </mo> <msub> <mi> v </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle v(x_{0},y_{0})=v_{0}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/83e17dc6719d5851a24cfb5c776e5dbca187d0c2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.829ex; height:2.843ex;" alt="{\displaystyle v(x_{0},y_{0})=v_{0}}"> </noscript><span class="lazy-image-placeholder" style="width: 13.829ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/83e17dc6719d5851a24cfb5c776e5dbca187d0c2" data-alt="{\displaystyle v(x_{0},y_{0})=v_{0}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span></p> <p>Nakon uvrštavanja tih dviju funkcija u jednačinu <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z=z(u,v)}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> z </mi> <mo> = </mo> <mi> z </mi> <mo stretchy="false"> ( </mo> <mi> u </mi> <mo> , </mo> <mi> v </mi> <mo stretchy="false"> ) </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle z=z(u,v)} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e263aebd2eeba9e55fd1072eb87e251125d01faf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.575ex; height:2.843ex;" alt="{\displaystyle z=z(u,v)}"> </noscript><span class="lazy-image-placeholder" style="width: 10.575ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e263aebd2eeba9e55fd1072eb87e251125d01faf" data-alt="{\displaystyle z=z(u,v)}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> nastaje jednoznačnu, složena i neprekidna funkcija</p> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z_{1}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi> z </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 1 </mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle z_{1}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c3621e468231ab352b7caa30bcf0ce9b452241a6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.135ex; height:2.009ex;" alt="{\displaystyle z_{1}}"> </noscript><span class="lazy-image-placeholder" style="width: 2.135ex;height: 2.009ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c3621e468231ab352b7caa30bcf0ce9b452241a6" data-alt="{\displaystyle z_{1}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> od <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> x </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle x} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"> </noscript><span class="lazy-image-placeholder" style="width: 1.33ex;height: 1.676ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" data-alt="{\displaystyle x}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> i <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> y </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle y} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b8a6208ec717213d4317e666f1ae872e00620a0d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.155ex; height:2.009ex;" alt="{\displaystyle y}"> </noscript><span class="lazy-image-placeholder" style="width: 1.155ex;height: 2.009ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b8a6208ec717213d4317e666f1ae872e00620a0d" data-alt="{\displaystyle y}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span>, a jednačina</p> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z=z(u(x,y),v(x,y))=z_{1}(x,y)}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> z </mi> <mo> = </mo> <mi> z </mi> <mo stretchy="false"> ( </mo> <mi> u </mi> <mo stretchy="false"> ( </mo> <mi> x </mi> <mo> , </mo> <mi> y </mi> <mo stretchy="false"> ) </mo> <mo> , </mo> <mi> v </mi> <mo stretchy="false"> ( </mo> <mi> x </mi> <mo> , </mo> <mi> y </mi> <mo stretchy="false"> ) </mo> <mo stretchy="false"> ) </mo> <mo> = </mo> <msub> <mi> z </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 1 </mn> </mrow> </msub> <mo stretchy="false"> ( </mo> <mi> x </mi> <mo> , </mo> <mi> y </mi> <mo stretchy="false"> ) </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle z=z(u(x,y),v(x,y))=z_{1}(x,y)} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5c70708e7c5244db59424b62a7fd834a4c185d94" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:31.794ex; height:2.843ex;" alt="{\displaystyle z=z(u(x,y),v(x,y))=z_{1}(x,y)}"> </noscript><span class="lazy-image-placeholder" style="width: 31.794ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5c70708e7c5244db59424b62a7fd834a4c185d94" data-alt="{\displaystyle z=z(u(x,y),v(x,y))=z_{1}(x,y)}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span></p> <p>predstavlja eksplicitan oblik zadavanja površi. Ako su uvažene sve pretpostavke, funkcija <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z_{1}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi> z </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 1 </mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle z_{1}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c3621e468231ab352b7caa30bcf0ce9b452241a6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.135ex; height:2.009ex;" alt="{\displaystyle z_{1}}"> </noscript><span class="lazy-image-placeholder" style="width: 2.135ex;height: 2.009ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c3621e468231ab352b7caa30bcf0ce9b452241a6" data-alt="{\displaystyle z_{1}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> mora imati neprekidne prve parcijalne derivacije po <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> x </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle x} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"> </noscript><span class="lazy-image-placeholder" style="width: 1.33ex;height: 1.676ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" data-alt="{\displaystyle x}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> i <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> y </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle y} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b8a6208ec717213d4317e666f1ae872e00620a0d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.155ex; height:2.009ex;" alt="{\displaystyle y}"> </noscript><span class="lazy-image-placeholder" style="width: 1.155ex;height: 2.009ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b8a6208ec717213d4317e666f1ae872e00620a0d" data-alt="{\displaystyle y}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span>.</p> </section> <div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(4)"> <span class="indicator mf-icon mf-icon-expand mf-icon--small"></span> <h2 id="Implicitna_jednačina_površi"><span id="Implicitna_jedna.C4.8Dina_povr.C5.A1i"></span>Implicitna jednačina površi</h2><span class="mw-editsection"> <a role="button" href="https://sh-m-wikipedia-org.translate.goog/w/index.php?title=Povr%C5%A1&action=edit&section=4&_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Uredi odjeljak Implicitna jednačina površi" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>uredi</span> </a> </span> </div> <section class="mf-section-4 collapsible-block" id="mf-section-4"> <p>Neka je <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathfrak {U}}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur"> U </mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\mathfrak {U}}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/042ea9f1b7b1e435446133c8cc8bc5a204766da5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; margin-left: -0.057ex; width:1.603ex; height:2.176ex;" alt="{\displaystyle {\mathfrak {U}}}"> </noscript><span class="lazy-image-placeholder" style="width: 1.603ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/042ea9f1b7b1e435446133c8cc8bc5a204766da5" data-alt="{\displaystyle {\mathfrak {U}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> područje u <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R^{3}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi> R </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 3 </mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle R^{3}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0ab2376f6a3a3b77ddc94ade4f6fbc96e85ca29b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.818ex; height:2.676ex;" alt="{\displaystyle R^{3}}"> </noscript><span class="lazy-image-placeholder" style="width: 2.818ex;height: 2.676ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0ab2376f6a3a3b77ddc94ade4f6fbc96e85ca29b" data-alt="{\displaystyle R^{3}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> i neka je funkcija <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F:U\to R}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> F </mi> <mo> : </mo> <mi> U </mi> <mo stretchy="false"> →<!-- → --> </mo> <mi> R </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle F:U\to R} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f7d159d22f658e248676e5d003659c9ae685011d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:10.839ex; height:2.176ex;" alt="{\displaystyle F:U\to R}"> </noscript><span class="lazy-image-placeholder" style="width: 10.839ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f7d159d22f658e248676e5d003659c9ae685011d" data-alt="{\displaystyle F:U\to R}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> klase <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C^{1}({\mathfrak {U}})}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi> C </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 1 </mn> </mrow> </msup> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur"> U </mi> </mrow> </mrow> <mo stretchy="false"> ) </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle C^{1}({\mathfrak {U}})} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3331451a22c135d37d090db055793cd8b7dff50a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.207ex; height:3.176ex;" alt="{\displaystyle C^{1}({\mathfrak {U}})}"> </noscript><span class="lazy-image-placeholder" style="width: 6.207ex;height: 3.176ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3331451a22c135d37d090db055793cd8b7dff50a" data-alt="{\displaystyle C^{1}({\mathfrak {U}})}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> tj. prve parcijalne derivacije <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F_{x},F_{y},F_{z}:{\mathfrak {U}}\to R}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi> F </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> x </mi> </mrow> </msub> <mo> , </mo> <msub> <mi> F </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> y </mi> </mrow> </msub> <mo> , </mo> <msub> <mi> F </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> z </mi> </mrow> </msub> <mo> : </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur"> U </mi> </mrow> </mrow> <mo stretchy="false"> →<!-- → --> </mo> <mi> R </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle F_{x},F_{y},F_{z}:{\mathfrak {U}}\to R} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3a9d8e5a3d18d1662f40463acb09cc836fbf2912" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:18.636ex; height:2.843ex;" alt="{\displaystyle F_{x},F_{y},F_{z}:{\mathfrak {U}}\to R}"> </noscript><span class="lazy-image-placeholder" style="width: 18.636ex;height: 2.843ex;vertical-align: -1.005ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3a9d8e5a3d18d1662f40463acb09cc836fbf2912" data-alt="{\displaystyle F_{x},F_{y},F_{z}:{\mathfrak {U}}\to R}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> su neprekidne funkcije na <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathfrak {U}}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur"> U </mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\mathfrak {U}}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/042ea9f1b7b1e435446133c8cc8bc5a204766da5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; margin-left: -0.057ex; width:1.603ex; height:2.176ex;" alt="{\displaystyle {\mathfrak {U}}}"> </noscript><span class="lazy-image-placeholder" style="width: 1.603ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/042ea9f1b7b1e435446133c8cc8bc5a204766da5" data-alt="{\displaystyle {\mathfrak {U}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span></p> <p>Jednačinu</p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F(x,y,z)=0}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> F </mi> <mo stretchy="false"> ( </mo> <mi> x </mi> <mo> , </mo> <mi> y </mi> <mo> , </mo> <mi> z </mi> <mo stretchy="false"> ) </mo> <mo> = </mo> <mn> 0 </mn> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle F(x,y,z)=0} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0796f292c93e738b5c7c46a9aea6023ceb2d8ec7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.452ex; height:2.843ex;" alt="{\displaystyle F(x,y,z)=0}"> </noscript><span class="lazy-image-placeholder" style="width: 13.452ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0796f292c93e738b5c7c46a9aea6023ceb2d8ec7" data-alt="{\displaystyle F(x,y,z)=0}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </dd> </dl> <p>nazivamo implicitnom površi, ako postoji barem jedna tačka <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (x_{,}y_{0},z_{0})}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false"> ( </mo> <msub> <mi> x </mi> <mrow class="MJX-TeXAtom-ORD"> <mo> , </mo> </mrow> </msub> <msub> <mi> y </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> <mo> , </mo> <msub> <mi> z </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> <mo stretchy="false"> ) </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle (x_{,}y_{0},z_{0})} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/17426410689d0322f6368dedf8565aa7e651e669" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:9.191ex; height:3.009ex;" alt="{\displaystyle (x_{,}y_{0},z_{0})}"> </noscript><span class="lazy-image-placeholder" style="width: 9.191ex;height: 3.009ex;vertical-align: -1.005ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/17426410689d0322f6368dedf8565aa7e651e669" data-alt="{\displaystyle (x_{,}y_{0},z_{0})}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> takva da zadovoljava jednačinu i da je u njoj barem jedna od parcijalnih derivacija <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F_{x},F_{y},F_{z}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi> F </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> x </mi> </mrow> </msub> <mo> , </mo> <msub> <mi> F </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> y </mi> </mrow> </msub> <mo> , </mo> <msub> <mi> F </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> z </mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle F_{x},F_{y},F_{z}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3979f4e2545f2e8a099d283c4555353e62805175" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:9.775ex; height:2.843ex;" alt="{\displaystyle F_{x},F_{y},F_{z}}"> </noscript><span class="lazy-image-placeholder" style="width: 9.775ex;height: 2.843ex;vertical-align: -1.005ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3979f4e2545f2e8a099d283c4555353e62805175" data-alt="{\displaystyle F_{x},F_{y},F_{z}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> različita od <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn> 0 </mn> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle 0} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2aae8864a3c1fec9585261791a809ddec1489950" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 0}"> </noscript><span class="lazy-image-placeholder" style="width: 1.162ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2aae8864a3c1fec9585261791a809ddec1489950" data-alt="{\displaystyle 0}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span>. Ovaj uslov osigurava egzistenciju regularnog dijela površi.</p> <p>Ako je <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F_{z}(x_{0},y_{0},z_{0})\to 0}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi> F </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> z </mi> </mrow> </msub> <mo stretchy="false"> ( </mo> <msub> <mi> x </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> <mo> , </mo> <msub> <mi> y </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> <mo> , </mo> <msub> <mi> z </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> <mo stretchy="false"> ) </mo> <mo stretchy="false"> →<!-- → --> </mo> <mn> 0 </mn> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle F_{z}(x_{0},y_{0},z_{0})\to 0} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9f5c47679a6923378e39a89c20da52c0c2b16ee7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:17.863ex; height:2.843ex;" alt="{\displaystyle F_{z}(x_{0},y_{0},z_{0})\to 0}"> </noscript><span class="lazy-image-placeholder" style="width: 17.863ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9f5c47679a6923378e39a89c20da52c0c2b16ee7" data-alt="{\displaystyle F_{z}(x_{0},y_{0},z_{0})\to 0}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span>, postoji jednoznačna, neprekidna funkcija <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z=z(x,y)}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> z </mi> <mo> = </mo> <mi> z </mi> <mo stretchy="false"> ( </mo> <mi> x </mi> <mo> , </mo> <mi> y </mi> <mo stretchy="false"> ) </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle z=z(x,y)} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/593eac2c3078f3f74c5a535817f028f139eafeb2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.603ex; height:2.843ex;" alt="{\displaystyle z=z(x,y)}"> </noscript><span class="lazy-image-placeholder" style="width: 10.603ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/593eac2c3078f3f74c5a535817f028f139eafeb2" data-alt="{\displaystyle z=z(x,y)}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> koja u okolini tačke <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (x_{0},y_{0})}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false"> ( </mo> <msub> <mi> x </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> <mo> , </mo> <msub> <mi> y </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> <mo stretchy="false"> ) </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle (x_{0},y_{0})} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/29c296094af9a1c665425debeac5eaab99a37a04" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.421ex; height:2.843ex;" alt="{\displaystyle (x_{0},y_{0})}"> </noscript><span class="lazy-image-placeholder" style="width: 7.421ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/29c296094af9a1c665425debeac5eaab99a37a04" data-alt="{\displaystyle (x_{0},y_{0})}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> identički zadovoljava vezu</p> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F(x,y,z(x,y))=0}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> F </mi> <mo stretchy="false"> ( </mo> <mi> x </mi> <mo> , </mo> <mi> y </mi> <mo> , </mo> <mi> z </mi> <mo stretchy="false"> ( </mo> <mi> x </mi> <mo> , </mo> <mi> y </mi> <mo stretchy="false"> ) </mo> <mo stretchy="false"> ) </mo> <mo> = </mo> <mn> 0 </mn> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle F(x,y,z(x,y))=0} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b7c7ac4e49a710c29211d8390b95c85a5947d48b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.781ex; height:2.843ex;" alt="{\displaystyle F(x,y,z(x,y))=0}"> </noscript><span class="lazy-image-placeholder" style="width: 18.781ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b7c7ac4e49a710c29211d8390b95c85a5947d48b" data-alt="{\displaystyle F(x,y,z(x,y))=0}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span></p> <p>i u toj tački funkcija <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> z </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle z} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bf368e72c009decd9b6686ee84a375632e11de98" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.088ex; height:1.676ex;" alt="{\displaystyle z}"> </noscript><span class="lazy-image-placeholder" style="width: 1.088ex;height: 1.676ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bf368e72c009decd9b6686ee84a375632e11de98" data-alt="{\displaystyle z}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> ima neprekidne prve parcijalne derivacije po <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> x </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle x} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"> </noscript><span class="lazy-image-placeholder" style="width: 1.33ex;height: 1.676ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" data-alt="{\displaystyle x}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> i <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> y </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle y} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b8a6208ec717213d4317e666f1ae872e00620a0d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.155ex; height:2.009ex;" alt="{\displaystyle y}"> </noscript><span class="lazy-image-placeholder" style="width: 1.155ex;height: 2.009ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b8a6208ec717213d4317e666f1ae872e00620a0d" data-alt="{\displaystyle y}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span>.</p> <p>Tačku <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (x_{0},y_{0},z_{0})}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false"> ( </mo> <msub> <mi> x </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> <mo> , </mo> <msub> <mi> y </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> <mo> , </mo> <msub> <mi> z </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> <mo stretchy="false"> ) </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle (x_{0},y_{0},z_{0})} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/39177ddeeb9f9a393b664e522bc8e3bf0face153" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.59ex; height:2.843ex;" alt="{\displaystyle (x_{0},y_{0},z_{0})}"> </noscript><span class="lazy-image-placeholder" style="width: 10.59ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/39177ddeeb9f9a393b664e522bc8e3bf0face153" data-alt="{\displaystyle (x_{0},y_{0},z_{0})}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> u kojoj su ispunjeni navedeni uslovi zovemo običnom ili regularnom tačkom površi.</p> <p>Kako bi barem jedna od parcijalnih derivacija funkcije <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> F </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle F} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/545fd099af8541605f7ee55f08225526be88ce57" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.741ex; height:2.176ex;" alt="{\displaystyle F}"> </noscript><span class="lazy-image-placeholder" style="width: 1.741ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/545fd099af8541605f7ee55f08225526be88ce57" data-alt="{\displaystyle F}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> bila različita od nule, za regularnu tačku površi mora biti zadovoljen uslov</p> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F_{x}^{2}(x_{0},y_{0},z_{0})+F_{y}^{2}(x_{0},y_{0},z_{0})+F_{z}^{2}(x_{0},y_{0},z_{0})\to 0}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi> F </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> x </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msubsup> <mo stretchy="false"> ( </mo> <msub> <mi> x </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> <mo> , </mo> <msub> <mi> y </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> <mo> , </mo> <msub> <mi> z </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> <mo stretchy="false"> ) </mo> <mo> + </mo> <msubsup> <mi> F </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> y </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msubsup> <mo stretchy="false"> ( </mo> <msub> <mi> x </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> <mo> , </mo> <msub> <mi> y </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> <mo> , </mo> <msub> <mi> z </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> <mo stretchy="false"> ) </mo> <mo> + </mo> <msubsup> <mi> F </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> z </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msubsup> <mo stretchy="false"> ( </mo> <msub> <mi> x </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> <mo> , </mo> <msub> <mi> y </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> <mo> , </mo> <msub> <mi> z </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> <mo stretchy="false"> ) </mo> <mo stretchy="false"> →<!-- → --> </mo> <mn> 0 </mn> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle F_{x}^{2}(x_{0},y_{0},z_{0})+F_{y}^{2}(x_{0},y_{0},z_{0})+F_{z}^{2}(x_{0},y_{0},z_{0})\to 0} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8cac42951d43a5d14615467bbc88960d24f7a3c1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:50.834ex; height:3.176ex;" alt="{\displaystyle F_{x}^{2}(x_{0},y_{0},z_{0})+F_{y}^{2}(x_{0},y_{0},z_{0})+F_{z}^{2}(x_{0},y_{0},z_{0})\to 0}"> </noscript><span class="lazy-image-placeholder" style="width: 50.834ex;height: 3.176ex;vertical-align: -1.005ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8cac42951d43a5d14615467bbc88960d24f7a3c1" data-alt="{\displaystyle F_{x}^{2}(x_{0},y_{0},z_{0})+F_{y}^{2}(x_{0},y_{0},z_{0})+F_{z}^{2}(x_{0},y_{0},z_{0})\to 0}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span></p> <p>Kako je <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (x_{0},y_{0},z_{0})}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false"> ( </mo> <msub> <mi> x </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> <mo> , </mo> <msub> <mi> y </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> <mo> , </mo> <msub> <mi> z </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> <mo stretchy="false"> ) </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle (x_{0},y_{0},z_{0})} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/39177ddeeb9f9a393b664e522bc8e3bf0face153" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.59ex; height:2.843ex;" alt="{\displaystyle (x_{0},y_{0},z_{0})}"> </noscript><span class="lazy-image-placeholder" style="width: 10.59ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/39177ddeeb9f9a393b664e522bc8e3bf0face153" data-alt="{\displaystyle (x_{0},y_{0},z_{0})}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> singularna toačka implicitno zadane površi ako ona zadovoljava jednačinu <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F(x,y,z)=0}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> F </mi> <mo stretchy="false"> ( </mo> <mi> x </mi> <mo> , </mo> <mi> y </mi> <mo> , </mo> <mi> z </mi> <mo stretchy="false"> ) </mo> <mo> = </mo> <mn> 0 </mn> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle F(x,y,z)=0} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0796f292c93e738b5c7c46a9aea6023ceb2d8ec7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.452ex; height:2.843ex;" alt="{\displaystyle F(x,y,z)=0}"> </noscript><span class="lazy-image-placeholder" style="width: 13.452ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0796f292c93e738b5c7c46a9aea6023ceb2d8ec7" data-alt="{\displaystyle F(x,y,z)=0}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> i ako vrijedi</p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F_{x}(x_{0},y_{0},z_{0})+F_{y}(x_{0},y_{0},z_{0})+F_{z}(x_{0},y_{0},z_{0})=0}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi> F </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> x </mi> </mrow> </msub> <mo stretchy="false"> ( </mo> <msub> <mi> x </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> <mo> , </mo> <msub> <mi> y </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> <mo> , </mo> <msub> <mi> z </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> <mo stretchy="false"> ) </mo> <mo> + </mo> <msub> <mi> F </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> y </mi> </mrow> </msub> <mo stretchy="false"> ( </mo> <msub> <mi> x </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> <mo> , </mo> <msub> <mi> y </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> <mo> , </mo> <msub> <mi> z </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> <mo stretchy="false"> ) </mo> <mo> + </mo> <msub> <mi> F </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> z </mi> </mrow> </msub> <mo stretchy="false"> ( </mo> <msub> <mi> x </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> <mo> , </mo> <msub> <mi> y </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> <mo> , </mo> <msub> <mi> z </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> <mo stretchy="false"> ) </mo> <mo> = </mo> <mn> 0 </mn> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle F_{x}(x_{0},y_{0},z_{0})+F_{y}(x_{0},y_{0},z_{0})+F_{z}(x_{0},y_{0},z_{0})=0} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ae99f99fa0c033fd890f857810da15b41dce2afb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:49.419ex; height:3.009ex;" alt="{\displaystyle F_{x}(x_{0},y_{0},z_{0})+F_{y}(x_{0},y_{0},z_{0})+F_{z}(x_{0},y_{0},z_{0})=0}"> </noscript><span class="lazy-image-placeholder" style="width: 49.419ex;height: 3.009ex;vertical-align: -1.005ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ae99f99fa0c033fd890f857810da15b41dce2afb" data-alt="{\displaystyle F_{x}(x_{0},y_{0},z_{0})+F_{y}(x_{0},y_{0},z_{0})+F_{z}(x_{0},y_{0},z_{0})=0}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </dd> </dl> </section> <div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(5)"> <span class="indicator mf-icon mf-icon-expand mf-icon--small"></span> <h2 id="Tangentna_ravan_i_normala_na_površ"><span id="Tangentna_ravan_i_normala_na_povr.C5.A1"></span>Tangentna ravan i normala na površ</h2><span class="mw-editsection"> <a role="button" href="https://sh-m-wikipedia-org.translate.goog/w/index.php?title=Povr%C5%A1&action=edit&section=5&_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Uredi odjeljak Tangentna ravan i normala na površ" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>uredi</span> </a> </span> </div> <section class="mf-section-5 collapsible-block" id="mf-section-5"> <p>Bilo koja kriva na regularnoj površi F zadanoj vektorskom jednačinom</p> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r(u,v)=x(u,v)i+y(u,v)j+z(u,v)k}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> r </mi> <mo stretchy="false"> ( </mo> <mi> u </mi> <mo> , </mo> <mi> v </mi> <mo stretchy="false"> ) </mo> <mo> = </mo> <mi> x </mi> <mo stretchy="false"> ( </mo> <mi> u </mi> <mo> , </mo> <mi> v </mi> <mo stretchy="false"> ) </mo> <mi> i </mi> <mo> + </mo> <mi> y </mi> <mo stretchy="false"> ( </mo> <mi> u </mi> <mo> , </mo> <mi> v </mi> <mo stretchy="false"> ) </mo> <mi> j </mi> <mo> + </mo> <mi> z </mi> <mo stretchy="false"> ( </mo> <mi> u </mi> <mo> , </mo> <mi> v </mi> <mo stretchy="false"> ) </mo> <mi> k </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle r(u,v)=x(u,v)i+y(u,v)j+z(u,v)k} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/34070a624d52d7b2b396cec883401b52de9e6812" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:37.575ex; height:2.843ex;" alt="{\displaystyle r(u,v)=x(u,v)i+y(u,v)j+z(u,v)k}"> </noscript><span class="lazy-image-placeholder" style="width: 37.575ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/34070a624d52d7b2b396cec883401b52de9e6812" data-alt="{\displaystyle r(u,v)=x(u,v)i+y(u,v)j+z(u,v)k}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span></p> <p>može biti zadana parametarskom jednačinom <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle u=u(t)}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> u </mi> <mo> = </mo> <mi> u </mi> <mo stretchy="false"> ( </mo> <mi> t </mi> <mo stretchy="false"> ) </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle u=u(t)} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/188f5066b4620c7cd5b44eb4ca51b383881d00d6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.407ex; height:2.843ex;" alt="{\displaystyle u=u(t)}"> </noscript><span class="lazy-image-placeholder" style="width: 8.407ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/188f5066b4620c7cd5b44eb4ca51b383881d00d6" data-alt="{\displaystyle u=u(t)}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle v=v(t)}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> v </mi> <mo> = </mo> <mi> v </mi> <mo stretchy="false"> ( </mo> <mi> t </mi> <mo stretchy="false"> ) </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle v=v(t)} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0744b609436f4a6e2fde78abc352e6488dfa779c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.003ex; height:2.843ex;" alt="{\displaystyle v=v(t)}"> </noscript><span class="lazy-image-placeholder" style="width: 8.003ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0744b609436f4a6e2fde78abc352e6488dfa779c" data-alt="{\displaystyle v=v(t)}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span></p> <p>gdje za <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \forall t\in (a,b)\notin R}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal"> ∀<!-- ∀ --> </mi> <mi> t </mi> <mo> ∈<!-- ∈ --> </mo> <mo stretchy="false"> ( </mo> <mi> a </mi> <mo> , </mo> <mi> b </mi> <mo stretchy="false"> ) </mo> <mo> ∉<!-- ∉ --> </mo> <mi> R </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \forall t\in (a,b)\notin R} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/99dcb8c33ba71b206916fb39923fda37188f3aa4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.648ex; height:2.843ex;" alt="{\displaystyle \forall t\in (a,b)\notin R}"> </noscript><span class="lazy-image-placeholder" style="width: 14.648ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/99dcb8c33ba71b206916fb39923fda37188f3aa4" data-alt="{\displaystyle \forall t\in (a,b)\notin R}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> vrijedi da se <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (u(t),v(t))}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false"> ( </mo> <mi> u </mi> <mo stretchy="false"> ( </mo> <mi> t </mi> <mo stretchy="false"> ) </mo> <mo> , </mo> <mi> v </mi> <mo stretchy="false"> ( </mo> <mi> t </mi> <mo stretchy="false"> ) </mo> <mo stretchy="false"> ) </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle (u(t),v(t))} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/58cb77418556384cfa3c34cf9a0cefb3bfe3c229" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.598ex; height:2.843ex;" alt="{\displaystyle (u(t),v(t))}"> </noscript><span class="lazy-image-placeholder" style="width: 10.598ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/58cb77418556384cfa3c34cf9a0cefb3bfe3c229" data-alt="{\displaystyle (u(t),v(t))}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> nalazi u području <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathfrak {U}}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur"> U </mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\mathfrak {U}}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/042ea9f1b7b1e435446133c8cc8bc5a204766da5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; margin-left: -0.057ex; width:1.603ex; height:2.176ex;" alt="{\displaystyle {\mathfrak {U}}}"> </noscript><span class="lazy-image-placeholder" style="width: 1.603ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/042ea9f1b7b1e435446133c8cc8bc5a204766da5" data-alt="{\displaystyle {\mathfrak {U}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span>, a funkcije <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle u(t}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> u </mi> <mo stretchy="false"> ( </mo> <mi> t </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle u(t} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/108533b21a3eef3087c98ff54b46a83977373f2c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.074ex; height:2.843ex;" alt="{\displaystyle u(t}"> </noscript><span class="lazy-image-placeholder" style="width: 3.074ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/108533b21a3eef3087c98ff54b46a83977373f2c" data-alt="{\displaystyle u(t}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span>) i <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle v(t)}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> v </mi> <mo stretchy="false"> ( </mo> <mi> t </mi> <mo stretchy="false"> ) </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle v(t)} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/243a0bf98a12f48552ba6a70302122d81b237b3d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.777ex; height:2.843ex;" alt="{\displaystyle v(t)}"> </noscript><span class="lazy-image-placeholder" style="width: 3.777ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/243a0bf98a12f48552ba6a70302122d81b237b3d" data-alt="{\displaystyle v(t)}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> neprekidne su funkcije od <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> t </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle t} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/65658b7b223af9e1acc877d848888ecdb4466560" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.84ex; height:2.009ex;" alt="{\displaystyle t}"> </noscript><span class="lazy-image-placeholder" style="width: 0.84ex;height: 2.009ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/65658b7b223af9e1acc877d848888ecdb4466560" data-alt="{\displaystyle t}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span>.</p> <p>Ako kriva u svakoj tački ima tangentu moraju i derivacije <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle u'(t)}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi> u </mi> <mo> ′ </mo> </msup> <mo stretchy="false"> ( </mo> <mi> t </mi> <mo stretchy="false"> ) </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle u'(t)} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b1530c44c813400c03a673a8dcd8bdb61368c9c8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.663ex; height:3.009ex;" alt="{\displaystyle u'(t)}"> </noscript><span class="lazy-image-placeholder" style="width: 4.663ex;height: 3.009ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b1530c44c813400c03a673a8dcd8bdb61368c9c8" data-alt="{\displaystyle u'(t)}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> i <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle v'(t)}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi> v </mi> <mo> ′ </mo> </msup> <mo stretchy="false"> ( </mo> <mi> t </mi> <mo stretchy="false"> ) </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle v'(t)} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1f8a024ea25190c68ccbcf96ccef94f9dc38b475" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.461ex; height:3.009ex;" alt="{\displaystyle v'(t)}"> </noscript><span class="lazy-image-placeholder" style="width: 4.461ex;height: 3.009ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1f8a024ea25190c68ccbcf96ccef94f9dc38b475" data-alt="{\displaystyle v'(t)}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> biti neprekidne. Kriva mora zadovoljavati jednačinu površi, vektori tačaka na krivoj dati su izrazom</p> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r=r((u(t),v(t))}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> r </mi> <mo> = </mo> <mi> r </mi> <mo stretchy="false"> ( </mo> <mo stretchy="false"> ( </mo> <mi> u </mi> <mo stretchy="false"> ( </mo> <mi> t </mi> <mo stretchy="false"> ) </mo> <mo> , </mo> <mi> v </mi> <mo stretchy="false"> ( </mo> <mi> t </mi> <mo stretchy="false"> ) </mo> <mo stretchy="false"> ) </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle r=r((u(t),v(t))} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b424e28769dbb4bbc86d2830c8e8bddce7975db2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:16.699ex; height:2.843ex;" alt="{\displaystyle r=r((u(t),v(t))}"> </noscript><span class="lazy-image-placeholder" style="width: 16.699ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b424e28769dbb4bbc86d2830c8e8bddce7975db2" data-alt="{\displaystyle r=r((u(t),v(t))}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span></p> <p><a href="https://sh-m-wikipedia-org.translate.goog/wiki/Vektor?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Vektor">Vektor</a> tangente na tu krivu je</p> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r'(t)=r_{u}(u,v)(t)+r_{v}(u,v)v'(t)}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi> r </mi> <mo> ′ </mo> </msup> <mo stretchy="false"> ( </mo> <mi> t </mi> <mo stretchy="false"> ) </mo> <mo> = </mo> <msub> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> u </mi> </mrow> </msub> <mo stretchy="false"> ( </mo> <mi> u </mi> <mo> , </mo> <mi> v </mi> <mo stretchy="false"> ) </mo> <mo stretchy="false"> ( </mo> <mi> t </mi> <mo stretchy="false"> ) </mo> <mo> + </mo> <msub> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> v </mi> </mrow> </msub> <mo stretchy="false"> ( </mo> <mi> u </mi> <mo> , </mo> <mi> v </mi> <mo stretchy="false"> ) </mo> <msup> <mi> v </mi> <mo> ′ </mo> </msup> <mo stretchy="false"> ( </mo> <mi> t </mi> <mo stretchy="false"> ) </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle r'(t)=r_{u}(u,v)(t)+r_{v}(u,v)v'(t)} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/46fbdeeade9c4386030c70362ea363146a97a3de" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:32.332ex; height:3.009ex;" alt="{\displaystyle r'(t)=r_{u}(u,v)(t)+r_{v}(u,v)v'(t)}"> </noscript><span class="lazy-image-placeholder" style="width: 32.332ex;height: 3.009ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/46fbdeeade9c4386030c70362ea363146a97a3de" data-alt="{\displaystyle r'(t)=r_{u}(u,v)(t)+r_{v}(u,v)v'(t)}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span></p> <p>Proizvoljnom čvrstom tačkom <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T(u,v)}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> T </mi> <mo stretchy="false"> ( </mo> <mi> u </mi> <mo> , </mo> <mi> v </mi> <mo stretchy="false"> ) </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle T(u,v)} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/24348030a9fdca5c0234c2df0915881701e0715d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.937ex; height:2.843ex;" alt="{\displaystyle T(u,v)}"> </noscript><span class="lazy-image-placeholder" style="width: 6.937ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/24348030a9fdca5c0234c2df0915881701e0715d" data-alt="{\displaystyle T(u,v)}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> površi <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathfrak {F}}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur"> F </mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\mathfrak {F}}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ec863025da8f3844272a146530208eb001c3dddb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.423ex; height:2.509ex;" alt="{\displaystyle {\mathfrak {F}}}"> </noscript><span class="lazy-image-placeholder" style="width: 1.423ex;height: 2.509ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ec863025da8f3844272a146530208eb001c3dddb" data-alt="{\displaystyle {\mathfrak {F}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> prolazi beskonačno mnogo prostornih krivi koje leže na površi. Za sve takve krive vektori <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r_{u}(u,v)}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> u </mi> </mrow> </msub> <mo stretchy="false"> ( </mo> <mi> u </mi> <mo> , </mo> <mi> v </mi> <mo stretchy="false"> ) </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle r_{u}(u,v)} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cce536584293b18b52da4849d7d58964ab4f0832" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.522ex; height:2.843ex;" alt="{\displaystyle r_{u}(u,v)}"> </noscript><span class="lazy-image-placeholder" style="width: 7.522ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cce536584293b18b52da4849d7d58964ab4f0832" data-alt="{\displaystyle r_{u}(u,v)}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> i <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r_{v}(u,v)}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> v </mi> </mrow> </msub> <mo stretchy="false"> ( </mo> <mi> u </mi> <mo> , </mo> <mi> v </mi> <mo stretchy="false"> ) </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle r_{v}(u,v)} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a7a92f3512403a37e6fe3b9e3a83efffef36a899" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.379ex; height:2.843ex;" alt="{\displaystyle r_{v}(u,v)}"> </noscript><span class="lazy-image-placeholder" style="width: 7.379ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a7a92f3512403a37e6fe3b9e3a83efffef36a899" data-alt="{\displaystyle r_{v}(u,v)}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> biće jednaki, budući da oni zavise samo o koordinatama <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle u}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> u </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle u} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c3e6bb763d22c20916ed4f0bb6bd49d7470cffd8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle u}"> </noscript><span class="lazy-image-placeholder" style="width: 1.33ex;height: 1.676ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c3e6bb763d22c20916ed4f0bb6bd49d7470cffd8" data-alt="{\displaystyle u}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> i <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle v}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> v </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle v} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e07b00e7fc0847fbd16391c778d65bc25c452597" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.128ex; height:1.676ex;" alt="{\displaystyle v}"> </noscript><span class="lazy-image-placeholder" style="width: 1.128ex;height: 1.676ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e07b00e7fc0847fbd16391c778d65bc25c452597" data-alt="{\displaystyle v}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> tačke T, dok ́će derivacije <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle u'(t)}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi> u </mi> <mo> ′ </mo> </msup> <mo stretchy="false"> ( </mo> <mi> t </mi> <mo stretchy="false"> ) </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle u'(t)} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b1530c44c813400c03a673a8dcd8bdb61368c9c8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.663ex; height:3.009ex;" alt="{\displaystyle u'(t)}"> </noscript><span class="lazy-image-placeholder" style="width: 4.663ex;height: 3.009ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b1530c44c813400c03a673a8dcd8bdb61368c9c8" data-alt="{\displaystyle u'(t)}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> i <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle v'(t)}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi> v </mi> <mo> ′ </mo> </msup> <mo stretchy="false"> ( </mo> <mi> t </mi> <mo stretchy="false"> ) </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle v'(t)} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1f8a024ea25190c68ccbcf96ccef94f9dc38b475" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.461ex; height:3.009ex;" alt="{\displaystyle v'(t)}"> </noscript><span class="lazy-image-placeholder" style="width: 4.461ex;height: 3.009ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1f8a024ea25190c68ccbcf96ccef94f9dc38b475" data-alt="{\displaystyle v'(t)}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> za pojedine krive biti različite. Svi vektori tangenata na krivu koje prolaze tačkom T linearne su kombinacije vektora</p> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r_{u}(u,v)=x_{u}(u,v)i+y_{u}(u,v)j+z_{u}(u,v)k}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> u </mi> </mrow> </msub> <mo stretchy="false"> ( </mo> <mi> u </mi> <mo> , </mo> <mi> v </mi> <mo stretchy="false"> ) </mo> <mo> = </mo> <msub> <mi> x </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> u </mi> </mrow> </msub> <mo stretchy="false"> ( </mo> <mi> u </mi> <mo> , </mo> <mi> v </mi> <mo stretchy="false"> ) </mo> <mi> i </mi> <mo> + </mo> <msub> <mi> y </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> u </mi> </mrow> </msub> <mo stretchy="false"> ( </mo> <mi> u </mi> <mo> , </mo> <mi> v </mi> <mo stretchy="false"> ) </mo> <mi> j </mi> <mo> + </mo> <msub> <mi> z </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> u </mi> </mrow> </msub> <mo stretchy="false"> ( </mo> <mi> u </mi> <mo> , </mo> <mi> v </mi> <mo stretchy="false"> ) </mo> <mi> k </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle r_{u}(u,v)=x_{u}(u,v)i+y_{u}(u,v)j+z_{u}(u,v)k} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/093f87b79571885798afe072afb224c68ec2f3c0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:42.242ex; height:2.843ex;" alt="{\displaystyle r_{u}(u,v)=x_{u}(u,v)i+y_{u}(u,v)j+z_{u}(u,v)k}"> </noscript><span class="lazy-image-placeholder" style="width: 42.242ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/093f87b79571885798afe072afb224c68ec2f3c0" data-alt="{\displaystyle r_{u}(u,v)=x_{u}(u,v)i+y_{u}(u,v)j+z_{u}(u,v)k}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span></p> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r_{v}(u,v)=x_{v}(u,v)i+y_{v}(u,v)j+z_{v}(u,v)k}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> v </mi> </mrow> </msub> <mo stretchy="false"> ( </mo> <mi> u </mi> <mo> , </mo> <mi> v </mi> <mo stretchy="false"> ) </mo> <mo> = </mo> <msub> <mi> x </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> v </mi> </mrow> </msub> <mo stretchy="false"> ( </mo> <mi> u </mi> <mo> , </mo> <mi> v </mi> <mo stretchy="false"> ) </mo> <mi> i </mi> <mo> + </mo> <msub> <mi> y </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> v </mi> </mrow> </msub> <mo stretchy="false"> ( </mo> <mi> u </mi> <mo> , </mo> <mi> v </mi> <mo stretchy="false"> ) </mo> <mi> j </mi> <mo> + </mo> <msub> <mi> z </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> v </mi> </mrow> </msub> <mo stretchy="false"> ( </mo> <mi> u </mi> <mo> , </mo> <mi> v </mi> <mo stretchy="false"> ) </mo> <mi> k </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle r_{v}(u,v)=x_{v}(u,v)i+y_{v}(u,v)j+z_{v}(u,v)k} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0b04a3ce7076946689e61c92605bb84721c110da" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:41.67ex; height:2.843ex;" alt="{\displaystyle r_{v}(u,v)=x_{v}(u,v)i+y_{v}(u,v)j+z_{v}(u,v)k}"> </noscript><span class="lazy-image-placeholder" style="width: 41.67ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0b04a3ce7076946689e61c92605bb84721c110da" data-alt="{\displaystyle r_{v}(u,v)=x_{v}(u,v)i+y_{v}(u,v)j+z_{v}(u,v)k}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span></p> <p>Tangente prostornih krivi koje su na površi i prolaze tačkom T leže u ravni koju određuju tangentni vektori koordinatnih krivi te tačke. Ta se ravan naziva tangentna ravan na površ u tački T, a tačka T je njeno diralište.</p> <p><br> Jednadnačina tangentne ravnine u parametarskom obliku je</p> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r=r_{0}(u,v)+\rho _{1}r_{u}+\rho _{1}r_{v}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> r </mi> <mo> = </mo> <msub> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> <mo stretchy="false"> ( </mo> <mi> u </mi> <mo> , </mo> <mi> v </mi> <mo stretchy="false"> ) </mo> <mo> + </mo> <msub> <mi> ρ<!-- ρ --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 1 </mn> </mrow> </msub> <msub> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> u </mi> </mrow> </msub> <mo> + </mo> <msub> <mi> ρ<!-- ρ --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 1 </mn> </mrow> </msub> <msub> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> v </mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle r=r_{0}(u,v)+\rho _{1}r_{u}+\rho _{1}r_{v}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d30b9478770340e33d4c698a870d1e241fc7ebaf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:26.043ex; height:2.843ex;" alt="{\displaystyle r=r_{0}(u,v)+\rho _{1}r_{u}+\rho _{1}r_{v}}"> </noscript><span class="lazy-image-placeholder" style="width: 26.043ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d30b9478770340e33d4c698a870d1e241fc7ebaf" data-alt="{\displaystyle r=r_{0}(u,v)+\rho _{1}r_{u}+\rho _{1}r_{v}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span></p> <p>gdje je <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> r </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle r} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0d1ecb613aa2984f0576f70f86650b7c2a132538" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.049ex; height:1.676ex;" alt="{\displaystyle r}"> </noscript><span class="lazy-image-placeholder" style="width: 1.049ex;height: 1.676ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0d1ecb613aa2984f0576f70f86650b7c2a132538" data-alt="{\displaystyle r}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> radijus-vektor bilo koje tačke tangenne ravni, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r_{0}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle r_{0}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fb12fcfddb65e3d1e6a044215f6e833f0cd4337b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.103ex; height:2.009ex;" alt="{\displaystyle r_{0}}"> </noscript><span class="lazy-image-placeholder" style="width: 2.103ex;height: 2.009ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fb12fcfddb65e3d1e6a044215f6e833f0cd4337b" data-alt="{\displaystyle r_{0}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> radijus- vektor dirališta <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> T </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle T} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ec7200acd984a1d3a3d7dc455e262fbe54f7f6e0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.636ex; height:2.176ex;" alt="{\displaystyle T}"> </noscript><span class="lazy-image-placeholder" style="width: 1.636ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ec7200acd984a1d3a3d7dc455e262fbe54f7f6e0" data-alt="{\displaystyle T}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span>, a <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \rho _{1}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi> ρ<!-- ρ --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 1 </mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \rho _{1}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1e0f2d347f2a0ed7f7c9808c427a89813b957017" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:2.256ex; height:2.176ex;" alt="{\displaystyle \rho _{1}}"> </noscript><span class="lazy-image-placeholder" style="width: 2.256ex;height: 2.176ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1e0f2d347f2a0ed7f7c9808c427a89813b957017" data-alt="{\displaystyle \rho _{1}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> i <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \rho _{2}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi> ρ<!-- ρ --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \rho _{2}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/793b211571b3ffe34c4639654d567296d29d7f72" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:2.256ex; height:2.176ex;" alt="{\displaystyle \rho _{2}}"> </noscript><span class="lazy-image-placeholder" style="width: 2.256ex;height: 2.176ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/793b211571b3ffe34c4639654d567296d29d7f72" data-alt="{\displaystyle \rho _{2}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> realni parametri koji poprimaju, nezavisno jedan o drugom, vrijednosti između <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle -\infty }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo> −<!-- − --> </mo> <mi mathvariant="normal"> ∞<!-- ∞ --> </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle -\infty } </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ca2608c4b5fd3bffc73585f8c67e379b4e99b6f1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:4.132ex; height:2.176ex;" alt="{\displaystyle -\infty }"> </noscript><span class="lazy-image-placeholder" style="width: 4.132ex;height: 2.176ex;vertical-align: -0.505ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ca2608c4b5fd3bffc73585f8c67e379b4e99b6f1" data-alt="{\displaystyle -\infty }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> i <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle +\infty }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo> + </mo> <mi mathvariant="normal"> ∞<!-- ∞ --> </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle +\infty } </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bddbb0e4420a7e744cf71bd71216e11b0bf88831" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:4.132ex; height:2.176ex;" alt="{\displaystyle +\infty }"> </noscript><span class="lazy-image-placeholder" style="width: 4.132ex;height: 2.176ex;vertical-align: -0.505ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bddbb0e4420a7e744cf71bd71216e11b0bf88831" data-alt="{\displaystyle +\infty }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span></p> <p>Vektor</p> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r_{u}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> u </mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle r_{u}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a1b33f1518fd9b64ad2cf5c1272813b77cab949a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.221ex; height:2.009ex;" alt="{\displaystyle r_{u}}"> </noscript><span class="lazy-image-placeholder" style="width: 2.221ex;height: 2.009ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a1b33f1518fd9b64ad2cf5c1272813b77cab949a" data-alt="{\displaystyle r_{u}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span>x <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r_{v}={\begin{vmatrix}i&j&k\\x_{u}&y_{u}&z_{u}\\x_{v}&y_{v}&z_{v}\end{vmatrix}}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> v </mi> </mrow> </msub> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo> | </mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mi> i </mi> </mtd> <mtd> <mi> j </mi> </mtd> <mtd> <mi> k </mi> </mtd> </mtr> <mtr> <mtd> <msub> <mi> x </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> u </mi> </mrow> </msub> </mtd> <mtd> <msub> <mi> y </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> u </mi> </mrow> </msub> </mtd> <mtd> <msub> <mi> z </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> u </mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi> x </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> v </mi> </mrow> </msub> </mtd> <mtd> <msub> <mi> y </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> v </mi> </mrow> </msub> </mtd> <mtd> <msub> <mi> z </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> v </mi> </mrow> </msub> </mtd> </mtr> </mtable> <mo> | </mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle r_{v}={\begin{vmatrix}i&j&k\\x_{u}&y_{u}&z_{u}\\x_{v}&y_{v}&z_{v}\end{vmatrix}}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/058d699916ea954ae2b6b17bb9863c3ae77c72cb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.171ex; width:18.935ex; height:9.509ex;" alt="{\displaystyle r_{v}={\begin{vmatrix}i&j&k\\x_{u}&y_{u}&z_{u}\\x_{v}&y_{v}&z_{v}\end{vmatrix}}}"> </noscript><span class="lazy-image-placeholder" style="width: 18.935ex;height: 9.509ex;vertical-align: -4.171ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/058d699916ea954ae2b6b17bb9863c3ae77c72cb" data-alt="{\displaystyle r_{v}={\begin{vmatrix}i&j&k\\x_{u}&y_{u}&z_{u}\\x_{v}&y_{v}&z_{v}\end{vmatrix}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span></p> <p><br> normalan je na vektore</p> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r_{u}(u,v)=x_{u}(u,v)i+y_{u}(u,v)j+z_{u}(u,v)k}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> u </mi> </mrow> </msub> <mo stretchy="false"> ( </mo> <mi> u </mi> <mo> , </mo> <mi> v </mi> <mo stretchy="false"> ) </mo> <mo> = </mo> <msub> <mi> x </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> u </mi> </mrow> </msub> <mo stretchy="false"> ( </mo> <mi> u </mi> <mo> , </mo> <mi> v </mi> <mo stretchy="false"> ) </mo> <mi> i </mi> <mo> + </mo> <msub> <mi> y </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> u </mi> </mrow> </msub> <mo stretchy="false"> ( </mo> <mi> u </mi> <mo> , </mo> <mi> v </mi> <mo stretchy="false"> ) </mo> <mi> j </mi> <mo> + </mo> <msub> <mi> z </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> u </mi> </mrow> </msub> <mo stretchy="false"> ( </mo> <mi> u </mi> <mo> , </mo> <mi> v </mi> <mo stretchy="false"> ) </mo> <mi> k </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle r_{u}(u,v)=x_{u}(u,v)i+y_{u}(u,v)j+z_{u}(u,v)k} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/093f87b79571885798afe072afb224c68ec2f3c0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:42.242ex; height:2.843ex;" alt="{\displaystyle r_{u}(u,v)=x_{u}(u,v)i+y_{u}(u,v)j+z_{u}(u,v)k}"> </noscript><span class="lazy-image-placeholder" style="width: 42.242ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/093f87b79571885798afe072afb224c68ec2f3c0" data-alt="{\displaystyle r_{u}(u,v)=x_{u}(u,v)i+y_{u}(u,v)j+z_{u}(u,v)k}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span></p> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r_{v}(u,v)=x_{v}(u,v)i+y_{v}(u,v)j+z_{v}(u,v)k}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> v </mi> </mrow> </msub> <mo stretchy="false"> ( </mo> <mi> u </mi> <mo> , </mo> <mi> v </mi> <mo stretchy="false"> ) </mo> <mo> = </mo> <msub> <mi> x </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> v </mi> </mrow> </msub> <mo stretchy="false"> ( </mo> <mi> u </mi> <mo> , </mo> <mi> v </mi> <mo stretchy="false"> ) </mo> <mi> i </mi> <mo> + </mo> <msub> <mi> y </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> v </mi> </mrow> </msub> <mo stretchy="false"> ( </mo> <mi> u </mi> <mo> , </mo> <mi> v </mi> <mo stretchy="false"> ) </mo> <mi> j </mi> <mo> + </mo> <msub> <mi> z </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> v </mi> </mrow> </msub> <mo stretchy="false"> ( </mo> <mi> u </mi> <mo> , </mo> <mi> v </mi> <mo stretchy="false"> ) </mo> <mi> k </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle r_{v}(u,v)=x_{v}(u,v)i+y_{v}(u,v)j+z_{v}(u,v)k} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0b04a3ce7076946689e61c92605bb84721c110da" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:41.67ex; height:2.843ex;" alt="{\displaystyle r_{v}(u,v)=x_{v}(u,v)i+y_{v}(u,v)j+z_{v}(u,v)k}"> </noscript><span class="lazy-image-placeholder" style="width: 41.67ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0b04a3ce7076946689e61c92605bb84721c110da" data-alt="{\displaystyle r_{v}(u,v)=x_{v}(u,v)i+y_{v}(u,v)j+z_{v}(u,v)k}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span></p> <p>i prema tome i na tangentnu ravan u tački T. Naziva se vektorom normale površi.</p> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r_{u}(u,v)=x_{u}(u,v)i+y_{u}(u,v)j+z_{u}(u,v)k}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> u </mi> </mrow> </msub> <mo stretchy="false"> ( </mo> <mi> u </mi> <mo> , </mo> <mi> v </mi> <mo stretchy="false"> ) </mo> <mo> = </mo> <msub> <mi> x </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> u </mi> </mrow> </msub> <mo stretchy="false"> ( </mo> <mi> u </mi> <mo> , </mo> <mi> v </mi> <mo stretchy="false"> ) </mo> <mi> i </mi> <mo> + </mo> <msub> <mi> y </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> u </mi> </mrow> </msub> <mo stretchy="false"> ( </mo> <mi> u </mi> <mo> , </mo> <mi> v </mi> <mo stretchy="false"> ) </mo> <mi> j </mi> <mo> + </mo> <msub> <mi> z </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> u </mi> </mrow> </msub> <mo stretchy="false"> ( </mo> <mi> u </mi> <mo> , </mo> <mi> v </mi> <mo stretchy="false"> ) </mo> <mi> k </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle r_{u}(u,v)=x_{u}(u,v)i+y_{u}(u,v)j+z_{u}(u,v)k} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/093f87b79571885798afe072afb224c68ec2f3c0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:42.242ex; height:2.843ex;" alt="{\displaystyle r_{u}(u,v)=x_{u}(u,v)i+y_{u}(u,v)j+z_{u}(u,v)k}"> </noscript><span class="lazy-image-placeholder" style="width: 42.242ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/093f87b79571885798afe072afb224c68ec2f3c0" data-alt="{\displaystyle r_{u}(u,v)=x_{u}(u,v)i+y_{u}(u,v)j+z_{u}(u,v)k}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span></p> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r_{v}(u,v)=x_{v}(u,v)i+y_{v}(u,v)j+z_{v}(u,v)k}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> v </mi> </mrow> </msub> <mo stretchy="false"> ( </mo> <mi> u </mi> <mo> , </mo> <mi> v </mi> <mo stretchy="false"> ) </mo> <mo> = </mo> <msub> <mi> x </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> v </mi> </mrow> </msub> <mo stretchy="false"> ( </mo> <mi> u </mi> <mo> , </mo> <mi> v </mi> <mo stretchy="false"> ) </mo> <mi> i </mi> <mo> + </mo> <msub> <mi> y </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> v </mi> </mrow> </msub> <mo stretchy="false"> ( </mo> <mi> u </mi> <mo> , </mo> <mi> v </mi> <mo stretchy="false"> ) </mo> <mi> j </mi> <mo> + </mo> <msub> <mi> z </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> v </mi> </mrow> </msub> <mo stretchy="false"> ( </mo> <mi> u </mi> <mo> , </mo> <mi> v </mi> <mo stretchy="false"> ) </mo> <mi> k </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle r_{v}(u,v)=x_{v}(u,v)i+y_{v}(u,v)j+z_{v}(u,v)k} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0b04a3ce7076946689e61c92605bb84721c110da" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:41.67ex; height:2.843ex;" alt="{\displaystyle r_{v}(u,v)=x_{v}(u,v)i+y_{v}(u,v)j+z_{v}(u,v)k}"> </noscript><span class="lazy-image-placeholder" style="width: 41.67ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0b04a3ce7076946689e61c92605bb84721c110da" data-alt="{\displaystyle r_{v}(u,v)=x_{v}(u,v)i+y_{v}(u,v)j+z_{v}(u,v)k}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> Vektori</p> <p>svojim međusobnim položajem određuju orjentaciju u tangentnoj ravni te tačke. Ona je pozitivna ako prvi vektor prelazi na drugi vektor vrtnjom za neki ugao u pozitivnom smislu (suprotno smjeru kazaljke na satu).</p> <p>Vektor</p> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n_{0}=}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi> n </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> <mo> = </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle n_{0}=} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/53e346e7b6f2b55741ae4805e3910f8e363a877d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.902ex; height:2.009ex;" alt="{\displaystyle n_{0}=}"> </noscript><span class="lazy-image-placeholder" style="width: 4.902ex;height: 2.009ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/53e346e7b6f2b55741ae4805e3910f8e363a877d" data-alt="{\displaystyle n_{0}=}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> (<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r_{u}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> u </mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle r_{u}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a1b33f1518fd9b64ad2cf5c1272813b77cab949a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.221ex; height:2.009ex;" alt="{\displaystyle r_{u}}"> </noscript><span class="lazy-image-placeholder" style="width: 2.221ex;height: 2.009ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a1b33f1518fd9b64ad2cf5c1272813b77cab949a" data-alt="{\displaystyle r_{u}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span>x <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r_{v}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> v </mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle r_{v}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6351a9c12f3cd743f37050ddb9a0d0adfc33f190" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.078ex; height:2.009ex;" alt="{\displaystyle r_{v}}"> </noscript><span class="lazy-image-placeholder" style="width: 2.078ex;height: 2.009ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6351a9c12f3cd743f37050ddb9a0d0adfc33f190" data-alt="{\displaystyle r_{v}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span>)/<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{Vmatrix}r_{u}xr_{v}\end{Vmatrix}}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo symmetric="true"> ‖ </mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <msub> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> u </mi> </mrow> </msub> <mi> x </mi> <msub> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> v </mi> </mrow> </msub> </mtd> </mtr> </mtable> <mo symmetric="true"> ‖ </mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\begin{Vmatrix}r_{u}xr_{v}\end{Vmatrix}}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ef4da499027084f30bb0656a9b1ed6b83e2ce613" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.705ex; height:2.843ex;" alt="{\displaystyle {\begin{Vmatrix}r_{u}xr_{v}\end{Vmatrix}}}"> </noscript><span class="lazy-image-placeholder" style="width: 8.705ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ef4da499027084f30bb0656a9b1ed6b83e2ce613" data-alt="{\displaystyle {\begin{Vmatrix}r_{u}xr_{v}\end{Vmatrix}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span></p> <p>naziva se jediničnim vektorm normale površi. On ima pozitivnu orijentaciju ako s pozitivnim smjerom vrtnje u tangentnoj ravni tačke T čini desni vijak. Kako vektor <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r-r_{0}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> r </mi> <mo> −<!-- − --> </mo> <msub> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle r-r_{0}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/670d9aeef0f9b5910502a4bafef0dd25d63a38cb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.992ex; height:2.343ex;" alt="{\displaystyle r-r_{0}}"> </noscript><span class="lazy-image-placeholder" style="width: 5.992ex;height: 2.343ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/670d9aeef0f9b5910502a4bafef0dd25d63a38cb" data-alt="{\displaystyle r-r_{0}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> leži u tangentnoj ravni, koja ja normalna na vektor normale. Jednaćina tangentne ravni može se napisati pomoću mješovitog proizvoda</p> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (r-r_{0})*(r_{u}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false"> ( </mo> <mi> r </mi> <mo> −<!-- − --> </mo> <msub> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> <mo stretchy="false"> ) </mo> <mo> ∗<!-- ∗ --> </mo> <mo stretchy="false"> ( </mo> <msub> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> u </mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle (r-r_{0})*(r_{u}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8298bc4c4f9b4f7802302c11442f61e1c3586d12" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.122ex; height:2.843ex;" alt="{\displaystyle (r-r_{0})*(r_{u}}"> </noscript><span class="lazy-image-placeholder" style="width: 13.122ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8298bc4c4f9b4f7802302c11442f61e1c3586d12" data-alt="{\displaystyle (r-r_{0})*(r_{u}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span>x <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r_{v}=0}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> v </mi> </mrow> </msub> <mo> = </mo> <mn> 0 </mn> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle r_{v}=0} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6d5b900acbfbc88f617f99771ee31755abffafbc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.339ex; height:2.509ex;" alt="{\displaystyle r_{v}=0}"> </noscript><span class="lazy-image-placeholder" style="width: 6.339ex;height: 2.509ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6d5b900acbfbc88f617f99771ee31755abffafbc" data-alt="{\displaystyle r_{v}=0}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span></p> <p>Može se napisati i u skalarnim komponentama pomoću determinante</p> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{vmatrix}x-x_{0}&y-y_{0}&z-z_{0}\\x_{u}&y_{u}&z_{u}\\x_{v}&y_{v}&z_{v}\end{vmatrix}}=0}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo> | </mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mi> x </mi> <mo> −<!-- − --> </mo> <msub> <mi> x </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> </mtd> <mtd> <mi> y </mi> <mo> −<!-- − --> </mo> <msub> <mi> y </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> </mtd> <mtd> <mi> z </mi> <mo> −<!-- − --> </mo> <msub> <mi> z </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi> x </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> u </mi> </mrow> </msub> </mtd> <mtd> <msub> <mi> y </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> u </mi> </mrow> </msub> </mtd> <mtd> <msub> <mi> z </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> u </mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi> x </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> v </mi> </mrow> </msub> </mtd> <mtd> <msub> <mi> y </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> v </mi> </mrow> </msub> </mtd> <mtd> <msub> <mi> z </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> v </mi> </mrow> </msub> </mtd> </mtr> </mtable> <mo> | </mo> </mrow> </mrow> <mo> = </mo> <mn> 0 </mn> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\begin{vmatrix}x-x_{0}&y-y_{0}&z-z_{0}\\x_{u}&y_{u}&z_{u}\\x_{v}&y_{v}&z_{v}\end{vmatrix}}=0} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f21c66d409793a37c47da7e4d34453b11c14781f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.171ex; width:29.759ex; height:9.509ex;" alt="{\displaystyle {\begin{vmatrix}x-x_{0}&y-y_{0}&z-z_{0}\\x_{u}&y_{u}&z_{u}\\x_{v}&y_{v}&z_{v}\end{vmatrix}}=0}"> </noscript><span class="lazy-image-placeholder" style="width: 29.759ex;height: 9.509ex;vertical-align: -4.171ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f21c66d409793a37c47da7e4d34453b11c14781f" data-alt="{\displaystyle {\begin{vmatrix}x-x_{0}&y-y_{0}&z-z_{0}\\x_{u}&y_{u}&z_{u}\\x_{v}&y_{v}&z_{v}\end{vmatrix}}=0}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span></p> <p>gdje su <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> x </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle x} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"> </noscript><span class="lazy-image-placeholder" style="width: 1.33ex;height: 1.676ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" data-alt="{\displaystyle x}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span>,<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> y </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle y} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b8a6208ec717213d4317e666f1ae872e00620a0d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.155ex; height:2.009ex;" alt="{\displaystyle y}"> </noscript><span class="lazy-image-placeholder" style="width: 1.155ex;height: 2.009ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b8a6208ec717213d4317e666f1ae872e00620a0d" data-alt="{\displaystyle y}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span>,<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> z </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle z} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bf368e72c009decd9b6686ee84a375632e11de98" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.088ex; height:1.676ex;" alt="{\displaystyle z}"> </noscript><span class="lazy-image-placeholder" style="width: 1.088ex;height: 1.676ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bf368e72c009decd9b6686ee84a375632e11de98" data-alt="{\displaystyle z}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> koordinate bilo koje tačke tangentne ravni, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x-0}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> x </mi> <mo> −<!-- − --> </mo> <mn> 0 </mn> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle x-0} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4afac6dc665baba635230a2df9798f826f985379" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:5.333ex; height:2.343ex;" alt="{\displaystyle x-0}"> </noscript><span class="lazy-image-placeholder" style="width: 5.333ex;height: 2.343ex;vertical-align: -0.505ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4afac6dc665baba635230a2df9798f826f985379" data-alt="{\displaystyle x-0}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y_{0}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi> y </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle y_{0}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6d943dbbb0b56ca750c4d62c5b54b4ae29a773da" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.193ex; height:2.009ex;" alt="{\displaystyle y_{0}}"> </noscript><span class="lazy-image-placeholder" style="width: 2.193ex;height: 2.009ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6d943dbbb0b56ca750c4d62c5b54b4ae29a773da" data-alt="{\displaystyle y_{0}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z_{0}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi> z </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle z_{0}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9e72d1d86e86355892b39b8eb32b964834e113bf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.135ex; height:2.009ex;" alt="{\displaystyle z_{0}}"> </noscript><span class="lazy-image-placeholder" style="width: 2.135ex;height: 2.009ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9e72d1d86e86355892b39b8eb32b964834e113bf" data-alt="{\displaystyle z_{0}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> koordinate dirališta T, a u derivacije koordinata uvrštavaju se vrijednosti <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle u}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> u </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle u} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c3e6bb763d22c20916ed4f0bb6bd49d7470cffd8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle u}"> </noscript><span class="lazy-image-placeholder" style="width: 1.33ex;height: 1.676ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c3e6bb763d22c20916ed4f0bb6bd49d7470cffd8" data-alt="{\displaystyle u}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> i <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle v}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> v </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle v} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e07b00e7fc0847fbd16391c778d65bc25c452597" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.128ex; height:1.676ex;" alt="{\displaystyle v}"> </noscript><span class="lazy-image-placeholder" style="width: 1.128ex;height: 1.676ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e07b00e7fc0847fbd16391c778d65bc25c452597" data-alt="{\displaystyle v}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> koje odgovaraju tački T.</p> <p><br> Jednačina normale površi u tački T je</p> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r=r_{0}+\rho (r_{u}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> r </mi> <mo> = </mo> <msub> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> <mo> + </mo> <mi> ρ<!-- ρ --> </mi> <mo stretchy="false"> ( </mo> <msub> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> u </mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle r=r_{0}+\rho (r_{u}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b97b1d2814901842d581070e00fd65a4141822e9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.418ex; height:2.843ex;" alt="{\displaystyle r=r_{0}+\rho (r_{u}}"> </noscript><span class="lazy-image-placeholder" style="width: 13.418ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b97b1d2814901842d581070e00fd65a4141822e9" data-alt="{\displaystyle r=r_{0}+\rho (r_{u}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> × <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r_{v})}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> v </mi> </mrow> </msub> <mo stretchy="false"> ) </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle r_{v})} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/262810778ae910b5817d9833ed138ce20e029d23" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:2.983ex; height:2.843ex;" alt="{\displaystyle r_{v})}"> </noscript><span class="lazy-image-placeholder" style="width: 2.983ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/262810778ae910b5817d9833ed138ce20e029d23" data-alt="{\displaystyle r_{v})}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span></p> <p>gdje je <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \rho }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> ρ<!-- ρ --> </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \rho } </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1f7d439671d1289b6a816e6af7a304be40608d64" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.202ex; height:2.176ex;" alt="{\displaystyle \rho }"> </noscript><span class="lazy-image-placeholder" style="width: 1.202ex;height: 2.176ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1f7d439671d1289b6a816e6af7a304be40608d64" data-alt="{\displaystyle \rho }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> realni parametar koji prima vrijednosti između <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle -\infty }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo> −<!-- − --> </mo> <mi mathvariant="normal"> ∞<!-- ∞ --> </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle -\infty } </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ca2608c4b5fd3bffc73585f8c67e379b4e99b6f1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:4.132ex; height:2.176ex;" alt="{\displaystyle -\infty }"> </noscript><span class="lazy-image-placeholder" style="width: 4.132ex;height: 2.176ex;vertical-align: -0.505ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ca2608c4b5fd3bffc73585f8c67e379b4e99b6f1" data-alt="{\displaystyle -\infty }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> i <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle +\infty }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo> + </mo> <mi mathvariant="normal"> ∞<!-- ∞ --> </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle +\infty } </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bddbb0e4420a7e744cf71bd71216e11b0bf88831" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:4.132ex; height:2.176ex;" alt="{\displaystyle +\infty }"> </noscript><span class="lazy-image-placeholder" style="width: 4.132ex;height: 2.176ex;vertical-align: -0.505ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bddbb0e4420a7e744cf71bd71216e11b0bf88831" data-alt="{\displaystyle +\infty }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span></p> </section> <div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(6)"> <span class="indicator mf-icon mf-icon-expand mf-icon--small"></span> <h2 id="Linijske_površi"><span id="Linijske_povr.C5.A1i"></span>Linijske površi</h2><span class="mw-editsection"> <a role="button" href="https://sh-m-wikipedia-org.translate.goog/w/index.php?title=Povr%C5%A1&action=edit&section=6&_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Uredi odjeljak Linijske površi" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>uredi</span> </a> </span> </div> <section class="mf-section-6 collapsible-block" id="mf-section-6"> <p><a href="https://sh-m-wikipedia-org.translate.goog/w/index.php?title=Linijska_povr%C5%A1&action=edit&redlink=1&_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" class="new" title="Linijska površ (stranica ne postoji)">Linijska površ</a> je skup pravih prostora neprekinuto povezanih po nekom zakonu . Nastaju na sljedeći način:</p> <ul> <li>klizanjem prave po nekoj prostornoj <a href="https://sh-m-wikipedia-org.translate.goog/wiki/Kriva?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" class="mw-redirect" title="Kriva">krivoj</a>. Prava koja klizi naziva se izvodnica ili generatrisa, a <a href="https://sh-m-wikipedia-org.translate.goog/w/index.php?title=Krive_drugog_reda&action=edit&redlink=1&_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" class="new" title="Krive drugog reda (stranica ne postoji)">kriva </a> po kojoj klize, ravnalica ili greben površi</li> <li>povezivanjem triju krivih (ravnalica) transverzalama.</li> </ul> <p>Ako su za ravnalice odabrane algebarske krive, nastaje algebarska površ. Za ovaj prikaz bitne su samo površi koje nastaju povezivanjem triju algebarskih ravnalica transverzalama.</p> <p>Njihova se konstrukcija može izvesti na sljedeći način:</p> <p>Neka su zadane krive <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k_{1}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi> k </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 1 </mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle k_{1}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/376315fd4983f01dada5ec2f7bebc48455b14a66" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.265ex; height:2.509ex;" alt="{\displaystyle k_{1}}"> </noscript><span class="lazy-image-placeholder" style="width: 2.265ex;height: 2.509ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/376315fd4983f01dada5ec2f7bebc48455b14a66" data-alt="{\displaystyle k_{1}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k_{2}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi> k </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle k_{2}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c51b4ba57ee596d8435fc4ed76703ca3a2fc444a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.265ex; height:2.509ex;" alt="{\displaystyle k_{2}}"> </noscript><span class="lazy-image-placeholder" style="width: 2.265ex;height: 2.509ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c51b4ba57ee596d8435fc4ed76703ca3a2fc444a" data-alt="{\displaystyle k_{2}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> i <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k_{3}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi> k </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 3 </mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle k_{3}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/40d32e1c66b85257bfd6ad8be93186742d71a804" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.265ex; height:2.509ex;" alt="{\displaystyle k_{3}}"> </noscript><span class="lazy-image-placeholder" style="width: 2.265ex;height: 2.509ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/40d32e1c66b85257bfd6ad8be93186742d71a804" data-alt="{\displaystyle k_{3}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span>. Na krivoj <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k_{1}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi> k </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 1 </mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle k_{1}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/376315fd4983f01dada5ec2f7bebc48455b14a66" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.265ex; height:2.509ex;" alt="{\displaystyle k_{1}}"> </noscript><span class="lazy-image-placeholder" style="width: 2.265ex;height: 2.509ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/376315fd4983f01dada5ec2f7bebc48455b14a66" data-alt="{\displaystyle k_{1}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> uoči se tačka A koja pravim spoji sa svim talkama krive <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k_{2}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi> k </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle k_{2}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c51b4ba57ee596d8435fc4ed76703ca3a2fc444a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.265ex; height:2.509ex;" alt="{\displaystyle k_{2}}"> </noscript><span class="lazy-image-placeholder" style="width: 2.265ex;height: 2.509ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c51b4ba57ee596d8435fc4ed76703ca3a2fc444a" data-alt="{\displaystyle k_{2}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> čime je formirana kupa <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> F </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle F} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/545fd099af8541605f7ee55f08225526be88ce57" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.741ex; height:2.176ex;" alt="{\displaystyle F}"> </noscript><span class="lazy-image-placeholder" style="width: 1.741ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/545fd099af8541605f7ee55f08225526be88ce57" data-alt="{\displaystyle F}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span>.</p> <p>Kriva <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k_{3}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi> k </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 3 </mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle k_{3}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/40d32e1c66b85257bfd6ad8be93186742d71a804" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.265ex; height:2.509ex;" alt="{\displaystyle k_{3}}"> </noscript><span class="lazy-image-placeholder" style="width: 2.265ex;height: 2.509ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/40d32e1c66b85257bfd6ad8be93186742d71a804" data-alt="{\displaystyle k_{3}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> probada kupu <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> F </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle F} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/545fd099af8541605f7ee55f08225526be88ce57" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.741ex; height:2.176ex;" alt="{\displaystyle F}"> </noscript><span class="lazy-image-placeholder" style="width: 1.741ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/545fd099af8541605f7ee55f08225526be88ce57" data-alt="{\displaystyle F}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> u konačnom broju tačaka.</p> <p>Jednim tako dobivenim probodištem prolazi izvodnica kupe <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> F </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle F} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/545fd099af8541605f7ee55f08225526be88ce57" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.741ex; height:2.176ex;" alt="{\displaystyle F}"> </noscript><span class="lazy-image-placeholder" style="width: 1.741ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/545fd099af8541605f7ee55f08225526be88ce57" data-alt="{\displaystyle F}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span>, a to je ujedno i transverzala krivih <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k_{1}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi> k </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 1 </mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle k_{1}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/376315fd4983f01dada5ec2f7bebc48455b14a66" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.265ex; height:2.509ex;" alt="{\displaystyle k_{1}}"> </noscript><span class="lazy-image-placeholder" style="width: 2.265ex;height: 2.509ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/376315fd4983f01dada5ec2f7bebc48455b14a66" data-alt="{\displaystyle k_{1}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k_{2}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi> k </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle k_{2}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c51b4ba57ee596d8435fc4ed76703ca3a2fc444a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.265ex; height:2.509ex;" alt="{\displaystyle k_{2}}"> </noscript><span class="lazy-image-placeholder" style="width: 2.265ex;height: 2.509ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c51b4ba57ee596d8435fc4ed76703ca3a2fc444a" data-alt="{\displaystyle k_{2}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> i <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k_{3}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi> k </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 3 </mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle k_{3}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/40d32e1c66b85257bfd6ad8be93186742d71a804" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.265ex; height:2.509ex;" alt="{\displaystyle k_{3}}"> </noscript><span class="lazy-image-placeholder" style="width: 2.265ex;height: 2.509ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/40d32e1c66b85257bfd6ad8be93186742d71a804" data-alt="{\displaystyle k_{3}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span>. Taj se postupak ponavlja za ostale tačke krive <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k_{1}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi> k </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 1 </mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle k_{1}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/376315fd4983f01dada5ec2f7bebc48455b14a66" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.265ex; height:2.509ex;" alt="{\displaystyle k_{1}}"> </noscript><span class="lazy-image-placeholder" style="width: 2.265ex;height: 2.509ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/376315fd4983f01dada5ec2f7bebc48455b14a66" data-alt="{\displaystyle k_{1}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span>čcime je formiran jednoparametarski skup izvodnica <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle i}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> i </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle i} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/add78d8608ad86e54951b8c8bd6c8d8416533d20" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.802ex; height:2.176ex;" alt="{\displaystyle i}"> </noscript><span class="lazy-image-placeholder" style="width: 0.802ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/add78d8608ad86e54951b8c8bd6c8d8416533d20" data-alt="{\displaystyle i}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span>. Sve takve izvodnice i čine linijsku površ.</p> <dl> <dt> <a href="https://sh-m-wikipedia-org.translate.goog/wiki/Teorem?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Teorem">Teorema</a> (o redu linijske povrsi) </dt> </dl> <p>Ako su algebarske krive <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k_{1}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi> k </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 1 </mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle k_{1}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/376315fd4983f01dada5ec2f7bebc48455b14a66" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.265ex; height:2.509ex;" alt="{\displaystyle k_{1}}"> </noscript><span class="lazy-image-placeholder" style="width: 2.265ex;height: 2.509ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/376315fd4983f01dada5ec2f7bebc48455b14a66" data-alt="{\displaystyle k_{1}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k_{2}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi> k </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle k_{2}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c51b4ba57ee596d8435fc4ed76703ca3a2fc444a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.265ex; height:2.509ex;" alt="{\displaystyle k_{2}}"> </noscript><span class="lazy-image-placeholder" style="width: 2.265ex;height: 2.509ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c51b4ba57ee596d8435fc4ed76703ca3a2fc444a" data-alt="{\displaystyle k_{2}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> i <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k_{3}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi> k </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 3 </mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle k_{3}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/40d32e1c66b85257bfd6ad8be93186742d71a804" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.265ex; height:2.509ex;" alt="{\displaystyle k_{3}}"> </noscript><span class="lazy-image-placeholder" style="width: 2.265ex;height: 2.509ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/40d32e1c66b85257bfd6ad8be93186742d71a804" data-alt="{\displaystyle k_{3}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> redova <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n_{1}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi> n </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 1 </mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle n_{1}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ee784b70e772f55ede5e6e0bdc929994bff63413" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.449ex; height:2.009ex;" alt="{\displaystyle n_{1}}"> </noscript><span class="lazy-image-placeholder" style="width: 2.449ex;height: 2.009ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ee784b70e772f55ede5e6e0bdc929994bff63413" data-alt="{\displaystyle n_{1}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n_{2}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi> n </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle n_{2}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/840e456e3058bc0be28e5cf653b170cdbfcc3be4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.449ex; height:2.009ex;" alt="{\displaystyle n_{2}}"> </noscript><span class="lazy-image-placeholder" style="width: 2.449ex;height: 2.009ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/840e456e3058bc0be28e5cf653b170cdbfcc3be4" data-alt="{\displaystyle n_{2}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> i <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n_{3}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi> n </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 3 </mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle n_{3}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5d35ab39fc1af104a61e369bf3b6065e3612a5f7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.449ex; height:2.009ex;" alt="{\displaystyle n_{3}}"> </noscript><span class="lazy-image-placeholder" style="width: 2.449ex;height: 2.009ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5d35ab39fc1af104a61e369bf3b6065e3612a5f7" data-alt="{\displaystyle n_{3}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span>. i ako se krive <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k_{1}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi> k </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 1 </mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle k_{1}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/376315fd4983f01dada5ec2f7bebc48455b14a66" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.265ex; height:2.509ex;" alt="{\displaystyle k_{1}}"> </noscript><span class="lazy-image-placeholder" style="width: 2.265ex;height: 2.509ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/376315fd4983f01dada5ec2f7bebc48455b14a66" data-alt="{\displaystyle k_{1}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k_{2}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi> k </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle k_{2}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c51b4ba57ee596d8435fc4ed76703ca3a2fc444a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.265ex; height:2.509ex;" alt="{\displaystyle k_{2}}"> </noscript><span class="lazy-image-placeholder" style="width: 2.265ex;height: 2.509ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c51b4ba57ee596d8435fc4ed76703ca3a2fc444a" data-alt="{\displaystyle k_{2}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> sijeku u <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle s_{3}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi> s </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 3 </mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle s_{3}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3bd55c668c8fec10ff916bef319c7ff9d3a7de7a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.145ex; height:2.009ex;" alt="{\displaystyle s_{3}}"> </noscript><span class="lazy-image-placeholder" style="width: 2.145ex;height: 2.009ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3bd55c668c8fec10ff916bef319c7ff9d3a7de7a" data-alt="{\displaystyle s_{3}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> tačaka krive <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k_{1}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi> k </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 1 </mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle k_{1}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/376315fd4983f01dada5ec2f7bebc48455b14a66" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.265ex; height:2.509ex;" alt="{\displaystyle k_{1}}"> </noscript><span class="lazy-image-placeholder" style="width: 2.265ex;height: 2.509ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/376315fd4983f01dada5ec2f7bebc48455b14a66" data-alt="{\displaystyle k_{1}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> i <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k_{3}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi> k </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 3 </mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle k_{3}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/40d32e1c66b85257bfd6ad8be93186742d71a804" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.265ex; height:2.509ex;" alt="{\displaystyle k_{3}}"> </noscript><span class="lazy-image-placeholder" style="width: 2.265ex;height: 2.509ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/40d32e1c66b85257bfd6ad8be93186742d71a804" data-alt="{\displaystyle k_{3}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> u <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle s_{2}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi> s </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle s_{2}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d4b9a7acc0ae8f54da4b7f4eef2c777d44faecd4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.145ex; height:2.009ex;" alt="{\displaystyle s_{2}}"> </noscript><span class="lazy-image-placeholder" style="width: 2.145ex;height: 2.009ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d4b9a7acc0ae8f54da4b7f4eef2c777d44faecd4" data-alt="{\displaystyle s_{2}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span>, a krive <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k_{2}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi> k </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle k_{2}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c51b4ba57ee596d8435fc4ed76703ca3a2fc444a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.265ex; height:2.509ex;" alt="{\displaystyle k_{2}}"> </noscript><span class="lazy-image-placeholder" style="width: 2.265ex;height: 2.509ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c51b4ba57ee596d8435fc4ed76703ca3a2fc444a" data-alt="{\displaystyle k_{2}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> i <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k_{3}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi> k </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 3 </mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle k_{3}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/40d32e1c66b85257bfd6ad8be93186742d71a804" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.265ex; height:2.509ex;" alt="{\displaystyle k_{3}}"> </noscript><span class="lazy-image-placeholder" style="width: 2.265ex;height: 2.509ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/40d32e1c66b85257bfd6ad8be93186742d71a804" data-alt="{\displaystyle k_{3}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> u <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle s_{1}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi> s </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 1 </mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle s_{1}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/eb8baad278d51283e0ef3c99898d583cf2c8a8fd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.145ex; height:2.009ex;" alt="{\displaystyle s_{1}}"> </noscript><span class="lazy-image-placeholder" style="width: 2.145ex;height: 2.009ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/eb8baad278d51283e0ef3c99898d583cf2c8a8fd" data-alt="{\displaystyle s_{1}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> tacaka, tada je linijska površ zadana krivama <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k_{1}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi> k </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 1 </mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle k_{1}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/376315fd4983f01dada5ec2f7bebc48455b14a66" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.265ex; height:2.509ex;" alt="{\displaystyle k_{1}}"> </noscript><span class="lazy-image-placeholder" style="width: 2.265ex;height: 2.509ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/376315fd4983f01dada5ec2f7bebc48455b14a66" data-alt="{\displaystyle k_{1}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k_{2}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi> k </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle k_{2}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c51b4ba57ee596d8435fc4ed76703ca3a2fc444a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.265ex; height:2.509ex;" alt="{\displaystyle k_{2}}"> </noscript><span class="lazy-image-placeholder" style="width: 2.265ex;height: 2.509ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c51b4ba57ee596d8435fc4ed76703ca3a2fc444a" data-alt="{\displaystyle k_{2}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> i <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k_{3}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi> k </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 3 </mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle k_{3}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/40d32e1c66b85257bfd6ad8be93186742d71a804" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.265ex; height:2.509ex;" alt="{\displaystyle k_{3}}"> </noscript><span class="lazy-image-placeholder" style="width: 2.265ex;height: 2.509ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/40d32e1c66b85257bfd6ad8be93186742d71a804" data-alt="{\displaystyle k_{3}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> reda:</p> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R=2n_{1}n_{2}n_{3}-(s_{3}n_{3}+s_{2}n_{2}+s_{1}n_{1})}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> R </mi> <mo> = </mo> <mn> 2 </mn> <msub> <mi> n </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 1 </mn> </mrow> </msub> <msub> <mi> n </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msub> <msub> <mi> n </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 3 </mn> </mrow> </msub> <mo> −<!-- − --> </mo> <mo stretchy="false"> ( </mo> <msub> <mi> s </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 3 </mn> </mrow> </msub> <msub> <mi> n </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 3 </mn> </mrow> </msub> <mo> + </mo> <msub> <mi> s </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msub> <msub> <mi> n </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msub> <mo> + </mo> <msub> <mi> s </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 1 </mn> </mrow> </msub> <msub> <mi> n </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 1 </mn> </mrow> </msub> <mo stretchy="false"> ) </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle R=2n_{1}n_{2}n_{3}-(s_{3}n_{3}+s_{2}n_{2}+s_{1}n_{1})} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/53ea61e44668dcc6687d00ac84368366ac30fd51" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:37.483ex; height:2.843ex;" alt="{\displaystyle R=2n_{1}n_{2}n_{3}-(s_{3}n_{3}+s_{2}n_{2}+s_{1}n_{1})}"> </noscript><span class="lazy-image-placeholder" style="width: 37.483ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/53ea61e44668dcc6687d00ac84368366ac30fd51" data-alt="{\displaystyle R=2n_{1}n_{2}n_{3}-(s_{3}n_{3}+s_{2}n_{2}+s_{1}n_{1})}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span></p> <p>Svaka algebarska linijska površ ima stepen.</p> <p>Linijske površi mogu biti razmotive i nerazmotive ili vitopere. Vitopere linijske površi ne mogu se razmotati u ravni jer su im svake dvije neizmjerno blize izvodnice mimoilazne prave.</p> </section> <div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(7)"> <span class="indicator mf-icon mf-icon-expand mf-icon--small"></span> <h2 id="Elipsoid">Elipsoid</h2><span class="mw-editsection"> <a role="button" href="https://sh-m-wikipedia-org.translate.goog/w/index.php?title=Povr%C5%A1&action=edit&section=7&_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Uredi odjeljak Elipsoid" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>uredi</span> </a> </span> </div> <section class="mf-section-7 collapsible-block" id="mf-section-7"> <p><a href="https://sh-m-wikipedia-org.translate.goog/w/index.php?title=Elipsoid&action=edit&redlink=1&_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" class="new" title="Elipsoid (stranica ne postoji)">Elipsoid</a> (troosi)</p> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \displaystyle {\frac {(x^{2}}{a^{2}}}+{\frac {y^{2}}{b^{2}}}+{\frac {z^{2}}{c^{2}}}=1}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false"> ( </mo> <msup> <mi> x </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> </mrow> <msup> <mi> a </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> </mfrac> </mrow> <mo> + </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi> y </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <msup> <mi> b </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> </mfrac> </mrow> <mo> + </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi> z </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <msup> <mi> c </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> </mfrac> </mrow> <mo> = </mo> <mn> 1 </mn> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \displaystyle {\frac {(x^{2}}{a^{2}}}+{\frac {y^{2}}{b^{2}}}+{\frac {z^{2}}{c^{2}}}=1} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9ee519d1e59d468d46faa2b4c1ec9964ef3769c6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:20.098ex; height:6.176ex;" alt="{\displaystyle \displaystyle {\frac {(x^{2}}{a^{2}}}+{\frac {y^{2}}{b^{2}}}+{\frac {z^{2}}{c^{2}}}=1}"> </noscript><span class="lazy-image-placeholder" style="width: 20.098ex;height: 6.176ex;vertical-align: -2.171ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9ee519d1e59d468d46faa2b4c1ec9964ef3769c6" data-alt="{\displaystyle \displaystyle {\frac {(x^{2}}{a^{2}}}+{\frac {y^{2}}{b^{2}}}+{\frac {z^{2}}{c^{2}}}=1}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span></p> <p>Ako je <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a>b>c>0}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> a </mi> <mo> > </mo> <mi> b </mi> <mo> > </mo> <mi> c </mi> <mo> > </mo> <mn> 0 </mn> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle a>b>c>0} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/291666363e8b41ff5b645aa60b7bbfe5a136356e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:13.692ex; height:2.176ex;" alt="{\displaystyle a>b>c>0}"> </noscript><span class="lazy-image-placeholder" style="width: 13.692ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/291666363e8b41ff5b645aa60b7bbfe5a136356e" data-alt="{\displaystyle a>b>c>0}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> tada kažemo da je <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> a </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle a} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ffd2487510aa438433a2579450ab2b3d557e5edc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.23ex; height:1.676ex;" alt="{\displaystyle a}"> </noscript><span class="lazy-image-placeholder" style="width: 1.23ex;height: 1.676ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ffd2487510aa438433a2579450ab2b3d557e5edc" data-alt="{\displaystyle a}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> velika poluosa, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> b </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle b} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f11423fbb2e967f986e36804a8ae4271734917c3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.998ex; height:2.176ex;" alt="{\displaystyle b}"> </noscript><span class="lazy-image-placeholder" style="width: 0.998ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f11423fbb2e967f986e36804a8ae4271734917c3" data-alt="{\displaystyle b}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> srednja poluosa i <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> c </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle c} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/86a67b81c2de995bd608d5b2df50cd8cd7d92455" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.007ex; height:1.676ex;" alt="{\displaystyle c}"> </noscript><span class="lazy-image-placeholder" style="width: 1.007ex;height: 1.676ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/86a67b81c2de995bd608d5b2df50cd8cd7d92455" data-alt="{\displaystyle c}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> mala poluosa elipsoida.</p> <p>Ako su dvije poluose jednake, npr. <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a>b=c>0}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> a </mi> <mo> > </mo> <mi> b </mi> <mo> = </mo> <mi> c </mi> <mo> > </mo> <mn> 0 </mn> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle a>b=c>0} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/af740443bff546abe767a00b9a9935107aae7071" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:13.692ex; height:2.176ex;" alt="{\displaystyle a>b=c>0}"> </noscript><span class="lazy-image-placeholder" style="width: 13.692ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/af740443bff546abe767a00b9a9935107aae7071" data-alt="{\displaystyle a>b=c>0}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> tada dobijemo rotacioni elipsoid. Ako su sve tri poluose jednake dobijamo sferu ili loptinu površ.</p> <ul class="gallery mw-gallery-traditional"> <li class="gallerybox" style="width: 155px"> <div class="thumb" style="width: 150px; height: 150px;"> <span typeof="mw:File"><a href="https://sh-m-wikipedia-org.translate.goog/wiki/Datoteka:Ellipsoid_321.png?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" class="mw-file-description"> <noscript> <img src="//upload.wikimedia.org/wikipedia/commons/thumb/f/fb/Ellipsoid_321.png/120px-Ellipsoid_321.png" decoding="async" width="120" height="80" class="mw-file-element" data-file-width="475" data-file-height="315"> </noscript><span class="lazy-image-placeholder" style="width: 120px;height: 80px;" data-src="//upload.wikimedia.org/wikipedia/commons/thumb/f/fb/Ellipsoid_321.png/120px-Ellipsoid_321.png" data-width="120" data-height="80" data-srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/fb/Ellipsoid_321.png/180px-Ellipsoid_321.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/fb/Ellipsoid_321.png/240px-Ellipsoid_321.png 2x" data-class="mw-file-element"> </span></a></span> </div> <div class="gallerytext"></div></li> </ul> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \displaystyle {\frac {(x-x_{0})2}{a^{2}}}+{\frac {(y-y_{0})2}{b^{2}}}+{\frac {(z-z_{0})2}{c^{2}}}=1}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false"> ( </mo> <mi> x </mi> <mo> −<!-- − --> </mo> <msub> <mi> x </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> <mo stretchy="false"> ) </mo> <mn> 2 </mn> </mrow> <msup> <mi> a </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> </mfrac> </mrow> <mo> + </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false"> ( </mo> <mi> y </mi> <mo> −<!-- − --> </mo> <msub> <mi> y </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> <mo stretchy="false"> ) </mo> <mn> 2 </mn> </mrow> <msup> <mi> b </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> </mfrac> </mrow> <mo> + </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false"> ( </mo> <mi> z </mi> <mo> −<!-- − --> </mo> <msub> <mi> z </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> <mo stretchy="false"> ) </mo> <mn> 2 </mn> </mrow> <msup> <mi> c </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> </mfrac> </mrow> <mo> = </mo> <mn> 1 </mn> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \displaystyle {\frac {(x-x_{0})2}{a^{2}}}+{\frac {(y-y_{0})2}{b^{2}}}+{\frac {(z-z_{0})2}{c^{2}}}=1} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3ec72c4cbe6522dcf73644179f0d0a98095f2737" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:40.173ex; height:6.009ex;" alt="{\displaystyle \displaystyle {\frac {(x-x_{0})2}{a^{2}}}+{\frac {(y-y_{0})2}{b^{2}}}+{\frac {(z-z_{0})2}{c^{2}}}=1}"> </noscript><span class="lazy-image-placeholder" style="width: 40.173ex;height: 6.009ex;vertical-align: -2.171ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3ec72c4cbe6522dcf73644179f0d0a98095f2737" data-alt="{\displaystyle \displaystyle {\frac {(x-x_{0})2}{a^{2}}}+{\frac {(y-y_{0})2}{b^{2}}}+{\frac {(z-z_{0})2}{c^{2}}}=1}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span></p> <p>je jednačina elipsoida čije su glavne ose paralne s koordinatnim osama <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x,y,z}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> x </mi> <mo> , </mo> <mi> y </mi> <mo> , </mo> <mi> z </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle x,y,z} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bbeca34b28f569a407ef74a955d041df9f360268" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.641ex; height:2.009ex;" alt="{\displaystyle x,y,z}"> </noscript><span class="lazy-image-placeholder" style="width: 5.641ex;height: 2.009ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bbeca34b28f569a407ef74a955d041df9f360268" data-alt="{\displaystyle x,y,z}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> , a dužine poluosa su <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a,b,c}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> a </mi> <mo> , </mo> <mi> b </mi> <mo> , </mo> <mi> c </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle a,b,c} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f13f068df656c1b1911ae9f81628c49a6181194d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.302ex; height:2.509ex;" alt="{\displaystyle a,b,c}"> </noscript><span class="lazy-image-placeholder" style="width: 5.302ex;height: 2.509ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f13f068df656c1b1911ae9f81628c49a6181194d" data-alt="{\displaystyle a,b,c}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> redom.</p> <p>Nivo plohe elipsoida kao i presjeci s ravnima paralelnim s <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle xz}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> x </mi> <mi> z </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle xz} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/97005bee6e83614cf6ce64d4e68e5ab2ac280709" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.418ex; height:1.676ex;" alt="{\displaystyle xz}"> </noscript><span class="lazy-image-placeholder" style="width: 2.418ex;height: 1.676ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/97005bee6e83614cf6ce64d4e68e5ab2ac280709" data-alt="{\displaystyle xz}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> i <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle yz}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> y </mi> <mi> z </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle yz} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a9c7cbe4344a9d72acfc98a97e2b3ec44bb48d1f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.244ex; height:2.009ex;" alt="{\displaystyle yz}"> </noscript><span class="lazy-image-placeholder" style="width: 2.244ex;height: 2.009ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a9c7cbe4344a9d72acfc98a97e2b3ec44bb48d1f" data-alt="{\displaystyle yz}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> ravnima su<a href="https://sh-m-wikipedia-org.translate.goog/wiki/Elipsa?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Elipsa"> elipse</a>.</p> </section> <div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(8)"> <span class="indicator mf-icon mf-icon-expand mf-icon--small"></span> <h2 id="Hiperboloid">Hiperboloid</h2><span class="mw-editsection"> <a role="button" href="https://sh-m-wikipedia-org.translate.goog/w/index.php?title=Povr%C5%A1&action=edit&section=8&_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Uredi odjeljak Hiperboloid" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>uredi</span> </a> </span> </div> <section class="mf-section-8 collapsible-block" id="mf-section-8"> <ul class="gallery mw-gallery-traditional"> <li class="gallerybox" style="width: 155px"> <div class="thumb" style="width: 150px; height: 150px;"> <span typeof="mw:File"><a href="https://sh-m-wikipedia-org.translate.goog/wiki/Datoteka:Hyperboloid_jednodilny_rotacni.png?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" class="mw-file-description"> <noscript> <img src="//upload.wikimedia.org/wikipedia/commons/thumb/e/e9/Hyperboloid_jednodilny_rotacni.png/96px-Hyperboloid_jednodilny_rotacni.png" decoding="async" width="96" height="120" class="mw-file-element" data-file-width="346" data-file-height="431"> </noscript><span class="lazy-image-placeholder" style="width: 96px;height: 120px;" data-src="//upload.wikimedia.org/wikipedia/commons/thumb/e/e9/Hyperboloid_jednodilny_rotacni.png/96px-Hyperboloid_jednodilny_rotacni.png" data-width="96" data-height="120" data-srcset="//upload.wikimedia.org/wikipedia/commons/thumb/e/e9/Hyperboloid_jednodilny_rotacni.png/144px-Hyperboloid_jednodilny_rotacni.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/e/e9/Hyperboloid_jednodilny_rotacni.png/193px-Hyperboloid_jednodilny_rotacni.png 2x" data-class="mw-file-element"> </span></a></span> </div> <div class="gallerytext"></div></li> </ul> <p>Jednokrilni <a href="https://sh-m-wikipedia-org.translate.goog/wiki/Hiperboloid?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Hiperboloid">hiperboloid</a> zadan je formulom <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \displaystyle {\frac {x^{2}}{a^{2}}}+{\frac {y^{2}}{b^{2}}}-{\frac {z^{2}}{c^{2}}}=1}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi> x </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <msup> <mi> a </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> </mfrac> </mrow> <mo> + </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi> y </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <msup> <mi> b </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> </mfrac> </mrow> <mo> −<!-- − --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi> z </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <msup> <mi> c </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> </mfrac> </mrow> <mo> = </mo> <mn> 1 </mn> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \displaystyle {\frac {x^{2}}{a^{2}}}+{\frac {y^{2}}{b^{2}}}-{\frac {z^{2}}{c^{2}}}=1} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/39791d8101f971b4f41a5d9e380483d69b5fe295" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:19.193ex; height:6.009ex;" alt="{\displaystyle \displaystyle {\frac {x^{2}}{a^{2}}}+{\frac {y^{2}}{b^{2}}}-{\frac {z^{2}}{c^{2}}}=1}"> </noscript><span class="lazy-image-placeholder" style="width: 19.193ex;height: 6.009ex;vertical-align: -2.171ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/39791d8101f971b4f41a5d9e380483d69b5fe295" data-alt="{\displaystyle \displaystyle {\frac {x^{2}}{a^{2}}}+{\frac {y^{2}}{b^{2}}}-{\frac {z^{2}}{c^{2}}}=1}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span></p> <p>Dvokrilni hiperboloid zadan je s formulom</p> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \displaystyle -{\frac {x^{2}}{a^{2}}}-{\frac {y^{2}}{b^{2}}}+{\frac {z^{2}}{c^{2}}}=1}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="true" scriptlevel="0"> <mo> −<!-- − --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi> x </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <msup> <mi> a </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> </mfrac> </mrow> <mo> −<!-- − --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi> y </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <msup> <mi> b </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> </mfrac> </mrow> <mo> + </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi> z </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <msup> <mi> c </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> </mfrac> </mrow> <mo> = </mo> <mn> 1 </mn> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \displaystyle -{\frac {x^{2}}{a^{2}}}-{\frac {y^{2}}{b^{2}}}+{\frac {z^{2}}{c^{2}}}=1} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/605bf2fd4ff606a8f8b74a4ce05ceb177a6925bc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:21.001ex; height:6.009ex;" alt="{\displaystyle \displaystyle -{\frac {x^{2}}{a^{2}}}-{\frac {y^{2}}{b^{2}}}+{\frac {z^{2}}{c^{2}}}=1}"> </noscript><span class="lazy-image-placeholder" style="width: 21.001ex;height: 6.009ex;vertical-align: -2.171ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/605bf2fd4ff606a8f8b74a4ce05ceb177a6925bc" data-alt="{\displaystyle \displaystyle -{\frac {x^{2}}{a^{2}}}-{\frac {y^{2}}{b^{2}}}+{\frac {z^{2}}{c^{2}}}=1}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span></p> <p>Nivo površi hiperboloida su <a href="https://sh-m-wikipedia-org.translate.goog/wiki/Elipsa?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Elipsa">elipse</a>, a presjeci s <a href="https://sh-m-wikipedia-org.translate.goog/wiki/Ravan?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Ravan">ravnima</a> koje su paralelne s <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> z </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle z} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bf368e72c009decd9b6686ee84a375632e11de98" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.088ex; height:1.676ex;" alt="{\displaystyle z}"> </noscript><span class="lazy-image-placeholder" style="width: 1.088ex;height: 1.676ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bf368e72c009decd9b6686ee84a375632e11de98" data-alt="{\displaystyle z}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> osom su <a href="https://sh-m-wikipedia-org.translate.goog/wiki/Hiperbola?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Hiperbola">hiperbole.</a> Kao i kod ostalih površi, pomoću transformacije <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\to x-x_{0}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> x </mi> <mo stretchy="false"> →<!-- → --> </mo> <mi> x </mi> <mo> −<!-- − --> </mo> <msub> <mi> x </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle x\to x-x_{0}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8f3bcc1efa8389d933490e5f692a45701d25c061" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:11.498ex; height:2.343ex;" alt="{\displaystyle x\to x-x_{0}}"> </noscript><span class="lazy-image-placeholder" style="width: 11.498ex;height: 2.343ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8f3bcc1efa8389d933490e5f692a45701d25c061" data-alt="{\displaystyle x\to x-x_{0}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> pomićemo središte hiperboloida, a cikličkom zamjenom varijabli nastaju hiperboloidi koji se protežu u smjeru ostalih koordinatnih osi.</p> </section> <div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(9)"> <span class="indicator mf-icon mf-icon-expand mf-icon--small"></span> <h2 id="Konusne_površi"><span id="Konusne_povr.C5.A1i"></span>Konusne površi</h2><span class="mw-editsection"> <a role="button" href="https://sh-m-wikipedia-org.translate.goog/w/index.php?title=Povr%C5%A1&action=edit&section=9&_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Uredi odjeljak Konusne površi" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>uredi</span> </a> </span> </div> <section class="mf-section-9 collapsible-block" id="mf-section-9"> <ul class="gallery mw-gallery-traditional"> <li class="gallerybox" style="width: 155px"> <div class="thumb" style="width: 150px; height: 150px;"> <span typeof="mw:File"><a href="https://sh-m-wikipedia-org.translate.goog/wiki/Datoteka:DoubleCone.png?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" class="mw-file-description"> <noscript> <img src="//upload.wikimedia.org/wikipedia/commons/thumb/7/72/DoubleCone.png/120px-DoubleCone.png" decoding="async" width="120" height="113" class="mw-file-element" data-file-width="1350" data-file-height="1274"> </noscript><span class="lazy-image-placeholder" style="width: 120px;height: 113px;" data-src="//upload.wikimedia.org/wikipedia/commons/thumb/7/72/DoubleCone.png/120px-DoubleCone.png" data-width="120" data-height="113" data-srcset="//upload.wikimedia.org/wikipedia/commons/thumb/7/72/DoubleCone.png/180px-DoubleCone.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/7/72/DoubleCone.png/240px-DoubleCone.png 2x" data-class="mw-file-element"> </span></a></span> </div> <div class="gallerytext"></div></li> </ul> <p><a href="https://sh-m-wikipedia-org.translate.goog/wiki/Kupa_(geometrija)?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" class="mw-redirect" title="Kupa (geometrija)">Konus</a> (kupa) je zadana formulom</p> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \displaystyle (z-z_{0})^{2}={\frac {(x-x_{0})^{2}}{a^{2}}}+{\frac {(y-y_{0})^{2}}{b^{2}}}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false"> ( </mo> <mi> z </mi> <mo> −<!-- − --> </mo> <msub> <mi> z </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> <msup> <mo stretchy="false"> ) </mo> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false"> ( </mo> <mi> x </mi> <mo> −<!-- − --> </mo> <msub> <mi> x </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> <msup> <mo stretchy="false"> ) </mo> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> </mrow> <msup> <mi> a </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> </mfrac> </mrow> <mo> + </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false"> ( </mo> <mi> y </mi> <mo> −<!-- − --> </mo> <msub> <mi> y </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> <msup> <mo stretchy="false"> ) </mo> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> </mrow> <msup> <mi> b </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> </mfrac> </mrow> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \displaystyle (z-z_{0})^{2}={\frac {(x-x_{0})^{2}}{a^{2}}}+{\frac {(y-y_{0})^{2}}{b^{2}}}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/97f6a61a1c088b34a6e17a35b82675a37930a2d4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:35.009ex; height:6.176ex;" alt="{\displaystyle \displaystyle (z-z_{0})^{2}={\frac {(x-x_{0})^{2}}{a^{2}}}+{\frac {(y-y_{0})^{2}}{b^{2}}}}"> </noscript><span class="lazy-image-placeholder" style="width: 35.009ex;height: 6.176ex;vertical-align: -2.171ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/97f6a61a1c088b34a6e17a35b82675a37930a2d4" data-alt="{\displaystyle \displaystyle (z-z_{0})^{2}={\frac {(x-x_{0})^{2}}{a^{2}}}+{\frac {(y-y_{0})^{2}}{b^{2}}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span></p> <p>Ovim izrazom su zadane dvije funkcije od dvije varijable:</p> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \displaystyle z=z_{0}+{\sqrt {{\frac {(x-x_{0})^{2}}{a^{2}}}+{\frac {(y-y_{0})^{2}}{b^{2}}}}}\quad {\textrm {i}}\quad z=z_{0}-{\sqrt {{\frac {(x-x_{0})^{2}}{a^{2}}}+{\frac {(y-y_{0})^{2}}{b^{2}}}}}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="true" scriptlevel="0"> <mi> z </mi> <mo> = </mo> <msub> <mi> z </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> <mo> + </mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false"> ( </mo> <mi> x </mi> <mo> −<!-- − --> </mo> <msub> <mi> x </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> <msup> <mo stretchy="false"> ) </mo> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> </mrow> <msup> <mi> a </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> </mfrac> </mrow> <mo> + </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false"> ( </mo> <mi> y </mi> <mo> −<!-- − --> </mo> <msub> <mi> y </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> <msup> <mo stretchy="false"> ) </mo> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> </mrow> <msup> <mi> b </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> </mfrac> </mrow> </msqrt> </mrow> <mspace width="1em"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mtext> i </mtext> </mrow> </mrow> <mspace width="1em"></mspace> <mi> z </mi> <mo> = </mo> <msub> <mi> z </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> <mo> −<!-- − --> </mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false"> ( </mo> <mi> x </mi> <mo> −<!-- − --> </mo> <msub> <mi> x </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> <msup> <mo stretchy="false"> ) </mo> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> </mrow> <msup> <mi> a </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> </mfrac> </mrow> <mo> + </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false"> ( </mo> <mi> y </mi> <mo> −<!-- − --> </mo> <msub> <mi> y </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> <msup> <mo stretchy="false"> ) </mo> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> </mrow> <msup> <mi> b </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> </mfrac> </mrow> </msqrt> </mrow> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \displaystyle z=z_{0}+{\sqrt {{\frac {(x-x_{0})^{2}}{a^{2}}}+{\frac {(y-y_{0})^{2}}{b^{2}}}}}\quad {\textrm {i}}\quad z=z_{0}-{\sqrt {{\frac {(x-x_{0})^{2}}{a^{2}}}+{\frac {(y-y_{0})^{2}}{b^{2}}}}}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/95c7b8e83642727a79754b594b2346e956394cf8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:74.23ex; height:7.676ex;" alt="{\displaystyle \displaystyle z=z_{0}+{\sqrt {{\frac {(x-x_{0})^{2}}{a^{2}}}+{\frac {(y-y_{0})^{2}}{b^{2}}}}}\quad {\textrm {i}}\quad z=z_{0}-{\sqrt {{\frac {(x-x_{0})^{2}}{a^{2}}}+{\frac {(y-y_{0})^{2}}{b^{2}}}}}}"> </noscript><span class="lazy-image-placeholder" style="width: 74.23ex;height: 7.676ex;vertical-align: -3.005ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/95c7b8e83642727a79754b594b2346e956394cf8" data-alt="{\displaystyle \displaystyle z=z_{0}+{\sqrt {{\frac {(x-x_{0})^{2}}{a^{2}}}+{\frac {(y-y_{0})^{2}}{b^{2}}}}}\quad {\textrm {i}}\quad z=z_{0}-{\sqrt {{\frac {(x-x_{0})^{2}}{a^{2}}}+{\frac {(y-y_{0})^{2}}{b^{2}}}}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span>.</p> <p>Želimo pronaći<a href="https://sh-m-wikipedia-org.translate.goog/wiki/Jedna%C4%8Dine?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" class="mw-redirect" title="Jednačine"> jednačinu</a> konusne površi čije izvodnice prolaze kroz koordinantni početak<a href="https://sh-m-wikipedia-org.translate.goog/wiki/Koordinatni_sistem?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" class="mw-disambig" title="Koordinatni sistem"> koordinatnog sistema i</a> kroz tačke krive <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F(x,y)=0}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> F </mi> <mo stretchy="false"> ( </mo> <mi> x </mi> <mo> , </mo> <mi> y </mi> <mo stretchy="false"> ) </mo> <mo> = </mo> <mn> 0 </mn> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle F(x,y)=0} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c910dd64922e23f212bc46e970af0540811c48f2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.33ex; height:2.843ex;" alt="{\displaystyle F(x,y)=0}"> </noscript><span class="lazy-image-placeholder" style="width: 11.33ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c910dd64922e23f212bc46e970af0540811c48f2" data-alt="{\displaystyle F(x,y)=0}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z=1}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> z </mi> <mo> = </mo> <mn> 1 </mn> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle z=1} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/078535cde78d90bfa1d9fbb2446204593a921d57" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.349ex; height:2.176ex;" alt="{\displaystyle z=1}"> </noscript><span class="lazy-image-placeholder" style="width: 5.349ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/078535cde78d90bfa1d9fbb2446204593a921d57" data-alt="{\displaystyle z=1}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> Na toj krivoj odaberimo proizvoljnu tačku <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T_{0}(x_{0},y_{0},1)}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi> T </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> <mo stretchy="false"> ( </mo> <msub> <mi> x </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> <mo> , </mo> <msub> <mi> y </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> <mo> , </mo> <mn> 1 </mn> <mo stretchy="false"> ) </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle T_{0}(x_{0},y_{0},1)} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2a7a8965c42a0e4fcc580f193699add25e9a6c6d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.029ex; height:2.843ex;" alt="{\displaystyle T_{0}(x_{0},y_{0},1)}"> </noscript><span class="lazy-image-placeholder" style="width: 12.029ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2a7a8965c42a0e4fcc580f193699add25e9a6c6d" data-alt="{\displaystyle T_{0}(x_{0},y_{0},1)}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span>.</p> <p>Jednačina izvodnice (prave) kroz tačke <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle O(0,0,0)}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> O </mi> <mo stretchy="false"> ( </mo> <mn> 0 </mn> <mo> , </mo> <mn> 0 </mn> <mo> , </mo> <mn> 0 </mn> <mo stretchy="false"> ) </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle O(0,0,0)} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/07c0a5cba5b86d77b215ff1e4162660220cb0318" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.138ex; height:2.843ex;" alt="{\displaystyle O(0,0,0)}"> </noscript><span class="lazy-image-placeholder" style="width: 9.138ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/07c0a5cba5b86d77b215ff1e4162660220cb0318" data-alt="{\displaystyle O(0,0,0)}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> i <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T_{0}(x_{0},y_{0},1)}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi> T </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> <mo stretchy="false"> ( </mo> <msub> <mi> x </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> <mo> , </mo> <msub> <mi> y </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> <mo> , </mo> <mn> 1 </mn> <mo stretchy="false"> ) </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle T_{0}(x_{0},y_{0},1)} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2a7a8965c42a0e4fcc580f193699add25e9a6c6d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.029ex; height:2.843ex;" alt="{\displaystyle T_{0}(x_{0},y_{0},1)}"> </noscript><span class="lazy-image-placeholder" style="width: 12.029ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2a7a8965c42a0e4fcc580f193699add25e9a6c6d" data-alt="{\displaystyle T_{0}(x_{0},y_{0},1)}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> glasi</p> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {x}{x_{0}}}={\frac {x}{y_{0}}}={\frac {z}{1}}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi> x </mi> <msub> <mi> x </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> </mfrac> </mrow> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi> x </mi> <msub> <mi> y </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> </mfrac> </mrow> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi> z </mi> <mn> 1 </mn> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\frac {x}{x_{0}}}={\frac {x}{y_{0}}}={\frac {z}{1}}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/504a7e317b89fccea464027bee55c15658d409dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:14.445ex; height:5.176ex;" alt="{\displaystyle {\frac {x}{x_{0}}}={\frac {x}{y_{0}}}={\frac {z}{1}}}"> </noscript><span class="lazy-image-placeholder" style="width: 14.445ex;height: 5.176ex;vertical-align: -2.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/504a7e317b89fccea464027bee55c15658d409dc" data-alt="{\displaystyle {\frac {x}{x_{0}}}={\frac {x}{y_{0}}}={\frac {z}{1}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span></p> <p>Vrijedi:</p> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x=zx_{0}=>x_{0}={\frac {x}{z}}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> x </mi> <mo> = </mo> <mi> z </mi> <msub> <mi> x </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> <mo> => </mo> <msub> <mi> x </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi> x </mi> <mi> z </mi> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle x=zx_{0}=>x_{0}={\frac {x}{z}}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5ab6fe4ae294910107b27ee09a889c2e6533c034" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:20.455ex; height:4.676ex;" alt="{\displaystyle x=zx_{0}=>x_{0}={\frac {x}{z}}}"> </noscript><span class="lazy-image-placeholder" style="width: 20.455ex;height: 4.676ex;vertical-align: -1.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5ab6fe4ae294910107b27ee09a889c2e6533c034" data-alt="{\displaystyle x=zx_{0}=>x_{0}={\frac {x}{z}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span></p> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y=zy_{0}=>y_{0}={\frac {y}{z}}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> y </mi> <mo> = </mo> <mi> z </mi> <msub> <mi> y </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> <mo> => </mo> <msub> <mi> y </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi> y </mi> <mi> z </mi> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle y=zy_{0}=>y_{0}={\frac {y}{z}}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3172718e7b24503862f916d3f437462d5e4e2b33" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:19.726ex; height:4.843ex;" alt="{\displaystyle y=zy_{0}=>y_{0}={\frac {y}{z}}}"> </noscript><span class="lazy-image-placeholder" style="width: 19.726ex;height: 4.843ex;vertical-align: -1.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3172718e7b24503862f916d3f437462d5e4e2b33" data-alt="{\displaystyle y=zy_{0}=>y_{0}={\frac {y}{z}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span></p> <p>Jednačina konusne površi čije izvodnice prolaze kroz koordinantni početak i kroz tačke krive</p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F(x,z)=0}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> F </mi> <mo stretchy="false"> ( </mo> <mi> x </mi> <mo> , </mo> <mi> z </mi> <mo stretchy="false"> ) </mo> <mo> = </mo> <mn> 0 </mn> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle F(x,z)=0} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f4a543b259a8b6b3a31a52394b27052ced5ae3b8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.263ex; height:2.843ex;" alt="{\displaystyle F(x,z)=0}"> </noscript><span class="lazy-image-placeholder" style="width: 11.263ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f4a543b259a8b6b3a31a52394b27052ced5ae3b8" data-alt="{\displaystyle F(x,z)=0}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y=1}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> y </mi> <mo> = </mo> <mn> 1 </mn> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle y=1} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/10f53b404b1fdd041a589f1f2425e45a2edba110" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.416ex; height:2.509ex;" alt="{\displaystyle y=1}"> </noscript><span class="lazy-image-placeholder" style="width: 5.416ex;height: 2.509ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/10f53b404b1fdd041a589f1f2425e45a2edba110" data-alt="{\displaystyle y=1}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </dd> </dl> <p>Kako tačka <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T_{0}(x_{0},y_{0},1)}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi> T </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> <mo stretchy="false"> ( </mo> <msub> <mi> x </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> <mo> , </mo> <msub> <mi> y </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> <mo> , </mo> <mn> 1 </mn> <mo stretchy="false"> ) </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle T_{0}(x_{0},y_{0},1)} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2a7a8965c42a0e4fcc580f193699add25e9a6c6d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.029ex; height:2.843ex;" alt="{\displaystyle T_{0}(x_{0},y_{0},1)}"> </noscript><span class="lazy-image-placeholder" style="width: 12.029ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2a7a8965c42a0e4fcc580f193699add25e9a6c6d" data-alt="{\displaystyle T_{0}(x_{0},y_{0},1)}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> leži na krivoj mora vrijediti <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F(x_{0},y_{0})=0}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> F </mi> <mo stretchy="false"> ( </mo> <msub> <mi> x </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> <mo> , </mo> <msub> <mi> y </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> <mo stretchy="false"> ) </mo> <mo> = </mo> <mn> 0 </mn> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle F(x_{0},y_{0})=0} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/78f23f124a1b5ff33397b39d81f7683a9862d01d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.422ex; height:2.843ex;" alt="{\displaystyle F(x_{0},y_{0})=0}"> </noscript><span class="lazy-image-placeholder" style="width: 13.422ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/78f23f124a1b5ff33397b39d81f7683a9862d01d" data-alt="{\displaystyle F(x_{0},y_{0})=0}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> dobijamo opštu jednačinu konusne površi</p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F({\frac {x}{z}}),{\frac {y}{z}})=0}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> F </mi> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi> x </mi> <mi> z </mi> </mfrac> </mrow> <mo stretchy="false"> ) </mo> <mo> , </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi> y </mi> <mi> z </mi> </mfrac> </mrow> <mo stretchy="false"> ) </mo> <mo> = </mo> <mn> 0 </mn> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle F({\frac {x}{z}}),{\frac {y}{z}})=0} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2590d703cb5494af06dd998760a88da69df746de" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:13.907ex; height:4.843ex;" alt="{\displaystyle F({\frac {x}{z}}),{\frac {y}{z}})=0}"> </noscript><span class="lazy-image-placeholder" style="width: 13.907ex;height: 4.843ex;vertical-align: -1.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2590d703cb5494af06dd998760a88da69df746de" data-alt="{\displaystyle F({\frac {x}{z}}),{\frac {y}{z}})=0}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </dd> </dl> <p>Jednačina konusne površi čije izvodnice prolaze kroz koordinantni početak i kroz tačke krive</p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F(x,z)=0}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> F </mi> <mo stretchy="false"> ( </mo> <mi> x </mi> <mo> , </mo> <mi> z </mi> <mo stretchy="false"> ) </mo> <mo> = </mo> <mn> 0 </mn> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle F(x,z)=0} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f4a543b259a8b6b3a31a52394b27052ced5ae3b8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.263ex; height:2.843ex;" alt="{\displaystyle F(x,z)=0}"> </noscript><span class="lazy-image-placeholder" style="width: 11.263ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f4a543b259a8b6b3a31a52394b27052ced5ae3b8" data-alt="{\displaystyle F(x,z)=0}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> i <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y=1}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> y </mi> <mo> = </mo> <mn> 1 </mn> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle y=1} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/10f53b404b1fdd041a589f1f2425e45a2edba110" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.416ex; height:2.509ex;" alt="{\displaystyle y=1}"> </noscript><span class="lazy-image-placeholder" style="width: 5.416ex;height: 2.509ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/10f53b404b1fdd041a589f1f2425e45a2edba110" data-alt="{\displaystyle y=1}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> je </dd> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F({\frac {x}{y}}),{\frac {z}{y}})=0}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> F </mi> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi> x </mi> <mi> y </mi> </mfrac> </mrow> <mo stretchy="false"> ) </mo> <mo> , </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi> z </mi> <mi> y </mi> </mfrac> </mrow> <mo stretchy="false"> ) </mo> <mo> = </mo> <mn> 0 </mn> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle F({\frac {x}{y}}),{\frac {z}{y}})=0} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/eb2466002eaa6b300a69d431b92d792233913d96" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:13.907ex; height:5.176ex;" alt="{\displaystyle F({\frac {x}{y}}),{\frac {z}{y}})=0}"> </noscript><span class="lazy-image-placeholder" style="width: 13.907ex;height: 5.176ex;vertical-align: -2.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/eb2466002eaa6b300a69d431b92d792233913d96" data-alt="{\displaystyle F({\frac {x}{y}}),{\frac {z}{y}})=0}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </dd> </dl> </section> <div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(10)"> <span class="indicator mf-icon mf-icon-expand mf-icon--small"></span> <h2 id="Valjkaste_površi"><span id="Valjkaste_povr.C5.A1i"></span>Valjkaste površi</h2><span class="mw-editsection"> <a role="button" href="https://sh-m-wikipedia-org.translate.goog/w/index.php?title=Povr%C5%A1&action=edit&section=10&_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Uredi odjeljak Valjkaste površi" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>uredi</span> </a> </span> </div> <section class="mf-section-10 collapsible-block" id="mf-section-10"> <ul class="gallery mw-gallery-traditional"> <li class="gallerybox" style="width: 155px"> <div class="thumb" style="width: 150px; height: 150px;"> <span typeof="mw:File"><a href="https://sh-m-wikipedia-org.translate.goog/wiki/Datoteka:Cylindrical_Coordinates.svg?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" class="mw-file-description"> <noscript> <img src="//upload.wikimedia.org/wikipedia/commons/thumb/b/b7/Cylindrical_Coordinates.svg/120px-Cylindrical_Coordinates.svg.png" decoding="async" width="120" height="120" class="mw-file-element" data-file-width="748" data-file-height="745"> </noscript><span class="lazy-image-placeholder" style="width: 120px;height: 120px;" data-src="//upload.wikimedia.org/wikipedia/commons/thumb/b/b7/Cylindrical_Coordinates.svg/120px-Cylindrical_Coordinates.svg.png" data-width="120" data-height="120" data-srcset="//upload.wikimedia.org/wikipedia/commons/thumb/b/b7/Cylindrical_Coordinates.svg/180px-Cylindrical_Coordinates.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/b/b7/Cylindrical_Coordinates.svg/240px-Cylindrical_Coordinates.svg.png 2x" data-class="mw-file-element"> </span></a></span> </div> <div class="gallerytext"></div></li> </ul> <ul> <li>Izvodnica je paralelna sa osom <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle OZ}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> O </mi> <mi> Z </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle OZ} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3ef1fb6520fafba764040ed2928a06cdd5bf481f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.454ex; height:2.176ex;" alt="{\displaystyle OZ}"> </noscript><span class="lazy-image-placeholder" style="width: 3.454ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3ef1fb6520fafba764040ed2928a06cdd5bf481f" data-alt="{\displaystyle OZ}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> i prolazi kroz krivu <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F(x,y)=0}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> F </mi> <mo stretchy="false"> ( </mo> <mi> x </mi> <mo> , </mo> <mi> y </mi> <mo stretchy="false"> ) </mo> <mo> = </mo> <mn> 0 </mn> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle F(x,y)=0} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c910dd64922e23f212bc46e970af0540811c48f2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.33ex; height:2.843ex;" alt="{\displaystyle F(x,y)=0}"> </noscript><span class="lazy-image-placeholder" style="width: 11.33ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c910dd64922e23f212bc46e970af0540811c48f2" data-alt="{\displaystyle F(x,y)=0}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z=0}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> z </mi> <mo> = </mo> <mn> 0 </mn> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle z=0} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b92bfc06485cc90286474b14a516a68d8bfdd7b3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.349ex; height:2.176ex;" alt="{\displaystyle z=0}"> </noscript><span class="lazy-image-placeholder" style="width: 5.349ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b92bfc06485cc90286474b14a516a68d8bfdd7b3" data-alt="{\displaystyle z=0}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span></li> </ul> <p>Opšta jednačina površi data je sa <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F(x,y)=0}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> F </mi> <mo stretchy="false"> ( </mo> <mi> x </mi> <mo> , </mo> <mi> y </mi> <mo stretchy="false"> ) </mo> <mo> = </mo> <mn> 0 </mn> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle F(x,y)=0} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c910dd64922e23f212bc46e970af0540811c48f2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.33ex; height:2.843ex;" alt="{\displaystyle F(x,y)=0}"> </noscript><span class="lazy-image-placeholder" style="width: 11.33ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c910dd64922e23f212bc46e970af0540811c48f2" data-alt="{\displaystyle F(x,y)=0}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span>(nedostaje z)</p> <ul> <li>Izvodnica je paralelna sa osom <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle OX}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> O </mi> <mi> X </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle OX} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/67505ccf95552d7c42405b0988119f438861ed07" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.753ex; height:2.176ex;" alt="{\displaystyle OX}"> </noscript><span class="lazy-image-placeholder" style="width: 3.753ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/67505ccf95552d7c42405b0988119f438861ed07" data-alt="{\displaystyle OX}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> i prolazi kroz krivu <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F(y,z)=0}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> F </mi> <mo stretchy="false"> ( </mo> <mi> y </mi> <mo> , </mo> <mi> z </mi> <mo stretchy="false"> ) </mo> <mo> = </mo> <mn> 0 </mn> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle F(y,z)=0} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2eb30ff0996c08d6928827f3b88cf737b0e2a7bf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.089ex; height:2.843ex;" alt="{\displaystyle F(y,z)=0}"> </noscript><span class="lazy-image-placeholder" style="width: 11.089ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2eb30ff0996c08d6928827f3b88cf737b0e2a7bf" data-alt="{\displaystyle F(y,z)=0}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x=0}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> x </mi> <mo> = </mo> <mn> 0 </mn> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle x=0} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/953917eaf52f2e1baad54c8c9e3d6f9bb3710cdc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.591ex; height:2.176ex;" alt="{\displaystyle x=0}"> </noscript><span class="lazy-image-placeholder" style="width: 5.591ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/953917eaf52f2e1baad54c8c9e3d6f9bb3710cdc" data-alt="{\displaystyle x=0}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span></li> </ul> <p>Opšta jednačina površi data je sa <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F(y,z)=0}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> F </mi> <mo stretchy="false"> ( </mo> <mi> y </mi> <mo> , </mo> <mi> z </mi> <mo stretchy="false"> ) </mo> <mo> = </mo> <mn> 0 </mn> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle F(y,z)=0} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2eb30ff0996c08d6928827f3b88cf737b0e2a7bf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.089ex; height:2.843ex;" alt="{\displaystyle F(y,z)=0}"> </noscript><span class="lazy-image-placeholder" style="width: 11.089ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2eb30ff0996c08d6928827f3b88cf737b0e2a7bf" data-alt="{\displaystyle F(y,z)=0}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> (nedostaje x)</p> <ul> <li>Izvodnica je paralelna sa osom <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle OY}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> O </mi> <mi> Y </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle OY} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b00a476cd78e7dcc2c9aa97d5cc2dded3b9e31df" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.547ex; height:2.176ex;" alt="{\displaystyle OY}"> </noscript><span class="lazy-image-placeholder" style="width: 3.547ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b00a476cd78e7dcc2c9aa97d5cc2dded3b9e31df" data-alt="{\displaystyle OY}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> i prolazi kroz krivu <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F(x,z)=0}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> F </mi> <mo stretchy="false"> ( </mo> <mi> x </mi> <mo> , </mo> <mi> z </mi> <mo stretchy="false"> ) </mo> <mo> = </mo> <mn> 0 </mn> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle F(x,z)=0} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f4a543b259a8b6b3a31a52394b27052ced5ae3b8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.263ex; height:2.843ex;" alt="{\displaystyle F(x,z)=0}"> </noscript><span class="lazy-image-placeholder" style="width: 11.263ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f4a543b259a8b6b3a31a52394b27052ced5ae3b8" data-alt="{\displaystyle F(x,z)=0}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y=0}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> y </mi> <mo> = </mo> <mn> 0 </mn> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle y=0} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/094f824655138f6b11d96a0da32e7f0716ba6959" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.416ex; height:2.509ex;" alt="{\displaystyle y=0}"> </noscript><span class="lazy-image-placeholder" style="width: 5.416ex;height: 2.509ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/094f824655138f6b11d96a0da32e7f0716ba6959" data-alt="{\displaystyle y=0}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span></li> </ul> <p>Opšta jednačina površi data je sa <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F(x,z)=0}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> F </mi> <mo stretchy="false"> ( </mo> <mi> x </mi> <mo> , </mo> <mi> z </mi> <mo stretchy="false"> ) </mo> <mo> = </mo> <mn> 0 </mn> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle F(x,z)=0} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f4a543b259a8b6b3a31a52394b27052ced5ae3b8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.263ex; height:2.843ex;" alt="{\displaystyle F(x,z)=0}"> </noscript><span class="lazy-image-placeholder" style="width: 11.263ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f4a543b259a8b6b3a31a52394b27052ced5ae3b8" data-alt="{\displaystyle F(x,z)=0}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> (nedostaje y)</p> </section> <div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(11)"> <span class="indicator mf-icon mf-icon-expand mf-icon--small"></span> <h2 id="Rotacione_površi"><span id="Rotacione_povr.C5.A1i"></span>Rotacione površi</h2><span class="mw-editsection"> <a role="button" href="https://sh-m-wikipedia-org.translate.goog/w/index.php?title=Povr%C5%A1&action=edit&section=11&_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Uredi odjeljak Rotacione površi" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>uredi</span> </a> </span> </div> <section class="mf-section-11 collapsible-block" id="mf-section-11"> <ul class="gallery mw-gallery-traditional"> <li class="gallerybox" style="width: 155px"> <div class="thumb" style="width: 150px; height: 150px;"> <span typeof="mw:File"><a href="https://sh-m-wikipedia-org.translate.goog/wiki/Datoteka:Sphere_wireframe_10deg_6r.svg?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" class="mw-file-description"> <noscript> <img src="//upload.wikimedia.org/wikipedia/commons/thumb/7/7e/Sphere_wireframe_10deg_6r.svg/120px-Sphere_wireframe_10deg_6r.svg.png" decoding="async" width="120" height="120" class="mw-file-element" data-file-width="800" data-file-height="800"> </noscript><span class="lazy-image-placeholder" style="width: 120px;height: 120px;" data-src="//upload.wikimedia.org/wikipedia/commons/thumb/7/7e/Sphere_wireframe_10deg_6r.svg/120px-Sphere_wireframe_10deg_6r.svg.png" data-width="120" data-height="120" data-srcset="//upload.wikimedia.org/wikipedia/commons/thumb/7/7e/Sphere_wireframe_10deg_6r.svg/180px-Sphere_wireframe_10deg_6r.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/7/7e/Sphere_wireframe_10deg_6r.svg/240px-Sphere_wireframe_10deg_6r.svg.png 2x" data-class="mw-file-element"> </span></a></span> </div> <div class="gallerytext"></div></li> </ul> <p>Jednačina <a href="https://sh-m-wikipedia-org.translate.goog/w/index.php?title=Rotacione_povr%C5%A1i&action=edit&redlink=1&_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" class="new" title="Rotacione površi (stranica ne postoji)">rotacione površi</a> koja nastaje rotacijom krive <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z=f(y)}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> z </mi> <mo> = </mo> <mi> f </mi> <mo stretchy="false"> ( </mo> <mi> y </mi> <mo stretchy="false"> ) </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle z=f(y)} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/adb9c017b827a30228c8fb0349f8ac153e5236ca" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.43ex; height:2.843ex;" alt="{\displaystyle z=f(y)}"> </noscript><span class="lazy-image-placeholder" style="width: 8.43ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/adb9c017b827a30228c8fb0349f8ac153e5236ca" data-alt="{\displaystyle z=f(y)}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> oko ose <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle OZ}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> O </mi> <mi> Z </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle OZ} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3ef1fb6520fafba764040ed2928a06cdd5bf481f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.454ex; height:2.176ex;" alt="{\displaystyle OZ}"> </noscript><span class="lazy-image-placeholder" style="width: 3.454ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3ef1fb6520fafba764040ed2928a06cdd5bf481f" data-alt="{\displaystyle OZ}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span></p> <p>Neka je <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \rho ={\sqrt {x^{2}+y^{2}}}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> ρ<!-- ρ --> </mi> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <msup> <mi> x </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <mo> + </mo> <msup> <mi> y </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \rho ={\sqrt {x^{2}+y^{2}}}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6639197208572a96358af21debdbdaf96ae306a4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.671ex; width:14.063ex; height:4.843ex;" alt="{\displaystyle \rho ={\sqrt {x^{2}+y^{2}}}}"> </noscript><span class="lazy-image-placeholder" style="width: 14.063ex;height: 4.843ex;vertical-align: -1.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6639197208572a96358af21debdbdaf96ae306a4" data-alt="{\displaystyle \rho ={\sqrt {x^{2}+y^{2}}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> udaljenost proizvoljne tačke <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T(x,y,z)}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> T </mi> <mo stretchy="false"> ( </mo> <mi> x </mi> <mo> , </mo> <mi> y </mi> <mo> , </mo> <mi> z </mi> <mo stretchy="false"> ) </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle T(x,y,z)} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6897ec7f1a2b10374084a85c60f8f87fded5d140" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.087ex; height:2.843ex;" alt="{\displaystyle T(x,y,z)}"> </noscript><span class="lazy-image-placeholder" style="width: 9.087ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6897ec7f1a2b10374084a85c60f8f87fded5d140" data-alt="{\displaystyle T(x,y,z)}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> rotacione povrsi od ose <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle OZ}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> O </mi> <mi> Z </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle OZ} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3ef1fb6520fafba764040ed2928a06cdd5bf481f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.454ex; height:2.176ex;" alt="{\displaystyle OZ}"> </noscript><span class="lazy-image-placeholder" style="width: 3.454ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3ef1fb6520fafba764040ed2928a06cdd5bf481f" data-alt="{\displaystyle OZ}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span>. Tada je jednačina rotacione površi kojoj je osa <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle OZ}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> O </mi> <mi> Z </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle OZ} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3ef1fb6520fafba764040ed2928a06cdd5bf481f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.454ex; height:2.176ex;" alt="{\displaystyle OZ}"> </noscript><span class="lazy-image-placeholder" style="width: 3.454ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3ef1fb6520fafba764040ed2928a06cdd5bf481f" data-alt="{\displaystyle OZ}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> osa rotacije data sa</p> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z=f(\rho )=f({\sqrt {x^{2}+y^{2}}})}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> z </mi> <mo> = </mo> <mi> f </mi> <mo stretchy="false"> ( </mo> <mi> ρ<!-- ρ --> </mi> <mo stretchy="false"> ) </mo> <mo> = </mo> <mi> f </mi> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <msup> <mi> x </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <mo> + </mo> <msup> <mi> y </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> </msqrt> </mrow> <mo stretchy="false"> ) </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle z=f(\rho )=f({\sqrt {x^{2}+y^{2}}})} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dde3192f294bde2479eb291178e0c41233b9ac95" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.671ex; width:24.426ex; height:4.843ex;" alt="{\displaystyle z=f(\rho )=f({\sqrt {x^{2}+y^{2}}})}"> </noscript><span class="lazy-image-placeholder" style="width: 24.426ex;height: 4.843ex;vertical-align: -1.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dde3192f294bde2479eb291178e0c41233b9ac95" data-alt="{\displaystyle z=f(\rho )=f({\sqrt {x^{2}+y^{2}}})}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span></p> <p>uopšteno sa</p> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F(z,x^{2}+y^{2})=0}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> F </mi> <mo stretchy="false"> ( </mo> <mi> z </mi> <mo> , </mo> <msup> <mi> x </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <mo> + </mo> <msup> <mi> y </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <mo stretchy="false"> ) </mo> <mo> = </mo> <mn> 0 </mn> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle F(z,x^{2}+y^{2})=0} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68e0046520204b07d7935f155828b6af76dac428" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:17.372ex; height:3.176ex;" alt="{\displaystyle F(z,x^{2}+y^{2})=0}"> </noscript><span class="lazy-image-placeholder" style="width: 17.372ex;height: 3.176ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68e0046520204b07d7935f155828b6af76dac428" data-alt="{\displaystyle F(z,x^{2}+y^{2})=0}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span></p> <p>Jednačina rotacione površi koja nastaje rotacijom krive <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x=f(z)}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> x </mi> <mo> = </mo> <mi> f </mi> <mo stretchy="false"> ( </mo> <mi> z </mi> <mo stretchy="false"> ) </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle x=f(z)} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9fed2b9fa0e42bd5570a5ee642891846975d906a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.604ex; height:2.843ex;" alt="{\displaystyle x=f(z)}"> </noscript><span class="lazy-image-placeholder" style="width: 8.604ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9fed2b9fa0e42bd5570a5ee642891846975d906a" data-alt="{\displaystyle x=f(z)}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> ili <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(y)}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> f </mi> <mo stretchy="false"> ( </mo> <mi> y </mi> <mo stretchy="false"> ) </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle f(y)} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/aaa9215c6afa4892692ba05ae4c44f23600ea79d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.243ex; height:2.843ex;" alt="{\displaystyle f(y)}"> </noscript><span class="lazy-image-placeholder" style="width: 4.243ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/aaa9215c6afa4892692ba05ae4c44f23600ea79d" data-alt="{\displaystyle f(y)}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> oko ose <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle OX}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> O </mi> <mi> X </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle OX} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/67505ccf95552d7c42405b0988119f438861ed07" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.753ex; height:2.176ex;" alt="{\displaystyle OX}"> </noscript><span class="lazy-image-placeholder" style="width: 3.753ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/67505ccf95552d7c42405b0988119f438861ed07" data-alt="{\displaystyle OX}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> data je sa</p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z=f(\rho )=f({\sqrt {y^{2}+z^{2}}})}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> z </mi> <mo> = </mo> <mi> f </mi> <mo stretchy="false"> ( </mo> <mi> ρ<!-- ρ --> </mi> <mo stretchy="false"> ) </mo> <mo> = </mo> <mi> f </mi> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <msup> <mi> y </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <mo> + </mo> <msup> <mi> z </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> </msqrt> </mrow> <mo stretchy="false"> ) </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle z=f(\rho )=f({\sqrt {y^{2}+z^{2}}})} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/590826204ad7ac6380f1134dfb1d4aa7689ee48b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.671ex; width:24.186ex; height:4.843ex;" alt="{\displaystyle z=f(\rho )=f({\sqrt {y^{2}+z^{2}}})}"> </noscript><span class="lazy-image-placeholder" style="width: 24.186ex;height: 4.843ex;vertical-align: -1.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/590826204ad7ac6380f1134dfb1d4aa7689ee48b" data-alt="{\displaystyle z=f(\rho )=f({\sqrt {y^{2}+z^{2}}})}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </dd> </dl> <p>uopšteno sa</p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F(x,y^{2}+z^{2})=0}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> F </mi> <mo stretchy="false"> ( </mo> <mi> x </mi> <mo> , </mo> <msup> <mi> y </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <mo> + </mo> <msup> <mi> z </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <mo stretchy="false"> ) </mo> <mo> = </mo> <mn> 0 </mn> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle F(x,y^{2}+z^{2})=0} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a144d7de15c4a93fab9ca27874c62e56e4663fc3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:17.374ex; height:3.176ex;" alt="{\displaystyle F(x,y^{2}+z^{2})=0}"> </noscript><span class="lazy-image-placeholder" style="width: 17.374ex;height: 3.176ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a144d7de15c4a93fab9ca27874c62e56e4663fc3" data-alt="{\displaystyle F(x,y^{2}+z^{2})=0}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </dd> </dl> <p>Jednačina rotacione površi koja nastaje rotacijom krive <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x=f(xz)}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> x </mi> <mo> = </mo> <mi> f </mi> <mo stretchy="false"> ( </mo> <mi> x </mi> <mi> z </mi> <mo stretchy="false"> ) </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle x=f(xz)} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f80e5ebf4a246fd9de8ca57bfd02fba585b0c438" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.934ex; height:2.843ex;" alt="{\displaystyle x=f(xz)}"> </noscript><span class="lazy-image-placeholder" style="width: 9.934ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f80e5ebf4a246fd9de8ca57bfd02fba585b0c438" data-alt="{\displaystyle x=f(xz)}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> ili <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(z)}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> f </mi> <mo stretchy="false"> ( </mo> <mi> z </mi> <mo stretchy="false"> ) </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle f(z)} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d8dd568d570b390c337c0a911f0a1c5c214e8240" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.176ex; height:2.843ex;" alt="{\displaystyle f(z)}"> </noscript><span class="lazy-image-placeholder" style="width: 4.176ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d8dd568d570b390c337c0a911f0a1c5c214e8240" data-alt="{\displaystyle f(z)}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> oko ose <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle OX}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> O </mi> <mi> X </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle OX} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/67505ccf95552d7c42405b0988119f438861ed07" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.753ex; height:2.176ex;" alt="{\displaystyle OX}"> </noscript><span class="lazy-image-placeholder" style="width: 3.753ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/67505ccf95552d7c42405b0988119f438861ed07" data-alt="{\displaystyle OX}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> je data sa</p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z=f(\rho )=f({\sqrt {x^{2}+z^{2}}})}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> z </mi> <mo> = </mo> <mi> f </mi> <mo stretchy="false"> ( </mo> <mi> ρ<!-- ρ --> </mi> <mo stretchy="false"> ) </mo> <mo> = </mo> <mi> f </mi> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <msup> <mi> x </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <mo> + </mo> <msup> <mi> z </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> </msqrt> </mrow> <mo stretchy="false"> ) </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle z=f(\rho )=f({\sqrt {x^{2}+z^{2}}})} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e9f225bf6307ca3d2c3ac5408f385ebe4fdf661d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:24.355ex; height:3.509ex;" alt="{\displaystyle z=f(\rho )=f({\sqrt {x^{2}+z^{2}}})}"> </noscript><span class="lazy-image-placeholder" style="width: 24.355ex;height: 3.509ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e9f225bf6307ca3d2c3ac5408f385ebe4fdf661d" data-alt="{\displaystyle z=f(\rho )=f({\sqrt {x^{2}+z^{2}}})}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </dd> </dl> <p>uopšteno sa</p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F(y,x^{2}+z^{2})=0}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> F </mi> <mo stretchy="false"> ( </mo> <mi> y </mi> <mo> , </mo> <msup> <mi> x </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <mo> + </mo> <msup> <mi> z </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <mo stretchy="false"> ) </mo> <mo> = </mo> <mn> 0 </mn> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle F(y,x^{2}+z^{2})=0} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/106ed181426e9f49c53892522313dfaa04544175" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:17.369ex; height:3.176ex;" alt="{\displaystyle F(y,x^{2}+z^{2})=0}"> </noscript><span class="lazy-image-placeholder" style="width: 17.369ex;height: 3.176ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/106ed181426e9f49c53892522313dfaa04544175" data-alt="{\displaystyle F(y,x^{2}+z^{2})=0}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </dd> </dl> </section> <div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(12)"> <span class="indicator mf-icon mf-icon-expand mf-icon--small"></span> <h2 id="Izvori">Izvori</h2><span class="mw-editsection"> <a role="button" href="https://sh-m-wikipedia-org.translate.goog/w/index.php?title=Povr%C5%A1&action=edit&section=12&_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Uredi odjeljak Izvori" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>uredi</span> </a> </span> </div> <section class="mf-section-12 collapsible-block" id="mf-section-12"> <p><a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=http://lavica.fesb.hr/mat2/predavanja/node54.html">Plohe drugog reda</a></p> <p><a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=http://www.grad.hr/sgorjanc/Links/natkrivanje.htm">NATKRIVANJE PARABOLIČKIM KONOIDOM</a></p> <p><a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=http://www.mathos.unios.hr/fvv/plohe.pdf">Valjkaste (cilindrične) plohe</a> <a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://web.archive.org/web/20180713015126/http://www.mathos.unios.hr/fvv/plohe.pdf">Arhivirano</a> 2018-07-13 na <a href="https://sh-m-wikipedia-org.translate.goog/wiki/Wayback_Machine?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Wayback Machine">Wayback Machine-u</a></p> <p><a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=http://www.grad.hr/sgorjanc/Links/sanjaimario.pdf">Gaussova i srednja zakrivljenost ploha</a></p> <div class="infobox sisterproject" style="width: 300px"> <div style="float: left;"> <figure class="mw-halign-none" typeof="mw:File"> <a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://commons.wikimedia.org/wiki/Category:Surfaces" title="commons:Category:Surfaces"> <noscript> <img src="//upload.wikimedia.org/wikipedia/commons/thumb/4/4a/Commons-logo.svg/15px-Commons-logo.svg.png" decoding="async" width="15" height="20" class="mw-file-element" data-file-width="1024" data-file-height="1376"> </noscript><span class="lazy-image-placeholder" style="width: 15px;height: 20px;" data-src="//upload.wikimedia.org/wikipedia/commons/thumb/4/4a/Commons-logo.svg/15px-Commons-logo.svg.png" data-width="15" data-height="20" data-srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/4a/Commons-logo.svg/23px-Commons-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/4a/Commons-logo.svg/30px-Commons-logo.svg.png 2x" data-class="mw-file-element"> </span></a> <figcaption></figcaption> </figure> </div> <div style="margin-left: 20px;"> <i><b><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://commons.wikimedia.org/wiki/Category:Surfaces" class="extiw" title="commons:Category:Surfaces">Površ</a></b></i> na <a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://commons.wikimedia.org/wiki/Glavna_stranica_-_%25D0%2593%25D0%25BB%25D0%25B0%25D0%25B2%25D0%25BD%25D0%25B0_%25D1%2581%25D1%2582%25D1%2580%25D0%25B0%25D0%25BD%25D0%25B8%25D1%2586%25D0%25B0" class="extiw" title="commons:Glavna stranica - Главна страница">Wikimedijinoj ostavi</a> </div> </div><!-- NewPP limit report Parsed by mw‐web.eqiad.main‐7769799cfb‐jj657 Cached time: 20241113140046 Cache expiry: 2592000 Reduced expiry: false Complications: [show‐toc] CPU time usage: 0.263 seconds Real time usage: 0.449 seconds Preprocessor visited node count: 1477/1000000 Post‐expand include size: 731/2097152 bytes Template argument size: 16/2097152 bytes Highest expansion depth: 3/100 Expensive parser function count: 0/500 Unstrip recursion depth: 0/20 Unstrip post‐expand size: 14005/5000000 bytes Lua time usage: 0.003/10.000 seconds Lua memory usage: 659400/52428800 bytes Number of Wikibase entities loaded: 0/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 31.553 1 -total 90.32% 28.500 1 Šablon:Webarchive 6.94% 2.191 1 Šablon:Commonscat --> <!-- Saved in parser cache with key shwiki:pcache:idhash:4556799-0!canonical!sh-latn and timestamp 20241113140046 and revision id 41688388. Rendering was triggered because: page-view --> </section> </div><!-- MobileFormatter took 0.096 seconds --><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --> <noscript> <img src="https://login.m.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1&mobile=1" alt="" width="1" height="1" style="border: none; position: absolute;"> </noscript> <div class="printfooter" data-nosnippet="" lang="sh-Latn" dir="ltr"> Izvor: <a dir="ltr" href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://sh.wikipedia.org/w/index.php?title%3DPovr%C5%A1%26oldid%3D41688388">https://sh.wikipedia.org/w/index.php?title=Površ&oldid=41688388</a> </div> </div> </div> <div class="post-content" id="page-secondary-actions"> </div> </main> <footer class="mw-footer minerva-footer" role="contentinfo"><a class="last-modified-bar" href="https://sh-m-wikipedia-org.translate.goog/w/index.php?title=Povr%C5%A1&action=history&_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB"> <div class="post-content last-modified-bar__content"><span class="minerva-icon minerva-icon-size-medium minerva-icon--modified-history"></span> <span class="last-modified-bar__text modified-enhancement" data-user-name="InternetArchiveBot" data-user-gender="unknown" data-timestamp="1703192495"> <span>Poslednja izmjena na dan 21. decembra 2023., u 22:01 č.</span> </span> <span class="minerva-icon minerva-icon-size-small minerva-icon--expand"></span> </div></a> <div class="post-content footer-content"> <div id="mw-data-after-content"> <div class="read-more-container"></div> </div> <div id="p-lang"> <h4>Jezici</h4> <section> <ul id="p-variants" class="minerva-languages"> <li id="ca-varlang-0" class="selected ca-variants-sh-Latn mw-list-item"><a href="https://sh-m-wikipedia-org.translate.goog/w/index.php?title=Povr%C5%A1&variant=sh-latn&_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" lang="sh-Latn" hreflang="sh-Latn"><span>Latinica</span></a></li> <li id="ca-varlang-1" class="ca-variants-sh-Cyrl mw-list-item"><a href="https://sh-m-wikipedia-org.translate.goog/w/index.php?title=Povr%C5%A1&variant=sh-cyrl&_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" lang="sh-Cyrl" hreflang="sh-Cyrl"><span>Ћирилица</span></a></li> </ul> <ul class="minerva-languages"> <li class="interlanguage-link interwiki-af mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://af.wikipedia.org/wiki/Oppervlak" title="Oppervlak — Afrikanerski" lang="af" hreflang="af" data-title="Oppervlak" data-language-autonym="Afrikaans" data-language-local-name="Afrikanerski" class="interlanguage-link-target"><span>Afrikaans</span></a></li> <li class="interlanguage-link interwiki-als mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://als.wikipedia.org/wiki/Fl%25C3%25A4che_(Topologie)" title="Fläche (Topologie) — Švajcarsko nemački" lang="gsw" hreflang="gsw" data-title="Fläche (Topologie)" data-language-autonym="Alemannisch" data-language-local-name="Švajcarsko nemački" class="interlanguage-link-target"><span>Alemannisch</span></a></li> <li class="interlanguage-link interwiki-an mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://an.wikipedia.org/wiki/Superficie" title="Superficie — Aragonežanski" lang="an" hreflang="an" data-title="Superficie" data-language-autonym="Aragonés" data-language-local-name="Aragonežanski" class="interlanguage-link-target"><span>Aragonés</span></a></li> <li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://ar.wikipedia.org/wiki/%25D8%25B3%25D8%25B7%25D8%25AD" title="سطح — Arapski" lang="ar" hreflang="ar" data-title="سطح" data-language-autonym="العربية" data-language-local-name="Arapski" class="interlanguage-link-target"><span>العربية</span></a></li> <li class="interlanguage-link interwiki-ast mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://ast.wikipedia.org/wiki/Superficie" title="Superficie — Asturijski" lang="ast" hreflang="ast" data-title="Superficie" data-language-autonym="Asturianu" data-language-local-name="Asturijski" class="interlanguage-link-target"><span>Asturianu</span></a></li> <li class="interlanguage-link interwiki-az mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://az.wikipedia.org/wiki/S%25C9%2599th" title="Səth — Azerbejdžanski" lang="az" hreflang="az" data-title="Səth" data-language-autonym="Azərbaycanca" data-language-local-name="Azerbejdžanski" class="interlanguage-link-target"><span>Azərbaycanca</span></a></li> <li class="interlanguage-link interwiki-be mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://be.wikipedia.org/wiki/%25D0%259F%25D0%25B0%25D0%25B2%25D0%25B5%25D1%2580%25D1%2585%25D0%25BD%25D1%258F" title="Паверхня — Beloruski" lang="be" hreflang="be" data-title="Паверхня" data-language-autonym="Беларуская" data-language-local-name="Beloruski" class="interlanguage-link-target"><span>Беларуская</span></a></li> <li class="interlanguage-link interwiki-bg mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://bg.wikipedia.org/wiki/%25D0%259F%25D0%25BE%25D0%25B2%25D1%258A%25D1%2580%25D1%2585%25D0%25BD%25D0%25BE%25D1%2581%25D1%2582" title="Повърхност — Bugarski" lang="bg" hreflang="bg" data-title="Повърхност" data-language-autonym="Български" data-language-local-name="Bugarski" class="interlanguage-link-target"><span>Български</span></a></li> <li class="interlanguage-link interwiki-bn mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://bn.wikipedia.org/wiki/%25E0%25A6%25A4%25E0%25A6%25B2_(%25E0%25A6%259F%25E0%25A6%25AA%25E0%25A7%258B%25E0%25A6%25B2%25E0%25A6%259C%25E0%25A6%25BF)" title="তল (টপোলজি) — Bengalski" lang="bn" hreflang="bn" data-title="তল (টপোলজি)" data-language-autonym="বাংলা" data-language-local-name="Bengalski" class="interlanguage-link-target"><span>বাংলা</span></a></li> <li class="interlanguage-link interwiki-bs mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://bs.wikipedia.org/wiki/Povr%25C5%25A1" title="Površ — Bosanski" lang="bs" hreflang="bs" data-title="Površ" data-language-autonym="Bosanski" data-language-local-name="Bosanski" class="interlanguage-link-target"><span>Bosanski</span></a></li> <li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://ca.wikipedia.org/wiki/Superf%25C3%25ADcie_(matem%25C3%25A0tiques)" title="Superfície (matemàtiques) — Katalonski" lang="ca" hreflang="ca" data-title="Superfície (matemàtiques)" data-language-autonym="Català" data-language-local-name="Katalonski" class="interlanguage-link-target"><span>Català</span></a></li> <li class="interlanguage-link interwiki-ckb mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://ckb.wikipedia.org/wiki/%25DA%2595%25D9%2588%25D9%2588" title="ڕوو — centralnokurdski" lang="ckb" hreflang="ckb" data-title="ڕوو" data-language-autonym="کوردی" data-language-local-name="centralnokurdski" class="interlanguage-link-target"><span>کوردی</span></a></li> <li class="interlanguage-link interwiki-cs mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://cs.wikipedia.org/wiki/Plocha" title="Plocha — Češki" lang="cs" hreflang="cs" data-title="Plocha" data-language-autonym="Čeština" data-language-local-name="Češki" class="interlanguage-link-target"><span>Čeština</span></a></li> <li class="interlanguage-link interwiki-cv mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://cv.wikipedia.org/wiki/%25C3%2587%25D0%25B8%25D0%25B9" title="Çий — Čuvaški" lang="cv" hreflang="cv" data-title="Çий" data-language-autonym="Чӑвашла" data-language-local-name="Čuvaški" class="interlanguage-link-target"><span>Чӑвашла</span></a></li> <li class="interlanguage-link interwiki-en mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://en.wikipedia.org/wiki/Surface_(topology)" title="Surface (topology) — Engleski" lang="en" hreflang="en" data-title="Surface (topology)" data-language-autonym="English" data-language-local-name="Engleski" class="interlanguage-link-target"><span>English</span></a></li> <li class="interlanguage-link interwiki-eo mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://eo.wikipedia.org/wiki/Surfaco" title="Surfaco — Esperanto" lang="eo" hreflang="eo" data-title="Surfaco" data-language-autonym="Esperanto" data-language-local-name="Esperanto" class="interlanguage-link-target"><span>Esperanto</span></a></li> <li class="interlanguage-link interwiki-es mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://es.wikipedia.org/wiki/Superficie_(topolog%25C3%25ADa)" title="Superficie (topología) — Španski" lang="es" hreflang="es" data-title="Superficie (topología)" data-language-autonym="Español" data-language-local-name="Španski" class="interlanguage-link-target"><span>Español</span></a></li> <li class="interlanguage-link interwiki-et mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://et.wikipedia.org/wiki/Pind" title="Pind — Estonski" lang="et" hreflang="et" data-title="Pind" data-language-autonym="Eesti" data-language-local-name="Estonski" class="interlanguage-link-target"><span>Eesti</span></a></li> <li class="interlanguage-link interwiki-eu mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://eu.wikipedia.org/wiki/Gainazal" title="Gainazal — Baskijski" lang="eu" hreflang="eu" data-title="Gainazal" data-language-autonym="Euskara" data-language-local-name="Baskijski" class="interlanguage-link-target"><span>Euskara</span></a></li> <li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://fa.wikipedia.org/wiki/%25D8%25B1%25D9%2588%25DB%258C%25D9%2587_(%25D8%25AA%25D9%2588%25D9%25BE%25D9%2588%25D9%2584%25D9%2588%25DA%2598%25DB%258C)" title="رویه (توپولوژی) — Persijski" lang="fa" hreflang="fa" data-title="رویه (توپولوژی)" data-language-autonym="فارسی" data-language-local-name="Persijski" class="interlanguage-link-target"><span>فارسی</span></a></li> <li class="interlanguage-link interwiki-fi mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://fi.wikipedia.org/wiki/Pinta_(geometria)" title="Pinta (geometria) — Finski" lang="fi" hreflang="fi" data-title="Pinta (geometria)" data-language-autonym="Suomi" data-language-local-name="Finski" class="interlanguage-link-target"><span>Suomi</span></a></li> <li class="interlanguage-link interwiki-fr badge-Q70893996 mw-list-item" title=""><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://fr.wikipedia.org/wiki/Surface_(g%25C3%25A9om%25C3%25A9trie)" title="Surface (géométrie) — Francuski" lang="fr" hreflang="fr" data-title="Surface (géométrie)" data-language-autonym="Français" data-language-local-name="Francuski" class="interlanguage-link-target"><span>Français</span></a></li> <li class="interlanguage-link interwiki-fur mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://fur.wikipedia.org/wiki/Superficie" title="Superficie — Friulijski" lang="fur" hreflang="fur" data-title="Superficie" data-language-autonym="Furlan" data-language-local-name="Friulijski" class="interlanguage-link-target"><span>Furlan</span></a></li> <li class="interlanguage-link interwiki-ga mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://ga.wikipedia.org/wiki/Dromchla_(toipeola%25C3%25ADocht)" title="Dromchla (toipeolaíocht) — Irski" lang="ga" hreflang="ga" data-title="Dromchla (toipeolaíocht)" data-language-autonym="Gaeilge" data-language-local-name="Irski" class="interlanguage-link-target"><span>Gaeilge</span></a></li> <li class="interlanguage-link interwiki-gl mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://gl.wikipedia.org/wiki/Superficie" title="Superficie — Galski" lang="gl" hreflang="gl" data-title="Superficie" data-language-autonym="Galego" data-language-local-name="Galski" class="interlanguage-link-target"><span>Galego</span></a></li> <li class="interlanguage-link interwiki-he mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://he.wikipedia.org/wiki/%25D7%259E%25D7%25A9%25D7%2598%25D7%2597_(%25D7%2598%25D7%2595%25D7%25A4%25D7%2595%25D7%259C%25D7%2595%25D7%2592%25D7%2599%25D7%2594)" title="משטח (טופולוגיה) — Hebrejski" lang="he" hreflang="he" data-title="משטח (טופולוגיה)" data-language-autonym="עברית" data-language-local-name="Hebrejski" class="interlanguage-link-target"><span>עברית</span></a></li> <li class="interlanguage-link interwiki-hi mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://hi.wikipedia.org/wiki/%25E0%25A4%25AA%25E0%25A5%2583%25E0%25A4%25B7%25E0%25A5%258D%25E0%25A4%259F" title="पृष्ट — Hindi" lang="hi" hreflang="hi" data-title="पृष्ट" data-language-autonym="हिन्दी" data-language-local-name="Hindi" class="interlanguage-link-target"><span>हिन्दी</span></a></li> <li class="interlanguage-link interwiki-hr mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://hr.wikipedia.org/wiki/Ploha_(geometrija)" title="Ploha (geometrija) — Hrvatski" lang="hr" hreflang="hr" data-title="Ploha (geometrija)" data-language-autonym="Hrvatski" data-language-local-name="Hrvatski" class="interlanguage-link-target"><span>Hrvatski</span></a></li> <li class="interlanguage-link interwiki-hu mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://hu.wikipedia.org/wiki/Felsz%25C3%25ADn" title="Felszín — Mađarski" lang="hu" hreflang="hu" data-title="Felszín" data-language-autonym="Magyar" data-language-local-name="Mađarski" class="interlanguage-link-target"><span>Magyar</span></a></li> <li class="interlanguage-link interwiki-hy mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://hy.wikipedia.org/wiki/%25D5%2584%25D5%25A1%25D5%25AF%25D5%25A5%25D6%2580%25D6%2587%25D5%25B8%25D6%2582%25D5%25B5%25D5%25A9" title="Մակերևույթ — Jermenski" lang="hy" hreflang="hy" data-title="Մակերևույթ" data-language-autonym="Հայերեն" data-language-local-name="Jermenski" class="interlanguage-link-target"><span>Հայերեն</span></a></li> <li class="interlanguage-link interwiki-ia mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://ia.wikipedia.org/wiki/Superficie" title="Superficie — Interlingva" lang="ia" hreflang="ia" data-title="Superficie" data-language-autonym="Interlingua" data-language-local-name="Interlingva" class="interlanguage-link-target"><span>Interlingua</span></a></li> <li class="interlanguage-link interwiki-id mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://id.wikipedia.org/wiki/Permukaan_(topologi)" title="Permukaan (topologi) — Indonezijski" lang="id" hreflang="id" data-title="Permukaan (topologi)" data-language-autonym="Bahasa Indonesia" data-language-local-name="Indonezijski" class="interlanguage-link-target"><span>Bahasa Indonesia</span></a></li> <li class="interlanguage-link interwiki-inh mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://inh.wikipedia.org/wiki/%25D0%25A2%25D3%2580%25D0%25B5%25D1%2585%25D0%25B5" title="ТӀехе — Ingušetski" lang="inh" hreflang="inh" data-title="ТӀехе" data-language-autonym="ГӀалгӀай" data-language-local-name="Ingušetski" class="interlanguage-link-target"><span>ГӀалгӀай</span></a></li> <li class="interlanguage-link interwiki-io mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://io.wikipedia.org/wiki/Surfaco" title="Surfaco — Ido" lang="io" hreflang="io" data-title="Surfaco" data-language-autonym="Ido" data-language-local-name="Ido" class="interlanguage-link-target"><span>Ido</span></a></li> <li class="interlanguage-link interwiki-is mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://is.wikipedia.org/wiki/Yfirbor%25C3%25B0" title="Yfirborð — Islandski" lang="is" hreflang="is" data-title="Yfirborð" data-language-autonym="Íslenska" data-language-local-name="Islandski" class="interlanguage-link-target"><span>Íslenska</span></a></li> <li class="interlanguage-link interwiki-it mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://it.wikipedia.org/wiki/Superficie" title="Superficie — Italijanski" lang="it" hreflang="it" data-title="Superficie" data-language-autonym="Italiano" data-language-local-name="Italijanski" class="interlanguage-link-target"><span>Italiano</span></a></li> <li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://ja.wikipedia.org/wiki/%25E6%259B%25B2%25E9%259D%25A2" title="曲面 — Japanski" lang="ja" hreflang="ja" data-title="曲面" data-language-autonym="日本語" data-language-local-name="Japanski" class="interlanguage-link-target"><span>日本語</span></a></li> <li class="interlanguage-link interwiki-kk mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://kk.wikipedia.org/wiki/%25D0%2591%25D0%25B5%25D1%2582_(%25D0%25B3%25D0%25B5%25D0%25BE%25D0%25BC%25D0%25B5%25D1%2582%25D1%2580%25D0%25B8%25D1%258F)" title="Бет (геометрия) — Kozački" lang="kk" hreflang="kk" data-title="Бет (геометрия)" data-language-autonym="Қазақша" data-language-local-name="Kozački" class="interlanguage-link-target"><span>Қазақша</span></a></li> <li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://ko.wikipedia.org/wiki/%25EA%25B3%25A1%25EB%25A9%25B4" title="곡면 — Korejski" lang="ko" hreflang="ko" data-title="곡면" data-language-autonym="한국어" data-language-local-name="Korejski" class="interlanguage-link-target"><span>한국어</span></a></li> <li class="interlanguage-link interwiki-ky mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://ky.wikipedia.org/wiki/%25D0%2591%25D0%25B5%25D1%2582_(%25D0%2593%25D0%25B5%25D0%25BE%25D0%25BC%25D0%25B5%25D1%2582%25D1%2580%25D0%25B8%25D1%258F)" title="Бет (Геометрия) — Kirgiski" lang="ky" hreflang="ky" data-title="Бет (Геометрия)" data-language-autonym="Кыргызча" data-language-local-name="Kirgiski" class="interlanguage-link-target"><span>Кыргызча</span></a></li> <li class="interlanguage-link interwiki-lij mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://lij.wikipedia.org/wiki/Superfi%25C3%25A7ie_(matematica)" title="Superfiçie (matematica) — ligurski" lang="lij" hreflang="lij" data-title="Superfiçie (matematica)" data-language-autonym="Ligure" data-language-local-name="ligurski" class="interlanguage-link-target"><span>Ligure</span></a></li> <li class="interlanguage-link interwiki-lt mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://lt.wikipedia.org/wiki/Pavir%25C5%25A1ius" title="Paviršius — Litvanski" lang="lt" hreflang="lt" data-title="Paviršius" data-language-autonym="Lietuvių" data-language-local-name="Litvanski" class="interlanguage-link-target"><span>Lietuvių</span></a></li> <li class="interlanguage-link interwiki-lv mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://lv.wikipedia.org/wiki/Virsma" title="Virsma — Letonski" lang="lv" hreflang="lv" data-title="Virsma" data-language-autonym="Latviešu" data-language-local-name="Letonski" class="interlanguage-link-target"><span>Latviešu</span></a></li> <li class="interlanguage-link interwiki-mr mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://mr.wikipedia.org/wiki/%25E0%25A4%2586%25E0%25A4%25A1" title="आड — Marati" lang="mr" hreflang="mr" data-title="आड" data-language-autonym="मराठी" data-language-local-name="Marati" class="interlanguage-link-target"><span>मराठी</span></a></li> <li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://nl.wikipedia.org/wiki/Oppervlak_(topologie)" title="Oppervlak (topologie) — Holandski" lang="nl" hreflang="nl" data-title="Oppervlak (topologie)" data-language-autonym="Nederlands" data-language-local-name="Holandski" class="interlanguage-link-target"><span>Nederlands</span></a></li> <li class="interlanguage-link interwiki-nn mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://nn.wikipedia.org/wiki/Flate" title="Flate — Norveški njorsk" lang="nn" hreflang="nn" data-title="Flate" data-language-autonym="Norsk nynorsk" data-language-local-name="Norveški njorsk" class="interlanguage-link-target"><span>Norsk nynorsk</span></a></li> <li class="interlanguage-link interwiki-no mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://no.wikipedia.org/wiki/Flate" title="Flate — Norveški bokmål" lang="nb" hreflang="nb" data-title="Flate" data-language-autonym="Norsk bokmål" data-language-local-name="Norveški bokmål" class="interlanguage-link-target"><span>Norsk bokmål</span></a></li> <li class="interlanguage-link interwiki-oc mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://oc.wikipedia.org/wiki/Superf%25C3%25ADcia_(matematicas)" title="Superfícia (matematicas) — Provansalski" lang="oc" hreflang="oc" data-title="Superfícia (matematicas)" data-language-autonym="Occitan" data-language-local-name="Provansalski" class="interlanguage-link-target"><span>Occitan</span></a></li> <li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://pl.wikipedia.org/wiki/Powierzchnia" title="Powierzchnia — Poljski" lang="pl" hreflang="pl" data-title="Powierzchnia" data-language-autonym="Polski" data-language-local-name="Poljski" class="interlanguage-link-target"><span>Polski</span></a></li> <li class="interlanguage-link interwiki-pms mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://pms.wikipedia.org/wiki/Surfassa" title="Surfassa — Piedmontese" lang="pms" hreflang="pms" data-title="Surfassa" data-language-autonym="Piemontèis" data-language-local-name="Piedmontese" class="interlanguage-link-target"><span>Piemontèis</span></a></li> <li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://pt.wikipedia.org/wiki/Superf%25C3%25ADcie" title="Superfície — Portugalski" lang="pt" hreflang="pt" data-title="Superfície" data-language-autonym="Português" data-language-local-name="Portugalski" class="interlanguage-link-target"><span>Português</span></a></li> <li class="interlanguage-link interwiki-ro mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://ro.wikipedia.org/wiki/Suprafa%25C8%259B%25C4%2583" title="Suprafață — Rumunski" lang="ro" hreflang="ro" data-title="Suprafață" data-language-autonym="Română" data-language-local-name="Rumunski" class="interlanguage-link-target"><span>Română</span></a></li> <li class="interlanguage-link interwiki-rsk mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://rsk.wikipedia.org/wiki/%25D0%259F%25D0%25BE%25D0%25B2%25D0%25B5%25D1%2580%25D1%2585%25D0%25BD%25D0%25BE%25D1%2581%25D1%2586" title="Поверхносц — Pannonian Rusyn" lang="rsk" hreflang="rsk" data-title="Поверхносц" data-language-autonym="Руски" data-language-local-name="Pannonian Rusyn" class="interlanguage-link-target"><span>Руски</span></a></li> <li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://ru.wikipedia.org/wiki/%25D0%259F%25D0%25BE%25D0%25B2%25D0%25B5%25D1%2580%25D1%2585%25D0%25BD%25D0%25BE%25D1%2581%25D1%2582%25D1%258C" title="Поверхность — Ruski" lang="ru" hreflang="ru" data-title="Поверхность" data-language-autonym="Русский" data-language-local-name="Ruski" class="interlanguage-link-target"><span>Русский</span></a></li> <li class="interlanguage-link interwiki-simple mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://simple.wikipedia.org/wiki/Surface" title="Surface — Simple English" lang="en-simple" hreflang="en-simple" data-title="Surface" data-language-autonym="Simple English" data-language-local-name="Simple English" class="interlanguage-link-target"><span>Simple English</span></a></li> <li class="interlanguage-link interwiki-sk mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://sk.wikipedia.org/wiki/Povrch" title="Povrch — Slovački" lang="sk" hreflang="sk" data-title="Povrch" data-language-autonym="Slovenčina" data-language-local-name="Slovački" class="interlanguage-link-target"><span>Slovenčina</span></a></li> <li class="interlanguage-link interwiki-sl mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://sl.wikipedia.org/wiki/Ploskev" title="Ploskev — Slovenački" lang="sl" hreflang="sl" data-title="Ploskev" data-language-autonym="Slovenščina" data-language-local-name="Slovenački" class="interlanguage-link-target"><span>Slovenščina</span></a></li> <li class="interlanguage-link interwiki-sn mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://sn.wikipedia.org/wiki/Chiso_(Chiumbwa)" title="Chiso (Chiumbwa) — Šona" lang="sn" hreflang="sn" data-title="Chiso (Chiumbwa)" data-language-autonym="ChiShona" data-language-local-name="Šona" class="interlanguage-link-target"><span>ChiShona</span></a></li> <li class="interlanguage-link interwiki-so mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://so.wikipedia.org/wiki/Oogo_(dhul)" title="Oogo (dhul) — Somalski" lang="so" hreflang="so" data-title="Oogo (dhul)" data-language-autonym="Soomaaliga" data-language-local-name="Somalski" class="interlanguage-link-target"><span>Soomaaliga</span></a></li> <li class="interlanguage-link interwiki-sr mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://sr.wikipedia.org/wiki/%25D0%259F%25D0%25BE%25D0%25B2%25D1%2580%25D1%2588" title="Површ — Srpski" lang="sr" hreflang="sr" data-title="Површ" data-language-autonym="Српски / srpski" data-language-local-name="Srpski" class="interlanguage-link-target"><span>Српски / srpski</span></a></li> <li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://sv.wikipedia.org/wiki/Yta" title="Yta — Švedski" lang="sv" hreflang="sv" data-title="Yta" data-language-autonym="Svenska" data-language-local-name="Švedski" class="interlanguage-link-target"><span>Svenska</span></a></li> <li class="interlanguage-link interwiki-te mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://te.wikipedia.org/wiki/%25E0%25B0%2589%25E0%25B0%25AA%25E0%25B0%25B0%25E0%25B0%25BF%25E0%25B0%25A4%25E0%25B0%25B2%25E0%25B0%2582" title="ఉపరితలం — Telugu" lang="te" hreflang="te" data-title="ఉపరితలం" data-language-autonym="తెలుగు" data-language-local-name="Telugu" class="interlanguage-link-target"><span>తెలుగు</span></a></li> <li class="interlanguage-link interwiki-tr mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://tr.wikipedia.org/wiki/Y%25C3%25BCzey" title="Yüzey — Turski" lang="tr" hreflang="tr" data-title="Yüzey" data-language-autonym="Türkçe" data-language-local-name="Turski" class="interlanguage-link-target"><span>Türkçe</span></a></li> <li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://uk.wikipedia.org/wiki/%25D0%259F%25D0%25BE%25D0%25B2%25D0%25B5%25D1%2580%25D1%2585%25D0%25BD%25D1%258F" title="Поверхня — Ukrajinski" lang="uk" hreflang="uk" data-title="Поверхня" data-language-autonym="Українська" data-language-local-name="Ukrajinski" class="interlanguage-link-target"><span>Українська</span></a></li> <li class="interlanguage-link interwiki-ur mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://ur.wikipedia.org/wiki/%25D8%25B3%25D8%25B7%25D8%25AD" title="سطح — Urdu" lang="ur" hreflang="ur" data-title="سطح" data-language-autonym="اردو" data-language-local-name="Urdu" class="interlanguage-link-target"><span>اردو</span></a></li> <li class="interlanguage-link interwiki-uz mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://uz.wikipedia.org/wiki/Sirt" title="Sirt — Uzbečki" lang="uz" hreflang="uz" data-title="Sirt" data-language-autonym="Oʻzbekcha / ўзбекча" data-language-local-name="Uzbečki" class="interlanguage-link-target"><span>Oʻzbekcha / ўзбекча</span></a></li> <li class="interlanguage-link interwiki-vec mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://vec.wikipedia.org/wiki/Superficie" title="Superficie — venecijanski" lang="vec" hreflang="vec" data-title="Superficie" data-language-autonym="Vèneto" data-language-local-name="venecijanski" class="interlanguage-link-target"><span>Vèneto</span></a></li> <li class="interlanguage-link interwiki-vi mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://vi.wikipedia.org/wiki/M%25E1%25BA%25B7t_(t%25C3%25B4_p%25C3%25B4)" title="Mặt (tô pô) — Vijetnamski" lang="vi" hreflang="vi" data-title="Mặt (tô pô)" data-language-autonym="Tiếng Việt" data-language-local-name="Vijetnamski" class="interlanguage-link-target"><span>Tiếng Việt</span></a></li> <li class="interlanguage-link interwiki-wuu mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://wuu.wikipedia.org/wiki/%25E6%259B%25B2%25E9%259D%25A2" title="曲面 — Wu kineski" lang="wuu" hreflang="wuu" data-title="曲面" data-language-autonym="吴语" data-language-local-name="Wu kineski" class="interlanguage-link-target"><span>吴语</span></a></li> <li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://zh.wikipedia.org/wiki/%25E6%259B%25B2%25E9%259D%25A2" title="曲面 — Kineski" lang="zh" hreflang="zh" data-title="曲面" data-language-autonym="中文" data-language-local-name="Kineski" class="interlanguage-link-target"><span>中文</span></a></li> <li class="interlanguage-link interwiki-zh-yue mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://zh-yue.wikipedia.org/wiki/%25E6%259B%25B2%25E9%259D%25A2" title="曲面 — kantonski" lang="yue" hreflang="yue" data-title="曲面" data-language-autonym="粵語" data-language-local-name="kantonski" class="interlanguage-link-target"><span>粵語</span></a></li> </ul> </section> </div> <div class="minerva-footer-logo"> <img src="/static/images/mobile/copyright/wikipedia-wordmark-sh-latn.svg" alt="Wikipedija" width="120" height="32" style="width: 7.5em; height: 2em;"> </div> <ul id="footer-info" class="footer-info hlist hlist-separated"> <li id="footer-info-lastmod">Ova stranica je posljednji put izmijenjena 21. decembra 2023. u 22:01.</li> <li id="footer-info-copyright">Sadržaj je dostupan pod <a class="external" rel="nofollow" href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://creativecommons.org/licenses/by-sa/4.0/deed.sh">CC BY-SA 4.0</a> osim ako je drugačije navedeno.</li> </ul> <ul id="footer-places" class="footer-places hlist hlist-separated"> <li id="footer-places-privacy"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Pravila o privatnosti</a></li> <li id="footer-places-about"><a href="https://sh-m-wikipedia-org.translate.goog/wiki/Wikipedija:O_projektu?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB">O projektu</a></li> <li id="footer-places-disclaimers"><a href="https://sh-m-wikipedia-org.translate.goog/wiki/Wikipedija:Op%C4%87e_odricanje_odgovornosti?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB">Odricanje odgovornosti</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Kodeks ponašanja</a></li> <li id="footer-places-developers"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://developer.wikimedia.org">Programeri</a></li> <li id="footer-places-statslink"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://stats.wikimedia.org/%23/sh.wikipedia.org">Statistika</a></li> <li id="footer-places-cookiestatement"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Izjava o kolačićima</a></li> <li id="footer-places-terms-use"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://foundation.m.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use">Uslovi upotrebe</a></li> <li id="footer-places-desktop-toggle"><a id="mw-mf-display-toggle" href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://sh.wikipedia.org/w/index.php?title%3DPovr%25C5%25A1%26mobileaction%3Dtoggle_view_desktop" data-event-name="switch_to_desktop">Računarski prikaz</a></li> </ul> </div> </footer> </div> </div> <div class="mw-notification-area" data-mw="interface"></div><!-- v:8.3.1 --> <script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-694cf4987f-5mrbp","wgBackendResponseTime":369,"wgPageParseReport":{"limitreport":{"cputime":"0.263","walltime":"0.449","ppvisitednodes":{"value":1477,"limit":1000000},"postexpandincludesize":{"value":731,"limit":2097152},"templateargumentsize":{"value":16,"limit":2097152},"expansiondepth":{"value":3,"limit":100},"expensivefunctioncount":{"value":0,"limit":500},"unstrip-depth":{"value":0,"limit":20},"unstrip-size":{"value":14005,"limit":5000000},"entityaccesscount":{"value":0,"limit":400},"timingprofile":["100.00% 31.553 1 -total"," 90.32% 28.500 1 Šablon:Webarchive"," 6.94% 2.191 1 Šablon:Commonscat"]},"scribunto":{"limitreport-timeusage":{"value":"0.003","limit":"10.000"},"limitreport-memusage":{"value":659400,"limit":52428800}},"cachereport":{"origin":"mw-web.eqiad.main-7769799cfb-jj657","timestamp":"20241113140046","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Povr\u0161","url":"https:\/\/sh.wikipedia.org\/wiki\/Povr%C5%A1","sameAs":"http:\/\/www.wikidata.org\/entity\/Q484298","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q484298","author":{"@type":"Organization","name":"Doprinositelji Wikimedijinim projektima"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2016-03-21T07:11:50Z","dateModified":"2023-12-21T21:01:35Z"}</script> <script>(window.NORLQ=window.NORLQ||[]).push(function(){var ns,i,p,img;ns=document.getElementsByTagName('noscript');for(i=0;i<ns.length;i++){p=ns[i].nextSibling;if(p&&p.className&&p.className.indexOf('lazy-image-placeholder')>-1){img=document.createElement('img');img.setAttribute('src',p.getAttribute('data-src'));img.setAttribute('width',p.getAttribute('data-width'));img.setAttribute('height',p.getAttribute('data-height'));img.setAttribute('alt',p.getAttribute('data-alt'));p.parentNode.replaceChild(img,p);}}});</script> <script>function gtElInit() {var lib = new google.translate.TranslateService();lib.translatePage('bs', 'en', function () {});}</script> <script src="https://translate.google.com/translate_a/element.js?cb=gtElInit&hl=en-GB&client=wt" type="text/javascript"></script> </body> </html>