CINXE.COM

Search results for: laminar flow

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: laminar flow</title> <meta name="description" content="Search results for: laminar flow"> <meta name="keywords" content="laminar flow"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="laminar flow" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="laminar flow"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 4801</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: laminar flow</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4801</span> Numerical Study of Pressure Losses of Turbulence Drilling Fluid Flow in the Oil Wellbore</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alireza%20Mehdizadeh">Alireza Mehdizadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Ghanbarali%20Sheikhzadeh"> Ghanbarali Sheikhzadeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper the pressure loss of drilling fluid flow in the annulus is investigated. On this purpose the domains between two concentric and two eccentric cylinders are considered as computational domains. In this research foam is used as drilling fluid. Firstly simulation results for laminar flow and non Newtonian fluid and different density like 100, 200, 300 kg/m3 and different inner cylinder rotational velocity like 100, 200, 300 RPM is presented. These results are compared and matched with references results. The power law and Herschel Bulkly methods are used for non Newtonian fluid modeling. After that computations are repeated with turbulence flow considering. K- Model is used for turbulence modeling. Results show that in laminar flow Herschel bulkly model has best result in comparison with power law model. And pressure loss in turbulence flow is higher than laminar flow. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=simulation" title="simulation">simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=concentric%20cylinders" title=" concentric cylinders"> concentric cylinders</a>, <a href="https://publications.waset.org/abstracts/search?q=drilling" title=" drilling"> drilling</a>, <a href="https://publications.waset.org/abstracts/search?q=non%20Newtonian" title=" non Newtonian"> non Newtonian</a> </p> <a href="https://publications.waset.org/abstracts/16391/numerical-study-of-pressure-losses-of-turbulence-drilling-fluid-flow-in-the-oil-wellbore" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16391.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">566</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4800</span> PIV Measurements of the Instantaneous Velocities for Single and Two-Phase Flows in an Annular Duct</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marlon%20M.%20Hern%C3%A1ndez%20Cely">Marlon M. Hernández Cely</a>, <a href="https://publications.waset.org/abstracts/search?q=Victor%20E.%20C.%20Baptistella"> Victor E. C. Baptistella</a>, <a href="https://publications.waset.org/abstracts/search?q=Oscar%20M.%20H.%20Rodr%C3%ADguez"> Oscar M. H. Rodríguez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Particle Image Velocimetry (PIV) is a well-established technique in the field of fluid flow measurement and provides instantaneous velocity fields over global domains. It has been applied to external and internal flows and in single and two-phase flows. Regarding internal flow, works about the application of PIV in annular ducts are scanty. An experimental work is presented, where flow of water is studied in an annular duct of inner diameter of 60 mm and outer diameter of 155 mm and 10.5-m length, with the goal of obtaining detailed velocity measurements. Depending on the flow rates of water, it can be laminar, transitional or turbulent. In this study, the water flow rate was kept at three different values for the annular duct, allowing the analysis of one laminar and two turbulent flows. Velocity fields and statistic quantities of the turbulent flow were calculated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=PIV" title="PIV">PIV</a>, <a href="https://publications.waset.org/abstracts/search?q=annular%20duct" title=" annular duct"> annular duct</a>, <a href="https://publications.waset.org/abstracts/search?q=laminar" title=" laminar"> laminar</a>, <a href="https://publications.waset.org/abstracts/search?q=turbulence" title=" turbulence"> turbulence</a>, <a href="https://publications.waset.org/abstracts/search?q=velocity%20profile" title=" velocity profile"> velocity profile</a> </p> <a href="https://publications.waset.org/abstracts/61021/piv-measurements-of-the-instantaneous-velocities-for-single-and-two-phase-flows-in-an-annular-duct" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61021.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">351</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4799</span> Numerical Study of Developing Laminar Forced Convection Flow of Water/CuO Nanofluid in a Circular Tube with a 180 Degrees Curve</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hamed%20K.%20Arzani">Hamed K. Arzani</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamid%20K.%20Arzani"> Hamid K. Arzani</a>, <a href="https://publications.waset.org/abstracts/search?q=S.N.%20Kazi"> S.N. Kazi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Badarudin"> A. Badarudin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Numerical investigation into convective heat transfer of CuO-Water based nanofluid in a pipe with return bend under laminar flow conditions has been done. The impacts of Reynolds number and the volume concentration of nanoparticles on the flow and the convective heat transfer behaviour are investigated. The results indicate that the increase in Reynolds number leads to the enhancement of average Nusselt number, and the increase in specific heat in the presence of the nanofluid results in improvement in heat transfer. Also, the presence of the secondary flow in the curve plays a key role in increasing the average Nusselt number and it appears higher than the inlet and outlet tubes. However, the pressure drop curve increases significantly in the tubes with the increase in nanoparticles concentration. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=laminar%20forced%20convection" title="laminar forced convection">laminar forced convection</a>, <a href="https://publications.waset.org/abstracts/search?q=curve%20pipe" title=" curve pipe"> curve pipe</a>, <a href="https://publications.waset.org/abstracts/search?q=return%20bend" title=" return bend"> return bend</a>, <a href="https://publications.waset.org/abstracts/search?q=nanufluid" title=" nanufluid"> nanufluid</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD" title=" CFD"> CFD</a> </p> <a href="https://publications.waset.org/abstracts/51028/numerical-study-of-developing-laminar-forced-convection-flow-of-watercuo-nanofluid-in-a-circular-tube-with-a-180-degrees-curve" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51028.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">297</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4798</span> Numerical Analysis of the Flow Characteristics Around a Deformable Vortex Generator</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aimad%20Koulali">Aimad Koulali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Flow structure evolution around a single pair of Delta vortex generators (VGs) is studied numerically. For laminar, transient, and turbulent flow regimes, numerical simulations have been performed in a duct with a pair of Delta vortex generators. The finiteelementmethodwasused to simulate the flow. To formulate the fluid structure interaction problem, the ALE formulation was used. The aim of this study is to provide a detailed insight into the generation and dissipation of longitudinal vortices over a wide range of flow regimes, including the laminar-turbulent transition. A wide range of parameters has been exploited to describe the inducedphenomenawithin the flow. Weexaminedvariousparametersdepending on the VG geometry, the flow regime, and the channel geometry. A detailed analysis of the turbulence and wall shear stress properties has been evaluated. The results affirm that there are still optimal values to obtain better performing vortices in order to improve the exchange performance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=finte%20element%20method" title="finte element method">finte element method</a>, <a href="https://publications.waset.org/abstracts/search?q=deformable%20vortex%20generator" title=" deformable vortex generator"> deformable vortex generator</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20analysis" title=" numerical analysis"> numerical analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=fluid%20structure%20interaction" title=" fluid structure interaction"> fluid structure interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=ALE%20formlation" title=" ALE formlation"> ALE formlation</a>, <a href="https://publications.waset.org/abstracts/search?q=turbulent%20flow" title=" turbulent flow"> turbulent flow</a> </p> <a href="https://publications.waset.org/abstracts/155015/numerical-analysis-of-the-flow-characteristics-around-a-deformable-vortex-generator" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/155015.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">99</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4797</span> The Incompressible Preference of Turbulence</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Samuel%20David%20Dunstan">Samuel David Dunstan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An elementary observation of a laminar cylindrical Poiseulle-Couette flow profile reveals no distinction in the parabolic streamwise profile from one without a cross-stream flow in whatever reference frame the observation is made. This is because the laminar flow is in solid-body rotation, and there is no intrinsic fluid rotation. Hence the main streamwise Poiseuille flow is unaffected. However, in turbulent (unsteady) cylindrical Poiseuille-Couette flow, the rotational reference frame must be considered, and any observation from an external inertial reference frame can give outright incorrect results. A common misconception in the study of fluid mechanics is the position of the observer does not matter. In this DNS (direct numerical simulation) study, firstly, turbulent flow in a pipe with axial rotation is established. Then in turbulent flow in the concentric pipe, with inner wall rotation, it is shown how the wall streak direction is oriented by the rotational reference frame. The Coriolis force here is not so fictitious after all! <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=concentric%20pipe" title="concentric pipe">concentric pipe</a>, <a href="https://publications.waset.org/abstracts/search?q=rotational%20and%20inertial%20frames" title=" rotational and inertial frames"> rotational and inertial frames</a>, <a href="https://publications.waset.org/abstracts/search?q=frame%20invariance" title=" frame invariance"> frame invariance</a>, <a href="https://publications.waset.org/abstracts/search?q=wall%20streaks" title=" wall streaks"> wall streaks</a>, <a href="https://publications.waset.org/abstracts/search?q=flow%20orientation" title=" flow orientation"> flow orientation</a> </p> <a href="https://publications.waset.org/abstracts/161266/the-incompressible-preference-of-turbulence" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/161266.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">88</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4796</span> Numerical Study of Heat Transfer and Laminar Flow over a Backward Facing Step with and without Obstacle</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hussein%20Togun">Hussein Togun</a>, <a href="https://publications.waset.org/abstracts/search?q=Tuqa%20Abdulrazzaq"> Tuqa Abdulrazzaq</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20N.%20Kazi"> S. N. Kazi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Badarudin"> A. Badarudin</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20K.%20A.%20Ariffin"> M. K. A. Ariffin</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20N.%20M.%20Zubir"> M. N. M. Zubir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Heat transfer and laminar fluid flow over backward facing step with and without obstacle numerically studied in this paper. The finite volume method adopted to solve continuity, momentum and energy equations in two dimensions. Backward facing step without obstacle and with different dimension of obstacle were presented. The step height and expansion ratio of channel were 4.8mm and 2 respectively, the range of Reynolds number varied from 75 to 225, constant heat flux subjected on downstream of wall was 2000W/m2, and length of obstacle was 1.5, 3, and 4.5mm with width 1.5mm. The separation length noticed increase with increase Reynolds number and height of obstacle. The result shows increase of heat transfer coefficient for backward facing step with obstacle in compared to those without obstacle. The maximum enhancement of heat transfer observed at 4.5mm of height obstacle due to increase recirculation flow after the obstacle in addition that at backward. Streamline of velocity showing the increase of recirculation region with used obstacle in compared without obstacle and highest recirculation region observed at obstacle height 4.5mm. The amount of enhancement heat transfer was varied between 3-5% compared to backward without obstacle. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=separation%20flow" title="separation flow">separation flow</a>, <a href="https://publications.waset.org/abstracts/search?q=backward%20facing%20step" title=" backward facing step"> backward facing step</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer" title=" heat transfer"> heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=laminar%20flow" title=" laminar flow"> laminar flow</a> </p> <a href="https://publications.waset.org/abstracts/5254/numerical-study-of-heat-transfer-and-laminar-flow-over-a-backward-facing-step-with-and-without-obstacle" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5254.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">469</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4795</span> Numerical Study of Laminar Natural Flow Transitions in Rectangular Cavity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sabrina%20Nouri">Sabrina Nouri</a>, <a href="https://publications.waset.org/abstracts/search?q=Abderahmane%20Ghezal"> Abderahmane Ghezal</a>, <a href="https://publications.waset.org/abstracts/search?q=Said%20Abboudi"> Said Abboudi</a>, <a href="https://publications.waset.org/abstracts/search?q=Pierre%20Spiteri"> Pierre Spiteri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper deals with the numerical study of heat and mass transfer of laminar flow transition at low Prandtl numbers. The model includes the two-directional momentum, the energy and mass transfer equations. These equations are discretized by the finite volume method and solved by a self-made simpler like Fortran code. The effect of governing parameters, namely the Lewis and Prandtl numbers, on the transition of the flow and solute distribution is studied for positive and negative thermal and solutal buoyancy forces ratio. Nusselt and Sherwood numbers are derived for of Prandtl [10⁻²-10¹] and Lewis numbers [1-10⁴]. The results show unicell and multi-cell flow. Solute and flow boundary layers appear for low Prandtl number. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=natural%20convection" title="natural convection">natural convection</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20Prandtl%20number" title=" low Prandtl number"> low Prandtl number</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20and%20mass%20transfer" title=" heat and mass transfer"> heat and mass transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20volume%20method" title=" finite volume method"> finite volume method</a> </p> <a href="https://publications.waset.org/abstracts/88099/numerical-study-of-laminar-natural-flow-transitions-in-rectangular-cavity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/88099.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">198</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4794</span> Unconfined Laminar Nanofluid Flow and Heat Transfer around a Square Cylinder with an Angle of Incidence </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rafik%20Bouakkaz">Rafik Bouakkaz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A finite-volume method simulation is used to investigate two dimensional unsteady flow of nanofluids and heat transfer characteristics past a square cylinder inclined with respect to the main flow in the laminar regime. The computations are carried out of nanoparticle volume fractions varying from 0 ≤ ∅ ≤ 5% for an inclination angle in the range 0° ≤ δ ≤ 45° at a Reynolds number of 100. The variation of stream line and isotherm patterns are presented for the above range of conditions. Also, it is noticed that the addition of nanoparticles enhances the heat transfer. Hence, the local Nusselt number is found to increase with increasing value of the concentration of nanoparticles for the fixed value of the inclination angle. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=copper%20nanoparticles" title="copper nanoparticles">copper nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer" title=" heat transfer"> heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=square%20cylinder" title=" square cylinder"> square cylinder</a>, <a href="https://publications.waset.org/abstracts/search?q=inclination%20angle" title=" inclination angle"> inclination angle</a> </p> <a href="https://publications.waset.org/abstracts/101220/unconfined-laminar-nanofluid-flow-and-heat-transfer-around-a-square-cylinder-with-an-angle-of-incidence" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/101220.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">190</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4793</span> Analyzing the Effect of Design of Pipe in Shell and Tube Type Heat Exchanger by Measuring Its Heat Transfer Rate by Computation Fluid Dynamics and Thermal Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dhawal%20Ladani">Dhawal Ladani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Shell and tube type heat exchangers are predominantly used in heat exchange between two fluids and other applications. This paper projects the optimal design of the pipe used in the heat exchanger in such a way to minimize the vibration occurring in the pipe. Paper also consists of the comparison of the different design of the pipe to get the maximize the heat transfer rate by converting laminar flow into the turbulent flow. By the updated design the vibration in the pipe due to the flow is also decreased. Computational Fluid Dynamics and Thermal Heat Transfer analysis are done to justifying the result. Currently, the straight pipe is used in the shell and tube type of heat exchanger where as per the paper the pipe consists of the curvature along with the pipe. Hence, the heat transfer area is also increased and result in the increasing in heat transfer rate. Curvature type design is useful to create turbulence and minimizing the vibration, also. The result will give the output comparison of the effect of laminar flow and the turbulent flow in the heat exchange mechanism, as well as, inverse effect of the boundary layer in heat exchanger is also justified. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heat%20exchanger" title="heat exchanger">heat exchanger</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer%20rate" title=" heat transfer rate"> heat transfer rate</a>, <a href="https://publications.waset.org/abstracts/search?q=laminar%20and%20turbulent%20effect" title=" laminar and turbulent effect"> laminar and turbulent effect</a>, <a href="https://publications.waset.org/abstracts/search?q=shell%20and%20tube" title=" shell and tube"> shell and tube</a> </p> <a href="https://publications.waset.org/abstracts/76104/analyzing-the-effect-of-design-of-pipe-in-shell-and-tube-type-heat-exchanger-by-measuring-its-heat-transfer-rate-by-computation-fluid-dynamics-and-thermal-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76104.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">307</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4792</span> Numerical Investigation of Thermal-Hydraulic Performance of a Flat Tube in Cross-Flow of Air</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hamidreza%20Bayat">Hamidreza Bayat</a>, <a href="https://publications.waset.org/abstracts/search?q=Arash%20Mirabdolah%20Lavasani"> Arash Mirabdolah Lavasani</a>, <a href="https://publications.waset.org/abstracts/search?q=Meysam%20Bolhasani"> Meysam Bolhasani</a>, <a href="https://publications.waset.org/abstracts/search?q=Sajad%20Moosavi"> Sajad Moosavi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Heat transfer from flat tube is studied numerically. Reynolds number is defined base on equivalent circular tube which is varied in range of 100 to 300. In these range of Reynolds number flow is considered to be laminar, unsteady, and incompressible. Equations are solved by using finite volume method. Results show that increasing l/D from 1 to 2 has insignificant effect on heat transfer and Nusselt number of flat tube is slightly lower than circular tube. However, thermal-hydraulic performance of flat tube is up to 2.7 times greater than circular tube. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=laminar%20flow" title="laminar flow">laminar flow</a>, <a href="https://publications.waset.org/abstracts/search?q=flat%20tube" title=" flat tube"> flat tube</a>, <a href="https://publications.waset.org/abstracts/search?q=convective%20heat%20transfer" title=" convective heat transfer"> convective heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20exchanger" title=" heat exchanger"> heat exchanger</a> </p> <a href="https://publications.waset.org/abstracts/14592/numerical-investigation-of-thermal-hydraulic-performance-of-a-flat-tube-in-cross-flow-of-air" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14592.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">440</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4791</span> Laminar Periodic Vortex Shedding over a Square Cylinder in Pseudoplastic Fluid Flow</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shubham%20Kumar">Shubham Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Chaitanya%20Goswami"> Chaitanya Goswami</a>, <a href="https://publications.waset.org/abstracts/search?q=Sudipto%20Sarkar"> Sudipto Sarkar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pseudoplastic (n < 1, n being the power index) fluid flow can be found in food, pharmaceutical and process industries and has very complex flow nature. To our knowledge, inadequate research work has been done in this kind of flow even at very low Reynolds numbers. Here, in the present computation, we have considered unsteady laminar flow over a square cylinder in pseudoplastic flow environment. For Newtonian fluid flow, this laminar vortex shedding range lies between Re = 47-180. In this problem, we consider Re = 100 (Re = U∞ a/ ν, U∞ is the free stream velocity of the flow, a is the side of the cylinder and ν is the kinematic viscosity of the fluid). The pseudoplastic fluid range has been chosen from close to the Newtonian fluid (n = 0.8) to very high pseudoplasticity (n = 0.1). The flow domain is constituted using Gambit 2.2.30 and this software is also used to generate mesh and to impose the boundary conditions. For all places, the domain size is considered as 36a × 16a with 280 ×192 grid point in the streamwise and flow normal directions respectively. The domain and the grid points are selected after a thorough grid independent study at n = 1.0. Fine and equal grid spacing is used close to the square cylinder to capture the upper and lower shear layers shed from the cylinder. Away from the cylinder the grid is unequal in size and stretched out in all direction. Velocity inlet (u = U∞), pressure outlet (Neumann condition), symmetry (free-slip boundary condition du/dy = 0, v = 0) at upper and lower domain boundary conditions are used for this simulation. Wall boundary (u = v = 0) is considered on the square cylinder surface. Fully conservative 2-D unsteady Navier-Stokes equations are discretized and then solved by Ansys Fluent 14.5 to understand the flow nature. SIMPLE algorithm written in finite volume method is selected for this purpose which is the default solver in scripted in Fluent. The result obtained for Newtonian fluid flow agrees well with previous work supporting Fluent’s usefulness in academic research. A minute analysis of instantaneous and time averaged flow field is obtained both for Newtonian and pseudoplastic fluid flow. It has been observed that drag coefficient increases continuously with the reduced value of n. Also, the vortex shedding phenomenon changes at n = 0.4 due to flow instability. These are some of the remarkable findings for laminar periodic vortex shedding regime in pseudoplastic flow environment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ansys%20Fluent" title="Ansys Fluent">Ansys Fluent</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD" title=" CFD"> CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=periodic%20vortex%20shedding" title=" periodic vortex shedding"> periodic vortex shedding</a>, <a href="https://publications.waset.org/abstracts/search?q=pseudoplastic%20fluid%20flow" title=" pseudoplastic fluid flow"> pseudoplastic fluid flow</a> </p> <a href="https://publications.waset.org/abstracts/97092/laminar-periodic-vortex-shedding-over-a-square-cylinder-in-pseudoplastic-fluid-flow" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97092.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">203</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4790</span> Numerical Study of Laminar Mixed Convection Heat Transfer of a Nanofluid in a Concentric Annular Tube Using Two-Phase Mixture Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Roghayyeh%20Motallebzadeh">Roghayyeh Motallebzadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Shahin%20Hajizadeh"> Shahin Hajizadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Reza%20Ghasemi"> Mohammad Reza Ghasemi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Laminar mixed convection heat transfer of a nanofluid with prescribed constant heat flux on the inner wall of horizontal annular tube has been studied numerically based on two-phase mixture model in different Rayleigh numbers and Azimuth angles. Effects of applying of different volume fractions of Al2O3 nanoparticles in water as a base fluid on hydrodynamic and thermal behaviours of the fluid flow such as axial velocity, secondary flow, temperature, heat transfer coefficient and friction coefficient at the inner and outer wall region, has been investigated. Conservation equations in elliptical form has been utilized and solved in three dimensions for a steady flow. It is observed that, there is a good agreement between results in this work and previously published experimental and numerical works on mixed convection in horizontal annulus. These particles cause to increase convection heat transfer coefficient of the fluid, meanwhile there is no considerable effect on friction coefficient. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=buoyancy%20force" title="buoyancy force">buoyancy force</a>, <a href="https://publications.waset.org/abstracts/search?q=laminar%20mixed%20convection" title=" laminar mixed convection"> laminar mixed convection</a>, <a href="https://publications.waset.org/abstracts/search?q=mixture%20model" title=" mixture model"> mixture model</a>, <a href="https://publications.waset.org/abstracts/search?q=nano-fluid" title=" nano-fluid"> nano-fluid</a>, <a href="https://publications.waset.org/abstracts/search?q=two-phase" title=" two-phase"> two-phase</a> </p> <a href="https://publications.waset.org/abstracts/6099/numerical-study-of-laminar-mixed-convection-heat-transfer-of-a-nanofluid-in-a-concentric-annular-tube-using-two-phase-mixture-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6099.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">469</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4789</span> Simulations of Laminar Liquid Flows through Superhydrophobic Micro-Pipes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20E.%20Eleshaky">Mohamed E. Eleshaky</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper investigates the dynamic behavior of laminar water flows inside superhydrophobic micro-pipes patterned with square micro-posts features under different operating conditions. It also investigates the effects of air fraction and Reynolds number on the frictional performance of these pipes. Rather than modeling the air-water interfaces of superhydrophobic as a flat inflexible surface, a transient, incompressible, three-dimensional, volume-of-fluid (VOF) methodology has been employed to continuously track the air&ndash;water interface shape inside micro-pipes. Also, the entrance effects on the flow field have been taken into consideration. The results revealed the strong dependency of the frictional performance on the air fractions and Reynolds number. The frictional resistance reduction becomes increasingly more significant at large air fractions and low Reynolds numbers. Increasing Reynolds number has an adverse effect on the frictional resistance reduction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=drag%20reduction" title="drag reduction">drag reduction</a>, <a href="https://publications.waset.org/abstracts/search?q=laminar%20flow%20in%20micropipes" title=" laminar flow in micropipes"> laminar flow in micropipes</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20simulation" title=" numerical simulation"> numerical simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=superhyrophobic%20surfaces" title=" superhyrophobic surfaces"> superhyrophobic surfaces</a>, <a href="https://publications.waset.org/abstracts/search?q=microposts" title=" microposts"> microposts</a> </p> <a href="https://publications.waset.org/abstracts/48306/simulations-of-laminar-liquid-flows-through-superhydrophobic-micro-pipes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48306.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">327</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4788</span> Numerical Analysis of Laminar Mixed Convection within a Complex Geometry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Y.%20Lasbet">Y. Lasbet</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20L.%20Boukhalkhal"> A. L. Boukhalkhal</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Loubar"> K. Loubar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study of mixed convection is, usually, focused on the straight channels in which the onset of the mixed convection is well defined as function of the ratio between Grashof number and Reynolds number, Gr/Re. This is not the case for a complex channel wherein the mixed convection is not sufficiently examined in the literature. Our paper focuses on the study of the mixed convection in a complex geometry in which our main contribution reveals that the critical value of the ratio Gr/Re for the onset of the mixed convection increases highly in the type of geometry contrary to the straight channel. Furthermore, the accentuated secondary flow in this geometry prevents the thermal stratification in the flow and consequently the buoyancy driven becomes negligible. To perform these objectives, a numerical study in complex geometry for several values of the ratio Gr/Re with prescribed wall heat flux (H2), was realized by using the CFD code. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=complex%20geometry" title="complex geometry">complex geometry</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer" title=" heat transfer"> heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=laminar%20flow" title=" laminar flow"> laminar flow</a>, <a href="https://publications.waset.org/abstracts/search?q=mixed%20convection" title=" mixed convection"> mixed convection</a>, <a href="https://publications.waset.org/abstracts/search?q=Nusselt%20number" title=" Nusselt number"> Nusselt number</a> </p> <a href="https://publications.waset.org/abstracts/35925/numerical-analysis-of-laminar-mixed-convection-within-a-complex-geometry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35925.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">493</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4787</span> Non-Isothermal Stationary Laminar Oil Flow Numerical Simulation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Daniyar%20Bossinov">Daniyar Bossinov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper considers a non-isothermal stationary waxy crude oil flow in a two-dimensional axisymmetric pipe with the transition of a Newtonian fluid to a non-Newtonian fluid. The viscosity and yield stress of waxy crude oil are highly dependent on temperature changes. During the hot pumping of waxy crude oil through a buried pipeline, a non-isothermal flow occurs due to heat transfer to the surrounding soil. This leads to a decrease in flow temperature, an increase in viscosity, the appearance of yield stress, the crystallization of wax, and the deposition of solid particles on the pipeline's inner wall. The deposition of oil solid particles reduces a pipeline flow area and leads to the appearance of a stagnant zone with thermal insulation in the near-wall area. Waxy crude oil properties change. A Newtonian fluid at low temperatures transits to a non-Newtonian fluid. The one-dimensional modeling of a non-isothermal waxy crude oil flow in a two-dimensional axisymmetric pipeline by traditional averaging of temperature and velocity over the pipeline cross-section does not allow for explaining a physics phenomenon. Therefore, in this work, a two-dimensional flow model and the heat transfer of waxy oil are constructed. The calculated data show the transition of a Newtonian fluid to a non-Newtonian fluid due to the heat exchange of waxy oil with the environment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=non-isothermal%20laminar%20flow" title="non-isothermal laminar flow">non-isothermal laminar flow</a>, <a href="https://publications.waset.org/abstracts/search?q=waxy%20crude%20oil" title=" waxy crude oil"> waxy crude oil</a>, <a href="https://publications.waset.org/abstracts/search?q=stagnant%20zone" title=" stagnant zone"> stagnant zone</a>, <a href="https://publications.waset.org/abstracts/search?q=yield%20stress" title=" yield stress"> yield stress</a> </p> <a href="https://publications.waset.org/abstracts/188992/non-isothermal-stationary-laminar-oil-flow-numerical-simulation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/188992.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">26</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4786</span> Vortices Structure in Internal Laminar and Turbulent Flows</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Farid%20Gaci">Farid Gaci</a>, <a href="https://publications.waset.org/abstracts/search?q=Zoubir%20Nemouchi"> Zoubir Nemouchi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A numerical study of laminar and turbulent fluid flows in 90° bend of square section was carried out. Three-dimensional meshes, based on hexahedral cells, were generated. The QUICK scheme was employed to discretize the convective term in the transport equations. The SIMPLE algorithm was adopted to treat the velocity-pressure coupling. The flow structure obtained showed interesting features such as recirculation zones and counter-rotating pairs of vortices. The performance of three different turbulence models was evaluated: the standard k- ω model, the SST k-ω model and the Reynolds Stress Model (RSM). Overall, it was found that, the multi-equation model performed better than the two equation models. In fact, the existence of four pairs of counter rotating cells, in the straight duct upstream of the bend, were predicted by the RSM closure but not by the standard eddy viscosity model nor the SST k-ω model. The analysis of the results led to a better understanding of the induced three dimensional secondary flows and the behavior of the local pressure coefficient and the friction coefficient. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=curved%20duct" title="curved duct">curved duct</a>, <a href="https://publications.waset.org/abstracts/search?q=counter-rotating%20cells" title=" counter-rotating cells"> counter-rotating cells</a>, <a href="https://publications.waset.org/abstracts/search?q=secondary%20flow" title=" secondary flow"> secondary flow</a>, <a href="https://publications.waset.org/abstracts/search?q=laminar" title=" laminar"> laminar</a>, <a href="https://publications.waset.org/abstracts/search?q=turbulent" title=" turbulent"> turbulent</a> </p> <a href="https://publications.waset.org/abstracts/29767/vortices-structure-in-internal-laminar-and-turbulent-flows" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29767.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">336</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4785</span> Control of a Plane Jet Spread by Tabs at the Nozzle Exit</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Makito%20Sakai">Makito Sakai</a>, <a href="https://publications.waset.org/abstracts/search?q=Takahiro%20Kiwata"> Takahiro Kiwata</a>, <a href="https://publications.waset.org/abstracts/search?q=Takumi%20Awa"> Takumi Awa</a>, <a href="https://publications.waset.org/abstracts/search?q=Hiroshi%20Teramoto"> Hiroshi Teramoto</a>, <a href="https://publications.waset.org/abstracts/search?q=Takaaki%20Kono"> Takaaki Kono</a>, <a href="https://publications.waset.org/abstracts/search?q=Kuniaki%20Toyoda"> Kuniaki Toyoda</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Using experimental and numerical results, this paper describes the effects of tabs on the flow characteristics of a plane jet at comparatively low Reynolds numbers while focusing on the velocity field and the vortical structure. The flow visualization and velocity measurements were respectively carried out using laser Doppler velocimetry (LDV) and particle image velocimetry (PIV). In addition, three-dimensional (3D) plane jet numerical simulations were performed using ANSYS Fluent, a commercially available computational fluid dynamics (CFD) software application. We found that the spreads of jets perturbed by large delta tabs and round tabs were larger than those produced by the other tabs tested. Additionally, it was determined that a plane jet with square tabs had the smallest jet spread downstream, and the jet’s centerline velocity was larger than those of jets perturbed by the other tabs tested. It was also observed that the spanwise vortical structure of a plane jet with tabs disappeared completely. Good agreement was found between the experimental and numerical simulation velocity profiles in the area near the nozzle exit when the laminar flow model was used. However, we also found that large eddy simulation (LES) is better at predicting the developing flow field of a plane jet than the laminar and the standard k-ε turbulent models. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=plane%20jet" title="plane jet">plane jet</a>, <a href="https://publications.waset.org/abstracts/search?q=flow%20control" title=" flow control"> flow control</a>, <a href="https://publications.waset.org/abstracts/search?q=tab" title=" tab"> tab</a>, <a href="https://publications.waset.org/abstracts/search?q=flow%20measurement" title=" flow measurement"> flow measurement</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20simulation" title=" numerical simulation"> numerical simulation</a> </p> <a href="https://publications.waset.org/abstracts/54632/control-of-a-plane-jet-spread-by-tabs-at-the-nozzle-exit" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54632.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">334</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4784</span> Numerical Investigation of Flow Behaviour Across a Trapezoidal Bluff Body at Low Reynolds Number</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zaaraoui%20Abdelkader">Zaaraoui Abdelkader</a>, <a href="https://publications.waset.org/abstracts/search?q=Kerfah%20Rabeh"> Kerfah Rabeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Noura%20Belkheir"> Noura Belkheir</a>, <a href="https://publications.waset.org/abstracts/search?q=Matene%20Elhacene"> Matene Elhacene</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The trapezoidal bluff body is a typical configuration of vortex shedding bodies. The aim of this work is to study flow behaviour over a trapezoidal cylinder at low Reynolds number. The geometry was constructed from a prototype device for measuring the volumetric flow-rate by counting vortices. Simulations were run for this geometry under steady and unsteady flow conditions using finite volume discretization. Laminar flow was investigated in this model with rigid walls and homogeneous incompressible Newtonian fluid. Calculations were performed for Reynolds number range 5 ≤ Re ≤ 180 and several flow parameters were documented. The present computations are in good agreement with the experimental observations and the numerical calculations by several investigators. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bluff%20body" title="bluff body">bluff body</a>, <a href="https://publications.waset.org/abstracts/search?q=confined%20flow" title=" confined flow"> confined flow</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20calculations" title=" numerical calculations"> numerical calculations</a>, <a href="https://publications.waset.org/abstracts/search?q=steady%20and%20unsteady%20flow" title=" steady and unsteady flow"> steady and unsteady flow</a>, <a href="https://publications.waset.org/abstracts/search?q=vortex%20shedding%20flow%20meter" title=" vortex shedding flow meter"> vortex shedding flow meter</a> </p> <a href="https://publications.waset.org/abstracts/54144/numerical-investigation-of-flow-behaviour-across-a-trapezoidal-bluff-body-at-low-reynolds-number" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54144.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">287</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4783</span> Computational Study of Flow and Heat Transfer Characteristics of an Incompressible Fluid in a Channel Using Lattice Boltzmann Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Imdat%20Taymaz">Imdat Taymaz</a>, <a href="https://publications.waset.org/abstracts/search?q=Erman%20Aslan"> Erman Aslan</a>, <a href="https://publications.waset.org/abstracts/search?q=Kemal%20Cakir"> Kemal Cakir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Lattice Boltzmann Method (LBM) is performed to computationally investigate the laminar flow and heat transfer of an incompressible fluid with constant material properties in a 2D channel with a built-in triangular prism. Both momentum and energy transport is modelled by the LBM. A uniform lattice structure with a single time relaxation rule is used. Interpolation methods are applied for obtaining a higher flexibility on the computational grid, where the information is transferred from the lattice structure to the computational grid by Lagrange interpolation. The flow is researched on for different Reynolds number, while Prandtl number is keeping constant as a 0.7. The results show how the presence of a triangular prism effects the flow and heat transfer patterns for the steady-state and unsteady-periodic flow regimes. As an evaluation of the accuracy of the developed LBM code, the results are compared with those obtained by a commercial CFD code. It is observed that the present LBM code produces results that have similar accuracy with the well-established CFD code, as an additionally, LBM needs much smaller CPU time for the prediction of the unsteady phonema. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=laminar%20forced%20convection" title="laminar forced convection">laminar forced convection</a>, <a href="https://publications.waset.org/abstracts/search?q=lbm" title=" lbm"> lbm</a>, <a href="https://publications.waset.org/abstracts/search?q=triangular%20prism" title=" triangular prism"> triangular prism</a> </p> <a href="https://publications.waset.org/abstracts/27134/computational-study-of-flow-and-heat-transfer-characteristics-of-an-incompressible-fluid-in-a-channel-using-lattice-boltzmann-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27134.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">373</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4782</span> Combined Effect of Roughness and Suction on Heat Transfer in a Laminar Channel Flow</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marzieh%20Khezerloo">Marzieh Khezerloo</a>, <a href="https://publications.waset.org/abstracts/search?q=Lyazid%20Djenidi"> Lyazid Djenidi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Owing to wide range of the micro-device applications, the problems of mixing at small scales is of significant interest. Also, because most of the processes produce heat, it is needed to develop and implement strategies for heat removal in these devices. There are many studies which focus on the effect of roughness or suction on heat transfer performance, separately, although it would be useful to take advantage of these two methods to improve heat transfer performance. Unfortunately, there is a gap in this area. The present numerical study is carried to investigate the combined effects of roughness and wall suction on heat transfer performance of a laminar channel flow; suction is applied on the top and back faces of the roughness element, respectively. The study is carried out for different Reynolds numbers, different suction rates, and various locations of suction area on the roughness. The flow is assumed two dimensional, incompressible, laminar, and steady state. The governing Navier-Stokes equations are solved using ANSYS-Fluent 18.2 software. The present results are tested against previous theoretical results. The results show that by adding suction, the local Nusselt number is enhanced in the channel. In addition, it is shown that by applying suction on the bottom section of the roughness back face, one can reduce the thickness of thermal boundary layer, which leads to an increase in local Nusselt number. This indicates that suction is an effective means for improving the heat transfer rate (suction by controls the thickness of thermal boundary layer). It is also shown that the size and intensity of vortical motion behind the roughness element, decreased with an increasing suction rate, which leads to higher local Nusselt number. So, it can be concluded that by using suction, strategically located on the roughness element, one can control both the recirculation region and the heat transfer rate. Further results will be presented at the conference for coefficient of drag and the effect of adding more roughness elements. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer" title="heat transfer">heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=laminar%20flow" title=" laminar flow"> laminar flow</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20simulation" title=" numerical simulation"> numerical simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=roughness" title=" roughness"> roughness</a>, <a href="https://publications.waset.org/abstracts/search?q=suction" title=" suction"> suction</a> </p> <a href="https://publications.waset.org/abstracts/108817/combined-effect-of-roughness-and-suction-on-heat-transfer-in-a-laminar-channel-flow" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/108817.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">113</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4781</span> Experimental and Numerical Investigation of Heat Transfer in THTL Test Loop Shell and Tube Heat Exchanger</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Moody">M. Moody</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Mahmoodi"> R. Mahmoodi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20R.%20Zolfaghari"> A. R. Zolfaghari</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Aminottojari"> A. Aminottojari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, flow inside the shell side of a shell-and-tube heat exchanger is simulated numerically for laminar and turbulent flows in both steady state and transient mode. Governing equations of fluid flow are discrete using finite volume method and central difference scheme and solved with simple algorithm which is staggered grid by using MATLAB programming language. The heat transfer coefficient is obtained using velocity field from equation Dittus-Bolter. In comparison with, heat exchanger is simulated with ANSYS CFX software and experimental data measured in the THTL test loop. Numerical results obtained from the study show good agreement with experimental data and ANSYS CFX results. In addition, by deliberation the effect of the baffle spacing and the baffle cut on the heat transfer rate for turbulent flow, it is illustrated that the heat transfer rate depends on the baffle spacing and the baffle cut directly. In other word in spied of large turbulence, if these two parameters are not selected properly in the heat exchanger, the heat transfer rate can reduce. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=shell-and-tube%20heat%20exchanger" title="shell-and-tube heat exchanger">shell-and-tube heat exchanger</a>, <a href="https://publications.waset.org/abstracts/search?q=flow%20and%20heat%20transfer" title=" flow and heat transfer"> flow and heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=laminar%20and%20turbulence%20flow" title=" laminar and turbulence flow"> laminar and turbulence flow</a>, <a href="https://publications.waset.org/abstracts/search?q=turbulence%20model" title=" turbulence model"> turbulence model</a>, <a href="https://publications.waset.org/abstracts/search?q=baffle%20spacing" title=" baffle spacing"> baffle spacing</a>, <a href="https://publications.waset.org/abstracts/search?q=baffle%20cut" title=" baffle cut"> baffle cut</a> </p> <a href="https://publications.waset.org/abstracts/17978/experimental-and-numerical-investigation-of-heat-transfer-in-thtl-test-loop-shell-and-tube-heat-exchanger" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17978.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">537</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4780</span> Flow-Control Effectiveness of Convergent Surface Indentations on an Aerofoil at Low Reynolds Numbers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Neel%20K.%20Shah">Neel K. Shah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Passive flow control on aerofoils has largely been achieved through the use of protrusions such as vane-type vortex generators. Consequently, innovative flow-control concepts should be explored in an effort to improve current component performance. Therefore, experimental research has been performed at The University of Manchester to evaluate the flow-control effectiveness of a vortex generator made in the form of a surface indentation. The surface indentation has a trapezoidal planform. A spanwise array of indentations has been applied in a convergent orientation around the maximum-thickness location of the upper surface of a NACA-0015 aerofoil. The aerofoil has been tested in a two-dimensional set-up in a low-speed wind tunnel at an angle of attack (AoA) of 3° and a chord-based Reynolds number (Re) of ~2.7 x 105. The baseline model has been found to suffer from a laminar separation bubble at low AoA. The application of the indentations at 3° AoA has considerably shortened the separation bubble. The indentations achieve this by shedding up-flow pairs of streamwise vortices. Despite the considerable reduction in bubble length, the increase in leading-edge suction due to the shorter bubble is limited by the removal of surface curvature and blockage (increase in surface pressure) caused locally by the convergent indentations. Furthermore, the up-flow region of the vortices, which locally weakens the pressure recovery around the trailing edge of the aerofoil by thickening the boundary layer, also contributes to this limitation. Due to the conflicting effects of the indentations, the changes in the pressure-lift and pressure-drag coefficients, i.e., cl,p and cd,p, are small. Nevertheless, the indentations have improved cl,p and cd,p beyond the uncertainty range, i.e., by ~1.30% and ~0.30%, respectively, at 3° AoA. The wake measurements show that turbulence intensity and Reynolds stresses have considerably increased in the indented case, thus implying that the indentations increase the viscous drag on the model. In summary, the convergent indentations are able to reduce the size of the laminar separation bubble, but conversely, they are not highly effective in reducing cd,p at the tested Reynolds number. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerofoil%20flow%20control" title="aerofoil flow control">aerofoil flow control</a>, <a href="https://publications.waset.org/abstracts/search?q=laminar%20separation%20bubbles" title=" laminar separation bubbles"> laminar separation bubbles</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20Reynolds-number%20flows" title=" low Reynolds-number flows"> low Reynolds-number flows</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20indentations" title=" surface indentations"> surface indentations</a> </p> <a href="https://publications.waset.org/abstracts/61082/flow-control-effectiveness-of-convergent-surface-indentations-on-an-aerofoil-at-low-reynolds-numbers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61082.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">226</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4779</span> Numerical Study of Flow around Flat Tube between Parallel Walls</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hamidreza%20Bayat">Hamidreza Bayat</a>, <a href="https://publications.waset.org/abstracts/search?q=Arash%20Mirabdolah%20Lavasani"> Arash Mirabdolah Lavasani</a>, <a href="https://publications.waset.org/abstracts/search?q=Meysam%20Bolhasani"> Meysam Bolhasani</a>, <a href="https://publications.waset.org/abstracts/search?q=Sajad%20Moosavi"> Sajad Moosavi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Flow around a flat tube is studied numerically. Reynolds number is defined base on equivalent circular tube and it is varied in range of 100 to 300. Equations are solved by using finite volume method and results are presented in form of drag and lift coefficient. Results show that drag coefficient of flat tube is up to 66% lower than circular tube with equivalent diameter. In addition, by increasing l/D from 1 to 2, the drag coefficient of flat tube is decreased about 14-27%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=laminar%20flow" title="laminar flow">laminar flow</a>, <a href="https://publications.waset.org/abstracts/search?q=flat-tube" title=" flat-tube"> flat-tube</a>, <a href="https://publications.waset.org/abstracts/search?q=drag%20coefficient" title=" drag coefficient"> drag coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=cross-flow" title=" cross-flow"> cross-flow</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20exchanger" title=" heat exchanger"> heat exchanger</a> </p> <a href="https://publications.waset.org/abstracts/14593/numerical-study-of-flow-around-flat-tube-between-parallel-walls" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14593.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">503</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4778</span> Experimental on Free and Forced Heat Transfer and Pressure Drop of Copper Oxide-Heat Transfer Oil Nanofluid in Horizontal and Inclined Microfin Tube</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=F.%20Hekmatipour">F. Hekmatipour</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Akhavan-Behabadi"> M. A. Akhavan-Behabadi</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Sajadi"> B. Sajadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the combined free and forced convection heat transfer of the Copper Oxide-Heat Transfer Oil (CuO-HTO) nanofluid flow in horizontal and inclined microfin tubes is studied experimentally. The flow regime is laminar, and pipe surface temperature is constant. The effect of nanoparticle and microfin tube on the heat transfer rate is investigated with the Richardson number which is between 0.1 and 0.7. The results show an increasing nanoparticle concentration between 0% and 1.5% leads to enhance the combined free and forced convection heat transfer rate. According to the results, five correlations are proposed to provide estimating the free and forced heat transfer rate as the increasing Richardson number from 0.1 to 0.7. The maximum deviation of both correlations is less than 16%. Moreover, four correlations are suggested to assess the Nusselt number based on the Rayleigh number in inclined tubes from 1800000 to 7000000. The maximum deviation of the correlation is almost 16%. The Darcy friction factor of the nanofluid flow has been investigated. Furthermore, CuO-HTO nanofluid flows in inclined microfin tubes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanofluid" title="nanofluid">nanofluid</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer%20oil" title=" heat transfer oil"> heat transfer oil</a>, <a href="https://publications.waset.org/abstracts/search?q=mixed%20convection" title=" mixed convection"> mixed convection</a>, <a href="https://publications.waset.org/abstracts/search?q=inclined%20tube" title=" inclined tube"> inclined tube</a>, <a href="https://publications.waset.org/abstracts/search?q=laminar%20flow" title=" laminar flow"> laminar flow</a> </p> <a href="https://publications.waset.org/abstracts/82099/experimental-on-free-and-forced-heat-transfer-and-pressure-drop-of-copper-oxide-heat-transfer-oil-nanofluid-in-horizontal-and-inclined-microfin-tube" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82099.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">255</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4777</span> Numerical Investigation of Hybrid Ferrofluid Unsteady Flow through Porous Channel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wajahat%20Hussain%20Khan">Wajahat Hussain Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Zubair%20Akbar%20Qureshi"> M. Zubair Akbar Qureshi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The viscous, two-dimensional, incompressible, and laminar time-dependent heat transfer flow through a ferromagnetic fluid is considered in this paper. Flow takes place in a channel between two porous walls under the influence of the magnetic field located beyond the channel. It is assumed that there are no electric field effects and the variation in the magnetic field vector that could occur within the F <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hybrid%20ferrofluid" title="hybrid ferrofluid">hybrid ferrofluid</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer" title=" heat transfer"> heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20field" title=" magnetic field"> magnetic field</a>, <a href="https://publications.waset.org/abstracts/search?q=porous%20channel" title=" porous channel"> porous channel</a> </p> <a href="https://publications.waset.org/abstracts/129946/numerical-investigation-of-hybrid-ferrofluid-unsteady-flow-through-porous-channel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/129946.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">177</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4776</span> Unsteady Flow and Heat Transfer of Nanofluid from Circular Tube in Cross-Flow</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Bayat">H. Bayat</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Majidi"> M. Majidi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Bolhasani"> M. Bolhasani</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Karbalaie%20Alilou"> A. Karbalaie Alilou</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Mirabdolah%20Lavasani"> A. Mirabdolah Lavasani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Unsteady flow and heat transfer from a circular cylinder in cross-flow is studied numerically. The governing equations are solved by using finite volume method. Reynolds number varies in range of 50 to 200, in this range flow is considered to be laminar and unsteady. Al2O3 nanoparticle with volume fraction in range of 5% to 20% is added to pure water. Effects of adding nanoparticle to pure water on lift and drag coefficient and Nusselt number is presented. Addition of Al2O3 has inconsiderable effect on the value of drags and lift coefficient. However, it has significant effect on heat transfer; results show that heat transfer of Al2O3 nanofluid is about 9% to 36% higher than pure water. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanofluid" title="nanofluid">nanofluid</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer" title=" heat transfer"> heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=unsteady%20flow" title=" unsteady flow"> unsteady flow</a>, <a href="https://publications.waset.org/abstracts/search?q=forced%20convection" title=" forced convection"> forced convection</a>, <a href="https://publications.waset.org/abstracts/search?q=cross-flow" title=" cross-flow"> cross-flow</a> </p> <a href="https://publications.waset.org/abstracts/42064/unsteady-flow-and-heat-transfer-of-nanofluid-from-circular-tube-in-cross-flow" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42064.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">397</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4775</span> Hydrodynamic Study of Laminar Flow in Agitated Vessel by a Curved Blade Agitator</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Benmoussa">A. Benmoussa</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Bouanini"> M. Bouanini</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Rebhi"> M. Rebhi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The mixing and agitation of fluid in stirred tank is one of the most important unit operations for many industries such as chemical, biotechnological, pharmaceutical, petrochemical, cosmetic, and food processing. Therefore, determining the level of mixing and overall behaviour and performance of the mixing tanks are crucial from the product quality and process economics point of views. The most fundamental needs for the analysis of these processes from both a theoretical and industrial perspective is the knowledge of the hydrodynamic behaviour and the flow structure in such tanks. Depending on the purpose of the operation carried out in mixer, the best choice for geometry of the tank and agitator type can vary widely. Initially, a local and global study namely the velocity and power number on a typical agitation system agitated by a mobile-type two-blade straight (d/D=0.5) allowed us to test the reliability of the CFD, the result were compared with those of experimental literature, a very good concordance was observed. The stream function, the velocity profile, the velocity fields and power number are analyzed. It was shown that the hydrodynamics is modified by the curvature of the mobile which plays a key role. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agitated%20tanks" title="agitated tanks">agitated tanks</a>, <a href="https://publications.waset.org/abstracts/search?q=curved%20blade%20agitator" title=" curved blade agitator"> curved blade agitator</a>, <a href="https://publications.waset.org/abstracts/search?q=laminar%20flow" title=" laminar flow"> laminar flow</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD%20modelling" title=" CFD modelling"> CFD modelling</a> </p> <a href="https://publications.waset.org/abstracts/9594/hydrodynamic-study-of-laminar-flow-in-agitated-vessel-by-a-curved-blade-agitator" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9594.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">415</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4774</span> Observation of Laminar to Turbulent Transition in Micro-Propellers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dake%20Wang">Dake Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Ellis%20Edinkrah"> Ellis Edinkrah</a>, <a href="https://publications.waset.org/abstracts/search?q=Brian%20Wang"> Brian Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Micro-propellers can operate in regimes of small Reynolds numbers where the effect of viscous friction becomes important. In this work, the transition from laminar to turbulent regime in micro-propellers driven by electric motors was observed. The analysis revealed that the lift force was linearly proportional to propeller output power when systems operate in the laminar/viscous regime, while a sublinear relation between the force and the output power was observed in the turbulent/inertial regime. These behaviors appeared to be independent of motor-propeller specifications. The Reynolds number that marks the regime transition was found to be at around 10000. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=UAV" title="UAV">UAV</a>, <a href="https://publications.waset.org/abstracts/search?q=micro-propeller" title=" micro-propeller"> micro-propeller</a>, <a href="https://publications.waset.org/abstracts/search?q=laminar-turbulent" title=" laminar-turbulent"> laminar-turbulent</a>, <a href="https://publications.waset.org/abstracts/search?q=Reynolds%20number" title=" Reynolds number"> Reynolds number</a> </p> <a href="https://publications.waset.org/abstracts/168546/observation-of-laminar-to-turbulent-transition-in-micro-propellers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168546.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">99</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4773</span> Triggering Supersonic Boundary-Layer Instability by Small-Scale Vortex Shedding</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Guohua%20Tu">Guohua Tu</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhi%20Fu"> Zhi Fu</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhiwei%20Hu"> Zhiwei Hu</a>, <a href="https://publications.waset.org/abstracts/search?q=Neil%20D%20Sandham"> Neil D Sandham</a>, <a href="https://publications.waset.org/abstracts/search?q=Jianqiang%20Chen"> Jianqiang Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Tripping of boundary-layers from laminar to turbulent flow, which may be necessary in specific practical applications, requires high amplitude disturbances to be introduced into the boundary layers without large drag penalties. As a possible improvement on fixed trip devices, a technique based on vortex shedding for enhancing supersonic flow transition is demonstrated in the present paper for a Mach 1.5 boundary layer. The compressible Navier-Stokes equations are solved directly using a high-order (fifth-order in space and third-order in time) finite difference method for small-scale cylinders suspended transversely near the wall. For cylinders with proper diameter and mount location, asymmetry vortices shed within the boundary layer are capable of tripping laminar-turbulent transition. Full three-dimensional simulations showed that transition was enhanced. A parametric study of the size and mounting location of the cylinder is carried out to identify the most effective setup. It is also found that the vortex shedding can be suppressed by some factors such as wall effect. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=boundary%20layer%20instability" title="boundary layer instability">boundary layer instability</a>, <a href="https://publications.waset.org/abstracts/search?q=boundary%20layer%20transition" title=" boundary layer transition"> boundary layer transition</a>, <a href="https://publications.waset.org/abstracts/search?q=vortex%20shedding" title=" vortex shedding"> vortex shedding</a>, <a href="https://publications.waset.org/abstracts/search?q=supersonic%20flows" title=" supersonic flows"> supersonic flows</a>, <a href="https://publications.waset.org/abstracts/search?q=flow%20control" title=" flow control"> flow control</a> </p> <a href="https://publications.waset.org/abstracts/61412/triggering-supersonic-boundary-layer-instability-by-small-scale-vortex-shedding" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61412.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">365</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4772</span> Characterization of Laminar Flow and Power Consumption in Agitated Vessel with Curved Blade Agitator</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amine%20Benmoussa">Amine Benmoussa</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Bouanini"> Mohamed Bouanini</a>, <a href="https://publications.waset.org/abstracts/search?q=Mebrouk%20Rebhi"> Mebrouk Rebhi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Stirring is one of the unifying processes which form part of the mechanical unit operations in process technology such chemical, biotechnological, pharmaceutical, petrochemical, cosmetic, and food processing. Therefore determining the level of mixing and overall behavior and performance of the mixing tanks are crucial from the product quality and process economics point of views. The most fundamental needs for the analysis of these processes from both a theoretical and industrial perspective are the knowledge of the hydrodynamic behavior and the flow structure in such tanks. Depending on the purpose of the operation carried out in mixer, the best choice for geometry of the tank and agitator type can vary widely. Initially, a local and global study namely the velocity and power number on a typical agitation system agitated by a mobile-type two-blade straight (d/D=0.5) allowed us to test the reliability of the CFD, the result were compared with those of experimental literature, a very good concordance was observed. The stream function, the velocity profile, the velocity fields and power number are analyzed. It was shown that the hydrodynamics is modified by the curvature of the mobile which plays a key role. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agitated%20vessels" title="agitated vessels">agitated vessels</a>, <a href="https://publications.waset.org/abstracts/search?q=curved%20blade%20agitator" title=" curved blade agitator"> curved blade agitator</a>, <a href="https://publications.waset.org/abstracts/search?q=laminar%20flow" title=" laminar flow"> laminar flow</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20volume%20method" title=" finite volume method"> finite volume method</a> </p> <a href="https://publications.waset.org/abstracts/9613/characterization-of-laminar-flow-and-power-consumption-in-agitated-vessel-with-curved-blade-agitator" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9613.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">284</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=laminar%20flow&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=laminar%20flow&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=laminar%20flow&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=laminar%20flow&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=laminar%20flow&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=laminar%20flow&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=laminar%20flow&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=laminar%20flow&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=laminar%20flow&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=laminar%20flow&amp;page=160">160</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=laminar%20flow&amp;page=161">161</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=laminar%20flow&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10