CINXE.COM
The Compact Linear Collider (CLIC) - 2018 Summary Report - CERN Document Server
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> <!--[if IEMobile 7]><html class="iem7" xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en" xmlns:og="http://ogp.me/ns#" xmlns:fb="http://ogp.me/ns/fb#"><![endif]--> <!--[if lte IE 6]><html class="ie6 ie6-7 ie6-8" xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en" xmlns:og="http://ogp.me/ns#" xmlns:fb="http://ogp.me/ns/fb#"><![endif]--> <!--[if (IE 7)&(!IEMobile)]><html class="ie7 ie6-7 ie6-8" xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en" xmlns:og="http://ogp.me/ns#" xmlns:fb="http://ogp.me/ns/fb#"><![endif]--> <!--[if IE 8]><html class="ie8 ie6-8" xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en" xmlns:og="http://ogp.me/ns#" xmlns:fb="http://ogp.me/ns/fb#"><![endif]--> <!--[if (gte IE 9)|(gt IEMobile 7)]><!--><html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en" xmlns:og="http://ogp.me/ns#" xmlns:fb="http://ogp.me/ns/fb#"><!--<![endif]--> <head> <title>The Compact Linear Collider (CLIC) - 2018 Summary Report - CERN Document Server</title> <link href='https://framework.web.cern.ch/framework/2.0/fonts/PTSansWeb/PTSansWeb.css' rel='stylesheet' type='text/css' /> <link rel="stylesheet" href="https://cds.cern.ch/img/invenio.css?v=20141127" type="text/css" /> <link rel="stylesheet" href="https://cds.cern.ch/img/cern_theme/css/cern_theme.css?v=20141127" type="text/css" /> <link rel="stylesheet"href="/css/font-awesome.min.css"> <meta http-equiv="X-UA-Compatible" content="IE=Edge"/> <link rel="stylesheet" href="https://cds.cern.ch/img/cern_toolbar/css/toolbar.css" type="text/css" /> <!--[if lt IE 8]> <link href="https://cds.cern.ch/img/cern_toolbar/css/toolbar-ie.css" rel="stylesheet" type="text/css"> <![endif]--> <!--[if lt IE 8]> <link rel="stylesheet" type="text/css" href="https://cds.cern.ch/img/invenio-ie7.css" /> <![endif]--> <!--[if gt IE 8]> <style type="text/css">div.restrictedflag {filter:none;}</style> <![endif]--> <link rel="canonical" href="https://cds.cern.ch/record/2652188" /> <link rel="alternate" hreflang="el" href="https://cds.cern.ch/record/2652188?ln=el" /> <link rel="alternate" hreflang="fr" href="https://cds.cern.ch/record/2652188?ln=fr" /> <link rel="alternate" hreflang="bg" href="https://cds.cern.ch/record/2652188?ln=bg" /> <link rel="alternate" hreflang="zh-TW" href="https://cds.cern.ch/record/2652188?ln=zh_TW" /> <link rel="alternate" hreflang="pt" href="https://cds.cern.ch/record/2652188?ln=pt" /> <link rel="alternate" hreflang="no" href="https://cds.cern.ch/record/2652188?ln=no" /> <link rel="alternate" hreflang="hr" href="https://cds.cern.ch/record/2652188?ln=hr" /> <link rel="alternate" hreflang="ca" href="https://cds.cern.ch/record/2652188?ln=ca" /> <link rel="alternate" hreflang="de" href="https://cds.cern.ch/record/2652188?ln=de" /> <link rel="alternate" hreflang="it" href="https://cds.cern.ch/record/2652188?ln=it" /> <link rel="alternate" hreflang="zh-CN" href="https://cds.cern.ch/record/2652188?ln=zh_CN" /> <link rel="alternate" hreflang="sv" href="https://cds.cern.ch/record/2652188?ln=sv" /> <link rel="alternate" hreflang="sk" href="https://cds.cern.ch/record/2652188?ln=sk" /> <link rel="alternate" hreflang="en" href="https://cds.cern.ch/record/2652188?ln=en" /> <link rel="alternate" hreflang="pl" href="https://cds.cern.ch/record/2652188?ln=pl" /> <link rel="alternate" hreflang="ru" href="https://cds.cern.ch/record/2652188?ln=ru" /> <link rel="alternate" hreflang="ka" href="https://cds.cern.ch/record/2652188?ln=ka" /> <link rel="alternate" hreflang="ja" href="https://cds.cern.ch/record/2652188?ln=ja" /> <link rel="alternate" hreflang="es" href="https://cds.cern.ch/record/2652188?ln=es" /> <link rel="alternate" type="application/rss+xml" title="CERN Document Server RSS" href="/rss?ln=en" /> <link rel="search" type="application/opensearchdescription+xml" href="https://cds.cern.ch/opensearchdescription" title="CERN Document Server" /> <link rel="unapi-server" type="application/xml" title="unAPI" href="https://cds.cern.ch/unapi" /> <link rel="apple-touch-icon" href="/apple-touch-icon.png"/> <link rel="apple-touch-icon-precomposed" href="/apple-touch-icon-precomposed.png"/> <meta http-equiv="Content-Type" content="text/html; charset=utf-8" /> <meta http-equiv="Content-Language" content="en" /> <meta name="description" content="The Compact Linear Collider (CLIC) is a TeV-scale high-luminosity linear $e^+e^−$ collider under development at CERN. Following the CLIC conceptual design published in 2012, this report provides an overview of the CLIC project, its current status, and future developments. It presents the CLIC physics potential and reports on design, technology, and implementation aspects of the accelerator and the detector. For an optimal exploitation of its physics potential, CLIC is foreseen to be built and operated in stages, at centre-of-mass energies of 380 GeV, 1.5 TeV and 3 TeV, respectively, for a site length ranging from 11 km to 50 km. CLIC uses a two-beam acceleration scheme, in which normal-conducting high-gradient 12 GHz accelerating structures are powered via a high-current drive beam. For the first stage, an alternative with X-band klystron powering is also considered. CLIC accelerator optimisation, technical developments and system tests have resulted in significant progress in recent years. Moreover, this has led to an increased energy efficiency (power around 170 MW) for the 380 GeV stage, together with a reduced cost estimate at the level of 6 billion CHF. The detector concept, which matches the physics performance requirements and the CLIC experimental conditions, has been refined using improved software tools for simulation and reconstruction. Significant progress has been made on detector technology developments for the tracking and calorimetry systems. A wide range of CLIC physics studies has been conducted, both through full detector simulations with overlay of beam-induced backgrounds, and through parametric studies, together providing a broad overview of the CLIC physics potential. Each of the three energy stages adds cornerstones of the full CLIC physics programme, such as Higgs width and couplings, top-quark properties, Higgs self-coupling, direct searches, and many precision electroweak measurements. The interpretation of the combined results gives crucial and accurate insight into new physics, largely complementary to LHC and HL-LHC. The construction of the first CLIC energy stage could start by 2026. First beams would be available by 2035, marking the beginning of a broad CLIC physics programme spanning 25–30 years. The Compact Linear Collider (CLIC) is a TeV-scale high-luminosity linear $e^+e^−$ collider under development at CERN. Following the CLIC conceptual design published in 2012, this report provides an overview of the CLIC project, its current status, and future developments. It presents the CLIC physics potential and reports on design, technology, and implementation aspects of the accelerator and the detector. For an optimal exploitation of its physics potential, CLIC is foreseen to be built and operated in stages, at centre-of-mass energies of 380 GeV, 1.5 TeV and 3 TeV, respectively, for a site length ranging from 11 km to 50 km. CLIC uses a two-beam acceleration scheme, in which normal-conducting high-gradient 12 GHz accelerating structures are powered via a high-current drive beam. For the first stage, an alternative with X-band klystron powering is also considered. CLIC accelerator optimisation, technical developments and system tests have resulted in significant progress in recent years. Moreover, this has led to an increased energy efficiency (power around 170 MW) for the 380 GeV stage, together with a reduced cost estimate at the level of 6 billion CHF. The detector concept, which matches the physics performance requirements and the CLIC experimental conditions, has been refined using improved software tools for simulation and reconstruction. Significant progress has been made on detector technology developments for the tracking and calorimetry systems. A wide range of CLIC physics studies has been conducted, both through full detector simulations with overlay of beam-induced backgrounds, and through parametric studies, together providing a broad overview of the CLIC physics potential. Each of the three energy stages adds cornerstones of the full CLIC physics programme, such as Higgs width and couplings, top-quark properties, Higgs self-coupling, direct searches, and many precision electroweak measurements. The interpretation of the combined results gives crucial and accurate insight into new physics, largely complementary to LHC and HL-LHC. The construction of the first CLIC energy stage could start by 2026. First beams would be available by 2035, marking the beginning of a broad CLIC physics programme spanning 25–30 years. The Compact Linear Collider (CLIC) is a TeV-scale high-luminosity linear $e^+e^−$ collider under development at CERN. Following the CLIC conceptual design published in 2012, this report provides an overview of the CLIC project, its current status, and future developments. It presents the CLIC physics potential and reports on design, technology, and implementation aspects of the accelerator and the detector. For an optimal exploitation of its physics potential, CLIC is foreseen to be built and operated in stages, at centre-of-mass energies of 380 GeV, 1.5 TeV and 3 TeV, respectively, for a site length ranging from 11 km to 50 km. CLIC uses a two-beam acceleration scheme, in which normal-conducting high-gradient 12 GHz accelerating structures are powered via a high-current drive beam. For the first stage, an alternative with X-band klystron powering is also considered. CLIC accelerator optimisation, technical developments and system tests have resulted in significant progress in recent years. Moreover, this has led to an increased energy efficiency (power around 170 MW) for the 380 GeV stage, together with a reduced cost estimate at the level of 6 billion CHF. The detector concept, which matches the physics performance requirements and the CLIC experimental conditions, has been refined using improved software tools for simulation and reconstruction. Significant progress has been made on detector technology developments for the tracking and calorimetry systems. A wide range of CLIC physics studies has been conducted, both through full detector simulations with overlay of beam-induced backgrounds, and through parametric studies, together providing a broad overview of the CLIC physics potential. Each of the three energy stages adds cornerstones of the full CLIC physics programme, such as Higgs width and couplings, top-quark properties, Higgs self-coupling, direct searches, and many precision electroweak measurements. The interpretation of the combined results gives crucial and accurate insight into new physics, largely complementary to LHC and HL-LHC. The construction of the first CLIC energy stage could start by 2026. First beams would be available by 2035, marking the beginning of a broad CLIC physics programme spanning 25–30 years. The Compact Linear Collider (CLIC) is a TeV-scale high-luminosity linear $e^+e^−$ collider under development at CERN. Following the CLIC conceptual design published in 2012, this report provides an overview of the CLIC project, its current status, and future developments. It presents the CLIC physics potential and reports on design, technology, and implementation aspects of the accelerator and the detector. For an optimal exploitation of its physics potential, CLIC is foreseen to be built and operated in stages, at centre-of-mass energies of 380 GeV, 1.5 TeV and 3 TeV, respectively, for a site length ranging from 11 km to 50 km. CLIC uses a two-beam acceleration scheme, in which normal-conducting high-gradient 12 GHz accelerating structures are powered via a high-current drive beam. For the first stage, an alternative with X-band klystron powering is also considered. CLIC accelerator optimisation, technical developments and system tests have resulted in significant progress in recent years. Moreover, this has led to an increased energy efficiency (power around 170 MW) for the 380 GeV stage, together with a reduced cost estimate at the level of 6 billion CHF. The detector concept, which matches the physics performance requirements and the CLIC experimental conditions, has been refined using improved software tools for simulation and reconstruction. Significant progress has been made on detector technology developments for the tracking and calorimetry systems. A wide range of CLIC physics studies has been conducted, both through full detector simulations with overlay of beam-induced backgrounds, and through parametric studies, together providing a broad overview of the CLIC physics potential. Each of the three energy stages adds cornerstones of the full CLIC physics programme, such as Higgs width and couplings, top-quark properties, Higgs self-coupling, direct searches, and many precision electroweak measurements. The interpretation of the combined results gives crucial and accurate insight into new physics, largely complementary to LHC and HL-LHC. The construction of the first CLIC energy stage could start by 2026. First beams would be available by 2035, marking the beginning of a broad CLIC physics programme spanning 25–30 years. The Compact Linear Collider (CLIC) is a TeV-scale high-luminosity linear $e^+e^−$ collider under development at CERN. Following the CLIC conceptual design published in 2012, this report provides an overview of the CLIC project, its current status, and future developments. It presents the CLIC physics potential and reports on design, technology, and implementation aspects of the accelerator and the detector. For an optimal exploitation of its physics potential, CLIC is foreseen to be built and operated in stages, at centre-of-mass energies of 380 GeV, 1.5 TeV and 3 TeV, respectively, for a site length ranging from 11 km to 50 km. CLIC uses a two-beam acceleration scheme, in which normal-conducting high-gradient 12 GHz accelerating structures are powered via a high-current drive beam. For the first stage, an alternative with X-band klystron powering is also considered. CLIC accelerator optimisation, technical developments and system tests have resulted in significant progress in recent years. Moreover, this has led to an increased energy efficiency (power around 170 MW) for the 380 GeV stage, together with a reduced cost estimate at the level of 6 billion CHF. The detector concept, which matches the physics performance requirements and the CLIC experimental conditions, has been refined using improved software tools for simulation and reconstruction. Significant progress has been made on detector technology developments for the tracking and calorimetry systems. A wide range of CLIC physics studies has been conducted, both through full detector simulations with overlay of beam-induced backgrounds, and through parametric studies, together providing a broad overview of the CLIC physics potential. Each of the three energy stages adds cornerstones of the full CLIC physics programme, such as Higgs width and couplings, top-quark properties, Higgs self-coupling, direct searches, and many precision electroweak measurements. The interpretation of the combined results gives crucial and accurate insight into new physics, largely complementary to LHC and HL-LHC. The construction of the first CLIC energy stage could start by 2026. First beams would be available by 2035, marking the beginning of a broad CLIC physics programme spanning 25–30 years. The Compact Linear Collider (CLIC) is a TeV-scale high-luminosity linear $e^+e^−$ collider under development at CERN. Following the CLIC conceptual design published in 2012, this report provides an overview of the CLIC project, its current status, and future developments. It presents the CLIC physics potential and reports on design, technology, and implementation aspects of the accelerator and the detector. For an optimal exploitation of its physics potential, CLIC is foreseen to be built and operated in stages, at centre-of-mass energies of 380 GeV, 1.5 TeV and 3 TeV, respectively, for a site length ranging from 11 km to 50 km. CLIC uses a two-beam acceleration scheme, in which normal-conducting high-gradient 12 GHz accelerating structures are powered via a high-current drive beam. For the first stage, an alternative with X-band klystron powering is also considered. CLIC accelerator optimisation, technical developments and system tests have resulted in significant progress in recent years. Moreover, this has led to an increased energy efficiency (power around 170 MW) for the 380 GeV stage, together with a reduced cost estimate at the level of 6 billion CHF. The detector concept, which matches the physics performance requirements and the CLIC experimental conditions, has been refined using improved software tools for simulation and reconstruction. Significant progress has been made on detector technology developments for the tracking and calorimetry systems. A wide range of CLIC physics studies has been conducted, both through full detector simulations with overlay of beam-induced backgrounds, and through parametric studies, together providing a broad overview of the CLIC physics potential. Each of the three energy stages adds cornerstones of the full CLIC physics programme, such as Higgs width and couplings, top-quark properties, Higgs self-coupling, direct searches, and many precision electroweak measurements. The interpretation of the combined results gives crucial and accurate insight into new physics, largely complementary to LHC and HL-LHC. The construction of the first CLIC energy stage could start by 2026. First beams would be available by 2035, marking the beginning of a broad CLIC physics programme spanning 25–30 years. The Compact Linear Collider (CLIC) is a TeV-scale high-luminosity linear $e^+e^−$ collider under development at CERN. Following the CLIC conceptual design published in 2012, this report provides an overview of the CLIC project, its current status, and future developments. It presents the CLIC physics potential and reports on design, technology, and implementation aspects of the accelerator and the detector. For an optimal exploitation of its physics potential, CLIC is foreseen to be built and operated in stages, at centre-of-mass energies of 380 GeV, 1.5 TeV and 3 TeV, respectively, for a site length ranging from 11 km to 50 km. CLIC uses a two-beam acceleration scheme, in which normal-conducting high-gradient 12 GHz accelerating structures are powered via a high-current drive beam. For the first stage, an alternative with X-band klystron powering is also considered. CLIC accelerator optimisation, technical developments and system tests have resulted in significant progress in recent years. Moreover, this has led to an increased energy efficiency (power around 170 MW) for the 380 GeV stage, together with a reduced cost estimate at the level of 6 billion CHF. The detector concept, which matches the physics performance requirements and the CLIC experimental conditions, has been refined using improved software tools for simulation and reconstruction. Significant progress has been made on detector technology developments for the tracking and calorimetry systems. A wide range of CLIC physics studies has been conducted, both through full detector simulations with overlay of beam-induced backgrounds, and through parametric studies, together providing a broad overview of the CLIC physics potential. Each of the three energy stages adds cornerstones of the full CLIC physics programme, such as Higgs width and couplings, top-quark properties, Higgs self-coupling, direct searches, and many precision electroweak measurements. The interpretation of the combined results gives crucial and accurate insight into new physics, largely complementary to LHC and HL-LHC. The construction of the first CLIC energy stage could start by 2026. First beams would be available by 2035, marking the beginning of a broad CLIC physics programme spanning 25–30 years. The Compact Linear Collider (CLIC) is a TeV-scale high-luminosity linear $e^+e^−$ collider under development at CERN. Following the CLIC conceptual design published in 2012, this report provides an overview of the CLIC project, its current status, and future developments. It presents the CLIC physics potential and reports on design, technology, and implementation aspects of the accelerator and the detector. For an optimal exploitation of its physics potential, CLIC is foreseen to be built and operated in stages, at centre-of-mass energies of 380 GeV, 1.5 TeV and 3 TeV, respectively, for a site length ranging from 11 km to 50 km. CLIC uses a two-beam acceleration scheme, in which normal-conducting high-gradient 12 GHz accelerating structures are powered via a high-current drive beam. For the first stage, an alternative with X-band klystron powering is also considered. CLIC accelerator optimisation, technical developments and system tests have resulted in significant progress in recent years. Moreover, this has led to an increased energy efficiency (power around 170 MW) for the 380 GeV stage, together with a reduced cost estimate at the level of 6 billion CHF. The detector concept, which matches the physics performance requirements and the CLIC experimental conditions, has been refined using improved software tools for simulation and reconstruction. Significant progress has been made on detector technology developments for the tracking and calorimetry systems. A wide range of CLIC physics studies has been conducted, both through full detector simulations with overlay of beam-induced backgrounds, and through parametric studies, together providing a broad overview of the CLIC physics potential. Each of the three energy stages adds cornerstones of the full CLIC physics programme, such as Higgs width and couplings, top-quark properties, Higgs self-coupling, direct searches, and many precision electroweak measurements. The interpretation of the combined results gives crucial and accurate insight into new physics, largely complementary to LHC and HL-LHC. The construction of the first CLIC energy stage could start by 2026. First beams would be available by 2035, marking the beginning of a broad CLIC physics programme spanning 25–30 years. The Compact Linear Collider (CLIC) is a TeV-scale high-luminosity linear $e^+e^−$ collider under development at CERN. Following the CLIC conceptual design published in 2012, this report provides an overview of the CLIC project, its current status, and future developments. It presents the CLIC physics potential and reports on design, technology, and implementation aspects of the accelerator and the detector. For an optimal exploitation of its physics potential, CLIC is foreseen to be built and operated in stages, at centre-of-mass energies of 380 GeV, 1.5 TeV and 3 TeV, respectively, for a site length ranging from 11 km to 50 km. CLIC uses a two-beam acceleration scheme, in which normal-conducting high-gradient 12 GHz accelerating structures are powered via a high-current drive beam. For the first stage, an alternative with X-band klystron powering is also considered. CLIC accelerator optimisation, technical developments and system tests have resulted in significant progress in recent years. Moreover, this has led to an increased energy efficiency (power around 170 MW) for the 380 GeV stage, together with a reduced cost estimate at the level of 6 billion CHF. The detector concept, which matches the physics performance requirements and the CLIC experimental conditions, has been refined using improved software tools for simulation and reconstruction. Significant progress has been made on detector technology developments for the tracking and calorimetry systems. A wide range of CLIC physics studies has been conducted, both through full detector simulations with overlay of beam-induced backgrounds, and through parametric studies, together providing a broad overview of the CLIC physics potential. Each of the three energy stages adds cornerstones of the full CLIC physics programme, such as Higgs width and couplings, top-quark properties, Higgs self-coupling, direct searches, and many precision electroweak measurements. The interpretation of the combined results gives crucial and accurate insight into new physics, largely complementary to LHC and HL-LHC. The construction of the first CLIC energy stage could start by 2026. First beams would be available by 2035, marking the beginning of a broad CLIC physics programme spanning 25–30 years. The Compact Linear Collider (CLIC) is a TeV-scale high-luminosity linear $e^+e^−$ collider under development at CERN. Following the CLIC conceptual design published in 2012, this report provides an overview of the CLIC project, its current status, and future developments. It presents the CLIC physics potential and reports on design, technology, and implementation aspects of the accelerator and the detector. For an optimal exploitation of its physics potential, CLIC is foreseen to be built and operated in stages, at centre-of-mass energies of 380 GeV, 1.5 TeV and 3 TeV, respectively, for a site length ranging from 11 km to 50 km. CLIC uses a two-beam acceleration scheme, in which normal-conducting high-gradient 12 GHz accelerating structures are powered via a high-current drive beam. For the first stage, an alternative with X-band klystron powering is also considered. CLIC accelerator optimisation, technical developments and system tests have resulted in significant progress in recent years. Moreover, this has led to an increased energy efficiency (power around 170 MW) for the 380 GeV stage, together with a reduced cost estimate at the level of 6 billion CHF. The detector concept, which matches the physics performance requirements and the CLIC experimental conditions, has been refined using improv The Compact Linear Collider (CLIC) is a TeV-scale high-luminosity linear $e^+e^−$ collider under development at CERN. Following the CLIC conceptual design published in 2012, this report provides an overview of the CLIC project, its current status, and future developments. It presents the CLIC physics potential and reports on design, technology, and implementation aspects of the accelerator and the detector. For an optimal exploitation of its physics potential, CLIC is foreseen to be built and operated in stages, at centre-of-mass energies of 380 GeV, 1.5 TeV and 3 TeV, respectively, for a site length ranging from 11 km to 50 km. CLIC uses a two-beam acceleration scheme, in which normal-conducting high-gradient 12 GHz accelerating structures are powered via a high-current drive beam. For the first stage, an alternative with X-band klystron powering is also considered. CLIC accelerator optimisation, technical developments and system tests have resulted in significant progress in recent years. Moreover, this has led to an increased energy efficiency (power around 170 MW) for the 380 GeV stage, together with a reduced cost estimate at the level of 6 billion CHF. The detector concept, which matches the physics performance requirements and the CLIC experimental conditions, has been refined using improv The Compact Linear Collider (CLIC) is a TeV-scale high-luminosity linear $e^+e^−$ collider under development at CERN. Following the CLIC conceptual design published in 2012, this report provides an overview of the CLIC project, its current status, and future developments. It presents the CLIC physics potential and reports on design, technology, and implementation aspects of the accelerator and the detector. For an optimal exploitation of its physics potential, CLIC is foreseen to be built and operated in stages, at centre-of-mass energies of 380 GeV, 1.5 TeV and 3 TeV, respectively, for a site length ranging from 11 km to 50 km. CLIC uses a two-beam acceleration scheme, in which normal-conducting high-gradient 12 GHz accelerating structures are powered via a high-current drive beam. For the first stage, an alternative with X-band klystron powering is also considered. CLIC accelerator optimisation, technical developments and system tests have resulted in significant progress in recent years. Moreover, this has led to an increased energy efficiency (power around 170 MW) for the 380 GeV stage, together with a reduced cost estimate at the level of 6 billion CHF. The detector concept, which matches the physics performance requirements and the CLIC experimental conditions, has been refined using improv The Compact Linear Collider (CLIC) is a TeV-scale high-luminosity linear $e^+e^−$ collider under development at CERN. Following the CLIC conceptual design published in 2012, this report provides an overview of the CLIC project, its current status, and future developments. It presents the CLIC physics potential and reports on design, technology, and implementation aspects of the accelerator and the detector. For an optimal exploitation of its physics potential, CLIC is foreseen to be built and operated in stages, at centre-of-mass energies of 380 GeV, 1.5 TeV and 3 TeV, respectively, for a site length ranging from 11 km to 50 km. CLIC uses a two-beam acceleration scheme, in which normal-conducting high-gradient 12 GHz accelerating structures are powered via a high-current drive beam. For the first stage, an alternative with X-band klystron powering is also considered. CLIC accelerator optimisation, technical developments and system tests have resulted in significant progress in recent years. Moreover, this has led to an increased energy efficiency (power around 170 MW) for the 380 GeV stage, together with a reduced cost estimate at the level of 6 billion CHF. The detector concept, which matches the physics performance requirements and the CLIC experimental conditions, has been refined using improv The Compact Linear Collider (CLIC) is a TeV-scale high-luminosity linear $e^+e^−$ collider under development at CERN. Following the CLIC conceptual design published in 2012, this report provides an overview of the CLIC project, its current status, and future developments. It presents the CLIC physics potential and reports on design, technology, and implementation aspects of the accelerator and the detector. For an optimal exploitation of its physics potential, CLIC is foreseen to be built and operated in stages, at centre-of-mass energies of 380 GeV, 1.5 TeV and 3 TeV, respectively, for a site length ranging from 11 km to 50 km. CLIC uses a two-beam acceleration scheme, in which normal-conducting high-gradient 12 GHz accelerating structures are powered via a high-current drive beam. For the first stage, an alternative with X-band klystron powering is also considered. CLIC accelerator optimisation, technical developments and system tests have resulted in significant progress in recent years. Moreover, this has led to an increased energy efficiency (power around 170 MW) for the 380 GeV stage, together with a reduced cost estimate at the level of 6 billion CHF. The detector concept, which matches the physics performance requirements and the CLIC experimental conditions, has been refined using improv The Compact Linear Collider (CLIC) is a TeV-scale high-luminosity linear $e^+e^−$ collider under development at CERN. Following the CLIC conceptual design published in 2012, this report provides an overview of the CLIC project, its current status, and future developments. It presents the CLIC physics potential and reports on design, technology, and implementation aspects of the accelerator and the detector. For an optimal exploitation of its physics potential, CLIC is foreseen to be built and operated in stages, at centre-of-mass energies of 380 GeV, 1.5 TeV and 3 TeV, respectively, for a site length ranging from 11 km to 50 km. CLIC uses a two-beam acceleration scheme, in which normal-conducting high-gradient 12 GHz accelerating structures are powered via a high-current drive beam. For the first stage, an alternative with X-band klystron powering is also considered. CLIC accelerator optimisation, technical developments and system tests have resulted in significant progress in recent years. Moreover, this has led to an increased energy efficiency (power around 170 MW) for the 380 GeV stage, together with a reduced cost estimate at the level of 6 billion CHF. The detector concept, which matches the physics performance requirements and the CLIC experimental conditions, has been refined using improv The Compact Linear Collider (CLIC) is a TeV-scale high-luminosity linear $e^+e^−$ collider under development at CERN. Following the CLIC conceptual design published in 2012, this report provides an overview of the CLIC project, its current status, and future developments. It presents the CLIC physics potential and reports on design, technology, and implementation aspects of the accelerator and the detector. For an optimal exploitation of its physics potential, CLIC is foreseen to be built and operated in stages, at centre-of-mass energies of 380 GeV, 1.5 TeV and 3 TeV, respectively, for a site length ranging from 11 km to 50 km. CLIC uses a two-beam acceleration scheme, in which normal-conducting high-gradient 12 GHz accelerating structures are powered via a high-current drive beam. For the first stage, an alternative with X-band klystron powering is also considered. CLIC accelerator optimisation, technical developments and system tests have resulted in significant progress in recent years. Moreover, this has led to an increased energy efficiency (power around 170 MW) for the 380 GeV stage, together with a reduced cost estimate at the level of 6 billion CHF. The detector concept, which matches the physics performance requirements and the CLIC experimental conditions, has been refined using improved software tools for simulation and reconstruction. Significant progress has been made on detector technology developments for the tracking and calorimetry systems. A wide range of CLIC physics studies has been conducted, both through full detector simulations with overlay of beam-induced backgrounds, and through parametric studies, together providing a broad overview of the CLIC physics potential. Each of the three energy stages adds cornerstones of the full CLIC physics programme, such as Higgs width and couplings, top-quark properties, Higgs self-coupling, direct searches, and many precision electroweak measurements. The interpretation of the combined results gives crucial and accurate insight into new physics, largely complementary to LHC and HL-LHC. The construction of the first CLIC energy stage could start by 2026. First beams would be available by 2035, marking the beginning of a broad CLIC physics programme spanning 25–30 years. The Compact Linear Collider (CLIC) is a TeV-scale high-luminosity linear $e^+e^−$ collider under development at CERN. Following the CLIC conceptual design published in 2012, this report provides an overview of the CLIC project, its current status, and future developments. It presents the CLIC physics potential and reports on design, technology, and implementation aspects of the accelerator and the detector. For an optimal exploitation of its physics potential, CLIC is foreseen to be built and operated in stages, at centre-of-mass energies of 380 GeV, 1.5 TeV and 3 TeV, respectively, for a site length ranging from 11 km to 50 km. CLIC uses a two-beam acceleration scheme, in which normal-conducting high-gradient 12 GHz accelerating structures are powered via a high-current drive beam. For the first stage, an alternative with X-band klystron powering is also considered. CLIC accelerator optimisation, technical developments and system tests have resulted in significant progress in recent years. Moreover, this has led to an increased energy efficiency (power around 170 MW) for the 380 GeV stage, together with a reduced cost estimate at the level of 6 billion CHF. The detector concept, which matches the physics performance requirements and the CLIC experimental conditions, has been refined using improved software tools for simulation and reconstruction. Significant progress has been made on detector technology developments for the tracking and calorimetry systems. A wide range of CLIC physics studies has been conducted, both through full detector simulations with overlay of beam-induced backgrounds, and through parametric studies, together providing a broad overview of the CLIC physics potential. Each of the three energy stages adds cornerstones of the full CLIC physics programme, such as Higgs width and couplings, top-quark properties, Higgs self-coupling, direct searches, and many precision electroweak measurements. The interpretation of the combined results gives crucial and accurate insight into new physics, largely complementary to LHC and HL-LHC. The construction of the first CLIC energy stage could start by 2026. First beams would be available by 2035, marking the beginning of a broad CLIC physics programme spanning 25–30 years. The Compact Linear Collider (CLIC) is a TeV-scale high-luminosity linear $e^+e^−$ collider under development at CERN. Following the CLIC conceptual design published in 2012, this report provides an overview of the CLIC project, its current status, and future developments. It presents the CLIC physics potential and reports on design, technology, and implementation aspects of the accelerator and the detector. For an optimal exploitation of its physics potential, CLIC is foreseen to be built and operated in stages, at centre-of-mass energies of 380 GeV, 1.5 TeV and 3 TeV, respectively, for a site length ranging from 11 km to 50 km. CLIC uses a two-beam acceleration scheme, in which normal-conducting high-gradient 12 GHz accelerating structures are powered via a high-current drive beam. For the first stage, an alternative with X-band klystron powering is also considered. CLIC accelerator optimisation, technical developments and system tests have resulted in significant progress in recent years. Moreover, this has led to an increased energy efficiency (power around 170 MW) for the 380 GeV stage, together with a reduced cost estimate at the level of 6 billion CHF. The detector concept, which matches the physics performance requirements and the CLIC experimental conditions, has been refined using improved software tools for simulation and reconstruction. Significant progress has been made on detector technology developments for the tracking and calorimetry systems. A wide range of CLIC physics studies has been conducted, both through full detector simulations with overlay of beam-induced backgrounds, and through parametric studies, together providing a broad overview of the CLIC physics potential. Each of the three energy stages adds cornerstones of the full CLIC physics programme, such as Higgs width and couplings, top-quark properties, Higgs self-coupling, direct searches, and many precision electroweak measurements. The interpretation of the combined results gives crucial and accurate insight into new physics, largely complementary to LHC and HL-LHC. The construction of the first CLIC energy stage could start by 2026. First beams would be available by 2035, marking the beginning of a broad CLIC physics programme spanning 25–30 years. The Compact Linear Collider (CLIC) is a TeV-scale high-luminosity linear $e^+e^−$ collider under development at CERN. Following the CLIC conceptual design published in 2012, this report provides an overview of the CLIC project, its current status, and future developments. It presents the CLIC physics potential and reports on design, technology, and implementation aspects of the accelerator and the detector. For an optimal exploitation of its physics potential, CLIC is foreseen to be built and operated in stages, at centre-of-mass energies of 380 GeV, 1.5 TeV and 3 TeV, respectively, for a site length ranging from 11 km to 50 km. CLIC uses a two-beam acceleration scheme, in which normal-conducting high-gradient 12 GHz accelerating structures are powered via a high-current drive beam. For the first stage, an alternative with X-band klystron powering is also considered. CLIC accelerator optimisation, technical developments and system tests have resulted in significant progress in recent years. Moreover, this has led to an increased energy efficiency (power around 170 MW) for the 380 GeV stage, together with a reduced cost estimate at the level of 6 billion CHF. The detector concept, which matches the physics performance requirements and the CLIC experimental conditions, has been refined using improved software tools for simulation and reconstruction. Significant progress has been made on detector technology developments for the tracking and calorimetry systems. A wide range of CLIC physics studies has been conducted, both through full detector simulations with overlay of beam-induced backgrounds, and through parametric studies, together providing a broad overview of the CLIC physics potential. Each of the three energy stages adds cornerstones of the full CLIC physics programme, such as Higgs width and couplings, top-quark properties, Higgs self-coupling, direct searches, and many precision electroweak measurements. The interpretation of the combined results gives crucial and accurate insight into new physics, largely complementary to LHC and HL-LHC. The construction of the first CLIC energy stage could start by 2026. First beams would be available by 2035, marking the beginning of a broad CLIC physics programme spanning 25–30 years. The Compact Linear Collider (CLIC) is a TeV-scale high-luminosity linear $e^+e^−$ collider under development at CERN. Following the CLIC conceptual design published in 2012, this report provides an overview of the CLIC project, its current status, and future developments. It presents the CLIC physics potential and reports on design, technology, and implementation aspects of the accelerator and the detector. For an optimal exploitation of its physics potential, CLIC is foreseen to be built and operated in stages, at centre-of-mass energies of 380 GeV, 1.5 TeV and 3 TeV, respectively, for a site length ranging from 11 km to 50 km. CLIC uses a two-beam acceleration scheme, in which normal-conducting high-gradient 12 GHz accelerating structures are powered via a high-current drive beam. For the first stage, an alternative with X-band klystron powering is also considered. CLIC accelerator optimisation, technical developments and system tests have resulted in significant progress in recent years. Moreover, this has led to an increased energy efficiency (power around 170 MW) for the 380 GeV stage, together with a reduced cost estimate at the level of 6 billion CHF. The detector concept, which matches the physics performance requirements and the CLIC experimental conditions, has been refined using improved software tools for simulation and reconstruction. Significant progress has been made on detector technology developments for the tracking and calorimetry systems. A wide range of CLIC physics studies has been conducted, both through full detector simulations with overlay of beam-induced backgrounds, and through parametric studies, together providing a broad overview of the CLIC physics potential. Each of the three energy stages adds cornerstones of the full CLIC physics programme, such as Higgs width and couplings, top-quark properties, Higgs self-coupling, direct searches, and many precision electroweak measurements. The interpretation of the combined results gives crucial and accurate insight into new physics, largely complementary to LHC and HL-LHC. The construction of the first CLIC energy stage could start by 2026. First beams would be available by 2035, marking the beginning of a broad CLIC physics programme spanning 25–30 years. The Compact Linear Collider (CLIC) is a TeV-scale high-luminosity linear $e^+e^−$ collider under development at CERN. Following the CLIC conceptual design published in 2012, this report provides an overview of the CLIC project, its current status, and future developments. It presents the CLIC physics potential and reports on design, technology, and implementation aspects of the accelerator and the detector. For an optimal exploitation of its physics potential, CLIC is foreseen to be built and operated in stages, at centre-of-mass energies of 380 GeV, 1.5 TeV and 3 TeV, respectively, for a site length ranging from 11 km to 50 km. CLIC uses a two-beam acceleration scheme, in which normal-conducting high-gradient 12 GHz accelerating structures are powered via a high-current drive beam. For the first stage, an alternative with X-band klystron powering is also considered. CLIC accelerator optimisation, technical developments and system tests have resulted in significant progress in recent years. Moreover, this has led to an increased energy efficiency (power around 170 MW) for the 380 GeV stage, together with a reduced cost estimate at the level of 6 billion CHF. The detector concept, which matches the physics performance requirements and the CLIC experimental conditions, has been refined using improved software tools for simulation and reconstruction. Significant progress has been made on detector technology developments for the tracking and calorimetry systems. A wide range of CLIC physics studies has been conducted, both through full detector simulations with overlay of beam-induced backgrounds, and through parametric studies, together providing a broad overview of the CLIC physics potential. Each of the three energy stages adds cornerstones of the full CLIC physics programme, such as Higgs width and couplings, top-quark properties, Higgs self-coupling, direct searches, and many precision electroweak measurements. The interpretation of the combined results gives crucial and accurate insight into new physics, largely complementary to LHC and HL-LHC. The construction of the first CLIC energy stage could start by 2026. First beams would be available by 2035, marking the beginning of a broad CLIC physics programme spanning 25–30 years. The Compact Linear Collider (CLIC) is a TeV-scale high-luminosity linear $e^+e^−$ collider under development at CERN. Following the CLIC conceptual design published in 2012, this report provides an overview of the CLIC project, its current status, and future developments. It presents the CLIC physics potential and reports on design, technology, and implementation aspects of the accelerator and the detector. For an optimal exploitation of its physics potential, CLIC is foreseen to be built and operated in stages, at centre-of-mass energies of 380 GeV, 1.5 TeV and 3 TeV, respectively, for a site length ranging from 11 km to 50 km. CLIC uses a two-beam acceleration scheme, in which normal-conducting high-gradient 12 GHz accelerating structures are powered via a high-current drive beam. For the first stage, an alternative with X-band klystron powering is also considered. CLIC accelerator optimisation, technical developments and system tests have resulted in significant progress in recent years. Moreover, this has led to an increased energy efficiency (power around 170 MW) for the 380 GeV stage, together with a reduced cost estimate at the level of 6 billion CHF. The detector concept, which matches the physics performance requirements and the CLIC experimental conditions, has been refined using improved software tools for simulation and reconstruction. Significant progress has been made on detector technology developments for the tracking and calorimetry systems. A wide range of CLIC physics studies has been conducted, both through full detector simulations with overlay of beam-induced backgrounds, and through parametric studies, together providing a broad overview of the CLIC physics potential. Each of the three energy stages adds cornerstones of the full CLIC physics programme, such as Higgs width and couplings, top-quark properties, Higgs self-coupling, direct searches, and many precision electroweak measurements. The interpretation of the combined results gives crucial and accurate insight into new physics, largely complementary to LHC and HL-LHC. The construction of the first CLIC energy stage could start by 2026. First beams would be available by 2035, marking the beginning of a broad CLIC physics programme spanning 25–30 years. The Compact Linear Collider (CLIC) is a TeV-scale high-luminosity linear $e^+e^−$ collider under development at CERN. Following the CLIC conceptual design published in 2012, this report provides an overview of the CLIC project, its current status, and future developments. It presents the CLIC physics potential and reports on design, technology, and implementation aspects of the accelerator and the detector. For an optimal exploitation of its physics potential, CLIC is foreseen to be built and operated in stages, at centre-of-mass energies of 380 GeV, 1.5 TeV and 3 TeV, respectively, for a site length ranging from 11 km to 50 km. CLIC uses a two-beam acceleration scheme, in which normal-conducting high-gradient 12 GHz accelerating structures are powered via a high-current drive beam. For the first stage, an alternative with X-band klystron powering is also considered. CLIC accelerator optimisation, technical developments and system tests have resulted in significant progress in recent years. Moreover, this has led to an increased energy efficiency (power around 170 MW) for the 380 GeV stage, together with a reduced cost estimate at the level of 6 billion CHF. The detector concept, which matches the physics performance requirements and the CLIC experimental conditions, has been refined using improved software tools for simulation and reconstruction. Significant progress has been made on detector technology developments for the tracking and calorimetry systems. A wide range of CLIC physics studies has been conducted, both through full detector simulations with overlay of beam-induced backgrounds, and through parametric studies, together providing a broad overview of the CLIC physics potential. Each of the three energy stages adds cornerstones of the full CLIC physics programme, such as Higgs width and couplings, top-quark properties, Higgs self-coupling, direct searches, and many precision electroweak measurements. The interpretation of the combined results gives crucial and accurate insight into new physics, largely complementary to LHC and HL-LHC. The construction of the first CLIC energy stage could start by 2026. First beams would be available by 2035, marking the beginning of a broad CLIC physics programme spanning 25–30 years. The Compact Linear Collider (CLIC) is a TeV-scale high-luminosity linear $e^+e^−$ collider under development at CERN. Following the CLIC conceptual design published in 2012, this report provides an overview of the CLIC project, its current status, and future developments. It presents the CLIC physics potential and reports on design, technology, and implementation aspects of the accelerator and the detector. For an optimal exploitation of its physics potential, CLIC is foreseen to be built and operated in stages, at centre-of-mass energies of 380 GeV, 1.5 TeV and 3 TeV, respectively, for a site length ranging from 11 km to 50 km. CLIC uses a two-beam acceleration scheme, in which normal-conducting high-gradient 12 GHz accelerating structures are powered via a high-current drive beam. For the first stage, an alternative with X-band klystron powering is also considered. CLIC accelerator optimisation, technical developments and system tests have resulted in significant progress in recent years. Moreover, this has led to an increased energy efficiency (power around 170 MW) for the 380 GeV stage, together with a reduced cost estimate at the level of 6 billion CHF. The detector concept, which matches the physics performance requirements and the CLIC experimental conditions, has been refined using improved software tools for simulation and reconstruction. Significant progress has been made on detector technology developments for the tracking and calorimetry systems. A wide range of CLIC physics studies has been conducted, both through full detector simulations with overlay of beam-induced backgrounds, and through parametric studies, together providing a broad overview of the CLIC physics potential. Each of the three energy stages adds cornerstones of the full CLIC physics programme, such as Higgs width and couplings, top-quark properties, Higgs self-coupling, direct searches, and many precision electroweak measurements. The interpretation of the combined results gives crucial and accurate insight into new physics, largely complementary to LHC and HL-LHC. The construction of the first CLIC energy stage could start by 2026. First beams would be available by 2035, marking the beginning of a broad CLIC physics programme spanning 25–30 years. The Compact Linear Collider (CLIC) is a TeV-scale high-luminosity linear $e^+e^−$ collider under development at CERN. Following the CLIC conceptual design published in 2012, this report provides an overview of the CLIC project, its current status, and future developments. It presents the CLIC physics potential and reports on design, technology, and implementation aspects of the accelerator and the detector. For an optimal exploitation of its physics potential, CLIC is foreseen to be built and operated in stages, at centre-of-mass energies of 380 GeV, 1.5 TeV and 3 TeV, respectively, for a site length ranging from 11 km to 50 km. CLIC uses a two-beam acceleration scheme, in which normal-conducting high-gradient 12 GHz accelerating structures are powered via a high-current drive beam. For the first stage, an alternative with X-band klystron powering is also considered. CLIC accelerator optimisation, technical developments and system tests have resulted in significant progress in recent years. Moreover, this has led to an increased energy efficiency (power around 170 MW) for the 380 GeV stage, together with a reduced cost estimate at the level of 6 billion CHF. The detector concept, which matches the physics performance requirements and the CLIC experimental conditions, has been refined using improved software tools for simulation and reconstruction. Significant progress has been made on detector technology developments for the tracking and calorimetry systems. A wide range of CLIC physics studies has been conducted, both through full detector simulations with overlay of beam-induced backgrounds, and through parametric studies, together providing a broad overview of the CLIC physics potential. Each of the three energy stages adds cornerstones of the full CLIC physics programme, such as Higgs width and couplings, top-quark properties, Higgs self-coupling, direct searches, and many precision electroweak measurements. The interpretation of the combined results gives crucial and accurate insight into new physics, largely complementary to LHC and HL-LHC. The construction of the first CLIC energy stage could start by 2026. First beams would be available by 2035, marking the beginning of a broad CLIC physics programme spanning 25–30 years. The Compact Linear Collider (CLIC) is a TeV-scale high-luminosity linear $e^+e^−$ collider under development at CERN. Following the CLIC conceptual design published in 2012, this report provides an overview of the CLIC project, its current status, and future developments. It presents the CLIC physics potential and reports on design, technology, and implementation aspects of the accelerator and the detector. For an optimal exploitation of its physics potential, CLIC is foreseen to be built and operated in stages, at centre-of-mass energies of 380 GeV, 1.5 TeV and 3 TeV, respectively, for a site length ranging from 11 km to 50 km. CLIC uses a two-beam acceleration scheme, in which normal-conducting high-gradient 12 GHz accelerating structures are powered via a high-current drive beam. For the first stage, an alternative with X-band klystron powering is also considered. CLIC accelerator optimisation, technical developments and system tests have resulted in significant progress in recent years. Moreover, this has led to an increased energy efficiency (power around 170 MW) for the 380 GeV stage, together with a reduced cost estimate at the level of 6 billion CHF. The detector concept, which matches the physics performance requirements and the CLIC experimental conditions, has been refined using improved software tools for simulation and reconstruction. Significant progress has been made on detector technology developments for the tracking and calorimetry systems. A wide range of CLIC physics studies has been conducted, both through full detector simulations with overlay of beam-induced backgrounds, and through parametric studies, together providing a broad overview of the CLIC physics potential. Each of the three energy stages adds cornerstones of the full CLIC physics programme, such as Higgs width and couplings, top-quark properties, Higgs self-coupling, direct searches, and many precision electroweak measurements. The interpretation of the combined results gives crucial and accurate insight into new physics, largely complementary to LHC and HL-LHC. The construction of the first CLIC energy stage could start by 2026. First beams would be available by 2035, marking the beginning of a broad CLIC physics programme spanning 25–30 years. The Compact Linear Collider (CLIC) is a TeV-scale high-luminosity linear $e^+e^−$ collider under development at CERN. Following the CLIC conceptual design published in 2012, this report provides an overview of the CLIC project, its current status, and future developments. It presents the CLIC physics potential and reports on design, technology, and implementation aspects of the accelerator and the detector. For an optimal exploitation of its physics potential, CLIC is foreseen to be built and operated in stages, at centre-of-mass energies of 380 GeV, 1.5 TeV and 3 TeV, respectively, for a site length ranging from 11 km to 50 km. CLIC uses a two-beam acceleration scheme, in which normal-conducting high-gradient 12 GHz accelerating structures are powered via a high-current drive beam. For the first stage, an alternative with X-band klystron powering is also considered. CLIC accelerator optimisation, technical developments and system tests have resulted in significant progress in recent years. Moreover, this has led to an increased energy efficiency (power around 170 MW) for the 380 GeV stage, together with a reduced cost estimate at the level of 6 billion CHF. The detector concept, which matches the physics performance requirements and the CLIC experimental conditions, has been refined using improved software tools for simulation and reconstruction. Significant progress has been made on detector technology developments for the tracking and calorimetry systems. A wide range of CLIC physics studies has been conducted, both through full detector simulations with overlay of beam-induced backgrounds, and through parametric studies, together providing a broad overview of the CLIC physics potential. Each of the three energy stages adds cornerstones of the full CLIC physics programme, such as Higgs width and couplings, top-quark properties, Higgs self-coupling, direct searches, and many precision electroweak measurements. The interpretation of the combined results gives crucial and accurate insight into new physics, largely complementary to LHC and HL-LHC. The construction of the first CLIC energy stage could start by 2026. First beams would be available by 2035, marking the beginning of a broad CLIC physics programme spanning 25–30 years. The Compact Linear Collider (CLIC) is a TeV-scale high-luminosity linear $e^+e^−$ collider under development at CERN. Following the CLIC conceptual design published in 2012, this report provides an overview of the CLIC project, its current status, and future developments. It presents the CLIC physics potential and reports on design, technology, and implementation aspects of the accelerator and the detector. For an optimal exploitation of its physics potential, CLIC is foreseen to be built and operated in stages, at centre-of-mass energies of 380 GeV, 1.5 TeV and 3 TeV, respectively, for a site length ranging from 11 km to 50 km. CLIC uses a two-beam acceleration scheme, in which normal-conducting high-gradient 12 GHz accelerating structures are powered via a high-current drive beam. For the first stage, an alternative with X-band klystron powering is also considered. CLIC accelerator optimisation, technical developments and system tests have resulted in significant progress in recent years. Moreover, this has led to an increased energy efficiency (power around 170 MW) for the 380 GeV stage, together with a reduced cost estimate at the level of 6 billion CHF. The detector concept, which matches the physics performance requirements and the CLIC experimental conditions, has been refined using improved software tools for simulation and reconstruction. Significant progress has been made on detector technology developments for the tracking and calorimetry systems. A wide range of CLIC physics studies has been conducted, both through full detector simulations with overlay of beam-induced backgrounds, and through parametric studies, together providing a broad overview of the CLIC physics potential. Each of the three energy stages adds cornerstones of the full CLIC physics programme, such as Higgs width and couplings, top-quark properties, Higgs self-coupling, direct searches, and many precision electroweak measurements. The interpretation of the combined results gives crucial and accurate insight into new physics, largely complementary to LHC and HL-LHC. The construction of the first CLIC energy stage could start by 2026. First beams would be available by 2035, marking the beginning of a broad CLIC physics programme spanning 25–30 years. The Compact Linear Collider (CLIC) is a TeV-scale high-luminosity linear $e^+e^−$ collider under development at CERN. Following the CLIC conceptual design published in 2012, this report provides an overview of the CLIC project, its current status, and future developments. It presents the CLIC physics potential and reports on design, technology, and implementation aspects of the accelerator and the detector. For an optimal exploitation of its physics potential, CLIC is foreseen to be built and operated in stages, at centre-of-mass energies of 380 GeV, 1.5 TeV and 3 TeV, respectively, for a site length ranging from 11 km to 50 km. CLIC uses a two-beam acceleration scheme, in which normal-conducting high-gradient 12 GHz accelerating structures are powered via a high-current drive beam. For the first stage, an alternative with X-band klystron powering is also considered. CLIC accelerator optimisation, technical developments and system tests have resulted in significant progress in recent years. Moreover, this has led to an increased energy efficiency (power around 170 MW) for the 380 GeV stage, together with a reduced cost estimate at the level of 6 billion CHF. The detector concept, which matches the physics performance requirements and the CLIC experimental conditions, has been refined using improved software tools for simulation and reconstruction. Significant progress has been made on detector technology developments for the tracking and calorimetry systems. A wide range of CLIC physics studies has been conducted, both through full detector simulations with overlay of beam-induced backgrounds, and through parametric studies, together providing a broad overview of the CLIC physics potential. Each of the three energy stages adds cornerstones of the full CLIC physics programme, such as Higgs width and couplings, top-quark properties, Higgs self-coupling, direct searches, and many precision electroweak measurements. The interpretation of the combined results gives crucial and accurate insight into new physics, largely complementary to LHC and HL-LHC. The construction of the first CLIC energy stage could start by 2026. First beams would be available by 2035, marking the beginning of a broad CLIC physics programme spanning 25–30 years. The Compact Linear Collider (CLIC) is a TeV-scale high-luminosity linear $e^+e^−$ collider under development at CERN. Following the CLIC conceptual design published in 2012, this report provides an overview of the CLIC project, its current status, and future developments. It presents the CLIC physics potential and reports on design, technology, and implementation aspects of the accelerator and the detector. For an optimal exploitation of its physics potential, CLIC is foreseen to be built and operated in stages, at centre-of-mass energies of 380 GeV, 1.5 TeV and 3 TeV, respectively, for a site length ranging from 11 km to 50 km. CLIC uses a two-beam acceleration scheme, in which normal-conducting high-gradient 12 GHz accelerating structures are powered via a high-current drive beam. For the first stage, an alternative with X-band klystron powering is also considered. CLIC accelerator optimisation, technical developments and system tests have resulted in significant progress in recent years. Moreover, this has led to an increased energy efficiency (power around 170 MW) for the 380 GeV stage, together with a reduced cost estimate at the level of 6 billion CHF. The detector concept, which matches the physics performance requirements and the CLIC experimental conditions, has been refined using improved software tools for simulation and reconstruction. Significant progress has been made on detector technology developments for the tracking and calorimetry systems. A wide range of CLIC physics studies has been conducted, both through full detector simulations with overlay of beam-induced backgrounds, and through parametric studies, together providing a broad overview of the CLIC physics potential. Each of the three energy stages adds cornerstones of the full CLIC physics programme, such as Higgs width and couplings, top-quark properties, Higgs self-coupling, direct searches, and many precision electroweak measurements. The interpretation of the combined results gives crucial and accurate insight into new physics, largely complementary to LHC and HL-LHC. The construction of the first CLIC energy stage could start by 2026. First beams would be available by 2035, marking the beginning of a broad CLIC physics programme spanning 25–30 years. The Compact Linear Collider (CLIC) is a TeV-scale high-luminosity linear $e^+e^−$ collider under development at CERN. Following the CLIC conceptual design published in 2012, this report provides an overview of the CLIC project, its current status, and future developments. It presents the CLIC physics potential and reports on design, technology, and implementation aspects of the accelerator and the detector. For an optimal exploitation of its physics potential, CLIC is foreseen to be built and operated in stages, at centre-of-mass energies of 380 GeV, 1.5 TeV and 3 TeV, respectively, for a site length ranging from 11 km to 50 km. CLIC uses a two-beam acceleration scheme, in which normal-conducting high-gradient 12 GHz accelerating structures are powered via a high-current drive beam. For the first stage, an alternative with X-band klystron powering is also considered. CLIC accelerator optimisation, technical developments and system tests have resulted in significant progress in recent years. Moreover, this has led to an increased energy efficiency (power around 170 MW) for the 380 GeV stage, together with a reduced cost estimate at the level of 6 billion CHF. The detector concept, which matches the physics performance requirements and the CLIC experimental conditions, has been refined using improved software tools for simulation and reconstruction. Significant progress has been made on detector technology developments for the tracking and calorimetry systems. A wide range of CLIC physics studies has been conducted, both through full detector simulations with overlay of beam-induced backgrounds, and through parametric studies, together providing a broad overview of the CLIC physics potential. Each of the three energy stages adds cornerstones of the full CLIC physics programme, such as Higgs width and couplings, top-quark properties, Higgs self-coupling, direct searches, and many precision electroweak measurements. The interpretation of the combined results gives crucial and accurate insight into new physics, largely complementary to LHC and HL-LHC. The construction of the first CLIC energy stage could start by 2026. First beams would be available by 2035, marking the beginning of a broad CLIC physics programme spanning 25–30 years. The Compact Linear Collider (CLIC) is a TeV-scale high-luminosity linear $e^+e^−$ collider under development at CERN. Following the CLIC conceptual design published in 2012, this report provides an overview of the CLIC project, its current status, and future developments. It presents the CLIC physics potential and reports on design, technology, and implementation aspects of the accelerator and the detector. For an optimal exploitation of its physics potential, CLIC is foreseen to be built and operated in stages, at centre-of-mass energies of 380 GeV, 1.5 TeV and 3 TeV, respectively, for a site length ranging from 11 km to 50 km. CLIC uses a two-beam acceleration scheme, in which normal-conducting high-gradient 12 GHz accelerating structures are powered via a high-current drive beam. For the first stage, an alternative with X-band klystron powering is also considered. CLIC accelerator optimisation, technical developments and system tests have resulted in significant progress in recent years. Moreover, this has led to an increased energy efficiency (power around 170 MW) for the 380 GeV stage, together with a reduced cost estimate at the level of 6 billion CHF. The detector concept, which matches the physics performance requirements and the CLIC experimental conditions, has been refined using improved software tools for simulation and reconstruction. Significant progress has been made on detector technology developments for the tracking and calorimetry systems. A wide range of CLIC physics studies has been conducted, both through full detector simulations with overlay of beam-induced backgrounds, and through parametric studies, together providing a broad overview of the CLIC physics potential. Each of the three energy stages adds cornerstones of the full CLIC physics programme, such as Higgs width and couplings, top-quark properties, Higgs self-coupling, direct searches, and many precision electroweak measurements. The interpretation of the combined results gives crucial and accurate insight into new physics, largely complementary to LHC and HL-LHC. The construction of the first CLIC energy stage could start by 2026. First beams would be available by 2035, marking the beginning of a broad CLIC physics programme spanning 25–30 years. The Compact Linear Collider (CLIC) is a TeV-scale high-luminosity linear $e^+e^−$ collider under development at CERN. Following the CLIC conceptual design published in 2012, this report provides an overview of the CLIC project, its current status, and future developments. It presents the CLIC physics potential and reports on design, technology, and implementation aspects of the accelerator and the detector. For an optimal exploitation of its physics potential, CLIC is foreseen to be built and operated in stages, at centre-of-mass energies of 380 GeV, 1.5 TeV and 3 TeV, respectively, for a site length ranging from 11 km to 50 km. CLIC uses a two-beam acceleration scheme, in which normal-conducting high-gradient 12 GHz accelerating structures are powered via a high-current drive beam. For the first stage, an alternative with X-band klystron powering is also considered. CLIC accelerator optimisation, technical developments and system tests have resulted in significant progress in recent years. Moreover, this has led to an increased energy efficiency (power around 170 MW) for the 380 GeV stage, together with a reduced cost estimate at the level of 6 billion CHF. The detector concept, which matches the physics performance requirements and the CLIC experimental conditions, has been refined using improved software tools for simulation and reconstruction. Significant progress has been made on detector technology developments for the tracking and calorimetry systems. A wide range of CLIC physics studies has been conducted, both through full detector simulations with overlay of beam-induced backgrounds, and through parametric studies, together providing a broad overview of the CLIC physics potential. Each of the three energy stages adds cornerstones of the full CLIC physics programme, such as Higgs width and couplings, top-quark properties, Higgs self-coupling, direct searches, and many precision electroweak measurements. The interpretation of the combined results gives crucial and accurate insight into new physics, largely complementary to LHC and HL-LHC. The construction of the first CLIC energy stage could start by 2026. First beams would be available by 2035, marking the beginning of a broad CLIC physics programme spanning 25–30 years. The Compact Linear Collider (CLIC) is a TeV-scale high-luminosity linear $e^+e^−$ collider under development at CERN. Following the CLIC conceptual design published in 2012, this report provides an overview of the CLIC project, its current status, and future developments. It presents the CLIC physics potential and reports on design, technology, and implementation aspects of the accelerator and the detector. For an optimal exploitation of its physics potential, CLIC is foreseen to be built and operated in stages, at centre-of-mass energies of 380 GeV, 1.5 TeV and 3 TeV, respectively, for a site length ranging from 11 km to 50 km. CLIC uses a two-beam acceleration scheme, in which normal-conducting high-gradient 12 GHz accelerating structures are powered via a high-current drive beam. For the first stage, an alternative with X-band klystron powering is also considered. CLIC accelerator optimisation, technical developments and system tests have resulted in significant progress in recent years. Moreover, this has led to an increased energy efficiency (power around 170 MW) for the 380 GeV stage, together with a reduced cost estimate at the level of 6 billion CHF. The detector concept, which matches the physics performance requirements and the CLIC experimental conditions, has been refined using improved software tools for simulation and reconstruction. Significant progress has been made on detector technology developments for the tracking and calorimetry systems. A wide range of CLIC physics studies has been conducted, both through full detector simulations with overlay of beam-induced backgrounds, and through parametric studies, together providing a broad overview of the CLIC physics potential. Each of the three energy stages adds cornerstones of the full CLIC physics programme, such as Higgs width and couplings, top-quark properties, Higgs self-coupling, direct searches, and many precision electroweak measurements. The interpretation of the combined results gives crucial and accurate insight into new physics, largely complementary to LHC and HL-LHC. The construction of the first CLIC energy stage could start by 2026. First beams would be available by 2035, marking the beginning of a broad CLIC physics programme spanning 25–30 years. The Compact Linear Collider (CLIC) is a TeV-scale high-luminosity linear $e^+e^−$ collider under development at CERN. Following the CLIC conceptual design published in 2012, this report provides an overview of the CLIC project, its current status, and future developments. It presents the CLIC physics potential and reports on design, technology, and implementation aspects of the accelerator and the detector. For an optimal exploitation of its physics potential, CLIC is foreseen to be built and operated in stages, at centre-of-mass energies of 380 GeV, 1.5 TeV and 3 TeV, respectively, for a site length ranging from 11 km to 50 km. CLIC uses a two-beam acceleration scheme, in which normal-conducting high-gradient 12 GHz accelerating structures are powered via a high-current drive beam. For the first stage, an alternative with X-band klystron powering is also considered. CLIC accelerator optimisation, technical developments and system tests have resulted in significant progress in recent years. Moreover, this has led to an increased energy efficiency (power around 170 MW) for the 380 GeV stage, together with a reduced cost estimate at the level of 6 billion CHF. The detector concept, which matches the physics performance requirements and the CLIC experimental conditions, has been refined using improved software tools for simulation and reconstruction. Significant progress has been made on detector technology developments for the tracking and calorimetry systems. A wide range of CLIC physics studies has been conducted, both through full detector simulations with overlay of beam-induced backgrounds, and through parametric studies, together providing a broad overview of the CLIC physics potential. Each of the three energy stages adds cornerstones of the full CLIC physics programme, such as Higgs width and couplings, top-quark properties, Higgs self-coupling, direct searches, and many precision electroweak measurements. The interpretation of the combined results gives crucial and accurate insight into new physics, largely complementary to LHC and HL-LHC. The construction of the first CLIC energy stage could start by 2026. First beams would be available by 2035, marking the beginning of a broad CLIC physics programme spanning 25–30 years. The Compact Linear Collider (CLIC) is a TeV-scale high-luminosity linear $e^+e^−$ collider under development at CERN. Following the CLIC conceptual design published in 2012, this report provides an overview of the CLIC project, its current status, and future developments. It presents the CLIC physics potential and reports on design, technology, and implementation aspects of the accelerator and the detector. For an optimal exploitation of its physics potential, CLIC is foreseen to be built and operated in stages, at centre-of-mass energies of 380 GeV, 1.5 TeV and 3 TeV, respectively, for a site length ranging from 11 km to 50 km. CLIC uses a two-beam acceleration scheme, in which normal-conducting high-gradient 12 GHz accelerating structures are powered via a high-current drive beam. For the first stage, an alternative with X-band klystron powering is also considered. CLIC accelerator optimisation, technical developments and system tests have resulted in significant progress in recent years. Moreover, this has led to an increased energy efficiency (power around 170 MW) for the 380 GeV stage, together with a reduced cost estimate at the level of 6 billion CHF. The detector concept, which matches the physics performance requirements and the CLIC experimental conditions, has been refined using improved software tools for simulation and reconstruction. Significant progress has been made on detector technology developments for the tracking and calorimetry systems. A wide range of CLIC physics studies has been conducted, both through full detector simulations with overlay of beam-induced backgrounds, and through parametric studies, together providing a broad overview of the CLIC physics potential. Each of the three energy stages adds cornerstones of the full CLIC physics programme, such as Higgs width and couplings, top-quark properties, Higgs self-coupling, direct searches, and many precision electroweak measurements. The interpretation of the combined results gives crucial and accurate insight into new physics, largely complementary to LHC and HL-LHC. The construction of the first CLIC energy stage could start by 2026. First beams would be available by 2035, marking the beginning of a broad CLIC physics programme spanning 25–30 years. The Compact Linear Collider (CLIC) is a TeV-scale high-luminosity linear $e^+e^−$ collider under development at CERN. Following the CLIC conceptual design published in 2012, this report provides an overview of the CLIC project, its current status, and future developments. It presents the CLIC physics potential and reports on design, technology, and implementation aspects of the accelerator and the detector. For an optimal exploitation of its physics potential, CLIC is foreseen to be built and operated in stages, at centre-of-mass energies of 380 GeV, 1.5 TeV and 3 TeV, respectively, for a site length ranging from 11 km to 50 km. CLIC uses a two-beam acceleration scheme, in which normal-conducting high-gradient 12 GHz accelerating structures are powered via a high-current drive beam. For the first stage, an alternative with X-band klystron powering is also considered. CLIC accelerator optimisation, technical developments and system tests have resulted in significant progress in recent years. Moreover, this has led to an increased energy efficiency (power around 170 MW) for the 380 GeV stage, together with a reduced cost estimate at the level of 6 billion CHF. The detector concept, which matches the physics performance requirements and the CLIC experimental conditions, has been refined using improved software tools for simulation and reconstruction. Significant progress has been made on detector technology developments for the tracking and calorimetry systems. A wide range of CLIC physics studies has been conducted, both through full detector simulations with overlay of beam-induced backgrounds, and through parametric studies, together providing a broad overview of the CLIC physics potential. Each of the three energy stages adds cornerstones of the full CLIC physics programme, such as Higgs width and couplings, top-quark properties, Higgs self-coupling, direct searches, and many precision electroweak measurements. The interpretation of the combined results gives crucial and accurate insight into new physics, largely complementary to LHC and HL-LHC. The construction of the first CLIC energy stage could start by 2026. First beams would be available by 2035, marking the beginning of a broad CLIC physics programme spanning 25–30 years. The Compact Linear Collider (CLIC) is a TeV-scale high-luminosity linear $e^+e^−$ collider under development at CERN. Following the CLIC conceptual design published in 2012, this report provides an overview of the CLIC project, its current status, and future developments. It presents the CLIC physics potential and reports on design, technology, and implementation aspects of the accelerator and the detector. For an optimal exploitation of its physics potential, CLIC is foreseen to be built and operated in stages, at centre-of-mass energies of 380 GeV, 1.5 TeV and 3 TeV, respectively, for a site length ranging from 11 km to 50 km. CLIC uses a two-beam acceleration scheme, in which normal-conducting high-gradient 12 GHz accelerating structures are powered via a high-current drive beam. For the first stage, an alternative with X-band klystron powering is also considered. CLIC accelerator optimisation, technical developments and system tests have resulted in significant progress in recent years. Moreover, this has led to an increased energy efficiency (power around 170 MW) for the 380 GeV stage, together with a reduced cost estimate at the level of 6 billion CHF. The detector concept, which matches the physics performance requirements and the CLIC experimental conditions, has been refined using improved software tools for simulation and reconstruction. Significant progress has been made on detector technology developments for the tracking and calorimetry systems. A wide range of CLIC physics studies has been conducted, both through full detector simulations with overlay of beam-induced backgrounds, and through parametric studies, together providing a broad overview of the CLIC physics potential. Each of the three energy stages adds cornerstones of the full CLIC physics programme, such as Higgs width and couplings, top-quark properties, Higgs self-coupling, direct searches, and many precision electroweak measurements. The interpretation of the combined results gives crucial and accurate insight into new physics, largely complementary to LHC and HL-LHC. The construction of the first CLIC energy stage could start by 2026. First beams would be available by 2035, marking the beginning of a broad CLIC physics programme spanning 25–30 years. The Compact Linear Collider (CLIC) is a TeV-scale high-luminosity linear $e^+e^−$ collider under development at CERN. Following the CLIC conceptual design published in 2012, this report provides an overview of the CLIC project, its current status, and future developments. It presents the CLIC physics potential and reports on design, technology, and implementation aspects of the accelerator and the detector. For an optimal exploitation of its physics potential, CLIC is foreseen to be built and operated in stages, at centre-of-mass energies of 380 GeV, 1.5 TeV and 3 TeV, respectively, for a site length ranging from 11 km to 50 km. CLIC uses a two-beam acceleration scheme, in which normal-conducting high-gradient 12 GHz accelerating structures are powered via a high-current drive beam. For the first stage, an alternative with X-band klystron powering is also considered. CLIC accelerator optimisation, technical developments and system tests have resulted in significant progress in recent years. Moreover, this has led to an increased energy efficiency (power around 170 MW) for the 380 GeV stage, together with a reduced cost estimate at the level of 6 billion CHF. The detector concept, which matches the physics performance requirements and the CLIC experimental conditions, has been refined using improved software tools for simulation and reconstruction. Significant progress has been made on detector technology developments for the tracking and calorimetry systems. A wide range of CLIC physics studies has been conducted, both through full detector simulations with overlay of beam-induced backgrounds, and through parametric studies, together providing a broad overview of the CLIC physics potential. Each of the three energy stages adds cornerstones of the full CLIC physics programme, such as Higgs width and couplings, top-quark properties, Higgs self-coupling, direct searches, and many precision electroweak measurements. The interpretation of the combined results gives crucial and accurate insight into new physics, largely complementary to LHC and HL-LHC. The construction of the first CLIC energy stage could start by 2026. First beams would be available by 2035, marking the beginning of a broad CLIC physics programme spanning 25–30 years. The Compact Linear Collider (CLIC) is a TeV-scale high-luminosity linear $e^+e^−$ collider under development at CERN. Following the CLIC conceptual design published in 2012, this report provides an overview of the CLIC project, its current status, and future developments. It presents the CLIC physics potential and reports on design, technology, and implementation aspects of the accelerator and the detector. For an optimal exploitation of its physics potential, CLIC is foreseen to be built and operated in stages, at centre-of-mass energies of 380 GeV, 1.5 TeV and 3 TeV, respectively, for a site length ranging from 11 km to 50 km. CLIC uses a two-beam acceleration scheme, in which normal-conducting high-gradient 12 GHz accelerating structures are powered via a high-current drive beam. For the first stage, an alternative with X-band klystron powering is also considered. CLIC accelerator optimisation, technical developments and system tests have resulted in significant progress in recent years. Moreover, this has led to an increased energy efficiency (power around 170 MW) for the 380 GeV stage, together with a reduced cost estimate at the level of 6 billion CHF. The detector concept, which matches the physics performance requirements and the CLIC experimental conditions, has been refined using improved software tools for simulation and reconstruction. Significant progress has been made on detector technology developments for the tracking and calorimetry systems. A wide range of CLIC physics studies has been conducted, both through full detector simulations with overlay of beam-induced backgrounds, and through parametric studies, together providing a broad overview of the CLIC physics potential. Each of the three energy stages adds cornerstones of the full CLIC physics programme, such as Higgs width and couplings, top-quark properties, Higgs self-coupling, direct searches, and many precision electroweak measurements. The interpretation of the combined results gives crucial and accurate insight into new physics, largely complementary to LHC and HL-LHC. The construction of the first CLIC energy stage could start by 2026. First beams would be available by 2035, marking the beginning of a broad CLIC physics programme spanning 25–30 years. The Compact Linear Collider (CLIC) is a TeV-scale high-luminosity linear $e^+e^−$ collider under development at CERN. Following the CLIC conceptual design published in 2012, this report provides an overview of the CLIC project, its current status, and future developments. It presents the CLIC physics potential and reports on design, technology, and implementation aspects of the accelerator and the detector. For an optimal exploitation of its physics potential, CLIC is foreseen to be built and operated in stages, at centre-of-mass energies of 380 GeV, 1.5 TeV and 3 TeV, respectively, for a site length ranging from 11 km to 50 km. CLIC uses a two-beam acceleration scheme, in which normal-conducting high-gradient 12 GHz accelerating structures are powered via a high-current drive beam. For the first stage, an alternative with X-band klystron powering is also considered. CLIC accelerator optimisation, technical developments and system tests have resulted in significant progress in recent years. Moreover, this has led to an increased energy efficiency (power around 170 MW) for the 380 GeV stage, together with a reduced cost estimate at the level of 6 billion CHF. The detector concept, which matches the physics performance requirements and the CLIC experimental conditions, has been refined using improved software tools for simulation and reconstruction. Significant progress has been made on detector technology developments for the tracking and calorimetry systems. A wide range of CLIC physics studies has been conducted, both through full detector simulations with overlay of beam-induced backgrounds, and through parametric studies, together providing a broad overview of the CLIC physics potential. Each of the three energy stages adds cornerstones of the full CLIC physics programme, such as Higgs width and couplings, top-quark properties, Higgs self-coupling, direct searches, and many precision electroweak measurements. The interpretation of the combined results gives crucial and accurate insight into new physics, largely complementary to LHC and HL-LHC. The construction of the first CLIC energy stage could start by 2026. First beams would be available by 2035, marking the beginning of a broad CLIC physics programme spanning 25–30 years. The Compact Linear Collider (CLIC) is a TeV-scale high-luminosity linear $e^+e^−$ collider under development at CERN. Following the CLIC conceptual design published in 2012, this report provides an overview of the CLIC project, its current status, and future developments. It presents the CLIC physics potential and reports on design, technology, and implementation aspects of the accelerator and the detector. For an optimal exploitation of its physics potential, CLIC is foreseen to be built and operated in stages, at centre-of-mass energies of 380 GeV, 1.5 TeV and 3 TeV, respectively, for a site length ranging from 11 km to 50 km. CLIC uses a two-beam acceleration scheme, in which normal-conducting high-gradient 12 GHz accelerating structures are powered via a high-current drive beam. For the first stage, an alternative with X-band klystron powering is also considered. CLIC accelerator optimisation, technical developments and system tests have resulted in significant progress in recent years. Moreover, this has led to an increased energy efficiency (power around 170 MW) for the 380 GeV stage, together with a reduced cost estimate at the level of 6 billion CHF. The detector concept, which matches the physics performance requirements and the CLIC experimental conditions, has been refined using improved software tools for simulation and reconstruction. Significant progress has been made on detector technology developments for the tracking and calorimetry systems. A wide range of CLIC physics studies has been conducted, both through full detector simulations with overlay of beam-induced backgrounds, and through parametric studies, together providing a broad overview of the CLIC physics potential. Each of the three energy stages adds cornerstones of the full CLIC physics programme, such as Higgs width and couplings, top-quark properties, Higgs self-coupling, direct searches, and many precision electroweak measurements. The interpretation of the combined results gives crucial and accurate insight into new physics, largely complementary to LHC and HL-LHC. The construction of the first CLIC energy stage could start by 2026. First beams would be available by 2035, marking the beginning of a broad CLIC physics programme spanning 25–30 years. The Compact Linear Collider (CLIC) is a TeV-scale high-luminosity linear $e^+e^−$ collider under development at CERN. Following the CLIC conceptual design published in 2012, this report provides an overview of the CLIC project, its current status, and future developments. It presents the CLIC physics potential and reports on design, technology, and implementation aspects of the accelerator and the detector. For an optimal exploitation of its physics potential, CLIC is foreseen to be built and operated in stages, at centre-of-mass energies of 380 GeV, 1.5 TeV and 3 TeV, respectively, for a site length ranging from 11 km to 50 km. CLIC uses a two-beam acceleration scheme, in which normal-conducting high-gradient 12 GHz accelerating structures are powered via a high-current drive beam. For the first stage, an alternative with X-band klystron powering is also considered. CLIC accelerator optimisation, technical developments and system tests have resulted in significant progress in recent years. Moreover, this has led to an increased energy efficiency (power around 170 MW) for the 380 GeV stage, together with a reduced cost estimate at the level of 6 billion CHF. The detector concept, which matches the physics performance requirements and the CLIC experimental conditions, has been refined using improved software tools for simulation and reconstruction. Significant progress has been made on detector technology developments for the tracking and calorimetry systems. A wide range of CLIC physics studies has been conducted, both through full detector simulations with overlay of beam-induced backgrounds, and through parametric studies, together providing a broad overview of the CLIC physics potential. Each of the three energy stages adds cornerstones of the full CLIC physics programme, such as Higgs width and couplings, top-quark properties, Higgs self-coupling, direct searches, and many precision electroweak measurements. The interpretation of the combined results gives crucial and accurate insight into new physics, largely complementary to LHC and HL-LHC. The construction of the first CLIC energy stage could start by 2026. First beams would be available by 2035, marking the beginning of a broad CLIC physics programme spanning 25–30 years. The Compact Linear Collider (CLIC) is a TeV-scale high-luminosity linear $e^+e^−$ collider under development at CERN. Following the CLIC conceptual design published in 2012, this report provides an overview of the CLIC project, its current status, and future developments. It presents the CLIC physics potential and reports on design, technology, and implementation aspects of the accelerator and the detector. For an optimal exploitation of its physics potential, CLIC is foreseen to be built and operated in stages, at centre-of-mass energies of 380 GeV, 1.5 TeV and 3 TeV, respectively, for a site length ranging from 11 km to 50 km. CLIC uses a two-beam acceleration scheme, in which normal-conducting high-gradient 12 GHz accelerating structures are powered via a high-current drive beam. For the first stage, an alternative with X-band klystron powering is also considered. CLIC accelerator optimisation, technical developments and system tests have resulted in significant progress in recent years. Moreover, this has led to an increased energy efficiency (power around 170 MW) for the 380 GeV stage, together with a reduced cost estimate at the level of 6 billion CHF. The detector concept, which matches the physics performance requirements and the CLIC experimental conditions, has been refined using improved software tools for simulation and reconstruction. Significant progress has been made on detector technology developments for the tracking and calorimetry systems. A wide range of CLIC physics studies has been conducted, both through full detector simulations with overlay of beam-induced backgrounds, and through parametric studies, together providing a broad overview of the CLIC physics potential. Each of the three energy stages adds cornerstones of the full CLIC physics programme, such as Higgs width and couplings, top-quark properties, Higgs self-coupling, direct searches, and many precision electroweak measurements. The interpretation of the combined results gives crucial and accurate insight into new physics, largely complementary to LHC and HL-LHC. The construction of the first CLIC energy stage could start by 2026. First beams would be available by 2035, marking the beginning of a broad CLIC physics programme spanning 25–30 years. The Compact Linear Collider (CLIC) is a TeV-scale high-luminosity linear $e^+e^−$ collider under development at CERN. Following the CLIC conceptual design published in 2012, this report provides an overview of the CLIC project, its current status, and future developments. It presents the CLIC physics potential and reports on design, technology, and implementation aspects of the accelerator and the detector. For an optimal exploitation of its physics potential, CLIC is foreseen to be built and operated in stages, at centre-of-mass energies of 380 GeV, 1.5 TeV and 3 TeV, respectively, for a site length ranging from 11 km to 50 km. CLIC uses a two-beam acceleration scheme, in which normal-conducting high-gradient 12 GHz accelerating structures are powered via a high-current drive beam. For the first stage, an alternative with X-band klystron powering is also considered. CLIC accelerator optimisation, technical developments and system tests have resulted in significant progress in recent years. Moreover, this has led to an increased energy efficiency (power around 170 MW) for the 380 GeV stage, together with a reduced cost estimate at the level of 6 billion CHF. The detector concept, which matches the physics performance requirements and the CLIC experimental conditions, has been refined using improved software tools for simulation and reconstruction. Significant progress has been made on detector technology developments for the tracking and calorimetry systems. A wide range of CLIC physics studies has been conducted, both through full detector simulations with overlay of beam-induced backgrounds, and through parametric studies, together providing a broad overview of the CLIC physics potential. Each of the three energy stages adds cornerstones of the full CLIC physics programme, such as Higgs width and couplings, top-quark properties, Higgs self-coupling, direct searches, and many precision electroweak measurements. The interpretation of the combined results gives crucial and accurate insight into new physics, largely complementary to LHC and HL-LHC. The construction of the first CLIC energy stage could start by 2026. First beams would be available by 2035, marking the beginning of a broad CLIC physics programme spanning 25–30 years. The Compact Linear Collider (CLIC) is a TeV-scale high-luminosity linear $e^+e^−$ collider under development at CERN. Following the CLIC conceptual design published in 2012, this report provides an overview of the CLIC project, its current status, and future developments. It presents the CLIC physics potential and reports on design, technology, and implementation aspects of the accelerator and the detector. For an optimal exploitation of its physics potential, CLIC is foreseen to be built and operated in stages, at centre-of-mass energies of 380 GeV, 1.5 TeV and 3 TeV, respectively, for a site length ranging from 11 km to 50 km. CLIC uses a two-beam acceleration scheme, in which normal-conducting high-gradient 12 GHz accelerating structures are powered via a high-current drive beam. For the first stage, an alternative with X-band klystron powering is also considered. CLIC accelerator optimisation, technical developments and system tests have resulted in significant progress in recent years. Moreover, this has led to an increased energy efficiency (power around 170 MW) for the 380 GeV stage, together with a reduced cost estimate at the level of 6 billion CHF. The detector concept, which matches the physics performance requirements and the CLIC experimental conditions, has been refined using improved software tools for simulation and reconstruction. Significant progress has been made on detector technology developments for the tracking and calorimetry systems. A wide range of CLIC physics studies has been conducted, both through full detector simulations with overlay of beam-induced backgrounds, and through parametric studies, together providing a broad overview of the CLIC physics potential. Each of the three energy stages adds cornerstones of the full CLIC physics programme, such as Higgs width and couplings, top-quark properties, Higgs self-coupling, direct searches, and many precision electroweak measurements. The interpretation of the combined results gives crucial and accurate insight into new physics, largely complementary to LHC and HL-LHC. The construction of the first CLIC energy stage could start by 2026. First beams would be available by 2035, marking the beginning of a broad CLIC physics programme spanning 25–30 years. The Compact Linear Collider (CLIC) is a TeV-scale high-luminosity linear $e^+e^-$ collider under development at CERN. Following the CLIC conceptual design published in 2012, this report provides an overview of the CLIC project, its current status, and future developments. It presents the CLIC physics potential and reports on design, technology, and implementation aspects of the accelerator and the detector. CLIC is foreseen to be built and operated in stages, at centre-of-mass energies of 380 GeV, 1.5 TeV and 3 TeV, respectively. CLIC uses a two-beam acceleration scheme, in which 12 GHz accelerating structures are powered via a high-current drive beam. For the first stage, an alternative with X-band klystron powering is also considered. CLIC accelerator optimisation, technical developments and system tests have resulted in an increased energy efficiency (power around 170 MW) for the 380 GeV stage, together with a reduced cost estimate at the level of 6 billion CHF. The detector concept has been refined using improved software tools. Significant progress has been made on detector technology developments for the tracking and calorimetry systems. A wide range of CLIC physics studies has been conducted, both through full detector simulations and parametric studies, together providing a broad overview of the CLIC physics potential. Each of the three energy stages adds cornerstones of the full CLIC physics programme, such as Higgs width and couplings, top-quark properties, Higgs self-coupling, direct searches, and many precision electroweak measurements. The interpretation of the combined results gives crucial and accurate insight into new physics, largely complementary to LHC and HL-LHC. The construction of the first CLIC energy stage could start by 2026. First beams would be available by 2035, marking the beginning of a broad CLIC physics programme spanning 25-30 years. Burrows, P.N.; Catalan Lasheras, N.; Linssen, L.; Petrič, M.; Robson, A.; Schulte, D.; Sicking, E.; Stapnes, S.; Charles, T.K.; Giansiracusa, P.J.; Lucas, T.G.; Rassool, R.P.; Volpi, M.; Balazs, C.; Afanaciev, K.; Makarenko, V.; Patapenka, A.; Zhuk, I.; Collette, C.; Boland, M.J.; Abusleme Hoffman, A.C.; Diaz, M.A.; Garay, F.; Chi, Y.; He, X.; Pei, G.; Pei, S.; Shu, G.; Wang, X.; Zhang, J.; Zhao, F.; Zhou, Z.; Chen, H.; Gao, Y.; Huang, W.; Kuang, Y.P.; Li, B.; Li, Y.; Meng, X.; Shao, J.; Shi, J.; Tang, C.; Wang, P.; Wu, X.; Zha, H.; Ma, L.; Han, Y.; Fang, W.; Gu, Q.; Huang, D.; Huang, X.; Tan, J.; Wang, Z.; Zhao, Z.; Uggerhøj, U.I.; Wistisen, T.N.; Aabloo, A.; Aare, R.; Kuppart, K.; Vigonski, S.; Zadin, V.; Aicheler, M.; Baibuz, E.; Brücken, E.; Djurabekova, F.; Eerola, P.; Garcia, F.; Haeggström, E.; Huitu, K.; Jansson, V.; Kassamakov, I.; Kimari, J.; Kyritsakis, A.; Lehti, S.; Meriläinen, A.; Montonen, R.; Nordlund, K.; Österberg, K.; Saressalo, A.; Väinölä, J.; Veske, M.; Farabolini, W.; Mollard, A.; Peauger, F.; Plouin, J.; Bambade, P.; Chaikovska, I.; Chehab, R.; Delerue, N.; Davier, M.; Faus-Golfe, A.; Irles, A.; Kaabi, W.; LeDiberder, F.; Pöschl, R.; Zerwas, D.; Aimard, B.; Balik, G.; Blaising, J.-J.; Brunetti, L.; Chefdeville, M.; Dominjon, A.; Drancourt, C.; Geoffroy, N.; Jacquemier, J.; Jeremie, A.; Karyotakis, Y.; Nappa, J.M.; Serluca, M.; Vilalte, S.; Vouters, G.; Bernhard, A.; Bründermann, E.; Casalbuoni, S.; Hillenbrand, S.; Gethmann, J.; Grau, A.; Huttel, E.; Müller, A.-S.; Peiffer, P.; Perić, I.; Saez de Jauregui, D.; Emberger, L.; Graf, C.; Simon, F.; Szalay, M.; van der Kolk, N.; Brass, S.; Kilian, W.; Alexopoulos, T.; Apostolopoulos, T.; Gazis, E.N.; Gazis, N.; Kostopoulos, V.; Kourkoulis, S.; Heilig, B.; Lichtenberger, J.; Shrivastava, P.; Dayyani, M.K.; Ghasem, H.; Hajari, S.S.; Shaker, H.; Ashkenazy, Y.; Popov, I.; Engelberg, E.; Yashar, A.; Abramowicz, H.; Benhammou, Y.; Borysov, O.; Borysova, M.; Levy, A.; Levy, I.; Alesini, D.; Bellaveglia, M.; Buonomo, B.; Cardelli, A.; Diomede, M.; Ferrario, M.; Gallo, A.; Ghigo, A.; Giribono, A.; Piersanti, L.; Stella, A.; Vaccarezza, C.; de Blas, J.; Franceschini, R.; D'Auria, G.; Di Mitri, S.; Abe, T.; Aryshev, A.; Fukuda, M.; Furukawa, K.; Hayano, H.; Higashi, Y.; Higo, T.; Kubo, K.; Kuroda, S.; Matsumoto, S.; Michizono, S.; Naito, T.; Okugi, T.; Shidara, T.; Tauchi, T.; Terunuma, N.; Urakawa, J.; Yamamoto, A.; Raboanary, R.; Luiten, O.J.; Stragier, X.F.D.; Hart, R.; van der Graaf, H.; Eigen, G.; Adli, E.; Lindstrøm, C.A.; Lillestøl, R.; Malina, L.; Pfingstner, J.; Sjobak, K.N.; Ahmad, A.; Hoorani, H.; Khan, W.A.; Bugiel, S.; Bugiel, R.; Firlej, M.; Fiutowski, T.A.; Idzik, M.; Moroń, J.; Świentek, K.P.; Brückman de Renstrom, P.; Krupa, B.; Kucharczyk, M.; Lesiak, T.; Pawlik, B.; Sopicki, P.; Turbiarz, B.; Wojtoń, T.; Zawiejski, L.K.; Kalinowski, J.; Nowak, K.; Żarnecki, A.F.; Firu, E.; Ghenescu, V.; Neagu, A.T.; Preda, T.; Zgura, I.S.; Aloev, A.; Azaryan, N.; Boyko, I.; Budagov, J.; Chizhov, M.; Filippova, M.; Glagolev, V.; Gongadze, A.; Grigoryan, S.; Gudkov, D.; Karjavine, V.; Lyablin, M.; Nefedov, Yu.; Olyunina, A.; Rymbekova, A.; Samochkine, A.; Sapronov, A.; Shelkov, G.; Shirkov, G.; Soldatov, V.; Solodko, E.; Trubnikov, G.; Tyapkin, I.; Uzhinsky, V.; Vorozhtov, A.; Zhemchugov, A.; Levichev, E.; Mezentsev, N.; Piminov, P.; Shatilov, D.; Vobly, P.; Zolotarev, K.; BožovićJelisavčić, I.; Kačarević, G.; MilutinovićDumbelović, G.; Pandurović, M.; Radulović, M.; Stevanović, J.; Vukasinović, N.; Lee, D.-H.; Ayala, N.; Benedetti, G.; Guenzel, T.; Iriso, U.; Marti, Z.; Perez, F.; Pont, M.; Trenado, J.; Ruiz-Jimeno, A.; Vila, I.; Calero, J.; Dominguez, M.; Garcia-Tabares, L.; Gavela, D.; Lopez, D.; Toral, F.; Blanch Gutierrez, C.; Boronat, M.; Esperante, D.; Fullana, E.; Fuster, J.; García, I.; Gimeno, B.; Gomis Lopez, P.; González, D.; Perelló, M.; Ros, E.; Villarejo, M.A.; Vnuchenko, A.; Vos, M.; Borgmann, Ch.; Brenner, R.; Ekelöf, T.; Jacewicz, M.; Olvegård, M.; Ruber, R.; Ziemann, V.; Aguglia, D.; Alabau Gonzalvo, J.; Alcaide Leon, M.; Alipour Tehrani, N.; Anastasopoulos, M.; Andersson, A.; Andrianala, F.; Antoniou, F.; Apyan, A.; Arominski, D.; Artoos, K.; Assly, S.; Atieh, S.; Baccigalupi, C.; Ballabriga Sune, R.; Banon Caballero, D.; Barnes, M.J.; Barranco Garcia, J.; Bartalesi, A.; Bauche, J.; Bayar, C.; Belver-Aguilar, C.; Benot Morell, A.; Bernardini, M.; Bett, D.R.; Bettoni, S.; Bettencourt, M.; Bielawski, B.; Blanco Garcia, O.; Blaskovic Kraljevic, N.; Bolzon, B.; Bonnin, X.A.; Bozzini, D.; Branger, E.; Brondolin, E.; Brunner, O.; Buckland, M.; Bursali, H.; Burkhardt, H.; Caiazza, D.; Calatroni, S.; Campbell, M.; Cassany, B.; Castro, E.; Cavaleiro Soares, R.H.; Cerqueira Bastos, M.; Cherif, A.; Chevallay, E.; Cilento, V.; Corsini, R.; Costa, R.; Cure, B.; Curt, S.; Dal Gobbo, A.; Dannheim, D.; Daskalaki, E.; Deacon, L.; Degiovanni, A.; De Michele, G.; De Oliveira, L.; Del Pozo Romano, V.; Delahaye, J.P.; Delikaris, D.; Dias de Almeida, P.G.; Dobers, T.; Doebert, S.; Doytchinov, I.; Draper, M.; Duarte Ramos, F.; Duquenne, M.; Egidos Plaja, N.; Elsener, K.; Esberg, J.; Esposito, M.; Evans, L.; Fedosseev, V.; Ferracin, P.; Fiergolski, A.; Foraz, K.; Fowler, A.; Friebel, F.; Fuchs, J-F.; Gaddi, A.; Gamba, D.; Garcia Fajardo, L.; Garcia Morales, H.; Garion, C.; Gasior, M.; Gatignon, L.; Gayde, J-C.; Gerbershagen, A.; Gerwig, H.; Giambelli, G.; Gilardi, A.; Goldblatt, A.N.; Gonzalez Anton, S.; Grefe, C.; Grudiev, A.; Guerin, H.; Guillot-Vignot, F.G.; Gutt-Mostowy, M.L.; Hein Lutz, M.; Hessler, C.; Holma, J.K.; Holzer, E.B.; Hourican, M.; Hynds, D.; Ikarios, E.; Inntjore Levinsen, Y.; Janssens, S.; Jeff, A.; Jensen, E.; Jonker, M.; Kamugasa, S.W.; Kastriotou, M.; Kemppinen, J.M.K.; Khan, V.; Kieffer, R.B.; Klempt, W.; Kokkinis, N.; Kossyvakis, I.; Kostka, Z.; Korsback, A.; Koukovini Platia, E.; Kovermann, J.W.; Kozsar, C-I.; Kremastiotis, I.; Kröger, J.; Kulis, S.; Latina, A.; Leaux, F.; Lebrun, P.; Lefevre, T.; Leogrande, E.; Liu, X.; Llopart Cudie, X.; Magnoni, S.; Maidana, C.; Maier, A.A.; Mainaud Durand, H.; Mallows, S.; Manosperti, E.; Marelli, C.; Marin Lacoma, E.; Marsh, S.; Martin, R.; Martini, I.; Martyanov, M.; Mazzoni, S.; Mcmonagle, G.; Mether, L.M.; Meynier, C.; Modena, M.; Moilanen, A.; Mondello, R.; Moniz Cabral, P.B.; Mouriz Irazabal, N.; Munker, M.; Muranaka, T.; Nadenau, J.; Navarro, J.G.; Navarro Quirante, J.L.; Nebo Del Busto, E.; Nikiforou, N.; Ninin, P.; Nonis, M.; Nisbet, D.; Nuiry, F.X.; Nürnberg, A.; Ögren, J.; Osborne, J.; Ouniche, A.C.; Pan, R.; Papadopoulou, S.; Papaphilippou, Y.; Paraskaki, G.; Pastushenko, A.; Passarelli, A.; Patecki, M.; Pazdera, L.; Pellegrini, D.; Pepitone, K.; Perez Codina, E.; Perez Fontenla, A.; Persson, T.H.B.; Pitman, S.; Pitters, F.; Pittet, S.; Plassard, F.; Popescu, D.; Quast, T.; Rajamak, R.; Redford, S.; Remandet, L.; Renier, Y.; Rey, S.F.; Rey Orozco, O.; Riddone, G.; Rodriguez Castro, E.; Roloff, P.; Rossi, C.; Rossi, F.; Rude, V.; Ruehl, I.; Rumolo, G.; Sailer, A.; Sandomierski, J.; Santin, E.; Sanz, C.; Sauza Bedolla, J.; Schnoor, U.; Schmickler, H.; Senes, E.; Serpico, C.; Severino, G.; Shipman, N.; Simoniello, R.; Skowronski, P.K.; Sobrino Mompean, P.; Soby, L.; Sollander, P.; Solodko, A.; Sosin, M.P.; Spannagel, S.; Sroka, S.; Sterbini, G.; Stern, G.; Ström, R.; Stuart, M.J.; Syratchev, I.; Szypula, K.; Tecker, F.; Thonet, P.A.; Thrane, P.; Timeo, L.; Tiirakari, M.; Tomas Garcia, R.; Tomoiaga, C.I.; Valerio, P.; Vaňát, T.; Vamvakas, A.L.; Van Hoorne, J.; Viazlo, O.; Vicente Barreto Pinto, M.; Vitoratou, N.; Vlachakis, V.; Weber, M.A.; Wegner, R.; Wendt, M.; Widorski, M.; Williams, O.E.; Williams, M.; Woolley, B.; Wuensch, W.; Wulzer, A.; Uythoven, J.; Xydou, A.; Yang, R.; Zelios, A.; Zhao, Y.; Zisopoulos, P.; Benoit, M.; Sultan, D M S; Riva, F.; Bopp, M.; Braun, H.H.; Craievich, P.; Dehler, M.; Garvey, T.; Pedrozzi, M.; Raguin, J.Y.; Rivkin, L.; Zennaro, R.; Guillaume, S.; Rothacher, M.; Aksoy, A.; Nergiz, Z.; Denizli, H.; Keskin, U.; Oyulmaz, K.Y.; Senol, A.; Ciftci, A.K.; Baturin, V.; Karpenko, O.; Kholodov, R.; Lebed, O.; Lebedynskyi, S.; Mordyk, S.; Musienko, I.; Profatilova, Ia.; Storizhko, V.; Bosley, R.R.; Price, T.; Watson, M.F.; Watson, N.K.; Winter, A.G.; Goldstein, J.; Green, S.; Marshall, J.S.; Thomson, M.A.; Xu, B.; You, T.; Gillespie, W.A.; Spannowsky, M.; Beggan, C.; Martin, V.; Zhang, Y.; Protopopescu, D.; Apsimon, R.J.; Bailey, I.; Burt, G.C.; Dexter, A.C.; Edwards, A.V.; Hill, V.; Jamison, S.; Millar, W.L.; Papke, K.; Casse, G.; Vossebeld, J.; Aumeyr, T.; Bergamaschi, M.; Bobb, L.; Bosco, A.; Boogert, S.; Boorman, G.; Cullinan, F.; Gibson, S.; Karataev, P.; Kruchinin, K.; Lekomtsev, K.; Lyapin, A.; Nevay, L.; Shields, W.; Snuverink, J.; Towler, J.; Yamakawa, E.; Boisvert, V.; West, S.; Jones, R.; Joshi, N.; Bett, D.; Bodenstein, R.M.; Bromwich, T.; Christian, G.B.; Gohil, C.; Korysko, P.; Paszkiewicz, J.; Perry, C.; Ramjiawan, R.; Roberts, J.; Coates, T.; Salvatore, F.; Bainbridge, A.; Clarke, J.A.; Krumpa, N.; Shepherd, B.J.A.; Walsh, D.; Chekanov, S.; Demarteau, M.; Gai, W.; Liu, W.; Metcalfe, J.; Power, J.; Repond, J.; Weerts, H.; Xia, L.; Zhang, J.; Zupan, J.; Wells, J.D.; Zhang, Z.; Adolphsen, C.; Barklow, T.; Dolgashev, V.; Franzi, M.; Graf, N.; Hewett, J.; Kemp, M.; Kononenko, O.; Markiewicz, T.; Moffeit, K.; Neilson, J.; Nosochkov, Y.; Oriunno, M.; Phinney, N.; Rizzo, T.; Tantawi, S.; Wang, J.; Weatherford, B.; White, G.; Woodley, M." /> <meta name="keywords" content="CERN Document Server, WebSearch, CERN Document Server" /> <script type="text/javascript" src="https://cds.cern.ch/js/jquery.min.js"></script> <!-- WebNews CSS library --> <link rel="stylesheet" href="https://cds.cern.ch/img/webnews.css" type="text/css" /> <!-- WebNews JS library --> <script type="text/javascript" src="https://cds.cern.ch/js/webnews.js?v=20131009"></script> <meta property="fb:app_id" content="137353533001720"/> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: {inlineMath: [['$','$']], processEscapes: true}, showProcessingMessages: false, messageStyle: "none" }); </script> <script src="/MathJax/MathJax.js?config=TeX-AMS_CHTML" type="text/javascript"> </script> <!-- GoogleScholar --> <meta content="arXiv : The Compact Linear Collider (CLIC) - 2018 Summary Report" name="citation_title" /> <meta content="Lehti, S." name="citation_author" /> <meta content="Vorozhtov, A." name="citation_author" /> <meta content="Osborne, J." name="citation_author" /> <meta content="Pitman, S." name="citation_author" /> <meta content="Corsini, R." name="citation_author" /> <meta content="Gavela, D." name="citation_author" /> <meta content="Rivkin, L." name="citation_author" /> <meta content="Szalay, M." name="citation_author" /> <meta content="Chizhov, M." name="citation_author" /> <meta content="Vlachakis, V." name="citation_author" /> <meta content="Vigonski, S." name="citation_author" /> <meta content="Bugiel, S." name="citation_author" /> <meta content="Thonet, P.A." name="citation_author" /> <meta content="Burt, G.C." name="citation_author" /> <meta content="Xia, L." name="citation_author" /> <meta content="Kassamakov, I." name="citation_author" /> <meta content="LeDiberder, F." name="citation_author" /> <meta content="Santin, E." name="citation_author" /> <meta content="D'Auria, G." name="citation_author" /> <meta content="Williams, O.E." name="citation_author" /> <meta content="Delerue, N." name="citation_author" /> <meta content="Weatherford, B." name="citation_author" /> <meta content="Brenner, R." name="citation_author" /> <meta content="Zhou, Z." name="citation_author" /> <meta content="Stuart, M.J." name="citation_author" /> <meta content="Metcalfe, J." name="citation_author" /> <meta content="Antoniou, F." name="citation_author" /> <meta content="Marti, Z." name="citation_author" /> <meta content="Dias de Almeida, P.G." name="citation_author" /> <meta content="Zha, H." name="citation_author" /> <meta content="Wang, X." name="citation_author" /> <meta content="Pfingstner, J." name="citation_author" /> <meta content="Michizono, S." name="citation_author" /> <meta content="Dayyani, M.K." name="citation_author" /> <meta content="Preda, T." name="citation_author" /> <meta content="Zhuk, I." name="citation_author" /> <meta content="Ouniche, A.C." name="citation_author" /> <meta content="Jensen, E." name="citation_author" /> <meta content="Cardelli, A." name="citation_author" /> <meta content="Atieh, S." name="citation_author" /> <meta content="Lyablin, M." name="citation_author" /> <meta content="Aicheler, M." name="citation_author" /> <meta content="Engelberg, E." name="citation_author" /> <meta content="Brondolin, E." name="citation_author" /> <meta content="He, X." name="citation_author" /> <meta content="Zennaro, R." name="citation_author" /> <meta content="Nonis, M." name="citation_author" /> <meta content="MilutinovićDumbelović, G." name="citation_author" /> <meta content="Zhemchugov, A." name="citation_author" /> <meta content="Spannagel, S." name="citation_author" /> <meta content="Gasior, M." name="citation_author" /> <meta content="Afanaciev, K." name="citation_author" /> <meta content="Price, T." name="citation_author" /> <meta content="Adolphsen, C." name="citation_author" /> <meta content="Casse, G." name="citation_author" /> <meta content="de Blas, J." name="citation_author" /> <meta content="Ballabriga Sune, R." name="citation_author" /> <meta content="Alexopoulos, T." name="citation_author" /> <meta content="Kovermann, J.W." name="citation_author" /> <meta content="Gohil, C." name="citation_author" /> <meta content="Wojtoń, T." name="citation_author" /> <meta content="Liu, W." name="citation_author" /> <meta content="Martyanov, M." name="citation_author" /> <meta content="Shirkov, G." name="citation_author" /> <meta content="Huang, D." name="citation_author" /> <meta content="Rizzo, T." name="citation_author" /> <meta content="Banon Caballero, D." name="citation_author" /> <meta content="Bodenstein, R.M." name="citation_author" /> <meta content="Bolzon, B." name="citation_author" /> <meta content="Budagov, J." name="citation_author" /> <meta content="Ahmad, A." name="citation_author" /> <meta content="Nürnberg, A." name="citation_author" /> <meta content="Goldblatt, A.N." name="citation_author" /> <meta content="Stragier, X.F.D." name="citation_author" /> <meta content="Blanch Gutierrez, C." name="citation_author" /> <meta content="Buckland, M." name="citation_author" /> <meta content="Wulzer, A." name="citation_author" /> <meta content="Dexter, A.C." name="citation_author" /> <meta content="Geoffroy, N." name="citation_author" /> <meta content="Boyko, I." name="citation_author" /> <meta content="De Michele, G." name="citation_author" /> <meta content="Firlej, M." name="citation_author" /> <meta content="Kyritsakis, A." name="citation_author" /> <meta content="Doytchinov, I." name="citation_author" /> <meta content="Kuroda, S." name="citation_author" /> <meta content="Lekomtsev, K." name="citation_author" /> <meta content="Piersanti, L." name="citation_author" /> <meta content="Repond, J." name="citation_author" /> <meta content="Pont, M." name="citation_author" /> <meta content="Zhao, F." name="citation_author" /> <meta content="Alcaide Leon, M." name="citation_author" /> <meta content="Papke, K." name="citation_author" /> <meta content="Yashar, A." name="citation_author" /> <meta content="Shipman, N." name="citation_author" /> <meta content="Barklow, T." name="citation_author" /> <meta content="Yamakawa, E." name="citation_author" /> <meta content="Boorman, G." name="citation_author" /> <meta content="Meng, X." name="citation_author" /> <meta content="Levichev, E." name="citation_author" /> <meta content="Szypula, K." name="citation_author" /> <meta content="Korsback, A." name="citation_author" /> <meta content="Thrane, P." name="citation_author" /> <meta content="Gillespie, W.A." name="citation_author" /> <meta content="Brunner, O." name="citation_author" /> <meta content="Simon, F." name="citation_author" /> <meta content="Aryshev, A." name="citation_author" /> <meta content="Karyotakis, Y." name="citation_author" /> <meta content="Hynds, D." name="citation_author" /> <meta content="Garvey, T." name="citation_author" /> <meta content="Kemppinen, J.M.K." name="citation_author" /> <meta content="Lebedynskyi, S." name="citation_author" /> <meta content="Serluca, M." name="citation_author" /> <meta content="Kuang, Y.P." name="citation_author" /> <meta content="Piminov, P." name="citation_author" /> <meta content="Tyapkin, I." name="citation_author" /> <meta content="Bergamaschi, M." name="citation_author" /> <meta content="Coates, T." name="citation_author" /> <meta content="Lucas, T.G." name="citation_author" /> <meta content="Shi, J." name="citation_author" /> <meta content="Evans, L." name="citation_author" /> <meta content="Millar, W.L." name="citation_author" /> <meta content="Ekelöf, T." name="citation_author" /> <meta content="You, T." name="citation_author" /> <meta content="Terunuma, N." name="citation_author" /> <meta content="Iriso, U." name="citation_author" /> <meta content="Ruiz-Jimeno, A." name="citation_author" /> <meta content="Apsimon, R.J." name="citation_author" /> <meta content="Schmickler, H." name="citation_author" /> <meta content="Mouriz Irazabal, N." name="citation_author" /> <meta content="Kruchinin, K." name="citation_author" /> <meta content="Shao, J." name="citation_author" /> <meta content="Mallows, S." name="citation_author" /> <meta content="Cerqueira Bastos, M." name="citation_author" /> <meta content="Pei, G." name="citation_author" /> <meta content="Aimard, B." name="citation_author" /> <meta content="Tan, J." name="citation_author" /> <meta content="Fowler, A." name="citation_author" /> <meta content="Moroń, J." name="citation_author" /> <meta content="Charles, T.K." name="citation_author" /> <meta content="Janssens, S." name="citation_author" /> <meta content="Pepitone, K." name="citation_author" /> <meta content="Rothacher, M." name="citation_author" /> <meta content="Benot Morell, A." name="citation_author" /> <meta content="Protopopescu, D." name="citation_author" /> <meta content="Delahaye, J.P." name="citation_author" /> <meta content="Oyulmaz, K.Y." name="citation_author" /> <meta content="Nefedov, Yu." name="citation_author" /> <meta content="Nuiry, F.X." name="citation_author" /> <meta content="Dannheim, D." name="citation_author" /> <meta content="Abramowicz, H." name="citation_author" /> <meta content="Hourican, M." name="citation_author" /> <meta content="Zgura, I.S." name="citation_author" /> <meta content="Zadin, V." name="citation_author" /> <meta content="Chevallay, E." name="citation_author" /> <meta content="Martini, I." name="citation_author" /> <meta content="Vossebeld, J." name="citation_author" /> <meta content="Zhang, J." name="citation_author" /> <meta content="De Oliveira, L." name="citation_author" /> <meta content="Wistisen, T.N." name="citation_author" /> <meta content="Munker, M." name="citation_author" /> <meta content="Bellaveglia, M." name="citation_author" /> <meta content="Bursali, H." name="citation_author" /> <meta content="Ghenescu, V." name="citation_author" /> <meta content="Simoniello, R." name="citation_author" /> <meta content="Barnes, M.J." name="citation_author" /> <meta content="Bonnin, X.A." name="citation_author" /> <meta content="Vamvakas, A.L." name="citation_author" /> <meta content="Serpico, C." name="citation_author" /> <meta content="Cavaleiro Soares, R.H." name="citation_author" /> <meta content="Levy, I." name="citation_author" /> <meta content="Kastriotou, M." name="citation_author" /> <meta content="Beggan, C." name="citation_author" /> <meta content="Lesiak, T." name="citation_author" /> <meta content="Mcmonagle, G." name="citation_author" /> <meta content="Aare, R." name="citation_author" /> <meta content="Vobly, P." name="citation_author" /> <meta content="Kononenko, O." name="citation_author" /> <meta content="Schnoor, U." name="citation_author" /> <meta content="Fiutowski, T.A." name="citation_author" /> <meta content="Sailer, A." name="citation_author" /> <meta content="Ögren, J." name="citation_author" /> <meta content="Dominguez, M." name="citation_author" /> <meta content="Borysova, M." name="citation_author" /> <meta content="Magnoni, S." name="citation_author" /> <meta content="Saressalo, A." name="citation_author" /> <meta content="Gilardi, A." name="citation_author" /> <meta content="Castro, E." name="citation_author" /> <meta content="Spannowsky, M." name="citation_author" /> <meta content="Zolotarev, K." name="citation_author" /> <meta content="Pandurović, M." name="citation_author" /> <meta content="Wu, X." name="citation_author" /> <meta content="Rassool, R.P." name="citation_author" /> <meta content="Pazdera, L." name="citation_author" /> <meta content="Popescu, D." name="citation_author" /> <meta content="Davier, M." name="citation_author" /> <meta content="Chehab, R." name="citation_author" /> <meta content="Sultan, D M S" name="citation_author" /> <meta content="Llopart Cudie, X." name="citation_author" /> <meta content="Ashkenazy, Y." name="citation_author" /> <meta content="Sjobak, K.N." name="citation_author" /> <meta content="Bernhard, A." name="citation_author" /> <meta content="Widorski, M." name="citation_author" /> <meta content="Paszkiewicz, J." name="citation_author" /> <meta content="Roberts, J." name="citation_author" /> <meta content="Belver-Aguilar, C." name="citation_author" /> <meta content="Patecki, M." name="citation_author" /> <meta content="Kačarević, G." name="citation_author" /> <meta content="Saez de Jauregui, D." name="citation_author" /> <meta content="Garcia-Tabares, L." name="citation_author" /> <meta content="Sanz, C." name="citation_author" /> <meta content="Shatilov, D." name="citation_author" /> <meta content="Plassard, F." name="citation_author" /> <meta content="Di Mitri, S." name="citation_author" /> <meta content="Aloev, A." name="citation_author" /> <meta content="Haeggström, E." name="citation_author" /> <meta content="Solodko, E." name="citation_author" /> <meta content="García, I." name="citation_author" /> <meta content="Bromwich, T." name="citation_author" /> <meta content="Rajamak, R." name="citation_author" /> <meta content="Gutt-Mostowy, M.L." name="citation_author" /> <meta content="Abe, T." name="citation_author" /> <meta content="Zerwas, D." name="citation_author" /> <meta content="Jacquemier, J." name="citation_author" /> <meta content="Aabloo, A." name="citation_author" /> <meta content="Clarke, J.A." name="citation_author" /> <meta content="Drancourt, C." name="citation_author" /> <meta content="Gonzalez Anton, S." name="citation_author" /> <meta content="Ghigo, A." name="citation_author" /> <meta content="Fuchs, J-F." name="citation_author" /> <meta content="Firu, E." name="citation_author" /> <meta content="Zhao, Y." name="citation_author" /> <meta content="Gongadze, A." name="citation_author" /> <meta content="Volpi, M." name="citation_author" /> <meta content="Abusleme Hoffman, A.C." name="citation_author" /> <meta content="Shaker, H." name="citation_author" /> <meta content="Nergiz, Z." name="citation_author" /> <meta content="Franzi, M." name="citation_author" /> <meta content="Kalinowski, J." name="citation_author" /> <meta content="Kremastiotis, I." name="citation_author" /> <meta content="Holma, J.K." name="citation_author" /> <meta content="Patapenka, A." name="citation_author" /> <meta content="Meriläinen, A." name="citation_author" /> <meta content="Demarteau, M." name="citation_author" /> <meta content="Veske, M." name="citation_author" /> <meta content="Bailey, I." name="citation_author" /> <meta content="Luiten, O.J." name="citation_author" /> <meta content="Hoorani, H." name="citation_author" /> <meta content="Pöschl, R." name="citation_author" /> <meta content="Apyan, A." name="citation_author" /> <meta content="Peauger, F." name="citation_author" /> <meta content="Weber, M.A." name="citation_author" /> <meta content="Villarejo, M.A." name="citation_author" /> <meta content="Marin Lacoma, E." name="citation_author" /> <meta content="Kaabi, W." name="citation_author" /> <meta content="Bettencourt, M." name="citation_author" /> <meta content="Collette, C." name="citation_author" /> <meta content="Buonomo, B." name="citation_author" /> <meta content="Marelli, C." name="citation_author" /> <meta content="Curt, S." name="citation_author" /> <meta content="Nadenau, J." name="citation_author" /> <meta content="Ma, L." name="citation_author" /> <meta content="Yang, R." name="citation_author" /> <meta content="Rossi, C." name="citation_author" /> <meta content="Lefevre, T." name="citation_author" /> <meta content="Uggerhøj, U.I." name="citation_author" /> <meta content="Friebel, F." name="citation_author" /> <meta content="Inntjore Levinsen, Y." name="citation_author" /> <meta content="Lindstrøm, C.A." name="citation_author" /> <meta content="Garcia Fajardo, L." name="citation_author" /> <meta content="Mollard, A." name="citation_author" /> <meta content="Khan, V." name="citation_author" /> <meta content="Karataev, P." name="citation_author" /> <meta content="Müller, A.-S." name="citation_author" /> <meta content="Toral, F." name="citation_author" /> <meta content="Filippova, M." name="citation_author" /> <meta content="Kuppart, K." name="citation_author" /> <meta content="Braun, H.H." name="citation_author" /> <meta content="Fullana, E." name="citation_author" /> <meta content="Pawlik, B." name="citation_author" /> <meta content="Garay, F." name="citation_author" /> <meta content="Rumolo, G." name="citation_author" /> <meta content="Mether, L.M." name="citation_author" /> <meta content="Gatignon, L." name="citation_author" /> <meta content="Deacon, L." name="citation_author" /> <meta content="Williams, M." name="citation_author" /> <meta content="Bett, D." name="citation_author" /> <meta content="Gethmann, J." name="citation_author" /> <meta content="Hill, V." name="citation_author" /> <meta content="Kozsar, C-I." name="citation_author" /> <meta content="Phinney, N." name="citation_author" /> <meta content="Sterbini, G." name="citation_author" /> <meta content="Benhammou, Y." name="citation_author" /> <meta content="Sobrino Mompean, P." name="citation_author" /> <meta content="Idzik, M." name="citation_author" /> <meta content="Kossyvakis, I." name="citation_author" /> <meta content="Stern, G." name="citation_author" /> <meta content="Turbiarz, B." name="citation_author" /> <meta content="Borysov, O." name="citation_author" /> <meta content="Roloff, P." name="citation_author" /> <meta content="Ramjiawan, R." name="citation_author" /> <meta content="Thomson, M.A." name="citation_author" /> <meta content="Navarro Quirante, J.L." name="citation_author" /> <meta content="Campbell, M." name="citation_author" /> <meta content="Duarte Ramos, F." name="citation_author" /> <meta content="Dobers, T." name="citation_author" /> <meta content="Doebert, S." name="citation_author" /> <meta content="Lee, D.-H." name="citation_author" /> <meta content="Calero, J." name="citation_author" /> <meta content="Garion, C." name="citation_author" /> <meta content="Gu, Q." name="citation_author" /> <meta content="Huitu, K." name="citation_author" /> <meta content="Caiazza, D." name="citation_author" /> <meta content="Martin, V." name="citation_author" /> <meta content="Huang, X." name="citation_author" /> <meta content="Guillaume, S." name="citation_author" /> <meta content="Egidos Plaja, N." name="citation_author" /> <meta content="Bainbridge, A." name="citation_author" /> <meta content="Guillot-Vignot, F.G." name="citation_author" /> <meta content="Diomede, M." name="citation_author" /> <meta content="Solodko, A." name="citation_author" /> <meta content="Casalbuoni, S." name="citation_author" /> <meta content="Gomis Lopez, P." name="citation_author" /> <meta content="Grigoryan, S." name="citation_author" /> <meta content="Glagolev, V." name="citation_author" /> <meta content="Cure, B." name="citation_author" /> <meta content="Perry, C." name="citation_author" /> <meta content="Andrianala, F." name="citation_author" /> <meta content="Sopicki, P." name="citation_author" /> <meta content="Matsumoto, S." name="citation_author" /> <meta content="Zhao, Z." name="citation_author" /> <meta content="Guenzel, T." name="citation_author" /> <meta content="Wang, Z." name="citation_author" /> <meta content="Rey Orozco, O." name="citation_author" /> <meta content="Dolgashev, V." name="citation_author" /> <meta content="Brass, S." name="citation_author" /> <meta content="Österberg, K." name="citation_author" /> <meta content="Blaskovic Kraljevic, N." name="citation_author" /> <meta content="Gibson, S." name="citation_author" /> <meta content="Trenado, J." name="citation_author" /> <meta content="Jacewicz, M." name="citation_author" /> <meta content="Koukovini Platia, E." name="citation_author" /> <meta content="Leaux, F." name="citation_author" /> <meta content="Daskalaki, E." name="citation_author" /> <meta content="Bambade, P." name="citation_author" /> <meta content="Fukuda, M." name="citation_author" /> <meta content="Senol, A." name="citation_author" /> <meta content="Pitters, F." name="citation_author" /> <meta content="Cilento, V." name="citation_author" /> <meta content="Ninin, P." name="citation_author" /> <meta content="Eigen, G." name="citation_author" /> <meta content="Vitoratou, N." name="citation_author" /> <meta content="Marsh, S." name="citation_author" /> <meta content="Zhang, Y." name="citation_author" /> <meta content="Persson, T.H.B." name="citation_author" /> <meta content="Cherif, A." name="citation_author" /> <meta content="Lebed, O." name="citation_author" /> <meta content="Faus-Golfe, A." name="citation_author" /> <meta content="Musienko, I." name="citation_author" /> <meta content="Benedetti, G." name="citation_author" /> <meta content="Benoit, M." name="citation_author" /> <meta content="Bartalesi, A." name="citation_author" /> <meta content="Uzhinsky, V." name="citation_author" /> <meta content="Gaddi, A." name="citation_author" /> <meta content="Hart, R." name="citation_author" /> <meta content="Levy, A." name="citation_author" /> <meta content="Shu, G." name="citation_author" /> <meta content="Syratchev, I." name="citation_author" /> <meta content="Ayala, N." name="citation_author" /> <meta content="Nowak, K." name="citation_author" /> <meta content="Plouin, J." name="citation_author" /> <meta content="Naito, T." name="citation_author" /> <meta content="Nikiforou, N." name="citation_author" /> <meta content="Sapronov, A." name="citation_author" /> <meta content="Giambelli, G." name="citation_author" /> <meta content="Bobb, L." name="citation_author" /> <meta content="Franceschini, R." name="citation_author" /> <meta content="Garcia Morales, H." name="citation_author" /> <meta content="Higashi, Y." name="citation_author" /> <meta content="Hessler, C." name="citation_author" /> <meta content="Moilanen, A." name="citation_author" /> <meta content="Kröger, J." name="citation_author" /> <meta content="Meynier, C." name="citation_author" /> <meta content="Malina, L." name="citation_author" /> <meta content="Baturin, V." name="citation_author" /> <meta content="Viazlo, O." name="citation_author" /> <meta content="Papaphilippou, Y." name="citation_author" /> <meta content="Kourkoulis, S." name="citation_author" /> <meta content="Denizli, H." name="citation_author" /> <meta content="Makarenko, V." name="citation_author" /> <meta content="Oriunno, M." name="citation_author" /> <meta content="Perelló, M." name="citation_author" /> <meta content="Vouters, G." name="citation_author" /> <meta content="Del Pozo Romano, V." name="citation_author" /> <meta content="Kieffer, R.B." name="citation_author" /> <meta content="Blaising, J.-J." name="citation_author" /> <meta content="Chaikovska, I." name="citation_author" /> <meta content="Tauchi, T." name="citation_author" /> <meta content="Goldstein, J." name="citation_author" /> <meta content="Martin, R." name="citation_author" /> <meta content="BožovićJelisavčić, I." name="citation_author" /> <meta content="Olyunina, A." name="citation_author" /> <meta content="Esberg, J." name="citation_author" /> <meta content="Shepherd, B.J.A." name="citation_author" /> <meta content="Tantawi, S." name="citation_author" /> <meta content="Radulović, M." name="citation_author" /> <meta content="Garcia, F." name="citation_author" /> <meta content="Rude, V." name="citation_author" /> <meta content="Boisvert, V." name="citation_author" /> <meta content="Fiergolski, A." name="citation_author" /> <meta content="Latina, A." name="citation_author" /> <meta content="Hewett, J." name="citation_author" /> <meta content="Tomoiaga, C.I." name="citation_author" /> <meta content="Kamugasa, S.W." name="citation_author" /> <meta content="Salvatore, F." name="citation_author" /> <meta content="Furukawa, K." name="citation_author" /> <meta content="Profatilova, Ia." name="citation_author" /> <meta content="Balazs, C." name="citation_author" /> <meta content="Korysko, P." name="citation_author" /> <meta content="Gerwig, H." name="citation_author" /> <meta content="Hein Lutz, M." name="citation_author" /> <meta content="Bayar, C." name="citation_author" /> <meta content="Perez Fontenla, A." name="citation_author" /> <meta content="Boogert, S." name="citation_author" /> <meta content="Grefe, C." name="citation_author" /> <meta content="Woodley, M." name="citation_author" /> <meta content="Diaz, M.A." name="citation_author" /> <meta content="Tang, C." name="citation_author" /> <meta content="Han, Y." name="citation_author" /> <meta content="Chekanov, S." name="citation_author" /> <meta content="Esperante, D." name="citation_author" /> <meta content="Nordlund, K." name="citation_author" /> <meta content="Krupa, B." name="citation_author" /> <meta content="Riddone, G." name="citation_author" /> <meta content="Gazis, N." name="citation_author" /> <meta content="Barranco Garcia, J." name="citation_author" /> <meta content="Zisopoulos, P." name="citation_author" /> <meta content="Snuverink, J." name="citation_author" /> <meta content="Yamamoto, A." name="citation_author" /> <meta content="Świentek, K.P." name="citation_author" /> <meta content="Navarro, J.G." name="citation_author" /> <meta content="Dal Gobbo, A." name="citation_author" /> <meta content="Stevanović, J." name="citation_author" /> <meta content="Borgmann, Ch." name="citation_author" /> <meta content="Chefdeville, M." name="citation_author" /> <meta content="Sroka, S." name="citation_author" /> <meta content="Perez, F." name="citation_author" /> <meta content="Alipour Tehrani, N." name="citation_author" /> <meta content="Neilson, J." name="citation_author" /> <meta content="Andersson, A." name="citation_author" /> <meta content="Gimeno, B." name="citation_author" /> <meta content="Balik, G." name="citation_author" /> <meta content="Urakawa, J." name="citation_author" /> <meta content="Van Hoorne, J." name="citation_author" /> <meta content="Moffeit, K." name="citation_author" /> <meta content="Power, J." name="citation_author" /> <meta content="Chen, H." name="citation_author" /> <meta content="Azaryan, N." name="citation_author" /> <meta content="Paraskaki, G." name="citation_author" /> <meta content="Gazis, E.N." name="citation_author" /> <meta content="Foraz, K." name="citation_author" /> <meta content="Väinölä, J." name="citation_author" /> <meta content="Quast, T." name="citation_author" /> <meta content="Zhang, Z." name="citation_author" /> <meta content="Bauche, J." name="citation_author" /> <meta content="Valerio, P." name="citation_author" /> <meta content="Senes, E." name="citation_author" /> <meta content="Sandomierski, J." name="citation_author" /> <meta content="Graf, N." name="citation_author" /> <meta content="Wells, J.D." name="citation_author" /> <meta content="Xu, B." name="citation_author" /> <meta content="Karjavine, V." name="citation_author" /> <meta content="Higo, T." name="citation_author" /> <meta content="Rey, S.F." name="citation_author" /> <meta content="Klempt, W." name="citation_author" /> <meta content="Weerts, H." name="citation_author" /> <meta content="Draper, M." name="citation_author" /> <meta content="Gamba, D." name="citation_author" /> <meta content="Woolley, B." name="citation_author" /> <meta content="Remandet, L." name="citation_author" /> <meta content="Ferracin, P." name="citation_author" /> <meta content="Fang, W." name="citation_author" /> <meta content="Shrivastava, P." name="citation_author" /> <meta content="Nosochkov, Y." name="citation_author" /> <meta content="Craievich, P." name="citation_author" /> <meta content="Kostopoulos, V." name="citation_author" /> <meta content="Maidana, C." name="citation_author" /> <meta content="Nappa, J.M." name="citation_author" /> <meta content="Ruber, R." name="citation_author" /> <meta content="Lebrun, P." name="citation_author" /> <meta content="Gai, W." name="citation_author" /> <meta content="Mezentsev, N." name="citation_author" /> <meta content="Ruehl, I." name="citation_author" /> <meta content="Nebo Del Busto, E." name="citation_author" /> <meta content="Raguin, J.Y." name="citation_author" /> <meta content="Bernardini, M." name="citation_author" /> <meta content="Vilalte, S." name="citation_author" /> <meta content="Zupan, J." name="citation_author" /> <meta content="Cassany, B." name="citation_author" /> <meta content="Tomas Garcia, R." name="citation_author" /> <meta content="Karpenko, O." name="citation_author" /> <meta content="Bettoni, S." name="citation_author" /> <meta content="Rossi, F." name="citation_author" /> <meta content="Ciftci, A.K." name="citation_author" /> <meta content="Costa, R." name="citation_author" /> <meta content="Żarnecki, A.F." name="citation_author" /> <meta content="Grau, A." name="citation_author" /> <meta content="Aguglia, D." name="citation_author" /> <meta content="Kilian, W." name="citation_author" /> <meta content="Graf, C." name="citation_author" /> <meta content="Dehler, M." name="citation_author" /> <meta content="Djurabekova, F." name="citation_author" /> <meta content="Bugiel, R." name="citation_author" /> <meta content="Huttel, E." name="citation_author" /> <meta content="Calatroni, S." name="citation_author" /> <meta content="Pedrozzi, M." name="citation_author" /> <meta content="Kimari, J." name="citation_author" /> <meta content="Wendt, M." name="citation_author" /> <meta content="Towler, J." name="citation_author" /> <meta content="Raboanary, R." name="citation_author" /> <meta content="Nisbet, D." name="citation_author" /> <meta content="Pittet, S." name="citation_author" /> <meta content="Brunetti, L." name="citation_author" /> <meta content="Boronat, M." name="citation_author" /> <meta content="Vukasinović, N." name="citation_author" /> <meta content="Soby, L." name="citation_author" /> <meta content="Burkhardt, H." name="citation_author" /> <meta content="Hillenbrand, S." name="citation_author" /> <meta content="Mazzoni, S." name="citation_author" /> <meta content="Gayde, J-C." name="citation_author" /> <meta content="Bielawski, B." name="citation_author" /> <meta content="Walsh, D." name="citation_author" /> <meta content="Zawiejski, L.K." name="citation_author" /> <meta content="Bozzini, D." name="citation_author" /> <meta content="Severino, G." name="citation_author" /> <meta content="Assly, S." name="citation_author" /> <meta content="Bosley, R.R." name="citation_author" /> <meta content="Wang, P." name="citation_author" /> <meta content="Kokkinis, N." name="citation_author" /> <meta content="Nevay, L." name="citation_author" /> <meta content="Gerbershagen, A." name="citation_author" /> <meta content="Boland, M.J." name="citation_author" /> <meta content="Cullinan, F." name="citation_author" /> <meta content="Edwards, A.V." name="citation_author" /> <meta content="Montonen, R." name="citation_author" /> <meta content="Tecker, F." name="citation_author" /> <meta content="Samochkine, A." name="citation_author" /> <meta content="Apostolopoulos, T." name="citation_author" /> <meta content="Lillestøl, R." name="citation_author" /> <meta content="Lichtenberger, J." name="citation_author" /> <meta content="Li, B." name="citation_author" /> <meta content="Rymbekova, A." name="citation_author" /> <meta content="Neagu, A.T." name="citation_author" /> <meta content="Riva, F." name="citation_author" /> <meta content="Ziemann, V." name="citation_author" /> <meta content="Perić, I." name="citation_author" /> <meta content="Xydou, A." name="citation_author" /> <meta content="Giribono, A." name="citation_author" /> <meta content="Vicente Barreto Pinto, M." name="citation_author" /> <meta content="Jeff, A." name="citation_author" /> <meta content="Alabau Gonzalvo, J." name="citation_author" /> <meta content="West, S." name="citation_author" /> <meta content="Redford, S." name="citation_author" /> <meta content="Fuster, J." name="citation_author" /> <meta content="Maier, A.A." name="citation_author" /> <meta content="Chi, Y." name="citation_author" /> <meta content="Markiewicz, T." name="citation_author" /> <meta content="Arominski, D." name="citation_author" /> <meta content="Krumpa, N." name="citation_author" /> <meta content="Gallo, A." name="citation_author" /> <meta content="Pei, S." name="citation_author" /> <meta content="Vaccarezza, C." name="citation_author" /> <meta content="Keskin, U." name="citation_author" /> <meta content="Timeo, L." name="citation_author" /> <meta content="Popov, I." name="citation_author" /> <meta content="Vos, M." name="citation_author" /> <meta content="Heilig, B." name="citation_author" /> <meta content="Hajari, S.S." name="citation_author" /> <meta content="Bett, D.R." name="citation_author" /> <meta content="Papadopoulou, S." name="citation_author" /> <meta content="Gao, Y." name="citation_author" /> <meta content="Ghasem, H." name="citation_author" /> <meta content="Soldatov, V." name="citation_author" /> <meta content="Leogrande, E." name="citation_author" /> <meta content="Huang, W." name="citation_author" /> <meta content="Olvegård, M." name="citation_author" /> <meta content="Jamison, S." name="citation_author" /> <meta content="Anastasopoulos, M." name="citation_author" /> <meta content="Blanco Garcia, O." name="citation_author" /> <meta content="Li, Y." name="citation_author" /> <meta content="Kholodov, R." name="citation_author" /> <meta content="Christian, G.B." name="citation_author" /> <meta content="Uythoven, J." name="citation_author" /> <meta content="Farabolini, W." name="citation_author" /> <meta content="Irles, A." name="citation_author" /> <meta content="Degiovanni, A." name="citation_author" /> <meta content="van der Kolk, N." name="citation_author" /> <meta content="Jones, R." name="citation_author" /> <meta content="Eerola, P." name="citation_author" /> <meta content="Mordyk, S." name="citation_author" /> <meta content="Winter, A.G." name="citation_author" /> <meta content="Baccigalupi, C." name="citation_author" /> <meta content="Storizhko, V." name="citation_author" /> <meta content="Stella, A." name="citation_author" /> <meta content="Kemp, M." name="citation_author" /> <meta content="Jonker, M." name="citation_author" /> <meta content="Marshall, J.S." name="citation_author" /> <meta content="Modena, M." name="citation_author" /> <meta content="Passarelli, A." name="citation_author" /> <meta content="Muranaka, T." name="citation_author" /> <meta content="Watson, M.F." name="citation_author" /> <meta content="Wegner, R." name="citation_author" /> <meta content="Pellegrini, D." name="citation_author" /> <meta content="Shields, W." name="citation_author" /> <meta content="Shidara, T." name="citation_author" /> <meta content="Wuensch, W." name="citation_author" /> <meta content="van der Graaf, H." name="citation_author" /> <meta content="White, G." name="citation_author" /> <meta content="Brücken, E." name="citation_author" /> <meta content="Emberger, L." name="citation_author" /> <meta content="Kubo, K." name="citation_author" /> <meta content="Delikaris, D." name="citation_author" /> <meta content="González, D." name="citation_author" /> <meta content="Baibuz, E." name="citation_author" /> <meta content="Manosperti, E." name="citation_author" /> <meta content="Elsener, K." name="citation_author" /> <meta content="Artoos, K." name="citation_author" /> <meta content="Kulis, S." name="citation_author" /> <meta content="Duquenne, M." name="citation_author" /> <meta content="Ros, E." name="citation_author" /> <meta content="Watson, N.K." name="citation_author" /> <meta content="Guerin, H." name="citation_author" /> <meta content="Branger, E." name="citation_author" /> <meta content="Grudiev, A." name="citation_author" /> <meta content="Ferrario, M." name="citation_author" /> <meta content="Ikarios, E." name="citation_author" /> <meta content="Bründermann, E." name="citation_author" /> <meta content="Okugi, T." name="citation_author" /> <meta content="Dominjon, A." name="citation_author" /> <meta content="Vaňát, T." name="citation_author" /> <meta content="Rodriguez Castro, E." name="citation_author" /> <meta content="Bopp, M." name="citation_author" /> <meta content="Moniz Cabral, P.B." name="citation_author" /> <meta content="Lyapin, A." name="citation_author" /> <meta content="Vila, I." name="citation_author" /> <meta content="Alesini, D." name="citation_author" /> <meta content="Mainaud Durand, H." name="citation_author" /> <meta content="Adli, E." name="citation_author" /> <meta content="Lopez, D." name="citation_author" /> <meta content="Hayano, H." name="citation_author" /> <meta content="Liu, X." name="citation_author" /> <meta content="Kucharczyk, M." name="citation_author" /> <meta content="Kostka, Z." name="citation_author" /> <meta content="Giansiracusa, P.J." name="citation_author" /> <meta content="Fedosseev, V." name="citation_author" /> <meta content="Joshi, N." name="citation_author" /> <meta content="Renier, Y." name="citation_author" /> <meta content="Aksoy, A." name="citation_author" /> <meta content="Tiirakari, M." name="citation_author" /> <meta content="Sollander, P." name="citation_author" /> <meta content="Brückman de Renstrom, P." name="citation_author" /> <meta content="Pan, R." name="citation_author" /> <meta content="Sosin, M.P." name="citation_author" /> <meta content="Shelkov, G." name="citation_author" /> <meta content="Green, S." name="citation_author" /> <meta content="Vnuchenko, A." name="citation_author" /> <meta content="Sauza Bedolla, J." name="citation_author" /> <meta content="Aumeyr, T." name="citation_author" /> <meta content="Skowronski, P.K." name="citation_author" /> <meta content="Peiffer, P." name="citation_author" /> <meta content="Gudkov, D." name="citation_author" /> <meta content="Pastushenko, A." name="citation_author" /> <meta content="Jansson, V." name="citation_author" /> <meta content="Wang, J." name="citation_author" /> <meta content="Ström, R." name="citation_author" /> <meta content="Esposito, M." name="citation_author" /> <meta content="Trubnikov, G." name="citation_author" /> <meta content="Zelios, A." name="citation_author" /> <meta content="Khan, W.A." name="citation_author" /> <meta content="Jeremie, A." name="citation_author" /> <meta content="Mondello, R." name="citation_author" /> <meta content="Holzer, E.B." name="citation_author" /> <meta content="Bosco, A." name="citation_author" /> <meta content="Perez Codina, E." name="citation_author" /> <meta content="10.23731/CYRM-2018-002" name="citation_doi" /> <meta content="CERN Yellow Rep. Monogr." name="citation_journal_title" /> <meta content="2" name="citation_volume" /> <meta content="2018/12/14" name="citation_publication_date" /> <meta name="citation_online_date" content="2018/12/18"> <meta content="CERN-2018-005-M" name="citation_technical_report_number" /> <meta content="arXiv:1812.06018" name="citation_technical_report_number" /> <meta content="CERN-2018-005" name="citation_technical_report_number" /> <meta content="CERN-2018-005-M" name="citation_technical_report_number" /> <meta content="CERN-2018-005" name="citation_technical_report_number" /> <meta content="9789290835066" name="citation_isbn" /> <meta content="9789290835073" name="citation_isbn" /> <meta content="10.23731/CYRM-2018-002" name="citation_doi" /> <meta name="citation_pdf_url" content="https://cds.cern.ch/record/2652188/files/CLICSummaryReport.pdf" /> <meta name="citation_pdf_url" content="https://cds.cern.ch/record/2652188/files/66-67-PB.pdf" /> <meta name="citation_pdf_url" content="https://cds.cern.ch/record/2652188/files/1812.06018.pdf" /> <!-- OpenGraph --> <meta content="The Compact Linear Collider (CLIC) - 2018 Summary Report" property="og:title" /> <meta content="arXiv" property="og:title" /> <meta content="website" property="og:type" /> <meta content="website" property="og:type" /> <meta content="website" property="og:type" /> <meta content="https://cds.cern.ch/record/2652188" property="og:url" /> <meta name="twitter:image" content="https://cds.cern.ch/record/2652188/files/66-67-PB.gif?subformat=icon" /> <meta property="og:image" content="https://cds.cern.ch/record/2652188/files/66-67-PB.gif?subformat=icon" /> <meta property="og:image:secure_url" content="https://cds.cern.ch/record/2652188/files/66-67-PB.gif?subformat=icon" /> <meta property="og:image" content="https://cds.cern.ch/record/2652188/files/Front cover.png?subformat=icon-180" /> <meta property="og:image:secure_url" content="https://cds.cern.ch/record/2652188/files/Front cover.png?subformat=icon-180" /> <meta property="og:image" content="https://cds.cern.ch/record/2652188/files/Front cover.png" /> <meta property="og:image:secure_url" content="https://cds.cern.ch/record/2652188/files/Front cover.png" /> <meta property="og:image" content="https://cds.cern.ch/record/2652188/files/66-67-PB.jpg?subformat=icon-180" /> <meta property="og:image:secure_url" content="https://cds.cern.ch/record/2652188/files/66-67-PB.jpg?subformat=icon-180" /> <meta property="og:image" content="https://cds.cern.ch/record/2652188/files/66-67-PB.gif?subformat=icon" /> <meta property="og:image:secure_url" content="https://cds.cern.ch/record/2652188/files/66-67-PB.gif?subformat=icon" /> <meta property="og:image" content="https://cds.cern.ch/record/2652188/files/66-67-PB.jpg?subformat=icon-700" /> <meta property="og:image:secure_url" content="https://cds.cern.ch/record/2652188/files/66-67-PB.jpg?subformat=icon-700" /> <meta property="og:image" content="https://cds.cern.ch/record/2652188/files/Front cover.gif?subformat=icon" /> <meta property="og:image:secure_url" content="https://cds.cern.ch/record/2652188/files/Front cover.gif?subformat=icon" /> <meta property="og:image" content="https://cds.cern.ch/record/2652188/files/Front cover.png?subformat=icon-180" /> <meta property="og:image:secure_url" content="https://cds.cern.ch/record/2652188/files/Front cover.png?subformat=icon-180" /> <meta property="og:image" content="https://cds.cern.ch/record/2652188/files/Front cover.png?subformat=icon-700" /> <meta property="og:image:secure_url" content="https://cds.cern.ch/record/2652188/files/Front cover.png?subformat=icon-700" /> <meta content="CERN Document Server" property="og:site_name" /> <meta content="The Compact Linear Collider (CLIC) is a TeV-scale high-luminosity linear $e^+e^-$ collider under development at CERN. Following the CLIC conceptual design published in 2012, this report provides an overview of the CLIC project, its current status, and future developments. It presents the CLIC physics potential and reports on design, technology, and implementation aspects of the accelerator and the detector. CLIC is foreseen to be built and operated in stages, at centre-of-mass energies of 380 GeV, 1.5 TeV and 3 TeV, respectively. CLIC uses a two-beam acceleration scheme, in which 12 GHz accelerating structures are powered via a high-current drive beam. For the first stage, an alternative with X-band klystron powering is also considered. CLIC accelerator optimisation, technical developments and system tests have resulted in an increased energy efficiency (power around 170 MW) for the 380 GeV stage, together with a reduced cost estimate at the level of 6 billion CHF. The detector concept has been refined using improved software tools. Significant progress has been made on detector technology developments for the tracking and calorimetry systems. A wide range of CLIC physics studies has been conducted, both through full detector simulations and parametric studies, together providing a broad overview of the CLIC physics potential. Each of the three energy stages adds cornerstones of the full CLIC physics programme, such as Higgs width and couplings, top-quark properties, Higgs self-coupling, direct searches, and many precision electroweak measurements. The interpretation of the combined results gives crucial and accurate insight into new physics, largely complementary to LHC and HL-LHC. The construction of the first CLIC energy stage could start by 2026. First beams would be available by 2035, marking the beginning of a broad CLIC physics programme spanning 25-30 years." property="og:description" /> <meta content="arXiv" property="og:description" /> <meta content="The Compact Linear Collider (CLIC) is a TeV-scale high-luminosity linear $e^+e^−$ collider under development at CERN. Following the CLIC conceptual design published in 2012, this report provides an overview of the CLIC project, its current status, and future developments. It presents the CLIC physics potential and reports on design, technology, and implementation aspects of the accelerator and the detector. For an optimal exploitation of its physics potential, CLIC is foreseen to be built and operated in stages, at centre-of-mass energies of 380 GeV, 1.5 TeV and 3 TeV, respectively, for a site length ranging from 11 km to 50 km. CLIC uses a two-beam acceleration scheme, in which normal-conducting high-gradient 12 GHz accelerating structures are powered via a high-current drive beam. For the first stage, an alternative with X-band klystron powering is also considered. CLIC accelerator optimisation, technical developments and system tests have resulted in significant progress in recent years. Moreover, this has led to an increased energy efficiency (power around 170 MW) for the 380 GeV stage, together with a reduced cost estimate at the level of 6 billion CHF. The detector concept, which matches the physics performance requirements and the CLIC experimental conditions, has been refined using improved software tools for simulation and reconstruction. Significant progress has been made on detector technology developments for the tracking and calorimetry systems. A wide range of CLIC physics studies has been conducted, both through full detector simulations with overlay of beam-induced backgrounds, and through parametric studies, together providing a broad overview of the CLIC physics potential. Each of the three energy stages adds cornerstones of the full CLIC physics programme, such as Higgs width and couplings, top-quark properties, Higgs self-coupling, direct searches, and many precision electroweak measurements. The interpretation of the combined results gives crucial and accurate insight into new physics, largely complementary to LHC and HL-LHC. The construction of the first CLIC energy stage could start by 2026. First beams would be available by 2035, marking the beginning of a broad CLIC physics programme spanning 25–30 years." property="og:description" /> <meta content="The Compact Linear Collider (CLIC) is a TeV-scale high-luminosity linear $e^+e^−$ collider under development at CERN. Following the CLIC conceptual design published in 2012, this report provides an overview of the CLIC project, its current status, and future developments. It presents the CLIC physics potential and reports on design, technology, and implementation aspects of the accelerator and the detector. For an optimal exploitation of its physics potential, CLIC is foreseen to be built and operated in stages, at centre-of-mass energies of 380 GeV, 1.5 TeV and 3 TeV, respectively, for a site length ranging from 11 km to 50 km. CLIC uses a two-beam acceleration scheme, in which normal-conducting high-gradient 12 GHz accelerating structures are powered via a high-current drive beam. For the first stage, an alternative with X-band klystron powering is also considered. CLIC accelerator optimisation, technical developments and system tests have resulted in significant progress in recent years. Moreover, this has led to an increased energy efficiency (power around 170 MW) for the 380 GeV stage, together with a reduced cost estimate at the level of 6 billion CHF. The detector concept, which matches the physics performance requirements and the CLIC experimental conditions, has been refined using improv" property="og:description" /> <!-- Twitter Card --> <meta content="summary" name="twitter:card" /> <meta content="summary" name="twitter:card" /> <style></style> </head> <body class="CERN32Document32Server search" lang="en"> <!-- toolbar starts --> <div id="cern-toolbar"> <h1><a href="http://cern.ch" title="CERN">CERN <span>Accelerating science</span></a></h1> <ul> <li class="cern-accountlinks"><a class="cern-account" href="https://cds.cern.ch/youraccount/login?ln=en&referer=https%3A//cds.cern.ch/record/2652188" title="Sign in to your CERN account">Sign in</a></li> <li><a class="cern-directory" href="http://cern.ch/directory" title="Search CERN resources and browse the directory">Directory</a></li> </ul> </div> <!-- toolbar ends --> <!-- Nav header starts--> <div role="banner" class="clearfix" id="header"> <div class="header-inner inner"> <hgroup class="clearfix"> <h2 id="site-name"> <a rel="home" title="Home" href="/"><span>CERN Document Server</span></a> </h2> <h3 id="site-slogan">Access articles, reports and multimedia content in HEP</h3> </hgroup><!-- /#name-and-slogan --> <div role="navigation" id="main-navigation" class="cdsmenu"> <h2 class="element-invisible">Main menu</h2><ul class="links inline clearfix"> <li class="menu-386 first active-trail"><a class="active-trail" href="https://cds.cern.ch/?ln=en">Search</a></li> <li class="menu-444 "><a class="" title="" href="https://cds.cern.ch/submit?ln=en">Submit</a></li> <li class="menu-426 "><a class="" href="https://cds.cern.ch/help/?ln=en">Help</a></li> <li class="leaf hassubcdsmenu"> <a hreflang="en" class="header" href="https://cds.cern.ch/youraccount/display?ln=en">Personalize</a> <ul class="subsubcdsmenu"><li><a href="https://cds.cern.ch/youralerts/list?ln=en">Your alerts</a></li><li><a href="https://cds.cern.ch/yourbaskets/display?ln=en">Your baskets</a></li><li><a href="https://cds.cern.ch/yourcomments?ln=en">Your comments</a></li><li><a href="https://cds.cern.ch/youralerts/display?ln=en">Your searches</a></li></ul></li> </ul> </div> </div> </div> <!-- Nav header ends--> <table class="navtrailbox"> <tr> <td class="navtrailboxbody"> <a href="/?ln=en" class="navtrail">Home</a> > The Compact Linear Collider (CLIC) - 2018 Summary Report </td> </tr> </table> </div> <div class="pagebody"><div class="pagebodystripemiddle"> <div class="detailedrecordbox"> <div class="detailedrecordtabs"> <div> <ul class="detailedrecordtabs"><li class="on first"><a href="/record/2652188/?ln=en">Information </a></li><li class=""><a href="/record/2652188/files?ln=en">Files </a></li></ul> <div id="tabsSpacer" style="clear:both;height:0px"> </div></div> </div> <div class="detailedrecordboxcontent"> <div class="top-left-folded"></div> <div class="top-right-folded"></div> <div class="inside"> <!--<div style="height:0.1em;"> </div> <p class="notopgap"> </p>--> <abbr class="unapi-id" title="2652188"></abbr> <style type="text/css"> <!-- ul.detailedrecordtabs li.on a{background-color:#4D94CC;color:#fff !important;border-bottom:1px solid #4D94CC!important;} div.detailedrecordboxcontent {padding-top:0px !important;} --> </style> <script type="text/javascript" src="/js/pdf-previewer-append-to-table.js"></script> <table class="formatRecordTableFullWidth" > <tr> <td class="formatRecordHeader" style="background-image: url('https://cds.cern.ch/img/journals.jpg');" colspan="2"> Report </td> </tr> <tr><td class="formatRecordLabel"> Report number </td><td style="padding-left:5px;"><a href="http://arxiv.org/abs/arXiv:1812.06018">arXiv:1812.06018</a> ; CERN-2018-005-M ; CERN-2018-005 ; CERN-2018-005-M ; CERN-2018-005</td></tr> <tr><td class="formatRecordLabel"> Title </td><td style="padding-left:5px;"><b>The Compact Linear Collider (CLIC) - 2018 Summary Report</b></td></tr> <tr><td class="formatRecordLabel"></td><td style="padding-left:5px;"> <style> .yr_cover { position: absolute; display: none; z-index: 9999; margin-left: 2px; -moz-box-shadow: 2px 2px 6px gray; -webkit-box-shadow: 2px 2px 6px gray; -o-box-shadow: 2px 2px 6px gray; box-shadow: 2px 2px 6px gray; } </style> <script> $(window).bind("load", function() { $("#yr_cover_2652188_target").mouseover(function() { $("body").append("<div id='yr_cover_2652188' class='yr_cover'><img style='max-height: 640px; max-width: 480px;' src='https://cds.cern.ch/record/2652188/files/Front cover.png' /></div>"); $("#yr_cover_2652188").css('top', $("#yr_cover_2652188_target").offset().top + 'px'); $("#yr_cover_2652188").css('left', ($("#yr_cover_2652188_target").offset().left + $("#yr_cover_2652188_target").outerWidth()) + 'px'); $("#yr_cover_2652188").fadeIn("fast"); }); $("#yr_cover_2652188_target").mouseout(function() { $("#yr_cover_2652188").fadeOut("fast"); }); }); </script> <img id="yr_cover_2652188_target" src="https://cds.cern.ch/record/2652188/files/Front cover.gif?subformat=icon" alt="CERN Yellow Report Front Cover" /> </td></tr> <tr><td class="formatRecordLabel"><span style="white-space:nowrap;">Author(s)</span> </td><td style="padding-left:5px;"> <script type="text/javascript"> function toggle_authors_visibility(){ var more = document.getElementById('more'); var link = document.getElementById('link'); var extension = document.getElementById('extension'); if (more.style.display=='none'){ more.style.display = ''; extension.style.display = 'none'; link.innerHTML = "Hide" } else { more.style.display = 'none'; extension.style.display = ''; link.innerHTML = "Show all 692 authors" } link.style.color = "rgb(204,0,0);" } function set_up(){ var extension = document.getElementById('extension'); extension.innerHTML = "CLICdp Collaboration "; toggle_authors_visibility(); } </script> <a name="show_hide" /><p id="more" style=""><a href="https://cds.cern.ch/search?f=author&p=Burrows%2C%20P.N.&ln=en">Burrows, P.N.</a> (ed.) (JAI, UK) ; <a href="https://cds.cern.ch/search?f=author&p=Catalan%20Lasheras%2C%20N.&ln=en">Catalan Lasheras, N.</a> (ed.) (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Linssen%2C%20L.&ln=en">Linssen, L.</a> (ed.) (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Petri%C4%8D%2C%20M.&ln=en">Petrič, M.</a> (ed.) (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Robson%2C%20A.&ln=en">Robson, A.</a> (ed.) (Glasgow U.) ; <a href="https://cds.cern.ch/search?f=author&p=Schulte%2C%20D.&ln=en">Schulte, D.</a> (ed.) (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Sicking%2C%20E.&ln=en">Sicking, E.</a> (ed.) (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Stapnes%2C%20S.&ln=en">Stapnes, S.</a> (ed.) (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Charles%2C%20T.K.&ln=en">Charles, T.K.</a> (Melbourne U.) ; <a href="https://cds.cern.ch/search?f=author&p=Giansiracusa%2C%20P.J.&ln=en">Giansiracusa, P.J.</a> (Melbourne U.) ; <a href="https://cds.cern.ch/search?f=author&p=Lucas%2C%20T.G.&ln=en">Lucas, T.G.</a> (Melbourne U.) ; <a href="https://cds.cern.ch/search?f=author&p=Rassool%2C%20R.P.&ln=en">Rassool, R.P.</a> (Melbourne U.) ; <a href="https://cds.cern.ch/search?f=author&p=Volpi%2C%20M.&ln=en">Volpi, M.</a> (Melbourne U.) ; <a href="https://cds.cern.ch/search?f=author&p=Balazs%2C%20C.&ln=en">Balazs, C.</a> (Monash U.) ; <a href="https://cds.cern.ch/search?f=author&p=Afanaciev%2C%20K.&ln=en">Afanaciev, K.</a> (Belarus State U.) ; <a href="https://cds.cern.ch/search?f=author&p=Makarenko%2C%20V.&ln=en">Makarenko, V.</a> (Belarus State U.) ; <a href="https://cds.cern.ch/search?f=author&p=Patapenka%2C%20A.&ln=en">Patapenka, A.</a> (Joint Inst. Power Nucl. Res., Minsk) ; <a href="https://cds.cern.ch/search?f=author&p=Zhuk%2C%20I.&ln=en">Zhuk, I.</a> (Joint Inst. Power Nucl. Res., Minsk) ; <a href="https://cds.cern.ch/search?f=author&p=Collette%2C%20C.&ln=en">Collette, C.</a> (Brussels U.) ; <a href="https://cds.cern.ch/search?f=author&p=Boland%2C%20M.J.&ln=en">Boland, M.J.</a> (Saskatchewan U.) ; <a href="https://cds.cern.ch/search?f=author&p=Abusleme%20Hoffman%2C%20A.C.&ln=en">Abusleme Hoffman, A.C.</a> (Chile U., Catolica) ; <a href="https://cds.cern.ch/search?f=author&p=Diaz%2C%20M.A.&ln=en">Diaz, M.A.</a> (Chile U., Catolica) ; <a href="https://cds.cern.ch/search?f=author&p=Garay%2C%20F.&ln=en">Garay, F.</a> (Chile U., Catolica) ; <a href="https://cds.cern.ch/search?f=author&p=Chi%2C%20Y.&ln=en">Chi, Y.</a> (Beijing, Inst. High Energy Phys.) ; <a href="https://cds.cern.ch/search?f=author&p=He%2C%20X.&ln=en">He, X.</a> (Beijing, Inst. High Energy Phys.) ; <a href="https://cds.cern.ch/search?f=author&p=Pei%2C%20G.&ln=en">Pei, G.</a> (Beijing, Inst. High Energy Phys.) ; <a href="https://cds.cern.ch/search?f=author&p=Pei%2C%20S.&ln=en">Pei, S.</a> (Beijing, Inst. High Energy Phys.) ; <a href="https://cds.cern.ch/search?f=author&p=Shu%2C%20G.&ln=en">Shu, G.</a> (Beijing, Inst. High Energy Phys.) ; <a href="https://cds.cern.ch/search?f=author&p=Wang%2C%20X.&ln=en">Wang, X.</a> (Beijing, Inst. High Energy Phys.) ; <a href="https://cds.cern.ch/search?f=author&p=Zhang%2C%20J.&ln=en">Zhang, J.</a> (Beijing, Inst. High Energy Phys.) ; <a href="https://cds.cern.ch/search?f=author&p=Zhao%2C%20F.&ln=en">Zhao, F.</a> (Beijing, Inst. High Energy Phys.) ; <a href="https://cds.cern.ch/search?f=author&p=Zhou%2C%20Z.&ln=en">Zhou, Z.</a> (Beijing, Inst. High Energy Phys.) ; <a href="https://cds.cern.ch/search?f=author&p=Chen%2C%20H.&ln=en">Chen, H.</a> (Tsinghua U., Beijing) ; <a href="https://cds.cern.ch/search?f=author&p=Gao%2C%20Y.&ln=en">Gao, Y.</a> (Tsinghua U., Beijing) ; <a href="https://cds.cern.ch/search?f=author&p=Huang%2C%20W.&ln=en">Huang, W.</a> (Tsinghua U., Beijing) ; <a href="https://cds.cern.ch/search?f=author&p=Kuang%2C%20Y.P.&ln=en">Kuang, Y.P.</a> (Tsinghua U., Beijing) ; <a href="https://cds.cern.ch/search?f=author&p=Li%2C%20B.&ln=en">Li, B.</a> (Tsinghua U., Beijing) ; <a href="https://cds.cern.ch/search?f=author&p=Li%2C%20Y.&ln=en">Li, Y.</a> (Tsinghua U., Beijing) ; <a href="https://cds.cern.ch/search?f=author&p=Meng%2C%20X.&ln=en">Meng, X.</a> (Tsinghua U., Beijing) ; <a href="https://cds.cern.ch/search?f=author&p=Shao%2C%20J.&ln=en">Shao, J.</a> (Tsinghua U., Beijing) ; <a href="https://cds.cern.ch/search?f=author&p=Shi%2C%20J.&ln=en">Shi, J.</a> (Tsinghua U., Beijing) ; <a href="https://cds.cern.ch/search?f=author&p=Tang%2C%20C.&ln=en">Tang, C.</a> (Tsinghua U., Beijing) ; <a href="https://cds.cern.ch/search?f=author&p=Wang%2C%20P.&ln=en">Wang, P.</a> (Tsinghua U., Beijing) ; <a href="https://cds.cern.ch/search?f=author&p=Wu%2C%20X.&ln=en">Wu, X.</a> (Tsinghua U., Beijing) ; <a href="https://cds.cern.ch/search?f=author&p=Zha%2C%20H.&ln=en">Zha, H.</a> (Tsinghua U., Beijing) ; <a href="https://cds.cern.ch/search?f=author&p=Ma%2C%20L.&ln=en">Ma, L.</a> (Shandong U.) ; <a href="https://cds.cern.ch/search?f=author&p=Han%2C%20Y.&ln=en">Han, Y.</a> (Shandong U.) ; <a href="https://cds.cern.ch/search?f=author&p=Fang%2C%20W.&ln=en">Fang, W.</a> (SINAP, Shanghai) ; <a href="https://cds.cern.ch/search?f=author&p=Gu%2C%20Q.&ln=en">Gu, Q.</a> (SINAP, Shanghai) ; <a href="https://cds.cern.ch/search?f=author&p=Huang%2C%20D.&ln=en">Huang, D.</a> (SINAP, Shanghai) ; <a href="https://cds.cern.ch/search?f=author&p=Huang%2C%20X.&ln=en">Huang, X.</a> (SINAP, Shanghai) ; <a href="https://cds.cern.ch/search?f=author&p=Tan%2C%20J.&ln=en">Tan, J.</a> (SINAP, Shanghai) ; <a href="https://cds.cern.ch/search?f=author&p=Wang%2C%20Z.&ln=en">Wang, Z.</a> (SINAP, Shanghai) ; <a href="https://cds.cern.ch/search?f=author&p=Zhao%2C%20Z.&ln=en">Zhao, Z.</a> (SINAP, Shanghai) ; <a href="https://cds.cern.ch/search?f=author&p=Uggerh%C3%B8j%2C%20U.I.&ln=en">Uggerhøj, U.I.</a> (Aarhus U.) ; <a href="https://cds.cern.ch/search?f=author&p=Wistisen%2C%20T.N.&ln=en">Wistisen, T.N.</a> (Aarhus U.) ; <a href="https://cds.cern.ch/search?f=author&p=Aabloo%2C%20A.&ln=en">Aabloo, A.</a> (Tartu State U.) ; <a href="https://cds.cern.ch/search?f=author&p=Aare%2C%20R.&ln=en">Aare, R.</a> (Tartu State U.) ; <a href="https://cds.cern.ch/search?f=author&p=Kuppart%2C%20K.&ln=en">Kuppart, K.</a> (Tartu State U.) ; <a href="https://cds.cern.ch/search?f=author&p=Vigonski%2C%20S.&ln=en">Vigonski, S.</a> (Tartu State U.) ; <a href="https://cds.cern.ch/search?f=author&p=Zadin%2C%20V.&ln=en">Zadin, V.</a> (Tartu State U.) ; <a href="https://cds.cern.ch/search?f=author&p=Aicheler%2C%20M.&ln=en">Aicheler, M.</a> (Helsinki Inst. of Phys.) ; <a href="https://cds.cern.ch/search?f=author&p=Baibuz%2C%20E.&ln=en">Baibuz, E.</a> (Helsinki Inst. of Phys.) ; <a href="https://cds.cern.ch/search?f=author&p=Br%C3%BCcken%2C%20E.&ln=en">Brücken, E.</a> (Helsinki Inst. of Phys.) ; <a href="https://cds.cern.ch/search?f=author&p=Djurabekova%2C%20F.&ln=en">Djurabekova, F.</a> (Helsinki Inst. of Phys.) ; <a href="https://cds.cern.ch/search?f=author&p=Eerola%2C%20P.&ln=en">Eerola, P.</a> (Helsinki Inst. of Phys.) ; <a href="https://cds.cern.ch/search?f=author&p=Garcia%2C%20F.&ln=en">Garcia, F.</a> (Helsinki Inst. of Phys.) ; <a href="https://cds.cern.ch/search?f=author&p=Haeggstr%C3%B6m%2C%20E.&ln=en">Haeggström, E.</a> (Helsinki Inst. of Phys.) ; <a href="https://cds.cern.ch/search?f=author&p=Huitu%2C%20K.&ln=en">Huitu, K.</a> (Helsinki Inst. of Phys.) ; <a href="https://cds.cern.ch/search?f=author&p=Jansson%2C%20V.&ln=en">Jansson, V.</a> (Helsinki Inst. of Phys.) ; <a href="https://cds.cern.ch/search?f=author&p=Kassamakov%2C%20I.&ln=en">Kassamakov, I.</a> (Helsinki Inst. of Phys.) ; <a href="https://cds.cern.ch/search?f=author&p=Kimari%2C%20J.&ln=en">Kimari, J.</a> (Helsinki Inst. of Phys.) ; <a href="https://cds.cern.ch/search?f=author&p=Kyritsakis%2C%20A.&ln=en">Kyritsakis, A.</a> (Helsinki Inst. of Phys.) ; <a href="https://cds.cern.ch/search?f=author&p=Lehti%2C%20S.&ln=en">Lehti, S.</a> (Helsinki Inst. of Phys.) ; <a href="https://cds.cern.ch/search?f=author&p=Meril%C3%A4inen%2C%20A.&ln=en">Meriläinen, A.</a> (Helsinki Inst. of Phys.) ; <a href="https://cds.cern.ch/search?f=author&p=Montonen%2C%20R.&ln=en">Montonen, R.</a> (Helsinki Inst. of Phys.) ; <a href="https://cds.cern.ch/search?f=author&p=Nordlund%2C%20K.&ln=en">Nordlund, K.</a> (Helsinki Inst. of Phys.) ; <a href="https://cds.cern.ch/search?f=author&p=%C3%96sterberg%2C%20K.&ln=en">Österberg, K.</a> (Helsinki Inst. of Phys.) ; <a href="https://cds.cern.ch/search?f=author&p=Saressalo%2C%20A.&ln=en">Saressalo, A.</a> (Helsinki Inst. of Phys.) ; <a href="https://cds.cern.ch/search?f=author&p=V%C3%A4in%C3%B6l%C3%A4%2C%20J.&ln=en">Väinölä, J.</a> (Helsinki Inst. of Phys.) ; <a href="https://cds.cern.ch/search?f=author&p=Veske%2C%20M.&ln=en">Veske, M.</a> (Helsinki Inst. of Phys.) ; <a href="https://cds.cern.ch/search?f=author&p=Farabolini%2C%20W.&ln=en">Farabolini, W.</a> (Saclay) ; <a href="https://cds.cern.ch/search?f=author&p=Mollard%2C%20A.&ln=en">Mollard, A.</a> (Saclay) ; <a href="https://cds.cern.ch/search?f=author&p=Peauger%2C%20F.&ln=en">Peauger, F.</a> (Saclay) ; <a href="https://cds.cern.ch/search?f=author&p=Plouin%2C%20J.&ln=en">Plouin, J.</a> (Saclay) ; <a href="https://cds.cern.ch/search?f=author&p=Bambade%2C%20P.&ln=en">Bambade, P.</a> (Orsay, LAL) ; <a href="https://cds.cern.ch/search?f=author&p=Chaikovska%2C%20I.&ln=en">Chaikovska, I.</a> (Orsay, LAL) ; <a href="https://cds.cern.ch/search?f=author&p=Chehab%2C%20R.&ln=en">Chehab, R.</a> (Orsay, LAL) ; <a href="https://cds.cern.ch/search?f=author&p=Delerue%2C%20N.&ln=en">Delerue, N.</a> (Orsay, LAL) ; <a href="https://cds.cern.ch/search?f=author&p=Davier%2C%20M.&ln=en">Davier, M.</a> (Orsay, LAL) ; <a href="https://cds.cern.ch/search?f=author&p=Faus-Golfe%2C%20A.&ln=en">Faus-Golfe, A.</a> (Orsay, LAL) ; <a href="https://cds.cern.ch/search?f=author&p=Irles%2C%20A.&ln=en">Irles, A.</a> (Orsay, LAL) ; <a href="https://cds.cern.ch/search?f=author&p=Kaabi%2C%20W.&ln=en">Kaabi, W.</a> (Orsay, LAL) ; <a href="https://cds.cern.ch/search?f=author&p=LeDiberder%2C%20F.&ln=en">LeDiberder, F.</a> (Orsay, LAL) ; <a href="https://cds.cern.ch/search?f=author&p=P%C3%B6schl%2C%20R.&ln=en">Pöschl, R.</a> (Orsay, LAL) ; <a href="https://cds.cern.ch/search?f=author&p=Zerwas%2C%20D.&ln=en">Zerwas, D.</a> (Orsay, LAL) ; <a href="https://cds.cern.ch/search?f=author&p=Aimard%2C%20B.&ln=en">Aimard, B.</a> (Annecy, LAPP) ; <a href="https://cds.cern.ch/search?f=author&p=Balik%2C%20G.&ln=en">Balik, G.</a> (Annecy, LAPP) ; <a href="https://cds.cern.ch/search?f=author&p=Blaising%2C%20J.-J.&ln=en">Blaising, J.-J.</a> (Annecy, LAPP) ; <a href="https://cds.cern.ch/search?f=author&p=Brunetti%2C%20L.&ln=en">Brunetti, L.</a> (Annecy, LAPP) ; <a href="https://cds.cern.ch/search?f=author&p=Chefdeville%2C%20M.&ln=en">Chefdeville, M.</a> (Annecy, LAPP) ; <a href="https://cds.cern.ch/search?f=author&p=Dominjon%2C%20A.&ln=en">Dominjon, A.</a> (Annecy, LAPP) ; <a href="https://cds.cern.ch/search?f=author&p=Drancourt%2C%20C.&ln=en">Drancourt, C.</a> (Annecy, LAPP) ; <a href="https://cds.cern.ch/search?f=author&p=Geoffroy%2C%20N.&ln=en">Geoffroy, N.</a> (Annecy, LAPP) ; <a href="https://cds.cern.ch/search?f=author&p=Jacquemier%2C%20J.&ln=en">Jacquemier, J.</a> (Annecy, LAPP) ; <a href="https://cds.cern.ch/search?f=author&p=Jeremie%2C%20A.&ln=en">Jeremie, A.</a> (Annecy, LAPP) ; <a href="https://cds.cern.ch/search?f=author&p=Karyotakis%2C%20Y.&ln=en">Karyotakis, Y.</a> (Annecy, LAPP) ; <a href="https://cds.cern.ch/search?f=author&p=Nappa%2C%20J.M.&ln=en">Nappa, J.M.</a> (Annecy, LAPP) ; <a href="https://cds.cern.ch/search?f=author&p=Serluca%2C%20M.&ln=en">Serluca, M.</a> (Annecy, LAPP) ; <a href="https://cds.cern.ch/search?f=author&p=Vilalte%2C%20S.&ln=en">Vilalte, S.</a> (Annecy, LAPP) ; <a href="https://cds.cern.ch/search?f=author&p=Vouters%2C%20G.&ln=en">Vouters, G.</a> (Annecy, LAPP) ; <a href="https://cds.cern.ch/search?f=author&p=Bernhard%2C%20A.&ln=en">Bernhard, A.</a> (KIT, Karlsruhe, IPE) ; <a href="https://cds.cern.ch/search?f=author&p=Br%C3%BCndermann%2C%20E.&ln=en">Bründermann, E.</a> (KIT, Karlsruhe, IPE) ; <a href="https://cds.cern.ch/search?f=author&p=Casalbuoni%2C%20S.&ln=en">Casalbuoni, S.</a> (KIT, Karlsruhe, IPE) ; <a href="https://cds.cern.ch/search?f=author&p=Hillenbrand%2C%20S.&ln=en">Hillenbrand, S.</a> (KIT, Karlsruhe, IPE) ; <a href="https://cds.cern.ch/search?f=author&p=Gethmann%2C%20J.&ln=en">Gethmann, J.</a> (KIT, Karlsruhe, IPE) ; <a href="https://cds.cern.ch/search?f=author&p=Grau%2C%20A.&ln=en">Grau, A.</a> (KIT, Karlsruhe, IPE) ; <a href="https://cds.cern.ch/search?f=author&p=Huttel%2C%20E.&ln=en">Huttel, E.</a> (KIT, Karlsruhe, IPE) ; <a href="https://cds.cern.ch/search?f=author&p=M%C3%BCller%2C%20A.-S.&ln=en">Müller, A.-S.</a> (KIT, Karlsruhe, IPE) ; <a href="https://cds.cern.ch/search?f=author&p=Peiffer%2C%20P.&ln=en">Peiffer, P.</a> (KIT, Karlsruhe, IPE) ; <a href="https://cds.cern.ch/search?f=author&p=Peri%C4%87%2C%20I.&ln=en">Perić, I.</a> (KIT, Karlsruhe, IPE) ; <a href="https://cds.cern.ch/search?f=author&p=Saez%20de%20Jauregui%2C%20D.&ln=en">Saez de Jauregui, D.</a> (KIT, Karlsruhe, IPE) ; <a href="https://cds.cern.ch/search?f=author&p=Emberger%2C%20L.&ln=en">Emberger, L.</a> (Munich, Max Planck Inst.) ; <a href="https://cds.cern.ch/search?f=author&p=Graf%2C%20C.&ln=en">Graf, C.</a> (Munich, Max Planck Inst.) ; <a href="https://cds.cern.ch/search?f=author&p=Simon%2C%20F.&ln=en">Simon, F.</a> (Munich, Max Planck Inst.) ; <a href="https://cds.cern.ch/search?f=author&p=Szalay%2C%20M.&ln=en">Szalay, M.</a> (Munich, Max Planck Inst.) ; <a href="https://cds.cern.ch/search?f=author&p=van%20der%20Kolk%2C%20N.&ln=en">van der Kolk, N.</a> (Munich, Max Planck Inst.) ; <a href="https://cds.cern.ch/search?f=author&p=Brass%2C%20S.&ln=en">Brass, S.</a> (Siegen U.) ; <a href="https://cds.cern.ch/search?f=author&p=Kilian%2C%20W.&ln=en">Kilian, W.</a> (Siegen U.) ; <a href="https://cds.cern.ch/search?f=author&p=Alexopoulos%2C%20T.&ln=en">Alexopoulos, T.</a> (Natl. Tech. U., Athens) ; <a href="https://cds.cern.ch/search?f=author&p=Apostolopoulos%2C%20T.&ln=en">Apostolopoulos, T.</a> (Natl. Tech. U., Athens) ; <a href="https://cds.cern.ch/search?f=author&p=Gazis%2C%20E.N.&ln=en">Gazis, E.N.</a> (Natl. Tech. U., Athens) ; <a href="https://cds.cern.ch/search?f=author&p=Gazis%2C%20N.&ln=en">Gazis, N.</a> (Natl. Tech. U., Athens) ; <a href="https://cds.cern.ch/search?f=author&p=Kostopoulos%2C%20V.&ln=en">Kostopoulos, V.</a> (Natl. Tech. U., Athens) ; <a href="https://cds.cern.ch/search?f=author&p=Kourkoulis%2C%20S.&ln=en">Kourkoulis, S.</a> (Natl. Tech. U., Athens) ; <a href="https://cds.cern.ch/search?f=author&p=Heilig%2C%20B.&ln=en">Heilig, B.</a> (Eotvos U.) ; <a href="https://cds.cern.ch/search?f=author&p=Lichtenberger%2C%20J.&ln=en">Lichtenberger, J.</a> (Eotvos U.) ; <a href="https://cds.cern.ch/search?f=author&p=Shrivastava%2C%20P.&ln=en">Shrivastava, P.</a> (CAT, INDUS) ; <a href="https://cds.cern.ch/search?f=author&p=Dayyani%2C%20M.K.&ln=en">Dayyani, M.K.</a> (IPM, Tehran) ; <a href="https://cds.cern.ch/search?f=author&p=Ghasem%2C%20H.&ln=en">Ghasem, H.</a> (IPM, Tehran) ; <a href="https://cds.cern.ch/search?f=author&p=Hajari%2C%20S.S.&ln=en">Hajari, S.S.</a> (IPM, Tehran) ; <a href="https://cds.cern.ch/search?f=author&p=Shaker%2C%20H.&ln=en">Shaker, H.</a> (IPM, Tehran) ; <a href="https://cds.cern.ch/search?f=author&p=Ashkenazy%2C%20Y.&ln=en">Ashkenazy, Y.</a> (Hebrew U.) ; <a href="https://cds.cern.ch/search?f=author&p=Popov%2C%20I.&ln=en">Popov, I.</a> (Hebrew U.) ; <a href="https://cds.cern.ch/search?f=author&p=Engelberg%2C%20E.&ln=en">Engelberg, E.</a> (Hebrew U.) ; <a href="https://cds.cern.ch/search?f=author&p=Yashar%2C%20A.&ln=en">Yashar, A.</a> (Hebrew U.) ; <a href="https://cds.cern.ch/search?f=author&p=Abramowicz%2C%20H.&ln=en">Abramowicz, H.</a> (Tel Aviv U.) ; <a href="https://cds.cern.ch/search?f=author&p=Benhammou%2C%20Y.&ln=en">Benhammou, Y.</a> (Tel Aviv U.) ; <a href="https://cds.cern.ch/search?f=author&p=Borysov%2C%20O.&ln=en">Borysov, O.</a> (Tel Aviv U.) ; <a href="https://cds.cern.ch/search?f=author&p=Borysova%2C%20M.&ln=en">Borysova, M.</a> (Tel Aviv U.) ; <a href="https://cds.cern.ch/search?f=author&p=Levy%2C%20A.&ln=en">Levy, A.</a> (Tel Aviv U.) ; <a href="https://cds.cern.ch/search?f=author&p=Levy%2C%20I.&ln=en">Levy, I.</a> (Tel Aviv U.) ; <a href="https://cds.cern.ch/search?f=author&p=Alesini%2C%20D.&ln=en">Alesini, D.</a> (Frascati) ; <a href="https://cds.cern.ch/search?f=author&p=Bellaveglia%2C%20M.&ln=en">Bellaveglia, M.</a> (Frascati) ; <a href="https://cds.cern.ch/search?f=author&p=Buonomo%2C%20B.&ln=en">Buonomo, B.</a> (Frascati) ; <a href="https://cds.cern.ch/search?f=author&p=Cardelli%2C%20A.&ln=en">Cardelli, A.</a> (Frascati) ; <a href="https://cds.cern.ch/search?f=author&p=Diomede%2C%20M.&ln=en">Diomede, M.</a> (Frascati) ; <a href="https://cds.cern.ch/search?f=author&p=Ferrario%2C%20M.&ln=en">Ferrario, M.</a> (Frascati) ; <a href="https://cds.cern.ch/search?f=author&p=Gallo%2C%20A.&ln=en">Gallo, A.</a> (Frascati) ; <a href="https://cds.cern.ch/search?f=author&p=Ghigo%2C%20A.&ln=en">Ghigo, A.</a> (Frascati) ; <a href="https://cds.cern.ch/search?f=author&p=Giribono%2C%20A.&ln=en">Giribono, A.</a> (Frascati) ; <a href="https://cds.cern.ch/search?f=author&p=Piersanti%2C%20L.&ln=en">Piersanti, L.</a> (Frascati) ; <a href="https://cds.cern.ch/search?f=author&p=Stella%2C%20A.&ln=en">Stella, A.</a> (Frascati) ; <a href="https://cds.cern.ch/search?f=author&p=Vaccarezza%2C%20C.&ln=en">Vaccarezza, C.</a> (Frascati) ; <a href="https://cds.cern.ch/search?f=author&p=de%20Blas%2C%20J.&ln=en">de Blas, J.</a> (INFN, Padua ; Trento U.) ; <a href="https://cds.cern.ch/search?f=author&p=Franceschini%2C%20R.&ln=en">Franceschini, R.</a> (INFN, Rome3 ; Rome III U.) ; <a href="https://cds.cern.ch/search?f=author&p=D%27Auria%2C%20G.&ln=en">D'Auria, G.</a> (Sincrotrone Trieste) ; <a href="https://cds.cern.ch/search?f=author&p=Di%20Mitri%2C%20S.&ln=en">Di Mitri, S.</a> (Sincrotrone Trieste) ; <a href="https://cds.cern.ch/search?f=author&p=Abe%2C%20T.&ln=en">Abe, T.</a> (KEK, Tsukuba) ; <a href="https://cds.cern.ch/search?f=author&p=Aryshev%2C%20A.&ln=en">Aryshev, A.</a> (KEK, Tsukuba) ; <a href="https://cds.cern.ch/search?f=author&p=Fukuda%2C%20M.&ln=en">Fukuda, M.</a> (KEK, Tsukuba) ; <a href="https://cds.cern.ch/search?f=author&p=Furukawa%2C%20K.&ln=en">Furukawa, K.</a> (KEK, Tsukuba) ; <a href="https://cds.cern.ch/search?f=author&p=Hayano%2C%20H.&ln=en">Hayano, H.</a> (KEK, Tsukuba) ; <a href="https://cds.cern.ch/search?f=author&p=Higashi%2C%20Y.&ln=en">Higashi, Y.</a> (KEK, Tsukuba) ; <a href="https://cds.cern.ch/search?f=author&p=Higo%2C%20T.&ln=en">Higo, T.</a> (KEK, Tsukuba) ; <a href="https://cds.cern.ch/search?f=author&p=Kubo%2C%20K.&ln=en">Kubo, K.</a> (KEK, Tsukuba) ; <a href="https://cds.cern.ch/search?f=author&p=Kuroda%2C%20S.&ln=en">Kuroda, S.</a> (KEK, Tsukuba) ; <a href="https://cds.cern.ch/search?f=author&p=Matsumoto%2C%20S.&ln=en">Matsumoto, S.</a> (KEK, Tsukuba) ; <a href="https://cds.cern.ch/search?f=author&p=Michizono%2C%20S.&ln=en">Michizono, S.</a> (KEK, Tsukuba) ; <a href="https://cds.cern.ch/search?f=author&p=Naito%2C%20T.&ln=en">Naito, T.</a> (KEK, Tsukuba) ; <a href="https://cds.cern.ch/search?f=author&p=Okugi%2C%20T.&ln=en">Okugi, T.</a> (KEK, Tsukuba) ; <a href="https://cds.cern.ch/search?f=author&p=Shidara%2C%20T.&ln=en">Shidara, T.</a> (KEK, Tsukuba) ; <a href="https://cds.cern.ch/search?f=author&p=Tauchi%2C%20T.&ln=en">Tauchi, T.</a> (KEK, Tsukuba) ; <a href="https://cds.cern.ch/search?f=author&p=Terunuma%2C%20N.&ln=en">Terunuma, N.</a> (KEK, Tsukuba) ; <a href="https://cds.cern.ch/search?f=author&p=Urakawa%2C%20J.&ln=en">Urakawa, J.</a> (KEK, Tsukuba) ; <a href="https://cds.cern.ch/search?f=author&p=Yamamoto%2C%20A.&ln=en">Yamamoto, A.</a> (KEK, Tsukuba) ; <a href="https://cds.cern.ch/search?f=author&p=Raboanary%2C%20R.&ln=en">Raboanary, R.</a> (iHEP-MAD) ; <a href="https://cds.cern.ch/search?f=author&p=Luiten%2C%20O.J.&ln=en">Luiten, O.J.</a> (Eindhoven, Tech. U.) ; <a href="https://cds.cern.ch/search?f=author&p=Stragier%2C%20X.F.D.&ln=en">Stragier, X.F.D.</a> (Eindhoven, Tech. U.) ; <a href="https://cds.cern.ch/search?f=author&p=Hart%2C%20R.&ln=en">Hart, R.</a> (Nikhef, Amsterdam) ; <a href="https://cds.cern.ch/search?f=author&p=van%20der%20Graaf%2C%20H.&ln=en">van der Graaf, H.</a> (Nikhef, Amsterdam) ; <a href="https://cds.cern.ch/search?f=author&p=Eigen%2C%20G.&ln=en">Eigen, G.</a> (Bergen U.) ; <a href="https://cds.cern.ch/search?f=author&p=Adli%2C%20E.&ln=en">Adli, E.</a> (Oslo U.) ; <a href="https://cds.cern.ch/search?f=author&p=Lindstr%C3%B8m%2C%20C.A.&ln=en">Lindstrøm, C.A.</a> (Oslo U.) ; <a href="https://cds.cern.ch/search?f=author&p=Lillest%C3%B8l%2C%20R.&ln=en">Lillestøl, R.</a> (Oslo U.) ; <a href="https://cds.cern.ch/search?f=author&p=Malina%2C%20L.&ln=en">Malina, L.</a> (Oslo U.) ; <a href="https://cds.cern.ch/search?f=author&p=Pfingstner%2C%20J.&ln=en">Pfingstner, J.</a> (Oslo U.) ; <a href="https://cds.cern.ch/search?f=author&p=Sjobak%2C%20K.N.&ln=en">Sjobak, K.N.</a> (Oslo U.) ; <a href="https://cds.cern.ch/search?f=author&p=Ahmad%2C%20A.&ln=en">Ahmad, A.</a> (NCP, Islamabad) ; <a href="https://cds.cern.ch/search?f=author&p=Hoorani%2C%20H.&ln=en">Hoorani, H.</a> (NCP, Islamabad) ; <a href="https://cds.cern.ch/search?f=author&p=Khan%2C%20W.A.&ln=en">Khan, W.A.</a> (NCP, Islamabad) ; <a href="https://cds.cern.ch/search?f=author&p=Bugiel%2C%20S.&ln=en">Bugiel, S.</a> (AGH-UST, Cracow) ; <a href="https://cds.cern.ch/search?f=author&p=Bugiel%2C%20R.&ln=en">Bugiel, R.</a> (AGH-UST, Cracow) ; <a href="https://cds.cern.ch/search?f=author&p=Firlej%2C%20M.&ln=en">Firlej, M.</a> (AGH-UST, Cracow) ; <a href="https://cds.cern.ch/search?f=author&p=Fiutowski%2C%20T.A.&ln=en">Fiutowski, T.A.</a> (AGH-UST, Cracow) ; <a href="https://cds.cern.ch/search?f=author&p=Idzik%2C%20M.&ln=en">Idzik, M.</a> (AGH-UST, Cracow) ; <a href="https://cds.cern.ch/search?f=author&p=Moro%C5%84%2C%20J.&ln=en">Moroń, J.</a> (AGH-UST, Cracow) ; <a href="https://cds.cern.ch/search?f=author&p=%C5%9Awientek%2C%20K.P.&ln=en">Świentek, K.P.</a> (AGH-UST, Cracow) ; <a href="https://cds.cern.ch/search?f=author&p=Br%C3%BCckman%20de%20Renstrom%2C%20P.&ln=en">Brückman de Renstrom, P.</a> (Cracow, INP) ; <a href="https://cds.cern.ch/search?f=author&p=Krupa%2C%20B.&ln=en">Krupa, B.</a> (Cracow, INP) ; <a href="https://cds.cern.ch/search?f=author&p=Kucharczyk%2C%20M.&ln=en">Kucharczyk, M.</a> (Cracow, INP) ; <a href="https://cds.cern.ch/search?f=author&p=Lesiak%2C%20T.&ln=en">Lesiak, T.</a> (Cracow, INP) ; <a href="https://cds.cern.ch/search?f=author&p=Pawlik%2C%20B.&ln=en">Pawlik, B.</a> (Cracow, INP) ; <a href="https://cds.cern.ch/search?f=author&p=Sopicki%2C%20P.&ln=en">Sopicki, P.</a> (Cracow, INP) ; <a href="https://cds.cern.ch/search?f=author&p=Turbiarz%2C%20B.&ln=en">Turbiarz, B.</a> (Cracow, INP) ; <a href="https://cds.cern.ch/search?f=author&p=Wojto%C5%84%2C%20T.&ln=en">Wojtoń, T.</a> (Cracow, INP) ; <a href="https://cds.cern.ch/search?f=author&p=Zawiejski%2C%20L.K.&ln=en">Zawiejski, L.K.</a> (Cracow, INP) ; <a href="https://cds.cern.ch/search?f=author&p=Kalinowski%2C%20J.&ln=en">Kalinowski, J.</a> (Warsaw U.) ; <a href="https://cds.cern.ch/search?f=author&p=Nowak%2C%20K.&ln=en">Nowak, K.</a> (Warsaw U.) ; <a href="https://cds.cern.ch/search?f=author&p=%C5%BBarnecki%2C%20A.F.&ln=en">Żarnecki, A.F.</a> (Warsaw U.) ; <a href="https://cds.cern.ch/search?f=author&p=Firu%2C%20E.&ln=en">Firu, E.</a> (Bucharest, Inst. Space Science) ; <a href="https://cds.cern.ch/search?f=author&p=Ghenescu%2C%20V.&ln=en">Ghenescu, V.</a> (Bucharest, Inst. Space Science) ; <a href="https://cds.cern.ch/search?f=author&p=Neagu%2C%20A.T.&ln=en">Neagu, A.T.</a> (Bucharest, Inst. Space Science) ; <a href="https://cds.cern.ch/search?f=author&p=Preda%2C%20T.&ln=en">Preda, T.</a> (Bucharest, Inst. Space Science) ; <a href="https://cds.cern.ch/search?f=author&p=Zgura%2C%20I.S.&ln=en">Zgura, I.S.</a> (Bucharest, Inst. Space Science) ; <a href="https://cds.cern.ch/search?f=author&p=Aloev%2C%20A.&ln=en">Aloev, A.</a> (Dubna, JINR) ; <a href="https://cds.cern.ch/search?f=author&p=Azaryan%2C%20N.&ln=en">Azaryan, N.</a> (Dubna, JINR) ; <a href="https://cds.cern.ch/search?f=author&p=Boyko%2C%20I.&ln=en">Boyko, I.</a> (Dubna, JINR) ; <a href="https://cds.cern.ch/search?f=author&p=Budagov%2C%20J.&ln=en">Budagov, J.</a> (Dubna, JINR) ; <a href="https://cds.cern.ch/search?f=author&p=Chizhov%2C%20M.&ln=en">Chizhov, M.</a> (Dubna, JINR) ; <a href="https://cds.cern.ch/search?f=author&p=Filippova%2C%20M.&ln=en">Filippova, M.</a> (Dubna, JINR) ; <a href="https://cds.cern.ch/search?f=author&p=Glagolev%2C%20V.&ln=en">Glagolev, V.</a> (Dubna, JINR) ; <a href="https://cds.cern.ch/search?f=author&p=Gongadze%2C%20A.&ln=en">Gongadze, A.</a> (Dubna, JINR) ; <a href="https://cds.cern.ch/search?f=author&p=Grigoryan%2C%20S.&ln=en">Grigoryan, S.</a> (Dubna, JINR) ; <a href="https://cds.cern.ch/search?f=author&p=Gudkov%2C%20D.&ln=en">Gudkov, D.</a> (Dubna, JINR) ; <a href="https://cds.cern.ch/search?f=author&p=Karjavine%2C%20V.&ln=en">Karjavine, V.</a> (Dubna, JINR) ; <a href="https://cds.cern.ch/search?f=author&p=Lyablin%2C%20M.&ln=en">Lyablin, M.</a> (Dubna, JINR) ; <a href="https://cds.cern.ch/search?f=author&p=Nefedov%2C%20Yu.&ln=en">Nefedov, Yu.</a> (Dubna, JINR) ; <a href="https://cds.cern.ch/search?f=author&p=Olyunina%2C%20A.&ln=en">Olyunina, A.</a> (Dubna, JINR) ; <a href="https://cds.cern.ch/search?f=author&p=Rymbekova%2C%20A.&ln=en">Rymbekova, A.</a> (Dubna, JINR) ; <a href="https://cds.cern.ch/search?f=author&p=Samochkine%2C%20A.&ln=en">Samochkine, A.</a> (Dubna, JINR) ; <a href="https://cds.cern.ch/search?f=author&p=Sapronov%2C%20A.&ln=en">Sapronov, A.</a> (Dubna, JINR) ; <a href="https://cds.cern.ch/search?f=author&p=Shelkov%2C%20G.&ln=en">Shelkov, G.</a> (Dubna, JINR) ; <a href="https://cds.cern.ch/search?f=author&p=Shirkov%2C%20G.&ln=en">Shirkov, G.</a> (Dubna, JINR) ; <a href="https://cds.cern.ch/search?f=author&p=Soldatov%2C%20V.&ln=en">Soldatov, V.</a> (Dubna, JINR) ; <a href="https://cds.cern.ch/search?f=author&p=Solodko%2C%20E.&ln=en">Solodko, E.</a> (Dubna, JINR) ; <a href="https://cds.cern.ch/search?f=author&p=Trubnikov%2C%20G.&ln=en">Trubnikov, G.</a> (Dubna, JINR) ; <a href="https://cds.cern.ch/search?f=author&p=Tyapkin%2C%20I.&ln=en">Tyapkin, I.</a> (Dubna, JINR) ; <a href="https://cds.cern.ch/search?f=author&p=Uzhinsky%2C%20V.&ln=en">Uzhinsky, V.</a> (Dubna, JINR) ; <a href="https://cds.cern.ch/search?f=author&p=Vorozhtov%2C%20A.&ln=en">Vorozhtov, A.</a> (Dubna, JINR) ; <a href="https://cds.cern.ch/search?f=author&p=Zhemchugov%2C%20A.&ln=en">Zhemchugov, A.</a> (Dubna, JINR) ; <a href="https://cds.cern.ch/search?f=author&p=Levichev%2C%20E.&ln=en">Levichev, E.</a> (Novosibirsk, IYF) ; <a href="https://cds.cern.ch/search?f=author&p=Mezentsev%2C%20N.&ln=en">Mezentsev, N.</a> (Novosibirsk, IYF) ; <a href="https://cds.cern.ch/search?f=author&p=Piminov%2C%20P.&ln=en">Piminov, P.</a> (Novosibirsk, IYF) ; <a href="https://cds.cern.ch/search?f=author&p=Shatilov%2C%20D.&ln=en">Shatilov, D.</a> (Novosibirsk, IYF) ; <a href="https://cds.cern.ch/search?f=author&p=Vobly%2C%20P.&ln=en">Vobly, P.</a> (Novosibirsk, IYF) ; <a href="https://cds.cern.ch/search?f=author&p=Zolotarev%2C%20K.&ln=en">Zolotarev, K.</a> (Novosibirsk, IYF) ; <a href="https://cds.cern.ch/search?f=author&p=Bo%C5%BEovi%C4%87Jelisav%C4%8Di%C4%87%2C%20I.&ln=en">BožovićJelisavčić, I.</a> (VINCA Inst. Nucl. Sci., Belgrade) ; <a href="https://cds.cern.ch/search?f=author&p=Ka%C4%8Darevi%C4%87%2C%20G.&ln=en">Kačarević, G.</a> (VINCA Inst. Nucl. Sci., Belgrade) ; <a href="https://cds.cern.ch/search?f=author&p=Milutinovi%C4%87Dumbelovi%C4%87%2C%20G.&ln=en">MilutinovićDumbelović, G.</a> (VINCA Inst. Nucl. Sci., Belgrade) ; <a href="https://cds.cern.ch/search?f=author&p=Pandurovi%C4%87%2C%20M.&ln=en">Pandurović, M.</a> (VINCA Inst. Nucl. Sci., Belgrade) ; <a href="https://cds.cern.ch/search?f=author&p=Radulovi%C4%87%2C%20M.&ln=en">Radulović, M.</a> (VINCA Inst. Nucl. Sci., Belgrade) ; <a href="https://cds.cern.ch/search?f=author&p=Stevanovi%C4%87%2C%20J.&ln=en">Stevanović, J.</a> (VINCA Inst. Nucl. Sci., Belgrade) ; <a href="https://cds.cern.ch/search?f=author&p=Vukasinovi%C4%87%2C%20N.&ln=en">Vukasinović, N.</a> (VINCA Inst. Nucl. Sci., Belgrade) ; <a href="https://cds.cern.ch/search?f=author&p=Lee%2C%20D.-H.&ln=en">Lee, D.-H.</a> (Myong Ji U.) ; <a href="https://cds.cern.ch/search?f=author&p=Ayala%2C%20N.&ln=en">Ayala, N.</a> (ICE, Barcelona) ; <a href="https://cds.cern.ch/search?f=author&p=Benedetti%2C%20G.&ln=en">Benedetti, G.</a> (ICE, Barcelona) ; <a href="https://cds.cern.ch/search?f=author&p=Guenzel%2C%20T.&ln=en">Guenzel, T.</a> (ICE, Barcelona) ; <a href="https://cds.cern.ch/search?f=author&p=Iriso%2C%20U.&ln=en">Iriso, U.</a> (ICE, Barcelona) ; <a href="https://cds.cern.ch/search?f=author&p=Marti%2C%20Z.&ln=en">Marti, Z.</a> (ICE, Barcelona) ; <a href="https://cds.cern.ch/search?f=author&p=Perez%2C%20F.&ln=en">Perez, F.</a> (ICE, Barcelona) ; <a href="https://cds.cern.ch/search?f=author&p=Pont%2C%20M.&ln=en">Pont, M.</a> (ICE, Barcelona) ; <a href="https://cds.cern.ch/search?f=author&p=Trenado%2C%20J.&ln=en">Trenado, J.</a> (Barcelona U.) ; <a href="https://cds.cern.ch/search?f=author&p=Ruiz-Jimeno%2C%20A.&ln=en">Ruiz-Jimeno, A.</a> (Cantabria Inst. of Phys.) ; <a href="https://cds.cern.ch/search?f=author&p=Vila%2C%20I.&ln=en">Vila, I.</a> (Cantabria Inst. of Phys.) ; <a href="https://cds.cern.ch/search?f=author&p=Calero%2C%20J.&ln=en">Calero, J.</a> (Madrid, CIEMAT) ; <a href="https://cds.cern.ch/search?f=author&p=Dominguez%2C%20M.&ln=en">Dominguez, M.</a> (Madrid, CIEMAT) ; <a href="https://cds.cern.ch/search?f=author&p=Garcia-Tabares%2C%20L.&ln=en">Garcia-Tabares, L.</a> (Madrid, CIEMAT) ; <a href="https://cds.cern.ch/search?f=author&p=Gavela%2C%20D.&ln=en">Gavela, D.</a> (Madrid, CIEMAT) ; <a href="https://cds.cern.ch/search?f=author&p=Lopez%2C%20D.&ln=en">Lopez, D.</a> (Madrid, CIEMAT) ; <a href="https://cds.cern.ch/search?f=author&p=Toral%2C%20F.&ln=en">Toral, F.</a> (Madrid, CIEMAT) ; <a href="https://cds.cern.ch/search?f=author&p=Blanch%20Gutierrez%2C%20C.&ln=en">Blanch Gutierrez, C.</a> (Valencia U., IFIC) ; <a href="https://cds.cern.ch/search?f=author&p=Boronat%2C%20M.&ln=en">Boronat, M.</a> (Valencia U., IFIC) ; <a href="https://cds.cern.ch/search?f=author&p=Esperante%2C%20D.&ln=en">Esperante, D.</a> (Valencia U., IFIC) ; <a href="https://cds.cern.ch/search?f=author&p=Fullana%2C%20E.&ln=en">Fullana, E.</a> (Valencia U., IFIC) ; <a href="https://cds.cern.ch/search?f=author&p=Fuster%2C%20J.&ln=en">Fuster, J.</a> (Valencia U., IFIC) ; <a href="https://cds.cern.ch/search?f=author&p=Garc%C3%ADa%2C%20I.&ln=en">García, I.</a> (Valencia U., IFIC) ; <a href="https://cds.cern.ch/search?f=author&p=Gimeno%2C%20B.&ln=en">Gimeno, B.</a> (Valencia U., IFIC) ; <a href="https://cds.cern.ch/search?f=author&p=Gomis%20Lopez%2C%20P.&ln=en">Gomis Lopez, P.</a> (Valencia U., IFIC) ; <a href="https://cds.cern.ch/search?f=author&p=Gonz%C3%A1lez%2C%20D.&ln=en">González, D.</a> (Valencia U., IFIC) ; <a href="https://cds.cern.ch/search?f=author&p=Perell%C3%B3%2C%20M.&ln=en">Perelló, M.</a> (Valencia U., IFIC) ; <a href="https://cds.cern.ch/search?f=author&p=Ros%2C%20E.&ln=en">Ros, E.</a> (Valencia U., IFIC) ; <a href="https://cds.cern.ch/search?f=author&p=Villarejo%2C%20M.A.&ln=en">Villarejo, M.A.</a> (Valencia U., IFIC) ; <a href="https://cds.cern.ch/search?f=author&p=Vnuchenko%2C%20A.&ln=en">Vnuchenko, A.</a> (Valencia U., IFIC) ; <a href="https://cds.cern.ch/search?f=author&p=Vos%2C%20M.&ln=en">Vos, M.</a> (Valencia U., IFIC) ; <a href="https://cds.cern.ch/search?f=author&p=Borgmann%2C%20Ch.&ln=en">Borgmann, Ch.</a> (Uppsala U.) ; <a href="https://cds.cern.ch/search?f=author&p=Brenner%2C%20R.&ln=en">Brenner, R.</a> (Uppsala U.) ; <a href="https://cds.cern.ch/search?f=author&p=Ekel%C3%B6f%2C%20T.&ln=en">Ekelöf, T.</a> (Uppsala U.) ; <a href="https://cds.cern.ch/search?f=author&p=Jacewicz%2C%20M.&ln=en">Jacewicz, M.</a> (Uppsala U.) ; <a href="https://cds.cern.ch/search?f=author&p=Olveg%C3%A5rd%2C%20M.&ln=en">Olvegård, M.</a> (Uppsala U.) ; <a href="https://cds.cern.ch/search?f=author&p=Ruber%2C%20R.&ln=en">Ruber, R.</a> (Uppsala U.) ; <a href="https://cds.cern.ch/search?f=author&p=Ziemann%2C%20V.&ln=en">Ziemann, V.</a> (Uppsala U.) ; <a href="https://cds.cern.ch/search?f=author&p=Aguglia%2C%20D.&ln=en">Aguglia, D.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Alabau%20Gonzalvo%2C%20J.&ln=en">Alabau Gonzalvo, J.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Alcaide%20Leon%2C%20M.&ln=en">Alcaide Leon, M.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Alipour%20Tehrani%2C%20N.&ln=en">Alipour Tehrani, N.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Anastasopoulos%2C%20M.&ln=en">Anastasopoulos, M.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Andersson%2C%20A.&ln=en">Andersson, A.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Andrianala%2C%20F.&ln=en">Andrianala, F.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Antoniou%2C%20F.&ln=en">Antoniou, F.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Apyan%2C%20A.&ln=en">Apyan, A.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Arominski%2C%20D.&ln=en">Arominski, D.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Artoos%2C%20K.&ln=en">Artoos, K.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Assly%2C%20S.&ln=en">Assly, S.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Atieh%2C%20S.&ln=en">Atieh, S.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Baccigalupi%2C%20C.&ln=en">Baccigalupi, C.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Ballabriga%20Sune%2C%20R.&ln=en">Ballabriga Sune, R.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Banon%20Caballero%2C%20D.&ln=en">Banon Caballero, D.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Barnes%2C%20M.J.&ln=en">Barnes, M.J.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Barranco%20Garcia%2C%20J.&ln=en">Barranco Garcia, J.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Bartalesi%2C%20A.&ln=en">Bartalesi, A.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Bauche%2C%20J.&ln=en">Bauche, J.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Bayar%2C%20C.&ln=en">Bayar, C.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Belver-Aguilar%2C%20C.&ln=en">Belver-Aguilar, C.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Benot%20Morell%2C%20A.&ln=en">Benot Morell, A.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Bernardini%2C%20M.&ln=en">Bernardini, M.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Bett%2C%20D.R.&ln=en">Bett, D.R.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Bettoni%2C%20S.&ln=en">Bettoni, S.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Bettencourt%2C%20M.&ln=en">Bettencourt, M.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Bielawski%2C%20B.&ln=en">Bielawski, B.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Blanco%20Garcia%2C%20O.&ln=en">Blanco Garcia, O.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Blaskovic%20Kraljevic%2C%20N.&ln=en">Blaskovic Kraljevic, N.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Bolzon%2C%20B.&ln=en">Bolzon, B.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Bonnin%2C%20X.A.&ln=en">Bonnin, X.A.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Bozzini%2C%20D.&ln=en">Bozzini, D.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Branger%2C%20E.&ln=en">Branger, E.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Brondolin%2C%20E.&ln=en">Brondolin, E.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Brunner%2C%20O.&ln=en">Brunner, O.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Buckland%2C%20M.&ln=en">Buckland, M.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Bursali%2C%20H.&ln=en">Bursali, H.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Burkhardt%2C%20H.&ln=en">Burkhardt, H.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Caiazza%2C%20D.&ln=en">Caiazza, D.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Calatroni%2C%20S.&ln=en">Calatroni, S.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Campbell%2C%20M.&ln=en">Campbell, M.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Cassany%2C%20B.&ln=en">Cassany, B.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Castro%2C%20E.&ln=en">Castro, E.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Cavaleiro%20Soares%2C%20R.H.&ln=en">Cavaleiro Soares, R.H.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Cerqueira%20Bastos%2C%20M.&ln=en">Cerqueira Bastos, M.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Cherif%2C%20A.&ln=en">Cherif, A.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Chevallay%2C%20E.&ln=en">Chevallay, E.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Cilento%2C%20V.&ln=en">Cilento, V.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Corsini%2C%20R.&ln=en">Corsini, R.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Costa%2C%20R.&ln=en">Costa, R.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Cure%2C%20B.&ln=en">Cure, B.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Curt%2C%20S.&ln=en">Curt, S.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Dal%20Gobbo%2C%20A.&ln=en">Dal Gobbo, A.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Dannheim%2C%20D.&ln=en">Dannheim, D.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Daskalaki%2C%20E.&ln=en">Daskalaki, E.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Deacon%2C%20L.&ln=en">Deacon, L.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Degiovanni%2C%20A.&ln=en">Degiovanni, A.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=De%20Michele%2C%20G.&ln=en">De Michele, G.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=De%20Oliveira%2C%20L.&ln=en">De Oliveira, L.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Del%20Pozo%20Romano%2C%20V.&ln=en">Del Pozo Romano, V.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Delahaye%2C%20J.P.&ln=en">Delahaye, J.P.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Delikaris%2C%20D.&ln=en">Delikaris, D.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Dias%20de%20Almeida%2C%20P.G.&ln=en">Dias de Almeida, P.G.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Dobers%2C%20T.&ln=en">Dobers, T.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Doebert%2C%20S.&ln=en">Doebert, S.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Doytchinov%2C%20I.&ln=en">Doytchinov, I.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Draper%2C%20M.&ln=en">Draper, M.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Duarte%20Ramos%2C%20F.&ln=en">Duarte Ramos, F.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Duquenne%2C%20M.&ln=en">Duquenne, M.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Egidos%20Plaja%2C%20N.&ln=en">Egidos Plaja, N.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Elsener%2C%20K.&ln=en">Elsener, K.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Esberg%2C%20J.&ln=en">Esberg, J.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Esposito%2C%20M.&ln=en">Esposito, M.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Evans%2C%20L.&ln=en">Evans, L.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Fedosseev%2C%20V.&ln=en">Fedosseev, V.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Ferracin%2C%20P.&ln=en">Ferracin, P.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Fiergolski%2C%20A.&ln=en">Fiergolski, A.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Foraz%2C%20K.&ln=en">Foraz, K.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Fowler%2C%20A.&ln=en">Fowler, A.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Friebel%2C%20F.&ln=en">Friebel, F.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Fuchs%2C%20J-F.&ln=en">Fuchs, J-F.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Gaddi%2C%20A.&ln=en">Gaddi, A.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Gamba%2C%20D.&ln=en">Gamba, D.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Garcia%20Fajardo%2C%20L.&ln=en">Garcia Fajardo, L.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Garcia%20Morales%2C%20H.&ln=en">Garcia Morales, H.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Garion%2C%20C.&ln=en">Garion, C.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Gasior%2C%20M.&ln=en">Gasior, M.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Gatignon%2C%20L.&ln=en">Gatignon, L.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Gayde%2C%20J-C.&ln=en">Gayde, J-C.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Gerbershagen%2C%20A.&ln=en">Gerbershagen, A.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Gerwig%2C%20H.&ln=en">Gerwig, H.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Giambelli%2C%20G.&ln=en">Giambelli, G.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Gilardi%2C%20A.&ln=en">Gilardi, A.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Goldblatt%2C%20A.N.&ln=en">Goldblatt, A.N.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Gonzalez%20Anton%2C%20S.&ln=en">Gonzalez Anton, S.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Grefe%2C%20C.&ln=en">Grefe, C.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Grudiev%2C%20A.&ln=en">Grudiev, A.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Guerin%2C%20H.&ln=en">Guerin, H.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Guillot-Vignot%2C%20F.G.&ln=en">Guillot-Vignot, F.G.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Gutt-Mostowy%2C%20M.L.&ln=en">Gutt-Mostowy, M.L.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Hein%20Lutz%2C%20M.&ln=en">Hein Lutz, M.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Hessler%2C%20C.&ln=en">Hessler, C.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Holma%2C%20J.K.&ln=en">Holma, J.K.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Holzer%2C%20E.B.&ln=en">Holzer, E.B.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Hourican%2C%20M.&ln=en">Hourican, M.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Hynds%2C%20D.&ln=en">Hynds, D.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Ikarios%2C%20E.&ln=en">Ikarios, E.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Inntjore%20Levinsen%2C%20Y.&ln=en">Inntjore Levinsen, Y.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Janssens%2C%20S.&ln=en">Janssens, S.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Jeff%2C%20A.&ln=en">Jeff, A.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Jensen%2C%20E.&ln=en">Jensen, E.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Jonker%2C%20M.&ln=en">Jonker, M.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Kamugasa%2C%20S.W.&ln=en">Kamugasa, S.W.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Kastriotou%2C%20M.&ln=en">Kastriotou, M.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Kemppinen%2C%20J.M.K.&ln=en">Kemppinen, J.M.K.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Khan%2C%20V.&ln=en">Khan, V.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Kieffer%2C%20R.B.&ln=en">Kieffer, R.B.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Klempt%2C%20W.&ln=en">Klempt, W.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Kokkinis%2C%20N.&ln=en">Kokkinis, N.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Kossyvakis%2C%20I.&ln=en">Kossyvakis, I.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Kostka%2C%20Z.&ln=en">Kostka, Z.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Korsback%2C%20A.&ln=en">Korsback, A.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Koukovini%20Platia%2C%20E.&ln=en">Koukovini Platia, E.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Kovermann%2C%20J.W.&ln=en">Kovermann, J.W.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Kozsar%2C%20C-I.&ln=en">Kozsar, C-I.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Kremastiotis%2C%20I.&ln=en">Kremastiotis, I.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Kr%C3%B6ger%2C%20J.&ln=en">Kröger, J.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Kulis%2C%20S.&ln=en">Kulis, S.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Latina%2C%20A.&ln=en">Latina, A.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Leaux%2C%20F.&ln=en">Leaux, F.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Lebrun%2C%20P.&ln=en">Lebrun, P.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Lefevre%2C%20T.&ln=en">Lefevre, T.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Leogrande%2C%20E.&ln=en">Leogrande, E.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Liu%2C%20X.&ln=en">Liu, X.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Llopart%20Cudie%2C%20X.&ln=en">Llopart Cudie, X.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Magnoni%2C%20S.&ln=en">Magnoni, S.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Maidana%2C%20C.&ln=en">Maidana, C.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Maier%2C%20A.A.&ln=en">Maier, A.A.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Mainaud%20Durand%2C%20H.&ln=en">Mainaud Durand, H.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Mallows%2C%20S.&ln=en">Mallows, S.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Manosperti%2C%20E.&ln=en">Manosperti, E.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Marelli%2C%20C.&ln=en">Marelli, C.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Marin%20Lacoma%2C%20E.&ln=en">Marin Lacoma, E.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Marsh%2C%20S.&ln=en">Marsh, S.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Martin%2C%20R.&ln=en">Martin, R.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Martini%2C%20I.&ln=en">Martini, I.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Martyanov%2C%20M.&ln=en">Martyanov, M.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Mazzoni%2C%20S.&ln=en">Mazzoni, S.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Mcmonagle%2C%20G.&ln=en">Mcmonagle, G.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Mether%2C%20L.M.&ln=en">Mether, L.M.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Meynier%2C%20C.&ln=en">Meynier, C.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Modena%2C%20M.&ln=en">Modena, M.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Moilanen%2C%20A.&ln=en">Moilanen, A.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Mondello%2C%20R.&ln=en">Mondello, R.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Moniz%20Cabral%2C%20P.B.&ln=en">Moniz Cabral, P.B.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Mouriz%20Irazabal%2C%20N.&ln=en">Mouriz Irazabal, N.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Munker%2C%20M.&ln=en">Munker, M.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Muranaka%2C%20T.&ln=en">Muranaka, T.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Nadenau%2C%20J.&ln=en">Nadenau, J.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Navarro%2C%20J.G.&ln=en">Navarro, J.G.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Navarro%20Quirante%2C%20J.L.&ln=en">Navarro Quirante, J.L.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Nebo%20Del%20Busto%2C%20E.&ln=en">Nebo Del Busto, E.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Nikiforou%2C%20N.&ln=en">Nikiforou, N.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Ninin%2C%20P.&ln=en">Ninin, P.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Nonis%2C%20M.&ln=en">Nonis, M.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Nisbet%2C%20D.&ln=en">Nisbet, D.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Nuiry%2C%20F.X.&ln=en">Nuiry, F.X.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=N%C3%BCrnberg%2C%20A.&ln=en">Nürnberg, A.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=%C3%96gren%2C%20J.&ln=en">Ögren, J.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Osborne%2C%20J.&ln=en">Osborne, J.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Ouniche%2C%20A.C.&ln=en">Ouniche, A.C.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Pan%2C%20R.&ln=en">Pan, R.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Papadopoulou%2C%20S.&ln=en">Papadopoulou, S.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Papaphilippou%2C%20Y.&ln=en">Papaphilippou, Y.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Paraskaki%2C%20G.&ln=en">Paraskaki, G.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Pastushenko%2C%20A.&ln=en">Pastushenko, A.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Passarelli%2C%20A.&ln=en">Passarelli, A.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Patecki%2C%20M.&ln=en">Patecki, M.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Pazdera%2C%20L.&ln=en">Pazdera, L.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Pellegrini%2C%20D.&ln=en">Pellegrini, D.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Pepitone%2C%20K.&ln=en">Pepitone, K.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Perez%20Codina%2C%20E.&ln=en">Perez Codina, E.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Perez%20Fontenla%2C%20A.&ln=en">Perez Fontenla, A.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Persson%2C%20T.H.B.&ln=en">Persson, T.H.B.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Pitman%2C%20S.&ln=en">Pitman, S.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Pitters%2C%20F.&ln=en">Pitters, F.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Pittet%2C%20S.&ln=en">Pittet, S.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Plassard%2C%20F.&ln=en">Plassard, F.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Popescu%2C%20D.&ln=en">Popescu, D.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Quast%2C%20T.&ln=en">Quast, T.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Rajamak%2C%20R.&ln=en">Rajamak, R.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Redford%2C%20S.&ln=en">Redford, S.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Remandet%2C%20L.&ln=en">Remandet, L.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Renier%2C%20Y.&ln=en">Renier, Y.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Rey%2C%20S.F.&ln=en">Rey, S.F.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Rey%20Orozco%2C%20O.&ln=en">Rey Orozco, O.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Riddone%2C%20G.&ln=en">Riddone, G.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Rodriguez%20Castro%2C%20E.&ln=en">Rodriguez Castro, E.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Roloff%2C%20P.&ln=en">Roloff, P.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Rossi%2C%20C.&ln=en">Rossi, C.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Rossi%2C%20F.&ln=en">Rossi, F.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Rude%2C%20V.&ln=en">Rude, V.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Ruehl%2C%20I.&ln=en">Ruehl, I.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Rumolo%2C%20G.&ln=en">Rumolo, G.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Sailer%2C%20A.&ln=en">Sailer, A.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Sandomierski%2C%20J.&ln=en">Sandomierski, J.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Santin%2C%20E.&ln=en">Santin, E.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Sanz%2C%20C.&ln=en">Sanz, C.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Sauza%20Bedolla%2C%20J.&ln=en">Sauza Bedolla, J.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Schnoor%2C%20U.&ln=en">Schnoor, U.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Schmickler%2C%20H.&ln=en">Schmickler, H.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Senes%2C%20E.&ln=en">Senes, E.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Serpico%2C%20C.&ln=en">Serpico, C.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Severino%2C%20G.&ln=en">Severino, G.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Shipman%2C%20N.&ln=en">Shipman, N.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Simoniello%2C%20R.&ln=en">Simoniello, R.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Skowronski%2C%20P.K.&ln=en">Skowronski, P.K.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Sobrino%20Mompean%2C%20P.&ln=en">Sobrino Mompean, P.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Soby%2C%20L.&ln=en">Soby, L.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Sollander%2C%20P.&ln=en">Sollander, P.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Solodko%2C%20A.&ln=en">Solodko, A.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Sosin%2C%20M.P.&ln=en">Sosin, M.P.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Spannagel%2C%20S.&ln=en">Spannagel, S.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Sroka%2C%20S.&ln=en">Sroka, S.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Sterbini%2C%20G.&ln=en">Sterbini, G.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Stern%2C%20G.&ln=en">Stern, G.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Str%C3%B6m%2C%20R.&ln=en">Ström, R.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Stuart%2C%20M.J.&ln=en">Stuart, M.J.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Syratchev%2C%20I.&ln=en">Syratchev, I.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Szypula%2C%20K.&ln=en">Szypula, K.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Tecker%2C%20F.&ln=en">Tecker, F.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Thonet%2C%20P.A.&ln=en">Thonet, P.A.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Thrane%2C%20P.&ln=en">Thrane, P.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Timeo%2C%20L.&ln=en">Timeo, L.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Tiirakari%2C%20M.&ln=en">Tiirakari, M.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Tomas%20Garcia%2C%20R.&ln=en">Tomas Garcia, R.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Tomoiaga%2C%20C.I.&ln=en">Tomoiaga, C.I.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Valerio%2C%20P.&ln=en">Valerio, P.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Va%C5%88%C3%A1t%2C%20T.&ln=en">Vaňát, T.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Vamvakas%2C%20A.L.&ln=en">Vamvakas, A.L.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Van%20Hoorne%2C%20J.&ln=en">Van Hoorne, J.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Viazlo%2C%20O.&ln=en">Viazlo, O.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Vicente%20Barreto%20Pinto%2C%20M.&ln=en">Vicente Barreto Pinto, M.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Vitoratou%2C%20N.&ln=en">Vitoratou, N.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Vlachakis%2C%20V.&ln=en">Vlachakis, V.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Weber%2C%20M.A.&ln=en">Weber, M.A.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Wegner%2C%20R.&ln=en">Wegner, R.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Wendt%2C%20M.&ln=en">Wendt, M.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Widorski%2C%20M.&ln=en">Widorski, M.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Williams%2C%20O.E.&ln=en">Williams, O.E.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Williams%2C%20M.&ln=en">Williams, M.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Woolley%2C%20B.&ln=en">Woolley, B.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Wuensch%2C%20W.&ln=en">Wuensch, W.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Wulzer%2C%20A.&ln=en">Wulzer, A.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Uythoven%2C%20J.&ln=en">Uythoven, J.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Xydou%2C%20A.&ln=en">Xydou, A.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Yang%2C%20R.&ln=en">Yang, R.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Zelios%2C%20A.&ln=en">Zelios, A.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Zhao%2C%20Y.&ln=en">Zhao, Y.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Zisopoulos%2C%20P.&ln=en">Zisopoulos, P.</a> (CERN) ; <a href="https://cds.cern.ch/search?f=author&p=Benoit%2C%20M.&ln=en">Benoit, M.</a> (Geneva U.) ; <a href="https://cds.cern.ch/search?f=author&p=Sultan%2C%20D%20M%20S&ln=en">Sultan, D M S</a> (Geneva U.) ; <a href="https://cds.cern.ch/search?f=author&p=Riva%2C%20F.&ln=en">Riva, F.</a> (Geneva U., Dept. Theor. Phys.) ; <a href="https://cds.cern.ch/search?f=author&p=Bopp%2C%20M.&ln=en">Bopp, M.</a> (PSI, Villigen) ; <a href="https://cds.cern.ch/search?f=author&p=Braun%2C%20H.H.&ln=en">Braun, H.H.</a> (PSI, Villigen) ; <a href="https://cds.cern.ch/search?f=author&p=Craievich%2C%20P.&ln=en">Craievich, P.</a> (PSI, Villigen) ; <a href="https://cds.cern.ch/search?f=author&p=Dehler%2C%20M.&ln=en">Dehler, M.</a> (PSI, Villigen) ; <a href="https://cds.cern.ch/search?f=author&p=Garvey%2C%20T.&ln=en">Garvey, T.</a> (PSI, Villigen) ; <a href="https://cds.cern.ch/search?f=author&p=Pedrozzi%2C%20M.&ln=en">Pedrozzi, M.</a> (PSI, Villigen) ; <a href="https://cds.cern.ch/search?f=author&p=Raguin%2C%20J.Y.&ln=en">Raguin, J.Y.</a> (PSI, Villigen) ; <a href="https://cds.cern.ch/search?f=author&p=Rivkin%2C%20L.&ln=en">Rivkin, L.</a> (PSI, Villigen) ; <a href="https://cds.cern.ch/search?f=author&p=Zennaro%2C%20R.&ln=en">Zennaro, R.</a> (PSI, Villigen) ; <a href="https://cds.cern.ch/search?f=author&p=Guillaume%2C%20S.&ln=en">Guillaume, S.</a> (Zurich, ETH) ; <a href="https://cds.cern.ch/search?f=author&p=Rothacher%2C%20M.&ln=en">Rothacher, M.</a> (Zurich, ETH) ; <a href="https://cds.cern.ch/search?f=author&p=Aksoy%2C%20A.&ln=en">Aksoy, A.</a> (Ankara U.) ; <a href="https://cds.cern.ch/search?f=author&p=Nergiz%2C%20Z.&ln=en">Nergiz, Z.</a> (Ankara U.) ; <a href="https://cds.cern.ch/search?f=author&p=Denizli%2C%20H.&ln=en">Denizli, H.</a> (Abant Izzet Baysal U.) ; <a href="https://cds.cern.ch/search?f=author&p=Keskin%2C%20U.&ln=en">Keskin, U.</a> (Abant Izzet Baysal U.) ; <a href="https://cds.cern.ch/search?f=author&p=Oyulmaz%2C%20K.Y.&ln=en">Oyulmaz, K.Y.</a> (Abant Izzet Baysal U.) ; <a href="https://cds.cern.ch/search?f=author&p=Senol%2C%20A.&ln=en">Senol, A.</a> (Abant Izzet Baysal U.) ; <a href="https://cds.cern.ch/search?f=author&p=Ciftci%2C%20A.K.&ln=en">Ciftci, A.K.</a> (Izmir U. Economics, Izmir) ; <a href="https://cds.cern.ch/search?f=author&p=Baturin%2C%20V.&ln=en">Baturin, V.</a> (Sumy, Inst. Appl. Phys.) ; <a href="https://cds.cern.ch/search?f=author&p=Karpenko%2C%20O.&ln=en">Karpenko, O.</a> (Sumy, Inst. Appl. Phys.) ; <a href="https://cds.cern.ch/search?f=author&p=Kholodov%2C%20R.&ln=en">Kholodov, R.</a> (Sumy, Inst. Appl. Phys.) ; <a href="https://cds.cern.ch/search?f=author&p=Lebed%2C%20O.&ln=en">Lebed, O.</a> (Sumy, Inst. Appl. Phys.) ; <a href="https://cds.cern.ch/search?f=author&p=Lebedynskyi%2C%20S.&ln=en">Lebedynskyi, S.</a> (Sumy, Inst. Appl. Phys.) ; <a href="https://cds.cern.ch/search?f=author&p=Mordyk%2C%20S.&ln=en">Mordyk, S.</a> (Sumy, Inst. Appl. Phys.) ; <a href="https://cds.cern.ch/search?f=author&p=Musienko%2C%20I.&ln=en">Musienko, I.</a> (Sumy, Inst. Appl. Phys.) ; <a href="https://cds.cern.ch/search?f=author&p=Profatilova%2C%20Ia.&ln=en">Profatilova, Ia.</a> (Sumy, Inst. Appl. Phys.) ; <a href="https://cds.cern.ch/search?f=author&p=Storizhko%2C%20V.&ln=en">Storizhko, V.</a> (Sumy, Inst. Appl. Phys.) ; <a href="https://cds.cern.ch/search?f=author&p=Bosley%2C%20R.R.&ln=en">Bosley, R.R.</a> (Birmingham U.) ; <a href="https://cds.cern.ch/search?f=author&p=Price%2C%20T.&ln=en">Price, T.</a> (Birmingham U.) ; <a href="https://cds.cern.ch/search?f=author&p=Watson%2C%20M.F.&ln=en">Watson, M.F.</a> (Birmingham U.) ; <a href="https://cds.cern.ch/search?f=author&p=Watson%2C%20N.K.&ln=en">Watson, N.K.</a> (Birmingham U.) ; <a href="https://cds.cern.ch/search?f=author&p=Winter%2C%20A.G.&ln=en">Winter, A.G.</a> (Birmingham U.) ; <a href="https://cds.cern.ch/search?f=author&p=Goldstein%2C%20J.&ln=en">Goldstein, J.</a> (Bristol U.) ; <a href="https://cds.cern.ch/search?f=author&p=Green%2C%20S.&ln=en">Green, S.</a> (Cambridge U.) ; <a href="https://cds.cern.ch/search?f=author&p=Marshall%2C%20J.S.&ln=en">Marshall, J.S.</a> (Cambridge U.) ; <a href="https://cds.cern.ch/search?f=author&p=Thomson%2C%20M.A.&ln=en">Thomson, M.A.</a> (Cambridge U.) ; <a href="https://cds.cern.ch/search?f=author&p=Xu%2C%20B.&ln=en">Xu, B.</a> (Cambridge U.) ; <a href="https://cds.cern.ch/search?f=author&p=You%2C%20T.&ln=en">You, T.</a> (Cambridge U.) ; <a href="https://cds.cern.ch/search?f=author&p=Gillespie%2C%20W.A.&ln=en">Gillespie, W.A.</a> (Dundee U.) ; <a href="https://cds.cern.ch/search?f=author&p=Spannowsky%2C%20M.&ln=en">Spannowsky, M.</a> (Durham U.) ; <a href="https://cds.cern.ch/search?f=author&p=Beggan%2C%20C.&ln=en">Beggan, C.</a> (Edinburgh U.) ; <a href="https://cds.cern.ch/search?f=author&p=Martin%2C%20V.&ln=en">Martin, V.</a> (Edinburgh U.) ; <a href="https://cds.cern.ch/search?f=author&p=Zhang%2C%20Y.&ln=en">Zhang, Y.</a> (Edinburgh U.) ; <a href="https://cds.cern.ch/search?f=author&p=Protopopescu%2C%20D.&ln=en">Protopopescu, D.</a> (Glasgow U.) ; <a href="https://cds.cern.ch/search?f=author&p=Apsimon%2C%20R.J.&ln=en">Apsimon, R.J.</a> (Lancaster U.) ; <a href="https://cds.cern.ch/search?f=author&p=Bailey%2C%20I.&ln=en">Bailey, I.</a> (Lancaster U.) ; <a href="https://cds.cern.ch/search?f=author&p=Burt%2C%20G.C.&ln=en">Burt, G.C.</a> (Lancaster U.) ; <a href="https://cds.cern.ch/search?f=author&p=Dexter%2C%20A.C.&ln=en">Dexter, A.C.</a> (Lancaster U.) ; <a href="https://cds.cern.ch/search?f=author&p=Edwards%2C%20A.V.&ln=en">Edwards, A.V.</a> (Lancaster U.) ; <a href="https://cds.cern.ch/search?f=author&p=Hill%2C%20V.&ln=en">Hill, V.</a> (Lancaster U.) ; <a href="https://cds.cern.ch/search?f=author&p=Jamison%2C%20S.&ln=en">Jamison, S.</a> (Lancaster U.) ; <a href="https://cds.cern.ch/search?f=author&p=Millar%2C%20W.L.&ln=en">Millar, W.L.</a> (Lancaster U.) ; <a href="https://cds.cern.ch/search?f=author&p=Papke%2C%20K.&ln=en">Papke, K.</a> (Lancaster U.) ; <a href="https://cds.cern.ch/search?f=author&p=Casse%2C%20G.&ln=en">Casse, G.</a> (U. Liverpool (main)) ; <a href="https://cds.cern.ch/search?f=author&p=Vossebeld%2C%20J.&ln=en">Vossebeld, J.</a> (U. Liverpool (main)) ; <a href="https://cds.cern.ch/search?f=author&p=Aumeyr%2C%20T.&ln=en">Aumeyr, T.</a> (JAI, UK) ; <a href="https://cds.cern.ch/search?f=author&p=Bergamaschi%2C%20M.&ln=en">Bergamaschi, M.</a> (JAI, UK) ; <a href="https://cds.cern.ch/search?f=author&p=Bobb%2C%20L.&ln=en">Bobb, L.</a> (JAI, UK) ; <a href="https://cds.cern.ch/search?f=author&p=Bosco%2C%20A.&ln=en">Bosco, A.</a> (JAI, UK) ; <a href="https://cds.cern.ch/search?f=author&p=Boogert%2C%20S.&ln=en">Boogert, S.</a> (JAI, UK) ; <a href="https://cds.cern.ch/search?f=author&p=Boorman%2C%20G.&ln=en">Boorman, G.</a> (JAI, UK) ; <a href="https://cds.cern.ch/search?f=author&p=Cullinan%2C%20F.&ln=en">Cullinan, F.</a> (JAI, UK) ; <a href="https://cds.cern.ch/search?f=author&p=Gibson%2C%20S.&ln=en">Gibson, S.</a> (JAI, UK) ; <a href="https://cds.cern.ch/search?f=author&p=Karataev%2C%20P.&ln=en">Karataev, P.</a> (JAI, UK) ; <a href="https://cds.cern.ch/search?f=author&p=Kruchinin%2C%20K.&ln=en">Kruchinin, K.</a> (JAI, UK) ; <a href="https://cds.cern.ch/search?f=author&p=Lekomtsev%2C%20K.&ln=en">Lekomtsev, K.</a> (JAI, UK) ; <a href="https://cds.cern.ch/search?f=author&p=Lyapin%2C%20A.&ln=en">Lyapin, A.</a> (JAI, UK) ; <a href="https://cds.cern.ch/search?f=author&p=Nevay%2C%20L.&ln=en">Nevay, L.</a> (JAI, UK) ; <a href="https://cds.cern.ch/search?f=author&p=Shields%2C%20W.&ln=en">Shields, W.</a> (JAI, UK) ; <a href="https://cds.cern.ch/search?f=author&p=Snuverink%2C%20J.&ln=en">Snuverink, J.</a> (JAI, UK) ; <a href="https://cds.cern.ch/search?f=author&p=Towler%2C%20J.&ln=en">Towler, J.</a> (JAI, UK) ; <a href="https://cds.cern.ch/search?f=author&p=Yamakawa%2C%20E.&ln=en">Yamakawa, E.</a> (JAI, UK) ; <a href="https://cds.cern.ch/search?f=author&p=Boisvert%2C%20V.&ln=en">Boisvert, V.</a> (Royal Holloway, U. of London) ; <a href="https://cds.cern.ch/search?f=author&p=West%2C%20S.&ln=en">West, S.</a> (Royal Holloway, U. of London) ; <a href="https://cds.cern.ch/search?f=author&p=Jones%2C%20R.&ln=en">Jones, R.</a> (Manchester U.) ; <a href="https://cds.cern.ch/search?f=author&p=Joshi%2C%20N.&ln=en">Joshi, N.</a> (Manchester U.) ; <a href="https://cds.cern.ch/search?f=author&p=Bett%2C%20D.&ln=en">Bett, D.</a> (JAI, UK) ; <a href="https://cds.cern.ch/search?f=author&p=Bodenstein%2C%20R.M.&ln=en">Bodenstein, R.M.</a> (JAI, UK) ; <a href="https://cds.cern.ch/search?f=author&p=Bromwich%2C%20T.&ln=en">Bromwich, T.</a> (JAI, UK) ; <a href="https://cds.cern.ch/search?f=author&p=Christian%2C%20G.B.&ln=en">Christian, G.B.</a> (JAI, UK) ; <a href="https://cds.cern.ch/search?f=author&p=Gohil%2C%20C.&ln=en">Gohil, C.</a> (JAI, UK) ; <a href="https://cds.cern.ch/search?f=author&p=Korysko%2C%20P.&ln=en">Korysko, P.</a> (JAI, UK) ; <a href="https://cds.cern.ch/search?f=author&p=Paszkiewicz%2C%20J.&ln=en">Paszkiewicz, J.</a> (JAI, UK) ; <a href="https://cds.cern.ch/search?f=author&p=Perry%2C%20C.&ln=en">Perry, C.</a> (JAI, UK) ; <a href="https://cds.cern.ch/search?f=author&p=Ramjiawan%2C%20R.&ln=en">Ramjiawan, R.</a> (JAI, UK) ; <a href="https://cds.cern.ch/search?f=author&p=Roberts%2C%20J.&ln=en">Roberts, J.</a> (JAI, UK) ; <a href="https://cds.cern.ch/search?f=author&p=Coates%2C%20T.&ln=en">Coates, T.</a> (Sussex U.) ; <a href="https://cds.cern.ch/search?f=author&p=Salvatore%2C%20F.&ln=en">Salvatore, F.</a> (Sussex U.) ; <a href="https://cds.cern.ch/search?f=author&p=Bainbridge%2C%20A.&ln=en">Bainbridge, A.</a> (Daresbury) ; <a href="https://cds.cern.ch/search?f=author&p=Clarke%2C%20J.A.&ln=en">Clarke, J.A.</a> (Daresbury) ; <a href="https://cds.cern.ch/search?f=author&p=Krumpa%2C%20N.&ln=en">Krumpa, N.</a> (Daresbury) ; <a href="https://cds.cern.ch/search?f=author&p=Shepherd%2C%20B.J.A.&ln=en">Shepherd, B.J.A.</a> (Daresbury) ; <a href="https://cds.cern.ch/search?f=author&p=Walsh%2C%20D.&ln=en">Walsh, D.</a> (Daresbury) ; <a href="https://cds.cern.ch/search?f=author&p=Chekanov%2C%20S.&ln=en">Chekanov, S.</a> (Argonne (main)) ; <a href="https://cds.cern.ch/search?f=author&p=Demarteau%2C%20M.&ln=en">Demarteau, M.</a> (Argonne (main)) ; <a href="https://cds.cern.ch/search?f=author&p=Gai%2C%20W.&ln=en">Gai, W.</a> (Argonne (main)) ; <a href="https://cds.cern.ch/search?f=author&p=Liu%2C%20W.&ln=en">Liu, W.</a> (Argonne (main)) ; <a href="https://cds.cern.ch/search?f=author&p=Metcalfe%2C%20J.&ln=en">Metcalfe, J.</a> (Argonne (main)) ; <a href="https://cds.cern.ch/search?f=author&p=Power%2C%20J.&ln=en">Power, J.</a> (Argonne (main)) ; <a href="https://cds.cern.ch/search?f=author&p=Repond%2C%20J.&ln=en">Repond, J.</a> (Argonne (main)) ; <a href="https://cds.cern.ch/search?f=author&p=Weerts%2C%20H.&ln=en">Weerts, H.</a> (Argonne (main)) ; <a href="https://cds.cern.ch/search?f=author&p=Xia%2C%20L.&ln=en">Xia, L.</a> (Argonne (main)) ; <a href="https://cds.cern.ch/search?f=author&p=Zhang%2C%20J.&ln=en">Zhang, J.</a> (Argonne (main)) ; <a href="https://cds.cern.ch/search?f=author&p=Zupan%2C%20J.&ln=en">Zupan, J.</a> (Cincinnati U.) ; <a href="https://cds.cern.ch/search?f=author&p=Wells%2C%20J.D.&ln=en">Wells, J.D.</a> (Michigan U.) ; <a href="https://cds.cern.ch/search?f=author&p=Zhang%2C%20Z.&ln=en">Zhang, Z.</a> (Michigan U.) ; <a href="https://cds.cern.ch/search?f=author&p=Adolphsen%2C%20C.&ln=en">Adolphsen, C.</a> (SLAC) ; <a href="https://cds.cern.ch/search?f=author&p=Barklow%2C%20T.&ln=en">Barklow, T.</a> (SLAC) ; <a href="https://cds.cern.ch/search?f=author&p=Dolgashev%2C%20V.&ln=en">Dolgashev, V.</a> (SLAC) ; <a href="https://cds.cern.ch/search?f=author&p=Franzi%2C%20M.&ln=en">Franzi, M.</a> (SLAC) ; <a href="https://cds.cern.ch/search?f=author&p=Graf%2C%20N.&ln=en">Graf, N.</a> (SLAC) ; <a href="https://cds.cern.ch/search?f=author&p=Hewett%2C%20J.&ln=en">Hewett, J.</a> (SLAC) ; <a href="https://cds.cern.ch/search?f=author&p=Kemp%2C%20M.&ln=en">Kemp, M.</a> (SLAC) ; <a href="https://cds.cern.ch/search?f=author&p=Kononenko%2C%20O.&ln=en">Kononenko, O.</a> (SLAC) ; <a href="https://cds.cern.ch/search?f=author&p=Markiewicz%2C%20T.&ln=en">Markiewicz, T.</a> (SLAC) ; <a href="https://cds.cern.ch/search?f=author&p=Moffeit%2C%20K.&ln=en">Moffeit, K.</a> (SLAC) ; <a href="https://cds.cern.ch/search?f=author&p=Neilson%2C%20J.&ln=en">Neilson, J.</a> (SLAC) ; <a href="https://cds.cern.ch/search?f=author&p=Nosochkov%2C%20Y.&ln=en">Nosochkov, Y.</a> (SLAC) ; <a href="https://cds.cern.ch/search?f=author&p=Oriunno%2C%20M.&ln=en">Oriunno, M.</a> (SLAC) ; <a href="https://cds.cern.ch/search?f=author&p=Phinney%2C%20N.&ln=en">Phinney, N.</a> (SLAC) ; <a href="https://cds.cern.ch/search?f=author&p=Rizzo%2C%20T.&ln=en">Rizzo, T.</a> (SLAC) ; <a href="https://cds.cern.ch/search?f=author&p=Tantawi%2C%20S.&ln=en">Tantawi, S.</a> (SLAC) ; <a href="https://cds.cern.ch/search?f=author&p=Wang%2C%20J.&ln=en">Wang, J.</a> (SLAC) ; <a href="https://cds.cern.ch/search?f=author&p=Weatherford%2C%20B.&ln=en">Weatherford, B.</a> (SLAC) ; <a href="https://cds.cern.ch/search?f=author&p=White%2C%20G.&ln=en">White, G.</a> (SLAC) ; <a href="https://cds.cern.ch/search?f=author&p=Woodley%2C%20M.&ln=en">Woodley, M.</a> (SLAC)</p> <span id="extension"></span> <small><i><a id="link" href="#" onclick="toggle_authors_visibility()" style="color:rgb(204,0,0);"></a></i></small><script type="text/javascript">set_up()</script></td></tr> <tr><td class="formatRecordLabel"> Collaboration </td><td style="padding-left:5px;">CLICdp Collaboration ; CLIC Collaboration</td></tr> <tr><td class="formatRecordLabel"> Publication </td><td style="padding-left:5px;">2018-12-14 - 112.</td></tr> <tr><td class="formatRecordLabel"> Series </td><td style="padding-left:5px;">(<a href="/search?f=490__a&p=CERN%20Yellow%20Reports%3A%20Monographs">CERN Yellow Reports: Monographs</a> ; 2/2018)</td></tr> <tr><td class="formatRecordLabel"> In: </td><td style="padding-left:5px;"><a href="http://dx.doi.org/10.23731/CYRM-2018-002">10.23731/CYRM-2018-002</a></td></tr> <tr><td class="formatRecordLabel"> Subject code </td><td style="padding-left:5px;"><a href="/search?f=080__a&p=621.384">621.384</a></td></tr> <tr><td class="formatRecordLabel"> Subject category </td><td style="padding-left:5px;">physics.acc-ph ; Accelerators and Storage Rings</td></tr> <tr><td class="formatRecordLabel"> Accelerator/Facility, Experiment </td><td style="padding-left:5px;"><a href="https://cds.cern.ch/search?p=CLICdp&f=693__e">CLICdp</a></td></tr> <tr><td class="formatRecordLabel"> Abstract </td><td style="padding-left:5px;">The Compact Linear Collider (CLIC) is a TeV-scale high-luminosity linear $e^+e^−$ collider under development at CERN. Following the CLIC conceptual design published in 2012, this report provides an overview of the CLIC project, its current status, and future developments. It presents the CLIC physics potential and reports on design, technology, and implementation aspects of the accelerator and the detector. For an optimal exploitation of its physics potential, CLIC is foreseen to be built and operated in stages, at centre-of-mass energies of 380 GeV, 1.5 TeV and 3 TeV, respectively, for a site length ranging from 11 km to 50 km. CLIC uses a two-beam acceleration scheme, in which normal-conducting high-gradient 12 GHz accelerating structures are powered via a high-current drive beam. For the first stage, an alternative with X-band klystron powering is also considered. CLIC accelerator optimisation, technical developments and system tests have resulted in significant progress in recent years. Moreover, this has led to an increased energy efficiency (power around 170 MW) for the 380 GeV stage, together with a reduced cost estimate at the level of 6 billion CHF. The detector concept, which matches the physics performance requirements and the CLIC experimental conditions, has been refined using improved software tools for simulation and reconstruction. Significant progress has been made on detector technology developments for the tracking and calorimetry systems. A wide range of CLIC physics studies has been conducted, both through full detector simulations with overlay of beam-induced backgrounds, and through parametric studies, together providing a broad overview of the CLIC physics potential. Each of the three energy stages adds cornerstones of the full CLIC physics programme, such as Higgs width and couplings, top-quark properties, Higgs self-coupling, direct searches, and many precision electroweak measurements. The interpretation of the combined results gives crucial and accurate insight into new physics, largely complementary to LHC and HL-LHC. The construction of the first CLIC energy stage could start by 2026. First beams would be available by 2035, marking the beginning of a broad CLIC physics programme spanning 25–30 years.</td></tr> <tr><td class="formatRecordLabel"> ISBN </td><td style="padding-left:5px;">9789290835066 (print version, paperback)<br/>9789290835073 (electronic version)<br/></td></tr> <tr><td class="formatRecordLabel"> DOI </td><td style="padding-left:5px;">Publication: <a href="http://dx.doi.org/10.23731/CYRM-2018-002" title="DOI" target="_blank">10.23731/CYRM-2018-002</a> <tr><td class="formatRecordLabel"> Copyright/License </td><td style="padding-left:5px;">publication: © 2018-2025 CERN (License: <a href="http://creativecommons.org/licenses/by/4.0/">CC-BY-4.0</a>)<br/>preprint: (License: <a href="http://creativecommons.org/licenses/by/4.0/">CC-BY-4.0</a>)</td></tr> </table> <br/>Corresponding record in: <a href="http://inspirehep.net/record/1709232">Inspire</a> <div style="box-sizing: inherit;position: relative;min-height: 1em;margin: 1em 10px;background: #f8f8f9;padding: 1em 1.5em;line-height: 1.4285em;transition: opacity .1s ease,color .1s ease,background .1s ease,box-shadow .1s ease,-webkit-box-shadow .1s ease;border-radius: .28571429rem;font-size: 1.1em;background-color: #f8ffff;color: #276f86;box-shadow: 0 0 0 1px #a9d5de inset,0 0 0 0 transparent;"> <i class="fa fa-info"></i><span style="padding-left: 9px;"> To loan this literature, see Library holdings in the <a style="font-weight: bold; text-decoration: underline;" href=https://catalogue.library.cern/legacy/2652188>CERN Library Catalogue</a> website. </span> </div> <small> </small> <small> </small> <br/><br/><div align="right"><div style="padding-bottom:2px;padding-top:30px;"><span class="moreinfo" style="margin-right:10px;"> <a href="" class="moreinfo">Back to search</a> </span></div></div> <div class="bottom-left-folded"><div class="recordlastmodifiedbox" style="position:relative;margin-left:1px"> Record created 2018-12-18, last modified 2024-12-19</div></div> <div class="bottom-right-folded" style="text-align:right;padding-bottom:2px;"> <span class="moreinfo" style="margin-right:10px;"><a href="/search?ln=en&p=recid%3A2652188&rm=wrd" class="moreinfo">Similar records</a></span></div> </div> </div> </div> <br/> <br /> <div class="detailedrecordminipanel"> <div class="top-left"></div><div class="top-right"></div> <div class="inside"> <div id="detailedrecordminipanelfile" style="width:33%;float:left;text-align:center;margin-top:0"> <div><small class="detailedRecordActions">CERN Report:</small> <br /><a href="/record/2652188/files/CLICSummaryReport.pdf"><img style="border:none" src="/img/file-icon-text-12x16.gif" alt="Download fulltext"/>PDF</a><br /><small>(<a href="/record/2652188/files/">additional files</a>)</small><br /></div><div><small class="detailedRecordActions">Fulltext:</small> <br /><em>66-67-PB</em> - <a href="/record/2652188/files/66-67-PB.pdf"><img style="border:none" src="/img/file-icon-text-12x16.gif" alt="Download fulltext"/>PDF</a><br /><em>1812.06018</em> - <a href="/record/2652188/files/1812.06018.pdf"><img style="border:none" src="/img/file-icon-text-12x16.gif" alt="Download fulltext"/>PDF</a><br /><small>(<a href="/record/2652188/files/">additional files</a>)</small><br /></div> </div> <div id="detailedrecordminipanelreview" style="width:30%;float:left;text-align:center"> </div> <div id="detailedrecordminipanelactions" style="width:36%;float:right;text-align:right;"> <ul class="detailedrecordactions"> <li><a href="/yourbaskets/add?ln=en&recid=2652188">Add to personal basket</a></li> <li>Export as <a style="text-decoration:underline;font-weight:normal" href="/record/2652188/export/hx?ln=en">BibTeX</a>, <a style="text-decoration:underline;font-weight:normal" href="/record/2652188/export/hm?ln=en">MARC</a>, <a style="text-decoration:underline;font-weight:normal" href="/record/2652188/export/xm?ln=en">MARCXML</a>, <a style="text-decoration:underline;font-weight:normal" href="/record/2652188/export/xd?ln=en">DC</a>, <a style="text-decoration:underline;font-weight:normal" href="/record/2652188/export/xe?ln=en">EndNote</a>, <!-- <a style="text-decoration:underline;font-weight:normal" href="/record/2652188/export/xe8x?ln=en">EndNote (8-X)</a>,--> <a style="text-decoration:underline;font-weight:normal" href="/record/2652188/export/xn?ln=en">NLM</a>, <a style="text-decoration:underline;font-weight:normal" href="/record/2652188/export/xw?ln=en">RefWorks</a> </li> </ul> <div style='padding-left: 13px;'> <!-- JQuery Bookmark Button BEGIN --> <div id="bookmark"></div> <div id="bookmark_sciencewise"></div> <style type="text/css"> #bookmark_sciencewise, #bookmark {float: left;} #bookmark_sciencewise li {padding: 2px; width: 25px;} #bookmark_sciencewise ul, #bookmark ul {list-style-image: none;} </style> <script type="text/javascript" src="/js/jquery.bookmark.min.js"></script> <style type="text/css">@import "/css/jquery.bookmark.css";</style> <script type="text/javascript">// <![CDATA[ $.bookmark.addSite('sciencewise', 'ScienceWise.info', 'https://cds.cern.ch/img/sciencewise.png', 'en', 'bookmark', 'http://sciencewise.info/bookmarks/1812.0601/add'); $('#bookmark_sciencewise').bookmark({sites: ['sciencewise']}); $('#bookmark').bookmark({ sites: ['facebook', 'twitter', 'linkedin', 'google_plusone'], icons: '/img/bookmarks.png', url: 'https://cds.cern.ch/record/2652188', addEmail: true, title: "The Compact Linear Collider (CLIC) - 2018 Summary Report", description: "The Compact Linear Collider (CLIC) is a TeV-scale high-luminosity linear $e^+e^\u2212$ collider under development at CERN. Following the CLIC conceptual design published in 2012, this report provides an overview of the CLIC project, its current status, and future developments. It presents the CLIC physics potential and reports on design, technology, and implementation aspects of the accelerator and the detector. For an optimal exploitation of its physics potential, CLIC is foreseen to be built and operated in stages, at centre-of-mass energies of 380 GeV, 1.5 TeV and 3 TeV, respectively, for a site length ranging from 11 km to 50 km. CLIC uses a two-beam acceleration scheme, in which normal-conducting high-gradient 12 GHz accelerating structures are powered via a high-current drive beam. For the first stage, an alternative with X-band klystron powering is also considered. CLIC accelerator optimisation, technical developments and system tests have resulted in significant progress in recent years. Moreover, this has led to an increased energy efficiency (power around 170 MW) for the 380 GeV stage, together with a reduced cost estimate at the level of 6 billion CHF. The detector concept, which matches the physics performance requirements and the CLIC experimental conditions, has been refined using improved software tools for simulation and reconstruction. Significant progress has been made on detector technology developments for the tracking and calorimetry systems. A wide range of CLIC physics studies has been conducted, both through full detector simulations with overlay of beam-induced backgrounds, and through parametric studies, together providing a broad overview of the CLIC physics potential. Each of the three energy stages adds cornerstones of the full CLIC physics programme, such as Higgs width and couplings, top-quark properties, Higgs self-coupling, direct searches, and many precision electroweak measurements. The interpretation of the combined results gives crucial and accurate insight into new physics, largely complementary to LHC and HL-LHC. The construction of the first CLIC energy stage could start by 2026. First beams would be available by 2035, marking the beginning of a broad CLIC physics programme spanning 25\u201330 years." }); // ]]> </script> <!-- JQuery Bookmark Button END --> </div> </div> <div style="clear:both;margin-bottom: 0;"></div> </div> <div class="bottom-left"></div><div class="bottom-right"></div> </div> </div></div> <footer id="footer" class="pagefooter clearfix"> <!-- replaced page footer --> <div class="pagefooterstripeleft"> CERN Document Server :: <a class="footer" href="https://cds.cern.ch/?ln=en">Search</a> :: <a class="footer" href="https://cds.cern.ch/submit?ln=en">Submit</a> :: <a class="footer" href="https://cds.cern.ch/youraccount/display?ln=en">Personalize</a> :: <a class="footer" href="https://cds.cern.ch/help/?ln=en">Help</a> :: <a class="footer" href="https://cern.service-now.com/service-portal?id=privacy_policy&se=CDS-Service" target="_blank">Privacy Notice</a> :: <a class="footer" href="https://repository.cern/content-policy" target="_blank">Content Policy</a> :: <a class="footer" href="https://repository.cern/terms" target="_blank">Terms and Conditions</a> <br /> Powered by <a class="footer" href="http://invenio-software.org/">Invenio</a> <br /> Maintained by <a class="footer" href="https://cern.service-now.com/service-portal?id=service_element&name=CDS-Service">CDS Service</a> - Need help? Contact <a href="https://cern.service-now.com/service-portal?id=service_element&name=CDS-Service">CDS Support</a>. <br /> </div> <div class="pagefooterstriperight"> <div class="cern-logo"> <a id="logo" href="http://cern.ch" title="CERN" rel="CERN" ><img src="https://cds.cern.ch/img/cern_theme/img/cern-logo-large.png" alt="CERN" /></a> </div> <div class="cern-languagebox"> This site is also available in the following languages:<br /><a href="/record/2652188?ln=bg" class="langinfo">Български</a> <a href="/record/2652188?ln=ca" class="langinfo">Català</a> <a href="/record/2652188?ln=de" class="langinfo">Deutsch</a> <a href="/record/2652188?ln=el" class="langinfo">Ελληνικά</a> <span class="langinfo">English</span> <a href="/record/2652188?ln=es" class="langinfo">Español</a> <a href="/record/2652188?ln=fr" class="langinfo">Français</a> <a href="/record/2652188?ln=hr" class="langinfo">Hrvatski</a> <a href="/record/2652188?ln=it" class="langinfo">Italiano</a> <a href="/record/2652188?ln=ja" class="langinfo">日本語</a> <a href="/record/2652188?ln=ka" class="langinfo">ქართული</a> <a href="/record/2652188?ln=no" class="langinfo">Norsk/Bokmål</a> <a href="/record/2652188?ln=pl" class="langinfo">Polski</a> <a href="/record/2652188?ln=pt" class="langinfo">Português</a> <a href="/record/2652188?ln=ru" class="langinfo">Русский</a> <a href="/record/2652188?ln=sk" class="langinfo">Slovensky</a> <a href="/record/2652188?ln=sv" class="langinfo">Svenska</a> <a href="/record/2652188?ln=zh_CN" class="langinfo">中文(简)</a> <a href="/record/2652188?ln=zh_TW" class="langinfo">中文(繁)</a> </div> </div> <!-- replaced page footer --> </footer> <script type="text/javascript"> var SyndeticsBookCovers = (function() { var SMALL_SIZE = "sc.gif", MEDIUM_SIZE = "mc.gif", RAW_URL = "https://secure.syndetics.com/index.aspx?isbn=THEISBN/THESIZE&client=cernlibrary"; replaceCover = function(imgElement, isbns, hdFormat) { var img = new Image(), size = hdFormat ? MEDIUM_SIZE : SMALL_SIZE; var _isbns = isbns.sort(function(a, b) { // sort from shortest to longest ISBN (more modern) return a.length > b.length ? 1 : -1; }); function next() { var isbn = _isbns.pop(); if (isbn) { var url = RAW_URL.replace("THEISBN", isbn).replace("THESIZE", size); img.src = url; } } function done() { imgElement.src = img.src; } img.onload = function() { if (this.width > 1) { done(); } else { next(); } }; next(); }; return { replaceCover: replaceCover }; })(); $(document).ready(function() { // get book covers $("img.book-cover").each(function() { var $this = $(this), strIsbns = $this.data("isbns") || "", isbnsArray = String(strIsbns).split(","), hdFormat = $this.hasClass("hd"); SyndeticsBookCovers.replaceCover(this, isbnsArray, hdFormat); }); // WebNews tooltips $.ajax({ url: "/news/tooltips", success: function(data) { create_tooltips(data); }, dataType: "json", cache: false }); }); </script> <!-- Feedback script --> <script src="//cds.cern.ch/js/feedback.js"></script> <!-- Feedback script --> <!-- Matomo --> <script> var _paq = window._paq = window._paq || []; /* tracker methods like "setCustomDimension" should be called before "trackPageView" */ _paq.push(['trackPageView']); _paq.push(['enableLinkTracking']); (function() { var u="https://webanalytics.web.cern.ch/"; _paq.push(['setTrackerUrl', u+'matomo.php']); _paq.push(['setSiteId', '756']); var d=document, g=d.createElement('script'), s=d.getElementsByTagName('script')[0]; g.async=true; g.src=u+'matomo.js'; s.parentNode.insertBefore(g,s); })(); </script> <!-- End Matomo Code --> </body> </html>