CINXE.COM
Search results for: plasticizer additives
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: plasticizer additives</title> <meta name="description" content="Search results for: plasticizer additives"> <meta name="keywords" content="plasticizer additives"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="plasticizer additives" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="plasticizer additives"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 427</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: plasticizer additives</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">427</span> The Effects of Microsilis, Super Plasticizer and Air Entrain in Lightweight Expanded Perlite Concrete </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yousef%20Zandi">Yousef Zandi</a>, <a href="https://publications.waset.org/abstracts/search?q=Hoseyn%20Leka"> Hoseyn Leka</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahin%20Ganadi"> Mahin Ganadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the results of a laboratory study carried out on effect of using the simultaneous of microsilis, super plasticizer and air entrain additives on compressive strength of light weight perlite concrete. In this study, 63 test specimens with different percentage and mixtures including microsilis, super plasticizer and air entrain were used. 63 test specimens with different mixtures including microsilis and air entrain were also prepared for comparison purposes. In the mixtures, lightweight perlite aggregate, microsilis, super plasticizer, air entrain, cement type I, sand and water were used. Laboratory test results showed that workability of lightweight perlite concrete was increased and compressive strength was released by the use of super plasticizer, without any change in water/cement ratio. We know that compressive strength of concrete is depends on water/cement ratio. Since, it was expected that the use of air entrain and super plasticizer lower water/cement ratio and raised strengths, considerably. It was concluded that use of simultaneous of air entrains and super plasticizer additive were not economical and use of air entrain and microsilis is better than use of air entrain, super plasticizer and microsilis. It was concluded that the best results were obtained by using 10% microsilis and 0.5% air entrain. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=perlite" title="perlite">perlite</a>, <a href="https://publications.waset.org/abstracts/search?q=microsilis" title=" microsilis"> microsilis</a>, <a href="https://publications.waset.org/abstracts/search?q=air%20entrain" title=" air entrain"> air entrain</a>, <a href="https://publications.waset.org/abstracts/search?q=super%20plasticizer" title=" super plasticizer "> super plasticizer </a> </p> <a href="https://publications.waset.org/abstracts/19134/the-effects-of-microsilis-super-plasticizer-and-air-entrain-in-lightweight-expanded-perlite-concrete" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19134.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">384</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">426</span> Effect of Plasticizer Additives on the Mechanical Properties of Cement Composite: A Molecular Dynamics Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Mohan">R. Mohan</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Jadhav"> V. Jadhav</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Ahmed"> A. Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Rivas"> J. Rivas</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Kelkar"> A. Kelkar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cementitious materials are an excellent example of a composite material with complex hierarchical features and random features that range from nanometer (nm) to millimeter (mm) scale. Multi-scale modeling of complex material systems requires starting from fundamental building blocks to capture the scale relevant features through associated computational models. In this paper, molecular dynamics (MD) modeling is employed to predict the effect of plasticizer additive on the mechanical properties of key hydrated cement constituent calcium-silicate-hydrate (CSH) at the molecular, nanometer scale level. Due to complexity, still unknown molecular configuration of CSH, a representative configuration widely accepted in the field of mineral Jennite is employed. The effectiveness of the Molecular Dynamics modeling to understand the predictive influence of material chemistry changes based on molecular/nanoscale models is demonstrated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cement%20composite" title="cement composite">cement composite</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20dynamics" title=" molecular dynamics"> molecular dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=plasticizer%20additives" title=" plasticizer additives"> plasticizer additives</a> </p> <a href="https://publications.waset.org/abstracts/1528/effect-of-plasticizer-additives-on-the-mechanical-properties-of-cement-composite-a-molecular-dynamics-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1528.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">454</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">425</span> The Characteristcs and Amino Acid Profile of Edible Coating Extracted from Pigskin Gelatin </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Meity%20Sompie">Meity Sompie</a>, <a href="https://publications.waset.org/abstracts/search?q=Agnes%20Triasih"> Agnes Triasih</a>, <a href="https://publications.waset.org/abstracts/search?q=Wisje%20Ponto"> Wisje Ponto</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Edible coating is thin layers that act as a barrier to the external factors and protect the food products. The addition of the plasticizer to the edible coating is required to overcome film caused by extensive intermolecular forces. The potential development of pigskin with different ages as a raw material for the manufacture of edible films had not been widely publicized. This research was aimed to determine the influence of gelatin concentration and different type of plasticizer on the edible coating characteristics extracted from pigskin gelatin. This study used Completely Randomized Design (CRD) with two factors and three replicates of treatments. The first factor was consisted of pigskin gelatin concentration ( 10, 20, and 30 %) and the second factor was different type of plasticizer (glycerol, sorbitol and PEG). The results show that the interaction between the use of gelatin concentrations and type of plasticizer had significant effect (P< 0.05) on the thickness, tensile strength, elongation, water vapor transmission rate (WVTR), water content and amino acid profile of edible coating. It was concluded that the edible coating from pigskin gelatin with plasticizer gliserol had the best film characteristics, and it can be applied as an edible coating. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=edible%20coating" title="edible coating">edible coating</a>, <a href="https://publications.waset.org/abstracts/search?q=edible%20film" title=" edible film"> edible film</a>, <a href="https://publications.waset.org/abstracts/search?q=pigskin%20gelatin" title=" pigskin gelatin"> pigskin gelatin</a>, <a href="https://publications.waset.org/abstracts/search?q=plasticizer" title=" plasticizer"> plasticizer</a> </p> <a href="https://publications.waset.org/abstracts/86037/the-characteristcs-and-amino-acid-profile-of-edible-coating-extracted-from-pigskin-gelatin" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/86037.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">214</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">424</span> Effect of Additives on Post-hydrogen Decompression Microstructure and Mechanical Behaviour of PA11 Involved in Type-IV Hydrogen Tank Liners</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mitia%20Ramarosaona">Mitia Ramarosaona</a>, <a href="https://publications.waset.org/abstracts/search?q=Sylvie%20Castagnet"> Sylvie Castagnet</a>, <a href="https://publications.waset.org/abstracts/search?q=Damien%20Halm"> Damien Halm</a>, <a href="https://publications.waset.org/abstracts/search?q=Henri-Alexandre%20Cayzac"> Henri-Alexandre Cayzac</a>, <a href="https://publications.waset.org/abstracts/search?q=Nicolas%20Dufaure"> Nicolas Dufaure</a>, <a href="https://publications.waset.org/abstracts/search?q=Philippe%20Papin"> Philippe Papin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In light of the ongoing energy transition, 'Infrastructure developments' for hydrogen transportation and storage raise studies on the materials employed for hyperbaric vessels. Type IV tanks represent the most mature choice for gaseous hydrogen storage at high pressure – 70MPa. These tanks are made of a composite shell and an internal hydrogen-exposed polymer liner. High pressure conditions lead to severe mechanical loading requiring high resistance. Liner is in contact with hydrogen and undergoes compression – decompression cycles during system filling and emptying. Stresses induced by this loading, coupled with hydrogen diffusion, were found to cause microstructural changes and degradation of mechanical behaviour after decompression phase in some studies on HDPE. These phenomena are similar to those observed in elastomeric components like sealing rings, which can affect permeability and lead to their failure. They may lead to a hydrogen leak, compromising security and tightness of the tank. While these phenomena have been identified in elastomers, they remain less addressed in thermoplastics and consequences post-decompression damages on mechanical behaviour and to the best of author's knowledge was not studied either. Different additives are also included in liner formulation to improve its behaviour. This study aimed to better understand damage micro-mechanisms in PA11s exposed to hydrogen compression-decompression cycles and understand if additives influence their resistance. Samples of pure, plasticized and impact-modified PA11s are exposed to 1, 3 and 8 pressure cycles including hydrogen saturation at 70MPa followed by severe 15-second decompression. After hydrogen exposure and significantly later than full desorption, the residual mechanical behaviour is characterized through impact and monotonic tensile tests, on plain and notched samples. Several techniques of microstructure and micro-nano damage characterization are carried out to assess whether changes in macroscopic properties are driven by microstructural changes in the crystalline structure (SAXS-WAXS acquisitions and SEM micrographs). Thanks to WAXS acquisition and microscopic observation, the effects due to additives and pressure consequences can be decorrelated. Pure PA11 and PA11 with a low percentage of additives show an increase in stress level at the first yielding point after hydrogen cycles. The amplitude of the stress increase is more important in formulation with additives because of changes in PA11 matrix behavior and environment created by additives actions. Plasticizer modifies chain mobility leading to microstructure changes while other additives, more ductile than PA11, is able to cavitate inside PA11 matrix when undergoing decompression. On plasticized formulation, plasticizer migration are suspected to enhance impact of hydrogen cycling on mechanical behaviour. Compared to the literature on HDPE and elastomers, no damages like cavitation or cracking could be evidenced from SAXS experiments on every PA11 formulation tested. In perspectives, on all formulation, experimental work is underway to confirm influence of residual pressure level after decompression on post-decompression damages level, the aim is to better understand the factors affecting the mechanical behavior of thermoplastics subject to mechanical solicitation from decompression in hydrogen tank liners, not mechanical behaviour of liner in hydrogen tanks directly. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=additives" title="additives">additives</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogen%20tank%20liner" title=" hydrogen tank liner"> hydrogen tank liner</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructural%20analysis" title=" microstructural analysis"> microstructural analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=PA11" title=" PA11"> PA11</a> </p> <a href="https://publications.waset.org/abstracts/187542/effect-of-additives-on-post-hydrogen-decompression-microstructure-and-mechanical-behaviour-of-pa11-involved-in-type-iv-hydrogen-tank-liners" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/187542.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">45</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">423</span> Compatibility of Sulphate Resisting Cement with Super and Hyper-Plasticizer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alper%20Cumhur">Alper Cumhur</a>, <a href="https://publications.waset.org/abstracts/search?q=Hasan%20Baylavl%C4%B1"> Hasan Baylavlı</a>, <a href="https://publications.waset.org/abstracts/search?q=Eren%20G%C3%B6dek"> Eren Gödek</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Use of superplasticity chemical admixtures in concrete production is widespread all over the world and has become almost inevitable. Super-plasticizers (SPA), extend the setting time of concrete by adsorbing onto cement particles and provide concrete to preserve its fresh state workability properties. Hyper-plasticizers (HPA), as a special type of superplasticizer, provide the production of qualified concretes by increasing the workability properties of concrete, effectively. However, compatibility of cement with super and hyper-plasticizers is quite important for achieving efficient workability in order to produce qualified concretes. In 2011, the EN 197-1 standard is edited and cement classifications were updated. In this study, the compatibility of hyper-plasticizer and CEM I SR0 type sulphate resisting cement (SRC) that firstly classified in EN 197-1 is investigated. Within the scope of the experimental studies, a reference cement mortar was designed with a water/cement ratio of 0.50 confirming to EN 196-1. Fresh unit density of mortar was measured and spread diameters (at 0, 60, 120 min after mix preparation) and setting time of reference mortar were determined with flow table and Vicat tests, respectively. Three mortars are being re-prepared with using both super and hyper-plasticizer confirming to ASTM C494 by 0.50, 0.75 and 1.00% of cement weight. Fresh unit densities, spread diameters and setting times of super and hyper plasticizer added mortars (SPM, HPM) will be determined. Theoretical air-entrainment values of both SPMs and HPMs will be calculated by taking the differences between the densities of plasticizer added mortars and reference mortar. The flow table and Vicat tests are going to be repeated to these mortars and results will be compared. In conclusion, compatibility of SRC with SPA and HPA will be investigated. It is expected that optimum dosages of SPA and HPA will be determined for providing the required workability and setting conditions of SRC mortars, and the advantages/disadvantages of both SPA and HPA will be discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CEM%20I%20SR0" title="CEM I SR0">CEM I SR0</a>, <a href="https://publications.waset.org/abstracts/search?q=hyper-plasticizer" title=" hyper-plasticizer"> hyper-plasticizer</a>, <a href="https://publications.waset.org/abstracts/search?q=setting%20time" title=" setting time"> setting time</a>, <a href="https://publications.waset.org/abstracts/search?q=sulphate%20resisting%20cement" title=" sulphate resisting cement"> sulphate resisting cement</a>, <a href="https://publications.waset.org/abstracts/search?q=super-plasticizer" title=" super-plasticizer"> super-plasticizer</a>, <a href="https://publications.waset.org/abstracts/search?q=workability" title=" workability"> workability</a> </p> <a href="https://publications.waset.org/abstracts/77835/compatibility-of-sulphate-resisting-cement-with-super-and-hyper-plasticizer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77835.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">215</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">422</span> Tribological Behavior of EP Additives with Different Percentage of Sulfur </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Salete%20Martins%20Alves">Salete Martins Alves</a>, <a href="https://publications.waset.org/abstracts/search?q=Jos%C3%A9%20Josemar%20de%20Oliveira%20Junior"> José Josemar de Oliveira Junior</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The current efforts on design of lubricants are based in attending the new requirement of modern equipment with the focus on the choice of base oil and additives. Nowadays, there are different types of lubricant oils’ bases, such as mineral oils, synthetic oils, re-refined oils and vegetable oils. The lubrication in the boundary condition is controlled mainly by EP additives that interact with the surface forming very thin films. Therefore, the study’s goal is to evaluate the action of three EP additives, with different percentage of sulfur, on friction and wear reduction. They were evaluated in mineral and synthetic oils. Lubricants were prepared with synthetic and mineral oils and added 3 % and 5 % of EP additives. The friction and wear characteristics were studied using HFRR test. In this test, a normal load of 10 N was applied at a frequency of 20 Hz. The analysis of results has appointed that the percentage of sulfur in mineral oil has influenced on wear reduction. However, synthetic oil had good performance with low sulfur content. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=boundary%20lubrication" title="boundary lubrication">boundary lubrication</a>, <a href="https://publications.waset.org/abstracts/search?q=EP%20additives" title=" EP additives"> EP additives</a>, <a href="https://publications.waset.org/abstracts/search?q=sulfur" title=" sulfur"> sulfur</a>, <a href="https://publications.waset.org/abstracts/search?q=wear" title=" wear"> wear</a> </p> <a href="https://publications.waset.org/abstracts/10706/tribological-behavior-of-ep-additives-with-different-percentage-of-sulfur" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10706.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">404</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">421</span> Study the Efficiency of Some Homopolymers as Lube Oil Additives</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amal%20M.%20Nassar">Amal M. Nassar</a>, <a href="https://publications.waset.org/abstracts/search?q=Nehal%20S.%20Ahmed"> Nehal S. Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=Rasha%20S.%20Kamal"> Rasha S. Kamal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Some lube oil additives improve the base oil performance such as viscosity index improvers and pour point depressants which are the most important type of additives. In the present work, some homopolymeric additives were prepared by esterification of acrylic acid with different alcohols (1-dodecyl, 1-hexadecyl, and 1-octadecyl )and then homopolymerization of the prepared esters with different ratio of benzoyl peroxide catalyst (0.25%& 0.5 % and 1%). Structure of the prepared esters was confirmed by Infra-Red Spectroscopy. The molecular weights of the prepared homopolymers were determined by using Gel Permeation Chromatograph. The efficiency of the prepared homopolymers as viscosity index improvers and pour point depressants for lube oil was the investigation. It was found that all the prepared homopolymers are effective as viscosity index improvers and pour point depressants. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lube%20oil%20additives" title="lube oil additives">lube oil additives</a>, <a href="https://publications.waset.org/abstracts/search?q=homopolymerization" title=" homopolymerization"> homopolymerization</a>, <a href="https://publications.waset.org/abstracts/search?q=viscosity%20index%20improver" title=" viscosity index improver"> viscosity index improver</a>, <a href="https://publications.waset.org/abstracts/search?q=pour%20point%20depressant" title=" pour point depressant"> pour point depressant</a> </p> <a href="https://publications.waset.org/abstracts/90608/study-the-efficiency-of-some-homopolymers-as-lube-oil-additives" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90608.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">233</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">420</span> The Effect of Gamma-Aminobutyric Acid on Mechanical Properties, Water Vapor Permeability and Solubility of Pectin Films</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jitrawadee%20Meerasri">Jitrawadee Meerasri</a>, <a href="https://publications.waset.org/abstracts/search?q=Rungsinee%20Sothornvit"> Rungsinee Sothornvit</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pectin is a structural polysaccharide from plant cell walls and can be used as a stabilizer, gelling and film-forming agents to improve many food products. Moreover, pectin film as a natural biopolymer can be a carrier of several active ingredients such as antioxidant and antimicrobial to provide an active or functional film. Gamma-aminobutyric acid (GABA) is a well-known agent to reduce neuronal excitability throughout the nervous system and it is interesting to investigate the GABA effect as a substitute of normal plasticizer (glycerol) on edible film properties. Therefore, the objective of this study was to determine the effect of GABA concentrations (5-15% of pectin) on film mechanical properties, moisture content, water vapor permeability, and solubility compared with those from glycerol (10% of pectin) plasticized pectin film including a control film (pectin film without any plasticizer). It was found that an increase in GABA concentrations decreased film tensile strength, modulus, solubility and water vapor permeability, but elongation was increased without a change in the moisture content. The smaller amount of GABA showed the equivalent film properties as using a higher amount of glycerol. Consequently, GABA can act as an alternative plasticizer substitute of glycerol at the lower amount used. Moreover, GABA provides the nutritional high value in the food products when the edible packaging material is consumed with products. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gamma-aminobutyric%20acid" title="gamma-aminobutyric acid">gamma-aminobutyric acid</a>, <a href="https://publications.waset.org/abstracts/search?q=pectin" title=" pectin"> pectin</a>, <a href="https://publications.waset.org/abstracts/search?q=plasticizer" title=" plasticizer"> plasticizer</a>, <a href="https://publications.waset.org/abstracts/search?q=edible%20film" title=" edible film"> edible film</a> </p> <a href="https://publications.waset.org/abstracts/83511/the-effect-of-gamma-aminobutyric-acid-on-mechanical-properties-water-vapor-permeability-and-solubility-of-pectin-films" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/83511.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">130</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">419</span> Synthesis and Characterisation of Bio-Based Acetals Derived from Eucalyptus Oil </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kirstin%20Burger">Kirstin Burger</a>, <a href="https://publications.waset.org/abstracts/search?q=Paul%20Watts"> Paul Watts</a>, <a href="https://publications.waset.org/abstracts/search?q=Nicole%20Vorster"> Nicole Vorster </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Green chemistry focuses on synthesis which has a low negative impact on the environment. This research focuses on synthesizing novel compounds from an all-natural Eucalyptus citriodora oil. Eight novel plasticizer compounds are synthesized and optimized using flow chemistry technology. A precursor to one novel compound can be synthesized from the lauric acid present in coconut oil. Key parameters, such as catalyst screening and loading, reaction time, temperature, residence time using flow chemistry techniques is investigated. The compounds are characterised using GC-MS, FT-IR, 1H and 13C-NMR techniques, X-ray crystallography. The efficiency of the compounds is compared to two commercial plasticizers, i.e. Dibutyl phthalate and Eastman 168. Several PVC-plasticized film formulations are produced using the bio-based novel compounds. Tensile strength, stress at fracture and percentage elongation are tested. The property of having increasing plasticizer percentage in the film formulations is investigated, ranging from 3, 6, 9 and 12%. The diastereoisomers of each compound are separated and formulated into PVC films, and differences in tensile strength are measured. Leaching tests, flexibility, and change in glass transition temperatures for PVC-plasticized films is recorded. Research objective includes using these novel compounds as a green bio-plasticizer alternative in plastic products for infants. The inhibitory effect of the compounds on six pathogens effecting infants are studied, namely; Escherichia coli, Staphylococcus aureus, Shigella sonnei, Pseudomonas putida, Salmonella choleraesuis and Klebsiella oxytoca. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bio-based%20compounds" title="bio-based compounds">bio-based compounds</a>, <a href="https://publications.waset.org/abstracts/search?q=plasticizer" title=" plasticizer"> plasticizer</a>, <a href="https://publications.waset.org/abstracts/search?q=tensile%20strength" title=" tensile strength"> tensile strength</a>, <a href="https://publications.waset.org/abstracts/search?q=microbiological%20inhibition" title=" microbiological inhibition "> microbiological inhibition </a>, <a href="https://publications.waset.org/abstracts/search?q=synthesis" title=" synthesis"> synthesis</a> </p> <a href="https://publications.waset.org/abstracts/79061/synthesis-and-characterisation-of-bio-based-acetals-derived-from-eucalyptus-oil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79061.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">186</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">418</span> Determination of the Optimal Content of Commercial Superplasticizer Additives in Cements with Calcined Clay</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amanda%20R.%20Teixeira">Amanda R. Teixeira</a>, <a href="https://publications.waset.org/abstracts/search?q=Jo%C3%A3o%20H.%20S.%20Rego"> João H. S. Rego</a>, <a href="https://publications.waset.org/abstracts/search?q=Gabriel%20F.%20S.%20Brito"> Gabriel F. S. Brito</a>, <a href="https://publications.waset.org/abstracts/search?q=Fabricio%20M.%20Silva"> Fabricio M. Silva</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The use of superplasticizer additives has provided several advances for the civil construction industry, enabling gains in the rheological behavior and mechanical properties of cementitious matrices. These compounds act at the solid-liquid interface of colloidal suspensions of cement pastes, preventing agglomeration of the particles. Although the use in the concrete industry is wide, the mechanisms of dispersion of concrete admixtures composed of polycarboxylate in cement with supplementary cementitious materials have ample opportunity to be investigated, providing the attainment of increasingly compatible and efficient cement-addition-additive systems. The cements used in the research are Portland Cement CPV and two cements Portland Cement Composite (CPIV) with calcined clay contents of 20% and 28% and three commercial additives based on polycarboxylate. The performance of the additives and obtaining the optimal content was determined by the Marsh Cone test and spread by Mini-Slump. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=calcined%20clay" title="calcined clay">calcined clay</a>, <a href="https://publications.waset.org/abstracts/search?q=composite%20cements" title=" composite cements"> composite cements</a>, <a href="https://publications.waset.org/abstracts/search?q=superplasticizer%20additives" title=" superplasticizer additives"> superplasticizer additives</a>, <a href="https://publications.waset.org/abstracts/search?q=polycarboxylate" title=" polycarboxylate"> polycarboxylate</a> </p> <a href="https://publications.waset.org/abstracts/159324/determination-of-the-optimal-content-of-commercial-superplasticizer-additives-in-cements-with-calcined-clay" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/159324.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">106</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">417</span> The Effect of Addition of Dioctyl Terephthalate and Calcite on the Tensile Properties of Organoclay/Linear Low Density Polyethylene Nanocomposites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20G%C3%BCrses">A. Gürses</a>, <a href="https://publications.waset.org/abstracts/search?q=Z.%20Ero%C4%9Flu"> Z. Eroğlu</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20%C5%9Eahin"> E. Şahin</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20G%C3%BCne%C5%9F"> K. Güneş</a>, <a href="https://publications.waset.org/abstracts/search?q=%C3%87.%20Do%C4%9Far"> Ç. Doğar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years, polymer/clay nanocomposites have generated great interest in the polymer industry as a new type of composite material because of their superior properties, which includes high heat deflection temperature, gas barrier performance, dimensional stability, enhanced mechanical properties, optical clarity and flame retardancy when compared with the pure polymer or conventional composites. The investigation of change of the tensile properties of organoclay/linear low density polyethylene (LLDPE) nanocomposites with the use of Dioctyl terephthalate (DOTP) (as plasticizer) and calcite (as filler) has been aimed. The composites and organoclay synthesized were characterized using the techniques such as XRD, HRTEM and FTIR techniques. The spectroscopic results indicate that platelets of organoclay were well dispersed within the polymeric matrix. The tensile properties of the composites were compared considering the stress-strain curve drawn for each composite and pure polymer. It was observed that the composites prepared by adding the plasticizer at different ratios and a certain amount of calcite exhibited different tensile behaviors compared to pure polymer. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=linear%20low%20density%20polyethylene" title="linear low density polyethylene">linear low density polyethylene</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocomposite" title=" nanocomposite"> nanocomposite</a>, <a href="https://publications.waset.org/abstracts/search?q=organoclay" title=" organoclay"> organoclay</a>, <a href="https://publications.waset.org/abstracts/search?q=plasticizer" title=" plasticizer"> plasticizer</a> </p> <a href="https://publications.waset.org/abstracts/53070/the-effect-of-addition-of-dioctyl-terephthalate-and-calcite-on-the-tensile-properties-of-organoclaylinear-low-density-polyethylene-nanocomposites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53070.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">293</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">416</span> Compressive and Torsional Strength of Self-Compacting Concrete</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Moosa%20Mazloom">Moosa Mazloom</a>, <a href="https://publications.waset.org/abstracts/search?q=Morteza%20Mehrvand"> Morteza Mehrvand</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The goal of this study was to investigate the effects of silica fume and super plasticizer dosages on compressive and torsional properties of SCC. This work concentrated on concrete mixes having water/binder ratios of 0.45 and 0.35, which contained constant total binder contents of 400 kg/m3 and 500 kg/m3, respectively. The percentages of silica fume that replaced cement were 0 % and 10 %. The super plasticizer dosages utilized in the mixtures were 0.4%, 0.8%, 1.2 % and 1.6 % of the weight of cement. Prism dimensions used in this test were 10 × 10 × 40 cm3. The results of this research indicated that torsional strength of SCC prisms can be calculated using the equations presented in Canadian and American concrete building codes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=self-compacting%20concrete" title="self-compacting concrete">self-compacting concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=rectangular%20prism" title=" rectangular prism"> rectangular prism</a>, <a href="https://publications.waset.org/abstracts/search?q=torsional%20strength" title=" torsional strength"> torsional strength</a> </p> <a href="https://publications.waset.org/abstracts/29748/compressive-and-torsional-strength-of-self-compacting-concrete" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29748.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">517</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">415</span> A Review on New Additives in Deep Soil Mixing Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Meysam%20Mousakhani">Meysam Mousakhani</a>, <a href="https://publications.waset.org/abstracts/search?q=Reza%20Ziaie%20Moayed"> Reza Ziaie Moayed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Considering the population growth and the needs of society, the improvement of problematic soils and the study of the application of different improvement methods have been considered. One of these methods is deep soil mixing, which has been developed in the past decade, especially in soft soils due to economic efficiency, simple implementation, and other benefits. The use of cement is criticized for its cost and the damaging environmental effects, so these factors lead us to use other additives along with cement in the deep soil mixing. Additives that are used today include fly ash, blast-furnace slag, glass powder, and potassium hydroxide. The present study provides a literature review on the application of different additives in deep soil mixing so that the best additives can be introduced from strength, economic, environmental and other perspectives. The results show that by replacing fly ash and slag with about 40 to 50% of cement, not only economic and environmental benefits but also a long-term strength comparable to cement would be achieved. The use of glass powder, especially in 3% mixing, results in desirable strength. In addition to the other benefits of these additives, potassium hydroxide can also be transported over longer distances, leading to wider soil improvement. Finally, this paper suggests further studies in terms of using other additives such as nanomaterials and zeolite, with different ratios, in different conditions and soils (silty sand, clayey sand, carbonate sand, sandy clay and etc.) in the deep mixing method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=deep%20soil%20mix" title="deep soil mix">deep soil mix</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20stabilization" title=" soil stabilization"> soil stabilization</a>, <a href="https://publications.waset.org/abstracts/search?q=fly%20ash" title=" fly ash"> fly ash</a>, <a href="https://publications.waset.org/abstracts/search?q=ground%20improvement" title=" ground improvement"> ground improvement</a> </p> <a href="https://publications.waset.org/abstracts/133452/a-review-on-new-additives-in-deep-soil-mixing-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/133452.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">148</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">414</span> Polysaccharides as Pour Point Depressants</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20M.%20EL-Soll">Ali M. EL-Soll</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Physical properties of Sarir waxy crude oil was investigated, pour-point was determined using ASTM D-79 procedure, paraffin content and carbon number distribution of the paraffin was determined using gas liquid Chromatography(GLC), polymeric additives were prepared and their structures were confirmed using IR spectrophotometer. The molecular weight and molecular weigh distribution of these additives were determined by gel permeation chromatography (GPC). the performance of the synthesized additives as pour-point depressants was evaluated, for the mentioned crude oil. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sarir" title="sarir">sarir</a>, <a href="https://publications.waset.org/abstracts/search?q=waxy" title=" waxy"> waxy</a>, <a href="https://publications.waset.org/abstracts/search?q=crude" title=" crude"> crude</a>, <a href="https://publications.waset.org/abstracts/search?q=pour%20point" title=" pour point"> pour point</a>, <a href="https://publications.waset.org/abstracts/search?q=depressants" title=" depressants"> depressants</a> </p> <a href="https://publications.waset.org/abstracts/8204/polysaccharides-as-pour-point-depressants" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8204.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">452</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">413</span> Enhancing Reused Lubricating Oil Performance Using Novel Ionic Liquids Based on Imidazolium Derivatives</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Deyab">Mohamed Deyab</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The global lubricant additives market size was USD 14.35 billion in 2015. The industry is characterized by increasing additive usage in base oil blending for longer service life and performance. These additives improve the viscosity of oil, act as detergents, defoamers, antioxidants, and antiwear agents. Since additives play a significant role in base oil blending and subsequent formulations as they are critical materials in improving specification and performance of oils. Herein, we report on the synthesis and characterization of three imidazolium derivatives and their application as antioxidants, detergents and antiwear agents. The molecular structure and characterizations of these ionic liquids were confirmed by elemental analysis, FTIR, X-Ray Diffraction (XRD) and 1HNMR spectroscopy. Thermo gravimetric analysis (TGA), is used to study the degradation and thermal stability of the studied base stock samples. It was found that all the prepared ionic liquids additives have excellent power of dispersion and detergency. The ionic liquids as additives to engine oil reduced the friction (38%) and wear volume (76%) of steel balls. The obtained results show that the ionic liquids have an oxidation inhibitor up to 95%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=reused%20lubricating%20oil" title="reused lubricating oil">reused lubricating oil</a>, <a href="https://publications.waset.org/abstracts/search?q=waste" title=" waste"> waste</a>, <a href="https://publications.waset.org/abstracts/search?q=petroleum" title=" petroleum"> petroleum</a>, <a href="https://publications.waset.org/abstracts/search?q=ionic%20liquids" title=" ionic liquids"> ionic liquids</a> </p> <a href="https://publications.waset.org/abstracts/145781/enhancing-reused-lubricating-oil-performance-using-novel-ionic-liquids-based-on-imidazolium-derivatives" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/145781.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">138</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">412</span> Bio-Based Polyethylene/Rice Starch Composite Prepared by Twin Screw Extruder</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Waris%20Piyaphon">Waris Piyaphon</a>, <a href="https://publications.waset.org/abstracts/search?q=Sathaphorn%20O-Suwankul"> Sathaphorn O-Suwankul</a>, <a href="https://publications.waset.org/abstracts/search?q=Kittima%20Bootdee"> Kittima Bootdee</a>, <a href="https://publications.waset.org/abstracts/search?q=Manit%20Nithitanakul"> Manit Nithitanakul</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Starch from rice was used as a filler in low density polyethylene in preparation of low density polyethylene/rice starch composite. This study aims to prepare LDPE/rice starch composites. Glycerol (GC) was used as a plasticizer in order to increase dispersion and reduce agglomeration of rice starch in low density polyethylene (LDPE) matrix. Low density polyethylene grafted maleic anhydride (LDPE-g-MA) was used as a compatibilizer to increase the compatibility between LDPE and rice starch. The content of rice starch was varied between 10, 20, and 30 %wt. Results indicated that increase of rice starch content reduced tensile strength at break, elongation, and impact strength of composites. LDPE-g-MA showed positive effect on mechanical properties which increased in tensile strength and impact properties as well as compatibility between rice starch and LDPE matrix. Moreover, the addition of LDPE-g-MA significantly improved the impact strength by 50% compared to neat composite. The incorporation of GC enhanced the processability of composite. Introduction of GC affected the viscosity after blending by reducing the viscosity at all shear rate. The presence of plasticizer increased the impact strength but decreased the stiffness of composite. Water absorption of the composite was increased when plasticizer was added. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=composite%20material" title="composite material">composite material</a>, <a href="https://publications.waset.org/abstracts/search?q=plastic%20starch%20composite" title=" plastic starch composite"> plastic starch composite</a>, <a href="https://publications.waset.org/abstracts/search?q=polyethylene%20composite" title=" polyethylene composite"> polyethylene composite</a>, <a href="https://publications.waset.org/abstracts/search?q=PE%20grafted%20maleic%20anhydride" title=" PE grafted maleic anhydride"> PE grafted maleic anhydride</a> </p> <a href="https://publications.waset.org/abstracts/83851/bio-based-polyethylenerice-starch-composite-prepared-by-twin-screw-extruder" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/83851.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">209</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">411</span> Effect of Spermidine on Physicochemical Properties of Protein Based Films</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Sabbah">Mohammed Sabbah</a>, <a href="https://publications.waset.org/abstracts/search?q=Prospero%20Di%20Pierro"> Prospero Di Pierro</a>, <a href="https://publications.waset.org/abstracts/search?q=Raffaele%20Porta"> Raffaele Porta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Protein-based edible films and coatings have attracted an increasing interest in recent years since they might be used to protect pharmaceuticals or improve the shelf life of different food products. Among them, several plant proteins represent an abundant, inexpensive and renewable raw source. These natural biopolymers are used as film forming agents, being able to form intermolecular linkages by various interactions. However, without the addition of a plasticizing agent, many biomaterials are brittle and, consequently, very difficult to be manipulated. Plasticizers are generally small and non-volatile organic additives used to increase film extensibility and reduce its crystallinity, brittleness and water vapor permeability. Plasticizers normally act by decreasing the intermolecular forces along the polymer chains, thus reducing the relative number of polymer-polymer contacts, producing a decrease in cohesion and tensile strength and thereby increasing film flexibility allowing its deformation without rupture. The most commonly studied plasticizers are polyols, like glycerol (GLY) and some mono or oligosaccharides. In particular, GLY not only increases film extensibility but also migrates inside the film network often causing the loss of desirable mechanical properties of the material. Therefore, replacing GLY with a different plasticizer might help to improve film characteristics allowing potential industrial applications. To improve film properties, it seemed of interest to test as plasticizers some cationic small molecules like polyamines (PAs). Putrescine, spermidine (SPD), and spermine are PAs widely distributed in nature and of particular interest for their biological activities that may have some beneficial health effects. Since PAs contains amino instead of hydroxyl functional groups, they are able to trigger ionic interactions with negatively charged proteins. Bitter vetch (Vicia ervilia; BV) is an ancient grain legume crop, originated in the Mediterranean region, which can be found today in many countries around the world. This annual Vicia genus shows several favorable features, being their seeds a cheap and abundant protein source. The main objectives of this study were to investigate the effect of different concentrations of SPD on the mechanical and permeability properties of films prepared with native or heat denatured BV proteins in the presence of different concentrations of SPD and/or GLY. Therefore, a BV seed protein concentrate (BVPC), containing about 77% proteins, was used to prepare film forming solutions (FFSs), whereas GLY and SPD were added as film plasticizers, either singly or in combination, at various concentrations. Since a primary plasticizer is generally defined as a molecule that when added to a material makes it softer, more flexible and easier to be processed, our findings lead to consider SPD as a possible primary plasticizer of protein-based films. In fact, the addition of millimolar concentrations of SPD to BVPC FFS allowed obtaining handleable biomaterials with improved properties. Moreover, SPD can be also considered as a secondary plasticizer, namely an 'extender', because of its ability even to enhance the plasticizing performance of GLY. In conclusion, our studies indicate that innovative edible protein-based films and coatings can be obtained by using PAs as new plasticizers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=edible%20films" title="edible films">edible films</a>, <a href="https://publications.waset.org/abstracts/search?q=glycerol" title=" glycerol"> glycerol</a>, <a href="https://publications.waset.org/abstracts/search?q=plasticizers" title=" plasticizers"> plasticizers</a>, <a href="https://publications.waset.org/abstracts/search?q=polyamines" title=" polyamines"> polyamines</a>, <a href="https://publications.waset.org/abstracts/search?q=spermidine" title=" spermidine"> spermidine</a> </p> <a href="https://publications.waset.org/abstracts/79359/effect-of-spermidine-on-physicochemical-properties-of-protein-based-films" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79359.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">197</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">410</span> Effect of the Addition of Additives on the Improvement of the Performances of Lead–Acid Batteries</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Malika%20Foudia">Malika Foudia</a>, <a href="https://publications.waset.org/abstracts/search?q=Larbi%20Zerroual"> Larbi Zerroual </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this work is to improve the electrical proprieties of lead-acid battery with the addition of additives in electrolyte and in the cured plates before oxidation. The results showed that the addition of surfactant in sulfuric acid and 3% mineral additive in the cured plates change the morphology and the crystallite size of PAM after oxidation. The discharge capacity increases with the decrease of the crystallite size and the resistance of the active mass. This shows that the addition of mineral additive and the surfactant additive to the PAM, the electrical performance and the cycle life of lead- acid battery are significantly increases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lead-acid%20battery" title="lead-acid battery">lead-acid battery</a>, <a href="https://publications.waset.org/abstracts/search?q=additives" title=" additives"> additives</a>, <a href="https://publications.waset.org/abstracts/search?q=positive%20plate" title=" positive plate"> positive plate</a>, <a href="https://publications.waset.org/abstracts/search?q=impedance%20%28EIS%29." title=" impedance (EIS). "> impedance (EIS). </a> </p> <a href="https://publications.waset.org/abstracts/23332/effect-of-the-addition-of-additives-on-the-improvement-of-the-performances-of-lead-acid-batteries" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23332.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">418</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">409</span> Research of Interaction between Layers of Compressed Composite Columns</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Daumantas%20Zidanavicius">Daumantas Zidanavicius</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to investigate the bond between concrete and steel in the circular steel tube column filled with concrete, the 7 series of specimens were tested with the same geometrical parameters but different concrete properties. Two types of specimens were chosen. For the first type, the expansive additives to the concrete mixture were taken to increase internal forces. And for the second type, mechanical components were used. All 7 series of the short columns were modeled by FEM and tested experimentally. In the work, big attention was taken to the bond-slip models between steel and concrete. Results show that additives to concrete let increase the bond strength up to two times and the mechanical anchorage –up to 6 times compared to control specimens without additives and anchorage. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=concrete%20filled%20steel%20tube" title="concrete filled steel tube">concrete filled steel tube</a>, <a href="https://publications.waset.org/abstracts/search?q=push-out%20test" title=" push-out test"> push-out test</a>, <a href="https://publications.waset.org/abstracts/search?q=bond%20slip%20relationship" title=" bond slip relationship"> bond slip relationship</a>, <a href="https://publications.waset.org/abstracts/search?q=bond%20stress%20distribution" title=" bond stress distribution"> bond stress distribution</a> </p> <a href="https://publications.waset.org/abstracts/133631/research-of-interaction-between-layers-of-compressed-composite-columns" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/133631.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">124</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">408</span> The Effect of Additives on Characterization and Photocatalytic Activity of Ag-TiO₂ Nanocomposite Prepared via Sol-Gel Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Raeis%20Farshid">S. Raeis Farshid</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Raeis%20Farshid"> B. Raeis Farshid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ag-TiO₂ nanocomposites were prepared by the sol-gel method with and without additives such as carboxy methyl cellulose (CMC), polyethylene glycol (PEG), polyvinyl pyrrolidone (PVP), and hydroxyl propyl cellulose (HPC). The characteristics of the prepared Ag-TiO₂ nanocomposites were identified by Fourier Transform Infra-Red spectroscopy (FTIR), X-Ray Diffraction (XRD), and scanning electron microscopy (SEM) methods. The additives have a significant effect on the particle size distribution and photocatalytic activity of Ag-TiO₂ nanocomposites. SEM images have shown that the particle size distribution of Ag-TiO₂ nanocomposite in the presence of HPC was the best in comparison to the other samples. The photocatalytic activity of the synthesized nanocomposites was investigated for decolorization of methyl orange (MO) in water under UV-irradiation in a batch reactor, and the results showed that the photocatalytic activity of the nanocomposites had been increased by CMC, PEG, PVP, and HPC, respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sol-gel%20method" title="sol-gel method">sol-gel method</a>, <a href="https://publications.waset.org/abstracts/search?q=Ag-TiO%E2%82%82" title=" Ag-TiO₂"> Ag-TiO₂</a>, <a href="https://publications.waset.org/abstracts/search?q=decolorization" title=" decolorization"> decolorization</a>, <a href="https://publications.waset.org/abstracts/search?q=photocatalyst" title=" photocatalyst"> photocatalyst</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocomposite" title=" nanocomposite"> nanocomposite</a> </p> <a href="https://publications.waset.org/abstracts/147280/the-effect-of-additives-on-characterization-and-photocatalytic-activity-of-ag-tio2-nanocomposite-prepared-via-sol-gel-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/147280.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">80</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">407</span> Phraseologisms With The Spices And Food Additives Component In Polish And Russian. Lexical And Semantic Aspects</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Oliwia%20Bator">Oliwia Bator</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The subject of this description is phraseologisms with the component “spices and food additives component" in Polish and Russian. The purpose of the study is to analyze the phraseologisms from the point of view of lexis and semantics. The material for analysis was extracted from Phraseological Dictionaries of Polish and Russian. The phraseologisms were considered from the lexical point of view, taking into account the name of the " spices and food additives" component, which forms them. From the semantic point of view, 12 semantic groups of phraseologisms were separated in Polish, while 9 semantic groups were separated in Russian. In addition is shown their functioning in the contexts of contemporary Polish and Russian. The contexts were taken from the National Corpus of the Polish Language and the National Corpus of the Russian Language. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=phraseology" title="phraseology">phraseology</a>, <a href="https://publications.waset.org/abstracts/search?q=language" title=" language"> language</a>, <a href="https://publications.waset.org/abstracts/search?q=slavic%20studies" title=" slavic studies"> slavic studies</a>, <a href="https://publications.waset.org/abstracts/search?q=linguistics" title=" linguistics"> linguistics</a> </p> <a href="https://publications.waset.org/abstracts/186850/phraseologisms-with-the-spices-and-food-additives-component-in-polish-and-russian-lexical-and-semantic-aspects" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/186850.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">37</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">406</span> The Effect of the Addition of Additives on the Properties of Bisamide Organogels</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Elmira%20%20Ghanbari">Elmira Ghanbari</a>, <a href="https://publications.waset.org/abstracts/search?q=Jan%20%20Van%20Esch"> Jan Van Esch</a>, <a href="https://publications.waset.org/abstracts/search?q=Stephen%20%20J.%20Picken"> Stephen J. Picken</a>, <a href="https://publications.waset.org/abstracts/search?q=Sahil%20%20Aggarwal"> Sahil Aggarwal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Organogels are formed by the assembly of low molecular weight gelators (LMWG) into fibrous structures. The assembly of these molecules into crystalline fibrous structures occurs as a result of reversible interactions such as π-stacking, hydrogen-bonding, and van der Waals interactions. Bisamide organogelators with two amide groups have been used as one of LMWGs which show efficient assembly behavior via hydrogen bonding for network formation, the formation of a crystalline network for solvent entrapment. In this study, different bisamide gelators with different lengths of alkyl chains have been added to the bisamide parent gels. The effect of the addition of bisamide additives on the gelation of bisamide gels is described. Investigation of the thermal properties of the gels by differential scanning calorimetry and dropping ball techniques indicated that the bisamide gels can be formed by the addition of a high concentration of the second bisamide components. The microstructure of the gels with different gelator components has been visualized with scanning electron microscopy (SEM) which has shown systematic woven, platelet-like, and a combination of those morphologies for different gels. Examining the addition of a range of bisamide additives with different structural characteristics than the parent bisamide gels has confirmed the effect of the molecular structure on the morphology of the bisamide gels and their final properties. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bisamide%20organogelator%20additives" title="bisamide organogelator additives">bisamide organogelator additives</a>, <a href="https://publications.waset.org/abstracts/search?q=gel%20morphology" title=" gel morphology"> gel morphology</a>, <a href="https://publications.waset.org/abstracts/search?q=gel%20properties" title=" gel properties"> gel properties</a>, <a href="https://publications.waset.org/abstracts/search?q=self-assembly" title=" self-assembly"> self-assembly</a> </p> <a href="https://publications.waset.org/abstracts/138626/the-effect-of-the-addition-of-additives-on-the-properties-of-bisamide-organogels" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/138626.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">203</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">405</span> Compression Strength of Treated Fine-Grained Soils with Epoxy or Cement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Mlhem">M. Mlhem</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Geotechnical engineers face many problematic soils upon construction and they have the choice for replacing these soils with more appropriate soils or attempting to improve the engineering properties of the soil through a suitable soil stabilization technique. Mostly, improving soils is environmental, easier and more economical than other solutions. Stabilization soils technique is applied by introducing a cementing agent or by injecting a substance to fill the pore volume. Chemical stabilizers are divided into two groups: traditional agents such as cement or lime and non-traditional agents such as polymers. This paper studies the effect of epoxy additives on the compression strength of four types of soil and then compares with the effect of cement on the compression strength for the same soils. Overall, the epoxy additives are more effective in increasing the strength for different types of soils regardless its classification. On the other hand, there was no clear relation between studied parameters liquid limit, passing No.200, unit weight and between the strength of samples for different types of soils. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=additives" title="additives">additives</a>, <a href="https://publications.waset.org/abstracts/search?q=clay" title=" clay"> clay</a>, <a href="https://publications.waset.org/abstracts/search?q=compression%20strength" title=" compression strength"> compression strength</a>, <a href="https://publications.waset.org/abstracts/search?q=epoxy" title=" epoxy"> epoxy</a>, <a href="https://publications.waset.org/abstracts/search?q=stabilization" title=" stabilization"> stabilization</a> </p> <a href="https://publications.waset.org/abstracts/104928/compression-strength-of-treated-fine-grained-soils-with-epoxy-or-cement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/104928.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">127</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">404</span> Influence of [Emim][OAc] and Water on Gelatinization Process and Interactions with Starch</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shajaratuldur%20Ismail">Shajaratuldur Ismail</a>, <a href="https://publications.waset.org/abstracts/search?q=Nurlidia%20Mansor"> Nurlidia Mansor</a>, <a href="https://publications.waset.org/abstracts/search?q=Zakaria%20Man"> Zakaria Man</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Thermoplastic starch (TPS) plasticized by 1-ethyl-3-methylimidazolium acetate [Emim][OAc] were obtained through gelatinization process. The gelatinization process occurred in the presence of water and [Emim][OAc] as plasticizer at high temperature (90˚C). The influence of [Emim][OAc] and water on the gelatinization and interactions with starch have been studied over a range of compositions. The homogenous mass was obtained for the samples containing 35, 40 and 43.5 % of water contents which showed that water plays important role in gelatinization process. Detailed IR spectroscopy analysis showed decrease in hydrogen bonding intensity and strong interaction between acetate anion in [Emim][OAc] and starch hydroxyl groups in the presence of [Emim][OAc]. Starch-[Emim][OAc]-water mixture at 10-3-8.7 presented homogenous mass, less hydrogen bonding intensity and strong interaction between acetate anion in [Emim][OAc] and starch hydroxyl groups. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=starch" title="starch">starch</a>, <a href="https://publications.waset.org/abstracts/search?q=ionic%20liquid" title=" ionic liquid"> ionic liquid</a>, <a href="https://publications.waset.org/abstracts/search?q=1-ethyl-3-methylimidazolium%20acetate" title=" 1-ethyl-3-methylimidazolium acetate"> 1-ethyl-3-methylimidazolium acetate</a>, <a href="https://publications.waset.org/abstracts/search?q=plasticizer" title=" plasticizer"> plasticizer</a>, <a href="https://publications.waset.org/abstracts/search?q=gelatinization" title=" gelatinization"> gelatinization</a>, <a href="https://publications.waset.org/abstracts/search?q=IR%20spectroscopy" title=" IR spectroscopy"> IR spectroscopy</a> </p> <a href="https://publications.waset.org/abstracts/47028/influence-of-emimoac-and-water-on-gelatinization-process-and-interactions-with-starch" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47028.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">229</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">403</span> S-N-Pf Relationship for Steel Fibre Reinforced Concrete Made with Cement Additives</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gurbir%20Kaur">Gurbir Kaur</a>, <a href="https://publications.waset.org/abstracts/search?q=Surinder%20Pal%20Singh"> Surinder Pal Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study is a part of the research work on the effect of limestone powder (LP), silica fume (SF) and metakaolin (MK), on the flexural fatigue performance of steel fibre reinforced concrete (SFRC). Corrugated rectangular steel fibres of size 0.6x2.0x35 mm at a constant volume fraction of 1.0% have been incorporated in all mix combinations as the reinforcing material. Three mix combinations were prepared by replacing 30% of ordinary Portland cement (OPC) by weight with these cement additives in binary and ternary fashion to demonstrate their contribution. An experimental programme was conducted to obtain the fatigue lives of all mix combinations at various stress levels. The fatigue life data have been analysed as an attempt to determine the relationship between stress level ‘S’, number of cycles to failure ‘N’ and probability of failure ‘Pf’ for all mix combinations. The experimental coefficients of the fatigue equation have also been obtained from the fatigue data to represent the S-N-Pf curves analytically. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cement%20additives" title="cement additives">cement additives</a>, <a href="https://publications.waset.org/abstracts/search?q=fatigue%20life" title=" fatigue life"> fatigue life</a>, <a href="https://publications.waset.org/abstracts/search?q=probability%20of%20failure" title=" probability of failure"> probability of failure</a>, <a href="https://publications.waset.org/abstracts/search?q=steel%20fibre%20reinforced%20concrete" title=" steel fibre reinforced concrete"> steel fibre reinforced concrete</a> </p> <a href="https://publications.waset.org/abstracts/8937/s-n-pf-relationship-for-steel-fibre-reinforced-concrete-made-with-cement-additives" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8937.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">413</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">402</span> Investigating the Potential for Introduction of Warm Mix Asphalt in Kuwait Using the Volcanic Ash</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Al-Baghli">H. Al-Baghli</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Al-Asfour"> F. Al-Asfour</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The current applied asphalt technology for Kuwait roads pavement infrastructure is the hot mix asphalt (HMA) pavement, including both pen grade and polymer modified bitumen (PMBs), that is produced and compacted at high temperature levels ranging from 150 to 180 °C. There are no current specifications for warm and cold mix asphalts in Kuwait’s Ministry of Public Works (MPW) asphalt standard and specifications. The process of the conventional HMA is energy intensive and directly responsible for the emission of greenhouse gases and other environmental hazards into the atmosphere leading to significant environmental impacts and raising health risk to labors at site. Warm mix asphalt (WMA) technology, a sustainable alternative preferred in multiple countries, has many environmental advantages because it requires lower production temperatures than HMA by 20 to 40 °C. The reduction of temperatures achieved by WMA originates from multiple technologies including foaming and chemical or organic additives that aim to reduce bitumen and improve mix workability. This paper presents a literature review of WMA technologies and techniques followed by an experimental study aiming to compare the results of produced WMA samples, using a water containing additive (foaming process), at different compaction temperatures with the HMA control volumetric properties mix designed in accordance to the new MPW’s specifications and guidelines. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=warm-mix%20asphalt" title="warm-mix asphalt">warm-mix asphalt</a>, <a href="https://publications.waset.org/abstracts/search?q=water-bearing%20additives" title=" water-bearing additives"> water-bearing additives</a>, <a href="https://publications.waset.org/abstracts/search?q=foaming-based%20process" title=" foaming-based process"> foaming-based process</a>, <a href="https://publications.waset.org/abstracts/search?q=chemical%20additives" title=" chemical additives"> chemical additives</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20additives" title=" organic additives"> organic additives</a> </p> <a href="https://publications.waset.org/abstracts/132050/investigating-the-potential-for-introduction-of-warm-mix-asphalt-in-kuwait-using-the-volcanic-ash" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/132050.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">124</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">401</span> Performance Evaluation of Next Generation Shale Stabilizer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20K.%20Thakur">N. K. Thakur</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A major proportion of the formations drilled for the production of hydrocarbons consists of clay containing shales. The petroleum industry has hugely investigated the role of clay minerals and their subsequent effect on wellbore stability during the drilling and production of hydrocarbons. It has been found that when the shale formation comes in contact with water-based drilling fluid, the interaction of clay minerals like montmorillonite with infiltrated water leads to hydration of the clay minerals, which causes shale swelling. When shale swelling proceeds further, it may lead to major drilling complications like caving, pipe sticking, which invariably influences wellbore stability, wellbore diameter, the mechanical strength of shale, stress distribution in the wellbore, etc. These problems ultimately lead to an increase in nonproductive time and additional costs during drilling. Several additives are used to prevent shale instability. Among the popular additives used for shale inhibition in drilling muds, ionic liquids and nanoparticles are emerging to be the best additives. The efficiency of the proposed additives will be studied and compared with conventional clay inhibitors like KCl. The main objective is to develop a highly efficient water-based mud for mitigating shale instability and reducing fluid loss which is environmentally friendly and does not alter the formation permeability. The use of nanoparticles has been exploited to enhance the rheological and fluid loss properties in water-based drilling fluid ionic liquid have attracted significant research interest due to its unique thermal stability. It is referred to as ‘green chemical’. The preliminary experimental studies performed are promising. The application of more effective mud additives is always desirable to make the drilling process techno-economically proficient. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ionic%20liquid" title="ionic liquid">ionic liquid</a>, <a href="https://publications.waset.org/abstracts/search?q=shale%20inhibitor" title=" shale inhibitor"> shale inhibitor</a>, <a href="https://publications.waset.org/abstracts/search?q=wellbore%20stability" title=" wellbore stability"> wellbore stability</a>, <a href="https://publications.waset.org/abstracts/search?q=unconventional" title=" unconventional"> unconventional</a> </p> <a href="https://publications.waset.org/abstracts/136370/performance-evaluation-of-next-generation-shale-stabilizer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/136370.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">194</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">400</span> Adaptation Actions in Companies as Theoretical and Practical Aspects: A Case Study of a Food Ingredients and Additives Producer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maja%20Sajdak">Maja Sajdak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this article is to identify the measures companies undertake in order to adapt to the environment as well as discussing their diversity and effectiveness. The research methods used in the study include an in-depth analysis of the literature and a case study, which helps to illustrate the issue in question. Referring to the concept of agility, which is firmly embedded in the theory of strategic management and has been developed with the aim of adapting to the environment and its changes, the paper first examines different types of adaptation measures for companies. Then the issue under discussion is illustrated with the example of the company Hortimex. This company is an eminent representative of the world’s leading manufacturers of food additives and ingredients. The company was established in 1988 and is a family business, which in practice means that it conducts business in a responsible manner, observing the law and respecting the interests of society and the environment. The company’s mission is to develop a market in Poland for the products and solutions offered by their partners and to share their knowledge of additives in food production and consumption. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adaptation%20measures" title="adaptation measures">adaptation measures</a>, <a href="https://publications.waset.org/abstracts/search?q=agile%20enterprise" title=" agile enterprise"> agile enterprise</a>, <a href="https://publications.waset.org/abstracts/search?q=flexibility" title=" flexibility"> flexibility</a>, <a href="https://publications.waset.org/abstracts/search?q=unanticipated%20changes" title=" unanticipated changes"> unanticipated changes</a> </p> <a href="https://publications.waset.org/abstracts/36429/adaptation-actions-in-companies-as-theoretical-and-practical-aspects-a-case-study-of-a-food-ingredients-and-additives-producer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36429.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">229</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">399</span> Characteristics of Edible Film Made from Skin and Bone Fish Gelatin, Spotted Oceanic Triggerfish (Canthidermis maculata) and Tilapia Fish (Oreochromis niloticus)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Normalina%20Arpi">Normalina Arpi</a>, <a href="https://publications.waset.org/abstracts/search?q=Fahrizal%20Fahrizal"> Fahrizal Fahrizal</a>, <a href="https://publications.waset.org/abstracts/search?q=Dewi%20Yunita"> Dewi Yunita</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Edible films can increase the shelf life of various food products by acting as water, oxygen, and lipid barrier. Fish gelatin as a film-forming agent has unique characteristics but varies depending on fish species. The purpose of this research is to characterize edible film made using skin and bone fish gelatin with the addition of plasticizer. Gelatin of spotted oceanic triggerfish (Canthidermis maculata) and tilapia (Oreochromis niloticus) were used. Glycerol and sorbitol with concentration of 0.25 and 0.5 % were added as a plasticizer. Spotted oceanic triggerfish gelatin with sorbitol resulted film with higher tensile strength and oxygen permeability, whereas tilapia gelatin with glycerol produced an edible film with higher elongation and water vapor permeability. The edible film made of spotted oceanic triggerfish gelatin and 0.25% sorbitol had the best characteristics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=edible%20film" title="edible film">edible film</a>, <a href="https://publications.waset.org/abstracts/search?q=fish%20gelatin" title=" fish gelatin "> fish gelatin </a>, <a href="https://publications.waset.org/abstracts/search?q=glycerol" title=" glycerol"> glycerol</a>, <a href="https://publications.waset.org/abstracts/search?q=sorbitol" title=" sorbitol"> sorbitol</a> </p> <a href="https://publications.waset.org/abstracts/89626/characteristics-of-edible-film-made-from-skin-and-bone-fish-gelatin-spotted-oceanic-triggerfish-canthidermis-maculata-and-tilapia-fish-oreochromis-niloticus" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/89626.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">159</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">398</span> Bread Quality Improvement with Special Novel Additives</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M%C3%B3nika%20Bartaln%C3%A9-Berceli">Mónika Bartalné-Berceli</a>, <a href="https://publications.waset.org/abstracts/search?q=Eszter%20Izs%C3%B3"> Eszter Izsó</a>, <a href="https://publications.waset.org/abstracts/search?q=Szilveszter%20Gergely"> Szilveszter Gergely</a>, <a href="https://publications.waset.org/abstracts/search?q=Andr%C3%A1s%20Salg%C3%B3"> András Salgó</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nowadays a significant portion of the Earth's population does not have access to healthy food. Either because they can not afford them or because they do not know which they are. The aim of the VIIth Framework CHANCE project (Nr. 266331) supported by the European Union has been to develop relatively cheap food favorable from nutritional point of view and has acceptable quality for consumers. Within the project we dealt with manufacturing of bread belonging to basic foods. We had examined the enrichment of bread products with four kinds of bran, with a special milling product of grain industry (aleurone flour) and with a soy-based sprouted additive. The applied concentration of the six mentioned additives has been optimized and the physical and sensory properties of the bread products were monitored. The weight of the enriched breads increased slightly, however the volume and height decreased slightly compared to the corresponding data of the control bread. The composition of the final product is favorable affected by these additives having highly preferred composition from nutritional point of view. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bread%20products" title="bread products">bread products</a>, <a href="https://publications.waset.org/abstracts/search?q=brans" title=" brans"> brans</a>, <a href="https://publications.waset.org/abstracts/search?q=YASO" title=" YASO"> YASO</a>, <a href="https://publications.waset.org/abstracts/search?q=aleurone%20flour" title=" aleurone flour"> aleurone flour</a> </p> <a href="https://publications.waset.org/abstracts/27649/bread-quality-improvement-with-special-novel-additives" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27649.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">387</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=plasticizer%20additives&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=plasticizer%20additives&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=plasticizer%20additives&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=plasticizer%20additives&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=plasticizer%20additives&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=plasticizer%20additives&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=plasticizer%20additives&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=plasticizer%20additives&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=plasticizer%20additives&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=plasticizer%20additives&page=14">14</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=plasticizer%20additives&page=15">15</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=plasticizer%20additives&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>