CINXE.COM
Search results for: blood biomarkers
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: blood biomarkers</title> <meta name="description" content="Search results for: blood biomarkers"> <meta name="keywords" content="blood biomarkers"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="blood biomarkers" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="blood biomarkers"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 2703</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: blood biomarkers</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2703</span> Prediction of Alzheimer's Disease Based on Blood Biomarkers and Machine Learning Algorithms</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Man-Yun%20Liu">Man-Yun Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Emily%20Chia-Yu%20Su"> Emily Chia-Yu Su</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Alzheimer's disease (AD) is the public health crisis of the 21st century. AD is a degenerative brain disease and the most common cause of dementia, a costly disease on the healthcare system. Unfortunately, the cause of AD is poorly understood, furthermore; the treatments of AD so far can only alleviate symptoms rather cure or stop the progress of the disease. Currently, there are several ways to diagnose AD; medical imaging can be used to distinguish between AD, other dementias, and early onset AD, and cerebrospinal fluid (CSF). Compared with other diagnostic tools, blood (plasma) test has advantages as an approach to population-based disease screening because it is simpler, less invasive also cost effective. In our study, we used blood biomarkers dataset of The Alzheimer’s disease Neuroimaging Initiative (ADNI) which was funded by National Institutes of Health (NIH) to do data analysis and develop a prediction model. We used independent analysis of datasets to identify plasma protein biomarkers predicting early onset AD. Firstly, to compare the basic demographic statistics between the cohorts, we used SAS Enterprise Guide to do data preprocessing and statistical analysis. Secondly, we used logistic regression, neural network, decision tree to validate biomarkers by SAS Enterprise Miner. This study generated data from ADNI, contained 146 blood biomarkers from 566 participants. Participants include cognitive normal (healthy), mild cognitive impairment (MCI), and patient suffered Alzheimer’s disease (AD). Participants’ samples were separated into two groups, healthy and MCI, healthy and AD, respectively. We used the two groups to compare important biomarkers of AD and MCI. In preprocessing, we used a t-test to filter 41/47 features between the two groups (healthy and AD, healthy and MCI) before using machine learning algorithms. Then we have built model with 4 machine learning methods, the best AUC of two groups separately are 0.991/0.709. We want to stress the importance that the simple, less invasive, common blood (plasma) test may also early diagnose AD. As our opinion, the result will provide evidence that blood-based biomarkers might be an alternative diagnostics tool before further examination with CSF and medical imaging. A comprehensive study on the differences in blood-based biomarkers between AD patients and healthy subjects is warranted. Early detection of AD progression will allow physicians the opportunity for early intervention and treatment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alzheimer%27s%20disease" title="Alzheimer's disease">Alzheimer's disease</a>, <a href="https://publications.waset.org/abstracts/search?q=blood-based%20biomarkers" title=" blood-based biomarkers"> blood-based biomarkers</a>, <a href="https://publications.waset.org/abstracts/search?q=diagnostics" title=" diagnostics"> diagnostics</a>, <a href="https://publications.waset.org/abstracts/search?q=early%20detection" title=" early detection"> early detection</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a> </p> <a href="https://publications.waset.org/abstracts/64190/prediction-of-alzheimers-disease-based-on-blood-biomarkers-and-machine-learning-algorithms" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64190.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">322</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2702</span> Health Status Monitoring of COVID-19 Patient's through Blood Tests and Naïve-Bayes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Carlos%20Arias-Alcaide">Carlos Arias-Alcaide</a>, <a href="https://publications.waset.org/abstracts/search?q=Cristina%20Soguero-Ruiz"> Cristina Soguero-Ruiz</a>, <a href="https://publications.waset.org/abstracts/search?q=Paloma%20Santos-%C3%81lvarez"> Paloma Santos-Álvarez</a>, <a href="https://publications.waset.org/abstracts/search?q=Adri%C3%A1n%20Garc%C3%ADa-Romero"> Adrián García-Romero</a>, <a href="https://publications.waset.org/abstracts/search?q=Inmaculada%20Mora-Jim%C3%A9nez"> Inmaculada Mora-Jiménez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Analysing clinical data with computers in such a way that have an impact on the practitioners’ workflow is a challenge nowadays. This paper provides a first approach for monitoring the health status of COVID-19 patients through the use of some biomarkers (blood tests) and the simplest Naïve Bayes classifier. Data of two Spanish hospitals were considered, showing the potential of our approach to estimate reasonable posterior probabilities even some days before the event. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bayesian%20model" title="Bayesian model">Bayesian model</a>, <a href="https://publications.waset.org/abstracts/search?q=blood%20biomarkers" title=" blood biomarkers"> blood biomarkers</a>, <a href="https://publications.waset.org/abstracts/search?q=classification" title=" classification"> classification</a>, <a href="https://publications.waset.org/abstracts/search?q=health%20tracing" title=" health tracing"> health tracing</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=posterior%20probability" title=" posterior probability"> posterior probability</a> </p> <a href="https://publications.waset.org/abstracts/148454/health-status-monitoring-of-covid-19-patients-through-blood-tests-and-naive-bayes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/148454.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">233</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2701</span> Detecting Potential Biomarkers for Ulcerative Colitis Using Hybrid Feature Selection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mustafa%20Alshawaqfeh%03">Mustafa Alshawaqfeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Bilal%20Wajidy"> Bilal Wajidy</a>, <a href="https://publications.waset.org/abstracts/search?q=Echin%20Serpedin"> Echin Serpedin</a>, <a href="https://publications.waset.org/abstracts/search?q=Jan%20Suchodolski"> Jan Suchodolski</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Inflammatory Bowel disease (IBD) is a disease of the colon with characteristic inflammation. Clinically IBD is detected using laboratory tests (blood and stool), radiology tests (imaging using CT, MRI), capsule endoscopy and endoscopy. There are two variants of IBD referred to as Ulcerative Colitis (UC) and Crohn’s disease. This study employs a hybrid feature selection method that combines a correlation-based variable ranking approach with exhaustive search wrapper methods in order to find potential biomarkers for UC. The proposed biomarkers presented accurate discriminatory power thereby identifying themselves to be possible ingredients to UC therapeutics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ulcerative%20colitis" title="ulcerative colitis">ulcerative colitis</a>, <a href="https://publications.waset.org/abstracts/search?q=biomarker%20detection" title=" biomarker detection"> biomarker detection</a>, <a href="https://publications.waset.org/abstracts/search?q=feature%20selection" title=" feature selection"> feature selection</a>, <a href="https://publications.waset.org/abstracts/search?q=inflammatory%20bowel%20disease%20%28IBD%29" title=" inflammatory bowel disease (IBD)"> inflammatory bowel disease (IBD)</a> </p> <a href="https://publications.waset.org/abstracts/40941/detecting-potential-biomarkers-for-ulcerative-colitis-using-hybrid-feature-selection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40941.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">403</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2700</span> Quality of Life and Renal Biomarkers in Feline Chronic Kidney Disease</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B%C3%A1rbara%20Dur%C3%A3o">Bárbara Durão</a>, <a href="https://publications.waset.org/abstracts/search?q=Pedro%20Almeida"> Pedro Almeida</a>, <a href="https://publications.waset.org/abstracts/search?q=David%20Ramilo"> David Ramilo</a>, <a href="https://publications.waset.org/abstracts/search?q=Andr%C3%A9%20Meneses"> André Meneses</a>, <a href="https://publications.waset.org/abstracts/search?q=Rute%20Canejo-Teixeira"> Rute Canejo-Teixeira</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The importance of quality of life (QoL) assessment in veterinary medicine is an integral part of patient care. This is especially true in cases of chronic diseases, such as chronic kidney disease (CKD), where the ever more advanced treatment options prolong the patient’s life. Whether this prolongment of life comes with an acceptable quality of life remains has been called into question. The aim of this study was to evaluate the relationship between CKD disease biomarkers and QoL in cats. Thirty-seven cats diagnosed with CKD and with no known concurrent illness were enrolled in an observational study. Through the course of several evaluations, renal biomarkers were assessed in blood and urine samples, and owners retrospectively described their cat’s quality of life using a validated instrument for this disease. Correlations between QoL scores (AWIS) and the biomarkers were assessed using Spearman’s rank test. Statistical significance was set at p-value < 0.05, and every serial sample was considered independent. Thirty-seven cats met the inclusion criteria, and all owners completed the questionnaire every time their pet was evaluated, giving a total of eighty-four questionnaires, and the average-weighted-impact-score was –0.5. Results showed there was a statistically significant correlation between the quality of life and most of 17 the studied biomarkers and confirmed that CKD has a negative impact on QoL in cats especially due to the management of the disease and secondary appetite disorders. To our knowledge, this is the attempt to assess the correlation between renal biomarkers and QoL in cats. Our results reveal a strong potential of this type of approach in clinical management, mainly in situations where it is not possible to measure biomarkers. Whilst health-related QoL is a reliable predictor of mortality and morbidity in humans; our findings can help improve the clinical practice in cats with CKD. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chronic%20kidney%20disease" title="chronic kidney disease">chronic kidney disease</a>, <a href="https://publications.waset.org/abstracts/search?q=biomarkers" title=" biomarkers"> biomarkers</a>, <a href="https://publications.waset.org/abstracts/search?q=quality%20of%20life" title=" quality of life"> quality of life</a>, <a href="https://publications.waset.org/abstracts/search?q=feline" title=" feline"> feline</a> </p> <a href="https://publications.waset.org/abstracts/151182/quality-of-life-and-renal-biomarkers-in-feline-chronic-kidney-disease" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/151182.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">180</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2699</span> Computational Screening of Secretory Proteins with Brain-Specific Expression in Glioblastoma Multiforme</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sumera">Sumera</a>, <a href="https://publications.waset.org/abstracts/search?q=Sanila%20Amber"> Sanila Amber</a>, <a href="https://publications.waset.org/abstracts/search?q=Fatima%20Javed%20Mirza"> Fatima Javed Mirza</a>, <a href="https://publications.waset.org/abstracts/search?q=Amjad%20Ali"> Amjad Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Saadia%20Zahid"> Saadia Zahid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Glioblastoma multiforme (GBM) is a widely spread and fatal primary brain tumor with an increased risk of relapse in spite of aggressive treatment. The current procedures for GBM diagnosis include invasive procedures i.e. resection or biopsy, to acquire tumor mass. Implementation of negligibly invasive tests as a potential diagnostic technique and biofluid-based monitoring of GBM stresses on discovering biomarkers in CSF and blood. Therefore, we performed a comprehensive in silico analysis to identify potential circulating biomarkers for GBM. Initially, six gene and protein databases were utilized to mine brain-specific proteins. The resulting proteins were filtered using a channel of five tools to predict the secretory proteins. Subsequently, the expression profile of the secreted proteins was verified in the brain and blood using two databases. Additional verification of the resulting proteins was done using Plasma Proteome Database (PPD) to confirm their presence in blood. The final set of proteins was searched in literature for their relationship with GBM, keeping a special emphasis on secretome proteome. 2145 proteins were firstly mined as brain-specific, out of which 69 proteins were identified as secretory in nature. Verification of expression profile in brain and blood eliminated 58 proteins from the 69 proteins, providing a final list of 11 proteins. Further verification of these 11 proteins further eliminated 2 proteins, giving a final set of nine secretory proteins i.e. OPCML, NPTX1, LGI1, CNTN2, LY6H, SLIT1, CREG2, GDF1 and SERPINI1. Out of these 9 proteins, 7 were found to be linked to GBM, whereas 2 proteins are not investigated in GBM so far. We propose that these secretory proteins can serve as potential circulating biomarker signatures of GBM and will facilitate the development of minimally invasive diagnostic methods and novel therapeutic interventions for GBM. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=glioblastoma%20multiforme" title="glioblastoma multiforme">glioblastoma multiforme</a>, <a href="https://publications.waset.org/abstracts/search?q=secretory%20proteins" title=" secretory proteins"> secretory proteins</a>, <a href="https://publications.waset.org/abstracts/search?q=brain%20secretome" title=" brain secretome"> brain secretome</a>, <a href="https://publications.waset.org/abstracts/search?q=biomarkers" title=" biomarkers"> biomarkers</a> </p> <a href="https://publications.waset.org/abstracts/144723/computational-screening-of-secretory-proteins-with-brain-specific-expression-in-glioblastoma-multiforme" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/144723.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">152</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2698</span> Air Pollutants Exposure and Blood High Sensitivity C-Reactive Protein Concentrations in Healthy Pregnant Women</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gwo-Hwa%20Wan">Gwo-Hwa Wan</a>, <a href="https://publications.waset.org/abstracts/search?q=Tai-Ho%20Hung"> Tai-Ho Hung</a>, <a href="https://publications.waset.org/abstracts/search?q=Fen-Fang%20Chung"> Fen-Fang Chung</a>, <a href="https://publications.waset.org/abstracts/search?q=Wan-Ying%20Lee"> Wan-Ying Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Hui-Ching%20Yang"> Hui-Ching Yang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Air pollutant exposure results in elevated concentrations of oxidative stress and inflammatory biomarkers in general populations. Increased concentrations of inflammatory biomarkers in pregnant women would be associated with preterm labor and low birth weight. To our best knowledge, the associations between air pollutants exposure and inflammation in pregnant women and fetuses are unknown, as well as their effects on fetal growth. This study aimed to evaluate the influences of outdoor air pollutants in northern Taiwan areas on the inflammatory biomarker (high sensitivity C-reactive protein, hs-CRP) concentration in the blood of healthy pregnant women and how the biomarker impacts fetal growth. In this study, 38 healthy pregnant women who are in their first trimester and live in northern Taiwan area were recruited from the Taipei Chang Gung Memorial Hospital. Personal characteristics and prenatal examination data (e.g., blood pressure) were obtained from recruited subjects. The concentrations of inflammatory mediators, hs-CRP, in the blood of healthy pregnant women were analyzed. Additionally, hourly data of air pollutants (PM10, SO2, NO2, O3, CO) concentrations were obtained from air quality monitoring stations in Taipei area, established by the Taiwan Environmental Protection Administration. The definition of lag 0 and lag 01 are the exposure to air pollutants on the day of blood withdrawal, and the average exposure to air pollutants one day before and on the day of blood withdrawal, respectively. The statistical analyses were conducted using SPSS software version 22.0 (SPSS, Inc., Chicago, IL, USA). This analytical result indicates that the healthy pregnant women aged between 28 and 42 years old. The body mass index before pregnancy averaged 21.51 (sd = 2.51) kg/m2. Around 90% of the pregnant women had never smoking habit, and 28.95% of them had allergic diseases. Approximately around 84% and 5.26% of the pregnant women worked at indoor and outdoor environments, respectively. The mean hematocrit level of the pregnant women was 37.10%, and the hemoglobin levels were ranged between 10.1 and 14.7 g/dL with 12.47 g/dL of mean value. The blood hs-CRP concentrations of healthy pregnant women in the first trimester ranged between 0.32 and 32.5 mg/L with 2.83 (sd = 5.69) mg/L of mean value. The blood hs-CRP concentrations were positively associated with ozone concentrations at lag 0-14 (r = 0.481, p = 0.017) in healthy pregnant women. Significant lag effects were identified in ozone at lag 0-14 with a positive excess concentration of blood hs-CRP. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=air%20pollutant" title="air pollutant">air pollutant</a>, <a href="https://publications.waset.org/abstracts/search?q=hs-CRP" title=" hs-CRP"> hs-CRP</a>, <a href="https://publications.waset.org/abstracts/search?q=pregnant%20woman" title=" pregnant woman"> pregnant woman</a>, <a href="https://publications.waset.org/abstracts/search?q=ozone" title=" ozone"> ozone</a>, <a href="https://publications.waset.org/abstracts/search?q=first%20trimester" title=" first trimester"> first trimester</a> </p> <a href="https://publications.waset.org/abstracts/73028/air-pollutants-exposure-and-blood-high-sensitivity-c-reactive-protein-concentrations-in-healthy-pregnant-women" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73028.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">256</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2697</span> Predicting Suicidal Behavior by an Accurate Monitoring of RNA Editing Biomarkers in Blood Samples</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Berengere%20Vire">Berengere Vire</a>, <a href="https://publications.waset.org/abstracts/search?q=Nicolas%20Salvetat"> Nicolas Salvetat</a>, <a href="https://publications.waset.org/abstracts/search?q=Yoann%20Lannay"> Yoann Lannay</a>, <a href="https://publications.waset.org/abstracts/search?q=Guillaume%20Marcellin"> Guillaume Marcellin</a>, <a href="https://publications.waset.org/abstracts/search?q=Siem%20Van%20Der%20Laan"> Siem Van Der Laan</a>, <a href="https://publications.waset.org/abstracts/search?q=Franck%20Molina"> Franck Molina</a>, <a href="https://publications.waset.org/abstracts/search?q=Dinah%20Weissmann"> Dinah Weissmann</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Predicting suicidal behaviors is one of the most complex challenges of daily psychiatric practices. Today, suicide risk prediction using biological tools is not validated and is only based on subjective clinical reports of the at-risk individual. Therefore, there is a great need to identify biomarkers that would allow early identification of individuals at risk of suicide. Alterations of adenosine-to-inosine (A-to-I) RNA editing of neurotransmitter receptors and other proteins have been shown to be involved in etiology of different psychiatric disorders and linked to suicidal behavior. RNA editing is a co- or post-transcriptional process leading to a site-specific alteration in RNA sequences. It plays an important role in the epi transcriptomic regulation of RNA metabolism. On postmortem human brain tissue (prefrontal cortex) of depressed suicide victims, Alcediag found specific alterations of RNA editing activity on the mRNA coding for the serotonin 2C receptor (5-HT2cR). Additionally, an increase in expression levels of ADARs, the RNA editing enzymes, and modifications of RNA editing profiles of prime targets, such as phosphodiesterase 8A (PDE8A) mRNA, have also been observed. Interestingly, the PDE8A gene is located on chromosome 15q25.3, a genomic region that has recurrently been associated with the early-onset major depressive disorder (MDD). In the current study, we examined whether modifications in RNA editing profile of prime targets allow identifying disease-relevant blood biomarkers and evaluating suicide risk in patients. To address this question, we performed a clinical study to identify an RNA editing signature in blood of depressed patients with and without the history of suicide attempts. Patient’s samples were drawn in PAXgene tubes and analyzed on Alcediag’s proprietary RNA editing platform using next generation sequencing technology. In addition, gene expression analysis by quantitative PCR was performed. We generated a multivariate algorithm comprising various selected biomarkers to detect patients with a high risk to attempt suicide. We evaluated the diagnostic performance using the relative proportion of PDE8A mRNA editing at different sites and/or isoforms as well as the expression of PDE8A and the ADARs. The significance of these biomarkers for suicidality was evaluated using the area under the receiver-operating characteristic curve (AUC). The generated algorithm comprising the biomarkers was found to have strong diagnostic performances with high specificity and sensitivity. In conclusion, we developed tools to measure disease-specific biomarkers in blood samples of patients for identifying individuals at the greatest risk for future suicide attempts. This technology not only fosters patient management but is also suitable to predict the risk of drug-induced psychiatric side effects such as iatrogenic increase of suicidal ideas/behaviors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=blood%20biomarker" title="blood biomarker">blood biomarker</a>, <a href="https://publications.waset.org/abstracts/search?q=next-generation-sequencing" title=" next-generation-sequencing"> next-generation-sequencing</a>, <a href="https://publications.waset.org/abstracts/search?q=RNA%20editing" title=" RNA editing"> RNA editing</a>, <a href="https://publications.waset.org/abstracts/search?q=suicide" title=" suicide"> suicide</a> </p> <a href="https://publications.waset.org/abstracts/60650/predicting-suicidal-behavior-by-an-accurate-monitoring-of-rna-editing-biomarkers-in-blood-samples" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60650.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">259</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2696</span> Liquid Biopsy and Screening Biomarkers in Glioma Grading</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdullah%20Abdu%20Qaseem%20Shamsan">Abdullah Abdu Qaseem Shamsan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Gliomas represent the most frequent, heterogeneous group of tumors arising from glial cells, characterized by difficult monitoring, poor prognosis, and fatality. Tissue biopsy is an established procedure for tumor cell sampling that aids diagnosis, tumor grading, and prediction of prognosis. We studied and compared the levels of liquid biopsy markers in patients with different grades of glioma. Also, it tried to establish the potential association between glioma and specific blood groups antigen. Result: 78 patients were identified, among whom maximum percentage with glioblastoma possessed blood group O+ (53.8%). The second highest frequency had blood group A+ (20.4%), followed by B+ (9.0%) and A- (5.1%), and least with O-. Liquid biopsy biomarkers comprised of ALT, LDH, lymphocytes, Urea, Alkaline phosphatase, AST Neutrophils, and CRP. The levels of all the components increased significantly with the severity of glioma, with maximum levels seen in glioblastoma (grade IV), followed by grade III and grade II respectively. Conclusion: Gliomas possess significant clinical challenges due to their progression with heterogeneous nature and aggressive behavior. Liquid biopsy is a non-invasive approach which aids to establish the status of the patient and determine the tumor grade, therefore may show diagnostic and prognostic utility. Additionally, our study provides evidence to demonstrate the role of ABO blood group antigens in the development of glioma. However, future clinical research on liquid biopsy will improve the sensitivity and specificity of these tests and validate their clinical usefulness to guide treatment approaches. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=GBM%3A%20glioblastoma%20multiforme" title="GBM: glioblastoma multiforme">GBM: glioblastoma multiforme</a>, <a href="https://publications.waset.org/abstracts/search?q=CT%3A%20computed%20tomography" title=" CT: computed tomography"> CT: computed tomography</a>, <a href="https://publications.waset.org/abstracts/search?q=MRI%3A%20magnetic%20resonance%20imaging" title=" MRI: magnetic resonance imaging"> MRI: magnetic resonance imaging</a>, <a href="https://publications.waset.org/abstracts/search?q=ctRNA%3A%20circulating%20tumor%20RNA" title=" ctRNA: circulating tumor RNA"> ctRNA: circulating tumor RNA</a> </p> <a href="https://publications.waset.org/abstracts/185991/liquid-biopsy-and-screening-biomarkers-in-glioma-grading" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/185991.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">51</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2695</span> Using Artificial Neural Networks for Optical Imaging of Fluorescent Biomarkers </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20A.%20Laptinskiy">K. A. Laptinskiy</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20A.%20Burikov"> S. A. Burikov</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20M.%20Vervald"> A. M. Vervald</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20A.%20Dolenko"> S. A. Dolenko</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20A.%20Dolenko"> T. A. Dolenko</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The article presents the results of the application of artificial neural networks to separate the fluorescent contribution of nanodiamonds used as biomarkers, adsorbents and carriers of drugs in biomedicine, from a fluorescent background of own biological fluorophores. The principal possibility of solving this problem is shown. Use of neural network architecture let to detect fluorescence of nanodiamonds against the background autofluorescence of egg white with high accuracy - better than 3 ug/ml. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=artificial%20neural%20networks" title="artificial neural networks">artificial neural networks</a>, <a href="https://publications.waset.org/abstracts/search?q=fluorescence" title=" fluorescence"> fluorescence</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20aggregation" title=" data aggregation"> data aggregation</a>, <a href="https://publications.waset.org/abstracts/search?q=biomarkers" title=" biomarkers"> biomarkers</a> </p> <a href="https://publications.waset.org/abstracts/14494/using-artificial-neural-networks-for-optical-imaging-of-fluorescent-biomarkers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14494.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">710</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2694</span> EhfadHaya (SaveLife) / AateHayah (GiveLife) Blood Donor Website</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sameer%20Muhammad%20Aslam">Sameer Muhammad Aslam</a>, <a href="https://publications.waset.org/abstracts/search?q=Nura%20Said%20Mohsin%20Al-Saifi"> Nura Said Mohsin Al-Saifi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research shows the process of creating a blood donation website for Oman. Blood donation is a widespread, crucial, ongoing process, so it is important that this website is easy to use. Several automated blood management systems are available, but none provides an effective algorithm that takes into account variables such as frequency of donation, donation date, and gender. In Oman, the Ministry of Health maintains a blood bank and keeps donors informed about the need for blood through a website. They also inform donors and the wider public where and when is their next blood donation event. The website's main goals are to educate the community about the benefits of blood donation. It also manages donor and receiver documentation and encourages voluntary blood donation by providing easy access to information about blood types and blood distribution in various hospitals in Oman, based on hospital needs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Oman" title="Oman">Oman</a>, <a href="https://publications.waset.org/abstracts/search?q=blood%20bank" title=" blood bank"> blood bank</a>, <a href="https://publications.waset.org/abstracts/search?q=blood%20donors" title=" blood donors"> blood donors</a>, <a href="https://publications.waset.org/abstracts/search?q=donor%20website" title=" donor website"> donor website</a> </p> <a href="https://publications.waset.org/abstracts/143141/ehfadhaya-savelife-aatehayah-givelife-blood-donor-website" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/143141.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">217</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2693</span> Signal Processing of the Blood Pressure and Characterization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hadj%20Abd%20El%20Kader%20Benghenia">Hadj Abd El Kader Benghenia</a>, <a href="https://publications.waset.org/abstracts/search?q=Fethi%20Bereksi%20Reguig"> Fethi Bereksi Reguig</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In clinical medicine, blood pressure, raised blood hemodynamic monitoring is rich pathophysiological information of cardiovascular system, of course described through factors such as: blood volume, arterial compliance and peripheral resistance. In this work, we are interested in analyzing these signals to propose a detection algorithm to delineate the different sequences and especially systolic blood pressure (SBP), diastolic blood pressure (DBP), and the wave and dicrotic to do their analysis in order to extract the cardiovascular parameters. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=blood%20pressure" title="blood pressure">blood pressure</a>, <a href="https://publications.waset.org/abstracts/search?q=SBP" title=" SBP"> SBP</a>, <a href="https://publications.waset.org/abstracts/search?q=DBP" title=" DBP"> DBP</a>, <a href="https://publications.waset.org/abstracts/search?q=detection%20algorithm" title=" detection algorithm"> detection algorithm</a> </p> <a href="https://publications.waset.org/abstracts/9946/signal-processing-of-the-blood-pressure-and-characterization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9946.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">439</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2692</span> Improvement of Vascular Oxidative Stress in Diabetic Rats by Supplementation with a Wine Pomace Product</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20Mu%C3%B1iz">P. Muñiz</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Del%20Pino-Garc%C3%ADa"> R. Del Pino-García </a>, <a href="https://publications.waset.org/abstracts/search?q=M.D.%20Rivero-P%C3%A9rez"> M.D. Rivero-Pérez</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Garc%C3%ADa-Lomillo"> J. García-Lomillo</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20L.%20Gonz%C3%A1lez-SanJos%C3%A9"> M. L. González-SanJosé </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Grape, wine and wine pomace could improve the antioxidant status in the vasculature in terms of plasma antioxidant capacity and oxidation biomarkers, partly due to their high content in polyphenols. The current study aimed to evaluate the protection of a powdered product obtained from wine pomace (WPP) against oxidative damage associated to diabetes. Streptozotocin-induced diabetic (STZ) male Wistar rats and non-diabetic control (C) rats initially weighting 300±10 mg were supplemented with 100 mg of WPP or vehicle for 4 weeks. Blood glucose levels and body weight (BW) were measured weekly. Total antioxidant capacity (TAC) assessed using the ABTS method, and F2α-Isoprostanes (F2-IsoPs) quantified by GC-MS were measured in plasma collected at the end of this experiment. Blood glucose levels tended to increase in the STZ group along the study. Supplementation maintained relatively stable during the whole experiment the blood glucose values in STZ+WPP rats. A weight loss of BW in STZ rats respect to C rats was observed after 4 weeks, whereas the decrease in BW of STZ+WPP group showed a tendency to improve at the end of the study. TAC values significantly decreased around 11% only in plasma of STZ rats. The rest of groups showed plasma TAC values about 8 mM Trolox. Increased levels of F2-IsoPs (around 25%) were also observed in plasma of STZ rats compared to the supplemented rats, revealing a protective effect of WPP against lipid peroxidation. In conclusion, 4-week supplementation with a product derived from winery by-products improved weight loss, plasma TAC, and lipid oxidation biomarkers in Type I diabetic rats. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=blood%20glucose" title="blood glucose">blood glucose</a>, <a href="https://publications.waset.org/abstracts/search?q=grape%20polyphenols" title=" grape polyphenols"> grape polyphenols</a>, <a href="https://publications.waset.org/abstracts/search?q=F2%CE%B1-isoprostanes" title=" F2α-isoprostanes"> F2α-isoprostanes</a>, <a href="https://publications.waset.org/abstracts/search?q=type%20I%20diabetes" title=" type I diabetes"> type I diabetes</a>, <a href="https://publications.waset.org/abstracts/search?q=oxidative%20stress" title=" oxidative stress"> oxidative stress</a> </p> <a href="https://publications.waset.org/abstracts/31679/improvement-of-vascular-oxidative-stress-in-diabetic-rats-by-supplementation-with-a-wine-pomace-product" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31679.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">470</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2691</span> Chronic Toxicity of Halofenozide on a Larvivorous Fish, Gambusia affinis: Acetylcholinesterase, Glutathione S-transferase Activities and Glutathione</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chouahda%20Salima">Chouahda Salima</a>, <a href="https://publications.waset.org/abstracts/search?q=Soltani%20Noureddine"> Soltani Noureddine</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study is a part of biological control against mosquitoes. It aims to assess the impact of a selective insect growth regulator: halofenozide in mosquitofish: Gambusia affinis. Acetylcholinesterase (AChE), glutathione S-transferase (GST) and glutathione (GSH) used in assessing of environmental stress were measured in juveniles and adults males and females. The response of these biomarkers reveals an inhibition of AChE specific activity, an induction of GST activity, and decrease of GSH rates in juveniles in the end of experiment and during chronic treatment adult males and females. The effect of these biomarkers is more pronounced in females compared to males and juveniles. These different biomarkers have a similar profile for the duration of exposure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biomarkers" title="biomarkers">biomarkers</a>, <a href="https://publications.waset.org/abstracts/search?q=chronic%20toxicity" title=" chronic toxicity"> chronic toxicity</a>, <a href="https://publications.waset.org/abstracts/search?q=insecticide" title=" insecticide"> insecticide</a>, <a href="https://publications.waset.org/abstracts/search?q=halofenozide" title=" halofenozide"> halofenozide</a>, <a href="https://publications.waset.org/abstracts/search?q=Gambusia%20affinis" title=" Gambusia affinis"> Gambusia affinis</a>, <a href="https://publications.waset.org/abstracts/search?q=pollution" title=" pollution"> pollution</a> </p> <a href="https://publications.waset.org/abstracts/32658/chronic-toxicity-of-halofenozide-on-a-larvivorous-fish-gambusia-affinis-acetylcholinesterase-glutathione-s-transferase-activities-and-glutathione" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32658.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">341</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2690</span> Biomarkers for Rectal Adenocarcinoma Identified by Lipidomic and Bioinformatic</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Patricia%20O.%20Carvalho">Patricia O. Carvalho</a>, <a href="https://publications.waset.org/abstracts/search?q=Marcia%20C.%20F.%20Messias"> Marcia C. F. Messias</a>, <a href="https://publications.waset.org/abstracts/search?q=Laura%20Credidio"> Laura Credidio</a>, <a href="https://publications.waset.org/abstracts/search?q=Carlos%20A.%20R.%20Martinez"> Carlos A. R. Martinez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lipidomic strategy can provide important information regarding cancer pathogenesis mechanisms and could reveal new biomarkers to enable early diagnosis of rectal adenocarcinoma (RAC). This study set out to evaluate lipoperoxidation biomarkers, and lipidomic signature by gas chromatography (GC) and electrospray ionization-qToF-mass spectrometry (ESI-qToF-MS) combined with multivariate data analysis in plasma from 23 RAC patients (early- or advanced-stages cancer) and 18 healthy controls. The most abundant ions identified in the RAC patients were those of phosphatidylcholine (PC) and phosphatidylethanolamine (PE) while those of lisophosphatidylcholine (LPC), identified as LPC (16:1), LPC (18:1) and LPC (18:2), were down-regulated. LPC plasmalogen containing palmitoleic acid (LPC (P-16:1)), with highest VIP score, showed a low tendency in the cancer patients. Malondialdehyde plasma levels were higher in patients with advanced cancer (III/IV stages) than in the early stages groups and the healthy group (p<0.05). No differences in F2-isoprostane levels were observed between these groups. This study shows that the reduction in plasma levels of LPC plasmalogens associated to an increase in MDA levels may indicate increased oxidative stress in these patients and identify the metabolite LPC (P-16:1) as new biomarkers for RAC. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biomarkers" title="biomarkers">biomarkers</a>, <a href="https://publications.waset.org/abstracts/search?q=lipidomic" title=" lipidomic"> lipidomic</a>, <a href="https://publications.waset.org/abstracts/search?q=plasmalogen" title=" plasmalogen"> plasmalogen</a>, <a href="https://publications.waset.org/abstracts/search?q=rectal%20adenocarcinoma" title=" rectal adenocarcinoma"> rectal adenocarcinoma</a> </p> <a href="https://publications.waset.org/abstracts/78907/biomarkers-for-rectal-adenocarcinoma-identified-by-lipidomic-and-bioinformatic" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78907.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">230</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2689</span> Assessment of Water Pollution in the River Nile (Egypt) by Applying Blood Biomarkers in Two Excellent Model Species Oreochromis niloticus niloticus and Clarias gariepinus</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alaa%20G.%20M.%20Osman">Alaa G. M. Osman</a>, <a href="https://publications.waset.org/abstracts/search?q=Abd-El%20%E2%80%93Baset%20M.%20Abd%20El%20Reheem"> Abd-El –Baset M. Abd El Reheem</a>, <a href="https://publications.waset.org/abstracts/search?q=Khaled%20Y.%20Abouelfadl"> Khaled Y. Abouelfadl</a>, <a href="https://publications.waset.org/abstracts/search?q=Usama%20M.%20Mahmoud"> Usama M. Mahmoud</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohsen%20A.%20Moustafa"> Mohsen A. Moustafa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study aimed to explore new sites of biomarker research and to establish the use of blood parameters in wild fish populations. Four hundred and twenty fish samples were collected from six sites along the whole course of the river Nile, Egypt. The mean values of erythrocytes, thrombocytes, hemoglobin concentration, hematocrit value, and mean corpuscular volume were significantly lower in the blood of Nile tilapia and African catfish collected from downstream (contaminated) compared to upstream sites. In contrast, mean corpuscular hemoglobin and mean corpuscular hemoglobin concentration in the peripheral blood of both fish species significantly increased from upstream to downstream river Nile. The leukocytes count was significantly decreased in contaminated sites compared to upstream area. Hematological variables in the peripheral blood of Oreochromis niloticus niloticus and Clarias gariepinus exhibited significant (p<0.05) correlation with nearly all the detected chemical and physical parameters along the Nile course. In the present study, lower cellular and nuclear areas and cellular and nuclear shape factor were recorded in the erythrocytes of fish collected from downstream compared to those caught from upstream sites. This was confirmed by higher immature ratios of red cells in the blood of fish sampled from downstream river Nile. Karyorrhetic and enucleated erythrocytes were significantly correlated with physiochemical parameters in water samples collected from the same sites is being higher in the blood of fish collected from downstream sites. To see if there was any correlation between fish altered physiological fitness and environmental stress, we measured serum biochemical variables namely; total protein, cholesterol, triglycerides, calcium, chlorides, alkaline phosphatase activity (ALP), aspartate aminotransferase (AST), alanine aminotransferase (ALT), uric acid activity, creatinine, and serum glucose. The level of all the selected biochemical variables in the blood of O. niloticus niloticus and C. gariepinus were recorded to be significantly higher (p<0.05) in downstream sites. According to the present results, nearly all the detected haematological and blood biochemical variables are suitable indicators of contaminant exposure in O. niloticus niloticus and C. gariepinus. Also the detected erythrocytes malformations in blood collected from Nile tilapia and African catfish were proven to be suitable for bio-monitoring aquatic pollution. The results revealed species-specific differences in sensitivities, suggesting that Nile tilapia may serve as a more sensitive test species compared to African catfish. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biomarkers" title="biomarkers">biomarkers</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20pollution" title=" water pollution"> water pollution</a>, <a href="https://publications.waset.org/abstracts/search?q=blood%20parameters" title=" blood parameters"> blood parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=river%20nile" title=" river nile"> river nile</a>, <a href="https://publications.waset.org/abstracts/search?q=african%20catfish" title=" african catfish"> african catfish</a>, <a href="https://publications.waset.org/abstracts/search?q=nile%20tilapia" title=" nile tilapia"> nile tilapia</a> </p> <a href="https://publications.waset.org/abstracts/9551/assessment-of-water-pollution-in-the-river-nile-egypt-by-applying-blood-biomarkers-in-two-excellent-model-species-oreochromis-niloticus-niloticus-and-clarias-gariepinus" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9551.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">291</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2688</span> Simulation of Remove the Fouling on the in vivo By Using MHD </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Farhad%20Aalizadeh">Farhad Aalizadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Moosavi"> Ali Moosavi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> When a blood vessel is injured, the cells of your blood bond together to form a blood clot. The blood clot helps you stop bleeding. Blood clots are made of a combination of blood cells, platelets(small sticky cells that speed up the clot-making process), and fibrin (protein that forms a thread-like mesh to trap cells). Doctors call this kind of blood clot a “thrombus.”We study the effects of different parameters on the deposition of Nanoparticles on the surface of a bump in the blood vessels by the magnetic field. The Maxwell and the flow equations are solved for this purpose. It is assumed that the blood is non-Newtonian and the number of particles has been considered enough to rely on the results statistically. Using MHD and its property it is possible to control the flow velocity, remove the fouling on the walls and return the system to its original form. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=MHD" title="MHD">MHD</a>, <a href="https://publications.waset.org/abstracts/search?q=fouling" title=" fouling"> fouling</a>, <a href="https://publications.waset.org/abstracts/search?q=in-vivo" title=" in-vivo"> in-vivo</a>, <a href="https://publications.waset.org/abstracts/search?q=blood%20clots" title=" blood clots"> blood clots</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a> </p> <a href="https://publications.waset.org/abstracts/14099/simulation-of-remove-the-fouling-on-the-in-vivo-by-using-mhd" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14099.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">469</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2687</span> Scoping Review of Biological Age Measurement Composed of Biomarkers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Diego%20Alejandro%20Esp%C3%ADndola-Fern%C3%A1ndez">Diego Alejandro Espíndola-Fernández</a>, <a href="https://publications.waset.org/abstracts/search?q=Ana%20Mar%C3%ADa%20Posada-Cano"> Ana María Posada-Cano</a>, <a href="https://publications.waset.org/abstracts/search?q=Dagn%C3%B3var%20Aristiz%C3%A1bal-Ocampo"> Dagnóvar Aristizábal-Ocampo</a>, <a href="https://publications.waset.org/abstracts/search?q=Jaime%20Alberto%20Gallo-Villegas"> Jaime Alberto Gallo-Villegas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: With the increase in life expectancy, aging has been subject of frequent research, and therefore multiple strategies have been proposed to quantify the advance of the years based on the known physiology of human senescence. For several decades, attempts have been made to characterize these changes through the concept of biological age, which aims to integrate, in a measure of time, structural or functional variation through biomarkers in comparison with simple chronological age. The objective of this scoping review is to deepen the updated concept of measuring biological age composed of biomarkers in the general population and to summarize recent evidence to identify gaps and priorities for future research. Methods: A scoping review was conducted according to the five-phase methodology developed by Arksey and O'Malley through a search of five bibliographic databases to February 2021. Original articles were included with no time or language limit that described the biological age composed of at least two biomarkers in those over 18 years of age. Results: 674 articles were identified, of which 105 were evaluated for eligibility and 65 were included with information on the measurement of biological age composed of biomarkers. Articles from 1974 of 15 nationalities were found, most observational studies, in which clinical or paraclinical biomarkers were used, and 11 different methods described for the calculation of the composite biological age were informed. The outcomes reported were the relationship with the same measured biomarkers, specified risk factors, comorbidities, physical or cognitive functionality, and mortality. Conclusions: The concept of biological age composed of biomarkers has evolved since the 1970s and multiple methods of its quantification have been described through the combination of different clinical and paraclinical variables from observational studies. Future research should consider the population characteristics, and the choice of biomarkers against the proposed outcomes to improve the understanding of aging variables to direct effective strategies for a proper approach. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biological%20age" title="biological age">biological age</a>, <a href="https://publications.waset.org/abstracts/search?q=biological%20aging" title=" biological aging"> biological aging</a>, <a href="https://publications.waset.org/abstracts/search?q=aging" title=" aging"> aging</a>, <a href="https://publications.waset.org/abstracts/search?q=senescence" title=" senescence"> senescence</a>, <a href="https://publications.waset.org/abstracts/search?q=biomarker" title=" biomarker"> biomarker</a> </p> <a href="https://publications.waset.org/abstracts/144297/scoping-review-of-biological-age-measurement-composed-of-biomarkers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/144297.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">186</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2686</span> Acute Phase Proteins as Biomarkers of Urinary Tract Infection (UTI) in Dairy Cattle</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wael%20El-Deeb">Wael El-Deeb</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study aimed to investigate the diagnostic importance of acute phase proteins in urinary tract infection (UTI) in cattle. We describe the clinical, bacteriological and biochemical findings in 99 lactating cows. Blood and urine samples from diseased (n=84) and control healthy cows (n=15) were submitted to laboratory investigations. The urine analysis revealed hematuria and pyuria in UTI group. The isolated bacteria were E.coli (43/84) Corynebacterium spp, (31/84), Proteus spp. (6/84) and Streptococcus spp (4/84). The concentrations of Haptoglobin (Hp), serum amyloid A (SAA), α1-Acid glycoprotein (AGP), fibrinogen (Fb), total protein, albumen, and globulin were higher in cows with UTI when compared to healthy ones. Fifty-one of 84 cows with UTI were successfully treated. The levels of Hp, SAA, AGP, total protein, and globulin were associated with the odds of treatment failure. Conclusively, acute phase proteins could be used as diagnostic and prognostic biomarkers in cows with UTI. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cows" title="cows">cows</a>, <a href="https://publications.waset.org/abstracts/search?q=urinary" title=" urinary"> urinary</a>, <a href="https://publications.waset.org/abstracts/search?q=infections" title=" infections"> infections</a>, <a href="https://publications.waset.org/abstracts/search?q=haptoglobin" title=" haptoglobin"> haptoglobin</a>, <a href="https://publications.waset.org/abstracts/search?q=serum%20Amyloid%20A" title=" serum Amyloid A"> serum Amyloid A</a> </p> <a href="https://publications.waset.org/abstracts/17849/acute-phase-proteins-as-biomarkers-of-urinary-tract-infection-uti-in-dairy-cattle" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17849.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">724</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2685</span> Characterization and Correlation of Neurodegeneration and Biological Markers of Model Mice with Traumatic Brain Injury and Alzheimer's Disease</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20DeBoard">J. DeBoard</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Dietrich"> R. Dietrich</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Hughes"> J. Hughes</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Yurko"> K. Yurko</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Harms"> G. Harms</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Alzheimer’s disease (AD) is a predominant type of dementia and is likely a major cause of neural network impairment. The pathogenesis of this neurodegenerative disorder has yet to be fully elucidated. There are currently no known cures for the disease, and the best hope is to be able to detect it early enough to impede its progress. Beyond age and genetics, another prevalent risk factor for AD might be traumatic brain injury (TBI), which has similar neurodegenerative hallmarks. Our research focuses on obtaining information and methods to be able to predict when neurodegenerative effects might occur at a clinical level by observation of events at a cellular and molecular level in model mice. First, we wish to introduce our evidence that brain damage can be observed via brain imaging prior to the noticeable loss of neuromuscular control in model mice of AD. We then show our evidence that some blood biomarkers might be able to be early predictors of AD in the same model mice. Thus, we were interested to see if we might be able to predict which mice might show long-term neurodegenerative effects due to differing degrees of TBI and what level of TBI causes further damage and earlier death to the AD model mice. Upon application of TBIs via an apparatus to effectively induce extremely mild to mild TBIs, wild-type (WT) mice and AD mouse models were tested for cognition, neuromuscular control, olfactory ability, blood biomarkers, and brain imaging. Experiments are currently still in process, and more results are therefore forthcoming. Preliminary data suggest that neuromotor control diminishes as well as olfactory function for both AD and WT mice after the administration of five consecutive mild TBIs. Also, seizure activity increases significantly for both AD and WT after the administration of the five TBI treatment. If future data supports these findings, important implications about the effect of TBI on those at risk for AD might be possible. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alzheimer%27s%20disease" title="Alzheimer's disease">Alzheimer's disease</a>, <a href="https://publications.waset.org/abstracts/search?q=blood%20biomarker" title=" blood biomarker"> blood biomarker</a>, <a href="https://publications.waset.org/abstracts/search?q=neurodegeneration" title=" neurodegeneration"> neurodegeneration</a>, <a href="https://publications.waset.org/abstracts/search?q=neuromuscular%20control" title=" neuromuscular control"> neuromuscular control</a>, <a href="https://publications.waset.org/abstracts/search?q=olfaction" title=" olfaction"> olfaction</a>, <a href="https://publications.waset.org/abstracts/search?q=traumatic%20brain%20injury" title=" traumatic brain injury"> traumatic brain injury</a> </p> <a href="https://publications.waset.org/abstracts/131616/characterization-and-correlation-of-neurodegeneration-and-biological-markers-of-model-mice-with-traumatic-brain-injury-and-alzheimers-disease" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/131616.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">141</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2684</span> HPTLC Fingerprint Profiling of Protorhus longifolia Methanolic Leaf Extract and Qualitative Analysis of Common Biomarkers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20S.%20Seboletswe">P. S. Seboletswe</a>, <a href="https://publications.waset.org/abstracts/search?q=Z.%20Mkhize"> Z. Mkhize</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20M.%20Katata-Seru"> L. M. Katata-Seru</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <em>Protorhus longifolia </em>is known as a medicinal plant that has been used traditionally to treat various ailments such as hemiplegic paralysis, blood clotting related diseases, diarrhoea, heartburn, etc. The study reports a High-Performance Thin Layer Chromatography (HPTLC) fingerprint profile of <em>Protorhus longifolia</em> methanolic extract and its qualitative analysis of gallic acid, rutin, and quercetin. HPTLC analysis was achieved using CAMAG HPTLC system equipped with CAMAG automatic TLC sampler 4, CAMAG Automatic Developing Chamber 2 (ADC2), CAMAG visualizer 2, CAMAG Thin Layer Chromatography (TLC) scanner and visionCATS CAMAG HPTLC software. Mobile phase comprising toluene, ethyl acetate, formic acid (21:15:3) was used for qualitative analysis of gallic acid and revealed eight peaks while the mobile phase containing ethyl acetate, water, glacial acetic acid, formic acid (100:26:11:11) for qualitative analysis of rutin and quercetin revealed six peaks. HPTLC sillica gel 60 F254 glass plates (10 × 10) were used as the stationary phase. Gallic acid was detected at the R<sub>f</sub> = 0.35; while rutin and quercetin were not evident in the extract. Further studies will be performed to quantify gallic acid in <em>Protorhus longifolia</em> leaves and also identify other biomarkers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biomarkers" title="biomarkers">biomarkers</a>, <a href="https://publications.waset.org/abstracts/search?q=fingerprint%20profiling" title=" fingerprint profiling"> fingerprint profiling</a>, <a href="https://publications.waset.org/abstracts/search?q=gallic%20acid" title=" gallic acid"> gallic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=HPTLC" title=" HPTLC"> HPTLC</a>, <a href="https://publications.waset.org/abstracts/search?q=Protorhus%20longifolia" title=" Protorhus longifolia"> Protorhus longifolia</a> </p> <a href="https://publications.waset.org/abstracts/116612/hptlc-fingerprint-profiling-of-protorhus-longifolia-methanolic-leaf-extract-and-qualitative-analysis-of-common-biomarkers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/116612.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">143</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2683</span> Development of an Electrochemical Aptasensor for the Detection of Human Osteopontin Protein</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sofia%20G.%20Meirinho">Sofia G. Meirinho</a>, <a href="https://publications.waset.org/abstracts/search?q=Luis%20G.%20Dias"> Luis G. Dias</a>, <a href="https://publications.waset.org/abstracts/search?q=Ant%C3%B3nio%20M.%20Peres"> António M. Peres</a>, <a href="https://publications.waset.org/abstracts/search?q=L%C3%ADgia%20R.%20Rodrigues"> Lígia R. Rodrigues</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The emerging development of electrochemical aptasen sors has enabled the easy and fast detection of protein biomarkers in standard and real samples. Biomarkers are produced by body organs or tumours and provide a measure of antigens on cell surfaces. When detected in high amounts in blood, they can be suggestive of tumour activity. These biomarkers are more often used to evaluate treatment effects or to assess the potential for metastatic disease in patients with established disease. Osteopontin (OPN) is a protein found in all body fluids and constitutes a possible biomarker because its overexpression has been related with breast cancer evolution and metastasis. Currently, biomarkers are commonly used for the development of diagnostic methods, allowing the detection of the disease in its initial stages. A previously described RNA aptamer was used in the current work to develop a simple and sensitive electrochemical aptasensor with high affinity for human OPN. The RNA aptamer was biotinylated and immobilized on a gold electrode by avidin-biotin interaction. The electrochemical signal generated from the aptamer–target molecule interaction was monitored electrochemically using cyclic voltammetry in the presence of [Fe (CN) 6]−3/− as a redox probe. The signal observed showed a current decrease due to the binding of OPN. The preliminary results showed that this aptasensor enables the detection of OPN in standard solutions, showing good selectivity towards the target in the presence of others interfering proteins such as bovine OPN and bovine serum albumin. The results gathered in the current work suggest that the proposed electrochemical aptasensor is a simple and sensitive detection tool for human OPN and so, may have future applications in cancer disease monitoring. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=osteopontin" title="osteopontin">osteopontin</a>, <a href="https://publications.waset.org/abstracts/search?q=aptamer" title=" aptamer"> aptamer</a>, <a href="https://publications.waset.org/abstracts/search?q=aptasensor" title=" aptasensor"> aptasensor</a>, <a href="https://publications.waset.org/abstracts/search?q=screen-printed%20electrode" title=" screen-printed electrode"> screen-printed electrode</a>, <a href="https://publications.waset.org/abstracts/search?q=cyclic%20voltammetry" title=" cyclic voltammetry"> cyclic voltammetry</a> </p> <a href="https://publications.waset.org/abstracts/1507/development-of-an-electrochemical-aptasensor-for-the-detection-of-human-osteopontin-protein" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1507.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">431</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2682</span> Improving the Design of Blood Pressure and Blood Saturation Monitors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=L.%20Parisi">L. Parisi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A blood pressure monitor or sphygmomanometer can be either manual or automatic, employing respectively either the auscultatory method or the oscillometric method. The manual version of the sphygmomanometer involves an inflatable cuff with a stethoscope adopted to detect the sounds generated by the arterial walls to measure blood pressure in an artery. An automatic sphygmomanometer can be effectively used to monitor blood pressure through a pressure sensor, which detects vibrations provoked by oscillations of the arterial walls. The pressure sensor implemented in this device improves the accuracy of the measurements taken. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=blood%20pressure" title="blood pressure">blood pressure</a>, <a href="https://publications.waset.org/abstracts/search?q=blood%20saturation" title=" blood saturation"> blood saturation</a>, <a href="https://publications.waset.org/abstracts/search?q=sensors" title=" sensors"> sensors</a>, <a href="https://publications.waset.org/abstracts/search?q=actuators" title=" actuators"> actuators</a>, <a href="https://publications.waset.org/abstracts/search?q=design%20improvement" title=" design improvement"> design improvement</a> </p> <a href="https://publications.waset.org/abstracts/14649/improving-the-design-of-blood-pressure-and-blood-saturation-monitors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14649.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">455</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2681</span> Hepatological Alterations in Market Gardeners Occupationally Exposed to Pesticides in the Western Highlands of Cameroon</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20G.%20Tanga">M. G. Tanga</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20B.%20Telefo"> P. B. Telefo</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20N.%20Tarla"> D. N. Tarla </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Even though the WHO, the EPA and other regulatory bodies have recognized the effects of acute pesticide poisoning little data exists on health effects after long-term low-dose exposures especially in Africa and Cameroon. The aim of this study was to evaluate the impact of pesticides on the hepatic functions of market gardeners in the Western Region of Cameroon by studying some biochemical parameters. Sixty six male market gardeners in Foumbot, Massangam, and Bantoum were interviewed on their health status, habits and pesticide use in agriculture, including the spray frequency, application method, and pesticide dosage. Thirty men with no history of pesticide exposure were recruited as control group. Thereafter, their blood samples were collected for assessment of hepatic function biomarkers (ALT, AST, and albumin). The results showed that 56 pesticides containing 25 active ingredients were currently used by market gardeners enrolled in our study and most of their symptoms (headache, fatigue, skin rashes, eye irritation, and nausea) were related to the use of these chemicals. Compared to the control subjects market gardeners’ ALT levels (32.9 ± 7.19 UL-1 vs. 82.11 ± 35.40 UL-1; P < 0.001) and, AST levels (40.63 ± 6.52 UL-1 vs. 112.11 UL-1 ± 47.15 UL-1; P < 0.001) were significantly increased. These results suggest that liver function tests can be used as biomarkers to indicate toxicity before overt clinical signs occur. The market gardeners’ chronic exposure to pesticides due to poor application measures could lead to hepatic function impairment. Further research on larger scale is needed to confirm these findings and to establish a mechanism of toxicity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biomarkers" title="biomarkers">biomarkers</a>, <a href="https://publications.waset.org/abstracts/search?q=liver" title=" liver"> liver</a>, <a href="https://publications.waset.org/abstracts/search?q=pesticides" title=" pesticides"> pesticides</a>, <a href="https://publications.waset.org/abstracts/search?q=occupational%20exposure" title=" occupational exposure"> occupational exposure</a> </p> <a href="https://publications.waset.org/abstracts/30303/hepatological-alterations-in-market-gardeners-occupationally-exposed-to-pesticides-in-the-western-highlands-of-cameroon" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30303.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">320</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2680</span> Study of COVID-19 Intensity Correlated with Specific Biomarkers and Environmental Factors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Satendra%20Pal%20Singh">Satendra Pal Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Dalip%20Kr.%20Kakru"> Dalip Kr. Kakru</a>, <a href="https://publications.waset.org/abstracts/search?q=Jyoti%20Mishra"> Jyoti Mishra</a>, <a href="https://publications.waset.org/abstracts/search?q=Rajesh%20Thakur"> Rajesh Thakur</a>, <a href="https://publications.waset.org/abstracts/search?q=Tarana%20Sarwat"> Tarana Sarwat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> COVID-19 is still an intrigue as far as morbidity or mortality is concerned. The rate of recovery varies from person to person, & it depends upon the accessibility of the healthcare system and the roles played by the physicians and caregivers. It is envisaged that with the passage of time, people would become immune to this virus, and those who are vulnerable would sustain themselves with the help of vaccines. The proposed study deals with the severeness of COVID-19 is associated with some specific biomarkers linked to correlate age and gender. We will be assessing the overall homeostasis of the persons who were affected by the coronavirus infection and also of those who recovered from it. Some people show more severe effects, while others show very mild symptoms, however, they show low CT values. Thus far, it is unclear why the new strain of Covid has different effects on different people in terms of age, gender, and ABO blood typing. According to data, the fatality rate with heart disease was 10.5 percent, 7.3 percent were diabetic, and 6 percent who are already infected from other comorbidities. However, some COVID-19 cases are worse than others & it is not fully explainable as of date. Overall data show that the ABO blood group is effective or prone to the risk of SARS-COV2 infection, while another study also shows the phenotypic effects of the blood group related to covid. It is an accepted fact that females have more strong immune systems than males, which may be related to the fact that females have two ‘X’ chromosomes, which might contain a more effective immunity booster gene on the X chromosome, and are capable to protect the female. Also specific sex hormones also induce a better immune response in a specific gender. This calls for in-depth analysis to be able to gain insight into this dilemma. COVID-19 is still not fully characterized, and thus we are not very familiar with its biology, mode of infection, susceptibility, and overall viral load in the human body. How many virus particles are needed to infect a person? How, then, comorbidity contribute to coronavirus infection? Since the emergence of this virus in 2020, a large number of papers have been published, and seemingly, vaccines have been prepared. But still, a large number of questions remain unanswered. The proneness of humans for infection by covid-19 needs to be established to be able to develop a better strategy to fight this virus. Our study will be on the Impact of demography on the Severity of covid-19 infection & at the same time, will look into gender-specific sensitivity of Covid-19 and the Operational variation of different biochemical markers in Covid-19 positive patients. Besides, we will be studying the co-relation, if any, of COVID severity & ABO Blood group type and the occurrence of the most common blood group type amongst positive patience. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coronavirus" title="coronavirus">coronavirus</a>, <a href="https://publications.waset.org/abstracts/search?q=ABO%20blood%20group" title=" ABO blood group"> ABO blood group</a>, <a href="https://publications.waset.org/abstracts/search?q=age" title=" age"> age</a>, <a href="https://publications.waset.org/abstracts/search?q=gender" title=" gender"> gender</a> </p> <a href="https://publications.waset.org/abstracts/160678/study-of-covid-19-intensity-correlated-with-specific-biomarkers-and-environmental-factors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/160678.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">98</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2679</span> Identification of Blood Biomarkers Unveiling Early Alzheimer's Disease Diagnosis Through Single-Cell RNA Sequencing Data and Autoencoders</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hediyeh%20Talebi">Hediyeh Talebi</a>, <a href="https://publications.waset.org/abstracts/search?q=Shokoofeh%20Ghiam"> Shokoofeh Ghiam</a>, <a href="https://publications.waset.org/abstracts/search?q=Changiz%20Eslahchi"> Changiz Eslahchi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Traditionally, Alzheimer’s disease research has focused on genes with significant fold changes, potentially neglecting subtle but biologically important alterations. Our study introduces an integrative approach that highlights genes crucial to underlying biological processes, regardless of their fold change magnitude. Alzheimer's Single-cell RNA-seq data related to the peripheral blood mononuclear cells (PBMC) was extracted from the Gene Expression Omnibus (GEO). After quality control, normalization, scaling, batch effect correction, and clustering, differentially expressed genes (DEGs) were identified with adjusted p-values less than 0.05. These DEGs were categorized based on cell-type, resulting in four datasets, each corresponding to a distinct cell type. To distinguish between cells from healthy individuals and those with Alzheimer's, an adversarial autoencoder with a classifier was employed. This allowed for the separation of healthy and diseased samples. To identify the most influential genes in this classification, the weight matrices in the network, which includes the encoder and classifier components, were multiplied, and focused on the top 20 genes. The analysis revealed that while some of these genes exhibit a high fold change, others do not. These genes, which may be overlooked by previous methods due to their low fold change, were shown to be significant in our study. The findings highlight the critical role of genes with subtle alterations in diagnosing Alzheimer's disease, a facet frequently overlooked by conventional methods. These genes demonstrate remarkable discriminatory power, underscoring the need to integrate biological relevance with statistical measures in gene prioritization. This integrative approach enhances our understanding of the molecular mechanisms in Alzheimer’s disease and provides a promising direction for identifying potential therapeutic targets. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alzheimer%27s%20disease" title="alzheimer's disease">alzheimer's disease</a>, <a href="https://publications.waset.org/abstracts/search?q=single-cell%20RNA-seq" title=" single-cell RNA-seq"> single-cell RNA-seq</a>, <a href="https://publications.waset.org/abstracts/search?q=neural%20networks" title=" neural networks"> neural networks</a>, <a href="https://publications.waset.org/abstracts/search?q=blood%20biomarkers" title=" blood biomarkers"> blood biomarkers</a> </p> <a href="https://publications.waset.org/abstracts/179335/identification-of-blood-biomarkers-unveiling-early-alzheimers-disease-diagnosis-through-single-cell-rna-sequencing-data-and-autoencoders" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/179335.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">66</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2678</span> Identification of Potential Predictive Biomarkers for Early Diagnosis of Preeclampsia Growth Factors to microRNAs</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sadia%20Munir">Sadia Munir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Preeclampsia is the contributor to the worldwide maternal mortality of approximately 100,000 deaths a year. It complicates about 10% of all pregnancies and is the first cause of maternal admission to intensive care units. Predicting preeclampsia is a major challenge in obstetrics. More importantly, no major progress has been achieved in the treatment of preeclampsia. As placenta is the main cause of the disease, the only way to treat the disease is to extract placental and deliver the baby. In developed countries, the cost of an average case of preeclampsia is estimated at £9000. Interestingly, preeclampsia may have an impact on the health of mother or infant, beyond the pregnancy. We performed a systematic search of PubMed including the combination of terms such as preeclampsia, biomarkers, treatment, hypoxia, inflammation, oxidative stress, vascular endothelial growth factor A, activin A, inhibin A, placental growth factor, transforming growth factor β-1, Nodal, placenta, trophoblast cells, microRNAs. In this review, we have summarized current knowledge on the identification of potential biomarkers for the diagnosis of preeclampsia. Although these studies show promising data in early diagnosis of preeclampsia, the current value of these factors as biomarkers, for the precise prediction of preeclampsia, has its limitation. Therefore, future studies need to be done to support some of the very promising and interesting data to develop affordable and widely available tests for early detection and treatment of preeclampsia. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=activin" title="activin">activin</a>, <a href="https://publications.waset.org/abstracts/search?q=biomarkers" title=" biomarkers"> biomarkers</a>, <a href="https://publications.waset.org/abstracts/search?q=growth%20factors" title=" growth factors"> growth factors</a>, <a href="https://publications.waset.org/abstracts/search?q=miroRNA" title=" miroRNA"> miroRNA</a> </p> <a href="https://publications.waset.org/abstracts/25547/identification-of-potential-predictive-biomarkers-for-early-diagnosis-of-preeclampsia-growth-factors-to-micrornas" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25547.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">442</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2677</span> The Amount of Organic Phosphates (Like DPG) Existing in Blood is Determining Factor of Mammal’s Bulk</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ramin%20Amirmardfar">Ramin Amirmardfar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Throughout Necessary oxygen should be supplied for all cells of a mammal at any moment through blood to make it possible remain alive all cells the mammal’s body. In case a mammal’s bulk is large, there is a farther distance between cells in different tissues and mammals’ heart. Therefore red blood cells in bulky mammal’s body should be capable of conveying oxygen to farther distances. To make it practical, oxygen should be glued red blood cells tenaciously. In other words, cohesion strength of oxygen to red blood cell of bulky mammal’s blood should be much more than the same of small mammal’s blood. In mammal’s bodies, the controlling factor of amount of cohesion of oxygen to red blood cell, are organic phosphates (like DPG). The less DPG in red blood cells of a mammal, the more cohesion of oxygen to red blood cell (at the same rate). As much as oxygen is glued more tenacious to red blood cells, oxygen could been carried to farther distance and as much as oxygen could be conveyed to farther points of heart, bulk of mammal could be larger at the same rate. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mammals%20size" title="mammals size">mammals size</a>, <a href="https://publications.waset.org/abstracts/search?q=animals%20size" title=" animals size"> animals size</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20phosphates" title=" organic phosphates"> organic phosphates</a>, <a href="https://publications.waset.org/abstracts/search?q=DPG" title=" DPG"> DPG</a>, <a href="https://publications.waset.org/abstracts/search?q=red%20blood%20cell" title=" red blood cell"> red blood cell</a>, <a href="https://publications.waset.org/abstracts/search?q=metabolism" title=" metabolism"> metabolism</a> </p> <a href="https://publications.waset.org/abstracts/12665/the-amount-of-organic-phosphates-like-dpg-existing-in-blood-is-determining-factor-of-mammals-bulk" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12665.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">355</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2676</span> Evaluation of the Safety and Performance of Blood Culture Practices Using BD Safety-Lokᵀᴹ Blood Collection Sets in the Emergency Room</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jeonghyun%20Chang">Jeonghyun Chang</a>, <a href="https://publications.waset.org/abstracts/search?q=Taegeun%20Lee"> Taegeun Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Heungsup%20Sung"> Heungsup Sung</a>, <a href="https://publications.waset.org/abstracts/search?q=Yoon-Seon%20Lee"> Yoon-Seon Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Youn-Jung%20Kim"> Youn-Jung Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Mi-Na%20Kim"> Mi-Na Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Safety device has been applied to improve safety and performance of blood culture practice. BD vacutainer® Safety-Lokᵀᴹ blood collection sets with pre-attached holder (Safety-Lok) (BD, USA) was evaluated in the emergency room (ER) of a tertiary care hospital. Methods: From April to June 2017, interns and nurses in ER were surveyed for blood culture practices with a questionnaire before and after 2 or 3 weeks of experience of Safety-Lok. All of them participated in exercise workshop for 1 hour combined with video education prior to the initial survey. The blood volume, positive and contamination rates of Safety-Lok-drawn (SD) blood cultures were compared to those of overall blood cultures. Results: Eighteen interns and 30 nurses were enrolled. As a result of the initial survey, interns had higher rates of needlestick incidence (27.8%), carriage of the blood-filled syringe with needle (88.9%) and lower rates of vacutainer use (38.9%) than nurses (13.3%, 53.3%, and 60.0%). Interns preferred to use safety devices (88.9%) rather than nurses (40.0%). The number of overall blood cultures and SD blood cultures was 9,053 and 555, respectively. While the overall blood volume of aerobic bottles was 2.6±2.1 mL, those of SD blood cultures were 5.0±3.0 mL in aerobic bottles and 6.0±3.0 mL in anaerobic bottles. Positive and contamination rates were 6.5% and 0.72% with SD blood cultures and 6.2% and 0.3% with overall blood cultures. Conclusions: The introduction of the safety device would encourage healthcare workers to collect adequate blood volume as well as lead to safer practices in the ER. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=blood%20culture" title="blood culture">blood culture</a>, <a href="https://publications.waset.org/abstracts/search?q=needlestick" title=" needlestick"> needlestick</a>, <a href="https://publications.waset.org/abstracts/search?q=safety%20device" title=" safety device"> safety device</a>, <a href="https://publications.waset.org/abstracts/search?q=volume" title=" volume"> volume</a> </p> <a href="https://publications.waset.org/abstracts/90313/evaluation-of-the-safety-and-performance-of-blood-culture-practices-using-bd-safety-lok-blood-collection-sets-in-the-emergency-room" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90313.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">207</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2675</span> Cell Line Screens Identify Biomarkers of Drug Sensitivity in GLIOMA Cancer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Noora%20Al%20Muftah">Noora Al Muftah</a>, <a href="https://publications.waset.org/abstracts/search?q=Reda%20Rawi"> Reda Rawi</a>, <a href="https://publications.waset.org/abstracts/search?q=Richard%20Thompson"> Richard Thompson</a>, <a href="https://publications.waset.org/abstracts/search?q=Halima%20Bensmail"> Halima Bensmail</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Clinical responses to anticancer therapies are often restricted to a subset of patients. In some cases, mutated cancer genes are potent biomarkers of response to targeted agents. There is an urgent need to identify biomarkers that predict which patients with are most likely to respond to treatment. Systematic efforts to correlate tumor mutational data with biologic dependencies may facilitate the translation of somatic mutation catalogs into meaningful biomarkers for patient stratification. To identify genomic features associated with drug sensitivity and uncover new biomarkers of sensitivity and resistance to cancer therapeutics, we have screened and integrated a panel of several hundred cancer cell lines from different databases, mutation, DNA copy number, and gene expression data for hundreds of cell lines with their responses to targeted and cytotoxic therapies with drugs under clinical and preclinical investigation. We found mutated cancer genes were associated with cellular response to most currently available Glioma cancer drugs and some frequently mutated genes were associated with sensitivity to a broad range of therapeutic agents. By linking drug activity to the functional complexity of cancer genomes, systematic pharmacogenomic profiling in cancer cell lines provides a powerful biomarker discovery platform to guide rational cancer therapeutic strategies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cancer" title="cancer">cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=gene%20network" title=" gene network"> gene network</a>, <a href="https://publications.waset.org/abstracts/search?q=Lasso" title=" Lasso"> Lasso</a>, <a href="https://publications.waset.org/abstracts/search?q=penalized%20regression" title=" penalized regression"> penalized regression</a>, <a href="https://publications.waset.org/abstracts/search?q=P-values" title=" P-values"> P-values</a>, <a href="https://publications.waset.org/abstracts/search?q=unbiased%20estimator" title=" unbiased estimator"> unbiased estimator</a> </p> <a href="https://publications.waset.org/abstracts/39172/cell-line-screens-identify-biomarkers-of-drug-sensitivity-in-glioma-cancer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39172.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">409</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2674</span> Biophysical Features of Glioma-Derived Extracellular Vesicles as Potential Diagnostic Markers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abhimanyu%20Thakur">Abhimanyu Thakur</a>, <a href="https://publications.waset.org/abstracts/search?q=Youngjin%20Lee"> Youngjin Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Glioma is a lethal brain cancer whose early diagnosis and prognosis are limited due to the dearth of a suitable technique for its early detection. Current approaches, including magnetic resonance imaging (MRI), computed tomography (CT), and invasive biopsy for the diagnosis of this lethal disease, hold several limitations, demanding an alternative method. Recently, extracellular vesicles (EVs) have been used in numerous biomarker studies, majorly exosomes and microvesicles (MVs), which are found in most of the cells and biofluids, including blood, cerebrospinal fluid (CSF), and urine. Remarkably, glioma cells (GMs) release a high number of EVs, which are found to cross the blood-brain-barrier (BBB) and impersonate the constituents of parent GMs including protein, and lncRNA; however, biophysical properties of EVs have not been explored yet as a biomarker for glioma. We isolated EVs from cell culture conditioned medium of GMs and regular primary culture, blood, and urine of wild-type (WT)- and glioma mouse models, and characterized by nano tracking analyzer, transmission electron microscopy, immunogold-EM, and differential light scanning. Next, we measured the biophysical parameters of GMs-EVs by using atomic force microscopy. Further, the functional constituents of EVs were examined by FTIR and Raman spectroscopy. Exosomes and MVs-derived from GMs, blood, and urine showed distinction biophysical parameters (roughness, adhesion force, and stiffness) and different from that of regular primary glial cells, WT-blood, and -urine, which can be attributed to the characteristic functional constituents. Therefore, biophysical features can be potential diagnostic biomarkers for glioma. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=glioma" title="glioma">glioma</a>, <a href="https://publications.waset.org/abstracts/search?q=extracellular%20vesicles" title=" extracellular vesicles"> extracellular vesicles</a>, <a href="https://publications.waset.org/abstracts/search?q=exosomes" title=" exosomes"> exosomes</a>, <a href="https://publications.waset.org/abstracts/search?q=microvesicles" title=" microvesicles"> microvesicles</a>, <a href="https://publications.waset.org/abstracts/search?q=biophysical%20properties" title=" biophysical properties"> biophysical properties</a> </p> <a href="https://publications.waset.org/abstracts/131887/biophysical-features-of-glioma-derived-extracellular-vesicles-as-potential-diagnostic-markers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/131887.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">142</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=blood%20biomarkers&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=blood%20biomarkers&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=blood%20biomarkers&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=blood%20biomarkers&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=blood%20biomarkers&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=blood%20biomarkers&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=blood%20biomarkers&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=blood%20biomarkers&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=blood%20biomarkers&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=blood%20biomarkers&page=90">90</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=blood%20biomarkers&page=91">91</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=blood%20biomarkers&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>