CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;21 of 21 results for author: <span class="mathjax">Ogitsu, T</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/physics" aria-role="search"> Searching in archive <strong>physics</strong>. <a href="/search/?searchtype=author&amp;query=Ogitsu%2C+T">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Ogitsu, T"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Ogitsu%2C+T&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Ogitsu, T"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.00524">arXiv:2501.00524</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.00524">pdf</a>, <a href="https://arxiv.org/format/2501.00524">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Geophysics">physics.geo-ph</span> </div> </div> <p class="title is-5 mathjax"> Thermal Induced Structural Competitiveness and Metastability of Body-centered Cubic Iron under Non-Equilibrium Conditions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+S">Shuai Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Panjwani%2C+A">Aliza Panjwani</a>, <a href="/search/physics?searchtype=author&amp;query=Xiao%2C+P">Penghao Xiao</a>, <a href="/search/physics?searchtype=author&amp;query=Ghosh%2C+M">Maitrayee Ghosh</a>, <a href="/search/physics?searchtype=author&amp;query=Ogitsu%2C+T">Tadashi Ogitsu</a>, <a href="/search/physics?searchtype=author&amp;query=Ping%2C+Y">Yuan Ping</a>, <a href="/search/physics?searchtype=author&amp;query=Hu%2C+S+X">S. X. Hu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.00524v1-abstract-short" style="display: inline;"> The structure and stability of iron near melting at multi-megabar pressures are of significant interest in high pressure physics and earth and planetary sciences. While the body-centered cubic (BCC) phase is generally recognized as unstable at lower temperatures, its stability relative to the hexagonal close-packed (HCP) phase at high temperatures (approximately 0.5 eV) in the Earth&#39;s inner core (&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.00524v1-abstract-full').style.display = 'inline'; document.getElementById('2501.00524v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.00524v1-abstract-full" style="display: none;"> The structure and stability of iron near melting at multi-megabar pressures are of significant interest in high pressure physics and earth and planetary sciences. While the body-centered cubic (BCC) phase is generally recognized as unstable at lower temperatures, its stability relative to the hexagonal close-packed (HCP) phase at high temperatures (approximately 0.5 eV) in the Earth&#39;s inner core (IC) remains a topic of ongoing theoretical and experimental debate. Our ab initio calculations show a significant drop in energy, the emergence of a plateau and a local minimum in the potential energy surface, and stabilization of all phonon modes at elevated electron temperatures (&gt;1-1.5 eV). These effects increase the competition among the BCC, HCP, and the face-centered cubic (FCC) phases and lead to the metastability of the BCC structure. Furthermore, the thermodynamic stability of BCC iron is enhanced by its substantial lattice vibration entropy. This thermally induced structural competitiveness and metastability under non-equilibrium conditions provide a clear theoretical framework for understanding iron phase relations and solidification processes, both experimentally and in the IC. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.00524v1-abstract-full').style.display = 'none'; document.getElementById('2501.00524v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.13998">arXiv:2203.13998</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2203.13998">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> </div> </div> <p class="title is-5 mathjax"> A Work Proposal for a Collaborative Study of Magnet Technology for a Future Muon Collider </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Bottura%2C+L">L. Bottura</a>, <a href="/search/physics?searchtype=author&amp;query=Aguglia%2C+D">D. Aguglia</a>, <a href="/search/physics?searchtype=author&amp;query=Auchmann%2C+B">B. Auchmann</a>, <a href="/search/physics?searchtype=author&amp;query=Arndt%2C+T">T. Arndt</a>, <a href="/search/physics?searchtype=author&amp;query=Beard%2C+J">J. Beard</a>, <a href="/search/physics?searchtype=author&amp;query=Bersani%2C+A">A. Bersani</a>, <a href="/search/physics?searchtype=author&amp;query=Boattini%2C+F">F. Boattini</a>, <a href="/search/physics?searchtype=author&amp;query=Breschi%2C+M">M. Breschi</a>, <a href="/search/physics?searchtype=author&amp;query=Caiffi%2C+B">B. Caiffi</a>, <a href="/search/physics?searchtype=author&amp;query=Chaud%2C+X">X. Chaud</a>, <a href="/search/physics?searchtype=author&amp;query=Dam%2C+M">M. Dam</a>, <a href="/search/physics?searchtype=author&amp;query=Debray%2C+F">F. Debray</a>, <a href="/search/physics?searchtype=author&amp;query=De+Gersem%2C+H">H. De Gersem</a>, <a href="/search/physics?searchtype=author&amp;query=De+Matteis%2C+E">E. De Matteis</a>, <a href="/search/physics?searchtype=author&amp;query=Dudarev%2C+A">A. Dudarev</a>, <a href="/search/physics?searchtype=author&amp;query=Farinon%2C+S">S. Farinon</a>, <a href="/search/physics?searchtype=author&amp;query=Kario%2C+A">A. Kario</a>, <a href="/search/physics?searchtype=author&amp;query=Losito%2C+R">R. Losito</a>, <a href="/search/physics?searchtype=author&amp;query=Mariotto%2C+S">S. Mariotto</a>, <a href="/search/physics?searchtype=author&amp;query=Mentink%2C+M">M. Mentink</a>, <a href="/search/physics?searchtype=author&amp;query=Musenich%2C+R">R. Musenich</a>, <a href="/search/physics?searchtype=author&amp;query=Ogitsu%2C+T">T. Ogitsu</a>, <a href="/search/physics?searchtype=author&amp;query=Prioli%2C+M">M. Prioli</a>, <a href="/search/physics?searchtype=author&amp;query=Quettier%2C+L">L. Quettier</a>, <a href="/search/physics?searchtype=author&amp;query=Rossi%2C+L">L. Rossi</a> , et al. (8 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.13998v2-abstract-short" style="display: inline;"> In this paper we elaborate on the nature and challenges for the magnet systems of a muon collider as presently considered within the scope of the International Muon Collider Collaboration (IMCC). We outline the structure of the work proposed over the coming period of five years to study and demonstrate relevant magnet technology. The proposal, which is part of the overall work planned to establish&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.13998v2-abstract-full').style.display = 'inline'; document.getElementById('2203.13998v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.13998v2-abstract-full" style="display: none;"> In this paper we elaborate on the nature and challenges for the magnet systems of a muon collider as presently considered within the scope of the International Muon Collider Collaboration (IMCC). We outline the structure of the work proposed over the coming period of five years to study and demonstrate relevant magnet technology. The proposal, which is part of the overall work planned to establish feasibility of a muon collider, is in direct response to the recent recommendations received from the Laboratories Directors Group (LDG). The plan is to profit from joint activities, within the scope of the IMCC and beyond, implemented through direct and EU-funded contributions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.13998v2-abstract-full').style.display = 'none'; document.getElementById('2203.13998v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">contribution to Snowmass 2021</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.13985">arXiv:2203.13985</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2203.13985">pdf</a>, <a href="https://arxiv.org/format/2203.13985">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> </div> </div> <p class="title is-5 mathjax"> A Strategic Approach to Advance Magnet Technology for Next Generation Colliders </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Ambrosio%2C+G">G. Ambrosio</a>, <a href="/search/physics?searchtype=author&amp;query=Amm%2C+K">K. Amm</a>, <a href="/search/physics?searchtype=author&amp;query=Anerella%2C+M">M. Anerella</a>, <a href="/search/physics?searchtype=author&amp;query=Apollinari%2C+G">G. Apollinari</a>, <a href="/search/physics?searchtype=author&amp;query=Arbelaez%2C+D">D. Arbelaez</a>, <a href="/search/physics?searchtype=author&amp;query=Auchmann%2C+B">B. Auchmann</a>, <a href="/search/physics?searchtype=author&amp;query=Balachandran%2C+S">S. Balachandran</a>, <a href="/search/physics?searchtype=author&amp;query=Baldini%2C+M">M. Baldini</a>, <a href="/search/physics?searchtype=author&amp;query=Ballarino%2C+A">A. Ballarino</a>, <a href="/search/physics?searchtype=author&amp;query=Barua%2C+S">S. Barua</a>, <a href="/search/physics?searchtype=author&amp;query=Barzi%2C+E">E. Barzi</a>, <a href="/search/physics?searchtype=author&amp;query=Baskys%2C+A">A. Baskys</a>, <a href="/search/physics?searchtype=author&amp;query=Bird%2C+C">C. Bird</a>, <a href="/search/physics?searchtype=author&amp;query=Boerme%2C+J">J. Boerme</a>, <a href="/search/physics?searchtype=author&amp;query=Bosque%2C+E">E. Bosque</a>, <a href="/search/physics?searchtype=author&amp;query=Brouwer%2C+L">L. Brouwer</a>, <a href="/search/physics?searchtype=author&amp;query=Caspi%2C+S">S. Caspi</a>, <a href="/search/physics?searchtype=author&amp;query=Cheggour%2C+N">N. Cheggour</a>, <a href="/search/physics?searchtype=author&amp;query=Chlachidze%2C+G">G. Chlachidze</a>, <a href="/search/physics?searchtype=author&amp;query=Cooley%2C+L">L. Cooley</a>, <a href="/search/physics?searchtype=author&amp;query=Davis%2C+D">D. Davis</a>, <a href="/search/physics?searchtype=author&amp;query=Dietderich%2C+D">D. Dietderich</a>, <a href="/search/physics?searchtype=author&amp;query=DiMarco%2C+J">J. DiMarco</a>, <a href="/search/physics?searchtype=author&amp;query=English%2C+L">L. English</a>, <a href="/search/physics?searchtype=author&amp;query=Fajardo%2C+L+G">L. Garcia Fajardo</a> , et al. (52 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.13985v1-abstract-short" style="display: inline;"> Colliders are built on a foundation of superconducting magnet technology that provides strong dipole magnets to maintain the beam orbit and strong focusing magnets to enable the extraordinary luminosity required to probe physics at the energy frontier. The dipole magnet strength plays a critical role in dictating the energy reach of a collider, and the superconducting magnets are arguably the domi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.13985v1-abstract-full').style.display = 'inline'; document.getElementById('2203.13985v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.13985v1-abstract-full" style="display: none;"> Colliders are built on a foundation of superconducting magnet technology that provides strong dipole magnets to maintain the beam orbit and strong focusing magnets to enable the extraordinary luminosity required to probe physics at the energy frontier. The dipole magnet strength plays a critical role in dictating the energy reach of a collider, and the superconducting magnets are arguably the dominant cost driver for future collider facilities. As the community considers opportunities to explore new energy frontiers, the importance of advanced magnet technology - both in terms of magnet performance and in the magnet technology&#39;s potential for cost reduction - is evident, as the technology status is essential for informed decisions on targets for physics reach and facility feasibility. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.13985v1-abstract-full').style.display = 'none'; document.getElementById('2203.13985v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">contribution to Snowmass 2021</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.12118">arXiv:2203.12118</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2203.12118">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> </div> </div> <p class="title is-5 mathjax"> R&amp;D works for Superconducting Magnet for Future Accelerator Applications in Japan </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Ogitsu%2C+T">Toru Ogitsu</a>, <a href="/search/physics?searchtype=author&amp;query=Nakamoto%2C+T">Tatsushi Nakamoto</a>, <a href="/search/physics?searchtype=author&amp;query=Sasaki%2C+K">Ken-ichi Sasaki</a>, <a href="/search/physics?searchtype=author&amp;query=Sugano%2C+M">Michinaka Sugano</a>, <a href="/search/physics?searchtype=author&amp;query=Iio%2C+M">Masami Iio</a>, <a href="/search/physics?searchtype=author&amp;query=Suzuki%2C+K">Kento Suzuki</a>, <a href="/search/physics?searchtype=author&amp;query=Yoshida%2C+M">Makoto Yoshida</a>, <a href="/search/physics?searchtype=author&amp;query=Awaji%2C+S">Satoshi Awaji</a>, <a href="/search/physics?searchtype=author&amp;query=Amemiya%2C+N">Naoyuki Amemiya</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.12118v1-abstract-short" style="display: inline;"> KEK cryogenics science center is developing superconducting magnet technology for future accelerator science. Three major technological categories are focused; 1) high precision 3D magnetic field technology based on the g-2/EDM magnet developments, 2) rad-hard superconducting magnet technology based on the COMET magnet developments, and 3) high magnetic field superconducting magnet technology for&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.12118v1-abstract-full').style.display = 'inline'; document.getElementById('2203.12118v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.12118v1-abstract-full" style="display: none;"> KEK cryogenics science center is developing superconducting magnet technology for future accelerator science. Three major technological categories are focused; 1) high precision 3D magnetic field technology based on the g-2/EDM magnet developments, 2) rad-hard superconducting magnet technology based on the COMET magnet developments, and 3) high magnetic field superconducting magnet technology for future colliders based on the LHC MQXA and HL-LHC D1 magnet developments. Extensive studies including Nb3Sn conductor and magnet developments for high field magnets and HTS for rad-hard superconducting magnets are ongoing with various collaboration programs such as the US-Japan research collaboration. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.12118v1-abstract-full').style.display = 'none'; document.getElementById('2203.12118v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.07799">arXiv:2203.07799</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2203.07799">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/18/06/T06013">10.1088/1748-0221/18/06/T06013 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Superconducting detector magnets for high energy physics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Mentink%2C+M">Matthias Mentink</a>, <a href="/search/physics?searchtype=author&amp;query=Sasaki%2C+K">Ken-ichi Sasaki</a>, <a href="/search/physics?searchtype=author&amp;query=Cure%2C+B">Benoit Cure</a>, <a href="/search/physics?searchtype=author&amp;query=Deelen%2C+N">Nikkie Deelen</a>, <a href="/search/physics?searchtype=author&amp;query=Dudarev%2C+A">Alexey Dudarev</a>, <a href="/search/physics?searchtype=author&amp;query=Abe%2C+M">Mitsushi Abe</a>, <a href="/search/physics?searchtype=author&amp;query=Iio%2C+M">Masami Iio</a>, <a href="/search/physics?searchtype=author&amp;query=Makida%2C+Y">Yasuhiro Makida</a>, <a href="/search/physics?searchtype=author&amp;query=Okamura%2C+T">Takahiro Okamura</a>, <a href="/search/physics?searchtype=author&amp;query=Ogitsu%2C+T">Toru Ogitsu</a>, <a href="/search/physics?searchtype=author&amp;query=Sumi%2C+N">Naoyuki Sumi</a>, <a href="/search/physics?searchtype=author&amp;query=Yamamoto%2C+A">Akira Yamamoto</a>, <a href="/search/physics?searchtype=author&amp;query=Yoshida%2C+M">Makoto Yoshida</a>, <a href="/search/physics?searchtype=author&amp;query=Iinuma%2C+H">Hiromi Iinuma</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.07799v1-abstract-short" style="display: inline;"> Various superconducting detector solenoids for particle physics have been developed in the world. The key technology is the aluminum-stabilized superconducting conductor for almost all the detector magnets in particle physics experiments. With the progress of the conductor, the coil fabrication technology has progressed as well, such as the inner coil winding technique, indirect cooling, transpare&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.07799v1-abstract-full').style.display = 'inline'; document.getElementById('2203.07799v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.07799v1-abstract-full" style="display: none;"> Various superconducting detector solenoids for particle physics have been developed in the world. The key technology is the aluminum-stabilized superconducting conductor for almost all the detector magnets in particle physics experiments. With the progress of the conductor, the coil fabrication technology has progressed as well, such as the inner coil winding technique, indirect cooling, transparent vacuum vessel, quench protection scheme using pure aluminum strips and so on. The detector solenoids design study is in progress for future big projects in Japan and Europe, that is, ILC, FCC and CLIC, based on the technologies established over many years. The combination of good mechanical properties and keeping a high RRR is a key point for the development of Al-stabilized conductor. The present concern for the detector solenoid development is to have been gradually losing the key technologies and experiences, because large-scale detector magnets with Al-stabilized conductor has not been fabricated after the success of CMS and ATLAS-CS in LHC. Complementary efforts are needed to resume an equivalent level of expertise, to extend the effort on research and to develop these technologies and apply them to future detector magnet projects. Especially, further effort is necessary for the industrial technology of Al-stabilized superconductor production. The worldwide collaboration with relevant institutes and industries will be critically important to re-realize and validate the required performances. Some detector solenoids for mid-scale experiment wound with conventional copper-stabilized Nb-Ti conductor require precise control of magnetic field distribution. The development efforts are on-going in terms of the magnetic field design technology with high precision simulation, coil fabrication technology and control method of magnetic field distribution. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.07799v1-abstract-full').style.display = 'none'; document.getElementById('2203.07799v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">35 pages, 35 figures, 8 tables, contribution to Snowmass 2021</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.03872">arXiv:2106.03872</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2106.03872">pdf</a>, <a href="https://arxiv.org/format/2106.03872">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> </div> <p class="title is-5 mathjax"> INQ, a modern GPU-accelerated computational framework for (time-dependent) density functional theory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Andrade%2C+X">Xavier Andrade</a>, <a href="/search/physics?searchtype=author&amp;query=Pemmaraju%2C+C+D">Chaitanya Das Pemmaraju</a>, <a href="/search/physics?searchtype=author&amp;query=Kartsev%2C+A">Alexey Kartsev</a>, <a href="/search/physics?searchtype=author&amp;query=Xiao%2C+J">Jun Xiao</a>, <a href="/search/physics?searchtype=author&amp;query=Lindenberg%2C+A">Aaron Lindenberg</a>, <a href="/search/physics?searchtype=author&amp;query=Rajpurohit%2C+S">Sangeeta Rajpurohit</a>, <a href="/search/physics?searchtype=author&amp;query=Tan%2C+L+Z">Liang Z. Tan</a>, <a href="/search/physics?searchtype=author&amp;query=Ogitsu%2C+T">Tadashi Ogitsu</a>, <a href="/search/physics?searchtype=author&amp;query=Correa%2C+A+A">Alfredo A. Correa</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.03872v1-abstract-short" style="display: inline;"> We present INQ, a new implementation of density functional theory (DFT) and time-dependent DFT (TDDFT) written from scratch to work on graphical processing units (GPUs). Besides GPU support, INQ makes use of modern code design features and takes advantage of newly available hardware. By designing the code around algorithms, rather than against specific implementations and numerical libraries, we a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.03872v1-abstract-full').style.display = 'inline'; document.getElementById('2106.03872v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.03872v1-abstract-full" style="display: none;"> We present INQ, a new implementation of density functional theory (DFT) and time-dependent DFT (TDDFT) written from scratch to work on graphical processing units (GPUs). Besides GPU support, INQ makes use of modern code design features and takes advantage of newly available hardware. By designing the code around algorithms, rather than against specific implementations and numerical libraries, we aim to provide a concise and modular code. The result is a fairly complete DFT/TDDFT implementation in roughly 12,000 lines of open-source C++ code representing a modular platform for community-driven application development on emerging high-performance computing architectures for the simulation of materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.03872v1-abstract-full').style.display = 'none'; document.getElementById('2106.03872v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">25 pages, 10 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2101.05269">arXiv:2101.05269</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2101.05269">pdf</a>, <a href="https://arxiv.org/format/2101.05269">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/abf7c4">10.3847/1538-4357/abf7c4 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Supernova Model Discrimination with Hyper-Kamiokande </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Collaboration%2C+H">Hyper-Kamiokande Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=%3A"> :</a>, <a href="/search/physics?searchtype=author&amp;query=Abe%2C+K">K. Abe</a>, <a href="/search/physics?searchtype=author&amp;query=Adrich%2C+P">P. Adrich</a>, <a href="/search/physics?searchtype=author&amp;query=Aihara%2C+H">H. Aihara</a>, <a href="/search/physics?searchtype=author&amp;query=Akutsu%2C+R">R. Akutsu</a>, <a href="/search/physics?searchtype=author&amp;query=Alekseev%2C+I">I. Alekseev</a>, <a href="/search/physics?searchtype=author&amp;query=Ali%2C+A">A. Ali</a>, <a href="/search/physics?searchtype=author&amp;query=Ameli%2C+F">F. Ameli</a>, <a href="/search/physics?searchtype=author&amp;query=Anghel%2C+I">I. Anghel</a>, <a href="/search/physics?searchtype=author&amp;query=Anthony%2C+L+H+V">L. H. V. Anthony</a>, <a href="/search/physics?searchtype=author&amp;query=Antonova%2C+M">M. Antonova</a>, <a href="/search/physics?searchtype=author&amp;query=Araya%2C+A">A. Araya</a>, <a href="/search/physics?searchtype=author&amp;query=Asaoka%2C+Y">Y. Asaoka</a>, <a href="/search/physics?searchtype=author&amp;query=Ashida%2C+Y">Y. Ashida</a>, <a href="/search/physics?searchtype=author&amp;query=Aushev%2C+V">V. Aushev</a>, <a href="/search/physics?searchtype=author&amp;query=Ballester%2C+F">F. Ballester</a>, <a href="/search/physics?searchtype=author&amp;query=Bandac%2C+I">I. Bandac</a>, <a href="/search/physics?searchtype=author&amp;query=Barbi%2C+M">M. Barbi</a>, <a href="/search/physics?searchtype=author&amp;query=Barker%2C+G+J">G. J. Barker</a>, <a href="/search/physics?searchtype=author&amp;query=Barr%2C+G">G. Barr</a>, <a href="/search/physics?searchtype=author&amp;query=Batkiewicz-Kwasniak%2C+M">M. Batkiewicz-Kwasniak</a>, <a href="/search/physics?searchtype=author&amp;query=Bellato%2C+M">M. Bellato</a>, <a href="/search/physics?searchtype=author&amp;query=Berardi%2C+V">V. Berardi</a>, <a href="/search/physics?searchtype=author&amp;query=Bergevin%2C+M">M. Bergevin</a> , et al. (478 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2101.05269v2-abstract-short" style="display: inline;"> Core-collapse supernovae are among the most magnificent events in the observable universe. They produce many of the chemical elements necessary for life to exist and their remnants -- neutron stars and black holes -- are interesting astrophysical objects in their own right. However, despite millennia of observations and almost a century of astrophysical study, the explosion mechanism of core-colla&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.05269v2-abstract-full').style.display = 'inline'; document.getElementById('2101.05269v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2101.05269v2-abstract-full" style="display: none;"> Core-collapse supernovae are among the most magnificent events in the observable universe. They produce many of the chemical elements necessary for life to exist and their remnants -- neutron stars and black holes -- are interesting astrophysical objects in their own right. However, despite millennia of observations and almost a century of astrophysical study, the explosion mechanism of core-collapse supernovae is not yet well understood. Hyper-Kamiokande is a next-generation neutrino detector that will be able to observe the neutrino flux from the next galactic core-collapse supernova in unprecedented detail. We focus on the first 500 ms of the neutrino burst, corresponding to the accretion phase, and use a newly-developed, high-precision supernova event generator to simulate Hyper-Kamiokande&#39;s response to five different supernova models. We show that Hyper-Kamiokande will be able to distinguish between these models with high accuracy for a supernova at a distance of up to 100 kpc. Once the next galactic supernova happens, this ability will be a powerful tool for guiding simulations towards a precise reproduction of the explosion mechanism observed in nature. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.05269v2-abstract-full').style.display = 'none'; document.getElementById('2101.05269v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 7 figures. Article based on thesis published as arXiv:2002.01649. v2: added references and some explanations in response to reviewer comments</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Astrophys.J. 916 (2021) 15 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2009.00794">arXiv:2009.00794</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2009.00794">pdf</a>, <a href="https://arxiv.org/ps/2009.00794">ps</a>, <a href="https://arxiv.org/format/2009.00794">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> The Hyper-Kamiokande Experiment -- Snowmass LOI </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Collaboration%2C+H">Hyper-Kamiokande Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=%3A"> :</a>, <a href="/search/physics?searchtype=author&amp;query=Abe%2C+K">K. Abe</a>, <a href="/search/physics?searchtype=author&amp;query=Adrich%2C+P">P. Adrich</a>, <a href="/search/physics?searchtype=author&amp;query=Aihara%2C+H">H. Aihara</a>, <a href="/search/physics?searchtype=author&amp;query=Akutsu%2C+R">R. Akutsu</a>, <a href="/search/physics?searchtype=author&amp;query=Alekseev%2C+I">I. Alekseev</a>, <a href="/search/physics?searchtype=author&amp;query=Ali%2C+A">A. Ali</a>, <a href="/search/physics?searchtype=author&amp;query=Ameli%2C+F">F. Ameli</a>, <a href="/search/physics?searchtype=author&amp;query=Anthony%2C+L+H+V">L. H. V. Anthony</a>, <a href="/search/physics?searchtype=author&amp;query=Araya%2C+A">A. Araya</a>, <a href="/search/physics?searchtype=author&amp;query=Asaoka%2C+Y">Y. Asaoka</a>, <a href="/search/physics?searchtype=author&amp;query=Aushev%2C+V">V. Aushev</a>, <a href="/search/physics?searchtype=author&amp;query=Bandac%2C+I">I. Bandac</a>, <a href="/search/physics?searchtype=author&amp;query=Barbi%2C+M">M. Barbi</a>, <a href="/search/physics?searchtype=author&amp;query=Barr%2C+G">G. Barr</a>, <a href="/search/physics?searchtype=author&amp;query=Batkiewicz-Kwasniak%2C+M">M. Batkiewicz-Kwasniak</a>, <a href="/search/physics?searchtype=author&amp;query=Bellato%2C+M">M. Bellato</a>, <a href="/search/physics?searchtype=author&amp;query=Berardi%2C+V">V. Berardi</a>, <a href="/search/physics?searchtype=author&amp;query=Bernard%2C+L">L. Bernard</a>, <a href="/search/physics?searchtype=author&amp;query=Bernardini%2C+E">E. Bernardini</a>, <a href="/search/physics?searchtype=author&amp;query=Berns%2C+L">L. Berns</a>, <a href="/search/physics?searchtype=author&amp;query=Bhadra%2C+S">S. Bhadra</a>, <a href="/search/physics?searchtype=author&amp;query=Bian%2C+J">J. Bian</a>, <a href="/search/physics?searchtype=author&amp;query=Blanchet%2C+A">A. Blanchet</a> , et al. (366 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2009.00794v1-abstract-short" style="display: inline;"> Hyper-Kamiokande is the next generation underground water Cherenkov detector that builds on the highly successful Super-Kamiokande experiment. The detector which has an 8.4~times larger effective volume than its predecessor will be located along the T2K neutrino beamline and utilize an upgraded J-PARC beam with 2.6~times beam power. Hyper-K&#39;s low energy threshold combined with the very large fiduc&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.00794v1-abstract-full').style.display = 'inline'; document.getElementById('2009.00794v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2009.00794v1-abstract-full" style="display: none;"> Hyper-Kamiokande is the next generation underground water Cherenkov detector that builds on the highly successful Super-Kamiokande experiment. The detector which has an 8.4~times larger effective volume than its predecessor will be located along the T2K neutrino beamline and utilize an upgraded J-PARC beam with 2.6~times beam power. Hyper-K&#39;s low energy threshold combined with the very large fiducial volume make the detector unique, that is expected to acquire an unprecedented exposure of 3.8~Mton$\cdot$year over a period of 20~years of operation. Hyper-Kamiokande combines an extremely diverse science program including nucleon decays, long-baseline neutrino oscillations, atmospheric neutrinos, and neutrinos from astrophysical origins. The scientific scope of this program is highly complementary to liquid-argon detectors for example in sensitivity to nucleon decay channels or supernova detection modes. Hyper-Kamiokande construction has started in early 2020 and the experiment is expected to start operations in 2027. The Hyper-Kamiokande collaboration is presently being formed amongst groups from 19 countries including the United States, whose community has a long history of making significant contributions to the neutrino physics program in Japan. US physicists have played leading roles in the Kamiokande, Super-Kamiokande, EGADS, K2K, and T2K programs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.00794v1-abstract-full').style.display = 'none'; document.getElementById('2009.00794v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, prepared as Snowmass2021 LOI</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2008.01271">arXiv:2008.01271</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2008.01271">pdf</a>, <a href="https://arxiv.org/format/2008.01271">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevE.102.053203">10.1103/PhysRevE.102.053203 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Benchmarking boron carbide equation of state using computation and experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+S">Shuai Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Marshall%2C+M+C">Michelle C. Marshall</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+L+H">Lin H. Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Sterne%2C+P+A">Philip A. Sterne</a>, <a href="/search/physics?searchtype=author&amp;query=Militzer%2C+B">Burkhard Militzer</a>, <a href="/search/physics?searchtype=author&amp;query=Daene%2C+M">Markus Daene</a>, <a href="/search/physics?searchtype=author&amp;query=Gaffney%2C+J+A">James A. Gaffney</a>, <a href="/search/physics?searchtype=author&amp;query=Shamp%2C+A">Andrew Shamp</a>, <a href="/search/physics?searchtype=author&amp;query=Ogitsu%2C+T">Tadashi Ogitsu</a>, <a href="/search/physics?searchtype=author&amp;query=Caspersen%2C+K">Kyle Caspersen</a>, <a href="/search/physics?searchtype=author&amp;query=Lazicki%2C+A+E">Amy E. Lazicki</a>, <a href="/search/physics?searchtype=author&amp;query=Erskine%2C+D">David Erskine</a>, <a href="/search/physics?searchtype=author&amp;query=London%2C+R+A">Richard A. London</a>, <a href="/search/physics?searchtype=author&amp;query=Celliers%2C+P+M">Peter M. Celliers</a>, <a href="/search/physics?searchtype=author&amp;query=Nilsen%2C+J">Joseph Nilsen</a>, <a href="/search/physics?searchtype=author&amp;query=Whitley%2C+H+D">Heather D. Whitley</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2008.01271v1-abstract-short" style="display: inline;"> Boron carbide (B$_4$C) is of both fundamental scientific and practical interest in inertial confinement fusion (ICF) and high energy density physics experiments. We report the results of a comprehensive computational study of the equation of state (EOS) of B$_4$C in the liquid, warm dense matter, and plasma phases. Our calculations are cross-validated by comparisons with Hugoniot measurements up t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.01271v1-abstract-full').style.display = 'inline'; document.getElementById('2008.01271v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2008.01271v1-abstract-full" style="display: none;"> Boron carbide (B$_4$C) is of both fundamental scientific and practical interest in inertial confinement fusion (ICF) and high energy density physics experiments. We report the results of a comprehensive computational study of the equation of state (EOS) of B$_4$C in the liquid, warm dense matter, and plasma phases. Our calculations are cross-validated by comparisons with Hugoniot measurements up to 61 megabar from planar shock experiments performed at the National Ignition Facility (NIF). Our computational methods include path integral Monte Carlo, activity expansion, as well as all-electron Green&#39;s function Korringa-Kohn-Rostoker and molecular dynamics that are both based on density functional theory. We calculate the pressure-internal energy EOS of B$_4$C over a broad range of temperatures ($\sim$6$\times$10$^3$--5$\times$10$^8$ K) and densities (0.025--50 g/cm$^{3}$). We assess that the largest discrepancies between theoretical predictions are $\lesssim$5% near the compression maximum at 1--2$\times10^6$ K. This is the warm-dense state in which the K shell significantly ionizes and has posed grand challenges to theory and experiment. By comparing with different EOS models, we find a Purgatorio model (LEOS 2122) that agrees with our calculations. The maximum discrepancies in pressure between our first-principles predictions and LEOS 2122 are $\sim$18% and occur at temperatures between 6$\times$10$^3$--2$\times$10$^5$ K, which we believe originate from differences in the ion thermal term and the cold curve that are modeled in LEOS 2122 in comparison with our first-principles calculations. In addition, we have developed three new equation of state models and applied them to 1D hydrodynamic simulations of a polar direct-drive NIF implosion, demonstrating that these new models are now available for future ICF design studies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.01271v1-abstract-full').style.display = 'none'; document.getElementById('2008.01271v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 August, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 12 figures, 2 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LLNL-JRNL-812984 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. E 102, 053203 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2006.15635">arXiv:2006.15635</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2006.15635">pdf</a>, <a href="https://arxiv.org/format/2006.15635">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.hedp.2021.100928">10.1016/j.hedp.2021.100928 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Comparison of ablators for the polar direct drive exploding pusher platform </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Whitley%2C+H+D">Heather D. Whitley</a>, <a href="/search/physics?searchtype=author&amp;query=Kemp%2C+G+E">G. Elijah Kemp</a>, <a href="/search/physics?searchtype=author&amp;query=Yeamans%2C+C">Charles Yeamans</a>, <a href="/search/physics?searchtype=author&amp;query=Walters%2C+Z">Zachary Walters</a>, <a href="/search/physics?searchtype=author&amp;query=Blue%2C+B+E">Brent E. Blue</a>, <a href="/search/physics?searchtype=author&amp;query=Garbett%2C+W">Warren Garbett</a>, <a href="/search/physics?searchtype=author&amp;query=Schneider%2C+M">Marilyn Schneider</a>, <a href="/search/physics?searchtype=author&amp;query=Craxton%2C+R+S">R. Stephen Craxton</a>, <a href="/search/physics?searchtype=author&amp;query=Garcia%2C+E+M">Emma M. Garcia</a>, <a href="/search/physics?searchtype=author&amp;query=McKenty%2C+P+W">Patrick W. McKenty</a>, <a href="/search/physics?searchtype=author&amp;query=Gatu-Johnson%2C+M">Maria Gatu-Johnson</a>, <a href="/search/physics?searchtype=author&amp;query=Caspersen%2C+K">Kyle Caspersen</a>, <a href="/search/physics?searchtype=author&amp;query=Castor%2C+J+I">John I. Castor</a>, <a href="/search/physics?searchtype=author&amp;query=D%C3%A4ne%2C+M">Markus D盲ne</a>, <a href="/search/physics?searchtype=author&amp;query=Ellison%2C+C+L">C. Leland Ellison</a>, <a href="/search/physics?searchtype=author&amp;query=Gaffney%2C+J">James Gaffney</a>, <a href="/search/physics?searchtype=author&amp;query=Graziani%2C+F+R">Frank R. Graziani</a>, <a href="/search/physics?searchtype=author&amp;query=Klepeis%2C+J">John Klepeis</a>, <a href="/search/physics?searchtype=author&amp;query=Kostinski%2C+N">Natalie Kostinski</a>, <a href="/search/physics?searchtype=author&amp;query=Kritcher%2C+A">Andrea Kritcher</a>, <a href="/search/physics?searchtype=author&amp;query=Lahmann%2C+B">Brandon Lahmann</a>, <a href="/search/physics?searchtype=author&amp;query=Lazicki%2C+A+E">Amy E. Lazicki</a>, <a href="/search/physics?searchtype=author&amp;query=Le%2C+H+P">Hai P. Le</a>, <a href="/search/physics?searchtype=author&amp;query=London%2C+R+A">Richard A. London</a>, <a href="/search/physics?searchtype=author&amp;query=Maddox%2C+B">Brian Maddox</a> , et al. (14 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2006.15635v2-abstract-short" style="display: inline;"> We examine the performance of pure boron, boron carbide, high density carbon, and boron nitride ablators in the polar direct drive exploding pusher (PDXP) platform. The platform uses the polar direct drive configuration at the National Ignition Facility to drive high ion temperatures in a room temperature capsule and has potential applications for plasma physics studies and as a neutron source. Th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.15635v2-abstract-full').style.display = 'inline'; document.getElementById('2006.15635v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2006.15635v2-abstract-full" style="display: none;"> We examine the performance of pure boron, boron carbide, high density carbon, and boron nitride ablators in the polar direct drive exploding pusher (PDXP) platform. The platform uses the polar direct drive configuration at the National Ignition Facility to drive high ion temperatures in a room temperature capsule and has potential applications for plasma physics studies and as a neutron source. The higher tensile strength of these materials compared to plastic enables a thinner ablator to support higher gas pressures, which could help optimize its performance for plasma physics experiments, while ablators containing boron enable the possiblity of collecting addtional data to constrain models of the platform. Applying recently developed and experimentally validated equation of state models for the boron materials, we examine the performance of these materials as ablators in 2D simulations, with particular focus on changes to the ablator and gas areal density, as well as the predicted symmetry of the inherently 2D implosion. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.15635v2-abstract-full').style.display = 'none'; document.getElementById('2006.15635v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 June, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LLNL-JRNL-803851 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2001.11890">arXiv:2001.11890</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2001.11890">pdf</a>, <a href="https://arxiv.org/format/2001.11890">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.solidstatesciences.2020.106376">10.1016/j.solidstatesciences.2020.106376 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Phase transformation in boron under shock compression </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+S">Shuai Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Whitley%2C+H+D">Heather D. Whitley</a>, <a href="/search/physics?searchtype=author&amp;query=Ogitsu%2C+T">Tadashi Ogitsu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2001.11890v1-abstract-short" style="display: inline;"> Using first-principles molecular dynamics, we calculated the equation of state and shock Hugoniot of various boron phases. We find a large mismatch between Hugoniots based on existing knowledge of the equilibrium phase diagram and those measured by shock experiments, which could be reconciled if the $伪$-B$_{12}$/$尾\rightarrow纬$-B$_{28}$ transition is significantly over-pressurized in boron under s&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.11890v1-abstract-full').style.display = 'inline'; document.getElementById('2001.11890v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2001.11890v1-abstract-full" style="display: none;"> Using first-principles molecular dynamics, we calculated the equation of state and shock Hugoniot of various boron phases. We find a large mismatch between Hugoniots based on existing knowledge of the equilibrium phase diagram and those measured by shock experiments, which could be reconciled if the $伪$-B$_{12}$/$尾\rightarrow纬$-B$_{28}$ transition is significantly over-pressurized in boron under shock compression. Our results also indicate that there exists an anomaly and negative Clapeyron slope along the melting curve of boron at 100 GPa and 1500--3000 Kelvin. These results enable in-depth understanding of matter under shock compression, in particular the significance of compression-rate dependence of phase transitions and kinetic effects in experimental measurements. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.11890v1-abstract-full').style.display = 'none'; document.getElementById('2001.11890v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 January, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 5 figures (1 in graphical abstract)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LLNL-JRNL-803936-DRAFT </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Solid State Sciences (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1908.05141">arXiv:1908.05141</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1908.05141">pdf</a>, <a href="https://arxiv.org/format/1908.05141">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> J-PARC Neutrino Beamline Upgrade Technical Design Report </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Abe%2C+K">K. Abe</a>, <a href="/search/physics?searchtype=author&amp;query=Aihara%2C+H">H. Aihara</a>, <a href="/search/physics?searchtype=author&amp;query=Ajmi%2C+A">A. Ajmi</a>, <a href="/search/physics?searchtype=author&amp;query=Alt%2C+C">C. Alt</a>, <a href="/search/physics?searchtype=author&amp;query=Andreopoulos%2C+C">C. Andreopoulos</a>, <a href="/search/physics?searchtype=author&amp;query=Antonova%2C+M">M. Antonova</a>, <a href="/search/physics?searchtype=author&amp;query=Aoki%2C+S">S. Aoki</a>, <a href="/search/physics?searchtype=author&amp;query=Asada%2C+Y">Y. Asada</a>, <a href="/search/physics?searchtype=author&amp;query=Ashida%2C+Y">Y. Ashida</a>, <a href="/search/physics?searchtype=author&amp;query=Atherton%2C+A">A. Atherton</a>, <a href="/search/physics?searchtype=author&amp;query=Atkin%2C+E">E. Atkin</a>, <a href="/search/physics?searchtype=author&amp;query=Ban%2C+S">S. Ban</a>, <a href="/search/physics?searchtype=author&amp;query=Barbato%2C+F+C+T">F. C. T. Barbato</a>, <a href="/search/physics?searchtype=author&amp;query=Barbi%2C+M">M. Barbi</a>, <a href="/search/physics?searchtype=author&amp;query=Barker%2C+G+J">G. J. Barker</a>, <a href="/search/physics?searchtype=author&amp;query=Barr%2C+G">G. Barr</a>, <a href="/search/physics?searchtype=author&amp;query=Batkiewicz%2C+M">M. Batkiewicz</a>, <a href="/search/physics?searchtype=author&amp;query=Beloshapkin%2C+A">A. Beloshapkin</a>, <a href="/search/physics?searchtype=author&amp;query=Berardi%2C+V">V. Berardi</a>, <a href="/search/physics?searchtype=author&amp;query=Berns%2C+L">L. Berns</a>, <a href="/search/physics?searchtype=author&amp;query=Bhadra%2C+S">S. Bhadra</a>, <a href="/search/physics?searchtype=author&amp;query=Bian%2C+J">J. Bian</a>, <a href="/search/physics?searchtype=author&amp;query=Bienstock%2C+S">S. Bienstock</a>, <a href="/search/physics?searchtype=author&amp;query=Blondel%2C+A">A. Blondel</a>, <a href="/search/physics?searchtype=author&amp;query=Bolognesi%2C+S">S. Bolognesi</a> , et al. (360 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1908.05141v1-abstract-short" style="display: inline;"> In this document, technical details of the upgrade plan of the J-PARC neutrino beamline for the extension of the T2K experiment are described. T2K has proposed to accumulate data corresponding to $2\times{}10^{22}$ protons-on-target in the next decade, aiming at an initial observation of CP violation with $3蟽$ or higher significance in the case of maximal CP violation. Methods to increase the neut&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1908.05141v1-abstract-full').style.display = 'inline'; document.getElementById('1908.05141v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1908.05141v1-abstract-full" style="display: none;"> In this document, technical details of the upgrade plan of the J-PARC neutrino beamline for the extension of the T2K experiment are described. T2K has proposed to accumulate data corresponding to $2\times{}10^{22}$ protons-on-target in the next decade, aiming at an initial observation of CP violation with $3蟽$ or higher significance in the case of maximal CP violation. Methods to increase the neutrino beam intensity, which are necessary to achieve the proposed data increase, are described. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1908.05141v1-abstract-full').style.display = 'none'; document.getElementById('1908.05141v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 August, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2019. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1901.03047">arXiv:1901.03047</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1901.03047">pdf</a>, <a href="https://arxiv.org/format/1901.03047">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> </div> </div> <p class="title is-5 mathjax"> A New Approach for Measuring the Muon Anomalous Magnetic Moment and Electric Dipole Moment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Abe%2C+M">M. Abe</a>, <a href="/search/physics?searchtype=author&amp;query=Bae%2C+S">S. Bae</a>, <a href="/search/physics?searchtype=author&amp;query=Beer%2C+G">G. Beer</a>, <a href="/search/physics?searchtype=author&amp;query=Bunce%2C+G">G. Bunce</a>, <a href="/search/physics?searchtype=author&amp;query=Choi%2C+H">H. Choi</a>, <a href="/search/physics?searchtype=author&amp;query=Choi%2C+S">S. Choi</a>, <a href="/search/physics?searchtype=author&amp;query=Chung%2C+M">M. Chung</a>, <a href="/search/physics?searchtype=author&amp;query=da+Silva%2C+W">W. da Silva</a>, <a href="/search/physics?searchtype=author&amp;query=Eidelman%2C+S">S. Eidelman</a>, <a href="/search/physics?searchtype=author&amp;query=Finger%2C+M">M. Finger</a>, <a href="/search/physics?searchtype=author&amp;query=Fukao%2C+Y">Y. Fukao</a>, <a href="/search/physics?searchtype=author&amp;query=Fukuyama%2C+T">T. Fukuyama</a>, <a href="/search/physics?searchtype=author&amp;query=Haciomeroglu%2C+S">S. Haciomeroglu</a>, <a href="/search/physics?searchtype=author&amp;query=Hasegawa%2C+K">K. Hasegawa</a>, <a href="/search/physics?searchtype=author&amp;query=Hayasaka%2C+K">K. Hayasaka</a>, <a href="/search/physics?searchtype=author&amp;query=Hayashizaki%2C+N">N. Hayashizaki</a>, <a href="/search/physics?searchtype=author&amp;query=Hisamatsu%2C+H">H. Hisamatsu</a>, <a href="/search/physics?searchtype=author&amp;query=Iijima%2C+T">T. Iijima</a>, <a href="/search/physics?searchtype=author&amp;query=Iinuma%2C+H">H. Iinuma</a>, <a href="/search/physics?searchtype=author&amp;query=Inami%2C+K">K. Inami</a>, <a href="/search/physics?searchtype=author&amp;query=Ikeda%2C+H">H. Ikeda</a>, <a href="/search/physics?searchtype=author&amp;query=Ikeno%2C+M">M. Ikeno</a>, <a href="/search/physics?searchtype=author&amp;query=Ishida%2C+K">K. Ishida</a>, <a href="/search/physics?searchtype=author&amp;query=Itahashi%2C+T">T. Itahashi</a>, <a href="/search/physics?searchtype=author&amp;query=Iwasaki%2C+M">M. Iwasaki</a> , et al. (71 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1901.03047v2-abstract-short" style="display: inline;"> This paper introduces a new approach to measure the muon magnetic moment anomaly $a_渭 = (g-2)/2$, and the muon electric dipole moment (EDM) $d_渭$ at the J-PARC muon facility. The goal of our experiment is to measure $a_渭$ and $d_渭$ using an independent method with a factor of 10 lower muon momentum, and a factor of 20 smaller diameter storage-ring solenoid compared with previous and ongoing muon&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1901.03047v2-abstract-full').style.display = 'inline'; document.getElementById('1901.03047v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1901.03047v2-abstract-full" style="display: none;"> This paper introduces a new approach to measure the muon magnetic moment anomaly $a_渭 = (g-2)/2$, and the muon electric dipole moment (EDM) $d_渭$ at the J-PARC muon facility. The goal of our experiment is to measure $a_渭$ and $d_渭$ using an independent method with a factor of 10 lower muon momentum, and a factor of 20 smaller diameter storage-ring solenoid compared with previous and ongoing muon $g-2$ experiments with unprecedented quality of the storage magnetic field. Additional significant differences from the present experimental method include a factor of 1,000 smaller transverse emittance of the muon beam (reaccelerated thermal muon beam), its efficient vertical injection into the solenoid, and tracking each decay positron from muon decay to obtain its momentum vector. The precision goal for $a_渭$ is statistical uncertainty of 450 part per billion (ppb), similar to the present experimental uncertainty, and a systematic uncertainty less than 70 ppb. The goal for EDM is a sensitivity of $1.5\times 10^{-21}~e\cdot\mbox{cm}$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1901.03047v2-abstract-full').style.display = 'none'; document.getElementById('1901.03047v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 March, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 January, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 pages, 14 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1812.09018">arXiv:1812.09018</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1812.09018">pdf</a>, <a href="https://arxiv.org/format/1812.09018">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/ptep/ptz125">10.1093/ptep/ptz125 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> COMET Phase-I Technical Design Report </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=The+COMET+Collaboration"> The COMET Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Abramishvili%2C+R">R. Abramishvili</a>, <a href="/search/physics?searchtype=author&amp;query=Adamov%2C+G">G. Adamov</a>, <a href="/search/physics?searchtype=author&amp;query=Akhmetshin%2C+R+R">R. R. Akhmetshin</a>, <a href="/search/physics?searchtype=author&amp;query=Allin%2C+A">A. Allin</a>, <a href="/search/physics?searchtype=author&amp;query=Ang%C3%A9lique%2C+J+C">J. C. Ang茅lique</a>, <a href="/search/physics?searchtype=author&amp;query=Anishchik%2C+V">V. Anishchik</a>, <a href="/search/physics?searchtype=author&amp;query=Aoki%2C+M">M. Aoki</a>, <a href="/search/physics?searchtype=author&amp;query=Aznabayev%2C+D">D. Aznabayev</a>, <a href="/search/physics?searchtype=author&amp;query=Bagaturia%2C+I">I. Bagaturia</a>, <a href="/search/physics?searchtype=author&amp;query=Ban%2C+G">G. Ban</a>, <a href="/search/physics?searchtype=author&amp;query=Ban%2C+Y">Y. Ban</a>, <a href="/search/physics?searchtype=author&amp;query=Bauer%2C+D">D. Bauer</a>, <a href="/search/physics?searchtype=author&amp;query=Baygarashev%2C+D">D. Baygarashev</a>, <a href="/search/physics?searchtype=author&amp;query=Bondar%2C+A+E">A. E. Bondar</a>, <a href="/search/physics?searchtype=author&amp;query=C%C3%A2rloganu%2C+C">C. C芒rloganu</a>, <a href="/search/physics?searchtype=author&amp;query=Carniol%2C+B">B. Carniol</a>, <a href="/search/physics?searchtype=author&amp;query=Chau%2C+T+T">T. T. Chau</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+J+K">J. K. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+S+J">S. J. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Cheung%2C+Y+E">Y. E. Cheung</a>, <a href="/search/physics?searchtype=author&amp;query=da+Silva%2C+W">W. da Silva</a>, <a href="/search/physics?searchtype=author&amp;query=Dauncey%2C+P+D">P. D. Dauncey</a>, <a href="/search/physics?searchtype=author&amp;query=Densham%2C+C">C. Densham</a>, <a href="/search/physics?searchtype=author&amp;query=Devidze%2C+G">G. Devidze</a> , et al. (170 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1812.09018v3-abstract-short" style="display: inline;"> The Technical Design for the COMET Phase-I experiment is presented in this paper. COMET is an experiment at J-PARC, Japan, which will search for neutrinoless conversion of muons into electrons in the field of an aluminium nucleus ($渭-e$ conversion, $渭^- N \to e^- N$); a lepton flavor violating process. The experimental sensitivity goal for this process in the Phase-I experiment is&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1812.09018v3-abstract-full').style.display = 'inline'; document.getElementById('1812.09018v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1812.09018v3-abstract-full" style="display: none;"> The Technical Design for the COMET Phase-I experiment is presented in this paper. COMET is an experiment at J-PARC, Japan, which will search for neutrinoless conversion of muons into electrons in the field of an aluminium nucleus ($渭-e$ conversion, $渭^- N \to e^- N$); a lepton flavor violating process. The experimental sensitivity goal for this process in the Phase-I experiment is $3.1\times10^{-15}$, or 90 % upper limit of branching ratio of $7\times 10^{-15}$, which is a factor of 100 improvement over the existing limit. The expected number of background events is 0.032. To achieve the target sensitivity and background level, the 3.2 kW 8 GeV proton beam from J-PARC will be used. Two types of detectors, CyDet and StrECAL, will be used for detecting the \mue conversion events, and for measuring the beam-related background events in view of the Phase-II experiment, respectively. Results from simulation on signal and background estimations are also described. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1812.09018v3-abstract-full').style.display = 'none'; document.getElementById('1812.09018v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 May, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 December, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">A minor correction applied in Eq. 3</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Progress of Theoretical and Experimental Physics, Volume 2020, Issue 3, March 2020, 033C01 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1804.11322">arXiv:1804.11322</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1804.11322">pdf</a>, <a href="https://arxiv.org/format/1804.11322">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevE.98.023205">10.1103/PhysRevE.98.023205 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Theoretical and experimental investigation of the equation of state of boron plasmas </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+S">Shuai Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Militzer%2C+B">Burkhard Militzer</a>, <a href="/search/physics?searchtype=author&amp;query=Gregor%2C+M+C">Michelle C. Gregor</a>, <a href="/search/physics?searchtype=author&amp;query=Caspersen%2C+K">Kyle Caspersen</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+L+H">Lin H. Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Ogitsu%2C+T">Tadashi Ogitsu</a>, <a href="/search/physics?searchtype=author&amp;query=Swift%2C+D">Damian Swift</a>, <a href="/search/physics?searchtype=author&amp;query=Lazicki%2C+A">Amy Lazicki</a>, <a href="/search/physics?searchtype=author&amp;query=Erskine%2C+D">D. Erskine</a>, <a href="/search/physics?searchtype=author&amp;query=London%2C+R+A">Richard A. London</a>, <a href="/search/physics?searchtype=author&amp;query=Celliers%2C+P+M">P. M. Celliers</a>, <a href="/search/physics?searchtype=author&amp;query=Nilsen%2C+J">Joseph Nilsen</a>, <a href="/search/physics?searchtype=author&amp;query=Sterne%2C+P+A">Philip A. Sterne</a>, <a href="/search/physics?searchtype=author&amp;query=Whitley%2C+H+D">Heather D. Whitley</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1804.11322v1-abstract-short" style="display: inline;"> We report a theoretical equation of state (EOS) table for boron across a wide range of temperatures (5.1$\times$10$^4$-5.2$\times$10$^8$ K) and densities (0.25-49 g/cm$^3$), and experimental shock Hugoniot data at unprecedented high pressures (5608$\pm$118 GPa). The calculations are performed with full, first-principles methods combining path integral Monte Carlo (PIMC) at high temperatures and de&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1804.11322v1-abstract-full').style.display = 'inline'; document.getElementById('1804.11322v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1804.11322v1-abstract-full" style="display: none;"> We report a theoretical equation of state (EOS) table for boron across a wide range of temperatures (5.1$\times$10$^4$-5.2$\times$10$^8$ K) and densities (0.25-49 g/cm$^3$), and experimental shock Hugoniot data at unprecedented high pressures (5608$\pm$118 GPa). The calculations are performed with full, first-principles methods combining path integral Monte Carlo (PIMC) at high temperatures and density functional theory molecular dynamics (DFT-MD) methods at lower temperatures. PIMC and DFT-MD cross-validate each other by providing coherent EOS (difference $&lt;$1.5 Hartree/boron in energy and $&lt;$5% in pressure) at 5.1$\times$10$^5$ K. The Hugoniot measurement is conducted at the National Ignition Facility using a planar shock platform. The pressure-density relation found in our shock experiment is on top of the shock Hugoniot profile predicted with our first-principles EOS and a semi-empirical EOS table (LEOS 50). We investigate the self diffusivity and the effect of thermal and pressure-driven ionization on the EOS and shock compression behavior in high pressure and temperature conditions We study the performance sensitivity of a polar direct-drive exploding pusher platform to pressure variations based on comparison of the first-principles calculations with LEOS 50 via 1D hydrodynamic simulations. The results are valuable for future theoretical and experimental studies and engineering design in high energy density research. (LLNL-JRNL-748227) <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1804.11322v1-abstract-full').style.display = 'none'; document.getElementById('1804.11322v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 April, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 9 figures, 2 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. E 98, 023205 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1705.09448">arXiv:1705.09448</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1705.09448">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.5170/CERN-2015-005.61">10.5170/CERN-2015-005.61 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Insertion Magnets </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Ambrosio%2C+G">G. Ambrosio</a>, <a href="/search/physics?searchtype=author&amp;query=Anerella%2C+M">M. Anerella</a>, <a href="/search/physics?searchtype=author&amp;query=Bossert%2C+R">R. Bossert</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+D">D. Cheng</a>, <a href="/search/physics?searchtype=author&amp;query=Chlachidze%2C+G">G. Chlachidze</a>, <a href="/search/physics?searchtype=author&amp;query=Dietderich%2C+D">D. Dietderich</a>, <a href="/search/physics?searchtype=author&amp;query=Ramos%2C+D+D">D Duarte Ramos</a>, <a href="/search/physics?searchtype=author&amp;query=Fabbricatore%2C+P">P. Fabbricatore</a>, <a href="/search/physics?searchtype=author&amp;query=Farinon%2C+S">S. Farinon</a>, <a href="/search/physics?searchtype=author&amp;query=Felice%2C+H">H. Felice</a>, <a href="/search/physics?searchtype=author&amp;query=Ferracin%2C+P">P. Ferracin</a>, <a href="/search/physics?searchtype=author&amp;query=Fessia%2C+P">P. Fessia</a>, <a href="/search/physics?searchtype=author&amp;query=Matos%2C+J+G">J. Garcia Matos</a>, <a href="/search/physics?searchtype=author&amp;query=Ghosh%2C+A">A. Ghosh</a>, <a href="/search/physics?searchtype=author&amp;query=Hagen%2C+P">P. Hagen</a>, <a href="/search/physics?searchtype=author&amp;query=Bermudez%2C+S+I">S. Izquierdo Bermudez</a>, <a href="/search/physics?searchtype=author&amp;query=Juchno%2C+M">M. Juchno</a>, <a href="/search/physics?searchtype=author&amp;query=Krave%2C+S">S. Krave</a>, <a href="/search/physics?searchtype=author&amp;query=Marchevsky%2C+M">M. Marchevsky</a>, <a href="/search/physics?searchtype=author&amp;query=Nakamoto%2C+T">T. Nakamoto</a>, <a href="/search/physics?searchtype=author&amp;query=Ogitsu%2C+T">T. Ogitsu</a>, <a href="/search/physics?searchtype=author&amp;query=Perez%2C+J+C">J. C. Perez</a>, <a href="/search/physics?searchtype=author&amp;query=Prin%2C+H">H. Prin</a>, <a href="/search/physics?searchtype=author&amp;query=Rifflet%2C+J+M">J. M. Rifflet</a>, <a href="/search/physics?searchtype=author&amp;query=Sabbi%2C+G+L">G. L. Sabbi</a> , et al. (12 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1705.09448v1-abstract-short" style="display: inline;"> Chapter 3 in High-Luminosity Large Hadron Collider (HL-LHC) : Preliminary Design Report. The Large Hadron Collider (LHC) is one of the largest scientific instruments ever built. Since opening up a new energy frontier for exploration in 2010, it has gathered a global user community of about 7,000 scientists working in fundamental particle physics and the physics of hadronic matter at extreme temper&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1705.09448v1-abstract-full').style.display = 'inline'; document.getElementById('1705.09448v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1705.09448v1-abstract-full" style="display: none;"> Chapter 3 in High-Luminosity Large Hadron Collider (HL-LHC) : Preliminary Design Report. The Large Hadron Collider (LHC) is one of the largest scientific instruments ever built. Since opening up a new energy frontier for exploration in 2010, it has gathered a global user community of about 7,000 scientists working in fundamental particle physics and the physics of hadronic matter at extreme temperature and density. To sustain and extend its discovery potential, the LHC will need a major upgrade in the 2020s. This will increase its luminosity (rate of collisions) by a factor of five beyond the original design value and the integrated luminosity (total collisions created) by a factor ten. The LHC is already a highly complex and exquisitely optimised machine so this upgrade must be carefully conceived and will require about ten years to implement. The new configuration, known as High Luminosity LHC (HL-LHC), will rely on a number of key innovations that push accelerator technology beyond its present limits. Among these are cutting-edge 11-12 tesla superconducting magnets, compact superconducting cavities for beam rotation with ultra-precise phase control, new technology and physical processes for beam collimation and 300 metre-long high-power superconducting links with negligible energy dissipation. The present document describes the technologies and components that will be used to realise the project and is intended to serve as the basis for the detailed engineering design of HL-LHC. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1705.09448v1-abstract-full').style.display = 'none'; document.getElementById('1705.09448v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 May, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, Chapter 3 in High-Luminosity Large Hadron Collider (HL-LHC) : Preliminary Design Report</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> CERN Yellow Report CERN 2015-005, pp. 61-79 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1610.07850">arXiv:1610.07850</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1610.07850">pdf</a>, <a href="https://arxiv.org/format/1610.07850">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevAccelBeams.20.030101">10.1103/PhysRevAccelBeams.20.030101 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> MuSIC: delivering the world&#39;s most intense muon beam </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Cook%2C+S">S. Cook</a>, <a href="/search/physics?searchtype=author&amp;query=D%27Arcy%2C+R">R. D&#39;Arcy</a>, <a href="/search/physics?searchtype=author&amp;query=Edmonds%2C+A">A. Edmonds</a>, <a href="/search/physics?searchtype=author&amp;query=Fukuda%2C+M">M. Fukuda</a>, <a href="/search/physics?searchtype=author&amp;query=Hatanaka%2C+K">K. Hatanaka</a>, <a href="/search/physics?searchtype=author&amp;query=Hino%2C+Y">Y. Hino</a>, <a href="/search/physics?searchtype=author&amp;query=Kuno%2C+Y">Y. Kuno</a>, <a href="/search/physics?searchtype=author&amp;query=Lancaster%2C+M">M. Lancaster</a>, <a href="/search/physics?searchtype=author&amp;query=Mori%2C+Y">Y. Mori</a>, <a href="/search/physics?searchtype=author&amp;query=Ogitsu%2C+T">T. Ogitsu</a>, <a href="/search/physics?searchtype=author&amp;query=Sakamoto%2C+H">H. Sakamoto</a>, <a href="/search/physics?searchtype=author&amp;query=Sato%2C+A">A. Sato</a>, <a href="/search/physics?searchtype=author&amp;query=Tran%2C+N+H">N. H. Tran</a>, <a href="/search/physics?searchtype=author&amp;query=Truong%2C+N+M">N. M. Truong</a>, <a href="/search/physics?searchtype=author&amp;query=Wing%2C+M">M. Wing</a>, <a href="/search/physics?searchtype=author&amp;query=Yamamoto%2C+A">A. Yamamoto</a>, <a href="/search/physics?searchtype=author&amp;query=Yoshida%2C+M">M. Yoshida</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1610.07850v1-abstract-short" style="display: inline;"> A new muon beamline, muon science innovative channel (MuSIC), was set up at the Research Centre for Nuclear Physics (RCNP), Osaka University, in Osaka, Japan, using the 392 MeV proton beam impinging on a target. The production of an intense muon beam relies on the efficient capture of pions, which subsequently decay to muons, using a novel superconducting solenoid magnet system. After the pion-cap&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1610.07850v1-abstract-full').style.display = 'inline'; document.getElementById('1610.07850v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1610.07850v1-abstract-full" style="display: none;"> A new muon beamline, muon science innovative channel (MuSIC), was set up at the Research Centre for Nuclear Physics (RCNP), Osaka University, in Osaka, Japan, using the 392 MeV proton beam impinging on a target. The production of an intense muon beam relies on the efficient capture of pions, which subsequently decay to muons, using a novel superconducting solenoid magnet system. After the pion-capture solenoid the first $36^\circ$ of the curved muon transport line was commissioned and the muon flux was measured. In order to detect muons, a target of either copper or magnesium was placed to stop muons at the end of the muon beamline. Two stations of plastic scintillators located upstream and downstream from the muon target were used to reconstruct the decay spectrum of muons. In a complementary method to detect negatively-charged muons, the X-ray spectrum yielded by muonic atoms in the target were measured in a germanium detector. Measurements, at a proton beam current of 6 pA, yielded $(10.4 \pm 2.7) \times 10^5$ muons per Watt of proton beam power ($渭^+$ and $渭^-$), far in excess of other facilities. At full beam power (400 W), this implies a rate of muons of $(4.2 \pm 1.1) \times 10^8$ muons s$^{-1}$, amongst the highest in the world. The number of $渭^-$ measured was about a factor of 10 lower, again by far the most efficient muon beam produced. The set up is a prototype for future experiments requiring a high-intensity muon beam, such as a muon collider or neutrino factory, or the search for rare muon decays which would be a signature for phenomena beyond the Standard Model of particle physics. Such a muon beam can also be used in other branches of physics, nuclear and condensed matter, as well as other areas of scientific research. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1610.07850v1-abstract-full').style.display = 'none'; document.getElementById('1610.07850v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 October, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 5 figures, submitted to Phys. Rev. ST-Acc. Beams</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1111.3119">arXiv:1111.3119</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1111.3119">pdf</a>, <a href="https://arxiv.org/format/1111.3119">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nima.2012.03.023">10.1016/j.nima.2012.03.023 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Measurements of the T2K neutrino beam properties using the INGRID on-axis near detector </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Abe%2C+K">K. Abe</a>, <a href="/search/physics?searchtype=author&amp;query=Abgrall%2C+N">N. Abgrall</a>, <a href="/search/physics?searchtype=author&amp;query=Ajima%2C+Y">Y. Ajima</a>, <a href="/search/physics?searchtype=author&amp;query=Aihara%2C+H">H. Aihara</a>, <a href="/search/physics?searchtype=author&amp;query=Albert%2C+J+B">J. B. Albert</a>, <a href="/search/physics?searchtype=author&amp;query=Andreopoulos%2C+C">C. Andreopoulos</a>, <a href="/search/physics?searchtype=author&amp;query=Andrieu%2C+B">B. Andrieu</a>, <a href="/search/physics?searchtype=author&amp;query=Anerella%2C+M+D">M. D. Anerella</a>, <a href="/search/physics?searchtype=author&amp;query=Aoki%2C+S">S. Aoki</a>, <a href="/search/physics?searchtype=author&amp;query=Araoka%2C+O">O. Araoka</a>, <a href="/search/physics?searchtype=author&amp;query=Argyriades%2C+J">J. Argyriades</a>, <a href="/search/physics?searchtype=author&amp;query=Ariga%2C+A">A. Ariga</a>, <a href="/search/physics?searchtype=author&amp;query=Ariga%2C+T">T. Ariga</a>, <a href="/search/physics?searchtype=author&amp;query=Assylbekov%2C+S">S. Assylbekov</a>, <a href="/search/physics?searchtype=author&amp;query=Autiero%2C+D">D. Autiero</a>, <a href="/search/physics?searchtype=author&amp;query=Badertscher%2C+A">A. Badertscher</a>, <a href="/search/physics?searchtype=author&amp;query=Barbi%2C+M">M. Barbi</a>, <a href="/search/physics?searchtype=author&amp;query=Barker%2C+G+J">G. J. Barker</a>, <a href="/search/physics?searchtype=author&amp;query=Barr%2C+G">G. Barr</a>, <a href="/search/physics?searchtype=author&amp;query=Bass%2C+M">M. Bass</a>, <a href="/search/physics?searchtype=author&amp;query=Batkiewicz%2C+M">M. Batkiewicz</a>, <a href="/search/physics?searchtype=author&amp;query=Bay%2C+F">F. Bay</a>, <a href="/search/physics?searchtype=author&amp;query=Bentham%2C+S">S. Bentham</a>, <a href="/search/physics?searchtype=author&amp;query=Berardi%2C+V">V. Berardi</a>, <a href="/search/physics?searchtype=author&amp;query=Berger%2C+B+E">B. E. Berger</a> , et al. (407 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1111.3119v1-abstract-short" style="display: inline;"> Precise measurement of neutrino beam direction and intensity was achieved based on a new concept with modularized neutrino detectors. INGRID (Interactive Neutrino GRID) is an on-axis near detector for the T2K long baseline neutrino oscillation experiment. INGRID consists of 16 identical modules arranged in horizontal and vertical arrays around the beam center. The module has a sandwich structure o&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1111.3119v1-abstract-full').style.display = 'inline'; document.getElementById('1111.3119v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1111.3119v1-abstract-full" style="display: none;"> Precise measurement of neutrino beam direction and intensity was achieved based on a new concept with modularized neutrino detectors. INGRID (Interactive Neutrino GRID) is an on-axis near detector for the T2K long baseline neutrino oscillation experiment. INGRID consists of 16 identical modules arranged in horizontal and vertical arrays around the beam center. The module has a sandwich structure of iron target plates and scintillator trackers. INGRID directly monitors the muon neutrino beam profile center and intensity using the number of observed neutrino events in each module. The neutrino beam direction is measured with accuracy better than 0.4 mrad from the measured profile center. The normalized event rate is measured with 4% precision. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1111.3119v1-abstract-full').style.display = 'none'; document.getElementById('1111.3119v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 November, 2011; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2011. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">32 pages, 27 figures, submitted to Nucl. Instr. and Meth. A</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1110.1125">arXiv:1110.1125</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1110.1125">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> </div> </div> <p class="title is-5 mathjax"> J-PARC MUSE H-line optimization for the g-2 and MuHFS experiments </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Toyoda%2C+A">A. Toyoda</a>, <a href="/search/physics?searchtype=author&amp;query=Fujiwara%2C+Y">Y. Fujiwara</a>, <a href="/search/physics?searchtype=author&amp;query=Fukao%2C+Y">Y. Fukao</a>, <a href="/search/physics?searchtype=author&amp;query=Kamigaito%2C+O">O. Kamigaito</a>, <a href="/search/physics?searchtype=author&amp;query=Kawamura%2C+N">N. Kawamura</a>, <a href="/search/physics?searchtype=author&amp;query=Matsuda%2C+Y">Y. Matsuda</a>, <a href="/search/physics?searchtype=author&amp;query=Mibe%2C+T">T. Mibe</a>, <a href="/search/physics?searchtype=author&amp;query=Ogitsu%2C+T">T. Ogitsu</a>, <a href="/search/physics?searchtype=author&amp;query=Saito%2C+N">N. Saito</a>, <a href="/search/physics?searchtype=author&amp;query=Sasaki%2C+K">K. Sasaki</a>, <a href="/search/physics?searchtype=author&amp;query=Shimomura%2C+K">K. Shimomura</a>, <a href="/search/physics?searchtype=author&amp;query=Sugano%2C+M">M. Sugano</a>, <a href="/search/physics?searchtype=author&amp;query=Tanaka%2C+K">K. Tanaka</a>, <a href="/search/physics?searchtype=author&amp;query=Tomono%2C+D">D. Tomono</a>, <a href="/search/physics?searchtype=author&amp;query=Torii%2C+H+A">H. A. Torii</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1110.1125v1-abstract-short" style="display: inline;"> Significant deviation of the anomalous magnetic moment value (g-2) observed by the muon g-2 experiment should be confirmed by the other experiment. This value is experimentally determined by frequency difference observed by the g-2/EDM experiment and muon magnetic moment observed by the muonium hyperfine splitting experiment (MuHFS). Both two experiments are planned to be performed at H-line of th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1110.1125v1-abstract-full').style.display = 'inline'; document.getElementById('1110.1125v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1110.1125v1-abstract-full" style="display: none;"> Significant deviation of the anomalous magnetic moment value (g-2) observed by the muon g-2 experiment should be confirmed by the other experiment. This value is experimentally determined by frequency difference observed by the g-2/EDM experiment and muon magnetic moment observed by the muonium hyperfine splitting experiment (MuHFS). Both two experiments are planned to be performed at H-line of the J-PARC/MUSE under construction. We optimized the beamline layout for each experiment with G4beamline. For both experiments, statistics is the most important, thus beamline transmission efficiency should be maximized. Especially for the g-2, the purpose of the present effort is to compromise between small beam size and small leakage field. For the MuHFS, it is crucial to minimize leakage field at around final focus position, and to get all stopped muons within good field region of MuHFS magnet. Conceptual design of the several final focusing systems will be presented. contribution (or invited paper) to NUFACT 11, XIIIth International Workshop on Neutrino Factories, Super beams and Beta beams, 1-6 August 2011, CERN and University of Geneva <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1110.1125v1-abstract-full').style.display = 'none'; document.getElementById('1110.1125v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 October, 2011; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2011. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 pages, 5 figures, contribution (or invited paper) to NUFACT 11, XIIIth International Workshop on Neutrino Factories, Super beams and Beta beams, 1-6 August 2011, CERN and University of Geneva</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1106.1238">arXiv:1106.1238</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1106.1238">pdf</a>, <a href="https://arxiv.org/ps/1106.1238">ps</a>, <a href="https://arxiv.org/format/1106.1238">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nima.2011.06.067">10.1016/j.nima.2011.06.067 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The T2K Experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=T2K+Collaboration"> T2K Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Abe%2C+K">K. Abe</a>, <a href="/search/physics?searchtype=author&amp;query=Abgrall%2C+N">N. Abgrall</a>, <a href="/search/physics?searchtype=author&amp;query=Aihara%2C+H">H. Aihara</a>, <a href="/search/physics?searchtype=author&amp;query=Ajima%2C+Y">Y. Ajima</a>, <a href="/search/physics?searchtype=author&amp;query=Albert%2C+J+B">J. B. Albert</a>, <a href="/search/physics?searchtype=author&amp;query=Allan%2C+D">D. Allan</a>, <a href="/search/physics?searchtype=author&amp;query=Amaudruz%2C+P+-">P. -A. Amaudruz</a>, <a href="/search/physics?searchtype=author&amp;query=Andreopoulos%2C+C">C. Andreopoulos</a>, <a href="/search/physics?searchtype=author&amp;query=Andrieu%2C+B">B. Andrieu</a>, <a href="/search/physics?searchtype=author&amp;query=Anerella%2C+M+D">M. D. Anerella</a>, <a href="/search/physics?searchtype=author&amp;query=Angelsen%2C+C">C. Angelsen</a>, <a href="/search/physics?searchtype=author&amp;query=Aoki%2C+S">S. Aoki</a>, <a href="/search/physics?searchtype=author&amp;query=Araoka%2C+O">O. Araoka</a>, <a href="/search/physics?searchtype=author&amp;query=Argyriades%2C+J">J. Argyriades</a>, <a href="/search/physics?searchtype=author&amp;query=Ariga%2C+A">A. Ariga</a>, <a href="/search/physics?searchtype=author&amp;query=Ariga%2C+T">T. Ariga</a>, <a href="/search/physics?searchtype=author&amp;query=Assylbekov%2C+S">S. Assylbekov</a>, <a href="/search/physics?searchtype=author&amp;query=de+Andr%C3%A9%2C+J+P+A+M">J. P. A. M. de Andr茅</a>, <a href="/search/physics?searchtype=author&amp;query=Autiero%2C+D">D. Autiero</a>, <a href="/search/physics?searchtype=author&amp;query=Badertscher%2C+A">A. Badertscher</a>, <a href="/search/physics?searchtype=author&amp;query=Ballester%2C+O">O. Ballester</a>, <a href="/search/physics?searchtype=author&amp;query=Barbi%2C+M">M. Barbi</a>, <a href="/search/physics?searchtype=author&amp;query=Barker%2C+G+J">G. J. Barker</a>, <a href="/search/physics?searchtype=author&amp;query=Baron%2C+P">P. Baron</a> , et al. (499 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1106.1238v2-abstract-short" style="display: inline;"> The T2K experiment is a long-baseline neutrino oscillation experiment. Its main goal is to measure the last unknown lepton sector mixing angle 胃_{13} by observing 谓_e appearance in a 谓_渭 beam. It also aims to make a precision measurement of the known oscillation parameters, 螖m^{2}_{23} and sin^{2} 2胃_{23}, via 谓_渭 disappearance studies. Other goals of the experiment include various neutrino cross&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1106.1238v2-abstract-full').style.display = 'inline'; document.getElementById('1106.1238v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1106.1238v2-abstract-full" style="display: none;"> The T2K experiment is a long-baseline neutrino oscillation experiment. Its main goal is to measure the last unknown lepton sector mixing angle 胃_{13} by observing 谓_e appearance in a 谓_渭 beam. It also aims to make a precision measurement of the known oscillation parameters, 螖m^{2}_{23} and sin^{2} 2胃_{23}, via 谓_渭 disappearance studies. Other goals of the experiment include various neutrino cross section measurements and sterile neutrino searches. The experiment uses an intense proton beam generated by the J-PARC accelerator in Tokai, Japan, and is composed of a neutrino beamline, a near detector complex (ND280), and a far detector (Super-Kamiokande) located 295 km away from J-PARC. This paper provides a comprehensive review of the instrumentation aspect of the T2K experiment and a summary of the vital information for each subsystem. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1106.1238v2-abstract-full').style.display = 'none'; document.getElementById('1106.1238v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 June, 2011; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 June, 2011; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2011. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">33 pages, 32 figures, Submitted and accepted by NIM A. Editor: Prof. Chang Kee Jung, Department of Physics and Astronomy, SUNY Stony Brook, chang.jung@sunysb.edu, 631-632-8108 Submit Edited to remove line numbers</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0907.0515">arXiv:0907.0515</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/0907.0515">pdf</a>, <a href="https://arxiv.org/ps/0907.0515">ps</a>, <a href="https://arxiv.org/format/0907.0515">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> </div> <p class="title is-5 mathjax"> Summary of the J-PARC UCN Taskforce </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Taskforce%2C+T+J+U">The J-Parc Ucn Taskforce</a>, <a href="/search/physics?searchtype=author&amp;query=%3A"> :</a>, <a href="/search/physics?searchtype=author&amp;query=Aso%2C+T">Tomokazu Aso</a>, <a href="/search/physics?searchtype=author&amp;query=Futakawa%2C+M">Masatoshi Futakawa</a>, <a href="/search/physics?searchtype=author&amp;query=Haruyama%2C+T">Tomiyoshi Haruyama</a>, <a href="/search/physics?searchtype=author&amp;query=Hasegawa%2C+K">Kazuo Hasegawa</a>, <a href="/search/physics?searchtype=author&amp;query=Ikeda%2C+Y">Yujiro Ikeda</a>, <a href="/search/physics?searchtype=author&amp;query=Ikegami%2C+M">Masanori Ikegami</a>, <a href="/search/physics?searchtype=author&amp;query=Kamiya%2C+Y">Yukihide Kamiya</a>, <a href="/search/physics?searchtype=author&amp;query=Kato%2C+T">Takashi Kato</a>, <a href="/search/physics?searchtype=author&amp;query=Kimura%2C+N">Nobuhiro Kimura</a>, <a href="/search/physics?searchtype=author&amp;query=Kiyanagi%2C+Y">Yoshiaki Kiyanagi</a>, <a href="/search/physics?searchtype=author&amp;query=Maekawa%2C+Y">Yasuo Maekawa</a>, <a href="/search/physics?searchtype=author&amp;query=Masuda%2C+Y">Yasuhiro Masuda</a>, <a href="/search/physics?searchtype=author&amp;query=Miura%2C+T">Taichi Miura</a>, <a href="/search/physics?searchtype=author&amp;query=Numajiri%2C+M">Masaharu Numajiri</a>, <a href="/search/physics?searchtype=author&amp;query=Ogitsu%2C+T">Toru Ogitsu</a>, <a href="/search/physics?searchtype=author&amp;query=Ouchi%2C+N">Nobuo Ouchi</a>, <a href="/search/physics?searchtype=author&amp;query=Sato%2C+K">Kotaro Sato</a>, <a href="/search/physics?searchtype=author&amp;query=Shimizu%2C+H">Hirohiko Shimizu</a>, <a href="/search/physics?searchtype=author&amp;query=Takasaki%2C+E">Eiichi Takasaki</a>, <a href="/search/physics?searchtype=author&amp;query=Takenaka%2C+N">Nobuyuki Takenaka</a>, <a href="/search/physics?searchtype=author&amp;query=Yamamoto%2C+A">Akira Yamamoto</a>, <a href="/search/physics?searchtype=author&amp;query=Yamashita%2C+S">Satoru Yamashita</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0907.0515v1-abstract-short" style="display: inline;"> Discussions in the taskforce meetings in the period of Jan.-Mar. 2009 on the technical possibility of the ultracold neutron (UCN) source at the Japan Proton Accelerator Research Complex (J-PARC) is summarized. </span> <span class="abstract-full has-text-grey-dark mathjax" id="0907.0515v1-abstract-full" style="display: none;"> Discussions in the taskforce meetings in the period of Jan.-Mar. 2009 on the technical possibility of the ultracold neutron (UCN) source at the Japan Proton Accelerator Research Complex (J-PARC) is summarized. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0907.0515v1-abstract-full').style.display = 'none'; document.getElementById('0907.0515v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 July, 2009; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2009. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 16 figures</span> </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10