CINXE.COM
Sheaf of modules - Wikipedia
<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>Sheaf of modules - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy", "wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"4bbe3780-2867-4c32-9590-9838adeb9c1b","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Sheaf_of_modules","wgTitle":"Sheaf of modules","wgCurRevisionId":1256734742,"wgRevisionId":1256734742,"wgArticleId":44887605,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["Harv and Sfn no-target errors","Articles with short description","Short description with empty Wikidata description","Wikipedia articles that are too technical from November 2023","All articles that are too technical","Articles to be expanded from January 2016","All articles to be expanded","Sheaf theory"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName":"Sheaf_of_modules","wgRelevantArticleId":44887605, "wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":20000,"wgRelatedArticlesCompat":[],"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q18695611","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true, "wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.math.styles":"ready","ext.cite.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","ext.scribunto.logs","site","mediawiki.page.ready","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.ReferenceTooltips","ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups", "ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&only=styles&skin=vector-2022"> <script async="" src="/w/load.php?lang=en&modules=startup&only=scripts&raw=1&skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&modules=site.styles&only=styles&skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.5"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Sheaf of modules - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/Sheaf_of_modules"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=Sheaf_of_modules&action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Sheaf_of_modules"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Sheaf_of_modules rootpage-Sheaf_of_modules skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page's font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_en.wikipedia.org&uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&returnto=Sheaf+of+modules" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&returnto=Sheaf+of+modules" title="You're encouraged to log in; however, it's not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_en.wikipedia.org&uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&returnto=Sheaf+of+modules" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&returnto=Sheaf+of+modules" title="You're encouraged to log in; however, it's not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contents" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contents</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(Top)</div> </a> </li> <li id="toc-Examples" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Examples"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Examples</span> </div> </a> <ul id="toc-Examples-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Operations" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Operations"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Operations</span> </div> </a> <ul id="toc-Operations-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Properties" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Properties"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Properties</span> </div> </a> <ul id="toc-Properties-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Sheaf_associated_to_a_module" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Sheaf_associated_to_a_module"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Sheaf associated to a module</span> </div> </a> <ul id="toc-Sheaf_associated_to_a_module-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Sheaf_associated_to_a_graded_module" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Sheaf_associated_to_a_graded_module"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Sheaf associated to a graded module</span> </div> </a> <ul id="toc-Sheaf_associated_to_a_graded_module-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Computing_sheaf_cohomology" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Computing_sheaf_cohomology"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>Computing sheaf cohomology</span> </div> </a> <ul id="toc-Computing_sheaf_cohomology-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Sheaf_extension" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Sheaf_extension"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>Sheaf extension</span> </div> </a> <button aria-controls="toc-Sheaf_extension-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Sheaf extension subsection</span> </button> <ul id="toc-Sheaf_extension-sublist" class="vector-toc-list"> <li id="toc-Locally_free_resolutions" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Locally_free_resolutions"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.1</span> <span>Locally free resolutions</span> </div> </a> <ul id="toc-Locally_free_resolutions-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Examples_2" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Examples_2"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.2</span> <span>Examples</span> </div> </a> <ul id="toc-Examples_2-sublist" class="vector-toc-list"> <li id="toc-Hypersurface" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Hypersurface"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.2.1</span> <span>Hypersurface</span> </div> </a> <ul id="toc-Hypersurface-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Union_of_smooth_complete_intersections" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Union_of_smooth_complete_intersections"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.2.2</span> <span>Union of smooth complete intersections</span> </div> </a> <ul id="toc-Union_of_smooth_complete_intersections-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> </ul> </li> <li id="toc-See_also" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#See_also"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>See also</span> </div> </a> <ul id="toc-See_also-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Notes" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Notes"> <div class="vector-toc-text"> <span class="vector-toc-numb">9</span> <span>Notes</span> </div> </a> <ul id="toc-Notes-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-References" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#References"> <div class="vector-toc-text"> <span class="vector-toc-numb">10</span> <span>References</span> </div> </a> <ul id="toc-References-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Sheaf of modules</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Go to an article in another language. Available in 7 languages" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-7" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">7 languages</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Modulgarbe" title="Modulgarbe – German" lang="de" hreflang="de" data-title="Modulgarbe" data-language-autonym="Deutsch" data-language-local-name="German" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Faisceau_(de_modules)" title="Faisceau (de modules) – French" lang="fr" hreflang="fr" data-title="Faisceau (de modules)" data-language-autonym="Français" data-language-local-name="French" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%EA%B0%80%EA%B5%B0%EC%B8%B5" title="가군층 – Korean" lang="ko" hreflang="ko" data-title="가군층" data-language-autonym="한국어" data-language-local-name="Korean" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E5%8A%A0%E7%BE%A4%E3%81%AE%E5%B1%A4" title="加群の層 – Japanese" lang="ja" hreflang="ja" data-title="加群の層" data-language-autonym="日本語" data-language-local-name="Japanese" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%9F%D1%83%D1%87%D0%BE%D0%BA_%D0%BC%D0%BE%D0%B4%D1%83%D0%BB%D0%B5%D0%B9" title="Пучок модулей – Russian" lang="ru" hreflang="ru" data-title="Пучок модулей" data-language-autonym="Русский" data-language-local-name="Russian" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%9F%D1%83%D1%87%D0%BE%D0%BA_%D0%BC%D0%BE%D0%B4%D1%83%D0%BB%D1%96%D0%B2" title="Пучок модулів – Ukrainian" lang="uk" hreflang="uk" data-title="Пучок модулів" data-language-autonym="Українська" data-language-local-name="Ukrainian" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E6%A8%A1%E5%B1%82" title="模层 – Chinese" lang="zh" hreflang="zh" data-title="模层" data-language-autonym="中文" data-language-local-name="Chinese" class="interlanguage-link-target"><span>中文</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q18695611#sitelinks-wikipedia" title="Edit interlanguage links" class="wbc-editpage">Edit links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Sheaf_of_modules" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:Sheaf_of_modules" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Sheaf_of_modules"><span>Read</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Sheaf_of_modules&action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Sheaf_of_modules&action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Sheaf_of_modules"><span>Read</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Sheaf_of_modules&action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Sheaf_of_modules&action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/Sheaf_of_modules" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/Sheaf_of_modules" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages" title="A list of all special pages [q]" accesskey="q"><span>Special pages</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Sheaf_of_modules&oldid=1256734742" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Sheaf_of_modules&action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&page=Sheaf_of_modules&id=1256734742&wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FSheaf_of_modules"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FSheaf_of_modules"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&page=Sheaf_of_modules&action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Sheaf_of_modules&printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q18695611" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><div class="shortdescription nomobile noexcerpt noprint searchaux" style="display:none">Sheaf consisting of modules on a ringed space; generalizing vector bundles</div><style data-mw-deduplicate="TemplateStyles:r1251242444">.mw-parser-output .ambox{border:1px solid #a2a9b1;border-left:10px solid #36c;background-color:#fbfbfb;box-sizing:border-box}.mw-parser-output .ambox+link+.ambox,.mw-parser-output .ambox+link+style+.ambox,.mw-parser-output .ambox+link+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+style+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+link+.ambox{margin-top:-1px}html body.mediawiki .mw-parser-output .ambox.mbox-small-left{margin:4px 1em 4px 0;overflow:hidden;width:238px;border-collapse:collapse;font-size:88%;line-height:1.25em}.mw-parser-output .ambox-speedy{border-left:10px solid #b32424;background-color:#fee7e6}.mw-parser-output .ambox-delete{border-left:10px solid #b32424}.mw-parser-output .ambox-content{border-left:10px solid #f28500}.mw-parser-output .ambox-style{border-left:10px solid #fc3}.mw-parser-output .ambox-move{border-left:10px solid #9932cc}.mw-parser-output .ambox-protection{border-left:10px solid #a2a9b1}.mw-parser-output .ambox .mbox-text{border:none;padding:0.25em 0.5em;width:100%}.mw-parser-output .ambox .mbox-image{border:none;padding:2px 0 2px 0.5em;text-align:center}.mw-parser-output .ambox .mbox-imageright{border:none;padding:2px 0.5em 2px 0;text-align:center}.mw-parser-output .ambox .mbox-empty-cell{border:none;padding:0;width:1px}.mw-parser-output .ambox .mbox-image-div{width:52px}@media(min-width:720px){.mw-parser-output .ambox{margin:0 10%}}@media print{body.ns-0 .mw-parser-output .ambox{display:none!important}}</style><table class="box-Technical plainlinks metadata ambox ambox-style ambox-technical" role="presentation"><tbody><tr><td class="mbox-image"><div class="mbox-image-div"><span typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/f/f2/Edit-clear.svg/40px-Edit-clear.svg.png" decoding="async" width="40" height="40" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/f/f2/Edit-clear.svg/60px-Edit-clear.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/f/f2/Edit-clear.svg/80px-Edit-clear.svg.png 2x" data-file-width="48" data-file-height="48" /></span></span></div></td><td class="mbox-text"><div class="mbox-text-span">This article <b>may be too technical for most readers to understand</b>.<span class="hide-when-compact"> Please <a class="external text" href="https://en.wikipedia.org/w/index.php?title=Sheaf_of_modules&action=edit">help improve it</a> to <a href="/wiki/Wikipedia:Make_technical_articles_understandable" title="Wikipedia:Make technical articles understandable">make it understandable to non-experts</a>, without removing the technical details.</span> <span class="date-container"><i>(<span class="date">November 2023</span>)</i></span><span class="hide-when-compact"><i> (<small><a href="/wiki/Help:Maintenance_template_removal" title="Help:Maintenance template removal">Learn how and when to remove this message</a></small>)</i></span></div></td></tr></tbody></table> <p>In mathematics, a <b>sheaf of <i>O</i>-modules</b> or simply an <b><i>O</i>-module</b> over a <a href="/wiki/Ringed_space" title="Ringed space">ringed space</a> (<i>X</i>, <i>O</i>) is a <a href="/wiki/Sheaf_(mathematics)" title="Sheaf (mathematics)">sheaf</a> <i>F</i> such that, for any open subset <i>U</i> of <i>X</i>, <i>F</i>(<i>U</i>) is an <i>O</i>(<i>U</i>)-module and the restriction maps <i>F</i>(<i>U</i>) → <i>F</i>(<i>V</i>) are compatible with the restriction maps <i>O</i>(<i>U</i>) → <i>O</i>(<i>V</i>): the restriction of <i>fs</i> is the restriction of <i>f</i> times the restriction of <i>s</i> for any <i>f</i> in <i>O</i>(<i>U</i>) and <i>s</i> in <i>F</i>(<i>U</i>). </p><p>The standard case is when <i>X</i> is a <a href="/wiki/Scheme_(mathematics)" title="Scheme (mathematics)">scheme</a> and <i>O</i> its structure sheaf. If <i>O</i> is the <a href="/wiki/Constant_sheaf" title="Constant sheaf">constant sheaf</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\underline {\mathbf {Z} }}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <munder> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">Z</mi> </mrow> <mo>_<!-- _ --></mo> </munder> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\underline {\mathbf {Z} }}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a16ec565233e46a4c1f7107e2e86e4b222f4d80f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.511ex; margin-bottom: -0.827ex; width:1.636ex; height:3.176ex;" alt="{\displaystyle {\underline {\mathbf {Z} }}}"></span>, then a sheaf of <i>O</i>-modules is the same as a <a href="/wiki/Sheaf_of_abelian_groups" class="mw-redirect" title="Sheaf of abelian groups">sheaf of abelian groups</a> (i.e., an <b>abelian sheaf</b>). </p><p>If <i>X</i> is the <a href="/wiki/Prime_spectrum" class="mw-redirect" title="Prime spectrum">prime spectrum</a> of a ring <i>R</i>, then any <i>R</i>-module defines an <i>O</i><sub><i>X</i></sub>-module (called an <b>associated sheaf</b>) in a natural way. Similarly, if <i>R</i> is a <a href="/wiki/Graded_ring" title="Graded ring">graded ring</a> and <i>X</i> is the <a href="/wiki/Proj_construction" title="Proj construction">Proj</a> of <i>R</i>, then any graded module defines an <i>O</i><sub><i>X</i></sub>-module in a natural way. <i>O</i>-modules arising in such a fashion are examples of <a href="/wiki/Quasi-coherent_sheaves" class="mw-redirect" title="Quasi-coherent sheaves">quasi-coherent sheaves</a>, and in fact, on affine or projective schemes, all quasi-coherent sheaves are obtained this way. </p><p>Sheaves of modules over a ringed space form an <a href="/wiki/Abelian_category" title="Abelian category">abelian category</a>.<sup id="cite_ref-1" class="reference"><a href="#cite_note-1"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup> Moreover, this category has <a href="/wiki/Enough_injectives" class="mw-redirect" title="Enough injectives">enough injectives</a>,<sup id="cite_ref-2" class="reference"><a href="#cite_note-2"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup> and consequently one can and does define the <a href="/wiki/Sheaf_cohomology" title="Sheaf cohomology">sheaf cohomology</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {H} ^{i}(X,-)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi mathvariant="normal">H</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msup> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>X</mi> <mo>,</mo> <mo>−<!-- − --></mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {H} ^{i}(X,-)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b83561219741404a98a6d963359e0c566faa91bf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.174ex; height:3.176ex;" alt="{\displaystyle \operatorname {H} ^{i}(X,-)}"></span> as the <i>i</i>-th <a href="/wiki/Right_derived_functor" class="mw-redirect" title="Right derived functor">right derived functor</a> of the <a href="/wiki/Global_section_functor" class="mw-redirect" title="Global section functor">global section functor</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Gamma (X,-)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">Γ<!-- Γ --></mi> <mo stretchy="false">(</mo> <mi>X</mi> <mo>,</mo> <mo>−<!-- − --></mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Gamma (X,-)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4e34602234200472f45f1562a7efe02104ac4d6d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.084ex; height:2.843ex;" alt="{\displaystyle \Gamma (X,-)}"></span>.<sup id="cite_ref-3" class="reference"><a href="#cite_note-3"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup> </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Examples">Examples</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Sheaf_of_modules&action=edit&section=1" title="Edit section: Examples"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li>Given a ringed space (<i>X</i>, <i>O</i>), if <i>F</i> is an <i>O</i>-submodule of <i>O</i>, then it is called the sheaf of ideals or <a href="/wiki/Ideal_sheaf" title="Ideal sheaf">ideal sheaf</a> of <i>O</i>, since for each open subset <i>U</i> of <i>X</i>, <i>F</i>(<i>U</i>) is an <a href="/wiki/Ideal_(ring_theory)" title="Ideal (ring theory)">ideal</a> of the ring <i>O</i>(<i>U</i>).</li> <li>Let <i>X</i> be a <a href="/wiki/Smooth_variety" class="mw-redirect" title="Smooth variety">smooth variety</a> of dimension <i>n</i>. Then the <a href="/wiki/Tangent_sheaf" class="mw-redirect" title="Tangent sheaf">tangent sheaf</a> of <i>X</i> is the dual of the <a href="/wiki/Cotangent_sheaf" title="Cotangent sheaf">cotangent sheaf</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Omega _{X}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi mathvariant="normal">Ω<!-- Ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Omega _{X}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f63cd0e0ecbeae43109b323b4ee9d030f25c3c47" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.31ex; height:2.509ex;" alt="{\displaystyle \Omega _{X}}"></span> and the <a href="/wiki/Canonical_sheaf" class="mw-redirect" title="Canonical sheaf">canonical sheaf</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \omega _{X}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>ω<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \omega _{X}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a42947d0b86d4d98a3172ca71d3f1595d296b5a7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.078ex; height:2.009ex;" alt="{\displaystyle \omega _{X}}"></span> is the <i>n</i>-th exterior power (<a href="/wiki/Determinant_line_bundle" class="mw-redirect" title="Determinant line bundle">determinant</a>) of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Omega _{X}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi mathvariant="normal">Ω<!-- Ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Omega _{X}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f63cd0e0ecbeae43109b323b4ee9d030f25c3c47" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.31ex; height:2.509ex;" alt="{\displaystyle \Omega _{X}}"></span>.</li> <li>A <a href="/wiki/Sheaf_of_algebras" title="Sheaf of algebras">sheaf of algebras</a> is a sheaf of module that is also a sheaf of rings.</li></ul> <div class="mw-heading mw-heading2"><h2 id="Operations">Operations</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Sheaf_of_modules&action=edit&section=2" title="Edit section: Operations"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Let (<i>X</i>, <i>O</i>) be a ringed space. If <i>F</i> and <i>G</i> are <i>O</i>-modules, then their tensor product, denoted by </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F\otimes _{O}G}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> <msub> <mo>⊗<!-- ⊗ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>O</mi> </mrow> </msub> <mi>G</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F\otimes _{O}G}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/60bb5dbdf475930cd461c8962d9f76adcabd8d21" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.894ex; height:2.509ex;" alt="{\displaystyle F\otimes _{O}G}"></span> or <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F\otimes G}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> <mo>⊗<!-- ⊗ --></mo> <mi>G</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F\otimes G}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b6d05a23b9f86e0360521b77f83c249d3098e4b5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:6.408ex; height:2.343ex;" alt="{\displaystyle F\otimes G}"></span>,</dd></dl> <p>is the <i>O</i>-module that is the sheaf associated to the presheaf <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle U\mapsto F(U)\otimes _{O(U)}G(U).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>U</mi> <mo stretchy="false">↦<!-- ↦ --></mo> <mi>F</mi> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> <msub> <mo>⊗<!-- ⊗ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>O</mi> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> </mrow> </msub> <mi>G</mi> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle U\mapsto F(U)\otimes _{O(U)}G(U).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/90658ea6fec9cea315f28a3ab31d472965046993" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:23.661ex; height:3.176ex;" alt="{\displaystyle U\mapsto F(U)\otimes _{O(U)}G(U).}"></span> (To see that sheafification cannot be avoided, compute the global sections of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle O(1)\otimes O(-1)=O}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>O</mi> <mo stretchy="false">(</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>⊗<!-- ⊗ --></mo> <mi>O</mi> <mo stretchy="false">(</mo> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mi>O</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle O(1)\otimes O(-1)=O}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8fb0746ddf7119a3b8e34792647944b216c54d78" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:19.01ex; height:2.843ex;" alt="{\displaystyle O(1)\otimes O(-1)=O}"></span> where <i>O</i>(1) is <a href="/wiki/Serre%27s_twisting_sheaf" class="mw-redirect" title="Serre's twisting sheaf">Serre's twisting sheaf</a> on a projective space.) </p><p>Similarly, if <i>F</i> and <i>G</i> are <i>O</i>-modules, then </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {H}}om_{O}(F,G)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">H</mi> </mrow> </mrow> <mi>o</mi> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>O</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>F</mi> <mo>,</mo> <mi>G</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {H}}om_{O}(F,G)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5aa15d2018b01766218f7b131c5b79f213af3c71" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.029ex; height:2.843ex;" alt="{\displaystyle {\mathcal {H}}om_{O}(F,G)}"></span></dd></dl> <p>denotes the <i>O</i>-module that is the sheaf <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle U\mapsto \operatorname {Hom} _{O|_{U}}(F|_{U},G|_{U})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>U</mi> <mo stretchy="false">↦<!-- ↦ --></mo> <msub> <mi>Hom</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>O</mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>U</mi> </mrow> </msub> </mrow> </msub> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>F</mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>U</mi> </mrow> </msub> <mo>,</mo> <mi>G</mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>U</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle U\mapsto \operatorname {Hom} _{O|_{U}}(F|_{U},G|_{U})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8575b787a0e24830169c6a9b932f4cbd05ac7ed7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:24.059ex; height:3.176ex;" alt="{\displaystyle U\mapsto \operatorname {Hom} _{O|_{U}}(F|_{U},G|_{U})}"></span>.<sup id="cite_ref-4" class="reference"><a href="#cite_note-4"><span class="cite-bracket">[</span>4<span class="cite-bracket">]</span></a></sup> In particular, the <i>O</i>-module </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {H}}om_{O}(F,O)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">H</mi> </mrow> </mrow> <mi>o</mi> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>O</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>F</mi> <mo>,</mo> <mi>O</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {H}}om_{O}(F,O)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d356d35597284d65bff0dd969d12b6c3a97e2820" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.975ex; height:2.843ex;" alt="{\displaystyle {\mathcal {H}}om_{O}(F,O)}"></span></dd></dl> <p>is called the <b>dual module</b> of <i>F</i> and is denoted by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\check {F}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>F</mi> <mo stretchy="false">ˇ<!-- ˇ --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\check {F}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a2d18b3e659fc1b78444b00a6ef3323589d5b6ca" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.805ex; height:2.676ex;" alt="{\displaystyle {\check {F}}}"></span>. Note: for any <i>O</i>-modules <i>E</i>, <i>F</i>, there is a canonical homomorphism </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\check {E}}\otimes F\to {\mathcal {H}}om_{O}(E,F)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>E</mi> <mo stretchy="false">ˇ<!-- ˇ --></mo> </mover> </mrow> </mrow> <mo>⊗<!-- ⊗ --></mo> <mi>F</mi> <mo stretchy="false">→<!-- → --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">H</mi> </mrow> </mrow> <mi>o</mi> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>O</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>E</mi> <mo>,</mo> <mi>F</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\check {E}}\otimes F\to {\mathcal {H}}om_{O}(E,F)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d934c45a3c7d3f5dc77fc146852683b1e6c2a56c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:22.948ex; height:3.176ex;" alt="{\displaystyle {\check {E}}\otimes F\to {\mathcal {H}}om_{O}(E,F)}"></span>,</dd></dl> <p>which is an isomorphism if <i>E</i> is a <a href="/wiki/Locally_free_sheaf" class="mw-redirect" title="Locally free sheaf">locally free sheaf</a> of finite rank. In particular, if <i>L</i> is locally free of rank one (such <i>L</i> is called an <a href="/wiki/Invertible_sheaf" title="Invertible sheaf">invertible sheaf</a> or a <a href="/wiki/Line_bundle" title="Line bundle">line bundle</a>),<sup id="cite_ref-5" class="reference"><a href="#cite_note-5"><span class="cite-bracket">[</span>5<span class="cite-bracket">]</span></a></sup> then this reads: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\check {L}}\otimes L\simeq O,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>L</mi> <mo stretchy="false">ˇ<!-- ˇ --></mo> </mover> </mrow> </mrow> <mo>⊗<!-- ⊗ --></mo> <mi>L</mi> <mo>≃<!-- ≃ --></mo> <mi>O</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\check {L}}\otimes L\simeq O,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c2c58284db48e24558fae650804aa313ca22bb7b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:11.525ex; height:3.009ex;" alt="{\displaystyle {\check {L}}\otimes L\simeq O,}"></span></dd></dl> <p>implying the isomorphism classes of invertible sheaves form a group. This group is called the <a href="/wiki/Picard_group" title="Picard group">Picard group</a> of <i>X</i> and is canonically identified with the first cohomology group <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {H} ^{1}(X,{\mathcal {O}}^{*})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi mathvariant="normal">H</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msup> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>X</mi> <mo>,</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">O</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>∗<!-- ∗ --></mo> </mrow> </msup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {H} ^{1}(X,{\mathcal {O}}^{*})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b708554e32217dd59df7e40e2313b82c019f4014" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.525ex; height:3.176ex;" alt="{\displaystyle \operatorname {H} ^{1}(X,{\mathcal {O}}^{*})}"></span> (by the standard argument with <a href="/wiki/%C4%8Cech_cohomology" title="Čech cohomology">Čech cohomology</a>). </p><p>If <i>E</i> is a locally free sheaf of finite rank, then there is an <i>O</i>-linear map <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\check {E}}\otimes E\simeq \operatorname {End} _{O}(E)\to O}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>E</mi> <mo stretchy="false">ˇ<!-- ˇ --></mo> </mover> </mrow> </mrow> <mo>⊗<!-- ⊗ --></mo> <mi>E</mi> <mo>≃<!-- ≃ --></mo> <msub> <mi>End</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>O</mi> </mrow> </msub> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>E</mi> <mo stretchy="false">)</mo> <mo stretchy="false">→<!-- → --></mo> <mi>O</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\check {E}}\otimes E\simeq \operatorname {End} _{O}(E)\to O}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1fadb082858230fe26ad7720febdb98feb8cfd3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:24.116ex; height:3.176ex;" alt="{\displaystyle {\check {E}}\otimes E\simeq \operatorname {End} _{O}(E)\to O}"></span> given by the pairing; it is called the <a href="/wiki/Trace_map" class="mw-redirect" title="Trace map">trace map</a> of <i>E</i>. </p><p>For any <i>O</i>-module <i>F</i>, the <a href="/wiki/Tensor_algebra" title="Tensor algebra">tensor algebra</a>, <a href="/wiki/Exterior_algebra" title="Exterior algebra">exterior algebra</a> and <a href="/wiki/Symmetric_algebra" title="Symmetric algebra">symmetric algebra</a> of <i>F</i> are defined in the same way. For example, the <i>k</i>-th exterior power </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \bigwedge ^{k}F}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mover> <mo>⋀<!-- ⋀ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </mover> <mi>F</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \bigwedge ^{k}F}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/789567557e307d144d615fc5ea88f306fa168b27" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:4.709ex; height:5.676ex;" alt="{\displaystyle \bigwedge ^{k}F}"></span></dd></dl> <p>is the sheaf associated to the presheaf <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle U\mapsto \bigwedge _{O(U)}^{k}F(U)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>U</mi> <mo stretchy="false">↦<!-- ↦ --></mo> <munderover> <mo>⋀<!-- ⋀ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>O</mi> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </munderover> <mi>F</mi> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle U\mapsto \bigwedge _{O(U)}^{k}F(U)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/89d03f4b3a36dfa77a0f0568874dfd507783e00b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:17.078ex; height:3.843ex;" alt="{\textstyle U\mapsto \bigwedge _{O(U)}^{k}F(U)}"></span>. If <i>F</i> is locally free of rank <i>n</i>, then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \bigwedge ^{n}F}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mover> <mo>⋀<!-- ⋀ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </mover> <mi>F</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \bigwedge ^{n}F}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/881c6e76ef939df8ba8fc118f37830e014eb0eb0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.282ex; height:3.009ex;" alt="{\textstyle \bigwedge ^{n}F}"></span> is called the <a href="/wiki/Determinant_line_bundle" class="mw-redirect" title="Determinant line bundle">determinant line bundle</a> (though technically <a href="/wiki/Invertible_sheaf" title="Invertible sheaf">invertible sheaf</a>) of <i>F</i>, denoted by det(<i>F</i>). There is a natural perfect pairing: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \bigwedge ^{r}F\otimes \bigwedge ^{n-r}F\to \det(F).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mover> <mo>⋀<!-- ⋀ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> </mrow> </mover> <mi>F</mi> <mo>⊗<!-- ⊗ --></mo> <mover> <mo>⋀<!-- ⋀ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>−<!-- − --></mo> <mi>r</mi> </mrow> </mover> <mi>F</mi> <mo stretchy="false">→<!-- → --></mo> <mo movablelimits="true" form="prefix">det</mo> <mo stretchy="false">(</mo> <mi>F</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \bigwedge ^{r}F\otimes \bigwedge ^{n-r}F\to \det(F).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2d2b9a7ff04afa84352e2c988fa9772f84b8e8dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:23.725ex; height:5.509ex;" alt="{\displaystyle \bigwedge ^{r}F\otimes \bigwedge ^{n-r}F\to \det(F).}"></span></dd></dl> <p>Let <i>f</i>: (<i>X</i>, <i>O</i>) →(<i>X<span class="nowrap" style="padding-left:0.1em;">'</span></i>, <i>O<span class="nowrap" style="padding-left:0.1em;">'</span></i>) be a morphism of ringed spaces. If <i>F</i> is an <i>O</i>-module, then the <a href="/wiki/Direct_image_sheaf" class="mw-redirect" title="Direct image sheaf">direct image sheaf</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f_{*}F}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>∗<!-- ∗ --></mo> </mrow> </msub> <mi>F</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f_{*}F}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cdd073a4715fd3af6312e3e0adeb187c8aa29470" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.934ex; height:2.509ex;" alt="{\displaystyle f_{*}F}"></span> is an <i>O<span class="nowrap" style="padding-left:0.1em;">'</span></i>-module through the natural map <i>O<span class="nowrap" style="padding-left:0.1em;">'</span></i> →<i>f</i><sub>*</sub><i>O</i> (such a natural map is part of the data of a morphism of ringed spaces.) </p><p>If <i>G</i> is an <i>O<span class="nowrap" style="padding-left:0.1em;">'</span></i>-module, then the module inverse image <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f^{*}G}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>∗<!-- ∗ --></mo> </mrow> </msup> <mi>G</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f^{*}G}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d90efe94494f6eafa739300fb468a884c40f7324" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.201ex; height:2.676ex;" alt="{\displaystyle f^{*}G}"></span> of <i>G</i> is the <i>O</i>-module given as the tensor product of modules: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f^{-1}G\otimes _{f^{-1}O'}O}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mi>G</mi> <msub> <mo>⊗<!-- ⊗ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <msup> <mi>O</mi> <mo>′</mo> </msup> </mrow> </msub> <mi>O</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f^{-1}G\otimes _{f^{-1}O'}O}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/28c752649aee7d1519545758d2711fd8009e7d87" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:14.915ex; height:3.676ex;" alt="{\displaystyle f^{-1}G\otimes _{f^{-1}O'}O}"></span></dd></dl> <p>where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f^{-1}G}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mi>G</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f^{-1}G}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b8225198a5752abae7c8062c85ef16330bdbddfd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.48ex; height:3.009ex;" alt="{\displaystyle f^{-1}G}"></span> is the <a href="/wiki/Inverse_image_sheaf" class="mw-redirect" title="Inverse image sheaf">inverse image sheaf</a> of <i>G</i> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f^{-1}O'\to O}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <msup> <mi>O</mi> <mo>′</mo> </msup> <mo stretchy="false">→<!-- → --></mo> <mi>O</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f^{-1}O'\to O}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ae3f87fc3c14ef96ec06bdded757a6bc5aa6f662" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:11.499ex; height:3.009ex;" alt="{\displaystyle f^{-1}O'\to O}"></span> is obtained from <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle O'\to f_{*}O}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>O</mi> <mo>′</mo> </msup> <mo stretchy="false">→<!-- → --></mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>∗<!-- ∗ --></mo> </mrow> </msub> <mi>O</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle O'\to f_{*}O}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bf47c6a210d01f7b397498d26589c2e3014c20f3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.039ex; height:2.843ex;" alt="{\displaystyle O'\to f_{*}O}"></span> by <a href="/wiki/Adjoint_functor" class="mw-redirect" title="Adjoint functor">adjuction</a>. </p><p>There is an adjoint relation between <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f_{*}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>∗<!-- ∗ --></mo> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f_{*}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/903e97c260c5d157bff320b5e38e0e4b42cd20ad" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.193ex; height:2.509ex;" alt="{\displaystyle f_{*}}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f^{*}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>∗<!-- ∗ --></mo> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f^{*}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/190a73fde235865b8d2a783334f90194331c7f19" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.375ex; height:2.676ex;" alt="{\displaystyle f^{*}}"></span>: for any <i>O</i>-module <i>F</i> and <i>O'</i>-module <i>G</i>, </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {Hom} _{O}(f^{*}G,F)\simeq \operatorname {Hom} _{O'}(G,f_{*}F)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>Hom</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>O</mi> </mrow> </msub> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>∗<!-- ∗ --></mo> </mrow> </msup> <mi>G</mi> <mo>,</mo> <mi>F</mi> <mo stretchy="false">)</mo> <mo>≃<!-- ≃ --></mo> <msub> <mi>Hom</mi> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>O</mi> <mo>′</mo> </msup> </mrow> </msub> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>G</mi> <mo>,</mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>∗<!-- ∗ --></mo> </mrow> </msub> <mi>F</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {Hom} _{O}(f^{*}G,F)\simeq \operatorname {Hom} _{O'}(G,f_{*}F)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/03779103ec37a6d2544e34c53f3d2ab438640e54" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:33.675ex; height:2.843ex;" alt="{\displaystyle \operatorname {Hom} _{O}(f^{*}G,F)\simeq \operatorname {Hom} _{O'}(G,f_{*}F)}"></span></dd></dl> <p>as abelian group. There is also the <a href="/wiki/Projection_formula" title="Projection formula">projection formula</a>: for an <i>O</i>-module <i>F</i> and a locally free <i>O'</i>-module <i>E</i> of finite rank, </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f_{*}(F\otimes f^{*}E)\simeq f_{*}F\otimes E.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>∗<!-- ∗ --></mo> </mrow> </msub> <mo stretchy="false">(</mo> <mi>F</mi> <mo>⊗<!-- ⊗ --></mo> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>∗<!-- ∗ --></mo> </mrow> </msup> <mi>E</mi> <mo stretchy="false">)</mo> <mo>≃<!-- ≃ --></mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>∗<!-- ∗ --></mo> </mrow> </msub> <mi>F</mi> <mo>⊗<!-- ⊗ --></mo> <mi>E</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f_{*}(F\otimes f^{*}E)\simeq f_{*}F\otimes E.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d6ae27719cf482d89de11867739a788bb1810fc3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:25.03ex; height:2.843ex;" alt="{\displaystyle f_{*}(F\otimes f^{*}E)\simeq f_{*}F\otimes E.}"></span></dd></dl> <div class="mw-heading mw-heading2"><h2 id="Properties">Properties</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Sheaf_of_modules&action=edit&section=3" title="Edit section: Properties"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><span class="anchor" id="Generated_by_global_sections"></span> Let (<i>X</i>, <i>O</i>) be a ringed space. An <i>O</i>-module <i>F</i> is said to be <b>generated by global sections</b> if there is a surjection of <i>O</i>-modules: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \bigoplus _{i\in I}O\to F\to 0.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munder> <mo>⨁<!-- ⨁ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>∈<!-- ∈ --></mo> <mi>I</mi> </mrow> </munder> <mi>O</mi> <mo stretchy="false">→<!-- → --></mo> <mi>F</mi> <mo stretchy="false">→<!-- → --></mo> <mn>0.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \bigoplus _{i\in I}O\to F\to 0.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2aef841a55f71eb5f8d357802535bf5f40bacdec" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:16.449ex; height:5.676ex;" alt="{\displaystyle \bigoplus _{i\in I}O\to F\to 0.}"></span></dd></dl> <p>Explicitly, this means that there are global sections <i>s</i><sub><i>i</i></sub> of <i>F</i> such that the images of <i>s</i><sub><i>i</i></sub> in each stalk <i>F</i><sub><i>x</i></sub> generates <i>F</i><sub><i>x</i></sub> as <i>O</i><sub><i>x</i></sub>-module. </p><p>An example of such a sheaf is that associated in <a href="/wiki/Algebraic_geometry" title="Algebraic geometry">algebraic geometry</a> to an <i>R</i>-module <i>M</i>, <i>R</i> being any <a href="/wiki/Commutative_ring" title="Commutative ring">commutative ring</a>, on the <a href="/wiki/Spectrum_of_a_ring" title="Spectrum of a ring">spectrum of a ring</a> <i>Spec</i>(<i>R</i>). Another example: according to <a href="/wiki/Cartan%27s_theorem_A" class="mw-redirect" title="Cartan's theorem A">Cartan's theorem A</a>, any <a href="/wiki/Coherent_sheaf" title="Coherent sheaf">coherent sheaf</a> on a <a href="/wiki/Stein_manifold" title="Stein manifold">Stein manifold</a> is spanned by global sections. (cf. Serre's theorem A below.) In the theory of <a href="/wiki/Scheme_(mathematics)" title="Scheme (mathematics)">schemes</a>, a related notion is <a href="/wiki/Ample_line_bundle" title="Ample line bundle">ample line bundle</a>. (For example, if <i>L</i> is an ample line bundle, some power of it is generated by global sections.) </p><p>An injective <i>O</i>-module is <a href="/wiki/Flasque_sheaf" class="mw-redirect" title="Flasque sheaf">flasque</a> (i.e., all restrictions maps <i>F</i>(<i>U</i>) → <i>F</i>(<i>V</i>) are surjective.)<sup id="cite_ref-6" class="reference"><a href="#cite_note-6"><span class="cite-bracket">[</span>6<span class="cite-bracket">]</span></a></sup> Since a flasque sheaf is acyclic in the category of abelian sheaves, this implies that the <i>i</i>-th right derived functor of the global section functor <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Gamma (X,-)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">Γ<!-- Γ --></mi> <mo stretchy="false">(</mo> <mi>X</mi> <mo>,</mo> <mo>−<!-- − --></mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Gamma (X,-)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4e34602234200472f45f1562a7efe02104ac4d6d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.084ex; height:2.843ex;" alt="{\displaystyle \Gamma (X,-)}"></span> in the category of <i>O</i>-modules coincides with the usual <i>i</i>-th sheaf cohomology in the category of abelian sheaves.<sup id="cite_ref-7" class="reference"><a href="#cite_note-7"><span class="cite-bracket">[</span>7<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Sheaf_associated_to_a_module">Sheaf associated to a module</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Sheaf_of_modules&action=edit&section=4" title="Edit section: Sheaf associated to a module"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>M</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f82cade9898ced02fdd08712e5f0c0151758a0dd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.442ex; height:2.176ex;" alt="{\displaystyle M}"></span> be a module over a ring <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span>. Put <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X=\operatorname {Spec} (A)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> <mo>=</mo> <mi>Spec</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>A</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X=\operatorname {Spec} (A)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/65a7698ca0bfc532fab9f9109a0d7ddb593bb34a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.281ex; height:2.843ex;" alt="{\displaystyle X=\operatorname {Spec} (A)}"></span> and write <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle D(f)=\{f\neq 0\}=\operatorname {Spec} (A[f^{-1}])}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>D</mi> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo fence="false" stretchy="false">{</mo> <mi>f</mi> <mo>≠<!-- ≠ --></mo> <mn>0</mn> <mo fence="false" stretchy="false">}</mo> <mo>=</mo> <mi>Spec</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>A</mi> <mo stretchy="false">[</mo> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo stretchy="false">]</mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle D(f)=\{f\neq 0\}=\operatorname {Spec} (A[f^{-1}])}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ed209cfddafaab71225e00d5372ca6cc65168bbf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:32.223ex; height:3.176ex;" alt="{\displaystyle D(f)=\{f\neq 0\}=\operatorname {Spec} (A[f^{-1}])}"></span>. For each pair <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle D(f)\subseteq D(g)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>D</mi> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">)</mo> <mo>⊆<!-- ⊆ --></mo> <mi>D</mi> <mo stretchy="false">(</mo> <mi>g</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle D(f)\subseteq D(g)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/aeb9bed1dd4c1681603f4f921799193b08626771" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.96ex; height:2.843ex;" alt="{\displaystyle D(f)\subseteq D(g)}"></span>, by the universal property of localization, there is a natural map </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \rho _{g,f}:M[g^{-1}]\to M[f^{-1}]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>ρ<!-- ρ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>g</mi> <mo>,</mo> <mi>f</mi> </mrow> </msub> <mo>:</mo> <mi>M</mi> <mo stretchy="false">[</mo> <msup> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo stretchy="false">]</mo> <mo stretchy="false">→<!-- → --></mo> <mi>M</mi> <mo stretchy="false">[</mo> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \rho _{g,f}:M[g^{-1}]\to M[f^{-1}]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/70cb90947ee387662b3ba064e0c0b726f2f98538" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:23.712ex; height:3.343ex;" alt="{\displaystyle \rho _{g,f}:M[g^{-1}]\to M[f^{-1}]}"></span></dd></dl> <p>having the property that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \rho _{g,f}=\rho _{g,h}\circ \rho _{h,f}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>ρ<!-- ρ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>g</mi> <mo>,</mo> <mi>f</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>ρ<!-- ρ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>g</mi> <mo>,</mo> <mi>h</mi> </mrow> </msub> <mo>∘<!-- ∘ --></mo> <msub> <mi>ρ<!-- ρ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>h</mi> <mo>,</mo> <mi>f</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \rho _{g,f}=\rho _{g,h}\circ \rho _{h,f}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/509ec7ff940fe3f0aa3842d271380fc8bbe91999" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:16.248ex; height:2.343ex;" alt="{\displaystyle \rho _{g,f}=\rho _{g,h}\circ \rho _{h,f}}"></span>. Then </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle D(f)\mapsto M[f^{-1}]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>D</mi> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">)</mo> <mo stretchy="false">↦<!-- ↦ --></mo> <mi>M</mi> <mo stretchy="false">[</mo> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle D(f)\mapsto M[f^{-1}]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/85c5fbf31be70749ad8d44a4effb32c573b25f5a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:16.015ex; height:3.176ex;" alt="{\displaystyle D(f)\mapsto M[f^{-1}]}"></span></dd></dl> <p>is a contravariant functor from the category whose objects are the sets <i>D</i>(<i>f</i>) and morphisms the inclusions of sets to the <a href="/wiki/Category_of_abelian_groups" title="Category of abelian groups">category of abelian groups</a>. One can show<sup id="cite_ref-8" class="reference"><a href="#cite_note-8"><span class="cite-bracket">[</span>8<span class="cite-bracket">]</span></a></sup> it is in fact a <a href="/wiki/B-sheaf" class="mw-redirect" title="B-sheaf">B-sheaf</a> (i.e., it satisfies the gluing axiom) and thus defines the sheaf <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\widetilde {M}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>M</mi> <mo>~<!-- ~ --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\widetilde {M}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/301b4dae6caafe7d093e43c068d75940062f7fe9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.699ex; height:2.843ex;" alt="{\displaystyle {\widetilde {M}}}"></span> on <i>X</i> called the sheaf associated to <i>M</i>. </p><p>The most basic example is the structure sheaf on <i>X</i>; i.e., <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {O}}_{X}={\widetilde {A}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">O</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>A</mi> <mo>~<!-- ~ --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {O}}_{X}={\widetilde {A}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9051bcad65f3b0fd714c68791f8cf6f8caaa0229" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:8.421ex; height:3.176ex;" alt="{\displaystyle {\mathcal {O}}_{X}={\widetilde {A}}}"></span>. Moreover, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\widetilde {M}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>M</mi> <mo>~<!-- ~ --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\widetilde {M}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/301b4dae6caafe7d093e43c068d75940062f7fe9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.699ex; height:2.843ex;" alt="{\displaystyle {\widetilde {M}}}"></span> has the structure of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {O}}_{X}={\widetilde {A}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">O</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>A</mi> <mo>~<!-- ~ --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {O}}_{X}={\widetilde {A}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9051bcad65f3b0fd714c68791f8cf6f8caaa0229" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:8.421ex; height:3.176ex;" alt="{\displaystyle {\mathcal {O}}_{X}={\widetilde {A}}}"></span>-module and thus one gets the <a href="/wiki/Exact_functor" title="Exact functor">exact functor</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M\mapsto {\widetilde {M}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>M</mi> <mo stretchy="false">↦<!-- ↦ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>M</mi> <mo>~<!-- ~ --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M\mapsto {\widetilde {M}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e85a1a64a7876abbeb1699e3ce4217ba3a984185" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:8.755ex; height:2.843ex;" alt="{\displaystyle M\mapsto {\widetilde {M}}}"></span> from Mod<sub><i>A</i></sub>, the <a href="/wiki/Category_of_modules" title="Category of modules">category of modules</a> over <i>A</i> to the category of modules over <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {O}}_{X}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">O</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {O}}_{X}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9fed6a46b79218af44f23e5d6f487fb7e0d6cd01" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.482ex; height:2.509ex;" alt="{\displaystyle {\mathcal {O}}_{X}}"></span>. It defines an equivalence from Mod<sub><i>A</i></sub> to the category of <a href="/wiki/Quasi-coherent_sheaves" class="mw-redirect" title="Quasi-coherent sheaves">quasi-coherent sheaves</a> on <i>X</i>, with the inverse <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Gamma (X,-)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">Γ<!-- Γ --></mi> <mo stretchy="false">(</mo> <mi>X</mi> <mo>,</mo> <mo>−<!-- − --></mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Gamma (X,-)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4e34602234200472f45f1562a7efe02104ac4d6d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.084ex; height:2.843ex;" alt="{\displaystyle \Gamma (X,-)}"></span>, the <a href="/wiki/Global_section_functor" class="mw-redirect" title="Global section functor">global section functor</a>. When <i>X</i> is <a href="/wiki/Noetherian_scheme" title="Noetherian scheme">Noetherian</a>, the functor is an equivalence from the category of finitely generated <i>A</i>-modules to the category of coherent sheaves on <i>X</i>. </p><p>The construction has the following properties: for any <i>A</i>-modules <i>M</i>, <i>N</i>, and any morphism <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varphi :M\to N}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>φ<!-- φ --></mi> <mo>:</mo> <mi>M</mi> <mo stretchy="false">→<!-- → --></mo> <mi>N</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varphi :M\to N}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d7dd52f475d4d090b5f59f745e773f63d3176a01" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.577ex; height:2.676ex;" alt="{\displaystyle \varphi :M\to N}"></span>, </p> <ul><li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M[f^{-1}]^{\sim }={\widetilde {M}}|_{D(f)}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>M</mi> <mo stretchy="false">[</mo> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <msup> <mo stretchy="false">]</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>∼<!-- ∼ --></mo> </mrow> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>M</mi> <mo>~<!-- ~ --></mo> </mover> </mrow> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>D</mi> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">)</mo> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M[f^{-1}]^{\sim }={\widetilde {M}}|_{D(f)}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/58b54f210365bb77a31f233cee1fc02581d3a2f9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:19.12ex; height:3.843ex;" alt="{\displaystyle M[f^{-1}]^{\sim }={\widetilde {M}}|_{D(f)}}"></span>.<sup id="cite_ref-9" class="reference"><a href="#cite_note-9"><span class="cite-bracket">[</span>9<span class="cite-bracket">]</span></a></sup></li> <li>For any prime ideal <i>p</i> of <i>A</i>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\widetilde {M}}_{p}\simeq M_{p}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>M</mi> <mo>~<!-- ~ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> <mo>≃<!-- ≃ --></mo> <msub> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\widetilde {M}}_{p}\simeq M_{p}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/50eb5752e43c3960245541033f2c34cf669bc09b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:10.17ex; height:3.509ex;" alt="{\displaystyle {\widetilde {M}}_{p}\simeq M_{p}}"></span> as <i>O</i><sub><i>p</i></sub> = <i>A</i><sub><i>p</i></sub>-module.</li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (M\otimes _{A}N)^{\sim }\simeq {\widetilde {M}}\otimes _{\widetilde {A}}{\widetilde {N}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>M</mi> <msub> <mo>⊗<!-- ⊗ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> </mrow> </msub> <mi>N</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>∼<!-- ∼ --></mo> </mrow> </msup> <mo>≃<!-- ≃ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>M</mi> <mo>~<!-- ~ --></mo> </mover> </mrow> </mrow> <msub> <mo>⊗<!-- ⊗ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>A</mi> <mo>~<!-- ~ --></mo> </mover> </mrow> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>N</mi> <mo>~<!-- ~ --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (M\otimes _{A}N)^{\sim }\simeq {\widetilde {M}}\otimes _{\widetilde {A}}{\widetilde {N}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7dadd238eac780a9379a6258a257456e48b564a5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:25.043ex; height:3.676ex;" alt="{\displaystyle (M\otimes _{A}N)^{\sim }\simeq {\widetilde {M}}\otimes _{\widetilde {A}}{\widetilde {N}}}"></span>.<sup id="cite_ref-Corollary_1.3.12._10-0" class="reference"><a href="#cite_note-Corollary_1.3.12.-10"><span class="cite-bracket">[</span>10<span class="cite-bracket">]</span></a></sup></li> <li>If <i>M</i> is <a href="/wiki/Finitely_presented_module" class="mw-redirect" title="Finitely presented module">finitely presented</a>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {Hom} _{A}(M,N)^{\sim }\simeq {\mathcal {H}}om_{\widetilde {A}}({\widetilde {M}},{\widetilde {N}})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>Hom</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> </mrow> </msub> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>M</mi> <mo>,</mo> <mi>N</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>∼<!-- ∼ --></mo> </mrow> </msup> <mo>≃<!-- ≃ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">H</mi> </mrow> </mrow> <mi>o</mi> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>A</mi> <mo>~<!-- ~ --></mo> </mover> </mrow> </mrow> </msub> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>M</mi> <mo>~<!-- ~ --></mo> </mover> </mrow> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>N</mi> <mo>~<!-- ~ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {Hom} _{A}(M,N)^{\sim }\simeq {\mathcal {H}}om_{\widetilde {A}}({\widetilde {M}},{\widetilde {N}})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fa698dc32b48fc24e99d5c82d6b258509efb9838" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:33.212ex; height:3.676ex;" alt="{\displaystyle \operatorname {Hom} _{A}(M,N)^{\sim }\simeq {\mathcal {H}}om_{\widetilde {A}}({\widetilde {M}},{\widetilde {N}})}"></span>.<sup id="cite_ref-Corollary_1.3.12._10-1" class="reference"><a href="#cite_note-Corollary_1.3.12.-10"><span class="cite-bracket">[</span>10<span class="cite-bracket">]</span></a></sup></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {Hom} _{A}(M,N)\simeq \Gamma (X,{\mathcal {H}}om_{\widetilde {A}}({\widetilde {M}},{\widetilde {N}}))}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>Hom</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> </mrow> </msub> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>M</mi> <mo>,</mo> <mi>N</mi> <mo stretchy="false">)</mo> <mo>≃<!-- ≃ --></mo> <mi mathvariant="normal">Γ<!-- Γ --></mi> <mo stretchy="false">(</mo> <mi>X</mi> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">H</mi> </mrow> </mrow> <mi>o</mi> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>A</mi> <mo>~<!-- ~ --></mo> </mover> </mrow> </mrow> </msub> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>M</mi> <mo>~<!-- ~ --></mo> </mover> </mrow> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>N</mi> <mo>~<!-- ~ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {Hom} _{A}(M,N)\simeq \Gamma (X,{\mathcal {H}}om_{\widetilde {A}}({\widetilde {M}},{\widetilde {N}}))}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f58dcb952139ea21f9a89406730287e22dcb5a84" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:37.978ex; height:3.676ex;" alt="{\displaystyle \operatorname {Hom} _{A}(M,N)\simeq \Gamma (X,{\mathcal {H}}om_{\widetilde {A}}({\widetilde {M}},{\widetilde {N}}))}"></span>, since the equivalence between Mod<sub><i>A</i></sub> and the category of quasi-coherent sheaves on <i>X</i>.</li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\varinjlim M_{i})^{\sim }\simeq \varinjlim {\widetilde {M_{i}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-OP"> <munder> <mi>lim</mi> <mo>→<!-- → --></mo> </munder> </mrow> <mo>⁡<!-- --></mo> <msub> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>∼<!-- ∼ --></mo> </mrow> </msup> <mo>≃<!-- ≃ --></mo> <mrow class="MJX-TeXAtom-OP"> <munder> <mi>lim</mi> <mo>→<!-- → --></mo> </munder> </mrow> <mo>⁡<!-- --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <msub> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>~<!-- ~ --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\varinjlim M_{i})^{\sim }\simeq \varinjlim {\widetilde {M_{i}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e36fe190145bef24be662688ec0d9ee79e60cb9a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.637ex; margin-bottom: -0.367ex; width:20.02ex; height:4.509ex;" alt="{\displaystyle (\varinjlim M_{i})^{\sim }\simeq \varinjlim {\widetilde {M_{i}}}}"></span>;<sup id="cite_ref-11" class="reference"><a href="#cite_note-11"><span class="cite-bracket">[</span>11<span class="cite-bracket">]</span></a></sup> in particular, taking a direct sum and ~ commute.</li> <li>A sequence of <i>A</i>-modules is exact if and only if the induced sequence by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sim }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>∼<!-- ∼ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sim }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/afcc42adfcfdc24d5c4c474869e5d8eaa78d1173" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: 0.307ex; margin-bottom: -0.478ex; width:1.808ex; height:1.343ex;" alt="{\displaystyle \sim }"></span> is exact. In particular, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\ker(\varphi ))^{\sim }=\ker({\widetilde {\varphi }}),(\operatorname {coker} (\varphi ))^{\sim }=\operatorname {coker} ({\widetilde {\varphi }}),(\operatorname {im} (\varphi ))^{\sim }=\operatorname {im} ({\widetilde {\varphi }})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>ker</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>φ<!-- φ --></mi> <mo stretchy="false">)</mo> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>∼<!-- ∼ --></mo> </mrow> </msup> <mo>=</mo> <mi>ker</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>φ<!-- φ --></mi> <mo>~<!-- ~ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">)</mo> <mo>,</mo> <mo stretchy="false">(</mo> <mi>coker</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>φ<!-- φ --></mi> <mo stretchy="false">)</mo> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>∼<!-- ∼ --></mo> </mrow> </msup> <mo>=</mo> <mi>coker</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>φ<!-- φ --></mi> <mo>~<!-- ~ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">)</mo> <mo>,</mo> <mo stretchy="false">(</mo> <mi>im</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>φ<!-- φ --></mi> <mo stretchy="false">)</mo> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>∼<!-- ∼ --></mo> </mrow> </msup> <mo>=</mo> <mi>im</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>φ<!-- φ --></mi> <mo>~<!-- ~ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\ker(\varphi ))^{\sim }=\ker({\widetilde {\varphi }}),(\operatorname {coker} (\varphi ))^{\sim }=\operatorname {coker} ({\widetilde {\varphi }}),(\operatorname {im} (\varphi ))^{\sim }=\operatorname {im} ({\widetilde {\varphi }})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/64e3b4ae85d2f714695a5e4bfd392ff4ec9b524c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:63.78ex; height:2.843ex;" alt="{\displaystyle (\ker(\varphi ))^{\sim }=\ker({\widetilde {\varphi }}),(\operatorname {coker} (\varphi ))^{\sim }=\operatorname {coker} ({\widetilde {\varphi }}),(\operatorname {im} (\varphi ))^{\sim }=\operatorname {im} ({\widetilde {\varphi }})}"></span>.</li></ul> <div class="mw-heading mw-heading2"><h2 id="Sheaf_associated_to_a_graded_module">Sheaf associated to a graded module</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Sheaf_of_modules&action=edit&section=5" title="Edit section: Sheaf associated to a graded module"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>There is a graded analog of the construction and equivalence in the preceding section. Let <i>R</i> be a graded ring generated by degree-one elements as <i>R</i><sub>0</sub>-algebra (<i>R</i><sub>0</sub> means the degree-zero piece) and <i>M</i> a graded <i>R</i>-module. Let <i>X</i> be the <a href="/wiki/Proj_construction" title="Proj construction">Proj</a> of <i>R</i> (so <i>X</i> is a <a href="/wiki/Projective_scheme" class="mw-redirect" title="Projective scheme">projective scheme</a> if <i>R</i> is Noetherian). Then there is an <i>O</i>-module <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\widetilde {M}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>M</mi> <mo>~<!-- ~ --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\widetilde {M}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/301b4dae6caafe7d093e43c068d75940062f7fe9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.699ex; height:2.843ex;" alt="{\displaystyle {\widetilde {M}}}"></span> such that for any homogeneous element <i>f</i> of positive degree of <i>R</i>, there is a natural isomorphism </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\widetilde {M}}|_{\{f\neq 0\}}\simeq (M[f^{-1}]_{0})^{\sim }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>M</mi> <mo>~<!-- ~ --></mo> </mover> </mrow> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo fence="false" stretchy="false">{</mo> <mi>f</mi> <mo>≠<!-- ≠ --></mo> <mn>0</mn> <mo fence="false" stretchy="false">}</mo> </mrow> </msub> <mo>≃<!-- ≃ --></mo> <mo stretchy="false">(</mo> <mi>M</mi> <mo stretchy="false">[</mo> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <msub> <mo stretchy="false">]</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>∼<!-- ∼ --></mo> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\widetilde {M}}|_{\{f\neq 0\}}\simeq (M[f^{-1}]_{0})^{\sim }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/78e3c8df95226bf9fa13c36b7656d599552f28b0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:23.088ex; height:3.843ex;" alt="{\displaystyle {\widetilde {M}}|_{\{f\neq 0\}}\simeq (M[f^{-1}]_{0})^{\sim }}"></span></dd></dl> <p>as sheaves of modules on the affine scheme <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \{f\neq 0\}=\operatorname {Spec} (R[f^{-1}]_{0})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">{</mo> <mi>f</mi> <mo>≠<!-- ≠ --></mo> <mn>0</mn> <mo fence="false" stretchy="false">}</mo> <mo>=</mo> <mi>Spec</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>R</mi> <mo stretchy="false">[</mo> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <msub> <mo stretchy="false">]</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \{f\neq 0\}=\operatorname {Spec} (R[f^{-1}]_{0})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/967fed6f4464945e714e78d26ad7b4f64641ba3f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:25.187ex; height:3.176ex;" alt="{\displaystyle \{f\neq 0\}=\operatorname {Spec} (R[f^{-1}]_{0})}"></span>;<sup id="cite_ref-12" class="reference"><a href="#cite_note-12"><span class="cite-bracket">[</span>12<span class="cite-bracket">]</span></a></sup> in fact, this defines <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\widetilde {M}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>M</mi> <mo>~<!-- ~ --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\widetilde {M}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/301b4dae6caafe7d093e43c068d75940062f7fe9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.699ex; height:2.843ex;" alt="{\displaystyle {\widetilde {M}}}"></span> by gluing. </p><p><b>Example</b>: Let <i>R</i>(1) be the graded <i>R</i>-module given by <i>R</i>(1)<sub><i>n</i></sub> = <i>R</i><sub><i>n</i>+1</sub>. Then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle O(1)={\widetilde {R(1)}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>O</mi> <mo stretchy="false">(</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow> <mi>R</mi> <mo stretchy="false">(</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> <mo>~<!-- ~ --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle O(1)={\widetilde {R(1)}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/12914cec316a4111f0b65e3694f2633114d843a1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.579ex; height:3.676ex;" alt="{\displaystyle O(1)={\widetilde {R(1)}}}"></span> is called <a href="/wiki/Serre%27s_twisting_sheaf" class="mw-redirect" title="Serre's twisting sheaf">Serre's twisting sheaf</a>, which is the dual of the <a href="/wiki/Tautological_line_bundle" class="mw-redirect" title="Tautological line bundle">tautological line bundle</a> if <i>R</i> is finitely generated in degree-one. </p><p>If <i>F</i> is an <i>O</i>-module on <i>X</i>, then, writing <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F(n)=F\otimes O(n)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>F</mi> <mo>⊗<!-- ⊗ --></mo> <mi>O</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F(n)=F\otimes O(n)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fa09e0313a657d6157213a03e497c2b1a55e1735" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:17.602ex; height:2.843ex;" alt="{\displaystyle F(n)=F\otimes O(n)}"></span>, there is a canonical homomorphism: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left(\bigoplus _{n\geq 0}\Gamma (X,F(n))\right)^{\sim }\to F,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow> <mo>(</mo> <mrow> <munder> <mo>⨁<!-- ⨁ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>≥<!-- ≥ --></mo> <mn>0</mn> </mrow> </munder> <mi mathvariant="normal">Γ<!-- Γ --></mi> <mo stretchy="false">(</mo> <mi>X</mi> <mo>,</mo> <mi>F</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>∼<!-- ∼ --></mo> </mrow> </msup> <mo stretchy="false">→<!-- → --></mo> <mi>F</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left(\bigoplus _{n\geq 0}\Gamma (X,F(n))\right)^{\sim }\to F,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b538dc061a4dc4024c4d3a2e750d714d8ffb69c7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:26.312ex; height:7.509ex;" alt="{\displaystyle \left(\bigoplus _{n\geq 0}\Gamma (X,F(n))\right)^{\sim }\to F,}"></span></dd></dl> <p>which is an isomorphism if and only if <i>F</i> is quasi-coherent. </p> <div class="mw-heading mw-heading2"><h2 id="Computing_sheaf_cohomology">Computing sheaf cohomology</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Sheaf_of_modules&action=edit&section=6" title="Edit section: Computing sheaf cohomology"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1251242444"><table class="box-Expand_section plainlinks metadata ambox mbox-small-left ambox-content" role="presentation"><tbody><tr><td class="mbox-image"><span typeof="mw:File"><a href="/wiki/File:Wiki_letter_w_cropped.svg" class="mw-file-description"><img alt="[icon]" src="//upload.wikimedia.org/wikipedia/commons/thumb/1/1c/Wiki_letter_w_cropped.svg/20px-Wiki_letter_w_cropped.svg.png" decoding="async" width="20" height="14" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/1/1c/Wiki_letter_w_cropped.svg/30px-Wiki_letter_w_cropped.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/1/1c/Wiki_letter_w_cropped.svg/40px-Wiki_letter_w_cropped.svg.png 2x" data-file-width="44" data-file-height="31" /></a></span></td><td class="mbox-text"><div class="mbox-text-span">This section <b>needs expansion</b>. You can help by <a class="external text" href="https://en.wikipedia.org/w/index.php?title=Sheaf_of_modules&action=edit&section=">adding to it</a>. <span class="date-container"><i>(<span class="date">January 2016</span>)</i></span></div></td></tr></tbody></table> <style data-mw-deduplicate="TemplateStyles:r1236090951">.mw-parser-output .hatnote{font-style:italic}.mw-parser-output div.hatnote{padding-left:1.6em;margin-bottom:0.5em}.mw-parser-output .hatnote i{font-style:normal}.mw-parser-output .hatnote+link+.hatnote{margin-top:-0.5em}@media print{body.ns-0 .mw-parser-output .hatnote{display:none!important}}</style><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Sheaf_cohomology" title="Sheaf cohomology">sheaf cohomology</a></div> <p>Sheaf cohomology has a reputation for being difficult to calculate. Because of this, the next general fact is fundamental for any practical computation: </p> <style data-mw-deduplicate="TemplateStyles:r1110004140">.mw-parser-output .math_theorem{margin:1em 2em;padding:0.5em 1em 0.4em;border:1px solid #aaa;overflow:hidden}@media(max-width:500px){.mw-parser-output .math_theorem{margin:1em 0em;padding:0.5em 0.5em 0.4em}}</style><div class="math_theorem" style=""> <p><strong class="theorem-name">Theorem</strong><span class="theoreme-tiret"> — </span>Let <i>X</i> be a topological space, <i>F</i> an abelian sheaf on it and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathfrak {U}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">U</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathfrak {U}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/042ea9f1b7b1e435446133c8cc8bc5a204766da5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; margin-left: -0.057ex; width:1.603ex; height:2.176ex;" alt="{\displaystyle {\mathfrak {U}}}"></span> an open cover of <i>X</i> such that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {H} ^{i}(U_{i_{0}}\cap \cdots \cap U_{i_{p}},F)=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi mathvariant="normal">H</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msup> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <msub> <mi>U</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mrow> </msub> <mo>∩<!-- ∩ --></mo> <mo>⋯<!-- ⋯ --></mo> <mo>∩<!-- ∩ --></mo> <msub> <mi>U</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> </mrow> </msub> <mo>,</mo> <mi>F</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {H} ^{i}(U_{i_{0}}\cap \cdots \cap U_{i_{p}},F)=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0995cfb4d54a4358fc11dad4e94225e80da31e1a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:25.718ex; height:3.509ex;" alt="{\displaystyle \operatorname {H} ^{i}(U_{i_{0}}\cap \cdots \cap U_{i_{p}},F)=0}"></span> for any <i>i</i>, <i>p</i> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle U_{i_{j}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>U</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle U_{i_{j}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e3e2f7576b1a414cf75467ab4475e8357bf35d51" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:3.101ex; height:3.009ex;" alt="{\displaystyle U_{i_{j}}}"></span>'s in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathfrak {U}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">U</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathfrak {U}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/042ea9f1b7b1e435446133c8cc8bc5a204766da5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; margin-left: -0.057ex; width:1.603ex; height:2.176ex;" alt="{\displaystyle {\mathfrak {U}}}"></span>. Then for any <i>i</i>, </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {H} ^{i}(X,F)=\operatorname {H} ^{i}(C^{\bullet }({\mathfrak {U}},F))}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi mathvariant="normal">H</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msup> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>X</mi> <mo>,</mo> <mi>F</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msup> <mi mathvariant="normal">H</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msup> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>∙<!-- ∙ --></mo> </mrow> </msup> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">U</mi> </mrow> </mrow> <mo>,</mo> <mi>F</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {H} ^{i}(X,F)=\operatorname {H} ^{i}(C^{\bullet }({\mathfrak {U}},F))}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6c50d04d679e3862aa56bba04b7a56c3aa22fec1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:25.539ex; height:3.176ex;" alt="{\displaystyle \operatorname {H} ^{i}(X,F)=\operatorname {H} ^{i}(C^{\bullet }({\mathfrak {U}},F))}"></span></dd></dl> <p>where the right-hand side is the <i>i</i>-th <a href="/wiki/%C4%8Cech_cohomology" title="Čech cohomology">Čech cohomology</a>. </p> </div> <p><a href="/wiki/Serre%27s_vanishing_theorem" class="mw-redirect" title="Serre's vanishing theorem">Serre's vanishing theorem</a><sup id="cite_ref-13" class="reference"><a href="#cite_note-13"><span class="cite-bracket">[</span>13<span class="cite-bracket">]</span></a></sup> states that if <i>X</i> is a projective variety and <i>F</i> a coherent sheaf on it, then, for sufficiently large <i>n</i>, the <a href="/wiki/Serre_twist" class="mw-redirect" title="Serre twist">Serre twist</a> <i>F</i>(<i>n</i>) is generated by finitely many global sections. Moreover, </p> <ol type="a"> <li> For each <i>i</i>, H<sup><i>i</i></sup>(<i>X</i>, <i>F</i>) is finitely generated over <i>R</i><sub>0</sub>, and</li> <li> There is an integer <i>n</i><sub>0</sub>, depending on <i>F</i>, such that <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {H} ^{i}(X,F(n))=0,\,i\geq 1,n\geq n_{0}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi mathvariant="normal">H</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msup> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>X</mi> <mo>,</mo> <mi>F</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>=</mo> <mn>0</mn> <mo>,</mo> <mspace width="thinmathspace" /> <mi>i</mi> <mo>≥<!-- ≥ --></mo> <mn>1</mn> <mo>,</mo> <mi>n</mi> <mo>≥<!-- ≥ --></mo> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {H} ^{i}(X,F(n))=0,\,i\geq 1,n\geq n_{0}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0c2b765b74575c138212778c3bc86dee9a4a9d95" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:31.679ex; height:3.176ex;" alt="{\displaystyle \operatorname {H} ^{i}(X,F(n))=0,\,i\geq 1,n\geq n_{0}.}"></span></li> </ol><p><sup id="cite_ref-14" class="reference"><a href="#cite_note-14"><span class="cite-bracket">[</span>14<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-15" class="reference"><a href="#cite_note-15"><span class="cite-bracket">[</span>15<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-16" class="reference"><a href="#cite_note-16"><span class="cite-bracket">[</span>16<span class="cite-bracket">]</span></a></sup> </p><div class="mw-heading mw-heading2"><h2 id="Sheaf_extension">Sheaf extension</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Sheaf_of_modules&action=edit&section=7" title="Edit section: Sheaf extension"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Let (<i>X</i>, <i>O</i>) be a ringed space, and let <i>F</i>, <i>H</i> be sheaves of <i>O</i>-modules on <i>X</i>. An <b>extension</b> of <i>H</i> by <i>F</i> is a <a href="/wiki/Short_exact_sequence" class="mw-redirect" title="Short exact sequence">short exact sequence</a> of <i>O</i>-modules </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0\rightarrow F\rightarrow G\rightarrow H\rightarrow 0.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> <mo stretchy="false">→<!-- → --></mo> <mi>F</mi> <mo stretchy="false">→<!-- → --></mo> <mi>G</mi> <mo stretchy="false">→<!-- → --></mo> <mi>H</mi> <mo stretchy="false">→<!-- → --></mo> <mn>0.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0\rightarrow F\rightarrow G\rightarrow H\rightarrow 0.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e2581c21a1b7040bf4139e7f5cc3af9881c440ec" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:23.059ex; height:2.176ex;" alt="{\displaystyle 0\rightarrow F\rightarrow G\rightarrow H\rightarrow 0.}"></span></dd></dl> <p>As with group extensions, if we fix <i>F</i> and <i>H</i>, then all equivalence classes of extensions of <i>H</i> by <i>F</i> form an <a href="/wiki/Abelian_group" title="Abelian group">abelian group</a> (cf. <a href="/wiki/Baer_sum" class="mw-redirect" title="Baer sum">Baer sum</a>), which is isomorphic to the <a href="/wiki/Ext_functor" title="Ext functor">Ext group</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {Ext} _{O}^{1}(H,F)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>Ext</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>O</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msubsup> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>H</mi> <mo>,</mo> <mi>F</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {Ext} _{O}^{1}(H,F)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a384d1b5247f446cfdcc42cab91f98cb5d8990e8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:11.849ex; height:3.343ex;" alt="{\displaystyle \operatorname {Ext} _{O}^{1}(H,F)}"></span>, where the identity element in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {Ext} _{O}^{1}(H,F)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>Ext</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>O</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msubsup> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>H</mi> <mo>,</mo> <mi>F</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {Ext} _{O}^{1}(H,F)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a384d1b5247f446cfdcc42cab91f98cb5d8990e8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:11.849ex; height:3.343ex;" alt="{\displaystyle \operatorname {Ext} _{O}^{1}(H,F)}"></span> corresponds to the trivial extension. </p><p>In the case where <i>H</i> is <i>O</i>, we have: for any <i>i</i> ≥ 0, </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {H} ^{i}(X,F)=\operatorname {Ext} _{O}^{i}(O,F),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi mathvariant="normal">H</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msup> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>X</mi> <mo>,</mo> <mi>F</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msubsup> <mi>Ext</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>O</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msubsup> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>O</mi> <mo>,</mo> <mi>F</mi> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {H} ^{i}(X,F)=\operatorname {Ext} _{O}^{i}(O,F),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8475792d43e14ac0a8a793a42f6393d4aad319d0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:24.411ex; height:3.343ex;" alt="{\displaystyle \operatorname {H} ^{i}(X,F)=\operatorname {Ext} _{O}^{i}(O,F),}"></span></dd></dl> <p>since both the sides are the right derived functors of the same functor <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Gamma (X,-)=\operatorname {Hom} _{O}(O,-).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">Γ<!-- Γ --></mi> <mo stretchy="false">(</mo> <mi>X</mi> <mo>,</mo> <mo>−<!-- − --></mo> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mi>Hom</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>O</mi> </mrow> </msub> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>O</mi> <mo>,</mo> <mo>−<!-- − --></mo> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Gamma (X,-)=\operatorname {Hom} _{O}(O,-).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e0e0a9931e992767d3da82fdbd24ebb3478b67c9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:24.582ex; height:2.843ex;" alt="{\displaystyle \Gamma (X,-)=\operatorname {Hom} _{O}(O,-).}"></span> </p><p><b>Note</b>: Some authors, notably Hartshorne, drop the subscript <i>O</i>. </p><p>Assume <i>X</i> is a projective scheme over a Noetherian ring. Let <i>F</i>, <i>G</i> be coherent sheaves on <i>X</i> and <i>i</i> an integer. Then there exists <i>n</i><sub>0</sub> such that </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {Ext} _{O}^{i}(F,G(n))=\Gamma (X,{\mathcal {E}}xt_{O}^{i}(F,G(n))),\,n\geq n_{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>Ext</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>O</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msubsup> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>F</mi> <mo>,</mo> <mi>G</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>=</mo> <mi mathvariant="normal">Γ<!-- Γ --></mi> <mo stretchy="false">(</mo> <mi>X</mi> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">E</mi> </mrow> </mrow> <mi>x</mi> <msubsup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>O</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msubsup> <mo stretchy="false">(</mo> <mi>F</mi> <mo>,</mo> <mi>G</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>,</mo> <mspace width="thinmathspace" /> <mi>n</mi> <mo>≥<!-- ≥ --></mo> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {Ext} _{O}^{i}(F,G(n))=\Gamma (X,{\mathcal {E}}xt_{O}^{i}(F,G(n))),\,n\geq n_{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a82ea239689c9ca8c1302af4cd3b397e8a46abf5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:47.135ex; height:3.343ex;" alt="{\displaystyle \operatorname {Ext} _{O}^{i}(F,G(n))=\Gamma (X,{\mathcal {E}}xt_{O}^{i}(F,G(n))),\,n\geq n_{0}}"></span>.<sup id="cite_ref-17" class="reference"><a href="#cite_note-17"><span class="cite-bracket">[</span>17<span class="cite-bracket">]</span></a></sup></dd></dl> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">See also: <a href="/wiki/Local-to-global_Ext_spectral_sequence" class="mw-redirect" title="Local-to-global Ext spectral sequence">local-to-global Ext spectral sequence</a></div> <div class="mw-heading mw-heading3"><h3 id="Locally_free_resolutions">Locally free resolutions</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Sheaf_of_modules&action=edit&section=8" title="Edit section: Locally free resolutions"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {Ext}}({\mathcal {F}},{\mathcal {G}})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">E</mi> <mi class="MJX-tex-caligraphic" mathvariant="script">x</mi> <mi class="MJX-tex-caligraphic" mathvariant="script">t</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">F</mi> </mrow> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">G</mi> </mrow> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {Ext}}({\mathcal {F}},{\mathcal {G}})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0913f4970eb57b5e83482d11ce3a91896038858e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.643ex; height:2.843ex;" alt="{\displaystyle {\mathcal {Ext}}({\mathcal {F}},{\mathcal {G}})}"></span> can be readily computed for any coherent sheaf <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {F}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">F</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {F}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/205d4b91000d9dcf1a5bbabdfa6a8395fa60b676" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.927ex; height:2.176ex;" alt="{\displaystyle {\mathcal {F}}}"></span> using a locally free resolution:<sup id="cite_ref-18" class="reference"><a href="#cite_note-18"><span class="cite-bracket">[</span>18<span class="cite-bracket">]</span></a></sup> given a complex </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \cdots \to {\mathcal {L}}_{2}\to {\mathcal {L}}_{1}\to {\mathcal {L}}_{0}\to {\mathcal {F}}\to 0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>⋯<!-- ⋯ --></mo> <mo stretchy="false">→<!-- → --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">→<!-- → --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">→<!-- → --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">→<!-- → --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">F</mi> </mrow> </mrow> <mo stretchy="false">→<!-- → --></mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \cdots \to {\mathcal {L}}_{2}\to {\mathcal {L}}_{1}\to {\mathcal {L}}_{0}\to {\mathcal {F}}\to 0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3f5c3bd0e8df0872cd9b849d78fae3c7145f5b94" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:31.857ex; height:2.509ex;" alt="{\displaystyle \cdots \to {\mathcal {L}}_{2}\to {\mathcal {L}}_{1}\to {\mathcal {L}}_{0}\to {\mathcal {F}}\to 0}"></span></dd></dl> <p>then </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {RHom}}({\mathcal {F}},{\mathcal {G}})={\mathcal {Hom}}({\mathcal {L}}_{\bullet },{\mathcal {G}})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">R</mi> <mi class="MJX-tex-caligraphic" mathvariant="script">H</mi> <mi class="MJX-tex-caligraphic" mathvariant="script">o</mi> <mi class="MJX-tex-caligraphic" mathvariant="script">m</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">F</mi> </mrow> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">G</mi> </mrow> </mrow> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">H</mi> <mi class="MJX-tex-caligraphic" mathvariant="script">o</mi> <mi class="MJX-tex-caligraphic" mathvariant="script">m</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>∙<!-- ∙ --></mo> </mrow> </msub> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">G</mi> </mrow> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {RHom}}({\mathcal {F}},{\mathcal {G}})={\mathcal {Hom}}({\mathcal {L}}_{\bullet },{\mathcal {G}})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6938f3293dd697cda4486b261d6408d182d2b0f5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:28.389ex; height:2.843ex;" alt="{\displaystyle {\mathcal {RHom}}({\mathcal {F}},{\mathcal {G}})={\mathcal {Hom}}({\mathcal {L}}_{\bullet },{\mathcal {G}})}"></span></dd></dl> <p>hence </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {Ext}}^{k}({\mathcal {F}},{\mathcal {G}})=h^{k}({\mathcal {Hom}}({\mathcal {L}}_{\bullet },{\mathcal {G}}))}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">E</mi> <mi class="MJX-tex-caligraphic" mathvariant="script">x</mi> <mi class="MJX-tex-caligraphic" mathvariant="script">t</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">F</mi> </mrow> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">G</mi> </mrow> </mrow> <mo stretchy="false">)</mo> <mo>=</mo> <msup> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">H</mi> <mi class="MJX-tex-caligraphic" mathvariant="script">o</mi> <mi class="MJX-tex-caligraphic" mathvariant="script">m</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>∙<!-- ∙ --></mo> </mrow> </msub> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">G</mi> </mrow> </mrow> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {Ext}}^{k}({\mathcal {F}},{\mathcal {G}})=h^{k}({\mathcal {Hom}}({\mathcal {L}}_{\bullet },{\mathcal {G}}))}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5bd4809759a60cf6133e4c7c58c53590893136ca" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:30.092ex; height:3.176ex;" alt="{\displaystyle {\mathcal {Ext}}^{k}({\mathcal {F}},{\mathcal {G}})=h^{k}({\mathcal {Hom}}({\mathcal {L}}_{\bullet },{\mathcal {G}}))}"></span></dd></dl> <div class="mw-heading mw-heading3"><h3 id="Examples_2">Examples</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Sheaf_of_modules&action=edit&section=9" title="Edit section: Examples"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading4"><h4 id="Hypersurface">Hypersurface</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Sheaf_of_modules&action=edit&section=10" title="Edit section: Hypersurface"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Consider a smooth hypersurface <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> of degree <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e85ff03cbe0c7341af6b982e47e9f90d235c66ab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.216ex; height:2.176ex;" alt="{\displaystyle d}"></span>. Then, we can compute a resolution </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {O}}(-d)\to {\mathcal {O}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">O</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mo>−<!-- − --></mo> <mi>d</mi> <mo stretchy="false">)</mo> <mo stretchy="false">→<!-- → --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">O</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {O}}(-d)\to {\mathcal {O}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4c9041a18352a94dcbf258dcfba43f2192392d5d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.147ex; height:2.843ex;" alt="{\displaystyle {\mathcal {O}}(-d)\to {\mathcal {O}}}"></span></dd></dl> <p>and find that </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {Ext}}^{i}({\mathcal {O}}_{X},{\mathcal {F}})=h^{i}({\mathcal {Hom}}({\mathcal {O}}(-d)\to {\mathcal {O}},{\mathcal {F}}))}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">E</mi> <mi class="MJX-tex-caligraphic" mathvariant="script">x</mi> <mi class="MJX-tex-caligraphic" mathvariant="script">t</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msup> <mo stretchy="false">(</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">O</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">F</mi> </mrow> </mrow> <mo stretchy="false">)</mo> <mo>=</mo> <msup> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">H</mi> <mi class="MJX-tex-caligraphic" mathvariant="script">o</mi> <mi class="MJX-tex-caligraphic" mathvariant="script">m</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">O</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mo>−<!-- − --></mo> <mi>d</mi> <mo stretchy="false">)</mo> <mo stretchy="false">→<!-- → --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">O</mi> </mrow> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">F</mi> </mrow> </mrow> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {Ext}}^{i}({\mathcal {O}}_{X},{\mathcal {F}})=h^{i}({\mathcal {Hom}}({\mathcal {O}}(-d)\to {\mathcal {O}},{\mathcal {F}}))}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6aa52ef7825a0f62db8facc09ac8cb96943ab7b1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:41.627ex; height:3.176ex;" alt="{\displaystyle {\mathcal {Ext}}^{i}({\mathcal {O}}_{X},{\mathcal {F}})=h^{i}({\mathcal {Hom}}({\mathcal {O}}(-d)\to {\mathcal {O}},{\mathcal {F}}))}"></span></dd></dl> <div class="mw-heading mw-heading4"><h4 id="Union_of_smooth_complete_intersections">Union of smooth complete intersections</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Sheaf_of_modules&action=edit&section=11" title="Edit section: Union of smooth complete intersections"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Consider the scheme </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X={\text{Proj}}\left({\frac {\mathbb {C} [x_{0},\ldots ,x_{n}]}{(f)(g_{1},g_{2},g_{3})}}\right)\subseteq \mathbb {P} ^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mtext>Proj</mtext> </mrow> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">C</mi> </mrow> <mo stretchy="false">[</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>,</mo> <mo>…<!-- … --></mo> <mo>,</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">]</mo> </mrow> <mrow> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> <mo>⊆<!-- ⊆ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">P</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X={\text{Proj}}\left({\frac {\mathbb {C} [x_{0},\ldots ,x_{n}]}{(f)(g_{1},g_{2},g_{3})}}\right)\subseteq \mathbb {P} ^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9fc2605ff5732feb4d573b72e7f9d80e84d80053" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:33.284ex; height:6.509ex;" alt="{\displaystyle X={\text{Proj}}\left({\frac {\mathbb {C} [x_{0},\ldots ,x_{n}]}{(f)(g_{1},g_{2},g_{3})}}\right)\subseteq \mathbb {P} ^{n}}"></span></dd></dl> <p>where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (f,g_{1},g_{2},g_{3})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>f</mi> <mo>,</mo> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (f,g_{1},g_{2},g_{3})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0a4d5630cc9317d11e9d9ba7783b63b142c51511" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.68ex; height:2.843ex;" alt="{\displaystyle (f,g_{1},g_{2},g_{3})}"></span> is a smooth complete intersection and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \deg(f)=d}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>deg</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>d</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \deg(f)=d}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/155f37ef1e223f3fa834ffbfed323cc2b60b2d3f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.89ex; height:2.843ex;" alt="{\displaystyle \deg(f)=d}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \deg(g_{i})=e_{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>deg</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \deg(g_{i})=e_{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/83d505ea6787006f00a60169573822a0580a426b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.187ex; height:2.843ex;" alt="{\displaystyle \deg(g_{i})=e_{i}}"></span>. We have a complex </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {O}}(-d-e_{1}-e_{2}-e_{3}){\xrightarrow {\begin{bmatrix}g_{3}\\-g_{2}\\-g_{1}\end{bmatrix}}}{\begin{matrix}{\mathcal {O}}(-d-e_{1}-e_{2})\\\oplus \\{\mathcal {O}}(-d-e_{1}-e_{3})\\\oplus \\{\mathcal {O}}(-d-e_{2}-e_{3})\end{matrix}}{\xrightarrow {\begin{bmatrix}g_{2}&g_{3}&0\\-g_{1}&0&-g_{3}\\0&-g_{1}&g_{2}\end{bmatrix}}}{\begin{matrix}{\mathcal {O}}(-d-e_{1})\\\oplus \\{\mathcal {O}}(-d-e_{2})\\\oplus \\{\mathcal {O}}(-d-e_{3})\end{matrix}}{\xrightarrow {\begin{bmatrix}fg_{1}&fg_{2}&fg_{3}\end{bmatrix}}}{\mathcal {O}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">O</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mo>−<!-- − --></mo> <mi>d</mi> <mo>−<!-- − --></mo> <msub> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>−<!-- − --></mo> <msub> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>−<!-- − --></mo> <msub> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mover> <mo>→</mo> <mpadded width="+0.611em" lspace="0.278em" voffset=".15em"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <mo>−<!-- − --></mo> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <mo>−<!-- − --></mo> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mpadded> </mover> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">O</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mo>−<!-- − --></mo> <mi>d</mi> <mo>−<!-- − --></mo> <msub> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>−<!-- − --></mo> <msub> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd> <mo>⊕<!-- ⊕ --></mo> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">O</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mo>−<!-- − --></mo> <mi>d</mi> <mo>−<!-- − --></mo> <msub> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>−<!-- − --></mo> <msub> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd> <mo>⊕<!-- ⊕ --></mo> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">O</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mo>−<!-- − --></mo> <mi>d</mi> <mo>−<!-- − --></mo> <msub> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>−<!-- − --></mo> <msub> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mtd> </mtr> </mtable> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mover> <mo>→</mo> <mpadded width="+0.611em" lspace="0.278em" voffset=".15em"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mo>−<!-- − --></mo> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mo>−<!-- − --></mo> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mo>−<!-- − --></mo> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mpadded> </mover> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">O</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mo>−<!-- − --></mo> <mi>d</mi> <mo>−<!-- − --></mo> <msub> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd> <mo>⊕<!-- ⊕ --></mo> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">O</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mo>−<!-- − --></mo> <mi>d</mi> <mo>−<!-- − --></mo> <msub> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd> <mo>⊕<!-- ⊕ --></mo> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">O</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mo>−<!-- − --></mo> <mi>d</mi> <mo>−<!-- − --></mo> <msub> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mtd> </mtr> </mtable> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mover> <mo>→</mo> <mpadded width="+0.611em" lspace="0.278em" voffset=".15em"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mi>f</mi> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mtd> <mtd> <mi>f</mi> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mtd> <mtd> <mi>f</mi> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mpadded> </mover> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">O</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {O}}(-d-e_{1}-e_{2}-e_{3}){\xrightarrow {\begin{bmatrix}g_{3}\\-g_{2}\\-g_{1}\end{bmatrix}}}{\begin{matrix}{\mathcal {O}}(-d-e_{1}-e_{2})\\\oplus \\{\mathcal {O}}(-d-e_{1}-e_{3})\\\oplus \\{\mathcal {O}}(-d-e_{2}-e_{3})\end{matrix}}{\xrightarrow {\begin{bmatrix}g_{2}&g_{3}&0\\-g_{1}&0&-g_{3}\\0&-g_{1}&g_{2}\end{bmatrix}}}{\begin{matrix}{\mathcal {O}}(-d-e_{1})\\\oplus \\{\mathcal {O}}(-d-e_{2})\\\oplus \\{\mathcal {O}}(-d-e_{3})\end{matrix}}{\xrightarrow {\begin{bmatrix}fg_{1}&fg_{2}&fg_{3}\end{bmatrix}}}{\mathcal {O}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5d9dc0fd1a4586b37c9969a94803b4c89dbdbf45" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -7.505ex; margin-top: -0.415ex; width:93.224ex; height:16.676ex;" alt="{\displaystyle {\mathcal {O}}(-d-e_{1}-e_{2}-e_{3}){\xrightarrow {\begin{bmatrix}g_{3}\\-g_{2}\\-g_{1}\end{bmatrix}}}{\begin{matrix}{\mathcal {O}}(-d-e_{1}-e_{2})\\\oplus \\{\mathcal {O}}(-d-e_{1}-e_{3})\\\oplus \\{\mathcal {O}}(-d-e_{2}-e_{3})\end{matrix}}{\xrightarrow {\begin{bmatrix}g_{2}&g_{3}&0\\-g_{1}&0&-g_{3}\\0&-g_{1}&g_{2}\end{bmatrix}}}{\begin{matrix}{\mathcal {O}}(-d-e_{1})\\\oplus \\{\mathcal {O}}(-d-e_{2})\\\oplus \\{\mathcal {O}}(-d-e_{3})\end{matrix}}{\xrightarrow {\begin{bmatrix}fg_{1}&fg_{2}&fg_{3}\end{bmatrix}}}{\mathcal {O}}}"></span></dd></dl> <p>resolving <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {O}}_{X},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">O</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {O}}_{X},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3fa7132f92984d15c60982967988e64dcedd52b4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.129ex; height:2.509ex;" alt="{\displaystyle {\mathcal {O}}_{X},}"></span> which we can use to compute <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {Ext}}^{i}({\mathcal {O}}_{X},{\mathcal {F}})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">E</mi> <mi class="MJX-tex-caligraphic" mathvariant="script">x</mi> <mi class="MJX-tex-caligraphic" mathvariant="script">t</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msup> <mo stretchy="false">(</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">O</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">F</mi> </mrow> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {Ext}}^{i}({\mathcal {O}}_{X},{\mathcal {F}})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dd4e04b65fd29ab00f61091d237009bb6c593b1e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.532ex; height:3.176ex;" alt="{\displaystyle {\mathcal {Ext}}^{i}({\mathcal {O}}_{X},{\mathcal {F}})}"></span>. </p> <div class="mw-heading mw-heading2"><h2 id="See_also">See also</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Sheaf_of_modules&action=edit&section=12" title="Edit section: See also"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/D-module" title="D-module">D-module</a> (in place of <i>O</i>, one can also consider <i>D</i>, the sheaf of differential operators.)</li> <li><a href="/wiki/Fractional_ideal" title="Fractional ideal">fractional ideal</a></li> <li><a href="/wiki/Holomorphic_vector_bundle" title="Holomorphic vector bundle">holomorphic vector bundle</a></li> <li><a href="/wiki/Generic_freeness" class="mw-redirect" title="Generic freeness">generic freeness</a></li></ul> <div class="mw-heading mw-heading2"><h2 id="Notes">Notes</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Sheaf_of_modules&action=edit&section=13" title="Edit section: Notes"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist"> <div class="mw-references-wrap mw-references-columns"><ol class="references"> <li id="cite_note-1"><span class="mw-cite-backlink"><b><a href="#cite_ref-1">^</a></b></span> <span class="reference-text">Vakil, <a rel="nofollow" class="external text" href="http://math.stanford.edu/~vakil/216blog/FOAGjun1113public.pdf">Math 216: Foundations of algebraic geometry</a>, 2.5.</span> </li> <li id="cite_note-2"><span class="mw-cite-backlink"><b><a href="#cite_ref-2">^</a></b></span> <span class="reference-text"><a href="#CITEREFHartshorne">Hartshorne</a>, Ch. III, Proposition 2.2.</span> </li> <li id="cite_note-3"><span class="mw-cite-backlink"><b><a href="#cite_ref-3">^</a></b></span> <span class="reference-text">This cohomology functor coincides with the right derived functor of the global section functor in the category of abelian sheaves; cf. <a href="#CITEREFHartshorne">Hartshorne</a>, Ch. III, Proposition 2.6.</span> </li> <li id="cite_note-4"><span class="mw-cite-backlink"><b><a href="#cite_ref-4">^</a></b></span> <span class="reference-text">There is a canonical homomorphism: <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {H}}om_{O}(F,O)_{x}\to \operatorname {Hom} _{O_{x}}(F_{x},O_{x}),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">H</mi> </mrow> </mrow> <mi>o</mi> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>O</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>F</mi> <mo>,</mo> <mi>O</mi> <msub> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> <mo stretchy="false">→<!-- → --></mo> <msub> <mi>Hom</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>O</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> </mrow> </msub> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>O</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {H}}om_{O}(F,O)_{x}\to \operatorname {Hom} _{O_{x}}(F_{x},O_{x}),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d88913de03b3e069fde40831345df04689657251" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:34.12ex; height:2.843ex;" alt="{\displaystyle {\mathcal {H}}om_{O}(F,O)_{x}\to \operatorname {Hom} _{O_{x}}(F_{x},O_{x}),}"></span></dd></dl> which is an isomorphism if <i>F</i> is of finite presentation (EGA, Ch. 0, 5.2.6.)</span> </li> <li id="cite_note-5"><span class="mw-cite-backlink"><b><a href="#cite_ref-5">^</a></b></span> <span class="reference-text">For coherent sheaves, having a tensor inverse is the same as being locally free of rank one; in fact, there is the following fact: if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F\otimes G\simeq O}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> <mo>⊗<!-- ⊗ --></mo> <mi>G</mi> <mo>≃<!-- ≃ --></mo> <mi>O</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F\otimes G\simeq O}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/36aba8e82341a348f0e600c91372b9aa44845245" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:11.28ex; height:2.343ex;" alt="{\displaystyle F\otimes G\simeq O}"></span> and if <i>F</i> is coherent, then <i>F</i>, <i>G</i> are locally free of rank one. (cf. EGA, Ch 0, 5.4.3.)</span> </li> <li id="cite_note-6"><span class="mw-cite-backlink"><b><a href="#cite_ref-6">^</a></b></span> <span class="reference-text"><a href="#CITEREFHartshorne">Hartshorne</a>, Ch III, Lemma 2.4.</span> </li> <li id="cite_note-7"><span class="mw-cite-backlink"><b><a href="#cite_ref-7">^</a></b></span> <span class="reference-text">see also: <a rel="nofollow" class="external free" href="https://math.stackexchange.com/q/447234">https://math.stackexchange.com/q/447234</a></span> </li> <li id="cite_note-8"><span class="mw-cite-backlink"><b><a href="#cite_ref-8">^</a></b></span> <span class="reference-text"><a href="#CITEREFHartshorne">Hartshorne</a>, Ch. II, Proposition 5.1.</span> </li> <li id="cite_note-9"><span class="mw-cite-backlink"><b><a href="#cite_ref-9">^</a></b></span> <span class="reference-text"><a href="#CITEREFEGA_I">EGA I</a>, Ch. I, Proposition 1.3.6.<span class="error harv-error" style="display: none; font-size:100%"> harvnb error: no target: CITEREFEGA_I (<a href="/wiki/Category:Harv_and_Sfn_template_errors" title="Category:Harv and Sfn template errors">help</a>)</span></span> </li> <li id="cite_note-Corollary_1.3.12.-10"><span class="mw-cite-backlink">^ <a href="#cite_ref-Corollary_1.3.12._10-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Corollary_1.3.12._10-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><a href="#CITEREFEGA_I">EGA I</a>, Ch. I, Corollaire 1.3.12.<span class="error harv-error" style="display: none; font-size:100%"> harvnb error: no target: CITEREFEGA_I (<a href="/wiki/Category:Harv_and_Sfn_template_errors" title="Category:Harv and Sfn template errors">help</a>)</span></span> </li> <li id="cite_note-11"><span class="mw-cite-backlink"><b><a href="#cite_ref-11">^</a></b></span> <span class="reference-text"><a href="#CITEREFEGA_I">EGA I</a>, Ch. I, Corollaire 1.3.9.<span class="error harv-error" style="display: none; font-size:100%"> harvnb error: no target: CITEREFEGA_I (<a href="/wiki/Category:Harv_and_Sfn_template_errors" title="Category:Harv and Sfn template errors">help</a>)</span></span> </li> <li id="cite_note-12"><span class="mw-cite-backlink"><b><a href="#cite_ref-12">^</a></b></span> <span class="reference-text"><a href="#CITEREFHartshorne">Hartshorne</a>, Ch. II, Proposition 5.11.</span> </li> <li id="cite_note-13"><span class="mw-cite-backlink"><b><a href="#cite_ref-13">^</a></b></span> <span class="reference-text"><style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://stacks.math.columbia.edu/tag/01X8">"Section 30.2 (01X8): Čech cohomology of quasi-coherent sheaves—The Stacks project"</a>. <i>stacks.math.columbia.edu</i><span class="reference-accessdate">. Retrieved <span class="nowrap">2023-12-07</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=stacks.math.columbia.edu&rft.atitle=Section+30.2+%2801X8%29%3A+%C4%8Cech+cohomology+of+quasi-coherent+sheaves%E2%80%94The+Stacks+project&rft_id=https%3A%2F%2Fstacks.math.columbia.edu%2Ftag%2F01X8&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASheaf+of+modules" class="Z3988"></span></span> </li> <li id="cite_note-14"><span class="mw-cite-backlink"><b><a href="#cite_ref-14">^</a></b></span> <span class="reference-text"><a href="#CITEREFCostaMiró-RoigPons-Llopis2021">Costa, Miró-Roig & Pons-Llopis 2021</a>, Theorem 1.3.1</span> </li> <li id="cite_note-15"><span class="mw-cite-backlink"><b><a href="#cite_ref-15">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation book cs1">"Links with sheaf cohomology". <i>Local Cohomology</i>. Cambridge Studies in Advanced Mathematics. Cambridge University Press. 2012. pp. 438–479. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1017%2FCBO9781139044059.023">10.1017/CBO9781139044059.023</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/9780521513630" title="Special:BookSources/9780521513630"><bdi>9780521513630</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Links+with+sheaf+cohomology&rft.btitle=Local+Cohomology&rft.series=Cambridge+Studies+in+Advanced+Mathematics&rft.pages=438-479&rft.pub=Cambridge+University+Press&rft.date=2012&rft_id=info%3Adoi%2F10.1017%2FCBO9781139044059.023&rft.isbn=9780521513630&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASheaf+of+modules" class="Z3988"></span></span> </li> <li id="cite_note-16"><span class="mw-cite-backlink"><b><a href="#cite_ref-16">^</a></b></span> <span class="reference-text"><a href="#CITEREFSerre1955">Serre 1955</a>, §.66 Faisceaux algébriques cohérents sur les variétés projectives.</span> </li> <li id="cite_note-17"><span class="mw-cite-backlink"><b><a href="#cite_ref-17">^</a></b></span> <span class="reference-text"><a href="#CITEREFHartshorne">Hartshorne</a>, Ch. III, Proposition 6.9.</span> </li> <li id="cite_note-18"><span class="mw-cite-backlink"><b><a href="#cite_ref-18">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHartshorne" class="citation book cs1">Hartshorne, Robin. <i>Algebraic Geometry</i>. pp. 233–235.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Algebraic+Geometry&rft.pages=233-235&rft.aulast=Hartshorne&rft.aufirst=Robin&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASheaf+of+modules" class="Z3988"></span></span> </li> </ol></div></div> <div class="mw-heading mw-heading2"><h2 id="References">References</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Sheaf_of_modules&action=edit&section=14" title="Edit section: References"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGrothendieckDieudonné1960" class="citation journal cs1"><a href="/wiki/Alexander_Grothendieck" title="Alexander Grothendieck">Grothendieck, Alexandre</a>; <a href="/wiki/Jean_Dieudonn%C3%A9" title="Jean Dieudonné">Dieudonné, Jean</a> (1960). <a rel="nofollow" class="external text" href="http://www.numdam.org/item/PMIHES_1960__4__5_0">"Éléments de géométrie algébrique: I. Le langage des schémas"</a>. <i><a href="/wiki/Publications_Math%C3%A9matiques_de_l%27IH%C3%89S" title="Publications Mathématiques de l'IHÉS">Publications Mathématiques de l'IHÉS</a></i>. <b>4</b>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fbf02684778">10.1007/bf02684778</a>. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=0217083">0217083</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Publications+Math%C3%A9matiques+de+l%27IH%C3%89S&rft.atitle=%C3%89l%C3%A9ments+de+g%C3%A9om%C3%A9trie+alg%C3%A9brique%3A+I.+Le+langage+des+sch%C3%A9mas&rft.volume=4&rft.date=1960&rft_id=info%3Adoi%2F10.1007%2Fbf02684778&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D0217083%23id-name%3DMR&rft.aulast=Grothendieck&rft.aufirst=Alexandre&rft.au=Dieudonn%C3%A9%2C+Jean&rft_id=http%3A%2F%2Fwww.numdam.org%2Fitem%2FPMIHES_1960__4__5_0&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASheaf+of+modules" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHartshorne1977" class="citation cs2"><a href="/wiki/Robin_Hartshorne" title="Robin Hartshorne">Hartshorne, Robin</a> (1977), <i><a href="/wiki/Algebraic_Geometry_(book)" title="Algebraic Geometry (book)">Algebraic Geometry</a></i>, <a href="/wiki/Graduate_Texts_in_Mathematics" title="Graduate Texts in Mathematics">Graduate Texts in Mathematics</a>, vol. 52, New York: Springer-Verlag, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-387-90244-9" title="Special:BookSources/978-0-387-90244-9"><bdi>978-0-387-90244-9</bdi></a>, <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=0463157">0463157</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Algebraic+Geometry&rft.place=New+York&rft.series=Graduate+Texts+in+Mathematics&rft.pub=Springer-Verlag&rft.date=1977&rft.isbn=978-0-387-90244-9&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D0463157%23id-name%3DMR&rft.aulast=Hartshorne&rft.aufirst=Robin&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASheaf+of+modules" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCostaMiró-RoigPons-Llopis2021" class="citation book cs1">Costa, Laura; Miró-Roig, Rosa María; Pons-Llopis, Joan (2021). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=v9IuEAAAQBAJ&pg=PT22"><i>Ulrich Bundles</i></a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1515%2F9783110647686">10.1515/9783110647686</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/9783110647686" title="Special:BookSources/9783110647686"><bdi>9783110647686</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Ulrich+Bundles&rft.date=2021&rft_id=info%3Adoi%2F10.1515%2F9783110647686&rft.isbn=9783110647686&rft.aulast=Costa&rft.aufirst=Laura&rft.au=Mir%C3%B3-Roig%2C+Rosa+Mar%C3%ADa&rft.au=Pons-Llopis%2C+Joan&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3Dv9IuEAAAQBAJ%26pg%3DPT22&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASheaf+of+modules" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation book cs1">"Links with sheaf cohomology". <i>Local Cohomology</i>. Cambridge Studies in Advanced Mathematics. Cambridge University Press. 2012. pp. 438–479. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1017%2FCBO9781139044059.023">10.1017/CBO9781139044059.023</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/9780521513630" title="Special:BookSources/9780521513630"><bdi>9780521513630</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Links+with+sheaf+cohomology&rft.btitle=Local+Cohomology&rft.series=Cambridge+Studies+in+Advanced+Mathematics&rft.pages=438-479&rft.pub=Cambridge+University+Press&rft.date=2012&rft_id=info%3Adoi%2F10.1017%2FCBO9781139044059.023&rft.isbn=9780521513630&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASheaf+of+modules" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSerre1955" class="citation cs2"><a href="/wiki/Jean-Pierre_Serre" title="Jean-Pierre Serre">Serre, Jean-Pierre</a> (1955), <a rel="nofollow" class="external text" href="https://www.college-de-france.fr/media/jean-pierre-serre/UPL5435398796951750634_Serre_FAC.pdf">"Faisceaux algébriques cohérents (§.66 Faisceaux algébriques cohérents sur les variétés projectives.)"</a> <span class="cs1-format">(PDF)</span>, <i>Annals of Mathematics</i>, <b>61</b> (2): 197–278, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.2307%2F1969915">10.2307/1969915</a>, <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a> <a rel="nofollow" class="external text" href="https://www.jstor.org/stable/1969915">1969915</a>, <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=0068874">0068874</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Annals+of+Mathematics&rft.atitle=Faisceaux+alg%C3%A9briques+coh%C3%A9rents+%28%C2%A7.66+Faisceaux+alg%C3%A9briques+coh%C3%A9rents+sur+les+vari%C3%A9t%C3%A9s+projectives.%29&rft.volume=61&rft.issue=2&rft.pages=197-278&rft.date=1955&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D0068874%23id-name%3DMR&rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F1969915%23id-name%3DJSTOR&rft_id=info%3Adoi%2F10.2307%2F1969915&rft.aulast=Serre&rft.aufirst=Jean-Pierre&rft_id=https%3A%2F%2Fwww.college-de-france.fr%2Fmedia%2Fjean-pierre-serre%2FUPL5435398796951750634_Serre_FAC.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASheaf+of+modules" class="Z3988"></span></li></ul> <!-- NewPP limit report Parsed by mw‐api‐ext.codfw.main‐65fb69b54‐8blwk Cached time: 20241202174243 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 0.454 seconds Real time usage: 0.666 seconds Preprocessor visited node count: 1646/1000000 Post‐expand include size: 32775/2097152 bytes Template argument size: 1737/2097152 bytes Highest expansion depth: 10/100 Expensive parser function count: 6/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 36389/5000000 bytes Lua time usage: 0.220/10.000 seconds Lua memory usage: 6929019/52428800 bytes Number of Wikibase entities loaded: 0/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 430.212 1 -total 39.19% 168.617 1 Template:Reflist 22.36% 96.182 1 Template:Short_description 18.98% 81.642 1 Template:Cite_web 15.16% 65.227 2 Template:Pagetype 12.35% 53.138 2 Template:Ambox 12.09% 51.999 1 Template:Technical 11.19% 48.147 11 Template:Harvnb 6.19% 26.640 4 Template:Cite_book 4.91% 21.104 1 Template:Main --> <!-- Saved in parser cache with key enwiki:pcache:44887605:|#|:idhash:canonical and timestamp 20241202174243 and revision id 1256734742. Rendering was triggered because: unknown --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1&useformat=desktop" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=Sheaf_of_modules&oldid=1256734742">https://en.wikipedia.org/w/index.php?title=Sheaf_of_modules&oldid=1256734742</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Category</a>: <ul><li><a href="/wiki/Category:Sheaf_theory" title="Category:Sheaf theory">Sheaf theory</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Hidden categories: <ul><li><a href="/wiki/Category:Harv_and_Sfn_no-target_errors" title="Category:Harv and Sfn no-target errors">Harv and Sfn no-target errors</a></li><li><a href="/wiki/Category:Articles_with_short_description" title="Category:Articles with short description">Articles with short description</a></li><li><a href="/wiki/Category:Short_description_with_empty_Wikidata_description" title="Category:Short description with empty Wikidata description">Short description with empty Wikidata description</a></li><li><a href="/wiki/Category:Wikipedia_articles_that_are_too_technical_from_November_2023" title="Category:Wikipedia articles that are too technical from November 2023">Wikipedia articles that are too technical from November 2023</a></li><li><a href="/wiki/Category:All_articles_that_are_too_technical" title="Category:All articles that are too technical">All articles that are too technical</a></li><li><a href="/wiki/Category:Articles_to_be_expanded_from_January_2016" title="Category:Articles to be expanded from January 2016">Articles to be expanded from January 2016</a></li><li><a href="/wiki/Category:All_articles_to_be_expanded" title="Category:All articles to be expanded">All articles to be expanded</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 11 November 2024, at 09:25<span class="anonymous-show"> (UTC)</span>.</li> <li id="footer-info-copyright">Text is available under the <a href="/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" title="Wikipedia:Text of the Creative Commons Attribution-ShareAlike 4.0 International License">Creative Commons Attribution-ShareAlike 4.0 License</a>; additional terms may apply. By using this site, you agree to the <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use" class="extiw" title="foundation:Special:MyLanguage/Policy:Terms of Use">Terms of Use</a> and <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy" class="extiw" title="foundation:Special:MyLanguage/Policy:Privacy policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=Sheaf_of_modules&mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-79d9bc49cc-qg4t2","wgBackendResponseTime":171,"wgPageParseReport":{"limitreport":{"cputime":"0.454","walltime":"0.666","ppvisitednodes":{"value":1646,"limit":1000000},"postexpandincludesize":{"value":32775,"limit":2097152},"templateargumentsize":{"value":1737,"limit":2097152},"expansiondepth":{"value":10,"limit":100},"expensivefunctioncount":{"value":6,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":36389,"limit":5000000},"entityaccesscount":{"value":0,"limit":400},"timingprofile":["100.00% 430.212 1 -total"," 39.19% 168.617 1 Template:Reflist"," 22.36% 96.182 1 Template:Short_description"," 18.98% 81.642 1 Template:Cite_web"," 15.16% 65.227 2 Template:Pagetype"," 12.35% 53.138 2 Template:Ambox"," 12.09% 51.999 1 Template:Technical"," 11.19% 48.147 11 Template:Harvnb"," 6.19% 26.640 4 Template:Cite_book"," 4.91% 21.104 1 Template:Main"]},"scribunto":{"limitreport-timeusage":{"value":"0.220","limit":"10.000"},"limitreport-memusage":{"value":6929019,"limit":52428800},"limitreport-logs":"anchor_id_list = table#1 {\n [\"CITEREFCostaMiró-RoigPons-Llopis2021\"] = 1,\n [\"CITEREFHartshorne\"] = 1,\n [\"CITEREFSerre1955\"] = 1,\n [\"Generated_by_global_sections\"] = 1,\n}\ntemplate_list = table#1 {\n [\"'\"] = 5,\n [\"Anchor\"] = 1,\n [\"Citation\"] = 1,\n [\"Cite book\"] = 4,\n [\"Cite web\"] = 1,\n [\"EGA\"] = 1,\n [\"Expand section\"] = 1,\n [\"Google books\"] = 1,\n [\"Hartshorne AG\"] = 1,\n [\"Harvnb\"] = 11,\n [\"Main\"] = 1,\n [\"Math_theorem\"] = 1,\n [\"Reflist\"] = 1,\n [\"See also\"] = 1,\n [\"Short description\"] = 1,\n [\"Technical\"] = 1,\n}\narticle_whitelist = table#1 {\n}\nciteref_patterns = table#1 {\n}\nno target: CITEREFEGA_I\nno target: CITEREFEGA_I\nno target: CITEREFEGA_I\n"},"cachereport":{"origin":"mw-api-ext.codfw.main-65fb69b54-8blwk","timestamp":"20241202174243","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Sheaf of modules","url":"https:\/\/en.wikipedia.org\/wiki\/Sheaf_of_modules","sameAs":"http:\/\/www.wikidata.org\/entity\/Q18695611","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q18695611","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2014-12-30T03:52:36Z","dateModified":"2024-11-11T09:25:27Z"}</script> </body> </html>