CINXE.COM
Search results for: water sustainable
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <script> var _paq = window._paq = window._paq || []; /* tracker methods like "setCustomDimension" should be called before "trackPageView" */ _paq.push(['trackPageView']); _paq.push(['enableLinkTracking']); (function() { var u="//matomo.waset.org/"; _paq.push(['setTrackerUrl', u+'matomo.php']); _paq.push(['setSiteId', '2']); var d=document, g=d.createElement('script'), s=d.getElementsByTagName('script')[0]; g.async=true; g.src=u+'matomo.js'; s.parentNode.insertBefore(g,s); })(); </script> <!-- End Matomo Code --> <title>Search results for: water sustainable</title> <meta name="description" content="Search results for: water sustainable"> <meta name="keywords" content="water sustainable"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="water sustainable" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2025/2026/2027">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="water sustainable"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 12671</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: water sustainable</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12671</span> Water Self Sufficient: Creating a Sustainable Water System Based on Urban Harvest Approach in La Serena, Chile</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zulfikar%20Dinar%20Wahidayat%20Putra">Zulfikar Dinar Wahidayat Putra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Water scarcity become a major challenge in an arid area. One of the arid areas is La Serena city in the Northern Chile which become a case study of this paper. Based on that, this paper tries to identify a sustainable water system by using urban harvest approach as a method to achieve water self-sufficiency for a neighborhood area in the La Serena city. By using the method, it is possible to create sustainable water system in the neighborhood area by reducing up to 38% of water demand and 94% of wastewater production even though water self-sufficient cannot be fully achieved, because of its dependency to the drinking water supply from water treatment plant of La Serena city. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=arid%20area" title="arid area">arid area</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20water%20system" title=" sustainable water system"> sustainable water system</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20harvest%20approach" title=" urban harvest approach"> urban harvest approach</a>, <a href="https://publications.waset.org/abstracts/search?q=self-sufficiency" title=" self-sufficiency"> self-sufficiency</a> </p> <a href="https://publications.waset.org/abstracts/60849/water-self-sufficient-creating-a-sustainable-water-system-based-on-urban-harvest-approach-in-la-serena-chile" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60849.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">271</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12670</span> Sustainable Water Resource Management and Challenges in Indian Agriculture</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rajendra%20Kumar%20Isaac">Rajendra Kumar Isaac</a>, <a href="https://publications.waset.org/abstracts/search?q=Monisha%20Isaac"> Monisha Isaac</a> </p> <p class="card-text"><strong>Abstract:</strong></p> India, having a vast cultivable area and regional climatic variability, encounters water Resource Management Problems at various levels. The agricultural production of India needs to be increased to meet out projected population growth. Sustainable water resource is the only option to ensure food security, especially in northern Indian states, where the ground and surface water resources are fast depleting. Various tools and technologies available for management of scarce water resources have been discussed. It was concluded that multiple use of water, adopting latest water management options, identification of climate adoptable cropping and farming systems, can enhance water productivity and would encounter the fast growing water management and water shortage problems in Indian agriculture. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=water%20resource%20management" title="water resource management">water resource management</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable" title=" sustainable"> sustainable</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20management%20technologies" title=" water management technologies"> water management technologies</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20productivity" title=" water productivity"> water productivity</a>, <a href="https://publications.waset.org/abstracts/search?q=agriculture" title=" agriculture"> agriculture</a> </p> <a href="https://publications.waset.org/abstracts/69837/sustainable-water-resource-management-and-challenges-in-indian-agriculture" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69837.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">405</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12669</span> Modeling Water Resources Carrying Capacity, Optimizing Water Treatment, Smart Water Management, and Conceptualizing a Watershed Management Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pius%20Babuna">Pius Babuna</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sustainable water use is important for the existence of the human race. Water resources carrying capacity (WRCC) measures the sustainability of water use; however, the calculation and optimization of WRCC remain challenging. This study used a mathematical model (the Logistics Growth of Water Resources -LGWR) and a linear objective function to model water sustainability. We tested the validity of the models using data from Ghana. Total freshwater resources, water withdrawal, and population data were used in MATLAB. The results show that the WRCC remains sustainable until the year 2132 卤18, when half of the total annual water resources will be used. The optimized water treatment cost suggests that Ghana currently wastes GH燃 1115.782卤 50 cedis (~$182.21卤 50) per water treatment plant per month or ~ 0.67 million gallons of water in an avoidable loss. Adopting an optimized water treatment scheme and a watershed management approach will help sustain the WRCC. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=water%20resources%20carrying%20capacity" title="water resources carrying capacity">water resources carrying capacity</a>, <a href="https://publications.waset.org/abstracts/search?q=smart%20water%20management" title=" smart water management"> smart water management</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20water%20use" title=" sustainable water use"> sustainable water use</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20withdrawal" title=" water withdrawal"> water withdrawal</a> </p> <a href="https://publications.waset.org/abstracts/159894/modeling-water-resources-carrying-capacity-optimizing-water-treatment-smart-water-management-and-conceptualizing-a-watershed-management-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/159894.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">94</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12668</span> Affordability and Expenditure Patterns towards Sustainable Consumption in Malaysia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Affordability">Affordability</a>, <a href="https://publications.waset.org/abstracts/search?q=Expenditure%20Patterns%20towards%20Sustainable%20Consumption%20in%20Malaysia">Expenditure Patterns towards Sustainable Consumption in Malaysia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Safe drinking water is needed for survival. Households have to pay the water bill monthly. However, lower income households are sometimes unable to afford the cost. This study examines water access and affordability among households in Malaysia and the determinants of water affordability using cross-sectional data and multiple regression. The paper expects that the bill for basic water consumption is inversely related to average income. This means that policy makers need to redesign the water tariff to improve the quality of life of lower income households. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=affordability" title="affordability">affordability</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20consumption" title=" sustainable consumption"> sustainable consumption</a>, <a href="https://publications.waset.org/abstracts/search?q=income" title=" income"> income</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20tariff" title=" water tariff"> water tariff</a> </p> <a href="https://publications.waset.org/abstracts/57892/affordability-and-expenditure-patterns-towards-sustainable-consumption-in-malaysia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57892.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">253</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12667</span> Ways to Define the Most Sustainable Actions for Water Shortage Prevention in Mega Cities, Especially in Developing Countries</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Keivan%20Karimlou">Keivan Karimlou</a>, <a href="https://publications.waset.org/abstracts/search?q=Nemat%20Hassani"> Nemat Hassani</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdollah%20Rashidi%20Mehrabadi"> Abdollah Rashidi Mehrabadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Climate change, industrial bloom, population growth and mismanagement are the most important factors that lead to water shortages around the world. Water shortages often lead to forced immigration, war, and thirst and hunger, especially in developing countries. One of the simplest solutions to solve the water shortage issues around the world is transferring water from one watershed to another; however it may not be a suitable solution. Water managers around the world use supply and demand management methods to decrease the incidence of water shortage in a sustainable manner. But as a matter of economic constraints, they must define a method to select the best possible action to reduce and limit water shortages. The following paper recognizes different kinds of criteria to select the best possible policy for reducing water shortage in mega cities <span dir="RTL">by </span>examining a comprehensive literature review<span dir="RTL">.</span> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=criteria" title="criteria">criteria</a>, <a href="https://publications.waset.org/abstracts/search?q=management" title=" management"> management</a>, <a href="https://publications.waset.org/abstracts/search?q=shortage" title=" shortage"> shortage</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable" title=" sustainable"> sustainable</a>, <a href="https://publications.waset.org/abstracts/search?q=water" title=" water"> water</a> </p> <a href="https://publications.waset.org/abstracts/66727/ways-to-define-the-most-sustainable-actions-for-water-shortage-prevention-in-mega-cities-especially-in-developing-countries" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66727.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">296</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12666</span> Modeling Water Inequality and Water Security: The Role of Water Governance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pius%20Babuna">Pius Babuna</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiaohua%20Yang"> Xiaohua Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Roberto%20Xavier%20Supe%20Tulcan"> Roberto Xavier Supe Tulcan</a>, <a href="https://publications.waset.org/abstracts/search?q=Bian%20Dehui"> Bian Dehui</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Takase"> Mohammed Takase</a>, <a href="https://publications.waset.org/abstracts/search?q=Bismarck%20Yelfogle%20Guba"> Bismarck Yelfogle Guba</a>, <a href="https://publications.waset.org/abstracts/search?q=Chuanliang%20Han"> Chuanliang Han</a>, <a href="https://publications.waset.org/abstracts/search?q=Doris%20Abra%20Awudi"> Doris Abra Awudi</a>, <a href="https://publications.waset.org/abstracts/search?q=Meishui%20Lia"> Meishui Lia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Water inequality, water security, and water governance are fundamental parameters that affect the sustainable use of water resources. Through policy formulation and decision-making, water governance determines both water security and water inequality. Largely, where water inequality exists, water security is undermined through unsustainable water use practices that lead to pollution of water resources, conflicts, hoarding of water, and poor sanitation. Incidentally, the interconnectedness of water governance, water inequality, and water security has not been investigated previously. This study modified the Gini coefficient and used a Logistics Growth of Water Resources (LGWR) Model to access water inequality and water security mathematically, and discussed the connected role of water governance. We tested the validity of both models by calculating the actual water inequality and water security of Ghana. We also discussed the implications of water inequality on water security and the overarching role of water governance. The results show that regional water inequality is widespread in some parts. The Volta region showed the highest water inequality (Gini index of 0.58), while the central region showed the lowest (Gini index of 0.15). Water security is moderately sustainable. The use of water resources is currently stress-free. It was estimated to maintain such status until 2132 卤 18, when Ghana will consume half of the current total water resources of 53.2 billion cubic meters. Effectively, water inequality is a threat to water security, results in poverty, under-development heightens tensions in water use, and causes instability. With proper water governance, water inequality can be eliminated through formulating and implementing approaches that engender equal allocation and sustainable use of water resources. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=water%20inequality" title="water inequality">water inequality</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20security" title=" water security"> water security</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20governance" title=" water governance"> water governance</a>, <a href="https://publications.waset.org/abstracts/search?q=Gini%20coefficient" title=" Gini coefficient"> Gini coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=moran%20index" title=" moran index"> moran index</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20resources%20management" title=" water resources management"> water resources management</a> </p> <a href="https://publications.waset.org/abstracts/159818/modeling-water-inequality-and-water-security-the-role-of-water-governance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/159818.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">143</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12665</span> Factors Affecting Sustainable Water Management in Water-Challenged Societies: Case Study of Doha Qatar</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=L.%20Mathew">L. Mathew</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Thomas"> D. Thomas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Qatar is a desert country with scarce fresh water resources, low rainfall and very high evaporation rate. It meets the majority of its water requirement through desalination process which is very expensive. Pressures are expected to mount on account of high population growth rate and demands posed by being the venue for 2022 FIFA World cup. This study contributes towards advancing the knowledge of the factors affecting sustainable water consumption in water-challenged societies by examining the case of Doha, Qatar. Survey research methods have been predominantly used for this research. Surveys were conducted using self-administered questionnaires. Focused group interviews and personal interviews with Qatar鈥檚 residents were also used to obtain deeper insights. Salient socio-cultural factors that drive the water consumption behavior of the public and which in turn affect sustainable water management practices are determined. Suggestions for reducing water consumption as well as fiscal and punitive measures to curb overuse and misuse of water are also identified. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Middle%20East" title="Middle East">Middle East</a>, <a href="https://publications.waset.org/abstracts/search?q=Qatar" title=" Qatar"> Qatar</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20consumption" title=" water consumption"> water consumption</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20management" title=" water management"> water management</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability" title=" sustainability"> sustainability</a> </p> <a href="https://publications.waset.org/abstracts/88496/factors-affecting-sustainable-water-management-in-water-challenged-societies-case-study-of-doha-qatar" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/88496.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">249</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12664</span> Challenges of Domestic Water Security for Sustainable Development in North Central Belt of Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Samuel%20Ibbi%20Ibrahim">Samuel Ibbi Ibrahim</a>, <a href="https://publications.waset.org/abstracts/search?q=Isaiah%20Ndalassan%20Ibrahim"> Isaiah Ndalassan Ibrahim </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Accessibility and availability of good quality water have become a major concern among different users. This paper examines the caustic importance of water security in relation to people鈥檚 desire for survival. It observed the democratic ideology of national policy on domestic water supply and demand and its implementation for national and societal development. It used analogy on equilibrium approach to ascertain the household water security. In most communities, it is glaring that several public water management in operation for several years are hardly performing efficiently to reach equilibrium demand. Moreover most settlements being rural or urban lack effective public water system that could ensure regular supplies to the population. The terrain and gradual declining of efficient rainfall northward poses great challenge to the region in managing water supply and demand adequately. This study itemized the need for the government to get clear strategy for a sustainable development on better water efficiency. Partnership in providing workable policy on water security is considered apparently important. It is also suggested that water plant treatment should be established in every medium-sized towns in the country. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=good%20quality%20of%20water" title="good quality of water">good quality of water</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20accessibility" title=" water accessibility"> water accessibility</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20availability" title=" water availability"> water availability</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20sustainable" title=" water sustainable "> water sustainable </a> </p> <a href="https://publications.waset.org/abstracts/36333/challenges-of-domestic-water-security-for-sustainable-development-in-north-central-belt-of-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36333.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">534</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12663</span> Assessment of Drinking Water Quality in Relation to Arsenic Contamination in Drinking Water in Liberia: Achieving the Sustainable Development Goal of Ensuring Clean Water and Sanitation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Victor%20Emery%20David%20Jr.">Victor Emery David Jr.</a>, <a href="https://publications.waset.org/abstracts/search?q=Jiang%20Wenchao"> Jiang Wenchao</a>, <a href="https://publications.waset.org/abstracts/search?q=Daniel%20Mmereki"> Daniel Mmereki</a>, <a href="https://publications.waset.org/abstracts/search?q=Yasinta%20John"> Yasinta John</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The fundamentals of public health are access to safe and clean drinking water. The presence of arsenic and other contaminants in drinking water leads to the potential risk to public health and the environment particularly in most developing countries where there鈥檚 inadequate access to safe and clean water and adequate sanitation. Liberia has taken steps to improve its drinking water status so as to achieve the Sustainable Development Goals (SDGs) target of ensuring clean water and effective sanitation but there is still a lot to be done. The Sustainable Development Goals are a United Nation initiative also known as transforming our world: The 2030 agenda for sustainable development. It contains seventeen goals with 169 targets to be met by respective countries. Liberia is situated within in the gold belt region where there exist the presence of arsenic and other contaminants in the underground water due to mining and other related activities. While there are limited or no epidemiological studies conducted in Liberia to confirm illness or death as a result of arsenic contamination in Liberia, it remains a public health concern. This paper assesses the drinking water quality, the presence of arsenic in groundwater/drinking water in Liberia, and proposes strategies for mitigating contaminants in drinking water and suggests options for improvement with regards to achieving the Sustainable Development Goals of ensuring clean water and effective sanitation in Liberia by 2030. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=arsenic" title="arsenic">arsenic</a>, <a href="https://publications.waset.org/abstracts/search?q=action%20plan" title=" action plan"> action plan</a>, <a href="https://publications.waset.org/abstracts/search?q=contaminants" title=" contaminants"> contaminants</a>, <a href="https://publications.waset.org/abstracts/search?q=environment" title=" environment"> environment</a>, <a href="https://publications.waset.org/abstracts/search?q=groundwater" title=" groundwater"> groundwater</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20development%20goals%20%28SDGs%29" title=" sustainable development goals (SDGs)"> sustainable development goals (SDGs)</a>, <a href="https://publications.waset.org/abstracts/search?q=Monrovia" title=" Monrovia"> Monrovia</a>, <a href="https://publications.waset.org/abstracts/search?q=Liberia" title=" Liberia"> Liberia</a>, <a href="https://publications.waset.org/abstracts/search?q=public%20health" title=" public health"> public health</a>, <a href="https://publications.waset.org/abstracts/search?q=drinking%20water" title=" drinking water"> drinking water</a> </p> <a href="https://publications.waset.org/abstracts/78450/assessment-of-drinking-water-quality-in-relation-to-arsenic-contamination-in-drinking-water-in-liberia-achieving-the-sustainable-development-goal-of-ensuring-clean-water-and-sanitation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78450.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">267</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12662</span> Tehran Province Water and Wastewater Company Approach on Energy Efficiency by the Development of Renewable Energy to Achieving the Sustainable Development Legal Principle</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Parvaresh">Mohammad Parvaresh</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahdi%20Babaee"> Mahdi Babaee</a>, <a href="https://publications.waset.org/abstracts/search?q=Bahareh%20Arghand"> Bahareh Arghand</a>, <a href="https://publications.waset.org/abstracts/search?q=Roushanak%20Fahimi%20Hanzaee"> Roushanak Fahimi Hanzaee</a>, <a href="https://publications.waset.org/abstracts/search?q=Davood%20Nourmohammadi"> Davood Nourmohammadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Today, the intelligent network of water and wastewater as one of the key steps in realizing the smart city in the world. Use of pressure relief valves in urban water networks in order to reduce the pressure is necessary in Tehran city. But use these pressure relief valves lead to waste water, more power consumption, and environmental pollution because Tehran Province Water and Wastewater Co. use a quarter of industry 's electricity. In this regard, Tehran Province Water and Wastewater Co. identified solutions to reduce direct and indirect costs in energy use in the process of production, transmission and distribution of water because this company has extensive facilities and high capacity to realize green economy and industry. The aim of this study is to analyze the new project in water and wastewater industry to reach sustainable development. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tehran%20Province%20Water%20and%20Wastewater%20Company" title="Tehran Province Water and Wastewater Company">Tehran Province Water and Wastewater Company</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20network%20efficiency" title=" water network efficiency"> water network efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20development" title=" sustainable development"> sustainable development</a>, <a href="https://publications.waset.org/abstracts/search?q=International%20Environmental%20Law" title=" International Environmental Law"> International Environmental Law</a> </p> <a href="https://publications.waset.org/abstracts/85116/tehran-province-water-and-wastewater-company-approach-on-energy-efficiency-by-the-development-of-renewable-energy-to-achieving-the-sustainable-development-legal-principle" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85116.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">299</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12661</span> Smart Water Cities for a Sustainable Future: Defining, Necessity, and Policy Pathways for Canada's Urban Water Resilience</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sima%20Saadi">Sima Saadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Carolyn%20Johns"> Carolyn Johns</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The concept of a "Smart Water City" is emerging as a framework to address critical urban water challenges, integrating technology, data, and sustainable management practices to enhance water quality, conservation, and accessibility. This paper explores the definition of a Smart Water City, examines the pressing need for such cities in Canada, and proposes policy pathways for their development. Smart Water Cities utilize advanced monitoring systems, data analytics, and integrated water resources management to optimize water usage, anticipate and mitigate environmental impacts, and engage citizens in sustainable practices. Global examples from regions such as Europe, Asia, and Australia illustrate how Smart Water City models can transform urban water systems by enhancing resilience, improving resource efficiency, and driving economic development through job creation in environmental technology sectors. For Canada, adopting Smart Water City principles could address pressing challenges, including climate-induced water stress, aging infrastructure, and the need for equitable water access across diverse urban and rural communities. Building on Canada's existing water policies and technological expertise, it propose strategic investments in digital water infrastructure, data-driven governance, and community partnerships. Through case studies, this paper offers insights into how Canadian cities could benefit from cross-sector collaboration, policy development, and funding for smart water technology. By aligning national policy with smart urban water solutions, Canada has the potential to lead globally in sustainable water management, ensuring long-term water security and environmental stewardship for its cities and communities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=smart%20water%20city" title="smart water city">smart water city</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20water%20resilience" title=" urban water resilience"> urban water resilience</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20management%20technology" title=" water management technology"> water management technology</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20water%20infrastructure" title=" sustainable water infrastructure"> sustainable water infrastructure</a>, <a href="https://publications.waset.org/abstracts/search?q=canada%20water%20policy" title=" canada water policy"> canada water policy</a>, <a href="https://publications.waset.org/abstracts/search?q=smart%20city%20initiatives" title=" smart city initiatives"> smart city initiatives</a> </p> <a href="https://publications.waset.org/abstracts/194374/smart-water-cities-for-a-sustainable-future-defining-necessity-and-policy-pathways-for-canadas-urban-water-resilience" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/194374.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">21</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12660</span> Sustainable Rehabilitation of Concrete Buildings in Iran: Harnessing Sunlight and Navigating Limited Water Resources</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amin%20Khamoosh">Amin Khamoosh</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamed%20Faramarzifar"> Hamed Faramarzifar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the capital of Iran, Tehran, numerous buildings constructed when extreme climates were not prevalent now face the need for rehabilitation, typically within their first decade. Our data delves into the performance metrics and economic advantages of sustainable rehabilitation practices compared to traditional methods. With a focus on the scarcity of water resources, we specifically scrutinize water-efficient techniques throughout construction, rehabilitation, and usage. Examining design elements that optimize natural light while efficiently managing heat transmission is crucial, given the reliance on water for cooling devices in this region. The data aims to present a comprehensive strategy, addressing immediate structural concerns while harmonizing with Iran's unique environmental conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sustainable%20rehabilitation" title="sustainable rehabilitation">sustainable rehabilitation</a>, <a href="https://publications.waset.org/abstracts/search?q=concrete%20buildings" title=" concrete buildings"> concrete buildings</a>, <a href="https://publications.waset.org/abstracts/search?q=iran" title=" iran"> iran</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20energy" title=" solar energy"> solar energy</a>, <a href="https://publications.waset.org/abstracts/search?q=water-efficient%20techniques" title=" water-efficient techniques"> water-efficient techniques</a> </p> <a href="https://publications.waset.org/abstracts/181649/sustainable-rehabilitation-of-concrete-buildings-in-iran-harnessing-sunlight-and-navigating-limited-water-resources" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/181649.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">61</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12659</span> Fairly Irrigation Water Distribution between Upstream and Downstream Water Users in Water Shortage Periods</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20M.%20Hashemy%20Shahdany">S. M. Hashemy Shahdany</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Equitable water delivery becomes one of the main concerns for water authorities in arid regions. Due to water scarcity, providing reliable amount of water is not possible for most of the irrigation districts in arid regions. In this paper, water level difference control is applied to keep the water level errors equal in adjacent reaches. Distant downstream decentralized configurations of the control method are designed and tested under a realistic scenario shows canal operation under water shortage. The simulation results show that the difference controllers share the water level error among all of the users in a fair way. Therefore, water deficit has a similar influence on downstream as well as upstream and water offtakes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=equitable%20water%20distribution" title="equitable water distribution">equitable water distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=precise%20agriculture" title=" precise agriculture"> precise agriculture</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20agriculture" title=" sustainable agriculture"> sustainable agriculture</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20shortage" title=" water shortage"> water shortage</a> </p> <a href="https://publications.waset.org/abstracts/39301/fairly-irrigation-water-distribution-between-upstream-and-downstream-water-users-in-water-shortage-periods" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39301.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">471</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12658</span> Optimizing Irrigation Scheduling for Sustainable Agriculture: A Case Study of a Farm in Onitsha, Anambra State, Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ejoh%20Nonso%20Francis">Ejoh Nonso Francis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> : Irrigation scheduling is a critical aspect of sustainable agriculture as it ensures optimal use of water resources, reduces water waste, and enhances crop yields. This paper presents a case study of a farm in Onitsha, Anambra State, Nigeria, where irrigation scheduling was optimized using a combination of soil moisture sensors and weather data. The study aimed to evaluate the effectiveness of this approach in improving water use efficiency and crop productivity. The results showed that the optimized irrigation scheduling approach led to a 30% reduction in water use while increasing crop yield by 20%. The study demonstrates the potential of technology-based irrigation scheduling to enhance sustainable agriculture in Nigeria and beyond. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=irrigation%20scheduling" title="irrigation scheduling">irrigation scheduling</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20agriculture" title=" sustainable agriculture"> sustainable agriculture</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20moisture%20sensors" title=" soil moisture sensors"> soil moisture sensors</a>, <a href="https://publications.waset.org/abstracts/search?q=weather%20data" title=" weather data"> weather data</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20use%20efficiency" title=" water use efficiency"> water use efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=crop%20productivity" title=" crop productivity"> crop productivity</a>, <a href="https://publications.waset.org/abstracts/search?q=nigeria" title=" nigeria"> nigeria</a>, <a href="https://publications.waset.org/abstracts/search?q=onitsha" title=" onitsha"> onitsha</a>, <a href="https://publications.waset.org/abstracts/search?q=anambra%20state" title=" anambra state"> anambra state</a>, <a href="https://publications.waset.org/abstracts/search?q=technology-based%20irrigation%20scheduling" title=" technology-based irrigation scheduling"> technology-based irrigation scheduling</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20resources" title=" water resources"> water resources</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20degradation" title=" environmental degradation"> environmental degradation</a>, <a href="https://publications.waset.org/abstracts/search?q=crop%20water%20requirements" title=" crop water requirements"> crop water requirements</a>, <a href="https://publications.waset.org/abstracts/search?q=overwatering" title=" overwatering"> overwatering</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20waste" title=" water waste"> water waste</a>, <a href="https://publications.waset.org/abstracts/search?q=farming%20systems" title=" farming systems"> farming systems</a>, <a href="https://publications.waset.org/abstracts/search?q=scalability" title=" scalability"> scalability</a> </p> <a href="https://publications.waset.org/abstracts/165989/optimizing-irrigation-scheduling-for-sustainable-agriculture-a-case-study-of-a-farm-in-onitsha-anambra-state-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165989.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">83</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12657</span> Sustainable Drinking Water Treatment Method Using Solar Light</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ayushi%20Arora">Ayushi Arora</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Solar photocatalysis has the potential to treat drinking water in a sustainable and cost effective manner. According to WHO, there should not be any colony forming units (CFU) per 100 mL present in drinking water, and as per the Central Pollution Control Board (CPCB) of India, the bathing water should have less than 500 CFU/100 mL and the maximum permissible limit is 2500 CFU/100 mL. In this study, 8 water sources near our collaborators, Indian Institute of Technology, Kharagpur, India, were analysed, and it was found that 6 out of 8 sources of water had significant coliform count in them. Two of them were chosen to be treated by solar photocatalysis a) well water which had a count of 4800 CFU/100 mL for total coliforms and was used by people for drinking purposes, and b) pond water which had a count of 92000 CFU/100 mL for total coliforms and 3000 CFU/mL for E.Coli and was used by people for washing and bathing purposes. In this study, a semiconductor-semiconductor, composite BTO-TiO2-RMSG & TiO2-SiO2 were tested for their ability to be activated under solar light and to reduce Total Coliforms and E.Coli bacteria in real world contaminated water, and it was found that both catalysts were both able to reduce the total coliform count in water by 99.7% and 98.2 % in 2 hrs respectively. They have also shown promising results in reusability tests. This study demonstrates the ability of solar photocatalysis to be used in real world drinking water treatment and will promote future advancements in this field. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sustainable%20water%20treatment" title="sustainable water treatment">sustainable water treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=waterpurification%20technologies" title=" waterpurification technologies"> waterpurification technologies</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20policies" title=" water policies"> water policies</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20pollution%20and%20environmental%20engineering" title=" water pollution and environmental engineering"> water pollution and environmental engineering</a> </p> <a href="https://publications.waset.org/abstracts/169844/sustainable-drinking-water-treatment-method-using-solar-light" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/169844.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">86</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12656</span> Mapping a Sustainable Future: Integrating Multi-Criteria Analysis and GIS for Urban Water Demand in Dubai</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Parama%20Bhattacharyya">Parama Bhattacharyya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Dubai, globally regarded as one of the most sought-after destinations for travel, tourism, and leisure activities, is also expanding its urban areas due to increased population and commercial and economic activity. This has put pressure on its already scarce water resources. Located in an arid climatic region, this research aims to address the pressing challenge of sustainable urban water management in Dubai through the integration of Multi-Criteria Analysis (MCA) and Geographic Information Systems (GIS). This study proposes incorporating GIS with MCA to develop a comprehensive framework for mapping urban water demand in Dubai. The framework intends to support sustainable decision-making by analyzing multiple factors, such as environmental, social, and economic influences, that affect water demand and its management in Dubai. For this purpose, medium- and high-resolution satellite imagery, along with climate and socio-economic data, will be used to generate various thematic layers. Stakeholder interviews will be conducted to prioritize key indicators for water demand. The Analytical Hierarchy Process (AHP) method will be used for the Multi-Criteria Analysis, and the results will be validated against actual water consumption data. The final goal is to share the framework with policymakers to assist in decision-making and improve sustainable and efficient water management. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=urban%20water%20management" title="urban water management">urban water management</a>, <a href="https://publications.waset.org/abstracts/search?q=GIS" title=" GIS"> GIS</a>, <a href="https://publications.waset.org/abstracts/search?q=multiple-criteria%20analysis%20%28MCA%29" title=" multiple-criteria analysis (MCA)"> multiple-criteria analysis (MCA)</a>, <a href="https://publications.waset.org/abstracts/search?q=Dubai" title=" Dubai"> Dubai</a> </p> <a href="https://publications.waset.org/abstracts/198981/mapping-a-sustainable-future-integrating-multi-criteria-analysis-and-gis-for-urban-water-demand-in-dubai" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/198981.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">0</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12655</span> Environment and Water in the Conceptions of a Sustainable Architecture</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Carlos%20H.%20Ferreira">Carlos H. Ferreira</a>, <a href="https://publications.waset.org/abstracts/search?q=Joana%20R.%20Pereira"> Joana R. Pereira</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent decades, calls for sustainable architecture based on environmental policies have been frequent. Despite a vast number of documents, technical procedures, and publications involving these themes, conceptions, and even architectural practice are often distanced from critical and methodological reflection on the relationship between environment and architecture. Among the various issues that we could consider in this relationship, we highlight in this article the relevance of water in the environment and in the architectural design. From documentary references and works carried out, we seek contributions to a better systematization and framing of water in architectural thinking. We distinguish, on the one hand, more conceptual issues that involve the environmental relationship of water, involving its cycle, relevance in the landscape, and infrastructural commitments. On the other hand, we highlight a more operative component, focusing on the place of water in the design process, from its perception in space-shape dimensions to more specific technical requirements that involve the interdisciplinary boundaries of architecture. In both approaches to water in architectural design, we seek to contribute to greater sensitivity and efficiency in the art of designing a more sustainable future. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sustainability" title="sustainability">sustainability</a>, <a href="https://publications.waset.org/abstracts/search?q=environment" title=" environment"> environment</a>, <a href="https://publications.waset.org/abstracts/search?q=water" title=" water"> water</a>, <a href="https://publications.waset.org/abstracts/search?q=resilience%20design" title=" resilience design"> resilience design</a> </p> <a href="https://publications.waset.org/abstracts/134427/environment-and-water-in-the-conceptions-of-a-sustainable-architecture" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/134427.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">143</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12654</span> Validation of SWAT Model for Prediction of Water Yield and Water Balance: Case Study of Upstream Catchment of Jebba Dam in Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adeniyi%20G.%20Adeogun">Adeniyi G. Adeogun</a>, <a href="https://publications.waset.org/abstracts/search?q=Bolaji%20F.%20Sule"> Bolaji F. Sule</a>, <a href="https://publications.waset.org/abstracts/search?q=Adebayo%20W.%20Salami"> Adebayo W. Salami</a>, <a href="https://publications.waset.org/abstracts/search?q=Michael%20O.%20Daramola"> Michael O. Daramola</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Estimation of water yield and water balance in a river catchment is critical to the sustainable management of water resources at watershed level in any country. Therefore, in the present study, Soil and Water Assessment Tool (SWAT) interfaced with Geographical Information System (GIS) was applied as a tool to predict water balance and water yield of a catchment area in Nigeria. The catchment area, which was 12,992km2, is located upstream Jebba hydropower dam in North central part of Nigeria. In this study, data on the observed flow were collected and compared with simulated flow using SWAT. The correlation between the two data sets was evaluated using statistical measures, such as, Nasch-Sucliffe Efficiency (NSE) and coefficient of determination (R2). The model output shows a good agreement between the observed flow and simulated flow as indicated by NSE and R2, which were greater than 0.7 for both calibration and validation period. A total of 42,733 mm of water was predicted by the calibrated model as the water yield potential of the basin for a simulation period 1985 to 2010. This interesting performance obtained with SWAT model suggests that SWAT model could be a promising tool to predict water balance and water yield in sustainable management of water resources. In addition, SWAT could be applied to other water resources in other basins in Nigeria as a decision support tool for sustainable water management in Nigeria. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=GIS" title="GIS">GIS</a>, <a href="https://publications.waset.org/abstracts/search?q=modeling" title=" modeling"> modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=sensitivity%20analysis" title=" sensitivity analysis"> sensitivity analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=SWAT" title=" SWAT"> SWAT</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20yield" title=" water yield"> water yield</a>, <a href="https://publications.waset.org/abstracts/search?q=watershed%20level" title=" watershed level"> watershed level</a> </p> <a href="https://publications.waset.org/abstracts/3782/validation-of-swat-model-for-prediction-of-water-yield-and-water-balance-case-study-of-upstream-catchment-of-jebba-dam-in-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3782.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">449</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12653</span> Biochemical Evaluation of Air Conditioning West Water in Jeddah City: Concept of Sustainable Water Resources</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20Alromi">D. Alromi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Alansari"> A. Alansari</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Alghamdi"> S. Alghamdi</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Jambi"> E. Jambi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As the need for water is increasing globally, and the available water resources are barely meeting the current quality of life and economy. Air conditioning (AC) condensate water could be explored as an alternative water source, which could be considered within the global calculations of the water supply. The objective of this study is to better understand the potential for recovery of condensate water from air conditioning systems. The results generated so far showed that the AC produces a high quantity of water, and data analysis revealed that the amount of water is positively and significantly correlated with the humidity (P <= 0.05). In the meantime, the amount of heavy metals has been measuring using ICP-OES. The results, in terms of quantity, clearly show that the AC can be used as an alternative source of water, especially in the regions characterized by high humidity. The results also showed that the amount of produced water depends on the type of AC. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=air%20conditioning%20systems" title="air conditioning systems">air conditioning systems</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20quantity" title=" water quantity"> water quantity</a>, <a href="https://publications.waset.org/abstracts/search?q=water%0D%0Aresources" title=" water resources"> water resources</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewater" title=" wastewater"> wastewater</a> </p> <a href="https://publications.waset.org/abstracts/114549/biochemical-evaluation-of-air-conditioning-west-water-in-jeddah-city-concept-of-sustainable-water-resources" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/114549.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">221</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12652</span> Water Crisis Management in a Tourism Dependent Community</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aishath%20Shakeela">Aishath Shakeela</a> </p> <p class="card-text"><strong>Abstract:</strong></p> At a global level, water stewardship, water stress and water security are crucial factors in tourism planning and development considerations. Challenges associated with water is of particular concern to the Maldives as there is limited availability of freshwater, high dependency on desalinated water, and high unit cost associated with desalinating water. While the Maldives is promoted as an example of sustainable tourism, a key sustainability challenge facing tourism dependent communities is the efficient use and management of available water resources. A water crisis event in the capital island of Maldives highlighted how precarious water related issues are in this tourism dependent destination. Applying netnography, the focus of this working paper is to present community perceptions of how government policies addressed Mal茅 Water and Sewerage Company (MWSC) water crisis event. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=crisis%20management" title="crisis management">crisis management</a>, <a href="https://publications.waset.org/abstracts/search?q=government%20policies" title=" government policies"> government policies</a>, <a href="https://publications.waset.org/abstracts/search?q=Maldives" title=" Maldives"> Maldives</a>, <a href="https://publications.waset.org/abstracts/search?q=tourism" title=" tourism"> tourism</a>, <a href="https://publications.waset.org/abstracts/search?q=water" title=" water "> water </a> </p> <a href="https://publications.waset.org/abstracts/34238/water-crisis-management-in-a-tourism-dependent-community" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34238.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">535</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12651</span> Rooftop Rainwater Harvesting for Sustainable Organic Farming: Insights from Smart cities in India</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rajkumar%20Ghosh">Rajkumar Ghosh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> India faces a critical task of water shortage, specifically during dry seasons, which adversely impacts agricultural productivity and food protection. Natural farming, specializing in sustainable practices, demands green water management in smart cities in India. This paper examines how rooftop rainwater harvesting (RRWH) can alleviate water scarcity and support sustainable organic farming practices in India. RRWH emerges as a promising way to increase water availability for the duration of dry intervals and decrease reliance on traditional water sources in smart cities. The look at explores the capacity of RRWH to enhance water use performance, help crop growth, enhance soil health, and promote ecological stability inside the farming ecosystem. The medical paper delves into the advantages, challenges, and implementation techniques of RRWH in organic farming. It addresses demanding situations, including seasonal variability of rainfall, limited rooftop vicinity, and monetary concerns. Moreover, it analyses broader environmental and socio-economic implications of RRWH for sustainable agriculture, emphasizing water conservation, biodiversity protection, and the social properly-being of farming communities. The belief underscores the importance of RRWH as a sustainable solution for reaching the aim of sustainable agriculture in natural farming in India. It emphasizes the want for further studies, policy advocacy, and capacity-building initiatives to promote RRWH adoption and assist the transformation in the direction of sustainable organic farming systems. The paper proposes adaptive strategies to triumph over demanding situations and optimize the advantages of RRWH in organic farming. By way of doing so, India can make vast development in addressing water scarcity issues and making sure a greater resilient and sustainable agricultural future in smart cities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rooftop%20rainwater%20harvesting" title="rooftop rainwater harvesting">rooftop rainwater harvesting</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20farming" title=" organic farming"> organic farming</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20water%20management" title=" green water management"> green water management</a>, <a href="https://publications.waset.org/abstracts/search?q=food%20protection" title=" food protection"> food protection</a>, <a href="https://publications.waset.org/abstracts/search?q=ecological%20stabilty" title=" ecological stabilty"> ecological stabilty</a> </p> <a href="https://publications.waset.org/abstracts/170902/rooftop-rainwater-harvesting-for-sustainable-organic-farming-insights-from-smart-cities-in-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/170902.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">116</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12650</span> Sustainable Use of Laura Lens during Drought</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kazuhisa%20Koda">Kazuhisa Koda</a>, <a href="https://publications.waset.org/abstracts/search?q=Tsutomu%20Kobayashi"> Tsutomu Kobayashi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Laura Island, which is located about 50 km away from downtown, is a source of water supply in Majuro atoll, which is the capital of the Republic of the Marshall Islands. Low and flat Majuro atoll has neither river nor lake. It is very important for Majuro atoll to ensure the conservation of its water resources. However, up-coning, which is the process of partial rising of the freshwater-saltwater boundary near the water-supply well, was caused by the excess pumping from it during the severe drought in 1998. Up-coning will make the water usage of the freshwater lens difficult. Thus, appropriate water usage is required to prevent up-coning in the freshwater lens because there is no other water source during drought. Numerical simulation of water usage applying SEAWAT model was conducted at the central part of Laura Island, including the water-supply well, which was affected by up-coning. The freshwater lens was created as a result of infiltration of consistent average rainfall. The lens shape was almost the same as the one in 1985. 0 of monthly rainfall and variable daily pump discharge were used to calculate the sustainable pump discharge from the water-supply well. Consequently, the total amount of pump discharge was increased as the daily pump discharge was increased, indicating that it needs more time to recover from up-coning. Thus, a pump standard to reduce the pump intensity is being proposed, which is based on numerical simulation concerning the occurrence of the up-coning phenomenon in Laura Island during the drought. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=freshwater%20lens" title="freshwater lens">freshwater lens</a>, <a href="https://publications.waset.org/abstracts/search?q=islands" title=" islands"> islands</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20simulation" title=" numerical simulation"> numerical simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20water%20use" title=" sustainable water use"> sustainable water use</a> </p> <a href="https://publications.waset.org/abstracts/37678/sustainable-use-of-laura-lens-during-drought" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37678.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">298</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12649</span> Waste Recovery: A Sustainable Way for Application of Solid Waste from WTP's in Building Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Flavio%20Araujo">Flavio Araujo</a>, <a href="https://publications.waset.org/abstracts/search?q=Livia%20Dias"> Livia Dias</a>, <a href="https://publications.waset.org/abstracts/search?q=Fabiolla%20Lima"> Fabiolla Lima</a>, <a href="https://publications.waset.org/abstracts/search?q=Paulo%20Scalize"> Paulo Scalize</a>, <a href="https://publications.waset.org/abstracts/search?q=Antonio%20Albuquerque"> Antonio Albuquerque</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Water treatment residues (WTR) are solid waste produced during drinking water treatment and have recently been seen as a reusable material. The aim of this research was show how to use the residue generated in a Water Treatment Plant, located in Goiania, Brazil, following the considerations of the law of solid waste to obtain normative parameters and consider sustainable alternatives for reincorporation of the residues in the productive chain for manufacturing various materials construction. In order to reduce the environmental liabilities generated by sanitation companies and discontinue unsustainable forms of disposal. The analyzes performed: Granulometry, Scanning Electron Microscopy and X-Ray Diffraction demonstrated the potential application of residues to replace the soil and sand, because it has characteristics compatible with small aggregate and can be used as feedstock for the manufacture of materials as ceramic and soil-cement bricks, mortars, interlocking floors and concrete artifacts. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=residue" title="residue">residue</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable" title=" sustainable"> sustainable</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20treatment%20plants" title=" water treatment plants"> water treatment plants</a>, <a href="https://publications.waset.org/abstracts/search?q=WTR" title=" WTR"> WTR</a>, <a href="https://publications.waset.org/abstracts/search?q=WTP" title=" WTP"> WTP</a> </p> <a href="https://publications.waset.org/abstracts/19974/waste-recovery-a-sustainable-way-for-application-of-solid-waste-from-wtps-in-building-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19974.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">500</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12648</span> Framework for Enhancing Water Literacy and Sustainable Management in Southwest Nova Scotia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Etienne%20Mfoumou">Etienne Mfoumou</a>, <a href="https://publications.waset.org/abstracts/search?q=Mo%20Shamma"> Mo Shamma</a>, <a href="https://publications.waset.org/abstracts/search?q=Martin%20Tango"> Martin Tango</a>, <a href="https://publications.waset.org/abstracts/search?q=Michael%20Locke"> Michael Locke</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Water literacy is essential for addressing emerging water management challenges in southwest Nova Scotia (SWNS), where growing concerns over water scarcity and sustainability have highlighted the need for improved educational frameworks. Current approaches often fail to fully represent the complexity of water systems, focusing narrowly on the water cycle while neglecting critical aspects such as groundwater infiltration and the interconnectedness of surface and subsurface water systems. To address these gaps, this paper proposes a comprehensive framework for water literacy that integrates the physical dimensions of water systems with key aspects of understanding, including processes, energy, scale, and human dependency. Moreover, a suggested tool to enhance this framework is a real-time hydrometric data map supported by a network of water level monitoring devices deployed across the province. These devices, particularly for monitoring dug wells, would provide critical data on groundwater levels and trends, offering stakeholders actionable insights into water availability and sustainability. This real-time data would facilitate deeper understanding and engagement with local water issues, complementing the educational framework and empowering stakeholders to make informed decisions. By integrating this tool, the proposed framework offers a practical, interdisciplinary approach to improving water literacy and promoting sustainable water management in SWNS. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=water%20education" title="water education">water education</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20literacy" title=" water literacy"> water literacy</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20management" title=" water management"> water management</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20systems" title=" water systems"> water systems</a>, <a href="https://publications.waset.org/abstracts/search?q=Southwest%20Nova%20Scotia" title=" Southwest Nova Scotia"> Southwest Nova Scotia</a> </p> <a href="https://publications.waset.org/abstracts/191248/framework-for-enhancing-water-literacy-and-sustainable-management-in-southwest-nova-scotia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/191248.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">37</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12647</span> Evaluating Produced Water Reuse: Opportunities and Risk Management in the Oil and Gas Industry to Reach Sustainability</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Afrah%20Bader%20Al%20Edan">Afrah Bader Al Edan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the context of increasing global water scarcity, the reuse of produced water from oil production has emerged as a crucial strategy for sustainable water management. There is a feasibility of produced water reuse by using various treatments in different regions worldwide to show the potential applications of treated produced water, such as in agriculture and industrial processes. risk assessment framework can be employed to evaluate environmental, health, and operational risks associated with reuse. The findings underscore the importance of integrating advanced treatment technologies and stringent risk management practices to maximize the safe and effective reuse of produced water, providing reliable insights for the oil and gas industry. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=produced%20water" title="produced water">produced water</a>, <a href="https://publications.waset.org/abstracts/search?q=risk%20assessment" title=" risk assessment"> risk assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=oil%20and%20gas" title=" oil and gas"> oil and gas</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20impact" title=" environmental impact"> environmental impact</a> </p> <a href="https://publications.waset.org/abstracts/197444/evaluating-produced-water-reuse-opportunities-and-risk-management-in-the-oil-and-gas-industry-to-reach-sustainability" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/197444.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">12</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12646</span> Water Efficiency: Greywater Recycling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Melissa%20Lubitz">Melissa Lubitz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Water scarcity is one of the crucial challenges of our time. There needs to be a focus on creating a society where people and nature flourish, regardless of climatic conditions. One of the solutions we can look to is decentralized greywater recycling. The vision is simple. Every building has its own water source being greywater from the bath, shower, sink and washing machine. By treating this in the home, you can save 25-45% of potable water use and wastewater production, a reduction in energy consumption and CO2 emissions. This reusable water is clean, and safe to be used for toilet flushing, washing machine, and outdoor irrigation. Companies like Hydraloop have been committed to the greywater recycle-ready building concept for years. This means that drinking water conservation and water reuse are included as standards in the design of all new buildings. Sustainability and renewal go hand in hand. This vision includes not only optimizing water savings and waste reduction but also forging strong partnerships that bring this ambition to life. Together with regulators, municipalities and builders, a sustainable and water-conscious future is pursued. This is an opportunity to be part of a movement that is making a difference. By pushing this initiative forward, we become part of a growing community that resists dehydration, believes in sustainability, and is committed to a living environment at the forefront of change: sustainable living, where saving water is the norm and where we shape the future together. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=greywater" title="greywater">greywater</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewater%20treatment" title=" wastewater treatment"> wastewater treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20conservation" title=" water conservation"> water conservation</a>, <a href="https://publications.waset.org/abstracts/search?q=circular%20water%20society" title=" circular water society"> circular water society</a> </p> <a href="https://publications.waset.org/abstracts/178769/water-efficiency-greywater-recycling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/178769.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">68</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12645</span> Adaptive Architecture and Urbanism - A Study of Coastal Cities, Climate Change Problems, Effects, Risks And Opportunities for Making Sustainable Habitat</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Santosh%20Kumar%20Ketham">Santosh Kumar Ketham</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Climate change creating most dramatic and destructive consequences, the result is global warming and sea-level rise, flooding coastal cities around the world forming vulnerable situations affecting in multiple ways: environment, economy, social and political. The aim and goal of the research is to develop cities on water. Taking the problem as an opportunity to bring science, engineering, policies and design together to make a resilient and sustainable floating community on water considering existing/new technologies of floating. The quest is to make sustainable habitat on water to live, work, learn and play.聽 To make sustainable energy generation and storage alongside maintaining balance of land and marine to conserve Ecosystem. The research would serve as a model for sustainable neighbourhoods designed in a modular way and thus can easily extend or re-arranged, to adapt for future socioeconomic realities.聽 This research paper studies primarily on climate change problems, effects, risks and opportunities. It does so, through analysing existing case studies, books and writings published on coastal cities and understanding its various aspects for making sustainable habitat. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=floating%20cities" title="floating cities">floating cities</a>, <a href="https://publications.waset.org/abstracts/search?q=flexible%20modular%20typologies" title=" flexible modular typologies"> flexible modular typologies</a>, <a href="https://publications.waset.org/abstracts/search?q=rising%20sea%20levels" title=" rising sea levels"> rising sea levels</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20architecture%20and%20urbanism" title=" sustainable architecture and urbanism"> sustainable architecture and urbanism</a> </p> <a href="https://publications.waset.org/abstracts/127730/adaptive-architecture-and-urbanism-a-study-of-coastal-cities-climate-change-problems-effects-risks-and-opportunities-for-making-sustainable-habitat" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/127730.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">144</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12644</span> Assessing Water Bottle Consumption on College Campus in Abu Dhabi: Towards a Sustainable Future</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ludmilla%20Wikkeling-Scott">Ludmilla Wikkeling-Scott</a>, <a href="https://publications.waset.org/abstracts/search?q=Amira%20Karim"> Amira Karim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: In a rapidly developing environment, concerns for pollution and depletion of natural resources are challenges facing global communities. A major source of waste on university campuses is the use of plastic bottles, while cost of production and processing is high. Consumer demand stimulates popularity of plastic bottle production, but researchers agree this is not a sustainable solution. This pilot study assesses plastic water bottle used and attitude towards alternatives among Emirati college students. Methods: This study was conducted in December 2016, using an anonymous self-administered survey of 17 questions. The survey included personal characteristics, plastic water bottle used, attitude towards alternative replacement and sustainability. For statistical analysis, STATA 14C was used to determine significance of association. Results: A total of 500 Emirati students (94.6% female) completed the survey. Of the students, 82.6% preferred bottled water over tap water, and 44.6% reported disposable bottled water use in their household, 42.6% purchased disposable bottled water more than twice a week, and 44.2% purchased bottled water at least once, while on campus. Students were willing to consider switching to alternative water bottle use if it was more convenient (22.54%), cost less (55.13%) or improved the taste (22.54%), while only 7.85% students would not consider any alternatives. There was a significant difference in attitude towards alternatives to water bottle use by area of study (p < 0.005). Conclusion: The UAE strives to be at the forefront of sustainable development and protecting biodiversity. However, a major challenge is the increasing amount of waste, exacerbated by the increasing consumer demand for convenience as seen in this billion-dollar industry. Plastic bottles, for all purposes, pose a serious threat to the environment and sustainable campus initiatives can help reduce the ecological footprint, improve awareness of safe alternatives and benefits to the environment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ecological%20foot%20print" title="ecological foot print">ecological foot print</a>, <a href="https://publications.waset.org/abstracts/search?q=emirati%20students" title=" emirati students"> emirati students</a>, <a href="https://publications.waset.org/abstracts/search?q=plastic%20bottle%20consumption" title=" plastic bottle consumption"> plastic bottle consumption</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20campus" title=" sustainable campus"> sustainable campus</a> </p> <a href="https://publications.waset.org/abstracts/72272/assessing-water-bottle-consumption-on-college-campus-in-abu-dhabi-towards-a-sustainable-future" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72272.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">164</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12643</span> Optimizing Inanda Dam Using Water Resources Models</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=O.%20I.%20Nkwonta">O. I. Nkwonta</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Dzwairo"> B. Dzwairo</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Adeyemo"> J. Adeyemo</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Jaiyola"> A. Jaiyola</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Sawyerr"> N. Sawyerr</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Otieno"> F. Otieno</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The effective management of water resources is of great importance to ensure the supply of water resources to support changing water requirements over a selected planning horizon and in a sustainable and cost-effective way. Essentially, the purpose of the water resources planning process is to balance the available water resources in a system with the water requirements and losses to which the system is subjected. In such situations, Water resources yield and planning model can be used to solve those difficulties. It has an advantage over other models by managing model runs, developing a representative system network, modelling incremental sub-catchments, creating a variety of standard system features, special modelling features, and run result output options. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=complex" title="complex">complex</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20resources" title=" water resources"> water resources</a>, <a href="https://publications.waset.org/abstracts/search?q=planning" title=" planning"> planning</a>, <a href="https://publications.waset.org/abstracts/search?q=cost%20effective%20and%20management" title=" cost effective and management"> cost effective and management</a> </p> <a href="https://publications.waset.org/abstracts/25801/optimizing-inanda-dam-using-water-resources-models" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25801.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">577</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12642</span> Water Security and Transboundary Issues for Food Security of Ethiopia. The Case of Nile River</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kebron%20Asnake">Kebron Asnake</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Water security and transboundary issues are critical concerns for countries, particularly in regions where shared water resources are significant. This Research focuses on exploring the challenges and opportunities related to water security and transboundary issues in Ethiopia, using the case of the Nile River. Ethiopia, as a riparian country of the Nile River, faces complex water security issues due to its dependence on this transboundary water resource. This abstract aims to analyze the various factors that affect water security in Ethiopia, including population growth, climate change, and competing water demands. The Study examines the challenges linked to transboundary water management of the Nile River. It delves into the complexities of negotiating water allocations and addressing potential conflicts among the downstream riparian countries. The paper also discusses the role of international agreements and cooperation in promoting sustainable water resource management. Additionally, the paper highlights the opportunities for collaboration and sustainable development that arise from transboundary water management. It explores the potential for joint investments in water infrastructure, hydropower generation, and irrigation systems that can contribute to regional economic growth and water security. Furthermore, the study emphasizes the need for integrated water management approaches in Ethiopia to ensure the equitable and sustainable use of the Nile River's waters. It highlights the importance of involving stakeholders from diverse sectors, including agriculture, energy, and environmental conservation, in decision-making processes. By presenting the case of the Nile River in Ethiopia, this Abstract contributes to the understanding of water security and transboundary issues. It underscores the significance of regional cooperation and informed policy-making to address the challenges and opportunities presented by transboundary water resources. The paper serves as a foundation for further research and policy in water management in Ethiopia and other regions facing similar challenges. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=water" title="water">water</a>, <a href="https://publications.waset.org/abstracts/search?q=health" title=" health"> health</a>, <a href="https://publications.waset.org/abstracts/search?q=agriculture" title=" agriculture"> agriculture</a>, <a href="https://publications.waset.org/abstracts/search?q=medicine" title=" medicine"> medicine</a> </p> <a href="https://publications.waset.org/abstracts/172970/water-security-and-transboundary-issues-for-food-security-of-ethiopia-the-case-of-nile-river" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/172970.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">90</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=water%20sustainable&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=water%20sustainable&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=water%20sustainable&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=water%20sustainable&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=water%20sustainable&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=water%20sustainable&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=water%20sustainable&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=water%20sustainable&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=water%20sustainable&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=water%20sustainable&page=422">422</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=water%20sustainable&page=423">423</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=water%20sustainable&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2025 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>