CINXE.COM
Search results for: alternative carbon source
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: alternative carbon source</title> <meta name="description" content="Search results for: alternative carbon source"> <meta name="keywords" content="alternative carbon source"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="alternative carbon source" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="alternative carbon source"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 10473</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: alternative carbon source</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10473</span> Growth of Multi-Layered Graphene Using Organic Solvent-PMMA Film as the Carbon Source under Low Temperature Conditions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alaa%20Y.%20Ali">Alaa Y. Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Natalie%20P.%20Holmes"> Natalie P. Holmes</a>, <a href="https://publications.waset.org/abstracts/search?q=John%20Holdsworth"> John Holdsworth</a>, <a href="https://publications.waset.org/abstracts/search?q=Warwick%20Belcher"> Warwick Belcher</a>, <a href="https://publications.waset.org/abstracts/search?q=Paul%20Dastoor"> Paul Dastoor</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiaojing%20Zhou"> Xiaojing Zhou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Multi-layered graphene has been produced under low temperature chemical vapour deposition (CVD) growth conditions by utilizing an organic solvent and polymer film source. Poly(methylmethacrylate) (PMMA) was dissolved in chlorobenzene solvent and used as a drop-cast film carbon source on a quartz slide. A source temperature (T<sub>source</sub>) of 180 °C provided sufficient carbon to grow graphene, as identified by Raman spectroscopy, on clean copper foil catalytic surfaces. Systematic variation of hydrogen gas (H<sub>2</sub>) flow rate from 25 standard cubic centimeters per minute (sccm) to 100 sccm and CVD temperature (T<sub>growth</sub>) from 400 to 800 °C, yielded graphene films of varying quality as characterized by Raman spectroscopy. The optimal graphene growth parameters were found to occur with a hydrogen flow rate of 75 sccm sweeping the 180 °C source carbon past the Cu foil at 600 °C for 1 min. The deposition at 600 °C with a H<sub>2</sub> flow rate of 75 sccm yielded a 2D band peak with ~53.4 cm<sup>-1</sup> FWHM and a relative intensity ratio of the G to 2D bands (I<sub>G</sub>/I<sub>2D</sub>) of 0.21. This recipe fabricated a few layers of good quality graphene. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=graphene" title="graphene">graphene</a>, <a href="https://publications.waset.org/abstracts/search?q=chemical%20vapor%20deposition" title=" chemical vapor deposition"> chemical vapor deposition</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20source" title=" carbon source"> carbon source</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20temperature%20growth" title=" low temperature growth"> low temperature growth</a> </p> <a href="https://publications.waset.org/abstracts/100272/growth-of-multi-layered-graphene-using-organic-solvent-pmma-film-as-the-carbon-source-under-low-temperature-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/100272.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">165</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10472</span> Investigation of Wood Chips as Internal Carbon Source Supporting Denitrification Process in Domestic Wastewater Treatment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ruth%20Lorivi">Ruth Lorivi</a>, <a href="https://publications.waset.org/abstracts/search?q=Jianzheng%20Li"> Jianzheng Li</a>, <a href="https://publications.waset.org/abstracts/search?q=John%20J.%20Ambuchi"> John J. Ambuchi</a>, <a href="https://publications.waset.org/abstracts/search?q=Kaiwen%20Deng"> Kaiwen Deng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p class="Abstract" style="text-indent:10.2pt"><span lang="EN-US">Nitrogen removal from wastewater is accomplished by nitrification and denitrification processes. Successful denitrification requires carbon, therefore, if placed after biochemical oxygen demand (BOD) and nitrification process, a carbon source has to be re-introduced into the water. To avoid adding a carbon source, denitrification is usually placed before BOD and nitrification processes. This process however involves recycling the nitrified effluent. In this study wood chips were used as internal carbon source which enabled placement of denitrification after BOD and nitrification process without effluent recycling. To investigate the efficiency of a wood packed aerobic-anaerobic baffled reactor on carbon and nutrients removal from domestic wastewater, a three compartment baffled reactor was presented. Each of the three compartments was packed with 329 g wood chips 1x1cm acting as an internal carbon source for denitrification. The proposed mode of operation was aerobic-anoxic-anaerobic (OAA) with no effluent recycling. The operating temperature, hydraulic retention time (HRT), dissolved oxygen (DO) and pH were 24 ± 2 </span><span lang="EN-US" style="font-family: "Cambria Math", serif;">℃</span><span lang="EN-US">, 24 h, less than 4 mg/L and 7 ± 1 respectively. The removal efficiencies of chemical oxygen demand (COD), ammonia nitrogen (NH<sub>4</sub><sup>+</sup>-N) and total nitrogen (TN) attained was 99, 87 and 83% respectively. TN removal rate was limited by nitrification as 97% of ammonia converted into nitrate and nitrite was denitrified. These results show that application of wood chips in wastewater treatment processes is an efficient internal carbon source. </span><span lang="EN-US"><o:p></o:p></span> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerobic-anaerobic%20baffled%20reactor" title="aerobic-anaerobic baffled reactor">aerobic-anaerobic baffled reactor</a>, <a href="https://publications.waset.org/abstracts/search?q=denitrification" title=" denitrification"> denitrification</a>, <a href="https://publications.waset.org/abstracts/search?q=nitrification" title=" nitrification"> nitrification</a>, <a href="https://publications.waset.org/abstracts/search?q=wood%20chip" title=" wood chip"> wood chip</a> </p> <a href="https://publications.waset.org/abstracts/56243/investigation-of-wood-chips-as-internal-carbon-source-supporting-denitrification-process-in-domestic-wastewater-treatment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56243.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">296</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10471</span> Investigation of the Catalytic Role of Surfactants on Carbon Dioxide Hydrate Formation in Sediments</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ehsan%20Heidaryan">Ehsan Heidaryan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Gas hydrate sediments are ice like permafrost in deep see and oceans. Methane production in sequestration process and reducing atmospheric carbon dioxide, a main source of greenhouse gas, has been accentuated recently. One focus is capture, separation, and sequestration of industrial carbon dioxide. As a hydrate former, carbon dioxide forms hydrates at moderate temperatures and pressures. This phenomenon could be utilized to capture and separate carbon dioxide from flue gases, and also has the potential to sequester carbon dioxide in the deep seabeds. This research investigated the effect of synthetic surfactants on carbon dioxide hydrate formation, catalysis and consequently, methane production from hydrate permafrosts in sediments. It investigated the sequestration potential of carbon dioxide hydrates in ocean sediments. Also, the catalytic effect of biosurfactants in these processes was investigated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20dioxide" title="carbon dioxide">carbon dioxide</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrate" title=" hydrate"> hydrate</a>, <a href="https://publications.waset.org/abstracts/search?q=sequestration" title=" sequestration"> sequestration</a>, <a href="https://publications.waset.org/abstracts/search?q=surfactant" title=" surfactant"> surfactant</a> </p> <a href="https://publications.waset.org/abstracts/24778/investigation-of-the-catalytic-role-of-surfactants-on-carbon-dioxide-hydrate-formation-in-sediments" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24778.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">437</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10470</span> Study of Eatable Aquatic Invertebrates in the River Dhansiri, Dimapur, Nagaland, India</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dilip%20Nath">Dilip Nath</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A study has been conducted on the available aquatic invertebrates in the river Dhansiri at Dimapur site. The study confirmed that the river body composed of aquatic macroinvertebrate community under two phyla viz., Arthropods and Molluscs. Total 10 species have been identified from there as the source of alternative protein food for the common people. Not only the protein source, they are also the component of aquatic food chain and indicators of aquatic ecosystem. Proper management and strategies to promote the edible invertebrates can be considered as the alternative protein and alternative income source for the common people for sustainable livelihood improvement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dhansiri" title="Dhansiri">Dhansiri</a>, <a href="https://publications.waset.org/abstracts/search?q=Dimapur" title=" Dimapur"> Dimapur</a>, <a href="https://publications.waset.org/abstracts/search?q=invertebrates" title=" invertebrates"> invertebrates</a>, <a href="https://publications.waset.org/abstracts/search?q=livelihood%20improvement" title=" livelihood improvement"> livelihood improvement</a>, <a href="https://publications.waset.org/abstracts/search?q=protein" title=" protein"> protein</a> </p> <a href="https://publications.waset.org/abstracts/138477/study-of-eatable-aquatic-invertebrates-in-the-river-dhansiri-dimapur-nagaland-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/138477.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">152</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10469</span> Synthesis and Characterization of Green Coke-Derived Activated Carbon by KOH Activation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Richard">Richard</a>, <a href="https://publications.waset.org/abstracts/search?q=Iyan%20Subiyanto"> Iyan Subiyanto</a>, <a href="https://publications.waset.org/abstracts/search?q=Chairul%20Hudaya"> Chairul Hudaya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Activated carbon has been playing a significant role for many applications, especially in energy storage devices. However, commercially activated carbons generally require complicated processes and high production costs. Therefore, in this study, an activated carbon originating from green coke waste, that is economically affordable will be used as a carbon source. To synthesize activated carbon, KOH as an activator was employed with variation of C:KOH in ratio of 1:2, 1:3, 1:4, and 1:5, respectively, with an activation temperature of 700°C. The characterizations of activated carbon are obtained from Scanning Electron Microscopy, Energy Dispersive X-Ray, Raman Spectroscopy, and Brunauer-Emmett-Teller. The optimal activated carbon sample with specific surface area of 2,024 m²/g with high carbon content ( > 80%) supported by the high porosity carbon image obtained by SEM was prepared at C:KOH ratio of 1:4. The result shows that the synthesized activated carbon would be an ideal choice for energy storage device applications. Therefore, this study is expected to reduce the costs of activated carbon production by expanding the utilization of petroleum waste. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=activated%20carbon" title="activated carbon">activated carbon</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20storage%20material" title=" energy storage material"> energy storage material</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20coke" title=" green coke"> green coke</a>, <a href="https://publications.waset.org/abstracts/search?q=specific%20surface%20area" title=" specific surface area"> specific surface area</a> </p> <a href="https://publications.waset.org/abstracts/126533/synthesis-and-characterization-of-green-coke-derived-activated-carbon-by-koh-activation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/126533.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">167</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10468</span> Conceptualization and Strategies of Biogas Technology for Rural Development in Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Okorowo%20Cyril%20Agochi">Okorowo Cyril Agochi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main challenge of present world is to harness the energy source which is environment friendly and ecologically balanced. This need has forced to search for other alternate source of energy. But unfortunately the new alternative energy sources like the solar, hydro, wind etc. require huge economical value and technical power to operate, which seem to be very difficult for the developing countries like Nigeria. In the present moment biogas energy can be one and only reliable, easily available and economically feasible source of alternative and renewable source which can be managed by locally available sources and simple technology for secondary schools, tertiary institution and rural villages. This paper is aimed at boosting the energy generation for developing of rural Nigeria, through Biogas. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bio-gas" title="bio-gas">bio-gas</a>, <a href="https://publications.waset.org/abstracts/search?q=energy" title=" energy"> energy</a>, <a href="https://publications.waset.org/abstracts/search?q=environment" title=" environment"> environment</a>, <a href="https://publications.waset.org/abstracts/search?q=nigeria" title=" nigeria"> nigeria</a>, <a href="https://publications.waset.org/abstracts/search?q=technology" title=" technology"> technology</a> </p> <a href="https://publications.waset.org/abstracts/17392/conceptualization-and-strategies-of-biogas-technology-for-rural-development-in-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17392.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">479</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10467</span> Characterization of Carbon Dioxide-Rich Flue Gas Sources for Conversion to Chemicals and Fuels</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adesola%20Orimoloye">Adesola Orimoloye</a>, <a href="https://publications.waset.org/abstracts/search?q=Edward%20Gobina"> Edward Gobina</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Flue gas is the most prevalent source of carbon dioxide off-gas from numerous processes globally. Among the lion's share of this flue gas is the ever - present electric power plant, primarily fuelled by coal, and then secondly, natural gas. The carbon dioxide found in coal fired power plant off gas is among the dirtiest forms of carbon dioxide, even with many of the improvements in the plants; still this will yield sulphur and nitrogen compounds; among other rather nasty compounds and elements; all let to the atmosphere. This presentation will focus on the characterization of carbon dioxide-rich flue gas sources with a view of eventual conversion to chemicals and fuels using novel membrane reactors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Flue%20gas" title="Flue gas">Flue gas</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20dioxide" title=" carbon dioxide"> carbon dioxide</a>, <a href="https://publications.waset.org/abstracts/search?q=membrane" title=" membrane"> membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=catalyst" title=" catalyst"> catalyst</a>, <a href="https://publications.waset.org/abstracts/search?q=syngas" title=" syngas"> syngas</a> </p> <a href="https://publications.waset.org/abstracts/24936/characterization-of-carbon-dioxide-rich-flue-gas-sources-for-conversion-to-chemicals-and-fuels" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24936.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">674</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10466</span> A Brief Exploration on the Green Urban Design for Carbon Neutrality</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gaoyuan%20Wang">Gaoyuan Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Tian%20Chen">Tian Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> China’s emission peak and carbon neutrality strategies lead to the transformation of development patterns and call for new green urban design thinking. This paper begins by revealing the evolution of green urban design thinking during the periods of carbon enlightenment, carbon dependency, and carbon decoupling from the perspective of the energy transition. Combined with the current energy situation, national strengths, and technological trends, the emergence of green urban design towards carbon neutrality becomes inevitable. Based on the preliminary analysis of its connotation, the characteristics of the new type of green urban design are generalized as low-carbon orientation, carbon-related objects, carbon-reduction means, and carbon-control patterns. Its theory is briefly clarified in terms of the human-earth synergism, quality-energy interconnection, and form-flow interpromotion. Then, its mechanism is analyzed combined with the core tasks of carbon neutrality, and the scope of design issues is defined, including carbon flow mapping, carbon source regulation, carbon sink construction, and carbon emission management. Finally, a multi-scale spatial response system is proposed across the region, city, cluster, and neighborhood level. The discussion aims to provide support for the innovation of green urban design theories and methods in the context of peak neutrality. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20neutrality" title="carbon neutrality">carbon neutrality</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20urban%20design" title=" green urban design"> green urban design</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20transition" title=" energy transition"> energy transition</a>, <a href="https://publications.waset.org/abstracts/search?q=theoretical%20exploration" title=" theoretical exploration"> theoretical exploration</a> </p> <a href="https://publications.waset.org/abstracts/140514/a-brief-exploration-on-the-green-urban-design-for-carbon-neutrality" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/140514.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">175</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10465</span> Algorithmic Generation of Carbon Nanochimneys</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sorin%20Muraru">Sorin Muraru</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Computational generation of carbon nanostructures is still a very demanding process. This work provides an alternative to manual molecular modeling through an algorithm meant to automate the design of such structures. Specifically, carbon nanochimneys are obtained through the bonding of a carbon nanotube with the smaller edge of an open carbon nanocone. The methods of connection rely on mathematical, geometrical and chemical properties. Non-hexagonal rings are used in order to perform the correct bonding of dangling bonds. Once obtained, they are useful for thermal transport, gas storage or other applications such as gas separation. The carbon nanochimneys are meant to produce a less steep connection between structures such as the carbon nanotube and graphene sheet, as in the pillared graphene, but can also provide functionality on its own. The method relies on connecting dangling bonds at the edges of the two carbon nanostructures, employing the use of two different types of auxiliary structures on a case-by-case basis. The code is implemented in Python 3.7 and generates an output file in the .pdb format containing all the system’s coordinates. Acknowledgment: This work was supported by a grant of the Executive Agency for Higher Education, Research, Development and innovation funding (UEFISCDI), project number PN-III-P1-1.1-TE-2016-24-2, contract TE 122/2018. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20nanochimneys" title="carbon nanochimneys">carbon nanochimneys</a>, <a href="https://publications.waset.org/abstracts/search?q=computational" title=" computational"> computational</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20nanotube" title=" carbon nanotube"> carbon nanotube</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20nanocone" title=" carbon nanocone"> carbon nanocone</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20modeling" title=" molecular modeling"> molecular modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20nanostructures" title=" carbon nanostructures"> carbon nanostructures</a> </p> <a href="https://publications.waset.org/abstracts/142571/algorithmic-generation-of-carbon-nanochimneys" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142571.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">170</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10464</span> Flue Gas Characterisation for Conversion to Chemicals and Fuels</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adesola%20O.%20Orimoloye">Adesola O. Orimoloye</a>, <a href="https://publications.waset.org/abstracts/search?q=Edward%20Gobina"> Edward Gobina</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Flue gas is the most prevalent source of carbon dioxide off-gas from numerous processes globally. Among the lion's share of this flue gas is the ever-present electric power plant, primarily fuelled by coal, and then secondly, natural gas. The carbon dioxide found in coal fired power plant off gas is among the dirtiest forms of carbon dioxide, even with many of the improvements in the plants; still this will yield sulphur and nitrogen compounds; among other rather nasty compounds and elements; all let to the atmosphere. This presentation will focus on the characterization of carbon dioxide-rich flue gas sources with a view of eventual conversion to chemicals and fuels using novel membrane reactors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flue%20gas" title="flue gas">flue gas</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20dioxide" title=" carbon dioxide"> carbon dioxide</a>, <a href="https://publications.waset.org/abstracts/search?q=membrane" title=" membrane"> membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=catalyst" title=" catalyst"> catalyst</a>, <a href="https://publications.waset.org/abstracts/search?q=syngas" title=" syngas"> syngas</a> </p> <a href="https://publications.waset.org/abstracts/25313/flue-gas-characterisation-for-conversion-to-chemicals-and-fuels" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25313.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">523</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10463</span> Climate Change Effects of Vehicular Carbon Monoxide Emission from Road Transportation in Part of Minna Metropolis, Niger State, Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20M.%20Liman">H. M. Liman</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20M.%20Suleiman%20%20A.%20A.%20David"> Y. M. Suleiman A. A. David </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Poor air quality often considered one of the greatest environmental threats facing the world today is caused majorly by the emission of carbon monoxide into the atmosphere. The principal air pollutant is carbon monoxide. One prominent source of carbon monoxide emission is the transportation sector. Not much was known about the emission levels of carbon monoxide, the primary pollutant from the road transportation in the study area. Therefore, this study assessed the levels of carbon monoxide emission from road transportation in the Minna, Niger State. The database shows the carbon monoxide data collected. MSA Altair gas alert detector was used to take the carbon monoxide emission readings in Parts per Million for the peak and off-peak periods of vehicular movement at the road intersections. Their Global Positioning System (GPS) coordinates were recorded in the Universal Transverse Mercator (UTM). Bar chart graphs were plotted by using the emissions level of carbon dioxide as recorded on the field against the scientifically established internationally accepted safe limit of 8.7 Parts per Million of carbon monoxide in the atmosphere. Further statistical analysis was also carried out on the data recorded from the field using the Statistical Package for Social Sciences (SPSS) software and Microsoft excel to show the variance of the emission levels of each of the parameters in the study area. The results established that emissions’ level of atmospheric carbon monoxide from the road transportation in the study area exceeded the internationally accepted safe limits of 8.7 parts per million. In addition, the variations in the average emission levels of CO between the four parameters showed that morning peak is having the highest average emission level of 24.5PPM followed by evening peak with 22.84PPM while morning off peak is having 15.33 and the least is evening off peak 12.94PPM. Based on these results, recommendations made for poor air quality mitigation via carbon monoxide emissions reduction from transportation include Introduction of the urban mass transit would definitely reduce the number of traffic on the roads, hence the emissions from several vehicles that would have been on the road. This would also be a cheaper means of transportation for the masses and Encouraging the use of vehicles using alternative sources of energy like solar, electric and biofuel will also result in less emission levels as the these alternative energy sources other than fossil fuel originated diesel and petrol vehicles do not emit especially carbon monoxide. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20monoxide" title="carbon monoxide">carbon monoxide</a>, <a href="https://publications.waset.org/abstracts/search?q=climate%20change%20emissions" title=" climate change emissions"> climate change emissions</a>, <a href="https://publications.waset.org/abstracts/search?q=road%20transportation" title=" road transportation"> road transportation</a>, <a href="https://publications.waset.org/abstracts/search?q=vehicular" title=" vehicular"> vehicular</a> </p> <a href="https://publications.waset.org/abstracts/38061/climate-change-effects-of-vehicular-carbon-monoxide-emission-from-road-transportation-in-part-of-minna-metropolis-niger-state-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38061.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">375</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10462</span> Estimation of Energy Efficiency of Blue Hydrogen Production Onboard of Ships</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Li%20Chin%20Law">Li Chin Law</a>, <a href="https://publications.waset.org/abstracts/search?q=Epaminondas%20Mastorakos"> Epaminondas Mastorakos</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohd%20Roslee%20Othman"> Mohd Roslee Othman</a>, <a href="https://publications.waset.org/abstracts/search?q=Antonis%20Trakakis"> Antonis Trakakis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper introduces an alternative concept of carbon capture for shipping by using pre-combustion carbon capture technology (Pre-CCS), which was proven to be less energy intensive than post-combustion carbon capture from the engine exhaust. Energy assessment on amine-based post-combustion CCS on LNG-fuelled ships showed that the energy efficiency of CCS ships reduced from 48% to 36.6%. Then, an energy assessment was carried out to compare the power and heat requirements of the most used hydrogen production methods and carbon capture technologies. Steam methane reformer (SMR) was found to be 20% more energy efficient and achieved a higher methane conversion than auto thermal reaction and methane decomposition. Next, pressure swing adsorber (PSA) has shown a lower energy requirement than membrane separation, cryogenic separation, and amine absorption in pre-combustion carbon capture. Hence, an integrated system combining SMR and PSA (SMR-PSA) with waste heat integration (WHR) was proposed. This optimized SMR-based integrated system has achieved 65% of CO₂ reduction with less than 7-percentage point of energy penalty (41.7% of energy efficiency). Further integration of post-combustion CCS with the SMR-PSA integrated system improved carbon capture rate to 86.3% with 9-percentage points of energy penalty (39% energy efficiency). The proposed system was shown to be able to meet the carbon reduction targets set by International Maritime Organization (IMO) with certain energy penalties. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=shipping" title="shipping">shipping</a>, <a href="https://publications.waset.org/abstracts/search?q=decarbonisation" title=" decarbonisation"> decarbonisation</a>, <a href="https://publications.waset.org/abstracts/search?q=alternative%20fuels" title=" alternative fuels"> alternative fuels</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20carbon" title=" low carbon"> low carbon</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogen" title=" hydrogen"> hydrogen</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20capture" title=" carbon capture"> carbon capture</a> </p> <a href="https://publications.waset.org/abstracts/162788/estimation-of-energy-efficiency-of-blue-hydrogen-production-onboard-of-ships" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162788.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">78</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10461</span> Effects of Ophiocordyceps dipterigena BCC 2073 β-Glucan as a Prebiotic on the in vitro Growth of Probiotic and Pathogenic Bacteria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wai%20Prathumpai">Wai Prathumpai</a>, <a href="https://publications.waset.org/abstracts/search?q=Pranee%20Rachtawee"> Pranee Rachtawee</a>, <a href="https://publications.waset.org/abstracts/search?q=Sutamat%20Khajeeram"> Sutamat Khajeeram</a>, <a href="https://publications.waset.org/abstracts/search?q=Pariya%20Na%20Nakorn"> Pariya Na Nakorn</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The β-glucan produced by <em>Ophiocordyceps dipterigena</em> BCC 2073 is a (1, 3)-β-D-glucan with highly branching O-6-linkedside chains that is resistant to acid hydrolysis (by hydrochloric acid and porcine pancreatic alpha-amylase). This β-glucan can be utilized as a prebiotic due to its advantageous structural and biological properties. The effects of using this β-glucan as the sole carbon source for the <em>in vitro</em> growth of two probiotic bacteria (<em>L. acidophilus</em> BCC 13938 and <em>B. animalis</em> ATCC 25527) were investigated. Compared with the effect of using 1% glucose or fructo-oligosaccharide (FOS) as the sole carbon source, using 1% β-glucan for this purpose showed that this prebiotic supported and stimulated the growth of both types of probiotic bacteria and induced them to produce the highest levels of metabolites during their growth. The highest levels of lactic and acetic acid, 10.04 g·L<sup>-1</sup> and 2.82 g·L<sup>-1</sup>, respectively, were observed at 2 h of cultivation using glucose as the sole carbon source. Furthermore, the fermentation broth obtained using 1% β-glucan as the sole carbon source had greater antibacterial activity against selected pathogenic bacteria (<em>B. subtilis </em>TISTR 008, <em>E. coli </em>TISTR 780, and <em>S. typhimurium</em> TISTR 292) than did the broths prepared using glucose or FOS as the sole carbon source. The fermentation broth obtained by growing <em>L. acidophilus</em> BCC 13938 in the presence of β-glucan inhibited the growth of <em>B. subtilis </em>TISTR 008 by more than 70% and inhibited the growth of both <em>S. typhimurium</em> TISTR 292 and <em>E. coli </em>TISTR 780 by more than 90%. In conclusion, <em>O. dipterigena</em> BCC 2073 is a potential source of a β-glucan prebiotic that could be used for commercial production in the near future. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=beta-glucan" title="beta-glucan">beta-glucan</a>, <a href="https://publications.waset.org/abstracts/search?q=Ophiocordyceps%20dipterigena" title=" Ophiocordyceps dipterigena"> Ophiocordyceps dipterigena</a>, <a href="https://publications.waset.org/abstracts/search?q=prebiotic" title=" prebiotic"> prebiotic</a>, <a href="https://publications.waset.org/abstracts/search?q=probiotic" title=" probiotic"> probiotic</a>, <a href="https://publications.waset.org/abstracts/search?q=antimicrobial" title=" antimicrobial"> antimicrobial</a> </p> <a href="https://publications.waset.org/abstracts/93585/effects-of-ophiocordyceps-dipterigena-bcc-2073-v-glucan-as-a-prebiotic-on-the-in-vitro-growth-of-probiotic-and-pathogenic-bacteria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93585.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">152</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10460</span> Effect of Carbon Black Nanoparticles Additive on the Qualities of Fly Ash Based Geopolymer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maryam%20Kiani">Maryam Kiani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this study was to investigate the influence of carbon black additive on the properties of fly ash-based geopolymer. The geopolymer samples were prepared using fly ash as the primary source material, along with an alkali activator solution and different concentrations of carbon black additive. The effects of carbon black on the geopolymer binder were evaluated by analyzing the compressive strength, flexural strength, water absorption, and microstructural properties of the cured samples. The results revealed that the inclusion of carbon black additive significantly enhanced the mechanical properties of the geopolymer binder. The compressive and flexural strengths were found to increase with the addition of carbon black, showing improvements of up to 25% and 15%, respectively. Moreover, the water absorption of the geopolymer samples reduced due to the presence of carbon black, indicating improved resistance against water permeability. Microstructural analysis using scanning electron microscopy (SEM) revealed a more compact and homogenous structure in the geopolymer samples with carbon black. The dispersion of carbon black particles within the geopolymer matrix was observed, suggesting improved interparticle bonding and increased densification. Overall, this study demonstrates the positive impact of carbon black additive on the qualities of fly ash-based geopolymer, emphasizing its potential as an effective enhancer for geopolymer binder applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fly-ash" title="fly-ash">fly-ash</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20black" title=" carbon black"> carbon black</a>, <a href="https://publications.waset.org/abstracts/search?q=nanotechnology" title=" nanotechnology"> nanotechnology</a>, <a href="https://publications.waset.org/abstracts/search?q=geopolymer" title=" geopolymer"> geopolymer</a> </p> <a href="https://publications.waset.org/abstracts/172605/effect-of-carbon-black-nanoparticles-additive-on-the-qualities-of-fly-ash-based-geopolymer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/172605.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">113</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10459</span> Carbon Storage in Natural Mangrove Biomass: Its Destruction and Potential Impact on Climate Change in the UAE</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hedaya%20Ali%20Al%20Ameri">Hedaya Ali Al Ameri</a>, <a href="https://publications.waset.org/abstracts/search?q=Alya%20A.%20Arabi"> Alya A. Arabi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Measuring the level of carbon storage in mangroves’ biomass has a potential impact in the climate change of UAE. Carbon dioxide is one of greenhouse gases. It is considered to be a main reason for global warming. Deforestation is a key source of the increase in carbon dioxide whereas forests such as mangroves assist in removing carbon dioxide from atmosphere by storing them in its biomass and soil. By using Kauffman and Donato methodology, above- and below-ground biomass and carbon stored in UAE’s natural mangroves were quantified. Carbon dioxide equivalent (CO2eq) released to the atmosphere was then estimated in case of mangroves deforestation in the UAE. The results show that the mean total biomass of mangroves in the UAE ranged from 15.75 Mg/ha to 3098.69 Mg/ha. The estimated CO2eq released upon deforestation in the UAE was found to have a minimal effect on the temperature increase and thus global warming. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20stored%20in%20biomass" title="carbon stored in biomass">carbon stored in biomass</a>, <a href="https://publications.waset.org/abstracts/search?q=mangrove%20deforestation" title=" mangrove deforestation"> mangrove deforestation</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature%20change" title=" temperature change"> temperature change</a>, <a href="https://publications.waset.org/abstracts/search?q=United%20Arab%20Emirate" title=" United Arab Emirate"> United Arab Emirate</a> </p> <a href="https://publications.waset.org/abstracts/26138/carbon-storage-in-natural-mangrove-biomass-its-destruction-and-potential-impact-on-climate-change-in-the-uae" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26138.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">396</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10458</span> Nano-MFC (Nano Microbial Fuel Cell): Utilization of Carbon Nano Tube to Increase Efficiency of Microbial Fuel Cell Power as an Effective, Efficient and Environmentally Friendly Alternative Energy Sources </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Annisa%20Ulfah%20Pristya">Annisa Ulfah Pristya</a>, <a href="https://publications.waset.org/abstracts/search?q=Andi%20Setiawan"> Andi Setiawan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Electricity is the primary requirement today's world, including Indonesia. This is because electricity is a source of electrical energy that is flexible to use. Fossil energy sources are the major energy source that is used as a source of energy power plants. Unfortunately, this conversion process impacts on the depletion of fossil fuel reserves and causes an increase in the amount of CO2 in the atmosphere, disrupting health, ozone depletion, and the greenhouse effect. Solutions have been applied are solar cells, ocean wave power, the wind, water, and so forth. However, low efficiency and complicated treatment led to most people and industry in Indonesia still using fossil fuels. Referring to this Fuel Cell was developed. Fuel Cells are electrochemical technology that continuously converts chemical energy into electrical energy for the fuel and oxidizer are the efficiency is considerably higher than the previous natural source of electrical energy, which is 40-60%. However, Fuel Cells still have some weaknesses in terms of the use of an expensive platinum catalyst which is limited and not environmentally friendly. Because of it, required the simultaneous source of electrical energy and environmentally friendly. On the other hand, Indonesia is a rich country in marine sediments and organic content that is never exhausted. Stacking the organic component can be an alternative energy source continued development of fuel cell is A Microbial Fuel Cell. Microbial Fuel Cells (MFC) is a tool that uses bacteria to generate electricity from organic and non-organic compounds. MFC same tools as usual fuel cell composed of an anode, cathode and electrolyte. Its main advantage is the catalyst in the microbial fuel cell is a microorganism and working conditions carried out in neutral solution, low temperatures, and environmentally friendly than previous fuel cells (Chemistry Fuel Cell). However, when compared to Chemistry Fuel Cell, MFC only have an efficiency of 40%. Therefore, the authors provide a solution in the form of Nano-MFC (Nano Microbial Fuel Cell): Utilization of Carbon Nano Tube to Increase Efficiency of Microbial Fuel Cell Power as an Effective, Efficient and Environmentally Friendly Alternative Energy Source. Nano-MFC has the advantage of an effective, high efficiency, cheap and environmental friendly. Related stakeholders that helped are government ministers, especially Energy Minister, the Institute for Research, as well as the industry as a production executive facilitator. strategic steps undertaken to achieve that begin from conduct preliminary research, then lab scale testing, and dissemination and build cooperation with related parties (MOU), conduct last research and its applications in the field, then do the licensing and production of Nano-MFC on an industrial scale and publications to the public. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CNT" title="CNT">CNT</a>, <a href="https://publications.waset.org/abstracts/search?q=efficiency" title=" efficiency"> efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=electric" title=" electric"> electric</a>, <a href="https://publications.waset.org/abstracts/search?q=microorganisms" title=" microorganisms"> microorganisms</a>, <a href="https://publications.waset.org/abstracts/search?q=sediment" title=" sediment"> sediment</a> </p> <a href="https://publications.waset.org/abstracts/26712/nano-mfc-nano-microbial-fuel-cell-utilization-of-carbon-nano-tube-to-increase-efficiency-of-microbial-fuel-cell-power-as-an-effective-efficient-and-environmentally-friendly-alternative-energy-sources" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26712.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">408</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10457</span> The Combined Effect of Methane and Methanol on Growth and PHB Production in the Alphaproteobacterial Methanotroph Methylocystis Sp. Rockwell</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lazic%20Marina">Lazic Marina</a>, <a href="https://publications.waset.org/abstracts/search?q=Sugden%20Scott"> Sugden Scott</a>, <a href="https://publications.waset.org/abstracts/search?q=Sharma%20Kanta%20Hem"> Sharma Kanta Hem</a>, <a href="https://publications.waset.org/abstracts/search?q=Sauvageau%20Dominic"> Sauvageau Dominic</a>, <a href="https://publications.waset.org/abstracts/search?q=Stein%20Lisa"> Stein Lisa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Methane is a highly potent greenhouse gas mostly released through anthropogenic activities. Methane represents a low-cost and sustainable feedstock used for the biological production of value-added compounds by bacteria known as methanotrophs. In addition to methane, these organisms can utilize methanol, another cheap carbon source that is a common industrial by-product. Alphaproteobacteria methanotrophs can utilize both methane and methanol to produce the biopolymer polyhydroxybutyrate. The goal of this study was to examine the effect of methanol on polyhydroxybutyrate production in Methylocystis sp. Rockwell and to identify the optimal methane: methanol ratio that will improve PHB without reducing biomass production. Three methane: methanol ratios (4, 2.5., and 0.5) and three nitrogen source (ammonium or nitrate) concentrations (10 mM, 1 mM, and 0.1 mM) were combined to generate 18 growing conditions (9 per carbon source). The production of polyhydroxybutyrate and biomass was analyzed at the end of growth. Overall, the methane: methanol ratios that promoted polyhydroxybutyrate synthesis without reducing biomass were 4 and 2.5 and the optimal nitrogen concentration was 1 mM for both ammonium and nitrate. The physiological mechanism behind the beneficial effect of combining methane and methanol as carbon sources remain to be discovered. One possibility is that methanol has a dual role as a carbon source at lower concentrations and as a stringent response trigger at higher concentrations. Nevertheless, the beneficial effect of methanol and optimal nitrogen concentration for PHB production was confirmed, providing a basis for future physiological analysis and conditions for process scale-up. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=methane" title="methane">methane</a>, <a href="https://publications.waset.org/abstracts/search?q=methanol" title=" methanol"> methanol</a>, <a href="https://publications.waset.org/abstracts/search?q=methanotrophs" title=" methanotrophs"> methanotrophs</a>, <a href="https://publications.waset.org/abstracts/search?q=polyhydroxybutyrate" title=" polyhydroxybutyrate"> polyhydroxybutyrate</a>, <a href="https://publications.waset.org/abstracts/search?q=methylocystis%20sp.%20rockwell" title=" methylocystis sp. rockwell"> methylocystis sp. rockwell</a>, <a href="https://publications.waset.org/abstracts/search?q=single%20carbon%20bioconversions" title=" single carbon bioconversions"> single carbon bioconversions</a> </p> <a href="https://publications.waset.org/abstracts/155467/the-combined-effect-of-methane-and-methanol-on-growth-and-phb-production-in-the-alphaproteobacterial-methanotroph-methylocystis-sp-rockwell" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/155467.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">171</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10456</span> Study of Biological Denitrification using Heterotrophic Bacteria and Natural Source of Carbon</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Benbelkacem%20Ouerdia">Benbelkacem Ouerdia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Heterotrophic denitrification has been proven to be one of the most feasible processes for removing nitrate from wastewater and drinking water. In this process, heterotrophic bacteria use organic carbon for both growth and as an electron source. Underground water pollution by nitrates become alarming in Algeria. A survey carried out revealed that the nitrate concentration is in continual increase. Studies in some region revealed contamination exceeding the recommended permissible dose which is 50 mg/L. Worrying values in the regions of Mascara, Ouled saber, El Eulma, Bouira and Algiers are respectively 72 mg/L, 75 mg/L, 97 mg/L, 102 mg/L, and 158 mg/L. High concentration of nitrate in drinking water is associated with serious health risks. Research on nitrate removal technologies from municipal water supplies is increasing because of nitrate contamination. Biological denitrification enables the transformation of oxidized nitrogen compounds by a wide spectrum of heterotrophic bacteria into harmless nitrogen gas with accompanying carbon removal. Globally, denitrification is commonly employed in biological nitrogen removal processes to enhance water quality The study investigated the valorization of a vegetable residue as a carbon source (dates nodes) in water treatment using the denitrification process. Throughout the study, the effect of inoculums addition, pH, and initial concentration of nitrates was also investigated. In this research, a natural organic substance: dates nodes were investigated as a carbon source in the biological denitrification of drinking water. This material acts as a solid substrate and bio-film carrier. The experiments were carried out in batch processes. Complete denitrification was achieved varied between 80 and 100% according to the type of process used. It was found that the nitrate removal rate based on our results, we concluded that the removal of organic matter and nitrogen compounds depended mainly on the initial concentration of nitrate. The effluent pH was mainly affected by the C/N ratio, where a decrease increases pH. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biofilm" title="biofilm">biofilm</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20source" title=" carbon source"> carbon source</a>, <a href="https://publications.waset.org/abstracts/search?q=dates%20nodes" title=" dates nodes"> dates nodes</a>, <a href="https://publications.waset.org/abstracts/search?q=heterotrophic%20denitrification" title=" heterotrophic denitrification"> heterotrophic denitrification</a>, <a href="https://publications.waset.org/abstracts/search?q=nitrate" title=" nitrate"> nitrate</a>, <a href="https://publications.waset.org/abstracts/search?q=nitrite" title=" nitrite "> nitrite </a> </p> <a href="https://publications.waset.org/abstracts/28572/study-of-biological-denitrification-using-heterotrophic-bacteria-and-natural-source-of-carbon" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28572.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">484</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10455</span> Valorization of Dates Nodes as a Carbon Source Using Biological Denitrification</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ouerdia%20Benbelkacem%20Belouanas">Ouerdia Benbelkacem Belouanas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Heterotrophic denitrification has been proven to be one of the most feasible processes for removing nitrate from waste water and drinking water. In this process, heterotrophic bacteria use organic carbon for both growth and as an electron source. Underground water pollution by nitrates become alarming in Algeria. A survey carried out revealed that the nitrate concentration is in continual increase. Studies in some region revealed contamination exceeding the recommended permissible dose which is 50 mg/L. Worrying values in the regions of Mascara, Ouled saber, El Eulma, Bouira and Algiers are respectively 72 mg/L, 75 mg/L, 97 mg/L, 102 mg/L, and 158 mg/L. High concentration of nitrate in drinking water is associated with serious health risks. Research on nitrate removal technologies from municipal water supplies is increasing because of nitrate contamination. Biological denitrification enables transformation of oxidized nitrogen compounds by a wide spectrum of heterotrophic bacteria into harmless nitrogen gas with accompanying carbon removal. Globally, denitrification is commonly employed in biological nitrogen removal processes to enhance water quality. The study investigated the valorization of a vegetable residue as a carbon source (dates nodes) in water treatment using the denitrification process. Throughout the study, the effect of inoculums addition, pH, and initial concentration of nitrates was also investigated. In this research, a natural organic substance: dates nodes were investigated as a carbon source in the biological denitrification of drinking water. This material acts as a solid substrate and bio-film carrier. The experiments were carried out in batch processes. Complete denitrification was achieved varied between 80 and 100% according to the type of process used. It was found that the nitrate removal rate based on our results, we concluded that the removal of organic matter and nitrogen compounds depended mainly on initial concentration of nitrate. The effluent pH was mainly affected by the C/N ratio, where a decrease increases pH. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biofilm" title="biofilm">biofilm</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20source" title=" carbon source"> carbon source</a>, <a href="https://publications.waset.org/abstracts/search?q=dates%20nodes" title=" dates nodes"> dates nodes</a>, <a href="https://publications.waset.org/abstracts/search?q=heterotrophic%20denitrification" title=" heterotrophic denitrification"> heterotrophic denitrification</a>, <a href="https://publications.waset.org/abstracts/search?q=nitrate" title=" nitrate"> nitrate</a>, <a href="https://publications.waset.org/abstracts/search?q=nitrite" title=" nitrite"> nitrite</a> </p> <a href="https://publications.waset.org/abstracts/19044/valorization-of-dates-nodes-as-a-carbon-source-using-biological-denitrification" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19044.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">419</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10454</span> Improving the Digestibility of Agro-Industrial Co-Products by Treatment with Isolated Fungi in the Meknes-Morocco Region</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Benaddou">Mohamed Benaddou</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Diouri"> Mohammed Diouri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> country, such as Morocco, generates a high quantity of agricultural and food industry residues. A large portion of these residues is disposed of by burning or landfilling. The valorization of this waste biomass as feed is an interesting alternative because it is therefore considered among the best sources of cheap carbohydrates. However, its nutritional yield without any pre-treatment is very low because lignin protects cellulose, the carbohydrate used as a source of energy by ruminants. Fungal treatment is an environmentally friendly, easy and inexpensive method. This study investigated the treatment of wheat straw (WS), cedar sawdust (CS) and olive pomace (OP) with fungi selected according to the source of Carbon for improving its digestibility. Two were selected in a culture medium in which cellulose was the only source of Carbon: Cosmospora Viridescens (C.vir) and Penicillium crustosum (P.crus), two were selected in a culture medium in which lignin is the only source of Carbon: Fusarium oxysporum (F.oxy) and Fusarium sp. (F. Sp), and two in a culture medium where cellulose and lignin are the two sources of Carbon at the same time: Fusarium solani (F. solani) and Penicillium chrysogenum (P.chryso). P.chryso degraded more CS cellulose. It is very important to notice that the delignification by F. Solani reached 70% after 12 weeks of treatment of wheat straw. Ligninase enzymatic was detected in F.solani, F.sp, F.oxysporum, which made it possible to delignify the treated substrates. Delignification by C.vir is negligible in all three substrates after 12 weeks of treatment. P.crus and P.chryso degraded the lignin very slightly in WC (it did not exceed 12% after 12 weeks of treatment) but in OP this delignification is slight reaching 25% and 13% for P.chryso and P.crus successively. P.chryso allowed 30% degradation of lignin from 4 weeks of treatment. The degradation of the lignin was able to reach the maximum within 8 weeks of treatment for most of the fungi except F. solani who continued the treatment after this period. Digestibility variation (IVTD.variation) is highly very significant from fungus to fungi, duration to time, substrate to substrate and its interactions (P <0.001). indeed, all the fungi increased digestibility after 12 weeks of treatment with a difference in the degree of this increase. F.solani and F.oxy increased digestibility more than the others. this digestibility exceeded 50% in CS and O.P but did not exceed 20% for WS after treatment with F.oxy. IVTD.Var was not exceeded 20% in W.S.cedar treated with P.chryso but reached 45% after 8 weeks of treatment in W.straw. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lignin" title="lignin">lignin</a>, <a href="https://publications.waset.org/abstracts/search?q=cellulose" title=" cellulose"> cellulose</a>, <a href="https://publications.waset.org/abstracts/search?q=digestibility" title=" digestibility"> digestibility</a>, <a href="https://publications.waset.org/abstracts/search?q=fungi" title=" fungi"> fungi</a>, <a href="https://publications.waset.org/abstracts/search?q=treatment" title=" treatment"> treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=lignocellulosic%20biomass" title=" lignocellulosic biomass"> lignocellulosic biomass</a> </p> <a href="https://publications.waset.org/abstracts/145578/improving-the-digestibility-of-agro-industrial-co-products-by-treatment-with-isolated-fungi-in-the-meknes-morocco-region" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/145578.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">207</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10453</span> Carbon Credits in Voluntary Carbon Markets: A Proposal for Iran</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saeed%20Mohammadirad">Saeed Mohammadirad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> During the first commitment period of the Kyoto Protocol, many developed countries were forced to restrict carbon emissions. Although Iran was one of the countries of Kyoto protocol, due to some special conditions, it was not required to restrict its carbon emissions. Flexible mechanisms were developed to assist countries responsible for reducing their carbon emissions, and regulated carbon markets were introduced. Carbon credits which are provided by organizations in countries with no responsibility to restrict their carbon emissions are traded in voluntary markets. This study focuses on how to measure and report the carbon allowances and carbon credits from accounting view point under both regulated and voluntary markets. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20credits" title="carbon credits">carbon credits</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20markets" title=" carbon markets"> carbon markets</a>, <a href="https://publications.waset.org/abstracts/search?q=accounting" title=" accounting"> accounting</a>, <a href="https://publications.waset.org/abstracts/search?q=flexible%20mechanisms" title=" flexible mechanisms"> flexible mechanisms</a> </p> <a href="https://publications.waset.org/abstracts/29797/carbon-credits-in-voluntary-carbon-markets-a-proposal-for-iran" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29797.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">408</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10452</span> Carbon Nanotubes and Novel Applications for Textile</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ezgi%20Ismar">Ezgi Ismar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Carbon nanotubes (CNTs) are different from other allotropes of carbon, such as graphite, diamond and fullerene. Replacement of metals in flexible textiles has an advantage. Particularly in the last decade, both their electrical and mechanical properties have become an area of interest for Li-ion battery applications where the conductivity has a major importance. While carbon nanotubes are conductive, they are also less in weight compared to convectional conductive materials. Carbon nanotubes can be used inside the fiber so they can offer to create 3-D structures. In this review, you can find some examples of how carbon nanotubes adapted to textile products. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20nanotubes" title="carbon nanotubes">carbon nanotubes</a>, <a href="https://publications.waset.org/abstracts/search?q=conductive%20textiles" title=" conductive textiles"> conductive textiles</a>, <a href="https://publications.waset.org/abstracts/search?q=nanotechnology" title=" nanotechnology"> nanotechnology</a>, <a href="https://publications.waset.org/abstracts/search?q=nanotextiles" title=" nanotextiles"> nanotextiles</a> </p> <a href="https://publications.waset.org/abstracts/33980/carbon-nanotubes-and-novel-applications-for-textile" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33980.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">382</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10451</span> Analysis of the CO2 Emissions of Public Passenger Transport in Tianjin City of China</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tao%20Zhao">Tao Zhao</a>, <a href="https://publications.waset.org/abstracts/search?q=Xianshuo%20Xu"> Xianshuo Xu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Low-carbon public passenger transport is an important part of low carbon city. The CO<sub>2</sub> emissions of public passenger transport in Tianjin from 1995 to 2010 are estimated with IPCC CO<sub>2</sub> counting method, which shows that the total CO<sub>2</sub> emissions of Tianjin public passenger transport have gradually become stable at 1,425.1 thousand tons. And then the CO<sub>2</sub> emissions of the buses, taxies, and rail transits are calculated respectively. A CO<sub>2</sub> emission of 829.9 thousand tons makes taxies become the largest CO<sub>2</sub> emissions source among the public passenger transport in Tianjin. Combining with passenger volume, this paper analyzes the CO<sub>2</sub> emissions proportion of the buses, taxies, and rail transits compare the passenger transport rate with the proportion of CO<sub>2</sub> emissions, as well as the CO<sub>2</sub> emissions change of per 10,000 people. The passenger volume proportion of bus among the three public means of transport is 72.62% which is much higher than its CO<sub>2</sub> emissions proportion of 36.01%, with the minimum number of CO<sub>2</sub> emissions per 10,000 people of 4.90 tons. The countermeasures to reduce CO<sub>2</sub> emissions of public passenger transport in Tianjin are to develop rail transit, update vehicles and use alternative fuel vehicles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=public%20passenger%20transport" title="public passenger transport">public passenger transport</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20emissions" title=" carbon emissions"> carbon emissions</a>, <a href="https://publications.waset.org/abstracts/search?q=countermeasures" title=" countermeasures"> countermeasures</a>, <a href="https://publications.waset.org/abstracts/search?q=China" title=" China"> China</a> </p> <a href="https://publications.waset.org/abstracts/26131/analysis-of-the-co2-emissions-of-public-passenger-transport-in-tianjin-city-of-china" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26131.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">429</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10450</span> Characteristics of Silicon Integrated Vertical Carbon Nanotube Field-Effect Transistors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jingqi%20Li">Jingqi Li</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A new vertical carbon nanotube field effect transistor (CNTFET) has been developed. The source, drain and gate are vertically stacked in this structure. The carbon nanotubes are put on the side wall of the vertical stack. Unique transfer characteristics which depend on both silicon type and the sign of drain voltage have been observed in silicon integrated CNTFETs. The significant advantage of this CNTFET is that the short channel of the transistor can be fabricated without using complicate lithography technique. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20nanotubes" title="carbon nanotubes">carbon nanotubes</a>, <a href="https://publications.waset.org/abstracts/search?q=field-effect%20transistors" title=" field-effect transistors"> field-effect transistors</a>, <a href="https://publications.waset.org/abstracts/search?q=electrical%20property" title=" electrical property"> electrical property</a>, <a href="https://publications.waset.org/abstracts/search?q=short%20channel%20fabrication" title=" short channel fabrication"> short channel fabrication</a> </p> <a href="https://publications.waset.org/abstracts/82705/characteristics-of-silicon-integrated-vertical-carbon-nanotube-field-effect-transistors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82705.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">361</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10449</span> Using Pyrolitic Carbon Black Obtained from Scrap Tires as an Adsorbent for Chromium (III) Removal from Water</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mercedeh%20Malekzadeh">Mercedeh Malekzadeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Scrap tires are the source of wastes that cause the environmental problems. The major components of these tires are rubber and carbon black. These components can be used again for different applications by utilizing physical and chemical processes. Pyrolysis is a way that converts rubber portion of scrap tires to oil and gas and the carbon black recovers to pyrolytic carbon black. This pyrolytic carbon black can be used to reinforce rubber and metal, coating preparation, electronic thermal manager and so on. The porous structure of this carbon black also makes it as a suitable choice for heavy metals removal from water. In this work, the application of base treated pyrolytic carbon black was studied as an adsorbent for chromium (III) removal from water in a batch process. Pyrolytic carbon blacks in two natural and base treated forms were characterized by scanning electron microscopy and energy dispersive analysis x-ray. The effects of adsorbent dosage, contact time, initial concentration of chromium (III) and pH were considered on the adsorption process. The adsorption capacity was 19.76 mg/g. Maximum adsorption was seen after 120 min at pH=3. The equilibrium data were considered and better fitted to Langmuir model. The adsorption kinetic was evaluated and confirmed with the pseudo second order kinetic. Results have shown that the base treated pyrolytic carbon black obtained from scrap tires can be used as a cheap adsorbent for removal of chromium (III) from the water. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chromium%20%28III%29" title="chromium (III)">chromium (III)</a>, <a href="https://publications.waset.org/abstracts/search?q=pyrolytic%20carbon" title=" pyrolytic carbon"> pyrolytic carbon</a>, <a href="https://publications.waset.org/abstracts/search?q=scrap%20tire" title=" scrap tire"> scrap tire</a>, <a href="https://publications.waset.org/abstracts/search?q=water" title=" water"> water</a> </p> <a href="https://publications.waset.org/abstracts/68850/using-pyrolitic-carbon-black-obtained-from-scrap-tires-as-an-adsorbent-for-chromium-iii-removal-from-water" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68850.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">200</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10448</span> Carbon Accounting for Sustainable Design and Manufacturing in the Signage Industry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Prudvi%20Paresi">Prudvi Paresi</a>, <a href="https://publications.waset.org/abstracts/search?q=Fatemeh%20Javidan"> Fatemeh Javidan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years, greenhouse gas, or in particular, carbon emissions, have received special attention from environmentalists and designers due to the fact that they significantly contribute to the temperature rise. The building industry is one of the top seven major industries contributing to embodied carbon emission. Signage systems are an integral part of the building industry and bring completeness to the space-building by providing the required information and guidance. A significant amount of building materials, such as steel, aluminium, acrylic, LED, etc., are utilized in these systems, but very limited information is available on their sustainability and carbon footprint. Therefore, there is an urgent need to assess the emissions associated with the signage industry and for controlling these by adopting different mitigation techniques without sacrificing the efficiency of the project. The present paper investigates the embodied carbon of two case studies in the Australian signage industry within the cradle – gate (A1-A3) and gate–site (A4-A5) stages. A material source-based database is considered to achieve more accuracy. The study identified that aluminium is the major contributor to embodied carbon in the signage industry compared to other constituents. Finally, an attempt is made to suggest strategies for mitigating embodied carbon in this industry. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20accounting" title="carbon accounting">carbon accounting</a>, <a href="https://publications.waset.org/abstracts/search?q=small-scale%20construction" title=" small-scale construction"> small-scale construction</a>, <a href="https://publications.waset.org/abstracts/search?q=signage%20industry" title=" signage industry"> signage industry</a>, <a href="https://publications.waset.org/abstracts/search?q=construction%20materials" title=" construction materials"> construction materials</a> </p> <a href="https://publications.waset.org/abstracts/155355/carbon-accounting-for-sustainable-design-and-manufacturing-in-the-signage-industry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/155355.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">117</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10447</span> Ground Source Ventilation and Solar PV Towards a Zero-Carbon House in Riyadh</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Osamah%20S.%20Alanazi">Osamah S. Alanazi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20G.%20Kotbi"> Mohammad G. Kotbi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20O.%20AlFadil"> Mohammed O. AlFadil</a> </p> <p class="card-text"><strong>Abstract:</strong></p> While renewable energy technology is developing in Saudi Arabia, and the ambitious 2030 vision encourages the shift towards more efficient and clean energy usage. The research on the application of geothermal resources in residential use for the Saudi Arabian context will contribute towards a more sustainable environment. This paper is a part of an ongoing master's thesis, which its main goal is to investigate the possibility of achieving a zero-carbon house in Riyadh by applying a ground-coupled system into a current sustainable house that uses a grid-tied solar system. The current house was built and designed by King Saud University for the 2018 middle east solar decathlon competition. However, it failed to reach zero-carbon operation due to the high cooling demand. This study will redesign and validate the house using Revit and Carriers Hourly Analysis 'HAP' software with the use of ordinary least square 'OLS' regression. After that, a ground source ventilation system will be designed using the 'GCV Tool' to reduce cooling loads. After the application of the ground source system, the new electrical loads will be compared with the current house. Finally, a simple economic analysis that includes the cost of applying a ground source system will be reported. The findings of this study will indicate the possibility and feasibility of reaching a zero-carbon house in Riyadh, Saudi Arabia, using a ground-coupled ventilation system. While cooling in the residential sector is the dominant energy consumer in the Gulf region, this work will certainly help in moving towards using renewable sources to meet those demands. This paper will be limited to highlight the literature review, the methodology of the research, and the expected outcome. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=renewable%20energy" title="renewable energy">renewable energy</a>, <a href="https://publications.waset.org/abstracts/search?q=zero-carbon%20houses" title=" zero-carbon houses"> zero-carbon houses</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20buildings" title=" sustainable buildings"> sustainable buildings</a>, <a href="https://publications.waset.org/abstracts/search?q=geothermal%20energy" title=" geothermal energy"> geothermal energy</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20PV" title=" solar PV"> solar PV</a>, <a href="https://publications.waset.org/abstracts/search?q=GCV%20Tool" title=" GCV Tool "> GCV Tool </a> </p> <a href="https://publications.waset.org/abstracts/135559/ground-source-ventilation-and-solar-pv-towards-a-zero-carbon-house-in-riyadh" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/135559.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">183</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10446</span> Study of Methods to Reduce Carbon Emissions in Structural Engineering</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Richard%20Krijnen">Richard Krijnen</a>, <a href="https://publications.waset.org/abstracts/search?q=Alan%20Wang"> Alan Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As the world is aiming to reach net zero around 2050, structural engineers must begin finding solutions to contribute to this global initiative. Approximately 40% of global energy-related emissions are due to buildings and construction, and a building’s structure accounts for 50% of its embodied carbon, which indicates that structural engineers are key contributors to finding solutions to reach carbon neutrality. However, this task presents a multifaceted challenge as structural engineers must navigate technical, safety and economic considerations while striving to reduce emissions. This study reviews several options and considerations to reduce carbon emissions that structural engineers can use in their future designs without compromising the structural integrity of their proposed design. Low-carbon structures should adhere to several guiding principles. Firstly, prioritize the selection of materials with low carbon footprints, such as recyclable or alternative materials. Optimization of design and engineering methods is crucial to minimize material usage. Encouraging the use of recyclable and renewable materials reduces dependency on natural resources. Energy efficiency is another key consideration involving the design of structures to minimize energy consumption across various systems. Choosing local materials and minimizing transportation distances help in reducing carbon emissions during transport. Innovation, such as pre-fabrication and modular design or low-carbon concrete, can further cut down carbon emissions during manufacturing and construction. Collaboration among stakeholders and sharing experiences and resources are essential for advancing the development and application of low-carbon structures. This paper identifies current available tools and solutions to reduce embodied carbon in structures, which can be used as part of daily structural engineering practice. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=efficient%20structural%20design" title="efficient structural design">efficient structural design</a>, <a href="https://publications.waset.org/abstracts/search?q=embodied%20carbon" title=" embodied carbon"> embodied carbon</a>, <a href="https://publications.waset.org/abstracts/search?q=low-carbon%20material" title=" low-carbon material"> low-carbon material</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20structural%20design" title=" sustainable structural design"> sustainable structural design</a> </p> <a href="https://publications.waset.org/abstracts/186101/study-of-methods-to-reduce-carbon-emissions-in-structural-engineering" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/186101.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">41</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10445</span> Preparation of Activated Carbon from Lignocellulosic Precursor for Dyes Adsorption</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Mokaddem">H. Mokaddem</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Miroud"> D. Miroud</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Azouaou"> N. Azouaou</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Si-Ahmed"> F. Si-Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=Z.%20Sadaoui"> Z. Sadaoui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The synthesis and characterization of activated carbon from local lignocellulosic precursor (Algerian alfa) was carried out for the removal of cationic dyes from aqueous solutions. The effect of the production variables such as impregnation chemical agents, impregnation ratio, activation temperature and activation time were investigated. Carbon obtained using the optimum conditions (CaCl2/ 1:1/ 500°C/2H) was characterized by various analytical techniques scanning electron microscopy (SEM), infrared spectroscopic analysis (FTIR) and zero-point-of-charge (pHpzc). Adsorption tests of methylene blue on the optimal activated carbon were conducted. The effects of contact time, amount of adsorbent, initial dye concentration and pH were studied. The adsorption equilibrium examined using Langmuir, Freundlich, Temkin and Redlich–Peterson models reveals that the Langmuir model is most appropriate to describe the adsorption process. The kinetics of MB sorption onto activated carbon follows the pseudo-second order rate expression. The examination of the thermodynamic analysis indicates that the adsorption process is spontaneous (ΔG ° < 0) and endothermic (ΔH ° > 0), the positive value of the standard entropy shows the affinity between the activated carbon and the dye. The present study showed that the produced optimal activated carbon prepared from Algerian alfa is an effective low-cost adsorbent and can be employed as alternative to commercial activated carbon for removal of MB dye from aqueous solution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=activated%20carbon" title="activated carbon">activated carbon</a>, <a href="https://publications.waset.org/abstracts/search?q=adsorption" title=" adsorption"> adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=cationic%20dyes" title=" cationic dyes"> cationic dyes</a>, <a href="https://publications.waset.org/abstracts/search?q=Algerian%20alfa" title=" Algerian alfa"> Algerian alfa</a> </p> <a href="https://publications.waset.org/abstracts/49655/preparation-of-activated-carbon-from-lignocellulosic-precursor-for-dyes-adsorption" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49655.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">228</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10444</span> Estimation of Carbon Uptake of Seoul City Street Trees in Seoul and Plans for Increase Carbon Uptake by Improving Species</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Min%20Woo%20Park">Min Woo Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Jin%20Do%20Chung"> Jin Do Chung</a>, <a href="https://publications.waset.org/abstracts/search?q=Kyu%20Yeol%20Kim"> Kyu Yeol Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Byoung%20Uk%20Im"> Byoung Uk Im</a>, <a href="https://publications.waset.org/abstracts/search?q=Jang%20Woo%20Kim"> Jang Woo Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Hae%20Yeul%20Ryu"> Hae Yeul Ryu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nine representative species of trees among all the street trees were selected to estimate the absorption amount of carbon dioxide emitted from street trees in Seoul calculating the biomass, amount of carbon saved, and annual absorption amount of carbon dioxide in each of the species. Planting distance of street trees in Seoul was 1,851,180 m, the number of planting lines was 1,287, the number of planted trees was 284,498 and 46 species of trees were planted as of 2013. According to the result of plugging the quantity of species of street trees in Seoul on the absorption amount of each of the species, 120,097 ton of biomass, 60,049.8 ton of amount of carbon saved, and 11,294 t CO2/year of annual absorption amount of carbon dioxide were calculated. Street ratio mentioned on the road statistics in Seoul in 2022 is 23.13%. If the street trees are assumed to be increased in the same rate, the number of street trees in Seoul was calculated to be 294,823. The planting distance was estimated to be 1,918,360 m, and the annual absorption amount of carbon dioxide was measured to be 11,704 t CO2/year. Plans for improving the annual absorption amount of carbon dioxide from street trees were established based on the expected amount of absorption. First of all, it is to improve the annual absorption amount of carbon dioxide by increasing the number of planted street trees after adjusting the planting distance of street trees. If adjusting the current planting distance to 6 m, it was turned out that 12,692.7 t CO2/year was absorbed on an annual basis. Secondly, it is to change the species of trees to tulip trees that represent high absorption rate. If increasing the proportion of tulip trees to 30% up to 2022, the annual absorption rate of carbon dioxide was calculated to be 17804.4 t CO2/year. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=absorption%20of%20carbon%20dioxide" title="absorption of carbon dioxide">absorption of carbon dioxide</a>, <a href="https://publications.waset.org/abstracts/search?q=source%20of%20absorbing%20carbon%20dioxide" title=" source of absorbing carbon dioxide"> source of absorbing carbon dioxide</a>, <a href="https://publications.waset.org/abstracts/search?q=trees%20in%20city" title=" trees in city"> trees in city</a>, <a href="https://publications.waset.org/abstracts/search?q=improving%20species" title=" improving species"> improving species</a> </p> <a href="https://publications.waset.org/abstracts/24639/estimation-of-carbon-uptake-of-seoul-city-street-trees-in-seoul-and-plans-for-increase-carbon-uptake-by-improving-species" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24639.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">362</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=alternative%20carbon%20source&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=alternative%20carbon%20source&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=alternative%20carbon%20source&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=alternative%20carbon%20source&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=alternative%20carbon%20source&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=alternative%20carbon%20source&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=alternative%20carbon%20source&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=alternative%20carbon%20source&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=alternative%20carbon%20source&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=alternative%20carbon%20source&page=349">349</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=alternative%20carbon%20source&page=350">350</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=alternative%20carbon%20source&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>