CINXE.COM
A Dynamic Analysis of Randomly Oriented Functionally Graded Carbon Nanotubes/Fiber-Reinforced Composite Laminated Shells with Different Geometries
<!DOCTYPE html> <html lang="en" xmlns:og="http://ogp.me/ns#" xmlns:fb="https://www.facebook.com/2008/fbml"> <head> <meta charset="utf-8"> <meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1"> <meta content="mdpi" name="sso-service" /> <meta content="width=device-width, initial-scale=1.0" name="viewport" /> <title>A Dynamic Analysis of Randomly Oriented Functionally Graded Carbon Nanotubes/Fiber-Reinforced Composite Laminated Shells with Different Geometries</title><link rel="stylesheet" href="https://pub.mdpi-res.com/assets/css/font-awesome.min.css?eb190a3a77e5e1ee?1732884643"> <link rel="stylesheet" href="https://pub.mdpi-res.com/assets/css/jquery.multiselect.css?f56c135cbf4d1483?1732884643"> <link rel="stylesheet" href="https://pub.mdpi-res.com/assets/css/chosen.min.css?d7ca5ca9441ef9e1?1732884643"> <link rel="stylesheet" href="https://pub.mdpi-res.com/assets/css/main2.css?69b39374e6b554b7?1732884643"> <link rel="mask-icon" href="https://pub.mdpi-res.com/img/mask-icon-128.svg?c1c7eca266cd7013?1732884643" color="#4f5671"> <link rel="apple-touch-icon" sizes="180x180" href="https://pub.mdpi-res.com/icon/apple-touch-icon-180x180.png?1732884643"> <link rel="apple-touch-icon" sizes="152x152" href="https://pub.mdpi-res.com/icon/apple-touch-icon-152x152.png?1732884643"> <link rel="apple-touch-icon" sizes="144x144" href="https://pub.mdpi-res.com/icon/apple-touch-icon-144x144.png?1732884643"> <link rel="apple-touch-icon" sizes="120x120" href="https://pub.mdpi-res.com/icon/apple-touch-icon-120x120.png?1732884643"> <link rel="apple-touch-icon" sizes="114x114" href="https://pub.mdpi-res.com/icon/apple-touch-icon-114x114.png?1732884643"> <link rel="apple-touch-icon" sizes="76x76" href="https://pub.mdpi-res.com/icon/apple-touch-icon-76x76.png?1732884643"> <link rel="apple-touch-icon" sizes="72x72" href="https://pub.mdpi-res.com/icon/apple-touch-icon-72x72.png?1732884643"> <link rel="apple-touch-icon" sizes="57x57" href="https://pub.mdpi-res.com/icon/apple-touch-icon-57x57.png?1732884643"> <link rel="apple-touch-icon" href="https://pub.mdpi-res.com/icon/apple-touch-icon-57x57.png?1732884643"> <link rel="apple-touch-icon-precomposed" href="https://pub.mdpi-res.com/icon/apple-touch-icon-57x57.png?1732884643"> <link rel="manifest" href="/manifest.json"> <meta name="theme-color" content="#ffffff"> <meta name="application-name" content=" "/> <link rel="apple-touch-startup-image" href="https://pub.mdpi-res.com/img/journals/mathematics-logo-sq.png?8600e93ff98dbf14"> <link rel="apple-touch-icon" href="https://pub.mdpi-res.com/img/journals/mathematics-logo-sq.png?8600e93ff98dbf14"> <meta name="msapplication-TileImage" content="https://pub.mdpi-res.com/img/journals/mathematics-logo-sq.png?8600e93ff98dbf14"> <link rel="stylesheet" href="https://pub.mdpi-res.com/assets/css/jquery-ui-1.10.4.custom.min.css?80647d88647bf347?1732884643"> <link rel="stylesheet" href="https://pub.mdpi-res.com/assets/css/magnific-popup.min.css?04d343e036f8eecd?1732884643"> <link rel="stylesheet" href="https://pub.mdpi-res.com/assets/css/xml2html/article-html.css?230b005b39af4260?1732884643"> <style> h2, #abstract .related_suggestion_title { } .batch_articles a { color: #000; } a, .batch_articles .authors a, a:focus, a:hover, a:active, .batch_articles a:focus, .batch_articles a:hover, li.side-menu-li a { } span.label a { color: #fff; } #main-content a.title-link:hover, #main-content a.title-link:focus, #main-content div.generic-item a.title-link:hover, #main-content div.generic-item a.title-link:focus { } #main-content #middle-column .generic-item.article-item a.title-link:hover, #main-content #middle-column .generic-item.article-item a.title-link:focus { } .art-authors a.toEncode { color: #333; font-weight: 700; } #main-content #middle-column ul li::before { } .accordion-navigation.active a.accordion__title, .accordion-navigation.active a.accordion__title::after { } .accordion-navigation li:hover::before, .accordion-navigation li:hover a, .accordion-navigation li:focus a { } .relative-size-container .relative-size-image .relative-size { } .middle-column__help__fixed a:hover i, } input[type="checkbox"]:checked:after { } input[type="checkbox"]:not(:disabled):hover:before { } #main-content .bolded-text { } #main-content .hypothesis-count-container { } #main-content .hypothesis-count-container:before { } .full-size-menu ul li.menu-item .dropdown-wrapper { } .full-size-menu ul li.menu-item > a.open::after { } #title-story .title-story-orbit .orbit-caption { #background: url('/img/design/000000_background.png') !important; background: url('/img/design/ffffff_background.png') !important; color: rgb(51, 51, 51) !important; } #main-content .content__container__orbit { background-color: #000 !important; } #main-content .content__container__journal { color: #fff; } .html-article-menu .row span { } .html-article-menu .row span.active { } .accordion-navigation__journal .side-menu-li.active::before, .accordion-navigation__journal .side-menu-li.active a { color: rgba(58,41,23,0.75) !important; font-weight: 700; } .accordion-navigation__journal .side-menu-li:hover::before , .accordion-navigation__journal .side-menu-li:hover a { color: rgba(58,41,23,0.75) !important; } .side-menu-ul li.active a, .side-menu-ul li.active, .side-menu-ul li.active::before { color: rgba(58,41,23,0.75) !important; } .side-menu-ul li.active a { } .result-selected, .active-result.highlighted, .active-result:hover, .result-selected, .active-result.highlighted, .active-result:focus { } .search-container.search-container__default-scheme { } nav.tab-bar .open-small-search.active:after { } .search-container.search-container__default-scheme .custom-accordion-for-small-screen-link::after { color: #fff; } @media only screen and (max-width: 50em) { #main-content .content__container.journal-info { color: #fff; } #main-content .content__container.journal-info a { color: #fff; } } .button.button--color { } .button.button--color:hover, .button.button--color:focus { } .button.button--color-journal { position: relative; background-color: rgba(58,41,23,0.75); border-color: #fff; color: #fff !important; } .button.button--color-journal:hover::before { content: ''; position: absolute; top: 0; left: 0; height: 100%; width: 100%; background-color: #ffffff; opacity: 0.2; } .button.button--color-journal:visited, .button.button--color-journal:hover, .button.button--color-journal:focus { background-color: rgba(58,41,23,0.75); border-color: #fff; color: #fff !important; } .button.button--color path { } .button.button--color:hover path { fill: #fff; } #main-content #search-refinements .ui-slider-horizontal .ui-slider-range { } .breadcrumb__element:last-of-type a { } #main-header { } #full-size-menu .top-bar, #full-size-menu li.menu-item span.user-email { } .top-bar-section li:not(.has-form) a:not(.button) { } #full-size-menu li.menu-item .dropdown-wrapper li a:hover { } #full-size-menu li.menu-item a:hover, #full-size-menu li.menu.item a:focus, nav.tab-bar a:hover { } #full-size-menu li.menu.item a:active, #full-size-menu li.menu.item a.active { } #full-size-menu li.menu-item a.open-mega-menu.active, #full-size-menu li.menu-item div.mega-menu, a.open-mega-menu.active { } #full-size-menu li.menu-item div.mega-menu li, #full-size-menu li.menu-item div.mega-menu a { border-color: #9a9a9a; } div.type-section h2 { font-size: 20px; line-height: 26px; font-weight: 300; } div.type-section h3 { margin-left: 15px; margin-bottom: 0px; font-weight: 300; } .journal-tabs .tab-title.active a { } </style> <link rel="stylesheet" href="https://pub.mdpi-res.com/assets/css/slick.css?f38b2db10e01b157?1732884643"> <meta name="title" content="A Dynamic Analysis of Randomly Oriented Functionally Graded Carbon Nanotubes/Fiber-Reinforced Composite Laminated Shells with Different Geometries"> <meta name="description" content="The present study demonstrates the free vibration behavior of composite laminated shells reinforced by both randomly oriented single-walled carbon nanotubes (SWCNTs) and functionally graded fibers. The shell structures with different principal radii of curvature are considered, such as cylindrical, spherical, elliptical–paraboloid shell, hyperbolic–paraboloid shell, and plate. The volume fraction of the fibers has a linear variation along the shell thickness from layer to layer, while the volume fraction of CNTs is constant in all shell layers and uniformly distributed. The fiber-reinforced elements are distributed with three functions which are V-distribution, O-distribution, and X-distribution in addition to the uniform distribution. A numerical analysis was carried out systematically to validate the proposed solution. A new analytical solution is presented based on the Galerkin approach for shells and is exploited to illustrate the influence of some factors on the free vibration behavior of CNTs/fibe-reinforced composite (CNTs/F-RC) laminated shells, including the distributions and volume fractions, various boundary conditions, and geometrical properties of the reinforcement materials. The proposed solution is shown to be an effective theoretical tool to analyze the free vibration response of shells." > <link rel="image_src" href="https://pub.mdpi-res.com/img/journals/mathematics-logo.png?8600e93ff98dbf14" > <meta name="dc.title" content="A Dynamic Analysis of Randomly Oriented Functionally Graded Carbon Nanotubes/Fiber-Reinforced Composite Laminated Shells with Different Geometries"> <meta name="dc.creator" content="Ammar Melaibari"> <meta name="dc.creator" content="Ahmed Amine Daikh"> <meta name="dc.creator" content="Muhammad Basha"> <meta name="dc.creator" content="Ahmed Wagih"> <meta name="dc.creator" content="Ramzi Othman"> <meta name="dc.creator" content="Khalid H. Almitani"> <meta name="dc.creator" content="Mostafa A. Hamed"> <meta name="dc.creator" content="Alaa Abdelrahman"> <meta name="dc.creator" content="Mohamed A. Eltaher"> <meta name="dc.type" content="Article"> <meta name="dc.source" content="Mathematics 2022, Vol. 10, Page 408"> <meta name="dc.date" content="2022-01-27"> <meta name ="dc.identifier" content="10.3390/math10030408"> <meta name="dc.publisher" content="Multidisciplinary Digital Publishing Institute"> <meta name="dc.rights" content="http://creativecommons.org/licenses/by/3.0/"> <meta name="dc.format" content="application/pdf" > <meta name="dc.language" content="en" > <meta name="dc.description" content="The present study demonstrates the free vibration behavior of composite laminated shells reinforced by both randomly oriented single-walled carbon nanotubes (SWCNTs) and functionally graded fibers. The shell structures with different principal radii of curvature are considered, such as cylindrical, spherical, elliptical–paraboloid shell, hyperbolic–paraboloid shell, and plate. The volume fraction of the fibers has a linear variation along the shell thickness from layer to layer, while the volume fraction of CNTs is constant in all shell layers and uniformly distributed. The fiber-reinforced elements are distributed with three functions which are V-distribution, O-distribution, and X-distribution in addition to the uniform distribution. A numerical analysis was carried out systematically to validate the proposed solution. A new analytical solution is presented based on the Galerkin approach for shells and is exploited to illustrate the influence of some factors on the free vibration behavior of CNTs/fibe-reinforced composite (CNTs/F-RC) laminated shells, including the distributions and volume fractions, various boundary conditions, and geometrical properties of the reinforcement materials. The proposed solution is shown to be an effective theoretical tool to analyze the free vibration response of shells." > <meta name="dc.subject" content="analytical solution" > <meta name="dc.subject" content="shell structures" > <meta name="dc.subject" content="different geometries" > <meta name="dc.subject" content="free vibration" > <meta name="dc.subject" content="CNTs/fiber-reinforced composite" > <meta name="dc.subject" content="higher-order shear deformation theory" > <meta name="dc.subject" content="Galerkin method" > <meta name ="prism.issn" content="2227-7390"> <meta name ="prism.publicationName" content="Mathematics"> <meta name ="prism.publicationDate" content="2022-01-27"> <meta name ="prism.volume" content="10"> <meta name ="prism.number" content="3"> <meta name ="prism.section" content="Article" > <meta name ="prism.startingPage" content="408" > <meta name="citation_issn" content="2227-7390"> <meta name="citation_journal_title" content="Mathematics"> <meta name="citation_publisher" content="Multidisciplinary Digital Publishing Institute"> <meta name="citation_title" content="A Dynamic Analysis of Randomly Oriented Functionally Graded Carbon Nanotubes/Fiber-Reinforced Composite Laminated Shells with Different Geometries"> <meta name="citation_publication_date" content="2022/1"> <meta name="citation_online_date" content="2022/01/27"> <meta name="citation_volume" content="10"> <meta name="citation_issue" content="3"> <meta name="citation_firstpage" content="408"> <meta name="citation_author" content="Melaibari, Ammar"> <meta name="citation_author" content="Daikh, Ahmed Amine"> <meta name="citation_author" content="Basha, Muhammad"> <meta name="citation_author" content="Wagih, Ahmed"> <meta name="citation_author" content="Othman, Ramzi"> <meta name="citation_author" content="Almitani, Khalid H."> <meta name="citation_author" content="Hamed, Mostafa A."> <meta name="citation_author" content="Abdelrahman, Alaa"> <meta name="citation_author" content="Eltaher, Mohamed A."> <meta name="citation_doi" content="10.3390/math10030408"> <meta name="citation_id" content="mdpi-math10030408"> <meta name="citation_abstract_html_url" content="https://www.mdpi.com/2227-7390/10/3/408"> <meta name="citation_pdf_url" content="https://www.mdpi.com/2227-7390/10/3/408/pdf?version=1643526652"> <link rel="alternate" type="application/pdf" title="PDF Full-Text" href="https://www.mdpi.com/2227-7390/10/3/408/pdf?version=1643526652"> <meta name="fulltext_pdf" content="https://www.mdpi.com/2227-7390/10/3/408/pdf?version=1643526652"> <meta name="citation_fulltext_html_url" content="https://www.mdpi.com/2227-7390/10/3/408/htm"> <link rel="alternate" type="text/html" title="HTML Full-Text" href="https://www.mdpi.com/2227-7390/10/3/408/htm"> <meta name="fulltext_html" content="https://www.mdpi.com/2227-7390/10/3/408/htm"> <link rel="alternate" type="text/xml" title="XML Full-Text" href="https://www.mdpi.com/2227-7390/10/3/408/xml"> <meta name="fulltext_xml" content="https://www.mdpi.com/2227-7390/10/3/408/xml"> <meta name="citation_xml_url" content="https://www.mdpi.com/2227-7390/10/3/408/xml"> <meta name="twitter:card" content="summary" /> <meta name="twitter:site" content="@MDPIOpenAccess" /> <meta name="twitter:image" content="https://pub.mdpi-res.com/img/journals/mathematics-logo-social.png?8600e93ff98dbf14" /> <meta property="fb:app_id" content="131189377574"/> <meta property="og:site_name" content="MDPI"/> <meta property="og:type" content="article"/> <meta property="og:url" content="https://www.mdpi.com/2227-7390/10/3/408" /> <meta property="og:title" content="A Dynamic Analysis of Randomly Oriented Functionally Graded Carbon Nanotubes/Fiber-Reinforced Composite Laminated Shells with Different Geometries" /> <meta property="og:description" content="The present study demonstrates the free vibration behavior of composite laminated shells reinforced by both randomly oriented single-walled carbon nanotubes (SWCNTs) and functionally graded fibers. The shell structures with different principal radii of curvature are considered, such as cylindrical, spherical, elliptical–paraboloid shell, hyperbolic–paraboloid shell, and plate. The volume fraction of the fibers has a linear variation along the shell thickness from layer to layer, while the volume fraction of CNTs is constant in all shell layers and uniformly distributed. The fiber-reinforced elements are distributed with three functions which are V-distribution, O-distribution, and X-distribution in addition to the uniform distribution. A numerical analysis was carried out systematically to validate the proposed solution. A new analytical solution is presented based on the Galerkin approach for shells and is exploited to illustrate the influence of some factors on the free vibration behavior of CNTs/fibe-reinforced composite (CNTs/F-RC) laminated shells, including the distributions and volume fractions, various boundary conditions, and geometrical properties of the reinforcement materials. The proposed solution is shown to be an effective theoretical tool to analyze the free vibration response of shells." /> <meta property="og:image" content="https://pub.mdpi-res.com/mathematics/mathematics-10-00408/article_deploy/html/images/mathematics-10-00408-g001-550.jpg?1643526744" /> <link rel="alternate" type="application/rss+xml" title="MDPI Publishing - Latest articles" href="https://www.mdpi.com/rss"> <meta name="google-site-verification" content="PxTlsg7z2S00aHroktQd57fxygEjMiNHydKn3txhvwY"> <meta name="facebook-domain-verification" content="mcoq8dtq6sb2hf7z29j8w515jjoof7" /> <script id="Cookiebot" data-cfasync="false" src="https://consent.cookiebot.com/uc.js" data-cbid="51491ddd-fe7a-4425-ab39-69c78c55829f" type="text/javascript" async></script> <!--[if lt IE 9]> <script>var browserIe8 = true;</script> <link rel="stylesheet" href="https://pub.mdpi-res.com/assets/css/ie8foundationfix.css?50273beac949cbf0?1732884643"> <script src="//html5shiv.googlecode.com/svn/trunk/html5.js"></script> <script src="//cdnjs.cloudflare.com/ajax/libs/html5shiv/3.6.2/html5shiv.js"></script> <script src="//s3.amazonaws.com/nwapi/nwmatcher/nwmatcher-1.2.5-min.js"></script> <script src="//html5base.googlecode.com/svn-history/r38/trunk/js/selectivizr-1.0.3b.js"></script> <script src="//cdnjs.cloudflare.com/ajax/libs/respond.js/1.1.0/respond.min.js"></script> <script src="https://pub.mdpi-res.com/assets/js/ie8/ie8patch.js?9e1d3c689a0471df?1732884643"></script> <script src="https://pub.mdpi-res.com/assets/js/ie8/rem.min.js?94b62787dcd6d2f2?1732884643"></script> <![endif]--> <script type="text/plain" data-cookieconsent="statistics"> (function(w,d,s,l,i){w[l]=w[l]||[];w[l].push({'gtm.start': new Date().getTime(),event:'gtm.js'});var f=d.getElementsByTagName(s)[0], j=d.createElement(s),dl=l!='dataLayer'?'&l='+l:'';j.async=true;j.src= 'https://www.googletagmanager.com/gtm.js?id='+i+dl;f.parentNode.insertBefore(j,f); })(window,document,'script','dataLayer','GTM-WPK7SW5'); </script> <script type="text/plain" data-cookieconsent="statistics"> _linkedin_partner_id = "2846186"; window._linkedin_data_partner_ids = window._linkedin_data_partner_ids || []; window._linkedin_data_partner_ids.push(_linkedin_partner_id); </script><script type="text/javascript"> (function(){var s = document.getElementsByTagName("script")[0]; var b = document.createElement("script"); b.type = "text/javascript";b.async = true; b.src = "https://snap.licdn.com/li.lms-analytics/insight.min.js"; s.parentNode.insertBefore(b, s);})(); </script> <script type="text/plain" data-cookieconsent="statistics" data-cfasync="false" src="//script.crazyegg.com/pages/scripts/0116/4951.js" async="async" ></script> </head> <body> <div class="direction direction_right" id="small_right" style="border-right-width: 0px; padding:0;"> <i class="fa fa-caret-right fa-2x"></i> </div> <div class="big_direction direction_right" id="big_right" style="border-right-width: 0px;"> <div style="text-align: right;"> Next Article in Journal<br> <div><a href="/2227-7390/10/3/401">Adaptive Sliding Mode Attitude-Tracking Control of Spacecraft with Prescribed Time Performance</a></div> </div> </div> <div class="direction" id="small_left" style="border-left-width: 0px"> <i class="fa fa-caret-left fa-2x"></i> </div> <div class="big_direction" id="big_left" style="border-left-width: 0px;"> <div> Previous Article in Journal<br> <div><a href="/2227-7390/10/3/407">Characterization of Automorphisms of (<i>θ</i>,<i>ω</i>)-Twisted Radford’s Hom-Biproduct</a></div> </div> </div> <div style="clear: both;"></div> <div id="menuModal" class="reveal-modal reveal-modal-new reveal-modal-menu" aria-hidden="true" data-reveal role="dialog"> <div class="menu-container"> <div class="UI_NavMenu"> <div class="content__container " > <div class="custom-accordion-for-small-screen-link " > <h2>Journals</h2> </div> <div class="target-item custom-accordion-for-small-screen-content show-for-medium-up"> <div class="menu-container__links"> <div style="width: 100%; float: left;"> <a href="/about/journals">Active Journals</a> <a href="/about/journalfinder">Find a Journal</a> <a href="/about/journals/proposal">Journal Proposal</a> <a href="/about/proceedings">Proceedings Series</a> </div> </div> </div> </div> <a href="/topics"> <h2>Topics</h2> </a> <div class="content__container " > <div class="custom-accordion-for-small-screen-link " > <h2>Information</h2> </div> <div class="target-item custom-accordion-for-small-screen-content show-for-medium-up"> <div class="menu-container__links"> <div style="width: 100%; max-width: 200px; float: left;"> <a href="/authors">For Authors</a> <a href="/reviewers">For Reviewers</a> <a href="/editors">For Editors</a> <a href="/librarians">For Librarians</a> <a href="/publishing_services">For Publishers</a> <a href="/societies">For Societies</a> <a href="/conference_organizers">For Conference Organizers</a> </div> <div style="width: 100%; max-width: 250px; float: left;"> <a href="/openaccess">Open Access Policy</a> <a href="/ioap">Institutional Open Access Program</a> <a href="/special_issues_guidelines">Special Issues Guidelines</a> <a href="/editorial_process">Editorial Process</a> <a href="/ethics">Research and Publication Ethics</a> <a href="/apc">Article Processing Charges</a> <a href="/awards">Awards</a> <a href="/testimonials">Testimonials</a> </div> </div> </div> </div> <a href="/authors/english"> <h2>Editing Services</h2> </a> <div class="content__container " > <div class="custom-accordion-for-small-screen-link " > <h2>Initiatives</h2> </div> <div class="target-item custom-accordion-for-small-screen-content show-for-medium-up"> <div class="menu-container__links"> <div style="width: 100%; float: left;"> <a href="https://sciforum.net" target="_blank" rel="noopener noreferrer">Sciforum</a> <a href="https://www.mdpi.com/books" target="_blank" rel="noopener noreferrer">MDPI Books</a> <a href="https://www.preprints.org" target="_blank" rel="noopener noreferrer">Preprints.org</a> <a href="https://www.scilit.net" target="_blank" rel="noopener noreferrer">Scilit</a> <a href="https://sciprofiles.com" target="_blank" rel="noopener noreferrer">SciProfiles</a> <a href="https://encyclopedia.pub" target="_blank" rel="noopener noreferrer">Encyclopedia</a> <a href="https://jams.pub" target="_blank" rel="noopener noreferrer">JAMS</a> <a href="/about/proceedings">Proceedings Series</a> </div> </div> </div> </div> <div class="content__container " > <div class="custom-accordion-for-small-screen-link " > <h2>About</h2> </div> <div class="target-item custom-accordion-for-small-screen-content show-for-medium-up"> <div class="menu-container__links"> <div style="width: 100%; float: left;"> <a href="/about">Overview</a> <a href="/about/contact">Contact</a> <a href="https://careers.mdpi.com" target="_blank" rel="noopener noreferrer">Careers</a> <a href="/about/announcements">News</a> <a href="/about/press">Press</a> <a href="http://blog.mdpi.com/" target="_blank" rel="noopener noreferrer">Blog</a> </div> </div> </div> </div> </div> <div class="menu-container__buttons"> <a class="button UA_SignInUpButton" href="/user/login">Sign In / Sign Up</a> </div> </div> </div> <div id="captchaModal" class="reveal-modal reveal-modal-new reveal-modal-new--small" data-reveal aria-label="Captcha" aria-hidden="true" role="dialog"></div> <div id="actionDisabledModal" class="reveal-modal" data-reveal aria-labelledby="actionDisableModalTitle" aria-hidden="true" role="dialog" style="width: 300px;"> <h2 id="actionDisableModalTitle">Notice</h2> <form action="/email/captcha" method="post" id="emailCaptchaForm"> <div class="row"> <div id="js-action-disabled-modal-text" class="small-12 columns"> </div> <div id="js-action-disabled-modal-submit" class="small-12 columns" style="margin-top: 10px; display: none;"> You can make submissions to other journals <a href="https://susy.mdpi.com/user/manuscripts/upload">here</a>. </div> </div> </form> <a class="close-reveal-modal" aria-label="Close"> <i class="material-icons">clear</i> </a> </div> <div id="rssNotificationModal" class="reveal-modal reveal-modal-new" data-reveal aria-labelledby="rssNotificationModalTitle" aria-hidden="true" role="dialog"> <div class="row"> <div class="small-12 columns"> <h2 id="rssNotificationModalTitle">Notice</h2> <p> You are accessing a machine-readable page. In order to be human-readable, please install an RSS reader. </p> </div> </div> <div class="row"> <div class="small-12 columns"> <a class="button button--color js-rss-notification-confirm">Continue</a> <a class="button button--grey" onclick="$(this).closest('.reveal-modal').find('.close-reveal-modal').click(); return false;">Cancel</a> </div> </div> <a class="close-reveal-modal" aria-label="Close"> <i class="material-icons">clear</i> </a> </div> <div id="drop-article-label-openaccess" class="f-dropdown medium" data-dropdown-content aria-hidden="true" tabindex="-1"> <p> All articles published by MDPI are made immediately available worldwide under an open access license. No special permission is required to reuse all or part of the article published by MDPI, including figures and tables. For articles published under an open access Creative Common CC BY license, any part of the article may be reused without permission provided that the original article is clearly cited. For more information, please refer to <a href="https://www.mdpi.com/openaccess">https://www.mdpi.com/openaccess</a>. </p> </div> <div id="drop-article-label-feature" class="f-dropdown medium" data-dropdown-content aria-hidden="true" tabindex="-1"> <p> Feature papers represent the most advanced research with significant potential for high impact in the field. A Feature Paper should be a substantial original Article that involves several techniques or approaches, provides an outlook for future research directions and describes possible research applications. </p> <p> Feature papers are submitted upon individual invitation or recommendation by the scientific editors and must receive positive feedback from the reviewers. </p> </div> <div id="drop-article-label-choice" class="f-dropdown medium" data-dropdown-content aria-hidden="true" tabindex="-1"> <p> Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal. <div style="margin-top: -10px;"> <div id="drop-article-label-choice-journal-link" style="display: none; margin-top: -10px; padding-top: 10px;"> </div> </div> </p> </div> <div id="drop-article-label-resubmission" class="f-dropdown medium" data-dropdown-content aria-hidden="true" tabindex="-1"> <p> Original Submission Date Received: <span id="drop-article-label-resubmission-date"></span>. </p> </div> <div id="container"> <noscript> <div id="no-javascript"> You seem to have javascript disabled. Please note that many of the page functionalities won't work as expected without javascript enabled. </div> </noscript> <div class="fixed"> <nav class="tab-bar show-for-medium-down"> <div class="row full-width collapse"> <div class="medium-3 small-4 columns"> <a href="/"> <img class="full-size-menu__mdpi-logo" src="https://pub.mdpi-res.com/img/design/mdpi-pub-logo-black-small1.svg?da3a8dcae975a41c?1732884643" style="width: 64px;" title="MDPI Open Access Journals"> </a> </div> <div class="medium-3 small-4 columns right-aligned"> <div class="show-for-medium-down"> <a href="#" style="display: none;"> <i class="material-icons" onclick="$('#menuModal').foundation('reveal', 'close'); return false;">clear</i> </a> <a class="js-toggle-desktop-layout-link" title="Toggle desktop layout" style="display: none;" href="/toggle_desktop_layout_cookie"> <i class="material-icons">zoom_out_map</i> </a> <a href="#" class="js-open-small-search open-small-search"> <i class="material-icons show-for-small only">search</i> </a> <a title="MDPI main page" class="js-open-menu" data-reveal-id="menuModal" href="#"> <i class="material-icons">menu</i> </a> </div> </div> </div> </nav> </div> <section class="main-section"> <header> <div class="full-size-menu show-for-large-up"> <div class="row full-width"> <div class="large-1 columns"> <a href="/"> <img class="full-size-menu__mdpi-logo" src="https://pub.mdpi-res.com/img/design/mdpi-pub-logo-black-small1.svg?da3a8dcae975a41c?1732884643" title="MDPI Open Access Journals"> </a> </div> <div class="large-8 columns text-right UI_NavMenu"> <ul> <li class="menu-item"> <a href="/about/journals" data-dropdown="journals-dropdown" aria-controls="journals-dropdown" aria-expanded="false" data-options="is_hover: true; hover_timeout: 200">Journals</a> <ul id="journals-dropdown" class="f-dropdown dropdown-wrapper dropdown-wrapper__small" data-dropdown-content aria-hidden="true" tabindex="-1"> <li> <div class="row"> <div class="small-12 columns"> <ul> <li> <a href="/about/journals"> Active Journals </a> </li> <li> <a href="/about/journalfinder"> Find a Journal </a> </li> <li> <a href="/about/journals/proposal"> Journal Proposal </a> </li> <li> <a href="/about/proceedings"> Proceedings Series </a> </li> </ul> </div> </div> </li> </ul> </li> <li class="menu-item"> <a href="/topics">Topics</a> </li> <li class="menu-item"> <a href="/authors" data-dropdown="information-dropdown" aria-controls="information-dropdown" aria-expanded="false" data-options="is_hover:true; hover_timeout:200">Information</a> <ul id="information-dropdown" class="f-dropdown dropdown-wrapper" data-dropdown-content aria-hidden="true" tabindex="-1"> <li> <div class="row"> <div class="small-5 columns right-border"> <ul> <li> <a href="/authors">For Authors</a> </li> <li> <a href="/reviewers">For Reviewers</a> </li> <li> <a href="/editors">For Editors</a> </li> <li> <a href="/librarians">For Librarians</a> </li> <li> <a href="/publishing_services">For Publishers</a> </li> <li> <a href="/societies">For Societies</a> </li> <li> <a href="/conference_organizers">For Conference Organizers</a> </li> </ul> </div> <div class="small-7 columns"> <ul> <li> <a href="/openaccess">Open Access Policy</a> </li> <li> <a href="/ioap">Institutional Open Access Program</a> </li> <li> <a href="/special_issues_guidelines">Special Issues Guidelines</a> </li> <li> <a href="/editorial_process">Editorial Process</a> </li> <li> <a href="/ethics">Research and Publication Ethics</a> </li> <li> <a href="/apc">Article Processing Charges</a> </li> <li> <a href="/awards">Awards</a> </li> <li> <a href="/testimonials">Testimonials</a> </li> </ul> </div> </div> </li> </ul> </li> <li class="menu-item"> <a href="/authors/english">Editing Services</a> </li> <li class="menu-item"> <a href="/about/initiatives" data-dropdown="initiatives-dropdown" aria-controls="initiatives-dropdown" aria-expanded="false" data-options="is_hover: true; hover_timeout: 200">Initiatives</a> <ul id="initiatives-dropdown" class="f-dropdown dropdown-wrapper dropdown-wrapper__small" data-dropdown-content aria-hidden="true" tabindex="-1"> <li> <div class="row"> <div class="small-12 columns"> <ul> <li> <a href="https://sciforum.net" target="_blank" rel="noopener noreferrer"> Sciforum </a> </li> <li> <a href="https://www.mdpi.com/books" target="_blank" rel="noopener noreferrer"> MDPI Books </a> </li> <li> <a href="https://www.preprints.org" target="_blank" rel="noopener noreferrer"> Preprints.org </a> </li> <li> <a href="https://www.scilit.net" target="_blank" rel="noopener noreferrer"> Scilit </a> </li> <li> <a href="https://sciprofiles.com" target="_blank" rel="noopener noreferrer"> SciProfiles </a> </li> <li> <a href="https://encyclopedia.pub" target="_blank" rel="noopener noreferrer"> Encyclopedia </a> </li> <li> <a href="https://jams.pub" target="_blank" rel="noopener noreferrer"> JAMS </a> </li> <li> <a href="/about/proceedings"> Proceedings Series </a> </li> </ul> </div> </div> </li> </ul> </li> <li class="menu-item"> <a href="/about" data-dropdown="about-dropdown" aria-controls="about-dropdown" aria-expanded="false" data-options="is_hover: true; hover_timeout: 200">About</a> <ul id="about-dropdown" class="f-dropdown dropdown-wrapper dropdown-wrapper__small" data-dropdown-content aria-hidden="true" tabindex="-1"> <li> <div class="row"> <div class="small-12 columns"> <ul> <li> <a href="/about"> Overview </a> </li> <li> <a href="/about/contact"> Contact </a> </li> <li> <a href="https://careers.mdpi.com" target="_blank" rel="noopener noreferrer"> Careers </a> </li> <li> <a href="/about/announcements"> News </a> </li> <li> <a href="/about/press"> Press </a> </li> <li> <a href="http://blog.mdpi.com/" target="_blank" rel="noopener noreferrer"> Blog </a> </li> </ul> </div> </div> </li> </ul> </li> </ul> </div> <div class="large-3 columns text-right full-size-menu__buttons"> <div> <a class="button button--default-inversed UA_SignInUpButton" href="/user/login">Sign In / Sign Up</a> <a class="button button--default js-journal-active-only-link js-journal-active-only-submit-link UC_NavSubmitButton" href=" https://susy.mdpi.com/user/manuscripts/upload?journal=mathematics " data-disabledmessage="new submissions are not possible.">Submit</a> </div> </div> </div> </div> <div class="header-divider"> </div> <div class="search-container hide-for-small-down row search-container__homepage-scheme"> <form id="basic_search" style="background-color: inherit !important;" class="large-12 medium-12 columns " action="/search" method="get"> <div class="row search-container__main-elements"> <div class="large-2 medium-2 small-12 columns text-right1 small-only-text-left"> <div class="show-for-medium-up"> <div class="search-input-label"> </div> </div> <span class="search-container__title">Search<span class="hide-for-medium"> for Articles</span><span class="hide-for-small">:</span></span> </div> <div class="custom-accordion-for-small-screen-content"> <div class="large-2 medium-2 small-6 columns "> <div class=""> <div class="search-input-label">Title / Keyword</div> </div> <input type="text" placeholder="Title / Keyword" id="q" tabindex="1" name="q" value="" /> </div> <div class="large-2 medium-2 small-6 columns "> <div class=""> <div class="search-input-label">Author / Affiliation / Email</div> </div> <input type="text" id="authors" placeholder="Author / Affiliation / Email" tabindex="2" name="authors" value="" /> </div> <div class="large-2 medium-2 small-6 columns "> <div class=""> <div class="search-input-label">Journal</div> </div> <select id="journal" tabindex="3" name="journal" class="chosen-select"> <option value="">All Journals</option> <option value="acoustics" > Acoustics </option> <option value="amh" > Acta Microbiologica Hellenica (AMH) </option> <option value="actuators" > Actuators </option> <option value="admsci" > Administrative Sciences </option> <option value="adolescents" > Adolescents </option> <option value="arm" > Advances in Respiratory Medicine (ARM) </option> <option value="aerobiology" > Aerobiology </option> <option value="aerospace" > Aerospace </option> <option value="agriculture" > Agriculture </option> <option value="agriengineering" > AgriEngineering </option> <option value="agrochemicals" > Agrochemicals </option> <option value="agronomy" > Agronomy </option> <option value="ai" > AI </option> <option value="air" > Air </option> <option value="algorithms" > Algorithms </option> <option value="allergies" > Allergies </option> <option value="alloys" > Alloys </option> <option value="analytica" > Analytica </option> <option value="analytics" > Analytics </option> <option value="anatomia" > Anatomia </option> <option value="anesthres" > Anesthesia Research </option> <option value="animals" > Animals </option> <option value="antibiotics" > Antibiotics </option> <option value="antibodies" > Antibodies </option> <option value="antioxidants" > Antioxidants </option> <option value="applbiosci" > Applied Biosciences </option> <option value="applmech" > Applied Mechanics </option> <option value="applmicrobiol" > Applied Microbiology </option> <option value="applnano" > Applied Nano </option> <option value="applsci" > Applied Sciences </option> <option value="asi" > Applied System Innovation (ASI) </option> <option value="appliedchem" > AppliedChem </option> <option value="appliedmath" > AppliedMath </option> <option value="aquacj" > Aquaculture Journal </option> <option value="architecture" > Architecture </option> <option value="arthropoda" > Arthropoda </option> <option value="arts" > Arts </option> <option value="astronomy" > Astronomy </option> <option value="atmosphere" > Atmosphere </option> <option value="atoms" > Atoms </option> <option value="audiolres" > Audiology Research </option> <option value="automation" > Automation </option> <option value="axioms" > Axioms </option> <option value="bacteria" > Bacteria </option> <option value="batteries" > Batteries </option> <option value="behavsci" > Behavioral Sciences </option> <option value="beverages" > Beverages </option> <option value="BDCC" > Big Data and Cognitive Computing (BDCC) </option> <option value="biochem" > BioChem </option> <option value="bioengineering" > Bioengineering </option> <option value="biologics" > Biologics </option> <option value="biology" > Biology </option> <option value="blsf" > Biology and Life Sciences Forum </option> <option value="biomass" > Biomass </option> <option value="biomechanics" > Biomechanics </option> <option value="biomed" > BioMed </option> <option value="biomedicines" > Biomedicines </option> <option value="biomedinformatics" > BioMedInformatics </option> <option value="biomimetics" > Biomimetics </option> <option value="biomolecules" > Biomolecules </option> <option value="biophysica" > Biophysica </option> <option value="biosensors" > Biosensors </option> <option value="biotech" > BioTech </option> <option value="birds" > Birds </option> <option value="blockchains" > Blockchains </option> <option value="brainsci" > Brain Sciences </option> <option value="buildings" > Buildings </option> <option value="businesses" > Businesses </option> <option value="carbon" > C </option> <option value="cancers" > Cancers </option> <option value="cardiogenetics" > Cardiogenetics </option> <option value="catalysts" > Catalysts </option> <option value="cells" > Cells </option> <option value="ceramics" > Ceramics </option> <option value="challenges" > Challenges </option> <option value="ChemEngineering" > ChemEngineering </option> <option value="chemistry" > Chemistry </option> <option value="chemproc" > Chemistry Proceedings </option> <option value="chemosensors" > Chemosensors </option> <option value="children" > Children </option> <option value="chips" > Chips </option> <option value="civileng" > CivilEng </option> <option value="cleantechnol" > Clean Technologies (Clean Technol.) </option> <option value="climate" > Climate </option> <option value="ctn" > Clinical and Translational Neuroscience (CTN) </option> <option value="clinbioenerg" > Clinical Bioenergetics </option> <option value="clinpract" > Clinics and Practice </option> <option value="clockssleep" > Clocks & Sleep </option> <option value="coasts" > Coasts </option> <option value="coatings" > Coatings </option> <option value="colloids" > Colloids and Interfaces </option> <option value="colorants" > Colorants </option> <option value="commodities" > Commodities </option> <option value="complications" > Complications </option> <option value="compounds" > Compounds </option> <option value="computation" > Computation </option> <option value="csmf" > Computer Sciences & Mathematics Forum </option> <option value="computers" > Computers </option> <option value="condensedmatter" > Condensed Matter </option> <option value="conservation" > Conservation </option> <option value="constrmater" > Construction Materials </option> <option value="cmd" > Corrosion and Materials Degradation (CMD) </option> <option value="cosmetics" > Cosmetics </option> <option value="covid" > COVID </option> <option value="crops" > Crops </option> <option value="cryo" > Cryo </option> <option value="cryptography" > Cryptography </option> <option value="crystals" > Crystals </option> <option value="cimb" > Current Issues in Molecular Biology (CIMB) </option> <option value="curroncol" > Current Oncology </option> <option value="dairy" > Dairy </option> <option value="data" > Data </option> <option value="dentistry" > Dentistry Journal </option> <option value="dermato" > Dermato </option> <option value="dermatopathology" > Dermatopathology </option> <option value="designs" > Designs </option> <option value="diabetology" > Diabetology </option> <option value="diagnostics" > Diagnostics </option> <option value="dietetics" > Dietetics </option> <option value="digital" > Digital </option> <option value="disabilities" > Disabilities </option> <option value="diseases" > Diseases </option> <option value="diversity" > Diversity </option> <option value="dna" > DNA </option> <option value="drones" > Drones </option> <option value="ddc" > Drugs and Drug Candidates (DDC) </option> <option value="dynamics" > Dynamics </option> <option value="earth" > Earth </option> <option value="ecologies" > Ecologies </option> <option value="econometrics" > Econometrics </option> <option value="economies" > Economies </option> <option value="education" > Education Sciences </option> <option value="electricity" > Electricity </option> <option value="electrochem" > Electrochem </option> <option value="electronicmat" > Electronic Materials </option> <option value="electronics" > Electronics </option> <option value="ecm" > Emergency Care and Medicine </option> <option value="encyclopedia" > Encyclopedia </option> <option value="endocrines" > Endocrines </option> <option value="energies" > Energies </option> <option value="esa" > Energy Storage and Applications (ESA) </option> <option value="eng" > Eng </option> <option value="engproc" > Engineering Proceedings </option> <option value="entropy" > Entropy </option> <option value="environsciproc" > Environmental Sciences Proceedings </option> <option value="environments" > Environments </option> <option value="epidemiologia" > Epidemiologia </option> <option value="epigenomes" > Epigenomes </option> <option value="ebj" > European Burn Journal (EBJ) </option> <option value="ejihpe" > European Journal of Investigation in Health, Psychology and Education (EJIHPE) </option> <option value="fermentation" > Fermentation </option> <option value="fibers" > Fibers </option> <option value="fintech" > FinTech </option> <option value="fire" > Fire </option> <option value="fishes" > Fishes </option> <option value="fluids" > Fluids </option> <option value="foods" > Foods </option> <option value="forecasting" > Forecasting </option> <option value="forensicsci" > Forensic Sciences </option> <option value="forests" > Forests </option> <option value="fossstud" > Fossil Studies </option> <option value="foundations" > Foundations </option> <option value="fractalfract" > Fractal and Fractional (Fractal Fract) </option> <option value="fuels" > Fuels </option> <option value="future" > Future </option> <option value="futureinternet" > Future Internet </option> <option value="futurepharmacol" > Future Pharmacology </option> <option value="futuretransp" > Future Transportation </option> <option value="galaxies" > Galaxies </option> <option value="games" > Games </option> <option value="gases" > Gases </option> <option value="gastroent" > Gastroenterology Insights </option> <option value="gastrointestdisord" > Gastrointestinal Disorders </option> <option value="gastronomy" > Gastronomy </option> <option value="gels" > Gels </option> <option value="genealogy" > Genealogy </option> <option value="genes" > Genes </option> <option value="geographies" > Geographies </option> <option value="geohazards" > GeoHazards </option> <option value="geomatics" > Geomatics </option> <option value="geometry" > Geometry </option> <option value="geosciences" > Geosciences </option> <option value="geotechnics" > Geotechnics </option> <option value="geriatrics" > Geriatrics </option> <option value="glacies" > Glacies </option> <option value="gucdd" > Gout, Urate, and Crystal Deposition Disease (GUCDD) </option> <option value="grasses" > Grasses </option> <option value="hardware" > Hardware </option> <option value="healthcare" > Healthcare </option> <option value="hearts" > Hearts </option> <option value="hemato" > Hemato </option> <option value="hematolrep" > Hematology Reports </option> <option value="heritage" > Heritage </option> <option value="histories" > Histories </option> <option value="horticulturae" > Horticulturae </option> <option value="hospitals" > Hospitals </option> <option value="humanities" > Humanities </option> <option value="humans" > Humans </option> <option value="hydrobiology" > Hydrobiology </option> <option value="hydrogen" > Hydrogen </option> <option value="hydrology" > Hydrology </option> <option value="hygiene" > Hygiene </option> <option value="immuno" > Immuno </option> <option value="idr" > Infectious Disease Reports </option> <option value="informatics" > Informatics </option> <option value="information" > Information </option> <option value="infrastructures" > Infrastructures </option> <option value="inorganics" > Inorganics </option> <option value="insects" > Insects </option> <option value="instruments" > Instruments </option> <option value="iic" > Intelligent Infrastructure and Construction </option> <option value="ijerph" > International Journal of Environmental Research and Public Health (IJERPH) </option> <option value="ijfs" > International Journal of Financial Studies (IJFS) </option> <option value="ijms" > International Journal of Molecular Sciences (IJMS) </option> <option value="IJNS" > International Journal of Neonatal Screening (IJNS) </option> <option value="ijpb" > International Journal of Plant Biology (IJPB) </option> <option value="ijt" > International Journal of Topology </option> <option value="ijtm" > International Journal of Translational Medicine (IJTM) </option> <option value="ijtpp" > International Journal of Turbomachinery, Propulsion and Power (IJTPP) </option> <option value="ime" > International Medical Education (IME) </option> <option value="inventions" > Inventions </option> <option value="IoT" > IoT </option> <option value="ijgi" > ISPRS International Journal of Geo-Information (IJGI) </option> <option value="J" > J </option> <option value="jal" > Journal of Ageing and Longevity (JAL) </option> <option value="jcdd" > Journal of Cardiovascular Development and Disease (JCDD) </option> <option value="jcto" > Journal of Clinical & Translational Ophthalmology (JCTO) </option> <option value="jcm" > Journal of Clinical Medicine (JCM) </option> <option value="jcs" > Journal of Composites Science (J. Compos. Sci.) </option> <option value="jcp" > Journal of Cybersecurity and Privacy (JCP) </option> <option value="jdad" > Journal of Dementia and Alzheimer's Disease (JDAD) </option> <option value="jdb" > Journal of Developmental Biology (JDB) </option> <option value="jeta" > Journal of Experimental and Theoretical Analyses (JETA) </option> <option value="jfb" > Journal of Functional Biomaterials (JFB) </option> <option value="jfmk" > Journal of Functional Morphology and Kinesiology (JFMK) </option> <option value="jof" > Journal of Fungi (JoF) </option> <option value="jimaging" > Journal of Imaging (J. Imaging) </option> <option value="jintelligence" > Journal of Intelligence (J. Intell.) </option> <option value="jlpea" > Journal of Low Power Electronics and Applications (JLPEA) </option> <option value="jmmp" > Journal of Manufacturing and Materials Processing (JMMP) </option> <option value="jmse" > Journal of Marine Science and Engineering (JMSE) </option> <option value="jmahp" > Journal of Market Access & Health Policy (JMAHP) </option> <option value="jmp" > Journal of Molecular Pathology (JMP) </option> <option value="jnt" > Journal of Nanotheranostics (JNT) </option> <option value="jne" > Journal of Nuclear Engineering (JNE) </option> <option value="ohbm" > Journal of Otorhinolaryngology, Hearing and Balance Medicine (JOHBM) </option> <option value="jop" > Journal of Parks </option> <option value="jpm" > Journal of Personalized Medicine (JPM) </option> <option value="jpbi" > Journal of Pharmaceutical and BioTech Industry (JPBI) </option> <option value="jor" > Journal of Respiration (JoR) </option> <option value="jrfm" > Journal of Risk and Financial Management (JRFM) </option> <option value="jsan" > Journal of Sensor and Actuator Networks (JSAN) </option> <option value="joma" > Journal of the Oman Medical Association (JOMA) </option> <option value="jtaer" > Journal of Theoretical and Applied Electronic Commerce Research (JTAER) </option> <option value="jvd" > Journal of Vascular Diseases (JVD) </option> <option value="jox" > Journal of Xenobiotics (JoX) </option> <option value="jzbg" > Journal of Zoological and Botanical Gardens (JZBG) </option> <option value="journalmedia" > Journalism and Media </option> <option value="kidneydial" > Kidney and Dialysis </option> <option value="kinasesphosphatases" > Kinases and Phosphatases </option> <option value="knowledge" > Knowledge </option> <option value="labmed" > LabMed </option> <option value="laboratories" > Laboratories </option> <option value="land" > Land </option> <option value="languages" > Languages </option> <option value="laws" > Laws </option> <option value="life" > Life </option> <option value="limnolrev" > Limnological Review </option> <option value="lipidology" > Lipidology </option> <option value="liquids" > Liquids </option> <option value="literature" > Literature </option> <option value="livers" > Livers </option> <option value="logics" > Logics </option> <option value="logistics" > Logistics </option> <option value="lubricants" > Lubricants </option> <option value="lymphatics" > Lymphatics </option> <option value="make" > Machine Learning and Knowledge Extraction (MAKE) </option> <option value="machines" > Machines </option> <option value="macromol" > Macromol </option> <option value="magnetism" > Magnetism </option> <option value="magnetochemistry" > Magnetochemistry </option> <option value="marinedrugs" > Marine Drugs </option> <option value="materials" > Materials </option> <option value="materproc" > Materials Proceedings </option> <option value="mca" > Mathematical and Computational Applications (MCA) </option> <option value="mathematics" selected='selected'> Mathematics </option> <option value="medsci" > Medical Sciences </option> <option value="msf" > Medical Sciences Forum </option> <option value="medicina" > Medicina </option> <option value="medicines" > Medicines </option> <option value="membranes" > Membranes </option> <option value="merits" > Merits </option> <option value="metabolites" > Metabolites </option> <option value="metals" > Metals </option> <option value="meteorology" > Meteorology </option> <option value="methane" > Methane </option> <option value="mps" > Methods and Protocols (MPs) </option> <option value="metrics" > Metrics </option> <option value="metrology" > Metrology </option> <option value="micro" > Micro </option> <option value="microbiolres" > Microbiology Research </option> <option value="micromachines" > Micromachines </option> <option value="microorganisms" > Microorganisms </option> <option value="microplastics" > Microplastics </option> <option value="minerals" > Minerals </option> <option value="mining" > Mining </option> <option value="modelling" > Modelling </option> <option value="mmphys" > Modern Mathematical Physics </option> <option value="molbank" > Molbank </option> <option value="molecules" > Molecules </option> <option value="mti" > Multimodal Technologies and Interaction (MTI) </option> <option value="muscles" > Muscles </option> <option value="nanoenergyadv" > Nanoenergy Advances </option> <option value="nanomanufacturing" > Nanomanufacturing </option> <option value="nanomaterials" > Nanomaterials </option> <option value="ndt" > NDT </option> <option value="network" > Network </option> <option value="neuroglia" > Neuroglia </option> <option value="neurolint" > Neurology International </option> <option value="neurosci" > NeuroSci </option> <option value="nitrogen" > Nitrogen </option> <option value="ncrna" > Non-Coding RNA (ncRNA) </option> <option value="nursrep" > Nursing Reports </option> <option value="nutraceuticals" > Nutraceuticals </option> <option value="nutrients" > Nutrients </option> <option value="obesities" > Obesities </option> <option value="oceans" > Oceans </option> <option value="onco" > Onco </option> <option value="optics" > Optics </option> <option value="oral" > Oral </option> <option value="organics" > Organics </option> <option value="organoids" > Organoids </option> <option value="osteology" > Osteology </option> <option value="oxygen" > Oxygen </option> <option value="parasitologia" > Parasitologia </option> <option value="particles" > Particles </option> <option value="pathogens" > Pathogens </option> <option value="pathophysiology" > Pathophysiology </option> <option value="pediatrrep" > Pediatric Reports </option> <option value="pets" > Pets </option> <option value="pharmaceuticals" > Pharmaceuticals </option> <option value="pharmaceutics" > Pharmaceutics </option> <option value="pharmacoepidemiology" > Pharmacoepidemiology </option> <option value="pharmacy" > Pharmacy </option> <option value="philosophies" > Philosophies </option> <option value="photochem" > Photochem </option> <option value="photonics" > Photonics </option> <option value="phycology" > Phycology </option> <option value="physchem" > Physchem </option> <option value="psf" > Physical Sciences Forum </option> <option value="physics" > Physics </option> <option value="physiologia" > Physiologia </option> <option value="plants" > Plants </option> <option value="plasma" > Plasma </option> <option value="platforms" > Platforms </option> <option value="pollutants" > Pollutants </option> <option value="polymers" > Polymers </option> <option value="polysaccharides" > Polysaccharides </option> <option value="populations" > Populations </option> <option value="poultry" > Poultry </option> <option value="powders" > Powders </option> <option value="proceedings" > Proceedings </option> <option value="processes" > Processes </option> <option value="prosthesis" > Prosthesis </option> <option value="proteomes" > Proteomes </option> <option value="psychiatryint" > Psychiatry International </option> <option value="psychoactives" > Psychoactives </option> <option value="psycholint" > Psychology International </option> <option value="publications" > Publications </option> <option value="qubs" > Quantum Beam Science (QuBS) </option> <option value="quantumrep" > Quantum Reports </option> <option value="quaternary" > Quaternary </option> <option value="radiation" > Radiation </option> <option value="reactions" > Reactions </option> <option value="realestate" > Real Estate </option> <option value="receptors" > Receptors </option> <option value="recycling" > Recycling </option> <option value="rsee" > Regional Science and Environmental Economics (RSEE) </option> <option value="religions" > Religions </option> <option value="remotesensing" > Remote Sensing </option> <option value="reports" > Reports </option> <option value="reprodmed" > Reproductive Medicine (Reprod. Med.) </option> <option value="resources" > Resources </option> <option value="rheumato" > Rheumato </option> <option value="risks" > Risks </option> <option value="robotics" > Robotics </option> <option value="ruminants" > Ruminants </option> <option value="safety" > Safety </option> <option value="sci" > Sci </option> <option value="scipharm" > Scientia Pharmaceutica (Sci. Pharm.) </option> <option value="sclerosis" > Sclerosis </option> <option value="seeds" > Seeds </option> <option value="sensors" > Sensors </option> <option value="separations" > Separations </option> <option value="sexes" > Sexes </option> <option value="signals" > Signals </option> <option value="sinusitis" > Sinusitis </option> <option value="smartcities" > Smart Cities </option> <option value="socsci" > Social Sciences </option> <option value="siuj" > Société Internationale d’Urologie Journal (SIUJ) </option> <option value="societies" > Societies </option> <option value="software" > Software </option> <option value="soilsystems" > Soil Systems </option> <option value="solar" > Solar </option> <option value="solids" > Solids </option> <option value="spectroscj" > Spectroscopy Journal </option> <option value="sports" > Sports </option> <option value="standards" > Standards </option> <option value="stats" > Stats </option> <option value="stresses" > Stresses </option> <option value="surfaces" > Surfaces </option> <option value="surgeries" > Surgeries </option> <option value="std" > Surgical Techniques Development </option> <option value="sustainability" > Sustainability </option> <option value="suschem" > Sustainable Chemistry </option> <option value="symmetry" > Symmetry </option> <option value="synbio" > SynBio </option> <option value="systems" > Systems </option> <option value="targets" > Targets </option> <option value="taxonomy" > Taxonomy </option> <option value="technologies" > Technologies </option> <option value="telecom" > Telecom </option> <option value="textiles" > Textiles </option> <option value="thalassrep" > Thalassemia Reports </option> <option value="therapeutics" > Therapeutics </option> <option value="thermo" > Thermo </option> <option value="timespace" > Time and Space </option> <option value="tomography" > Tomography </option> <option value="tourismhosp" > Tourism and Hospitality </option> <option value="toxics" > Toxics </option> <option value="toxins" > Toxins </option> <option value="transplantology" > Transplantology </option> <option value="traumacare" > Trauma Care </option> <option value="higheredu" > Trends in Higher Education </option> <option value="tropicalmed" > Tropical Medicine and Infectious Disease (TropicalMed) </option> <option value="universe" > Universe </option> <option value="urbansci" > Urban Science </option> <option value="uro" > Uro </option> <option value="vaccines" > Vaccines </option> <option value="vehicles" > Vehicles </option> <option value="venereology" > Venereology </option> <option value="vetsci" > Veterinary Sciences </option> <option value="vibration" > Vibration </option> <option value="virtualworlds" > Virtual Worlds </option> <option value="viruses" > Viruses </option> <option value="vision" > Vision </option> <option value="waste" > Waste </option> <option value="water" > Water </option> <option value="wild" > Wild </option> <option value="wind" > Wind </option> <option value="women" > Women </option> <option value="world" > World </option> <option value="wevj" > World Electric Vehicle Journal (WEVJ) </option> <option value="youth" > Youth </option> <option value="zoonoticdis" > Zoonotic Diseases </option> </select> </div> <div class="large-2 medium-2 small-6 columns "> <div class=""> <div class="search-input-label">Article Type</div> </div> <select id="article_type" tabindex="4" name="article_type" class="chosen-select"> <option value="">All Article Types</option> <option value="research-article">Article</option> <option value="review-article">Review</option> <option value="rapid-communication">Communication</option> <option value="editorial">Editorial</option> <option value="abstract">Abstract</option> <option value="book-review">Book Review</option> <option value="brief-communication">Brief Communication</option> <option value="brief-report">Brief Report</option> <option value="case-report">Case Report</option> <option value="clinicopathological-challenge">Clinicopathological Challenge</option> <option value="article-commentary">Comment</option> <option value="commentary">Commentary</option> <option value="concept-paper">Concept Paper</option> <option value="conference-report">Conference Report</option> <option value="correction">Correction</option> <option value="creative">Creative</option> <option value="data-descriptor">Data Descriptor</option> <option value="discussion">Discussion</option> <option value="Entry">Entry</option> <option value="essay">Essay</option> <option value="expression-of-concern">Expression of Concern</option> <option value="extended-abstract">Extended Abstract</option> <option value="field-guide">Field Guide</option> <option value="guidelines">Guidelines</option> <option value="hypothesis">Hypothesis</option> <option value="interesting-image">Interesting Images</option> <option value="letter">Letter</option> <option value="books-received">New Book Received</option> <option value="obituary">Obituary</option> <option value="opinion">Opinion</option> <option value="perspective">Perspective</option> <option value="proceedings">Proceeding Paper</option> <option value="project-report">Project Report</option> <option value="protocol">Protocol</option> <option value="registered-report">Registered Report</option> <option value="reply">Reply</option> <option value="retraction">Retraction</option> <option value="note">Short Note</option> <option value="study-protocol">Study Protocol</option> <option value="systematic_review">Systematic Review</option> <option value="technical-note">Technical Note</option> <option value="tutorial">Tutorial</option> <option value="viewpoint">Viewpoint</option> </select> </div> <div class="large-1 medium-1 small-6 end columns small-push-6 medium-reset-order large-reset-order js-search-collapsed-button-container"> <div class="search-input-label"> </div> <input type="submit" id="search" value="Search" class="button button--dark button--full-width searchButton1 US_SearchButton" tabindex="12"> </div> <div class="large-1 medium-1 small-6 end columns large-text-left small-only-text-center small-pull-6 medium-reset-order large-reset-order js-search-collapsed-link-container"> <div class="search-input-label"> </div> <a class="main-search-clear search-container__link" href="#" onclick="openAdvanced(''); return false;">Advanced<span class="show-for-small-only"> Search</span></a> </div> </div> </div> <div class="search-container__advanced" style="margin-top: 0; padding-top: 0px; background-color: inherit; color: inherit;"> <div class="row"> <div class="large-2 medium-2 columns show-for-medium-up"> </div> <div class="large-2 medium-2 small-6 columns "> <div class=""> <div class="search-input-label">Section</div> </div> <select id="section" tabindex="5" name="section" class="chosen-select"> <option value=""></option> </select> </div> <div class="large-2 medium-2 small-6 columns "> <div class=""> <div class="search-input-label">Special Issue</div> </div> <select id="special_issue" tabindex="6" name="special_issue" class="chosen-select"> <option value=""></option> </select> </div> <div class="large-1 medium-1 small-6 end columns "> <div class="search-input-label">Volume</div> <input type="text" id="volume" tabindex="7" name="volume" placeholder="..." value="10" /> </div> <div class="large-1 medium-1 small-6 end columns "> <div class="search-input-label">Issue</div> <input type="text" id="issue" tabindex="8" name="issue" placeholder="..." value="3" /> </div> <div class="large-1 medium-1 small-6 end columns "> <div class="search-input-label">Number</div> <input type="text" id="number" tabindex="9" name="number" placeholder="..." value="" /> </div> <div class="large-1 medium-1 small-6 end columns "> <div class="search-input-label">Page</div> <input type="text" id="page" tabindex="10" name="page" placeholder="..." value="" /> </div> <div class="large-1 medium-1 small-6 columns small-push-6 medium-reset order large-reset-order medium-reset-order js-search-expanded-button-container"></div> <div class="large-1 medium-1 small-6 columns large-text-left small-only-text-center small-pull-6 medium-reset-order large-reset-order js-search-expanded-link-container"></div> </div> </div> </form> <form id="advanced-search" class="large-12 medium-12 columns"> <div class="search-container__advanced"> <div id="advanced-search-template" class="row advanced-search-row"> <div class="large-2 medium-2 small-12 columns show-for-medium-up"> </div> <div class="large-2 medium-2 small-3 columns connector-div"> <div class="search-input-label"><span class="show-for-medium-up">Logical Operator</span><span class="show-for-small">Operator</span></div> <select class="connector"> <option value="and">AND</option> <option value="or">OR</option> </select> </div> <div class="large-3 medium-3 small-6 columns search-text-div"> <div class="search-input-label">Search Text</div> <input type="text" class="search-text" placeholder="Search text"> </div> <div class="large-2 medium-2 small-6 large-offset-0 medium-offset-0 small-offset-3 columns search-field-div"> <div class="search-input-label">Search Type</div> <select class="search-field"> <option value="all">All fields</option> <option value="title">Title</option> <option value="abstract">Abstract</option> <option value="keywords">Keywords</option> <option value="authors">Authors</option> <option value="affiliations">Affiliations</option> <option value="doi">Doi</option> <option value="full_text">Full Text</option> <option value="references">References</option> </select> </div> <div class="large-1 medium-1 small-3 columns"> <div class="search-input-label"> </div> <div class="search-action-div"> <div class="search-plus"> <i class="material-icons">add_circle_outline</i> </div> </div> <div class="search-action-div"> <div class="search-minus"> <i class="material-icons">remove_circle_outline</i> </div> </div> </div> <div class="large-1 medium-1 small-6 large-offset-0 medium-offset-0 small-offset-3 end columns"> <div class="search-input-label"> </div> <input class="advanced-search-button button button--dark search-submit" type="submit" value="Search"> </div> <div class="large-1 medium-1 small-6 end columns show-for-medium-up"></div> </div> </div> </form> </div> <div class="header-divider"> </div> <div class="breadcrumb row full-row"> <div class="breadcrumb__element"> <a href="/about/journals">Journals</a> </div> <div class="breadcrumb__element"> <a href="/journal/mathematics">Mathematics</a> </div> <div class="breadcrumb__element"> <a href="/2227-7390/10">Volume 10</a> </div> <div class="breadcrumb__element"> <a href="/2227-7390/10/3">Issue 3</a> </div> <div class="breadcrumb__element"> <a href="#">10.3390/math10030408</a> </div> </div> </header> <div id="main-content" class=""> <div class="row full-width row-fixed-left-column"> <div id="left-column" class="content__column large-3 medium-3 small-12 columns"> <div class="content__container"> <a href="/journal/mathematics"> <img src="https://pub.mdpi-res.com/img/journals/mathematics-logo.png?8600e93ff98dbf14" alt="mathematics-logo" title="Mathematics" style="max-height: 60px; margin: 0 0 0 0;"> </a> <div class="generic-item no-border"> <a class="button button--color button--full-width js-journal-active-only-link js-journal-active-only-submit-link UC_ArticleSubmitButton" href="https://susy.mdpi.com/user/manuscripts/upload?form%5Bjournal_id%5D%3D154" data-disabledmessage="creating new submissions is not possible."> Submit to this Journal </a> <a class="button button--color button--full-width js-journal-active-only-link UC_ArticleReviewButton" href="https://susy.mdpi.com/volunteer/journals/review" data-disabledmessage="volunteering as journal reviewer is not possible."> Review for this Journal </a> <a class="button button--color-inversed button--color-journal button--full-width js-journal-active-only-link UC_ArticleEditIssueButton" href="/journalproposal/sendproposalspecialissue/mathematics" data-path="/2227-7390/10/3/408" data-disabledmessage="proposing new special issue is not possible."> Propose a Special Issue </a> </div> <div class="generic-item link-article-menu show-for-small"> <a href="#" class="link-article-menu show-for-small"> <span class="closed">►</span> <span class="open" style="display: none;">▼</span> Article Menu </a> </div> <div class="hide-small-down-initially UI_ArticleMenu"> <div class="generic-item"> <h2>Article Menu</h2> </div> <ul class="accordion accordion__menu" data-accordion data-options="multi_expand:true;toggleable: true"> <li class="accordion-navigation"> <a href="#academic_editors" class="accordion__title">Academic Editor</a> <div id="academic_editors" class="content active"> <div class="academic-editor-container " title=""> <div class="sciprofiles-link" style="display: inline-block"> <div class="sciprofiles-link__link"> <img class="sciprofiles-link__image" src="https://pub.mdpi-res.com/bundles/mdpisciprofileslink/img/unknown-user.png?1732884643" style="width: auto; height: 16px; border-radius: 50%;"> <span class="sciprofiles-link__name" style="line-height: 36px;">Ali Farajpour</span> </div> </div> </div> </div> </li> <li class="accordion-direct-link"> <a href="/2227-7390/10/3/408/scifeed_display" data-reveal-id="scifeed-modal" data-reveal-ajax="true">Subscribe SciFeed</a> </li> <li class="accordion-direct-link js-article-similarity-container" style="display: none"> <a href="#" class="js-similarity-related-articles">Recommended Articles</a> </li> <li class="accordion-navigation"> <a href="#related" class="accordion__title">Related Info Link</a> <div id="related" class="content UI_ArticleMenu_RelatedLinks"> <ul> <li class="li-link"> <a href="https://scholar.google.com/scholar?q=A%20Dynamic%20Analysis%20of%20Randomly%20Oriented%20Functionally%20Graded%20Carbon%20Nanotubes%2FFiber-Reinforced%20Composite%20Laminated%20Shells%20with%20Different%20Geometries" target="_blank" rel="noopener noreferrer">Google Scholar</a> </li> </ul> </div> </li> <li class="accordion-navigation"> <a href="#authors" class="accordion__title">More by Authors Links</a> <div id="authors" class="content UI_ArticleMenu_AuthorsLinks"> <ul class="side-menu-ul"> <li> <a class="expand" onclick='$(this).closest("li").next("div").toggle(); return false;'>on DOAJ</a> </li> <div id="AuthorDOAJExpand" style="display:none;"> <ul class="submenu"> <li class="li-link"> <a href='http://doaj.org/search/articles?source=%7B%22query%22%3A%7B%22query_string%22%3A%7B%22query%22%3A%22%5C%22Ammar%20Melaibari%5C%22%22%2C%22default_operator%22%3A%22AND%22%2C%22default_field%22%3A%22bibjson.author.name%22%7D%7D%7D' target="_blank" rel="noopener noreferrer">Melaibari, A.</a> <li> </li> <li class="li-link"> <a href='http://doaj.org/search/articles?source=%7B%22query%22%3A%7B%22query_string%22%3A%7B%22query%22%3A%22%5C%22Ahmed%20Amine%20Daikh%5C%22%22%2C%22default_operator%22%3A%22AND%22%2C%22default_field%22%3A%22bibjson.author.name%22%7D%7D%7D' target="_blank" rel="noopener noreferrer">Daikh, A. Amine</a> <li> </li> <li class="li-link"> <a href='http://doaj.org/search/articles?source=%7B%22query%22%3A%7B%22query_string%22%3A%7B%22query%22%3A%22%5C%22Muhammad%20Basha%5C%22%22%2C%22default_operator%22%3A%22AND%22%2C%22default_field%22%3A%22bibjson.author.name%22%7D%7D%7D' target="_blank" rel="noopener noreferrer">Basha, M.</a> <li> </li> <li class="li-link"> <a href='http://doaj.org/search/articles?source=%7B%22query%22%3A%7B%22query_string%22%3A%7B%22query%22%3A%22%5C%22Ahmed%20Wagih%5C%22%22%2C%22default_operator%22%3A%22AND%22%2C%22default_field%22%3A%22bibjson.author.name%22%7D%7D%7D' target="_blank" rel="noopener noreferrer">Wagih, A.</a> <li> </li> <li class="li-link"> <a href='http://doaj.org/search/articles?source=%7B%22query%22%3A%7B%22query_string%22%3A%7B%22query%22%3A%22%5C%22Ramzi%20Othman%5C%22%22%2C%22default_operator%22%3A%22AND%22%2C%22default_field%22%3A%22bibjson.author.name%22%7D%7D%7D' target="_blank" rel="noopener noreferrer">Othman, R.</a> <li> </li> <li class="li-link"> <a href='http://doaj.org/search/articles?source=%7B%22query%22%3A%7B%22query_string%22%3A%7B%22query%22%3A%22%5C%22Khalid%20H.%20Almitani%5C%22%22%2C%22default_operator%22%3A%22AND%22%2C%22default_field%22%3A%22bibjson.author.name%22%7D%7D%7D' target="_blank" rel="noopener noreferrer">Almitani, K. H.</a> <li> </li> <li class="li-link"> <a href='http://doaj.org/search/articles?source=%7B%22query%22%3A%7B%22query_string%22%3A%7B%22query%22%3A%22%5C%22Mostafa%20A.%20Hamed%5C%22%22%2C%22default_operator%22%3A%22AND%22%2C%22default_field%22%3A%22bibjson.author.name%22%7D%7D%7D' target="_blank" rel="noopener noreferrer">Hamed, M. A.</a> <li> </li> <li class="li-link"> <a href='http://doaj.org/search/articles?source=%7B%22query%22%3A%7B%22query_string%22%3A%7B%22query%22%3A%22%5C%22Alaa%20Abdelrahman%5C%22%22%2C%22default_operator%22%3A%22AND%22%2C%22default_field%22%3A%22bibjson.author.name%22%7D%7D%7D' target="_blank" rel="noopener noreferrer">Abdelrahman, A.</a> <li> </li> <li class="li-link"> <a href='http://doaj.org/search/articles?source=%7B%22query%22%3A%7B%22query_string%22%3A%7B%22query%22%3A%22%5C%22Mohamed%20A.%20Eltaher%5C%22%22%2C%22default_operator%22%3A%22AND%22%2C%22default_field%22%3A%22bibjson.author.name%22%7D%7D%7D' target="_blank" rel="noopener noreferrer">Eltaher, M. A.</a> <li> </li> </ul> </div> <li> <a class="expand" onclick='$(this).closest("li").next("div").toggle(); return false;'>on Google Scholar</a> </li> <div id="AuthorGoogleExpand" style="display:none;"> <ul class="submenu"> <li class="li-link"> <a href="https://scholar.google.com/scholar?q=Ammar%20Melaibari" target="_blank" rel="noopener noreferrer">Melaibari, A.</a> <li> </li> <li class="li-link"> <a href="https://scholar.google.com/scholar?q=Ahmed%20Amine%20Daikh" target="_blank" rel="noopener noreferrer">Daikh, A. Amine</a> <li> </li> <li class="li-link"> <a href="https://scholar.google.com/scholar?q=Muhammad%20Basha" target="_blank" rel="noopener noreferrer">Basha, M.</a> <li> </li> <li class="li-link"> <a href="https://scholar.google.com/scholar?q=Ahmed%20Wagih" target="_blank" rel="noopener noreferrer">Wagih, A.</a> <li> </li> <li class="li-link"> <a href="https://scholar.google.com/scholar?q=Ramzi%20Othman" target="_blank" rel="noopener noreferrer">Othman, R.</a> <li> </li> <li class="li-link"> <a href="https://scholar.google.com/scholar?q=Khalid%20H.%20Almitani" target="_blank" rel="noopener noreferrer">Almitani, K. H.</a> <li> </li> <li class="li-link"> <a href="https://scholar.google.com/scholar?q=Mostafa%20A.%20Hamed" target="_blank" rel="noopener noreferrer">Hamed, M. A.</a> <li> </li> <li class="li-link"> <a href="https://scholar.google.com/scholar?q=Alaa%20Abdelrahman" target="_blank" rel="noopener noreferrer">Abdelrahman, A.</a> <li> </li> <li class="li-link"> <a href="https://scholar.google.com/scholar?q=Mohamed%20A.%20Eltaher" target="_blank" rel="noopener noreferrer">Eltaher, M. A.</a> <li> </li> </ul> </div> <li> <a class="expand" onclick='$(this).closest("li").next("div").toggle(); return false;'>on PubMed</a> </li> <div id="AuthorPubMedExpand" style="display:none;"> <ul class="submenu"> <li class="li-link"> <a href="http://www.pubmed.gov/?cmd=Search&term=Ammar%20Melaibari" target="_blank" rel="noopener noreferrer">Melaibari, A.</a> <li> </li> <li class="li-link"> <a href="http://www.pubmed.gov/?cmd=Search&term=Ahmed%20Amine%20Daikh" target="_blank" rel="noopener noreferrer">Daikh, A. Amine</a> <li> </li> <li class="li-link"> <a href="http://www.pubmed.gov/?cmd=Search&term=Muhammad%20Basha" target="_blank" rel="noopener noreferrer">Basha, M.</a> <li> </li> <li class="li-link"> <a href="http://www.pubmed.gov/?cmd=Search&term=Ahmed%20Wagih" target="_blank" rel="noopener noreferrer">Wagih, A.</a> <li> </li> <li class="li-link"> <a href="http://www.pubmed.gov/?cmd=Search&term=Ramzi%20Othman" target="_blank" rel="noopener noreferrer">Othman, R.</a> <li> </li> <li class="li-link"> <a href="http://www.pubmed.gov/?cmd=Search&term=Khalid%20H.%20Almitani" target="_blank" rel="noopener noreferrer">Almitani, K. H.</a> <li> </li> <li class="li-link"> <a href="http://www.pubmed.gov/?cmd=Search&term=Mostafa%20A.%20Hamed" target="_blank" rel="noopener noreferrer">Hamed, M. A.</a> <li> </li> <li class="li-link"> <a href="http://www.pubmed.gov/?cmd=Search&term=Alaa%20Abdelrahman" target="_blank" rel="noopener noreferrer">Abdelrahman, A.</a> <li> </li> <li class="li-link"> <a href="http://www.pubmed.gov/?cmd=Search&term=Mohamed%20A.%20Eltaher" target="_blank" rel="noopener noreferrer">Eltaher, M. A.</a> <li> </li> </ul> </div> </ul> </div> </li> </ul> <span style="display:none" id="scifeed_hidden_flag"></span> <span style="display:none" id="scifeed_subscribe_url">/ajax/scifeed/subscribe</span> </div> </div> <div class="content__container responsive-moving-container large medium active hidden" data-id="article-counters"> <div id="counts-wrapper" class="row generic-item no-border" data-equalizer> <div id="js-counts-wrapper__views" class="small-12 hide columns count-div-container"> <a href="#metrics" > <div class="count-div" data-equalizer-watch> <span class="name">Article Views</span> <span class="count view-number"></span> </div> </a> </div> <div id="js-counts-wrapper__citations" class="small-12 columns hide count-div-container"> <a href="#metrics" > <div class="count-div" data-equalizer-watch> <span class="name">Citations</span> <span class="count citations-number Var_ArticleMaxCitations">-</span> </div> </a> </div> </div> </div> <div class="content__container"> <div class="hide-small-down-initially"> <ul class="accordion accordion__menu" data-accordion data-options="multi_expand:true;toggleable: true"> <li class="accordion-navigation"> <a href="#table_of_contents" class="accordion__title">Table of Contents</a> <div id="table_of_contents" class="content active"> <div class="menu-caption" id="html-quick-links-title"></div> </div> </li> </ul> </div> </div> <!-- PubGrade code --> <div id="pbgrd-sky"></div> <script src="https://cdn.pbgrd.com/core-mdpi.js"></script> <style>.content__container { min-width: 300px; }</style> <!-- PubGrade code --> </div> <div id="middle-column" class="content__column large-9 medium-9 small-12 columns end middle-bordered"> <div class="middle-column__help"> <div class="middle-column__help__fixed show-for-medium-up"> <span id="js-altmetrics-donut" href="#" target="_blank" rel="noopener noreferrer" style="display: none;"> <span data-badge-type='donut' class='altmetric-embed' data-doi='10.3390/math10030408'></span> <span>Altmetric</span> </span> <a href="#" class="UA_ShareButton" data-reveal-id="main-share-modal" title="Share"> <i class="material-icons">share</i> <span>Share</span> </a> <a href="#" data-reveal-id="main-help-modal" title="Help"> <i class="material-icons">announcement</i> <span>Help</span> </a> <a href="javascript:void(0);" data-reveal-id="cite-modal" data-counterslink = "https://www.mdpi.com/2227-7390/10/3/408/cite" > <i class="material-icons">format_quote</i> <span>Cite</span> </a> <a href="https://sciprofiles.com/discussion-groups/public/10.3390/math10030408?utm_source=mpdi.com&utm_medium=publication&utm_campaign=discuss_in_sciprofiles" target="_blank" rel="noopener noreferrer" title="Discuss in Sciprofiles"> <i class="material-icons">question_answer</i> <span>Discuss in SciProfiles</span> </a> <a href="#" class="" data-hypothesis-trigger-endorses-tab title="Endorse"> <i data-hypothesis-endorse-trigger class="material-icons" >thumb_up</i> <div data-hypothesis-endorsement-count data-hypothesis-trigger-endorses-tab class="hypothesis-count-container"> ... </div> <span>Endorse</span> </a> <a href="#" data-hypothesis-trigger class="js-hypothesis-open UI_ArticleAnnotationsButton" title="Comment"> <i class="material-icons">textsms</i> <div data-hypothesis-annotation-count class="hypothesis-count-container"> ... </div> <span>Comment</span> </a> </div> <div id="main-help-modal" class="reveal-modal reveal-modal-new" data-reveal aria-labelledby="modalTitle" aria-hidden="true" role="dialog"> <div class="row"> <div class="small-12 columns"> <h2 style="margin: 0;">Need Help?</h2> </div> <div class="small-6 columns"> <h3>Support</h3> <p> Find support for a specific problem in the support section of our website. </p> <a target="_blank" href="/about/contactform" class="button button--color button--full-width"> Get Support </a> </div> <div class="small-6 columns"> <h3>Feedback</h3> <p> Please let us know what you think of our products and services. </p> <a target="_blank" href="/feedback/send" class="button button--color button--full-width"> Give Feedback </a> </div> <div class="small-6 columns end"> <h3>Information</h3> <p> Visit our dedicated information section to learn more about MDPI. </p> <a target="_blank" href="/authors" class="button button--color button--full-width"> Get Information </a> </div> </div> <a class="close-reveal-modal" aria-label="Close"> <i class="material-icons">clear</i> </a> </div> </div> <div class="middle-column__main "> <div class="page-highlight"> <style type="text/css"> img.review-status { width: 30px; } </style> <div id="jmolModal" class="reveal-modal" data-reveal aria-labelledby="Captcha" aria-hidden="true" role="dialog"> <h2>JSmol Viewer</h2> <div class="row"> <div class="small-12 columns text-center"> <iframe style="width: 520px; height: 520px;" frameborder="0" id="jsmol-content"></iframe> <div class="content"></div> </div> </div> <a class="close-reveal-modal" aria-label="Close"> <i class="material-icons">clear</i> </a> </div> <div itemscope itemtype="http://schema.org/ScholarlyArticle" id="abstract" class="abstract_div"> <div class="js-check-update-container"></div> <div class="html-content__container content__container content__container__combined-for-large__first" style="overflow: auto; position: inherit;"> <div class='html-profile-nav'> <div class='top-bar'> <div class='nav-sidebar-btn show-for-large-up' data-status='opened' > <i class='material-icons'>first_page</i> </div> <a id="js-button-download" class="button button--color-inversed" style="display: none;" href="/2227-7390/10/3/408/pdf?version=1643526652" data-name="A Dynamic Analysis of Randomly Oriented Functionally Graded Carbon Nanotubes/Fiber-Reinforced Composite Laminated Shells with Different Geometries" data-journal="mathematics"> <i class="material-icons custom-download"></i> Download PDF </a> <div class='nav-btn'> <i class='material-icons'>settings</i> </div> <a href="/2227-7390/10/3/408/reprints" id="js-button-reprints" class="button button--color-inversed"> Order Article Reprints </a> </div> <div class='html-article-menu'> <div class='html-first-step row'> <div class='html-font-family large-6 medium-6 small-12 columns'> <div class='row'> <div class='html-font-label large-4 medium-4 small-12 columns'> Font Type: </div> <div class='large-8 medium-8 small-12 columns'> <span class="html-article-menu-option"><i style='font-family:Arial, Arial, Helvetica, sans-serif;' data-fontfamily='Arial, Arial, Helvetica, sans-serif'>Arial</i></span> <span class="html-article-menu-option"><i style='font-family:Georgia1, Georgia, serif;' data-fontfamily='Georgia1, Georgia, serif'>Georgia</i></span> <span class="html-article-menu-option"><i style='font-family:Verdana, Verdana, Geneva, sans-serif;' data-fontfamily='Verdana, Verdana, Geneva, sans-serif' >Verdana</i></span> </div> </div> </div> <div class='html-font-resize large-6 medium-6 small-12 columns'> <div class='row'> <div class='html-font-label large-4 medium-4 small-12 columns'>Font Size:</div> <div class='large-8 medium-8 small-12 columns'> <span class="html-article-menu-option a1" data-percent="100">Aa</span> <span class="html-article-menu-option a2" data-percent="120">Aa</span> <span class="html-article-menu-option a3" data-percent="160">Aa</span> </div> </div> </div> </div> <div class='row'> <div class='html-line-space large-6 medium-6 small-12 columns'> <div class='row'> <div class='html-font-label large-4 medium-4 small-12 columns' >Line Spacing:</div> <div class='large-8 medium-8 small-12 columns'> <span class="html-article-menu-option a1" data-line-height="1.5em"> <i class="fa"></i> </span> <span class="html-article-menu-option a2" data-line-height="1.8em"> <i class="fa"></i> </span> <span class="html-article-menu-option a3" data-line-height="2.1em"> <i class="fa"></i> </span> </div> </div> </div> <div class='html-column-width large-6 medium-6 small-12 columns'> <div class='row'> <div class='html-font-label large-4 medium-4 small-12 columns' >Column Width:</div> <div class='large-8 medium-8 small-12 columns'> <span class="html-article-menu-option a1" data-column-width="20%"> <i class="fa"></i> </span> <span class="html-article-menu-option a2" data-column-width="10%"> <i class="fa"></i> </span> <span class="html-article-menu-option a3" data-column-width="0%"> <i class="fa"></i> </span> </div> </div> </div> </div> <div class='row'> <div class='html-font-bg large-6 medium-6 small-12 columns end'> <div class='row'> <div class='html-font-label large-4 medium-4 small-12 columns'>Background:</div> <div class='large-8 medium-8 small-12 columns'> <div class="html-article-menu-option html-nav-bg html-nav-bright" data-bg="bright"> <i class="fa fa-file-text"></i> </div> <div class="html-article-menu-option html-nav-bg html-nav-dark" data-bg="dark"> <i class="fa fa-file-text-o"></i> </div> <div class="html-article-menu-option html-nav-bg html-nav-creme" data-bg="creme"> <i class="fa fa-file-text"></i> </div> </div> </div> </div> </div> </div> </div> <article ><div class='html-article-content'> <span itemprop="publisher" content="Multidisciplinary Digital Publishing Institute"></span><span itemprop="url" content="https://www.mdpi.com/2227-7390/10/3/408"></span> <div class="article-icons"><span class="label openaccess" data-dropdown="drop-article-label-openaccess" aria-expanded="false">Open Access</span><span class="label articletype">Article</span></div> <h1 class="title hypothesis_container" itemprop="name"> A Dynamic Analysis of Randomly Oriented Functionally Graded Carbon Nanotubes/Fiber-Reinforced Composite Laminated Shells with Different Geometries </h1> <div class="art-authors hypothesis_container"> by <span class="inlineblock "><div class='profile-card-drop' data-dropdown='profile-card-drop6892822' data-options='is_hover:true, hover_timeout:5000'> Ammar Melaibari</div><div id="profile-card-drop6892822" data-dropdown-content class="f-dropdown content profile-card-content" aria-hidden="true" tabindex="-1"><div class="profile-card__title"><div class="sciprofiles-link" style="display: inline-block"><div class="sciprofiles-link__link"><img class="sciprofiles-link__image" src="/bundles/mdpisciprofileslink/img/unknown-user.png" style="width: auto; height: 16px; border-radius: 50%;"><span class="sciprofiles-link__name">Ammar Melaibari</span></div></div></div><div class="profile-card__buttons" style="margin-bottom: 10px;"><a href="https://sciprofiles.com/profile/1859201?utm_source=mdpi.com&utm_medium=website&utm_campaign=avatar_name" class="button button--color-inversed" target="_blank"> SciProfiles </a><a href="https://scilit.net/scholars?q=Ammar%20Melaibari" class="button button--color-inversed" target="_blank"> Scilit </a><a href="https://www.preprints.org/search?search1=Ammar%20Melaibari&field1=authors" class="button button--color-inversed" target="_blank"> Preprints.org </a><a href="https://scholar.google.com/scholar?q=Ammar%20Melaibari" class="button button--color-inversed" target="_blank" rels="noopener noreferrer"> Google Scholar </a></div></div><sup> 1</sup><span style="display: inline; margin-left: 5px;"></span><a class="toEncode emailCaptcha visibility-hidden" data-author-id="6892822" href="/cdn-cgi/l/email-protection#4d622e2329602e2a2462216228202c2421603d3f2239282e392422236e7d7d7d7d7b7c7d2e7d797d297d7d7d757d7e7d7d7c7e7d757f7c7d2c7d7d7c79792b7d797d787c79792b7c7f7d7d"><sup><i class="fa fa-envelope-o"></i></sup></a><a href="https://orcid.org/0000-0002-0967-6774" target="_blank" rel="noopener noreferrer"><img src="https://pub.mdpi-res.com/img/design/orcid.png?0465bc3812adeb52?1732884643" title="ORCID" style="position: relative; width: 13px; margin-left: 3px; max-width: 13px !important; height: auto; top: -5px;"></a>, </span><span class="inlineblock "><div class='profile-card-drop' data-dropdown='profile-card-drop6892823' data-options='is_hover:true, hover_timeout:5000'> Ahmed Amine Daikh</div><div id="profile-card-drop6892823" data-dropdown-content class="f-dropdown content profile-card-content" aria-hidden="true" tabindex="-1"><div class="profile-card__title"><div class="sciprofiles-link" style="display: inline-block"><div class="sciprofiles-link__link"><img class="sciprofiles-link__image" src="/bundles/mdpisciprofileslink/img/unknown-user.png" style="width: auto; height: 16px; border-radius: 50%;"><span class="sciprofiles-link__name">Ahmed Amine Daikh</span></div></div></div><div class="profile-card__buttons" style="margin-bottom: 10px;"><a href="https://sciprofiles.com/profile/2432521?utm_source=mdpi.com&utm_medium=website&utm_campaign=avatar_name" class="button button--color-inversed" target="_blank"> SciProfiles </a><a href="https://scilit.net/scholars?q=Ahmed%20Amine%20Daikh" class="button button--color-inversed" target="_blank"> Scilit </a><a href="https://www.preprints.org/search?search1=Ahmed%20Amine%20Daikh&field1=authors" class="button button--color-inversed" target="_blank"> Preprints.org </a><a href="https://scholar.google.com/scholar?q=Ahmed%20Amine%20Daikh" class="button button--color-inversed" target="_blank" rels="noopener noreferrer"> Google Scholar </a></div></div><sup> 2,3</sup><span style="display: inline; margin-left: 5px;"></span><a class="toEncode emailCaptcha visibility-hidden" data-author-id="6892823" href="/cdn-cgi/l/email-protection#341b575a501957535d1b581b5159555d581944465b405157405d5b5a17040404010200045004520457005504010457040d0405040400550401040d04500455040506000407040d04010450040c005504030456040d"><sup><i class="fa fa-envelope-o"></i></sup></a>, </span><span class="inlineblock "><div class='profile-card-drop' data-dropdown='profile-card-drop6892824' data-options='is_hover:true, hover_timeout:5000'> Muhammad Basha</div><div id="profile-card-drop6892824" data-dropdown-content class="f-dropdown content profile-card-content" aria-hidden="true" tabindex="-1"><div class="profile-card__title"><div class="sciprofiles-link" style="display: inline-block"><div class="sciprofiles-link__link"><img class="sciprofiles-link__image" src="/bundles/mdpisciprofileslink/img/unknown-user.png" style="width: auto; height: 16px; border-radius: 50%;"><span class="sciprofiles-link__name">Muhammad Basha</span></div></div></div><div class="profile-card__buttons" style="margin-bottom: 10px;"><a href="https://sciprofiles.com/profile/1633488?utm_source=mdpi.com&utm_medium=website&utm_campaign=avatar_name" class="button button--color-inversed" target="_blank"> SciProfiles </a><a href="https://scilit.net/scholars?q=Muhammad%20Basha" class="button button--color-inversed" target="_blank"> Scilit </a><a href="https://www.preprints.org/search?search1=Muhammad%20Basha&field1=authors" class="button button--color-inversed" target="_blank"> Preprints.org </a><a href="https://scholar.google.com/scholar?q=Muhammad%20Basha" class="button button--color-inversed" target="_blank" rels="noopener noreferrer"> Google Scholar </a></div></div><sup> 1</sup><span style="display: inline; margin-left: 5px;"></span><a class="toEncode emailCaptcha visibility-hidden" data-author-id="6892824" href="/cdn-cgi/l/email-protection#16397578723b75717f397a39737b777f7a3b666479627375627f79783526262675207226702675277326232675247226202675272e2225262e262f272e222527732675"><sup><i class="fa fa-envelope-o"></i></sup></a><a href="https://orcid.org/0000-0002-9260-261X" target="_blank" rel="noopener noreferrer"><img src="https://pub.mdpi-res.com/img/design/orcid.png?0465bc3812adeb52?1732884643" title="ORCID" style="position: relative; width: 13px; margin-left: 3px; max-width: 13px !important; height: auto; top: -5px;"></a>, </span><span class="inlineblock "><div class='profile-card-drop' data-dropdown='profile-card-drop6892825' data-options='is_hover:true, hover_timeout:5000'> Ahmed Wagih</div><div id="profile-card-drop6892825" data-dropdown-content class="f-dropdown content profile-card-content" aria-hidden="true" tabindex="-1"><div class="profile-card__title"><div class="sciprofiles-link" style="display: inline-block"><div class="sciprofiles-link__link"><img class="sciprofiles-link__image" src="/bundles/mdpisciprofileslink/img/unknown-user.png" style="width: auto; height: 16px; border-radius: 50%;"><span class="sciprofiles-link__name">Ahmed Wagih</span></div></div></div><div class="profile-card__buttons" style="margin-bottom: 10px;"><a href="https://sciprofiles.com/profile/2107381?utm_source=mdpi.com&utm_medium=website&utm_campaign=avatar_name" class="button button--color-inversed" target="_blank"> SciProfiles </a><a href="https://scilit.net/scholars?q=Ahmed%20Wagih" class="button button--color-inversed" target="_blank"> Scilit </a><a href="https://www.preprints.org/search?search1=Ahmed%20Wagih&field1=authors" class="button button--color-inversed" target="_blank"> Preprints.org </a><a href="https://scholar.google.com/scholar?q=Ahmed%20Wagih" class="button button--color-inversed" target="_blank" rels="noopener noreferrer"> Google Scholar </a></div></div><sup> 4</sup><span style="display: inline; margin-left: 5px;"></span><a class="toEncode emailCaptcha visibility-hidden" data-author-id="6892825" href="/cdn-cgi/l/email-protection#a28dc1ccc68fc1c5cb8dce8dc7cfc3cbce8fd2d0cdd6c7c1d6cbcdcc81929292c09497929091c39296939092969795979797969796909793c1929692c692c392c396c0929492c3929a"><sup><i class="fa fa-envelope-o"></i></sup></a>, </span><span class="inlineblock "><div class='profile-card-drop' data-dropdown='profile-card-drop6892826' data-options='is_hover:true, hover_timeout:5000'> Ramzi Othman</div><div id="profile-card-drop6892826" data-dropdown-content class="f-dropdown content profile-card-content" aria-hidden="true" tabindex="-1"><div class="profile-card__title"><div class="sciprofiles-link" style="display: inline-block"><div class="sciprofiles-link__link"><img class="sciprofiles-link__image" src="/bundles/mdpisciprofileslink/img/unknown-user.png" style="width: auto; height: 16px; border-radius: 50%;"><span class="sciprofiles-link__name">Ramzi Othman</span></div></div></div><div class="profile-card__buttons" style="margin-bottom: 10px;"><a href="https://sciprofiles.com/profile/author/ZFRNQThRMitvL2FuWUVETDRoVGpwanNINjFETVJ2by85YUVkMk8rb0FlND0=?utm_source=mdpi.com&utm_medium=website&utm_campaign=avatar_name" class="button button--color-inversed" target="_blank"> SciProfiles </a><a href="https://scilit.net/scholars?q=Ramzi%20Othman" class="button button--color-inversed" target="_blank"> Scilit </a><a href="https://www.preprints.org/search?search1=Ramzi%20Othman&field1=authors" class="button button--color-inversed" target="_blank"> Preprints.org </a><a href="https://scholar.google.com/scholar?q=Ramzi%20Othman" class="button button--color-inversed" target="_blank" rels="noopener noreferrer"> Google Scholar </a></div></div><sup> 1</sup><span style="display: inline; margin-left: 5px;"></span><a class="toEncode emailCaptcha visibility-hidden" data-author-id="6892826" href="/cdn-cgi/l/email-protection#19367a777d347a7e703675367c7478707534696b766d7c7a6d7076773a2929287d2e2b292f2878287f282a287a2d2a2a2b2820282a292e2c7a282e282f292e2c7a2928282a"><sup><i class="fa fa-envelope-o"></i></sup></a>, </span><span class="inlineblock "><div class='profile-card-drop' data-dropdown='profile-card-drop6892827' data-options='is_hover:true, hover_timeout:5000'> Khalid H. Almitani</div><div id="profile-card-drop6892827" data-dropdown-content class="f-dropdown content profile-card-content" aria-hidden="true" tabindex="-1"><div class="profile-card__title"><div class="sciprofiles-link" style="display: inline-block"><div class="sciprofiles-link__link"><img class="sciprofiles-link__image" src="/bundles/mdpisciprofileslink/img/unknown-user.png" style="width: auto; height: 16px; border-radius: 50%;"><span class="sciprofiles-link__name">Khalid H. Almitani</span></div></div></div><div class="profile-card__buttons" style="margin-bottom: 10px;"><a href="https://sciprofiles.com/profile/998832?utm_source=mdpi.com&utm_medium=website&utm_campaign=avatar_name" class="button button--color-inversed" target="_blank"> SciProfiles </a><a href="https://scilit.net/scholars?q=Khalid%20H.%20Almitani" class="button button--color-inversed" target="_blank"> Scilit </a><a href="https://www.preprints.org/search?search1=Khalid%20H.%20Almitani&field1=authors" class="button button--color-inversed" target="_blank"> Preprints.org </a><a href="https://scholar.google.com/scholar?q=Khalid%20H.%20Almitani" class="button button--color-inversed" target="_blank" rels="noopener noreferrer"> Google Scholar </a></div></div><sup> 1</sup><span style="display: inline; margin-left: 5px;"></span><a class="toEncode emailCaptcha visibility-hidden" data-author-id="6892827" href="/cdn-cgi/l/email-protection#dff0bcb1bbf2bcb8b6f0b3f0bab2beb6b3f2afadb0abbabcabb6b0b1fcefefefbee9bdefe8efe9efbaeeb9eeb9efbeefeaefededbdefefefbeeebaebeaefbaefb9eebaebeaeee7efbe"><sup><i class="fa fa-envelope-o"></i></sup></a>, </span><span class="inlineblock "><div class='profile-card-drop' data-dropdown='profile-card-drop6892828' data-options='is_hover:true, hover_timeout:5000'> Mostafa A. Hamed</div><div id="profile-card-drop6892828" data-dropdown-content class="f-dropdown content profile-card-content" aria-hidden="true" tabindex="-1"><div class="profile-card__title"><div class="sciprofiles-link" style="display: inline-block"><div class="sciprofiles-link__link"><img class="sciprofiles-link__image" src="/bundles/mdpisciprofileslink/img/unknown-user.png" style="width: auto; height: 16px; border-radius: 50%;"><span class="sciprofiles-link__name">Mostafa A. Hamed</span></div></div></div><div class="profile-card__buttons" style="margin-bottom: 10px;"><a href="https://sciprofiles.com/profile/author/SU90ekhzL3dTMGE1d2F3RU5VVDhrcVV2VlBlMVgyOVB4cC9ocElIUXN6ND0=?utm_source=mdpi.com&utm_medium=website&utm_campaign=avatar_name" class="button button--color-inversed" target="_blank"> SciProfiles </a><a href="https://scilit.net/scholars?q=Mostafa%20A.%20Hamed" class="button button--color-inversed" target="_blank"> Scilit </a><a href="https://www.preprints.org/search?search1=Mostafa%20A.%20Hamed&field1=authors" class="button button--color-inversed" target="_blank"> Preprints.org </a><a href="https://scholar.google.com/scholar?q=Mostafa%20A.%20Hamed" class="button button--color-inversed" target="_blank" rels="noopener noreferrer"> Google Scholar </a></div></div><sup> 1</sup><span style="display: inline; margin-left: 5px;"></span><a class="toEncode emailCaptcha visibility-hidden" data-author-id="6892828" href="/cdn-cgi/l/email-protection#6c430f0208410f0b0543004309010d0500411c1e0318090f180503024f5c5c5c5e5a085d095c595c0f5c5c5c545c555e085c5a5c0f5d54585f5c545c555d54585f5d095c0f"><sup><i class="fa fa-envelope-o"></i></sup></a>, </span><span class="inlineblock "><div class='profile-card-drop' data-dropdown='profile-card-drop6892829' data-options='is_hover:true, hover_timeout:5000'> Alaa Abdelrahman</div><div id="profile-card-drop6892829" data-dropdown-content class="f-dropdown content profile-card-content" aria-hidden="true" tabindex="-1"><div class="profile-card__title"><div class="sciprofiles-link" style="display: inline-block"><div class="sciprofiles-link__link"><img class="sciprofiles-link__image" src="/bundles/mdpisciprofileslink/img/unknown-user.png" style="width: auto; height: 16px; border-radius: 50%;"><span class="sciprofiles-link__name">Alaa Abdelrahman</span></div></div></div><div class="profile-card__buttons" style="margin-bottom: 10px;"><a href="https://sciprofiles.com/profile/author/L2lpN3QwVjlnQnhQbmhGTzEwV3ROZ0JRcWRLVnlDSlMvS3hQSVd4WXloRT0=?utm_source=mdpi.com&utm_medium=website&utm_campaign=avatar_name" class="button button--color-inversed" target="_blank"> SciProfiles </a><a href="https://scilit.net/scholars?q=Alaa%20Abdelrahman" class="button button--color-inversed" target="_blank"> Scilit </a><a href="https://www.preprints.org/search?search1=Alaa%20Abdelrahman&field1=authors" class="button button--color-inversed" target="_blank"> Preprints.org </a><a href="https://scholar.google.com/scholar?q=Alaa%20Abdelrahman" class="button button--color-inversed" target="_blank" rels="noopener noreferrer"> Google Scholar </a></div></div><sup> 4</sup><span style="display: inline; margin-left: 5px;"></span><a class="toEncode emailCaptcha visibility-hidden" data-author-id="6892829" href="/cdn-cgi/l/email-protection#341b575a501957535d1b581b5159555d581944465b405157405d5b5a170404045002050404040404040407045105000404040d0457040004010605040204570404040c04500052040604510457"><sup><i class="fa fa-envelope-o"></i></sup></a> and </span><span class="inlineblock "><div class='profile-card-drop' data-dropdown='profile-card-drop6892830' data-options='is_hover:true, hover_timeout:5000'> Mohamed A. Eltaher</div><div id="profile-card-drop6892830" data-dropdown-content class="f-dropdown content profile-card-content" aria-hidden="true" tabindex="-1"><div class="profile-card__title"><div class="sciprofiles-link" style="display: inline-block"><div class="sciprofiles-link__link"><img class="sciprofiles-link__image" src="/bundles/mdpisciprofileslink/img/unknown-user.png" style="width: auto; height: 16px; border-radius: 50%;"><span class="sciprofiles-link__name">Mohamed A. Eltaher</span></div></div></div><div class="profile-card__buttons" style="margin-bottom: 10px;"><a href="https://sciprofiles.com/profile/517971?utm_source=mdpi.com&utm_medium=website&utm_campaign=avatar_name" class="button button--color-inversed" target="_blank"> SciProfiles </a><a href="https://scilit.net/scholars?q=Mohamed%20A.%20Eltaher" class="button button--color-inversed" target="_blank"> Scilit </a><a href="https://www.preprints.org/search?search1=Mohamed%20A.%20Eltaher&field1=authors" class="button button--color-inversed" target="_blank"> Preprints.org </a><a href="https://scholar.google.com/scholar?q=Mohamed%20A.%20Eltaher" class="button button--color-inversed" target="_blank" rels="noopener noreferrer"> Google Scholar </a></div></div><sup> 1,4,*</sup><span style="display: inline; margin-left: 5px;"></span><a class="toEncode emailCaptcha visibility-hidden" data-author-id="6892830" href="/cdn-cgi/l/email-protection#4f602c212b622c28266023602a222e2623623f3d203b2a2c3b2620216c7f7f7f77792b7f7e7e767f2c7f7a7f777e297d2b7f797f2c7e777b7c7f777f767e777b7c7e2a7f2c"><sup><i class="fa fa-envelope-o"></i></sup></a><a href="https://orcid.org/0000-0003-3116-2101" target="_blank" rel="noopener noreferrer"><img src="https://pub.mdpi-res.com/img/design/orcid.png?0465bc3812adeb52?1732884643" title="ORCID" style="position: relative; width: 13px; margin-left: 3px; max-width: 13px !important; height: auto; top: -5px;"></a></span> </div> <div class="nrm"></div> <span style="display:block; height:6px;"></span> <div></div> <div style="margin: 5px 0 15px 0;" class="hypothesis_container"> <div class="art-affiliations"> <div class="affiliation "> <div class="affiliation-item"><sup>1</sup></div> <div class="affiliation-name ">Mechanical Engineering Department, Faculty of Engineering, King Abdulaziz University, Jeddah 80204, Saudi Arabia</div> </div> <div class="affiliation "> <div class="affiliation-item"><sup>2</sup></div> <div class="affiliation-name ">Department of Technology, University Centre of Naama, Naama 45000, Algeria</div> </div> <div class="affiliation "> <div class="affiliation-item"><sup>3</sup></div> <div class="affiliation-name ">Laboratoire d’Etude des Structures et de Mécanique des Matériaux, Département de Génie Civil, Faculté des Sciences et de la Technologie, Université Mustapha Stambouli, B.P. 305, R.P., Mascara 29000, Algeria</div> </div> <div class="affiliation "> <div class="affiliation-item"><sup>4</sup></div> <div class="affiliation-name ">Mechanical Design and Production Department, Faculty of Engineering, Zagazig University, Zagazig 44519, Egypt</div> </div> <div class="affiliation"> <div class="affiliation-item"><sup>*</sup></div> <div class="affiliation-name ">Author to whom correspondence should be addressed. </div> </div> </div> </div> <div class="bib-identity" style="margin-bottom: 10px;"> <em>Mathematics</em> <b>2022</b>, <em>10</em>(3), 408; <a href="https://doi.org/10.3390/math10030408">https://doi.org/10.3390/math10030408</a> </div> <div class="pubhistory" style="font-weight: bold; padding-bottom: 10px;"> <span style="display: inline-block">Submission received: 10 January 2022</span> / <span style="display: inline-block">Revised: 25 January 2022</span> / <span style="display: inline-block">Accepted: 25 January 2022</span> / <span style="display: inline-block">Published: 27 January 2022</span> </div> <div class="highlight-box1"> <div class="download"> <a class="button button--color-inversed button--drop-down" data-dropdown="drop-download-736181" aria-controls="drop-supplementary-736181" aria-expanded="false"> Download <i class="material-icons">keyboard_arrow_down</i> </a> <div id="drop-download-736181" class="f-dropdown label__btn__dropdown label__btn__dropdown--button" data-dropdown-content aria-hidden="true" tabindex="-1"> <a class="UD_ArticlePDF" href="/2227-7390/10/3/408/pdf?version=1643526652" data-name="A Dynamic Analysis of Randomly Oriented Functionally Graded Carbon Nanotubes/Fiber-Reinforced Composite Laminated Shells with Different Geometries" data-journal="mathematics">Download PDF</a> <br/> <a id="js-pdf-with-cover-access-captcha" href="#" data-target="/2227-7390/10/3/408/pdf-with-cover" class="accessCaptcha">Download PDF with Cover</a> <br/> <a id="js-xml-access-captcha" href="#" data-target="/2227-7390/10/3/408/xml" class="accessCaptcha">Download XML</a> <br/> <a href="/2227-7390/10/3/408/epub" id="epub_link">Download Epub</a> <br/> </div> <div class="js-browse-figures" style="display: inline-block;"> <a href="#" class="button button--color-inversed margin-bottom-10 openpopupgallery UI_BrowseArticleFigures" data-target='article-popup' data-counterslink = "https://www.mdpi.com/2227-7390/10/3/408/browse" >Browse Figures</a> </div> <div id="article-popup" class="popupgallery" style="display: inline; line-height: 200%"> <a href="https://pub.mdpi-res.com/mathematics/mathematics-10-00408/article_deploy/html/images/mathematics-10-00408-g001.png?1643526744" title=" <strong>Figure 1</strong><br/> <p>The material properties, geometry, and coordinate system of the shell, (<b>a</b>) Geometry and coordinates, (<b>b</b>) Gradation types of material.</p> "> </a> <a href="https://pub.mdpi-res.com/mathematics/mathematics-10-00408/article_deploy/html/images/mathematics-10-00408-g002.png?1643526744" title=" <strong>Figure 2</strong><br/> <p>Forms of various plate/shells.</p> "> </a> <a href="https://pub.mdpi-res.com/mathematics/mathematics-10-00408/article_deploy/html/images/mathematics-10-00408-g003.png?1643526744" title=" <strong>Figure 3</strong><br/> <p>The volume-fractions of the fibers along the thickness of the shell (<math display="inline"><semantics> <mrow> <msubsup> <mi>V</mi> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> <mi>f</mi> </msubsup> <mo>=</mo> <mn>0.3</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msubsup> <mi>V</mi> <mrow> <mi>m</mi> <mi>i</mi> <mi>n</mi> </mrow> <mi>f</mi> </msubsup> <mo>=</mo> <mn>0.1</mn> </mrow> </semantics></math>).</p> "> </a> <a href="https://pub.mdpi-res.com/mathematics/mathematics-10-00408/article_deploy/html/images/mathematics-10-00408-g004.png?1643526744" title=" <strong>Figure 4</strong><br/> <p>The effect of the number of layers “<span class="html-italic">N</span>”: (<b>a</b>) Cross-ply fibers (<b>b</b>) Unidirectional fibers (Plate, SSSS, <math display="inline"><semantics> <mrow> <mi>b</mi> <mo>/</mo> <mi>a</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>a</mi> <mo>/</mo> <mi>h</mi> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>V</mi> <mrow> <mi>c</mi> <mi>n</mi> <mi>t</mi> </mrow> </msub> <mo>=</mo> <mn>0.01</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msubsup> <mi>V</mi> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> <mi>f</mi> </msubsup> <mo>=</mo> <mn>0.3</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msubsup> <mi>V</mi> <mrow> <mi>m</mi> <mi>i</mi> <mi>n</mi> </mrow> <mi>f</mi> </msubsup> <mo>=</mo> <mn>0.1</mn> </mrow> </semantics></math>).</p> "> </a> <a href="https://pub.mdpi-res.com/mathematics/mathematics-10-00408/article_deploy/html/images/mathematics-10-00408-g005.png?1643526744" title=" <strong>Figure 5</strong><br/> <p>The effect of the radius of curvature <span class="html-italic">R</span>/<span class="html-italic">a</span> on the dimensionless frequency of various shell types (Cross-ply, SSSS, <math display="inline"><semantics> <mrow> <mi>N</mi> <mo>=</mo> <mn>9</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>b</mi> <mo>/</mo> <mi>a</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>a</mi> <mo>/</mo> <mi>h</mi> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>V</mi> <mrow> <mi>c</mi> <mi>n</mi> <mi>t</mi> </mrow> </msub> <mo>=</mo> <mn>0.01</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msubsup> <mi>V</mi> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> <mi>f</mi> </msubsup> <mo>=</mo> <mn>0.3</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msubsup> <mi>V</mi> <mrow> <mi>m</mi> <mi>i</mi> <mi>n</mi> </mrow> <mi>f</mi> </msubsup> <mo>=</mo> <mn>0.1</mn> </mrow> </semantics></math>).</p> "> </a> <a href="https://pub.mdpi-res.com/mathematics/mathematics-10-00408/article_deploy/html/images/mathematics-10-00408-g006.png?1643526744" title=" <strong>Figure 6</strong><br/> <p>The effect of the volume fraction of fibers and CNTs (Plate, Cross-ply, SSSS, <math display="inline"><semantics> <mrow> <mi>N</mi> <mo>=</mo> <mn>9</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>b</mi> <mo>/</mo> <mi>a</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>a</mi> <mo>/</mo> <mi>h</mi> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msubsup> <mi>V</mi> <mrow> <mi>m</mi> <mi>i</mi> <mi>n</mi> </mrow> <mi>f</mi> </msubsup> <mo>=</mo> <mn>0.05</mn> </mrow> </semantics></math>).</p> "> </a> <a href="https://pub.mdpi-res.com/mathematics/mathematics-10-00408/article_deploy/html/images/mathematics-10-00408-g007.png?1643526744" title=" <strong>Figure 7</strong><br/> <p>The effect of the geometry parameters <span class="html-italic">b</span>/<span class="html-italic">a</span> and <span class="html-italic">a</span>/<span class="html-italic">h</span> on the dimensionless frequency of a spherical shell for various boundary conditions (<math display="inline"><semantics> <mrow> <mi>N</mi> <mo>=</mo> <mn>9</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>V</mi> <mrow> <mi>c</mi> <mi>n</mi> <mi>t</mi> </mrow> </msub> <mo>=</mo> <mn>0.01</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msubsup> <mi>V</mi> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> <mi>f</mi> </msubsup> <mo>=</mo> <mn>0.1</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msubsup> <mi>V</mi> <mrow> <mi>m</mi> <mi>i</mi> <mi>n</mi> </mrow> <mi>f</mi> </msubsup> <mo>=</mo> <mn>0.3</mn> </mrow> </semantics></math>). (<b>a</b>) inplane ratio <span class="html-italic">b</span>/<span class="html-italic">a</span>, (<b>b</b>) slenderness ratio <span class="html-italic">a</span>/<span class="html-italic">h</span>.</p> "> </a> <a href="https://pub.mdpi-res.com/mathematics/mathematics-10-00408/article_deploy/html/images/mathematics-10-00408-g008.png?1643526744" title=" <strong>Figure 8</strong><br/> <p>The effect of the modes of vibration “<span class="html-italic">m</span>” and “<span class="html-italic">n</span>” on the dimensionless frequency of a spherical shell (<math display="inline"><semantics> <mrow> <msub> <mi>R</mi> <mi>x</mi> </msub> <mo>=</mo> <msub> <mi>R</mi> <mi>y</mi> </msub> <mo>=</mo> <mn>5</mn> <mo> </mo> </mrow> </semantics></math>, SSSS, <math display="inline"><semantics> <mrow> <mi>N</mi> <mo>=</mo> <mn>9</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>b</mi> <mo>/</mo> <mi>a</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>a</mi> <mo>/</mo> <mi>h</mi> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>V</mi> <mrow> <mi>c</mi> <mi>n</mi> <mi>t</mi> </mrow> </msub> <mo>=</mo> <mn>0.01</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msubsup> <mi>V</mi> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> <mi>f</mi> </msubsup> <mo>=</mo> <mn>0.3</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msubsup> <mi>V</mi> <mrow> <mi>m</mi> <mi>i</mi> <mi>n</mi> </mrow> <mi>f</mi> </msubsup> <mo>=</mo> <mn>0.1</mn> </mrow> </semantics></math>).</p> "> </a> </div> <a class="button button--color-inversed" href="/2227-7390/10/3/408/notes">Versions Notes</a> </div> </div> <div class="responsive-moving-container small hidden" data-id="article-counters" style="margin-top: 15px;"></div> <div class="html-dynamic"> <section> <div class="art-abstract art-abstract-new in-tab hypothesis_container"> <p> <div><section class="html-abstract" id="html-abstract"> <h2 id="html-abstract-title">Abstract</h2><b>:</b> <div class="html-p">The present study demonstrates the free vibration behavior of composite laminated shells reinforced by both randomly oriented single-walled carbon nanotubes (SWCNTs) and functionally graded fibers. The shell structures with different principal radii of curvature are considered, such as cylindrical, spherical, elliptical–paraboloid shell, hyperbolic–paraboloid shell, and plate. The volume fraction of the fibers has a linear variation along the shell thickness from layer to layer, while the volume fraction of CNTs is constant in all shell layers and uniformly distributed. The fiber-reinforced elements are distributed with three functions which are V-distribution, O-distribution, and X-distribution in addition to the uniform distribution. A numerical analysis was carried out systematically to validate the proposed solution. A new analytical solution is presented based on the Galerkin approach for shells and is exploited to illustrate the influence of some factors on the free vibration behavior of CNTs/fibe-reinforced composite (CNTs/F-RC) laminated shells, including the distributions and volume fractions, various boundary conditions, and geometrical properties of the reinforcement materials. The proposed solution is shown to be an effective theoretical tool to analyze the free vibration response of shells.</div> </section> <div id="html-keywords"> <div class="html-gwd-group"><div id="html-keywords-title">Keywords: </div><a href="/search?q=analytical+solution">analytical solution</a>; <a href="/search?q=shell+structures">shell structures</a>; <a href="/search?q=different+geometries">different geometries</a>; <a href="/search?q=free+vibration">free vibration</a>; <a href="/search?q=CNTs%2Ffiber-reinforced+composite">CNTs/fiber-reinforced composite</a>; <a href="/search?q=higher-order+shear+deformation+theory">higher-order shear deformation theory</a>; <a href="/search?q=Galerkin+method">Galerkin method</a></div> <div> </div> </div> </div> </p> </div> </section> </div> <div class="hypothesis_container"> <ul class="menu html-nav" data-prev-node="#html-quick-links-title"> </ul> <div class="html-body"> <section id='sec1-mathematics-10-00408' type='intro'><h2 data-nested='1'> 1. Introduction</h2><div class='html-p'>A functionally graded material (FGM), which is an advanced composite material with a continuous gradation of materials through spatial directions, is broadly employed in various applications, ranging from macroscale (i.e., spacecraft, naval, nuclear structures, etc.) to micro/nano-scale electro-mechanical systems (MEMS/NEMS). Recently, the reinforcement of FGM by carbon nanotubes (CNTs) has been used in order to improve the mechanical, electrical, and thermal properties of composite structures due to the excellent properties of CNTs [<a href="#B1-mathematics-10-00408" class="html-bibr">1</a>,<a href="#B2-mathematics-10-00408" class="html-bibr">2</a>]. The characteristics of the CNTs/fiber-reinforced composite structure strongly depend on many factors such as the fractal contents of CNTs/fibers [<a href="#B3-mathematics-10-00408" class="html-bibr">3</a>,<a href="#B4-mathematics-10-00408" class="html-bibr">4</a>] and Fiber’s geometry [<a href="#B5-mathematics-10-00408" class="html-bibr">5</a>].</div><div class='html-p'>FG beams, plates, and shells have received substantial attention, and an extensive spectrum of beam and plate theories has been introduced, Boutahar et al. [<a href="#B6-mathematics-10-00408" class="html-bibr">6</a>]. Shen and Zhang [<a href="#B7-mathematics-10-00408" class="html-bibr">7</a>] investigated the thermal buckling/postbuckling behavior for supported functionally graded carbon nanotubes-reinforced composite (FG-CNTRC) plates subjected to in-plane temperature variation. Zhu et al. [<a href="#B8-mathematics-10-00408" class="html-bibr">8</a>] examined the static and vibration behaviors of FG-CNTRC plates using the finite element method with the first order shear deformation plate theory. Alibeigloo [<a href="#B9-mathematics-10-00408" class="html-bibr">9</a>] developed the 3D thermoelasticity solution for an FG-CNTRC plate embedded in a piezoelectric sensor and actuator layers. Liew et al. [<a href="#B10-mathematics-10-00408" class="html-bibr">10</a>] presented a review to identify and highlight topics relevant to FG-CNTRC and recent research works. Zhang et al. [<a href="#B11-mathematics-10-00408" class="html-bibr">11</a>] developed a computational solution for the vibration response of FG-CNTRC thick plates resting on elastic foundations. Phung-Van et al. [<a href="#B12-mathematics-10-00408" class="html-bibr">12</a>] presented the size-dependent impact on the nonlinear transient dynamic response of FG-CNTRC nonlocal nanoplates under a transverse uniform load in thermal environments. Daikh et al. [<a href="#B13-mathematics-10-00408" class="html-bibr">13</a>] investigated the static response of simply supported FG-CNTRC nonlocal strain gradient nanobeams under various loading profiles using a hyperbolic higher shear deformation beam theory. He et al. [<a href="#B14-mathematics-10-00408" class="html-bibr">14</a>] implemented the multi-parameter perturbation method to predict the static and stress distribution of FG thin circular piezoelectric plates. The mechanical response of piezoelectric FG plates via a simple first-order shear deformation theory was studied using the isogeometric analysis method [<a href="#B15-mathematics-10-00408" class="html-bibr">15</a>] and the generalized finite difference method [<a href="#B16-mathematics-10-00408" class="html-bibr">16</a>].</div><div class='html-p'>Daikh et al. [<a href="#B17-mathematics-10-00408" class="html-bibr">17</a>] presented the influence of thickness stretching on the mechanical responses of FG-CNTRC nanoplates based on the nonlocal strain gradient theory. Esen et al. [<a href="#B18-mathematics-10-00408" class="html-bibr">18</a>] studied analytically the vibration time response of an FG-CNTRC nanobeam under moving loads using the Navier Procedure. Employing the finite element method, Karamanli and Vo [<a href="#B19-mathematics-10-00408" class="html-bibr">19</a>] analyzed the mechanical behavior of carbon nanotube-reinforced composites and graphene nanoplatelet-reinforced composite beams incorporating both normal and shear effects. Karamanli and Aydogdu [<a href="#B20-mathematics-10-00408" class="html-bibr">20</a>] investigated the dynamic behavior of two directional functionally graded carbon nanotube-reinforced composite plates considering various boundary conditions. Boutahar et al. [<a href="#B6-mathematics-10-00408" class="html-bibr">6</a>] illustrated the impact of thickness stretching on the bending vibratory behavior of thick FG beams using the refined hyperbolic function shear theory. Daikh et al. [<a href="#B21-mathematics-10-00408" class="html-bibr">21</a>] examined the static response of sandwich FG nonlocal strain gradient nanoplates rested on variable Winkler elastic foundation based on a new quasi 3D hyperbolic shear theory. Daikh et al. [<a href="#B22-mathematics-10-00408" class="html-bibr">22</a>] inspected the buckling stability and static response of axially FG-CNTRC plates with temperature-dependent material properties. Rostami and Mohammadimehr [<a href="#B23-mathematics-10-00408" class="html-bibr">23</a>] determined the dynamic stability and bifurcation of an FG-CNTRC plate under lateral stochastic loads via the classical plate theory. Khadir et al. [<a href="#B24-mathematics-10-00408" class="html-bibr">24</a>] exploited the four-unknowns quasi-3D theory to analyze the mechanical responses of FG-CNTRC nonlocal strain gradient nanoplates. Babaei et al. [<a href="#B25-mathematics-10-00408" class="html-bibr">25</a>] studied the vibrational response of thermally pre-/post-buckled FG-CNTRC beams on a nonlinear elastic foundation. Duc and Minh [<a href="#B26-mathematics-10-00408" class="html-bibr">26</a>] predicted the free vibration behavior of cracked FG-CNTRC plates using the phase field theory and the finite element method. Adhikari and Singh [<a href="#B27-mathematics-10-00408" class="html-bibr">27</a>] illustrated the geometrical nonlinear dynamic response of the FG-CNTRC plate based on a novel shear strain function using the isogeometric finite element procedure.</div><div class='html-p'>For shell structures, Shen [<a href="#B28-mathematics-10-00408" class="html-bibr">28</a>,<a href="#B29-mathematics-10-00408" class="html-bibr">29</a>] studied the postbuckling of FG-CNTRC cylindrical shells in thermal environments under axial loads and pressure loads based on a higher order shear deformation theory with a von Kármán-type of kinematic nonlinearity by using the singular perturbation technique. Aragh et al. [<a href="#B30-mathematics-10-00408" class="html-bibr">30</a>] exploited the 3D elasticity theory to evaluate the vibrations of FG-CNTRC cylindrical panels with two opposite edges simply supported via a semi-analytical solution procedure. Shen [<a href="#B31-mathematics-10-00408" class="html-bibr">31</a>] studied the torsional postbuckling response of FG-CNTRC cylindrical shells in thermal environments. Mirzaei and Kiani [<a href="#B32-mathematics-10-00408" class="html-bibr">32</a>] investigated the thermal buckling of temperature-dependent FG-CNTRC conical shells under the assumption of the first order shear deformation shell theory, Donnell kinematic assumptions, and the von Kármán type of geometrical nonlinearity. Thomas and Roy [<a href="#B33-mathematics-10-00408" class="html-bibr">33</a>] examined the vibration analysis of FG-CNTRC Mindlin shell structures by using finite element modelling. The FG material properties were graded smoothly through the thickness. Pouresmaeeli and Fazelzadeh [<a href="#B34-mathematics-10-00408" class="html-bibr">34</a>] studied the frequency response of doubly curved FG-CNTRC panels via the first-order shear deformation theory and Galerkin’s method. Shojaee et al. [<a href="#B35-mathematics-10-00408" class="html-bibr">35</a>] studied the vibration of FG-CNTRC skewed cylindrical panels using a transformed differential quadrature method. Tohidi et al. [<a href="#B36-mathematics-10-00408" class="html-bibr">36</a>] presented the nonlinear dynamic buckling of an FG-CNTRC cylindrical shell via the modified strain gradient theory (the SGT and the Mori–Tanaka approach). Avramov et al. [<a href="#B37-mathematics-10-00408" class="html-bibr">37</a>] illustrated analytically the self-sustained vibrations of FG-CNTRC shells under a supersonic flow using the linear piston theory. Aminipour et al. [<a href="#B38-mathematics-10-00408" class="html-bibr">38</a>] presented the size-dependent wave propagation of FG doubly curved nonlocal nanoshells based on the higher order shear deformation theory.</div><div class='html-p'>Ahmadi et al. [<a href="#B39-mathematics-10-00408" class="html-bibr">39</a>] studied the nonlinear vibration response of stiffened FG double-curved shallow shells exposed to thermal and nonlinear elastic environments under hamonic excitation using the perturbation methodology. Babaei et al. [<a href="#B40-mathematics-10-00408" class="html-bibr">40</a>] developed a theoretical investigation for the frequency response of thermally pre/post buckled CNTRC pipes using a two-step perturbation method. Chakraborty and Dey [<a href="#B41-mathematics-10-00408" class="html-bibr">41</a>] and Chakraborty et al. [<a href="#B42-mathematics-10-00408" class="html-bibr">42</a>] developed a semi-analytical approach to explore the nonlinear stability characteristics of an FG-CNTRC cylindrical shell subjected to combined axial compressive loading and localized heating. Dai et al. [<a href="#B43-mathematics-10-00408" class="html-bibr">43</a>] studied the mechanical behaviors of a 3D poroelasticity FG-GPLRC open shell resting on a non-polynomial viscoelastic substrate involving friction force and residual stresses. Fares et al. [<a href="#B44-mathematics-10-00408" class="html-bibr">44</a>] developed a consistent layerwise/zigzag model to analyze the free vibrations of multilayered of FG-CNTRC conical shells using the Galerkin method. Fu et al. [<a href="#B45-mathematics-10-00408" class="html-bibr">45</a>] investigated the vibration instability of FG-CNTRC laminated conical shells surrounded by elastic foundations using first order shear deformation. Yadav et al. [<a href="#B46-mathematics-10-00408" class="html-bibr">46</a>] developed a semi-analytical solution for the nonlinear vibrations of FG-CNTRC circular cylindrical shells by a radial harmonic force and viscous structural damping. Mohammadi et al. [<a href="#B47-mathematics-10-00408" class="html-bibr">47</a>] exploited an isogeometric Kirchhoff–Love shell in free and forced vibration analyses of sinusoidally corrugated FG-CNTRC panels. Cong et al. [<a href="#B48-mathematics-10-00408" class="html-bibr">48</a>] studied the vibration and nonlinear dynamic responses of a temperature-dependent FG-CNTRC laminated double curved shallow shell with a positive and negative Poisson’s ratio. Babaei [<a href="#B49-mathematics-10-00408" class="html-bibr">49</a>] investigated analytically the nonlinear vibration and snap-buckling behaviors of FG-CNTRC arches using the perturbation method.</div><div class='html-p'>Based on the existing literature, the study of the free vibration behavior of composite laminated shells reinforced by randomly oriented SWCNTs remains unexplored, despite the interest for potential applications with different geometrical shapes such as cylindrical, spherical, elliptical–paraboloid, and hyperbolic–paraboloid shells. This motivated the present study. The volume fraction of fibers has a linear variation along the shell thickness from layer to layer, while the volume fraction of CNTs is constant in all shell layers and uniformly distributed. Three gradation functions, including V-distribution, O-distribution, and X-distribution, in addition to the uniform distribution, are considered. Analytical solutions with the Navier procedure are addressed in detail. The rest of the article will focus on the material and geometrical modelling, the governing equations of motion, and analytical solutions, validation, and parametric studies.</div></section><section id='sec2-mathematics-10-00408' type=''><h2 data-nested='1'> 2. Material and Geometrical Modeling</h2><section id='sec2dot1-mathematics-10-00408' type=''><h4 class='html-italic' data-nested='2'> 2.1. Mechanical Properties and Geometrics</h4><div class='html-p'>A rectangular multilayer shell in the Cartesian (<span class='html-italic'>x</span>, <span class='html-italic'>y</span>, <span class='html-italic'>z</span>) coordinate system is shown in <a href="#mathematics-10-00408-f001" class="html-fig">Figure 1</a>. The proposed structure has a curved length and width <span class='html-italic'>a</span> × <span class='html-italic'>b</span>, and thickness <span class='html-italic'>h</span>. The principal radii of curvature of the middle plane in the <span class='html-italic'>x</span> and <span class='html-italic'>y</span> directions are <span class='html-italic'>R<sub>x</sub></span> and <span class='html-italic'>R<sub>y</sub></span>, respectively. Various forms are analyzed by varying the principal radius of curvature <span class='html-italic'>R<sub>x</sub></span> and <span class='html-italic'>R<sub>y</sub></span> (See <a href="#mathematics-10-00408-f002" class="html-fig">Figure 2</a>). The shell is reinforced by randomly oriented carbon nanotubes (CNTs) and long fibers. All shell layers have the same thickness. The volume fraction of the fibers has a linear variation along the shell thickness from layer to layer, while the volume fraction of CNTs is constant in all shell layers and uniformly distributed. Four different patterns of fiber distribution are created in this study, a uniform distribution UD and three functionally graded distributions FG-X, FG-V, and FG-O.</div><div class='html-p'>The effective material properties of the CNTs/fiber-reinforced composite shell were obtained based on a micromechanical model as follows, [<a href="#B50-mathematics-10-00408" class="html-bibr">50</a>,<a href="#B51-mathematics-10-00408" class="html-bibr">51</a>]: <div class='html-disp-formula-info' id='FD1-mathematics-10-00408'> <div class='f'> <math display='block'><semantics> <mrow> <msub> <mi>E</mi> <mrow> <mn>11</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>V</mi> <mi>f</mi> </msub> <msubsup> <mi>E</mi> <mrow> <mn>11</mn> </mrow> <mi>f</mi> </msubsup> <mo>+</mo> <msubsup> <mi>V</mi> <mrow> <mi>e</mi> <mi>f</mi> </mrow> <mi>m</mi> </msubsup> <msubsup> <mi>E</mi> <mrow> <mi>e</mi> <mi>f</mi> </mrow> <mi>m</mi> </msubsup> </mrow> </semantics></math> </div> <div class='l'> <label >(1)</label> </div> </div><div class='html-disp-formula-info' id='FD2-mathematics-10-00408'> <div class='f'> <math display='block'><semantics> <mrow> <mfrac> <mn>1</mn> <mrow> <msub> <mi>E</mi> <mrow> <mn>22</mn> </mrow> </msub> </mrow> </mfrac> <mo>=</mo> <mfrac> <mrow> <msub> <mi>V</mi> <mi>f</mi> </msub> </mrow> <mrow> <msubsup> <mi>E</mi> <mrow> <mn>22</mn> </mrow> <mi>f</mi> </msubsup> </mrow> </mfrac> <mo>+</mo> <mfrac> <mrow> <msubsup> <mi>V</mi> <mrow> <mi>e</mi> <mi>f</mi> </mrow> <mi>m</mi> </msubsup> </mrow> <mrow> <msubsup> <mi>E</mi> <mrow> <mi>e</mi> <mi>f</mi> </mrow> <mi>m</mi> </msubsup> </mrow> </mfrac> <mo>−</mo> <msub> <mi>V</mi> <mi>f</mi> </msub> <msubsup> <mi>V</mi> <mrow> <mi>e</mi> <mi>f</mi> </mrow> <mi>m</mi> </msubsup> <mfrac> <mrow> <mfrac> <mrow> <msubsup> <mi>v</mi> <mi>f</mi> <mn>2</mn> </msubsup> <msubsup> <mi>E</mi> <mrow> <mi>e</mi> <mi>f</mi> </mrow> <mi>m</mi> </msubsup> </mrow> <mrow> <msubsup> <mi>E</mi> <mrow> <mn>22</mn> </mrow> <mi>f</mi> </msubsup> </mrow> </mfrac> <mo>+</mo> <msubsup> <mi>ν</mi> <mrow> <mi>e</mi> <mi>f</mi> </mrow> <mi>m</mi> </msubsup> <msup> <mrow/> <mn>2</mn> </msup> <msubsup> <mi>E</mi> <mrow> <mn>22</mn> </mrow> <mi>f</mi> </msubsup> <mo>/</mo> <msubsup> <mi>E</mi> <mrow> <mi>e</mi> <mi>f</mi> </mrow> <mi>m</mi> </msubsup> <mo>−</mo> <mn>2</mn> <msub> <mi>v</mi> <mi>f</mi> </msub> <msubsup> <mi>ν</mi> <mrow> <mi>e</mi> <mi>f</mi> </mrow> <mi>m</mi> </msubsup> </mrow> <mrow> <msub> <mi>V</mi> <mi>f</mi> </msub> <msubsup> <mi>E</mi> <mrow> <mn>22</mn> </mrow> <mi>f</mi> </msubsup> <mo>+</mo> <msubsup> <mi>V</mi> <mrow> <mi>e</mi> <mi>f</mi> </mrow> <mi>m</mi> </msubsup> <msubsup> <mi>E</mi> <mrow> <mi>e</mi> <mi>f</mi> </mrow> <mi>m</mi> </msubsup> </mrow> </mfrac> </mrow> </semantics></math> </div> <div class='l'> <label >(2)</label> </div> </div><div class='html-disp-formula-info' id='FD3-mathematics-10-00408'> <div class='f'> <math display='block'><semantics> <mrow> <mfrac> <mn>1</mn> <mrow> <msub> <mi>G</mi> <mrow> <mn>12</mn> </mrow> </msub> </mrow> </mfrac> <mo>=</mo> <mfrac> <mrow> <msub> <mi>V</mi> <mi>f</mi> </msub> </mrow> <mrow> <msubsup> <mi>G</mi> <mrow> <mn>12</mn> </mrow> <mi>f</mi> </msubsup> </mrow> </mfrac> <mo>+</mo> <mfrac> <mrow> <msubsup> <mi>V</mi> <mrow> <mi>e</mi> <mi>f</mi> </mrow> <mi>m</mi> </msubsup> </mrow> <mrow> <msubsup> <mi>G</mi> <mrow> <mi>e</mi> <mi>f</mi> </mrow> <mi>m</mi> </msubsup> </mrow> </mfrac> </mrow> </semantics></math> </div> <div class='l'> <label >(3)</label> </div> </div><div class='html-disp-formula-info' id='FD4-mathematics-10-00408'> <div class='f'> <math display='block'><semantics> <mrow> <msub> <mi>υ</mi> <mrow> <mn>12</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>V</mi> <mi>f</mi> </msub> <msub> <mi>υ</mi> <mi>f</mi> </msub> <mo>+</mo> <msubsup> <mi>V</mi> <mrow> <mi>e</mi> <mi>f</mi> </mrow> <mi>m</mi> </msubsup> <msubsup> <mi>υ</mi> <mrow> <mi>e</mi> <mi>f</mi> </mrow> <mi>m</mi> </msubsup> </mrow> </semantics></math> </div> <div class='l'> <label >(4)</label> </div> </div><div class='html-disp-formula-info' id='FD5-mathematics-10-00408'> <div class='f'> <math display='block'><semantics> <mrow> <msub> <mi>υ</mi> <mrow> <mn>21</mn> </mrow> </msub> <mo>=</mo> <mfrac> <mrow> <msub> <mi>E</mi> <mrow> <mn>22</mn> </mrow> </msub> </mrow> <mrow> <msub> <mi>E</mi> <mrow> <mn>11</mn> </mrow> </msub> </mrow> </mfrac> <msub> <mi>υ</mi> <mrow> <mn>21</mn> </mrow> </msub> </mrow> </semantics></math> </div> <div class='l'> <label >(5)</label> </div> </div><div class='html-disp-formula-info' id='FD6-mathematics-10-00408'> <div class='f'> <math display='block'><semantics> <mrow> <msub> <mi>ρ</mi> <mrow> <mn>12</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>V</mi> <mi>f</mi> </msub> <msub> <mi>ρ</mi> <mi>f</mi> </msub> <mo>+</mo> <msubsup> <mi>V</mi> <mrow> <mi>e</mi> <mi>f</mi> </mrow> <mi>m</mi> </msubsup> <msubsup> <mi>ρ</mi> <mrow> <mi>e</mi> <mi>f</mi> </mrow> <mi>m</mi> </msubsup> </mrow> </semantics></math> </div> <div class='l'> <label >(6)</label> </div> </div></div><div class='html-p'>Here <math display='inline'><semantics> <mi>E</mi> </semantics></math>, <math display='inline'><semantics> <mi>G</mi> </semantics></math>, <math display='inline'><semantics> <mi>ρ</mi> </semantics></math>, and <math display='inline'><semantics> <mi>υ</mi> </semantics></math> are the Young’s modulus, the shear modulus, the mass density, and Poisson’s ratio, respectively. The subscripts/superscript <span class='html-italic'>f</span> and <span class='html-italic'>eff</span> and <span class='html-italic'>m</span> denote the fibers, the effective material properties, and the matrix, respectively. <math display='inline'><semantics> <mrow> <msub> <mi>V</mi> <mi>f</mi> </msub> </mrow> </semantics></math> is the volume fraction of fibers and <math display='inline'><semantics> <mrow> <msubsup> <mi>V</mi> <mrow> <mi>e</mi> <mi>f</mi> </mrow> <mi>m</mi> </msubsup> </mrow> </semantics></math> is the effective volume fraction of the matrix (Polymer/CNTs), where:<div class='html-disp-formula-info' id='FD7-mathematics-10-00408'> <div class='f'> <math display='block'><semantics> <mrow> <msub> <mi>V</mi> <mi>f</mi> </msub> <mo>=</mo> <mn>1</mn> <mo>−</mo> <msubsup> <mi>V</mi> <mrow> <mi>e</mi> <mi>f</mi> </mrow> <mi>m</mi> </msubsup> </mrow> </semantics></math> </div> <div class='l'> <label >(7)</label> </div> </div></div><div class='html-p'>In the case of the complete random orientation of CNTs throughout the polymer constituent, the composite is considered to be isotropic; therefore, the effective material properties of the mixture of CNTs and polymer can be expressed as:<div class='html-disp-formula-info' id='FD8-mathematics-10-00408'> <div class='f'> <math display='block'><semantics> <mrow> <msubsup> <mi>E</mi> <mrow> <mi>e</mi> <mi>f</mi> </mrow> <mi>m</mi> </msubsup> <mo>=</mo> <mfrac> <mrow> <mn>9</mn> <mi>K</mi> <mi>G</mi> </mrow> <mrow> <mn>3</mn> <mi>K</mi> <mo>+</mo> <mi>G</mi> </mrow> </mfrac> </mrow> </semantics></math> </div> <div class='l'> <label >(8)</label> </div> </div><div class='html-disp-formula-info' id='FD9-mathematics-10-00408'> <div class='f'> <math display='block'><semantics> <mrow> <msubsup> <mi>ν</mi> <mrow> <mi>e</mi> <mi>f</mi> </mrow> <mi>m</mi> </msubsup> <mo>=</mo> <mfrac> <mrow> <mn>3</mn> <mi>K</mi> <mo>−</mo> <mn>2</mn> <mi>G</mi> </mrow> <mrow> <mn>6</mn> <mi>K</mi> <mo>+</mo> <mn>2</mn> <mi>G</mi> </mrow> </mfrac> </mrow> </semantics></math> </div> <div class='l'> <label >(9)</label> </div> </div></div><div class='html-p'><math display='inline'><semantics> <mi>K</mi> </semantics></math> and <math display='inline'><semantics> <mi>G</mi> </semantics></math> are the effective bulk and shear moduli of the CNT/polymer composite and can be derived by the relations:<div class='html-disp-formula-info' id='FD10-mathematics-10-00408'> <div class='f'> <math display='block'><semantics> <mrow> <mi>K</mi> <mo>=</mo> <msub> <mi>K</mi> <mi>p</mi> </msub> <mo>+</mo> <mfrac> <mrow> <msub> <mi>V</mi> <mrow> <mi>c</mi> <mi>n</mi> <mi>t</mi> </mrow> </msub> <mrow> <mo>(</mo> <mrow> <msub> <mi>δ</mi> <mrow> <mi>c</mi> <mi>n</mi> <mi>t</mi> </mrow> </msub> <mo>−</mo> <mn>3</mn> <msub> <mi>K</mi> <mi>p</mi> </msub> <msub> <mi>α</mi> <mrow> <mi>c</mi> <mi>n</mi> <mi>t</mi> </mrow> </msub> </mrow> <mo>)</mo> </mrow> </mrow> <mrow> <mn>3</mn> <mrow> <mo>(</mo> <mrow> <msub> <mi>V</mi> <mi>p</mi> </msub> <mo>+</mo> <msub> <mi>V</mi> <mrow> <mi>c</mi> <mi>n</mi> <mi>t</mi> </mrow> </msub> <msub> <mi>α</mi> <mrow> <mi>c</mi> <mi>n</mi> <mi>t</mi> </mrow> </msub> </mrow> <mo>)</mo> </mrow> </mrow> </mfrac> </mrow> </semantics></math> </div> <div class='l'> <label >(10)</label> </div> </div><div class='html-disp-formula-info' id='FD11-mathematics-10-00408'> <div class='f'> <math display='block'><semantics> <mrow> <mi>G</mi> <mo>=</mo> <msub> <mi>G</mi> <mi>p</mi> </msub> <mo>+</mo> <mfrac> <mrow> <msub> <mi>V</mi> <mrow> <mi>c</mi> <mi>n</mi> <mi>t</mi> </mrow> </msub> <mrow> <mo>(</mo> <mrow> <msub> <mi>η</mi> <mrow> <mi>c</mi> <mi>n</mi> <mi>t</mi> </mrow> </msub> <mo>−</mo> <mn>2</mn> <msub> <mi>G</mi> <mi>p</mi> </msub> <msub> <mi>β</mi> <mrow> <mi>c</mi> <mi>n</mi> <mi>t</mi> </mrow> </msub> </mrow> <mo>)</mo> </mrow> </mrow> <mrow> <mn>2</mn> <mrow> <mo>(</mo> <mrow> <msub> <mi>V</mi> <mi>p</mi> </msub> <mo>+</mo> <msub> <mi>V</mi> <mrow> <mi>c</mi> <mi>n</mi> <mi>t</mi> </mrow> </msub> <msub> <mi>β</mi> <mrow> <mi>c</mi> <mi>n</mi> <mi>t</mi> </mrow> </msub> </mrow> <mo>)</mo> </mrow> </mrow> </mfrac> </mrow> </semantics></math> </div> <div class='l'> <label >(11)</label> </div> </div></div><div class='html-p'><math display='inline'><semantics> <mrow> <msub> <mi>V</mi> <mi>p</mi> </msub> </mrow> </semantics></math> and <math display='inline'><semantics> <mrow> <msub> <mi>V</mi> <mrow> <mi>c</mi> <mi>n</mi> <mi>t</mi> </mrow> </msub> </mrow> </semantics></math> are the volume fractions of the polymer and CNTs and are related by:<div class='html-disp-formula-info' id='FD12-mathematics-10-00408'> <div class='f'> <math display='block'><semantics> <mrow> <msub> <mi>V</mi> <mi>p</mi> </msub> <mo>=</mo> <mn>1</mn> <mo>−</mo> <msub> <mi>V</mi> <mrow> <mi>c</mi> <mi>n</mi> <mi>t</mi> </mrow> </msub> </mrow> </semantics></math> </div> <div class='l'> <label >(12)</label> </div> </div></div><div class='html-p'>The other parameters appear in the above relations and have the following formulations:<div class='html-disp-formula-info' id='FD13-mathematics-10-00408'> <div class='f'> <math display='block'><semantics> <mrow> <msub> <mi>α</mi> <mrow> <mi>c</mi> <mi>n</mi> <mi>t</mi> </mrow> </msub> <mo>=</mo> <mfrac> <mrow> <mn>3</mn> <mrow> <mo>(</mo> <mrow> <msub> <mi>K</mi> <mi>p</mi> </msub> <mo>+</mo> <msub> <mi>G</mi> <mi>p</mi> </msub> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>k</mi> <mrow> <mi>c</mi> <mi>n</mi> <mi>t</mi> </mrow> </msub> <mo>−</mo> <msub> <mi>l</mi> <mrow> <mi>c</mi> <mi>n</mi> <mi>t</mi> </mrow> </msub> </mrow> <mrow> <mn>3</mn> <mrow> <mo>(</mo> <mrow> <msub> <mi>G</mi> <mi>p</mi> </msub> <mo>+</mo> <msub> <mi>k</mi> <mrow> <mi>c</mi> <mi>n</mi> <mi>t</mi> </mrow> </msub> </mrow> <mo>)</mo> </mrow> </mrow> </mfrac> </mrow> </semantics></math> </div> <div class='l'> <label >(13)</label> </div> </div><div class='html-disp-formula-info' id='FD14-mathematics-10-00408'> <div class='f'> <math display='block'><semantics> <mrow> <msub> <mi>β</mi> <mrow> <mi>c</mi> <mi>n</mi> <mi>t</mi> </mrow> </msub> <mo>=</mo> <mfrac> <mn>1</mn> <mn>5</mn> </mfrac> <mrow> <mo>(</mo> <mrow> <mfrac> <mrow> <mn>4</mn> <msub> <mi>G</mi> <mi>p</mi> </msub> <mo>+</mo> <mn>2</mn> <msub> <mi>k</mi> <mrow> <mi>c</mi> <mi>n</mi> <mi>t</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>l</mi> <mrow> <mi>c</mi> <mi>n</mi> <mi>t</mi> </mrow> </msub> </mrow> <mrow> <mn>3</mn> <mrow> <mo>(</mo> <mrow> <msub> <mi>G</mi> <mi>p</mi> </msub> <mo>+</mo> <msub> <mi>k</mi> <mrow> <mi>c</mi> <mi>n</mi> <mi>t</mi> </mrow> </msub> </mrow> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>+</mo> <mfrac> <mrow> <mn>4</mn> <msub> <mi>G</mi> <mi>p</mi> </msub> </mrow> <mrow> <msub> <mi>G</mi> <mi>p</mi> </msub> <mo>+</mo> <msub> <mi>p</mi> <mrow> <mi>c</mi> <mi>n</mi> <mi>t</mi> </mrow> </msub> </mrow> </mfrac> <mo>+</mo> <mfrac> <mrow> <mn>2</mn> <mrow> <mo>(</mo> <mrow> <msub> <mi>G</mi> <mi>p</mi> </msub> <mrow> <mo>(</mo> <mrow> <mn>3</mn> <msub> <mi>K</mi> <mi>p</mi> </msub> <mo>+</mo> <msub> <mi>G</mi> <mi>p</mi> </msub> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>G</mi> <mi>p</mi> </msub> <mrow> <mo>(</mo> <mrow> <mn>3</mn> <msub> <mi>K</mi> <mi>p</mi> </msub> <mo>+</mo> <mn>7</mn> <msub> <mi>G</mi> <mi>p</mi> </msub> </mrow> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> <mrow> <msub> <mi>G</mi> <mi>p</mi> </msub> <mrow> <mo>(</mo> <mrow> <mn>3</mn> <msub> <mi>K</mi> <mi>p</mi> </msub> <mo>+</mo> <msub> <mi>G</mi> <mi>p</mi> </msub> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>m</mi> <mrow> <mi>c</mi> <mi>n</mi> <mi>t</mi> </mrow> </msub> <mrow> <mo>(</mo> <mrow> <mn>3</mn> <msub> <mi>K</mi> <mi>p</mi> </msub> <mo>+</mo> <mn>7</mn> <msub> <mi>G</mi> <mi>p</mi> </msub> </mrow> <mo>)</mo> </mrow> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> </mrow> </semantics></math> </div> <div class='l'> <label >(14)</label> </div> </div><div class='html-disp-formula-info' id='FD15-mathematics-10-00408'> <div class='f'> <math display='block'><semantics> <mrow> <msub> <mi>δ</mi> <mrow> <mi>c</mi> <mi>n</mi> <mi>t</mi> </mrow> </msub> <mo>=</mo> <mfrac> <mn>1</mn> <mn>3</mn> </mfrac> <mrow> <mo>(</mo> <mrow> <msub> <mi>n</mi> <mrow> <mi>c</mi> <mi>n</mi> <mi>t</mi> </mrow> </msub> <mo>+</mo> <mn>2</mn> <msub> <mi>l</mi> <mrow> <mi>c</mi> <mi>n</mi> <mi>t</mi> </mrow> </msub> <mo>+</mo> <mfrac> <mrow> <mn>2</mn> <mrow> <mo>(</mo> <mrow> <msub> <mi>k</mi> <mrow> <mi>c</mi> <mi>n</mi> <mi>t</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>l</mi> <mrow> <mi>c</mi> <mi>n</mi> <mi>t</mi> </mrow> </msub> </mrow> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mrow> <mn>3</mn> <msub> <mi>K</mi> <mi>p</mi> </msub> <mo>+</mo> <mn>2</mn> <msub> <mi>G</mi> <mi>p</mi> </msub> <mo>−</mo> <msub> <mi>l</mi> <mrow> <mi>c</mi> <mi>n</mi> <mi>t</mi> </mrow> </msub> </mrow> <mo>)</mo> </mrow> </mrow> <mrow> <msub> <mi>G</mi> <mi>p</mi> </msub> <mo>+</mo> <msub> <mi>k</mi> <mrow> <mi>c</mi> <mi>n</mi> <mi>t</mi> </mrow> </msub> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> </mrow> </semantics></math> </div> <div class='l'> <label >(15)</label> </div> </div><div class='html-disp-formula-info' id='FD16-mathematics-10-00408'> <div class='f'> <math display='block'><semantics> <mrow> <msub> <mi>η</mi> <mrow> <mi>c</mi> <mi>n</mi> <mi>t</mi> </mrow> </msub> <mo>=</mo> <mfrac> <mn>1</mn> <mn>5</mn> </mfrac> <mrow> <mo>(</mo> <mrow> <mtable> <mtr> <mtd> <mrow> <mfrac> <mn>2</mn> <mn>3</mn> </mfrac> <mrow> <mo>(</mo> <mrow> <msub> <mi>n</mi> <mrow> <mi>c</mi> <mi>n</mi> <mi>t</mi> </mrow> </msub> <mo>−</mo> <msub> <mi>l</mi> <mrow> <mi>c</mi> <mi>n</mi> <mi>t</mi> </mrow> </msub> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mfrac> <mrow> <mn>8</mn> <msub> <mi>G</mi> <mi>p</mi> </msub> <msub> <mi>p</mi> <mrow> <mi>c</mi> <mi>n</mi> <mi>t</mi> </mrow> </msub> </mrow> <mrow> <msub> <mi>G</mi> <mi>p</mi> </msub> <mo>+</mo> <msub> <mi>p</mi> <mrow> <mi>c</mi> <mi>n</mi> <mi>t</mi> </mrow> </msub> </mrow> </mfrac> <mo>+</mo> <mfrac> <mrow> <mn>8</mn> <msub> <mi>m</mi> <mrow> <mi>c</mi> <mi>n</mi> <mi>t</mi> </mrow> </msub> <msub> <mi>G</mi> <mi>m</mi> </msub> <mrow> <mo>(</mo> <mrow> <mn>3</mn> <msub> <mi>K</mi> <mi>p</mi> </msub> <mo>+</mo> <mn>4</mn> <msub> <mi>G</mi> <mi>p</mi> </msub> </mrow> <mo>)</mo> </mrow> </mrow> <mrow> <mn>3</mn> <msub> <mi>K</mi> <mi>m</mi> </msub> <mrow> <mo>(</mo> <mrow> <msub> <mi>m</mi> <mrow> <mi>c</mi> <mi>n</mi> <mi>t</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>G</mi> <mi>p</mi> </msub> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>G</mi> <mi>p</mi> </msub> <mrow> <mo>(</mo> <mrow> <mn>7</mn> <msub> <mi>m</mi> <mrow> <mi>c</mi> <mi>n</mi> <mi>t</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>G</mi> <mi>p</mi> </msub> </mrow> <mo>)</mo> </mrow> </mrow> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>+</mo> <mfrac> <mrow> <mn>2</mn> <mrow> <mo>(</mo> <mrow> <msub> <mi>k</mi> <mrow> <mi>c</mi> <mi>n</mi> <mi>t</mi> </mrow> </msub> <mo>−</mo> <msub> <mi>l</mi> <mrow> <mi>c</mi> <mi>n</mi> <mi>t</mi> </mrow> </msub> </mrow> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mrow> <mn>2</mn> <msub> <mi>G</mi> <mi>p</mi> </msub> <mo>+</mo> <msub> <mi>l</mi> <mrow> <mi>c</mi> <mi>n</mi> <mi>t</mi> </mrow> </msub> </mrow> <mo>)</mo> </mrow> </mrow> <mrow> <mn>3</mn> <mrow> <mo>(</mo> <mrow> <msub> <mi>G</mi> <mi>p</mi> </msub> <mo>+</mo> <msub> <mi>k</mi> <mrow> <mi>c</mi> <mi>n</mi> <mi>t</mi> </mrow> </msub> </mrow> <mo>)</mo> </mrow> </mrow> </mfrac> </mrow> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> </mrow> </semantics></math> </div> <div class='l'> <label >(16)</label> </div> </div></div><div class='html-p'><a href="#mathematics-10-00408-t001" class="html-table">Table 1</a> presents Hill’s elastic moduli for (10, 10) single-walled carbon nanotubes for various chiral indices.</div></section><section id='sec2dot2-mathematics-10-00408' type=''><h4 class='html-italic' data-nested='2'> 2.2. Volume Fraction of the Reinforcement Fibers</h4><div class='html-p'>The volume fraction of the fibers for various distribution patterns is expressed as the following relations:</div><div class='html-p'>Uniform distribution of the fibers <math display='inline'><semantics> <mrow> <mi>U</mi> <msub> <mi>D</mi> <mi>f</mi> </msub> </mrow> </semantics></math>:<div class='html-disp-formula-info' id='FD17-mathematics-10-00408'> <div class='f'> <math display='block'><semantics> <mrow> <msub> <mi>V</mi> <mi>f</mi> </msub> <mo>=</mo> <msubsup> <mi>V</mi> <mrow> <mi>m</mi> <mi>i</mi> <mi>n</mi> </mrow> <mi>f</mi> </msubsup> <mo>+</mo> <mfrac> <mrow> <mrow> <mo>(</mo> <mrow> <msubsup> <mi>V</mi> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> <mi>f</mi> </msubsup> <mo>−</mo> <msubsup> <mi>V</mi> <mrow> <mi>m</mi> <mi>i</mi> <mi>n</mi> </mrow> <mi>f</mi> </msubsup> </mrow> <mo>)</mo> </mrow> </mrow> <mn>2</mn> </mfrac> </mrow> </semantics></math> </div> <div class='l'> <label >(17)</label> </div> </div></div><div class='html-p'>Functionally graded fiber distribution <math display='inline'><semantics> <mrow> <mi>F</mi> <msub> <mi>G</mi> <mi>f</mi> </msub> <mo>−</mo> <mi>X</mi> </mrow> </semantics></math>:<div class='html-disp-formula-info' id='FD18-mathematics-10-00408'> <div class='f'> <math display='block'><semantics> <mrow> <msub> <mi>V</mi> <mi>f</mi> </msub> <mo>=</mo> <msubsup> <mi>V</mi> <mrow> <mi>m</mi> <mi>i</mi> <mi>n</mi> </mrow> <mi>f</mi> </msubsup> <mo>+</mo> <mrow> <mo>(</mo> <mrow> <msubsup> <mi>V</mi> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> <mi>f</mi> </msubsup> <mo>−</mo> <msubsup> <mi>V</mi> <mrow> <mi>m</mi> <mi>i</mi> <mi>n</mi> </mrow> <mi>f</mi> </msubsup> </mrow> <mo>)</mo> </mrow> <mfrac> <mrow> <mrow> <mo>|</mo> <mrow> <mn>2</mn> <mrow> <mo>(</mo> <mrow> <mi>k</mi> <mo>−</mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> <mo>−</mo> <mi>N</mi> <mo>−</mo> <mn>1</mn> </mrow> <mo>|</mo> </mrow> </mrow> <mrow> <mi>N</mi> <mo>−</mo> <mn>1</mn> </mrow> </mfrac> </mrow> </semantics></math> </div> <div class='l'> <label >(18)</label> </div> </div></div><div class='html-p'>Functionally graded fiber distribution <math display='inline'><semantics> <mrow> <mi>F</mi> <msub> <mi>G</mi> <mi>f</mi> </msub> <mo>−</mo> <mi>O</mi> <mtext> </mtext> </mrow> </semantics></math>:<div class='html-disp-formula-info' id='FD19-mathematics-10-00408'> <div class='f'> <math display='block'><semantics> <mrow> <msub> <mi>V</mi> <mi>f</mi> </msub> <mo>=</mo> <msubsup> <mi>V</mi> <mrow> <mi>m</mi> <mi>i</mi> <mi>n</mi> </mrow> <mi>f</mi> </msubsup> <mo>+</mo> <mrow> <mo>(</mo> <mrow> <msubsup> <mi>V</mi> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> <mi>f</mi> </msubsup> <mo>−</mo> <msubsup> <mi>V</mi> <mrow> <mi>m</mi> <mi>i</mi> <mi>n</mi> </mrow> <mi>f</mi> </msubsup> </mrow> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>−</mo> <mfrac> <mrow> <mrow> <mo>|</mo> <mrow> <mn>2</mn> <mrow> <mo>(</mo> <mrow> <mi>k</mi> <mo>−</mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> <mo>−</mo> <mi>N</mi> <mo>−</mo> <mn>1</mn> </mrow> <mo>|</mo> </mrow> </mrow> <mrow> <mi>N</mi> <mo>−</mo> <mn>1</mn> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> </mrow> </semantics></math> </div> <div class='l'> <label >(19)</label> </div> </div></div><div class='html-p'>Functionally graded fiber distribution <math display='inline'><semantics> <mrow> <mi>F</mi> <msub> <mi>G</mi> <mi>f</mi> </msub> <mo>−</mo> <mi>A</mi> <mtext> </mtext> </mrow> </semantics></math>:<div class='html-disp-formula-info' id='FD20-mathematics-10-00408'> <div class='f'> <math display='block'><semantics> <mrow> <msub> <mi>V</mi> <mi>f</mi> </msub> <mo>=</mo> <msubsup> <mi>V</mi> <mrow> <mi>m</mi> <mi>i</mi> <mi>n</mi> </mrow> <mi>f</mi> </msubsup> <mo>+</mo> <mrow> <mo>(</mo> <mrow> <msubsup> <mi>V</mi> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> <mi>f</mi> </msubsup> <mo>−</mo> <msubsup> <mi>V</mi> <mrow> <mi>m</mi> <mi>i</mi> <mi>n</mi> </mrow> <mi>f</mi> </msubsup> </mrow> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>−</mo> <mfrac> <mrow> <mi>k</mi> <mo>−</mo> <mn>1</mn> </mrow> <mrow> <mi>N</mi> <mo>−</mo> <mn>1</mn> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> </mrow> </semantics></math> </div> <div class='l'> <label >(20)</label> </div> </div></div><div class='html-p'><math display='inline'><semantics> <mrow> <msubsup> <mi>V</mi> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> <mi>f</mi> </msubsup> </mrow> </semantics></math> and <math display='inline'><semantics> <mrow> <msubsup> <mi>V</mi> <mrow> <mi>m</mi> <mi>i</mi> <mi>n</mi> </mrow> <mi>f</mi> </msubsup> </mrow> </semantics></math> are the maximum and minimum volume fractions of the fibers. <span class='html-italic'>N</span> is the number of layers (odd number). The volume fractions along the thickness of the shell for various distribution patterns are plotted in <a href="#mathematics-10-00408-f003" class="html-fig">Figure 3</a>.</div></section></section><section id='sec3-mathematics-10-00408' type=''><h2 data-nested='1'> 3. Mathematical Formulations</h2><div class='html-p'>In the present work, we proposed a hyperbolic sine function shear deformation theory to define the governing equations for the free vibration problem of functionally graded CNTs/fiber-reinforced composite laminated shell. The displacement field can be expressed as:<div class='html-disp-formula-info' id='FD21-mathematics-10-00408'> <div class='f'> <math display='block'><semantics> <mrow> <mtable> <mtr> <mtd> <mrow> <mi>u</mi> <mrow> <mo>(</mo> <mrow> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>,</mo> <mi>z</mi> <mo>,</mo> <mi>t</mi> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>+</mo> <mfrac> <mi>z</mi> <mrow> <msub> <mi>R</mi> <mi>x</mi> </msub> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> <msub> <mi>u</mi> <mn>0</mn> </msub> <mo>−</mo> <mi>z</mi> <mfrac> <mrow> <mo>∂</mo> <msub> <mi>w</mi> <mn>0</mn> </msub> </mrow> <mrow> <mo>∂</mo> <mi>x</mi> </mrow> </mfrac> <mo>+</mo> <mi>f</mi> <mrow> <mo>(</mo> <mi>z</mi> <mo>)</mo> </mrow> <msub> <mi>ψ</mi> <mi>x</mi> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>v</mi> <mrow> <mo>(</mo> <mrow> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>,</mo> <mi>z</mi> <mo>,</mo> <mi>t</mi> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>+</mo> <mfrac> <mi>z</mi> <mrow> <msub> <mi>R</mi> <mi>y</mi> </msub> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> <msub> <mi>v</mi> <mn>0</mn> </msub> <mo>−</mo> <mi>z</mi> <mfrac> <mrow> <mo>∂</mo> <msub> <mi>w</mi> <mn>0</mn> </msub> </mrow> <mrow> <mo>∂</mo> <mi>y</mi> </mrow> </mfrac> <mo>+</mo> <mi>f</mi> <mrow> <mo>(</mo> <mi>z</mi> <mo>)</mo> </mrow> <msub> <mi>ψ</mi> <mi>y</mi> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>w</mi> <mrow> <mo>(</mo> <mrow> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>,</mo> <mi>z</mi> <mo>,</mo> <mi>t</mi> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>w</mi> <mn>0</mn> </msub> </mrow> </mtd> </mtr> </mtable> </mrow> </semantics></math> </div> <div class='l'> <label >(21)</label> </div> </div></div><div class='html-p'>The displacements of the midplane of the composite plate are <math display='inline'><semantics> <mrow> <msub> <mi>u</mi> <mn>0</mn> </msub> </mrow> </semantics></math>, <math display='inline'><semantics> <mrow> <msub> <mi>v</mi> <mn>0</mn> </msub> </mrow> </semantics></math>, and <math display='inline'><semantics> <mrow> <msub> <mi>w</mi> <mn>0</mn> </msub> </mrow> </semantics></math>, whereas <math display='inline'><semantics> <mrow> <msub> <mi>ψ</mi> <mi>x</mi> </msub> </mrow> </semantics></math> and <math display='inline'><semantics> <mrow> <msub> <mi>ψ</mi> <mi>y</mi> </msub> </mrow> </semantics></math> are the rotations of the transverse normal at the middle surface <span class='html-italic'>z</span> = 0. The shape function <math display='inline'><semantics> <mrow> <mi>f</mi> <mrow> <mo>(</mo> <mi>z</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> is proposed as hyperbolic sine, and it is given as:<div class='html-disp-formula-info' id='FD22-mathematics-10-00408'> <div class='f'> <math display='block'><semantics> <mrow> <mi>f</mi> <mrow> <mo>(</mo> <mi>z</mi> <mo>)</mo> </mrow> <mo>=</mo> <mi>h</mi> <mi>sinh</mi> <mrow> <mo>(</mo> <mrow> <mfrac> <mi>z</mi> <mi>h</mi> </mfrac> </mrow> <mo>)</mo> </mrow> <mo>−</mo> <mfrac> <mrow> <mn>3</mn> <msup> <mi>z</mi> <mn>3</mn> </msup> </mrow> <mrow> <mn>2</mn> <msup> <mi>h</mi> <mn>2</mn> </msup> </mrow> </mfrac> </mrow> </semantics></math> </div> <div class='l'> <label >(22)</label> </div> </div> where <div class='html-disp-formula-info' id='FD23-mathematics-10-00408'> <div class='f'> <math display='block'><semantics> <mrow> <mi>g</mi> <mrow> <mo>(</mo> <mi>z</mi> <mo>)</mo> </mrow> <mo>=</mo> <msup> <mi>f</mi> <mo>′</mo> </msup> <mrow> <mo>(</mo> <mi>z</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> </div> <div class='l'> </div> </div></div><div class='html-p'>The nonzero strains can be determined from the displacement as:<div class='html-disp-formula-info' id='FD24-mathematics-10-00408'> <div class='f'> <math display='block'><semantics> <mrow> <mtable> <mtr> <mtd> <mrow> <mrow> <mo>{</mo> <mrow> <mtable> <mtr> <mtd> <mrow> <msub> <mi>ε</mi> <mrow> <mi>x</mi> <mi>x</mi> </mrow> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>ε</mi> <mrow> <mi>y</mi> <mi>y</mi> </mrow> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>γ</mi> <mrow> <mi>x</mi> <mi>y</mi> </mrow> </msub> </mrow> </mtd> </mtr> </mtable> </mrow> <mo>}</mo> </mrow> <mo>=</mo> <mrow> <mo>{</mo> <mrow> <mtable> <mtr> <mtd> <mrow> <msubsup> <mi>ε</mi> <mrow> <mi>x</mi> <mi>x</mi> </mrow> <mn>0</mn> </msubsup> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msubsup> <mi>ε</mi> <mrow> <mi>y</mi> <mi>y</mi> </mrow> <mn>0</mn> </msubsup> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msubsup> <mi>γ</mi> <mrow> <mi>x</mi> <mi>y</mi> </mrow> <mn>0</mn> </msubsup> </mrow> </mtd> </mtr> </mtable> </mrow> <mo>}</mo> </mrow> <mo>+</mo> <mi>z</mi> <mrow> <mo>{</mo> <mrow> <mtable> <mtr> <mtd> <mrow> <msubsup> <mi>ε</mi> <mrow> <mi>x</mi> <mi>x</mi> </mrow> <mn>1</mn> </msubsup> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msubsup> <mi>ε</mi> <mrow> <mi>y</mi> <mi>y</mi> </mrow> <mn>1</mn> </msubsup> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msubsup> <mi>γ</mi> <mrow> <mi>x</mi> <mi>y</mi> </mrow> <mn>1</mn> </msubsup> </mrow> </mtd> </mtr> </mtable> </mrow> <mo>}</mo> </mrow> <mo>+</mo> <mi>f</mi> <mrow> <mo>(</mo> <mi>z</mi> <mo>)</mo> </mrow> <mrow> <mo>{</mo> <mrow> <mtable> <mtr> <mtd> <mrow> <msubsup> <mi>ε</mi> <mrow> <mi>x</mi> <mi>x</mi> </mrow> <mn>2</mn> </msubsup> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msubsup> <mi>ε</mi> <mrow> <mi>y</mi> <mi>y</mi> </mrow> <mn>2</mn> </msubsup> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msubsup> <mi>γ</mi> <mrow> <mi>x</mi> <mi>y</mi> </mrow> <mn>2</mn> </msubsup> </mrow> </mtd> </mtr> </mtable> </mrow> <mo>}</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>ε</mi> <mrow> <mi>z</mi> <mi>z</mi> </mrow> </msub> <mo>=</mo> <mn>0</mn> <mo>,</mo> <mtext> </mtext> <mrow> <mo>{</mo> <mrow> <mtable> <mtr> <mtd> <mrow> <msub> <mi>γ</mi> <mrow> <mi>y</mi> <mi>z</mi> </mrow> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>γ</mi> <mrow> <mi>x</mi> <mi>z</mi> </mrow> </msub> </mrow> </mtd> </mtr> </mtable> </mrow> <mo>}</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <mi mathvariant="normal">d</mi> <mi>f</mi> <mrow> <mo>(</mo> <mi>z</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mi mathvariant="normal">d</mi> <mi>z</mi> </mrow> </mfrac> <mrow> <mo>{</mo> <mrow> <mtable> <mtr> <mtd> <mrow> <msubsup> <mi>γ</mi> <mrow> <mi>y</mi> <mi>z</mi> </mrow> <mn>0</mn> </msubsup> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msubsup> <mi>γ</mi> <mrow> <mi>x</mi> <mi>z</mi> </mrow> <mn>0</mn> </msubsup> </mrow> </mtd> </mtr> </mtable> </mrow> <mo>}</mo> </mrow> <mo>,</mo> </mrow> </mtd> </mtr> </mtable> </mrow> </semantics></math> </div> <div class='l'> <label >(23)</label> </div> </div> where:<div class='html-disp-formula-info' id='FD25-mathematics-10-00408'> <div class='f'> <math display='block'><semantics> <mrow> <mrow> <mtable> <mtr> <mtd> <mrow> <mrow> <mo>{</mo> <mrow> <mtable> <mtr> <mtd> <mrow> <msubsup> <mi>ε</mi> <mrow> <mi>x</mi> <mi>x</mi> </mrow> <mn>0</mn> </msubsup> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msubsup> <mi>ε</mi> <mrow> <mi>y</mi> <mi>y</mi> </mrow> <mn>0</mn> </msubsup> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msubsup> <mi>γ</mi> <mrow> <mi>x</mi> <mi>y</mi> </mrow> <mn>0</mn> </msubsup> </mrow> </mtd> </mtr> </mtable> </mrow> <mo>}</mo> </mrow> <mo>=</mo> <mrow> <mo>{</mo> <mrow> <mtable> <mtr> <mtd> <mrow> <mfrac> <mrow> <mo>∂</mo> <msub> <mi>u</mi> <mn>0</mn> </msub> </mrow> <mrow> <mo>∂</mo> <mi>x</mi> </mrow> </mfrac> <mo>+</mo> <mfrac> <mrow> <msub> <mi>w</mi> <mn>0</mn> </msub> </mrow> <mrow> <msub> <mi>R</mi> <mi>x</mi> </msub> </mrow> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mfrac> <mrow> <mo>∂</mo> <msub> <mi>v</mi> <mn>0</mn> </msub> </mrow> <mrow> <mo>∂</mo> <mi>y</mi> </mrow> </mfrac> <mo>+</mo> <mfrac> <mrow> <msub> <mi>w</mi> <mn>0</mn> </msub> </mrow> <mrow> <msub> <mi>R</mi> <mi>y</mi> </msub> </mrow> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mfrac> <mrow> <mo>∂</mo> <msub> <mi>v</mi> <mn>0</mn> </msub> </mrow> <mrow> <mo>∂</mo> <mi>x</mi> </mrow> </mfrac> <mo>+</mo> <mfrac> <mrow> <mo>∂</mo> <msub> <mi>u</mi> <mn>0</mn> </msub> </mrow> <mrow> <mo>∂</mo> <mi>y</mi> </mrow> </mfrac> </mrow> </mtd> </mtr> </mtable> </mrow> <mo>}</mo> </mrow> <mo>,</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow/> </mtd> </mtr> </mtable> </mrow> <mrow> <mrow> <mo>{</mo> <mrow> <mtable> <mtr> <mtd> <mrow> <msubsup> <mi>ε</mi> <mrow> <mi>x</mi> <mi>x</mi> </mrow> <mn>1</mn> </msubsup> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msubsup> <mi>ε</mi> <mrow> <mi>y</mi> <mi>y</mi> </mrow> <mn>1</mn> </msubsup> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msubsup> <mi>γ</mi> <mrow> <mi>x</mi> <mi>y</mi> </mrow> <mn>1</mn> </msubsup> </mrow> </mtd> </mtr> </mtable> </mrow> <mo>}</mo> </mrow> <mo>=</mo> <mo>−</mo> <mrow> <mo>{</mo> <mrow> <mtable> <mtr> <mtd> <mrow> <mfrac> <mrow> <msup> <mo>∂</mo> <mn>2</mn> </msup> <msub> <mi>w</mi> <mn>0</mn> </msub> </mrow> <mrow> <mo>∂</mo> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mfrac> <mrow> <msup> <mo>∂</mo> <mn>2</mn> </msup> <msub> <mi>w</mi> <mn>0</mn> </msub> </mrow> <mrow> <mo>∂</mo> <msup> <mi>y</mi> <mn>2</mn> </msup> </mrow> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mn>2</mn> <mfrac> <mrow> <msup> <mo>∂</mo> <mn>2</mn> </msup> <msub> <mi>w</mi> <mn>0</mn> </msub> </mrow> <mrow> <mo>∂</mo> <mi>x</mi> <mo>∂</mo> <mi>y</mi> </mrow> </mfrac> </mrow> </mtd> </mtr> </mtable> </mrow> <mo>}</mo> </mrow> <mo>,</mo> <mtext> </mtext> </mrow> <mspace linebreak="newline"/> <mrow> <mrow> <mo>{</mo> <mrow> <mtable> <mtr> <mtd> <mrow> <msubsup> <mi>ε</mi> <mrow> <mi>x</mi> <mi>x</mi> </mrow> <mn>2</mn> </msubsup> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msubsup> <mi>ε</mi> <mrow> <mi>y</mi> <mi>y</mi> </mrow> <mn>2</mn> </msubsup> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msubsup> <mi>γ</mi> <mrow> <mi>x</mi> <mi>y</mi> </mrow> <mn>2</mn> </msubsup> </mrow> </mtd> </mtr> </mtable> </mrow> <mo>}</mo> </mrow> <mo>=</mo> <mrow> <mo>{</mo> <mrow> <mtable> <mtr> <mtd> <mrow> <mfrac> <mrow> <mo>∂</mo> <msub> <mi>φ</mi> <mn>1</mn> </msub> </mrow> <mrow> <mo>∂</mo> <mi>x</mi> </mrow> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mfrac> <mrow> <mo>∂</mo> <msub> <mi>φ</mi> <mn>2</mn> </msub> </mrow> <mrow> <mo>∂</mo> <mi>y</mi> </mrow> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mfrac> <mrow> <mo>∂</mo> <msub> <mi>φ</mi> <mn>2</mn> </msub> </mrow> <mrow> <mo>∂</mo> <mi>x</mi> </mrow> </mfrac> <mo>+</mo> <mfrac> <mrow> <mo>∂</mo> <msub> <mi>φ</mi> <mn>1</mn> </msub> </mrow> <mrow> <mo>∂</mo> <mi>y</mi> </mrow> </mfrac> </mrow> </mtd> </mtr> </mtable> </mrow> <mo>}</mo> </mrow> <mo>,</mo> </mrow> <mrow> <mrow> <mo>{</mo> <mrow> <mtable> <mtr> <mtd> <mrow> <msubsup> <mi>γ</mi> <mrow> <mi>y</mi> <mi>z</mi> </mrow> <mn>0</mn> </msubsup> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msubsup> <mi>γ</mi> <mrow> <mi>x</mi> <mi>z</mi> </mrow> <mn>0</mn> </msubsup> </mrow> </mtd> </mtr> </mtable> </mrow> <mo>}</mo> </mrow> <mo>=</mo> <mrow> <mo>{</mo> <mrow> <mtable> <mtr> <mtd> <mrow> <msub> <mi>φ</mi> <mi>x</mi> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>φ</mi> <mi>y</mi> </msub> </mrow> </mtd> </mtr> </mtable> </mrow> <mo>}</mo> </mrow> <mo>.</mo> </mrow> </mrow> </semantics></math> </div> <div class='l'> <label >(24)</label> </div> </div></div><div class='html-p'>The stresses relations associated with the strains can be written as:<div class='html-disp-formula-info' id='FD26-mathematics-10-00408'> <div class='f'> <math display='block'><semantics> <mrow> <msup> <mrow> <mrow> <mo>{</mo> <mrow> <mtable> <mtr> <mtd> <mrow> <msub> <mi>σ</mi> <mrow> <mi>x</mi> <mi>x</mi> </mrow> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>σ</mi> <mrow> <mi>y</mi> <mi>y</mi> </mrow> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mtable> <mtr> <mtd> <mrow> <mtable> <mtr> <mtd> <mrow> <msub> <mi>τ</mi> <mrow> <mi>y</mi> <mi>z</mi> </mrow> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>τ</mi> <mrow> <mi>x</mi> <mi>z</mi> </mrow> </msub> </mrow> </mtd> </mtr> </mtable> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>τ</mi> <mrow> <mi>x</mi> <mi>y</mi> </mrow> </msub> </mrow> </mtd> </mtr> </mtable> </mrow> </mtd> </mtr> </mtable> </mrow> <mo>}</mo> </mrow> </mrow> <mrow> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </mrow> </msup> <mo>=</mo> <mrow> <mo>[</mo> <mrow> <mtable> <mtr> <mtd> <mrow> <mtable> <mtr> <mtd> <mrow> <mtable> <mtr> <mtd> <mrow> <msubsup> <mover accent="true"> <mi>Q</mi> <mo>¯</mo> </mover> <mrow> <mn>11</mn> </mrow> <mi>k</mi> </msubsup> </mrow> </mtd> <mtd> <mrow> <msubsup> <mover accent="true"> <mi>Q</mi> <mo>¯</mo> </mover> <mrow> <mn>12</mn> </mrow> <mi>k</mi> </msubsup> </mrow> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mrow> <msubsup> <mover accent="true"> <mi>Q</mi> <mo>¯</mo> </mover> <mrow> <mn>12</mn> </mrow> <mi>k</mi> </msubsup> </mrow> </mtd> <mtd> <mrow> <msubsup> <mover accent="true"> <mi>Q</mi> <mo>¯</mo> </mover> <mrow> <mn>22</mn> </mrow> <mi>k</mi> </msubsup> </mrow> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mrow> <mtable> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> </mrow> </mtd> <mtd> <mrow> <mtable> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> </mrow> </mtd> <mtd> <mrow> <mtable> <mtr> <mtd> <mrow> <msubsup> <mover accent="true"> <mi>Q</mi> <mo>¯</mo> </mover> <mrow> <mn>44</mn> </mrow> <mi>k</mi> </msubsup> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> </mrow> </mtd> </mtr> </mtable> </mrow> </mtd> <mtd> <mrow> <mtable> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mrow> <mtable> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mrow> <msubsup> <mover accent="true"> <mi>Q</mi> <mo>¯</mo> </mover> <mrow> <mn>55</mn> </mrow> <mi>k</mi> </msubsup> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> </mrow> </mtd> </mtr> </mtable> </mrow> </mtd> </mtr> </mtable> </mrow> </mtd> <mtd> <mrow> <mtable> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mrow> <mtable> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mrow> <msubsup> <mover accent="true"> <mi>Q</mi> <mo>¯</mo> </mover> <mrow> <mn>66</mn> </mrow> <mi>k</mi> </msubsup> </mrow> </mtd> </mtr> </mtable> </mrow> </mtd> </mtr> </mtable> </mrow> </mtd> </mtr> </mtable> </mrow> <mo>]</mo> </mrow> <msup> <mrow> <mrow> <mo>{</mo> <mrow> <mtable> <mtr> <mtd> <mrow> <msub> <mi>ε</mi> <mrow> <mi>x</mi> <mi>x</mi> </mrow> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>ε</mi> <mrow> <mi>y</mi> <mi>y</mi> </mrow> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mtable> <mtr> <mtd> <mrow> <mtable> <mtr> <mtd> <mrow> <msub> <mi>γ</mi> <mrow> <mi>y</mi> <mi>z</mi> </mrow> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>γ</mi> <mrow> <mi>x</mi> <mi>z</mi> </mrow> </msub> </mrow> </mtd> </mtr> </mtable> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>γ</mi> <mrow> <mi>x</mi> <mi>y</mi> </mrow> </msub> </mrow> </mtd> </mtr> </mtable> </mrow> </mtd> </mtr> </mtable> </mrow> <mo>}</mo> </mrow> </mrow> <mrow> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </mrow> </msup> </mrow> </semantics></math> </div> <div class='l'> <label >(25)</label> </div> </div></div><div class='html-p'>The transformed material constants <math display='inline'><semantics> <mrow> <msubsup> <mover accent="true"> <mi>Q</mi> <mo>¯</mo> </mover> <mrow> <mi>i</mi> <mi>j</mi> </mrow> <mi>k</mi> </msubsup> </mrow> </semantics></math> are expressed as:<div class='html-disp-formula-info' id='FD27-mathematics-10-00408'> <div class='f'> <math display='block'><semantics> <mrow> <mrow> <msubsup> <mover accent="true"> <mi>Q</mi> <mo>¯</mo> </mover> <mrow> <mn>11</mn> </mrow> <mi>k</mi> </msubsup> <mo>=</mo> <msub> <mi>Q</mi> <mrow> <mn>11</mn> </mrow> </msub> <mi>c</mi> <mi>o</mi> <msup> <mi>s</mi> <mn>4</mn> </msup> <msub> <mi>θ</mi> <mi>k</mi> </msub> <mo>+</mo> <mn>2</mn> <mrow> <mo>(</mo> <mrow> <msub> <mi>Q</mi> <mrow> <mn>12</mn> </mrow> </msub> <mo>+</mo> <mn>2</mn> <msub> <mi>Q</mi> <mrow> <mn>66</mn> </mrow> </msub> </mrow> <mo>)</mo> </mrow> <mi>s</mi> <mi>i</mi> <msup> <mi>n</mi> <mn>2</mn> </msup> <msub> <mi>θ</mi> <mi>k</mi> </msub> <mi>c</mi> <mi>o</mi> <msup> <mi>s</mi> <mn>2</mn> </msup> <msub> <mi>θ</mi> <mi>k</mi> </msub> <mo>+</mo> <msub> <mi>Q</mi> <mrow> <mn>22</mn> </mrow> </msub> <mi>s</mi> <mi>i</mi> <msup> <mi>n</mi> <mn>4</mn> </msup> <msub> <mi>θ</mi> <mi>k</mi> </msub> </mrow> <mspace linebreak="newline"/> <mrow> <msubsup> <mover accent="true"> <mi>Q</mi> <mo>¯</mo> </mover> <mrow> <mn>12</mn> </mrow> <mi>k</mi> </msubsup> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <msub> <mi>Q</mi> <mrow> <mn>11</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>Q</mi> <mrow> <mn>22</mn> </mrow> </msub> <mo>−</mo> <mn>4</mn> <msub> <mi>Q</mi> <mrow> <mn>66</mn> </mrow> </msub> </mrow> <mo>)</mo> </mrow> <mi>s</mi> <mi>i</mi> <msup> <mi>n</mi> <mn>2</mn> </msup> <msub> <mi>θ</mi> <mi>k</mi> </msub> <mi>c</mi> <mi>o</mi> <msup> <mi>s</mi> <mn>2</mn> </msup> <msub> <mi>θ</mi> <mi>k</mi> </msub> <mo>+</mo> <msub> <mi>Q</mi> <mrow> <mn>12</mn> </mrow> </msub> <mrow> <mo>(</mo> <mrow> <mi>s</mi> <mi>i</mi> <msup> <mi>n</mi> <mn>4</mn> </msup> <msub> <mi>θ</mi> <mi>k</mi> </msub> <mo>+</mo> <mi>c</mi> <mi>o</mi> <msup> <mi>s</mi> <mn>4</mn> </msup> <msub> <mi>θ</mi> <mi>k</mi> </msub> </mrow> <mo>)</mo> </mrow> </mrow> <mspace linebreak="newline"/> <mrow> <msubsup> <mover accent="true"> <mi>Q</mi> <mo>¯</mo> </mover> <mrow> <mn>22</mn> </mrow> <mi>k</mi> </msubsup> <mo>=</mo> <msub> <mi>Q</mi> <mrow> <mn>11</mn> </mrow> </msub> <mi>s</mi> <mi>i</mi> <msup> <mi>n</mi> <mn>4</mn> </msup> <msub> <mi>θ</mi> <mi>k</mi> </msub> <mo>+</mo> <mn>2</mn> <mrow> <mo>(</mo> <mrow> <msub> <mi>Q</mi> <mrow> <mn>12</mn> </mrow> </msub> <mo>+</mo> <mn>2</mn> <msub> <mi>Q</mi> <mrow> <mn>66</mn> </mrow> </msub> </mrow> <mo>)</mo> </mrow> <mi>s</mi> <mi>i</mi> <msup> <mi>n</mi> <mn>2</mn> </msup> <msub> <mi>θ</mi> <mi>k</mi> </msub> <mi>c</mi> <mi>o</mi> <msup> <mi>s</mi> <mn>2</mn> </msup> <msub> <mi>θ</mi> <mi>k</mi> </msub> <mo>+</mo> <msub> <mi>Q</mi> <mrow> <mn>22</mn> </mrow> </msub> <mi>c</mi> <mi>o</mi> <msup> <mi>s</mi> <mn>4</mn> </msup> <msub> <mi>θ</mi> <mi>k</mi> </msub> </mrow> <mspace linebreak="newline"/> <mrow> <msubsup> <mover accent="true"> <mi>Q</mi> <mo>¯</mo> </mover> <mrow> <mn>66</mn> </mrow> <mi>k</mi> </msubsup> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <msub> <mi>Q</mi> <mrow> <mn>11</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>Q</mi> <mrow> <mn>22</mn> </mrow> </msub> <mo>−</mo> <mn>2</mn> <msub> <mi>Q</mi> <mrow> <mn>12</mn> </mrow> </msub> <mo>−</mo> <mn>2</mn> <msub> <mi>Q</mi> <mrow> <mn>66</mn> </mrow> </msub> </mrow> <mo>)</mo> </mrow> <mi>s</mi> <mi>i</mi> <msup> <mi>n</mi> <mn>2</mn> </msup> <msub> <mi>θ</mi> <mi>k</mi> </msub> <mi>c</mi> <mi>o</mi> <msup> <mi>s</mi> <mn>2</mn> </msup> <msub> <mi>θ</mi> <mi>k</mi> </msub> <mo>+</mo> <msub> <mi>Q</mi> <mrow> <mn>66</mn> </mrow> </msub> <mrow> <mo>(</mo> <mrow> <mi>s</mi> <mi>i</mi> <msup> <mi>n</mi> <mn>4</mn> </msup> <msub> <mi>θ</mi> <mi>k</mi> </msub> <mo>+</mo> <mi>c</mi> <mi>o</mi> <msup> <mi>s</mi> <mn>4</mn> </msup> <msub> <mi>θ</mi> <mi>k</mi> </msub> </mrow> <mo>)</mo> </mrow> </mrow> <mspace linebreak="newline"/> <mrow> <msubsup> <mover accent="true"> <mi>Q</mi> <mo>¯</mo> </mover> <mrow> <mn>44</mn> </mrow> <mi>k</mi> </msubsup> <mo>=</mo> <msub> <mi>Q</mi> <mrow> <mn>44</mn> </mrow> </msub> <mi>c</mi> <mi>o</mi> <msup> <mi>s</mi> <mn>2</mn> </msup> <msub> <mi>θ</mi> <mi>k</mi> </msub> <mo>+</mo> <msub> <mi>Q</mi> <mrow> <mn>55</mn> </mrow> </msub> <mi>s</mi> <mi>i</mi> <msup> <mi>n</mi> <mn>2</mn> </msup> <msub> <mi>θ</mi> <mi>k</mi> </msub> </mrow> <mspace linebreak="newline"/> <mrow> <msubsup> <mover accent="true"> <mi>Q</mi> <mo>¯</mo> </mover> <mrow> <mn>55</mn> </mrow> <mi>k</mi> </msubsup> <mo>=</mo> <msub> <mi>Q</mi> <mrow> <mn>55</mn> </mrow> </msub> <mi>c</mi> <mi>o</mi> <msup> <mi>s</mi> <mn>2</mn> </msup> <msub> <mi>θ</mi> <mi>k</mi> </msub> <mo>+</mo> <msub> <mi>Q</mi> <mrow> <mn>44</mn> </mrow> </msub> <mi>s</mi> <mi>i</mi> <msup> <mi>n</mi> <mn>2</mn> </msup> <msub> <mi>θ</mi> <mi>k</mi> </msub> </mrow> </mrow> </semantics></math> </div> <div class='l'> <label >(26)</label> </div> </div> where <math display='inline'><semantics> <mrow> <msub> <mi>θ</mi> <mi>k</mi> </msub> </mrow> </semantics></math> is the lamination angle of the <span class='html-italic'>k</span>th layer:<div class='html-disp-formula-info' id='FD28-mathematics-10-00408'> <div class='f'> <math display='block'><semantics> <mrow> <mtable> <mtr> <mtd> <mrow> <msub> <mi>Q</mi> <mrow> <mn>11</mn> </mrow> </msub> <mo>=</mo> <mfrac> <mrow> <msub> <mi>E</mi> <mrow> <mn>11</mn> </mrow> </msub> </mrow> <mrow> <mn>1</mn> <mo>−</mo> <msub> <mi>ν</mi> <mrow> <mn>12</mn> </mrow> </msub> <msub> <mi>ν</mi> <mrow> <mn>21</mn> </mrow> </msub> </mrow> </mfrac> <mtext> </mtext> <mo>,</mo> <mtext> </mtext> <msub> <mi>Q</mi> <mrow> <mn>22</mn> </mrow> </msub> <mo>=</mo> <mfrac> <mrow> <msub> <mi>E</mi> <mrow> <mn>22</mn> </mrow> </msub> </mrow> <mrow> <mn>1</mn> <mo>−</mo> <msub> <mi>ν</mi> <mrow> <mn>12</mn> </mrow> </msub> <msub> <mi>ν</mi> <mrow> <mn>21</mn> </mrow> </msub> </mrow> </mfrac> <mo>,</mo> <msub> <mi>Q</mi> <mrow> <mn>12</mn> </mrow> </msub> <mo>=</mo> <mfrac> <mrow> <msub> <mi>ν</mi> <mrow> <mn>12</mn> </mrow> </msub> <msub> <mi>E</mi> <mrow> <mn>22</mn> </mrow> </msub> </mrow> <mrow> <mn>1</mn> <mo>−</mo> <msub> <mi>ν</mi> <mrow> <mn>12</mn> </mrow> </msub> <msub> <mi>ν</mi> <mrow> <mn>21</mn> </mrow> </msub> </mrow> </mfrac> <mo>,</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>Q</mi> <mrow> <mn>44</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>G</mi> <mrow> <mn>23</mn> </mrow> </msub> <mo>,</mo> <mtext> </mtext> <msub> <mi>Q</mi> <mrow> <mn>55</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>G</mi> <mrow> <mn>13</mn> </mrow> </msub> <mo>,</mo> <mtext> </mtext> <msub> <mi>Q</mi> <mrow> <mn>66</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>G</mi> <mrow> <mn>12</mn> </mrow> </msub> </mrow> </mtd> </mtr> </mtable> </mrow> </semantics></math> </div> <div class='l'> </div> </div></div><div class='html-p'>By integrating Equation (25), the stress relations, moment, and additional moment resultants can be obtained as:<div class='html-disp-formula-info' id='FD29-mathematics-10-00408'> <div class='f'> <math display='block'><semantics> <mrow> <mrow> <mo>{</mo> <mrow> <mtable> <mtr> <mtd> <mrow> <mrow> <mo>{</mo> <mi>N</mi> <mo>}</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mrow> <mo>{</mo> <mi>M</mi> <mo>}</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mrow> <mo>{</mo> <mi>P</mi> <mo>}</mo> </mrow> </mrow> </mtd> </mtr> </mtable> </mrow> <mo>}</mo> </mrow> <mo>=</mo> <mrow> <mo>[</mo> <mrow> <mtable> <mtr> <mtd> <mrow> <mrow> <mo>[</mo> <mi>A</mi> <mo>]</mo> </mrow> </mrow> </mtd> <mtd> <mrow> <mrow> <mo>[</mo> <mi>B</mi> <mo>]</mo> </mrow> </mrow> </mtd> <mtd> <mrow> <mrow> <mo>[</mo> <mi>C</mi> <mo>]</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mrow> <mo>[</mo> <mi>B</mi> <mo>]</mo> </mrow> </mrow> </mtd> <mtd> <mrow> <mrow> <mo>[</mo> <mi>D</mi> <mo>]</mo> </mrow> </mrow> </mtd> <mtd> <mrow> <mrow> <mo>[</mo> <mi>F</mi> <mo>]</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mrow> <mo>[</mo> <mi>C</mi> <mo>]</mo> </mrow> </mrow> </mtd> <mtd> <mrow> <mrow> <mo>[</mo> <mi>F</mi> <mo>]</mo> </mrow> </mrow> </mtd> <mtd> <mrow> <mrow> <mo>[</mo> <mi>H</mi> <mo>]</mo> </mrow> </mrow> </mtd> </mtr> </mtable> </mrow> <mo>]</mo> </mrow> <mrow> <mo>{</mo> <mrow> <mtable> <mtr> <mtd> <mrow> <mrow> <mo>{</mo> <mrow> <msup> <mi>ε</mi> <mn>0</mn> </msup> </mrow> <mo>}</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mrow> <mo>{</mo> <mrow> <msup> <mi>ε</mi> <mn>1</mn> </msup> </mrow> <mo>}</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mrow> <mo>{</mo> <mrow> <msup> <mi>ε</mi> <mn>2</mn> </msup> </mrow> <mo>}</mo> </mrow> </mrow> </mtd> </mtr> </mtable> </mrow> <mo>}</mo> </mrow> </mrow> </semantics></math> </div> <div class='l'> <label >(27)</label> </div> </div><div class='html-disp-formula-info' id='FD30-mathematics-10-00408'> <div class='f'> <math display='block'><semantics> <mrow> <mrow> <mo>{</mo> <mrow> <mtable> <mtr> <mtd> <mrow> <msub> <mi>R</mi> <mrow> <mi>y</mi> <mi>z</mi> </mrow> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>R</mi> <mrow> <mi>x</mi> <mi>z</mi> </mrow> </msub> </mrow> </mtd> </mtr> </mtable> </mrow> <mo>}</mo> </mrow> <mo>=</mo> <mrow> <mo>[</mo> <mrow> <mtable> <mtr> <mtd> <mrow> <msub> <mi>J</mi> <mrow> <mn>44</mn> </mrow> </msub> </mrow> </mtd> <mtd> <mrow> <msub> <mi>J</mi> <mrow> <mn>45</mn> </mrow> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>J</mi> <mrow> <mn>45</mn> </mrow> </msub> </mrow> </mtd> <mtd> <mrow> <msub> <mi>J</mi> <mrow> <mn>55</mn> </mrow> </msub> </mrow> </mtd> </mtr> </mtable> </mrow> <mo>]</mo> </mrow> <mrow> <mo>{</mo> <mrow> <mtable> <mtr> <mtd> <mrow> <msubsup> <mi>γ</mi> <mrow> <mi>y</mi> <mi>z</mi> </mrow> <mn>0</mn> </msubsup> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msubsup> <mi>γ</mi> <mrow> <mi>x</mi> <mi>z</mi> </mrow> <mn>0</mn> </msubsup> </mrow> </mtd> </mtr> </mtable> </mrow> <mo>}</mo> </mrow> </mrow> </semantics></math> </div> <div class='l'> <label >(28)</label> </div> </div> where:<div class='html-disp-formula-info' id='FD31-mathematics-10-00408'> <div class='f'> <math display='block'><semantics> <mrow> <mtable> <mtr> <mtd> <mrow> <mrow> <mo>{</mo> <mi>N</mi> <mo>}</mo> </mrow> <mo>=</mo> <msup> <mrow> <mrow> <mo>{</mo> <mrow> <mtable> <mtr> <mtd> <mrow> <msub> <mi>N</mi> <mrow> <mi>x</mi> <mi>x</mi> </mrow> </msub> </mrow> </mtd> <mtd> <mrow> <msub> <mi>N</mi> <mrow> <mi>y</mi> <mi>y</mi> </mrow> </msub> </mrow> </mtd> <mtd> <mrow> <msub> <mi>N</mi> <mrow> <mi>x</mi> <mi>y</mi> </mrow> </msub> </mrow> </mtd> </mtr> </mtable> </mrow> <mo>}</mo> </mrow> </mrow> <mi>T</mi> </msup> <mo>,</mo> <mrow> <mo>{</mo> <mi>M</mi> <mo>}</mo> </mrow> <mo>=</mo> <msup> <mrow> <mrow> <mo>{</mo> <mrow> <mtable> <mtr> <mtd> <mrow> <msub> <mi>M</mi> <mrow> <mi>x</mi> <mi>x</mi> </mrow> </msub> </mrow> </mtd> <mtd> <mrow> <msub> <mi>M</mi> <mrow> <mi>y</mi> <mi>y</mi> </mrow> </msub> </mrow> </mtd> <mtd> <mrow> <msub> <mi>M</mi> <mrow> <mi>x</mi> <mi>y</mi> </mrow> </msub> </mrow> </mtd> </mtr> </mtable> </mrow> <mo>}</mo> </mrow> </mrow> <mi>T</mi> </msup> <mo>,</mo> <mrow> <mo>{</mo> <mi>P</mi> <mo>}</mo> </mrow> <mo>=</mo> <msup> <mrow> <mrow> <mo>{</mo> <mrow> <mtable> <mtr> <mtd> <mrow> <msub> <mi>P</mi> <mrow> <mi>x</mi> <mi>x</mi> </mrow> </msub> </mrow> </mtd> <mtd> <mrow> <msub> <mi>P</mi> <mrow> <mi>y</mi> <mi>y</mi> </mrow> </msub> </mrow> </mtd> <mtd> <mrow> <msub> <mi>P</mi> <mrow> <mi>x</mi> <mi>y</mi> </mrow> </msub> </mrow> </mtd> </mtr> </mtable> </mrow> <mo>}</mo> </mrow> </mrow> <mi>T</mi> </msup> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mrow> <mo>{</mo> <mrow> <msup> <mi>ε</mi> <mn>0</mn> </msup> </mrow> <mo>}</mo> </mrow> <mo>=</mo> <msup> <mrow> <mrow> <mo>{</mo> <mrow> <mtable> <mtr> <mtd> <mrow> <msubsup> <mi>ε</mi> <mrow> <mi>x</mi> <mi>x</mi> </mrow> <mn>0</mn> </msubsup> </mrow> </mtd> <mtd> <mrow> <msubsup> <mi>ε</mi> <mrow> <mi>y</mi> <mi>y</mi> </mrow> <mn>0</mn> </msubsup> </mrow> </mtd> <mtd> <mrow> <msubsup> <mi>γ</mi> <mrow> <mi>x</mi> <mi>y</mi> </mrow> <mn>0</mn> </msubsup> </mrow> </mtd> </mtr> </mtable> </mrow> <mo>}</mo> </mrow> </mrow> <mi>T</mi> </msup> <mo>,</mo> <mrow> <mo>{</mo> <mrow> <msup> <mi>ε</mi> <mn>1</mn> </msup> </mrow> <mo>}</mo> </mrow> <mo>=</mo> <msup> <mrow> <mrow> <mo>{</mo> <mrow> <mtable> <mtr> <mtd> <mrow> <msubsup> <mi>ε</mi> <mrow> <mi>x</mi> <mi>x</mi> </mrow> <mn>1</mn> </msubsup> </mrow> </mtd> <mtd> <mrow> <msubsup> <mi>ε</mi> <mrow> <mi>y</mi> <mi>y</mi> </mrow> <mn>1</mn> </msubsup> </mrow> </mtd> <mtd> <mrow> <msubsup> <mi>γ</mi> <mrow> <mi>x</mi> <mi>y</mi> </mrow> <mn>1</mn> </msubsup> </mrow> </mtd> </mtr> </mtable> </mrow> <mo>}</mo> </mrow> </mrow> <mi>T</mi> </msup> <mo>,</mo> <mrow> <mo>{</mo> <mrow> <msup> <mi>ε</mi> <mn>2</mn> </msup> </mrow> <mo>}</mo> </mrow> <mo>=</mo> <msup> <mrow> <mrow> <mo>{</mo> <mrow> <mtable> <mtr> <mtd> <mrow> <msubsup> <mi>ε</mi> <mrow> <mi>x</mi> <mi>x</mi> </mrow> <mn>2</mn> </msubsup> </mrow> </mtd> <mtd> <mrow> <msubsup> <mi>ε</mi> <mrow> <mi>y</mi> <mi>y</mi> </mrow> <mn>2</mn> </msubsup> </mrow> </mtd> <mtd> <mrow> <msubsup> <mi>γ</mi> <mrow> <mi>x</mi> <mi>y</mi> </mrow> <mn>2</mn> </msubsup> </mrow> </mtd> </mtr> </mtable> </mrow> <mo>}</mo> </mrow> </mrow> <mi>T</mi> </msup> </mrow> </mtd> </mtr> </mtable> </mrow> </semantics></math> </div> <div class='l'> <label >(29)</label> </div> </div></div><div class='html-p'>The coefficients <math display='inline'><semantics> <mrow> <msub> <mi>A</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> </mrow> </semantics></math>,<math display='inline'><semantics> <mrow> <mtext> </mtext> <msub> <mi>B</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> </mrow> </semantics></math>, <math display='inline'><semantics> <mrow> <msub> <mi>D</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> </mrow> </semantics></math>, <math display='inline'><semantics> <mrow> <msub> <mi>C</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> </mrow> </semantics></math>, <math display='inline'><semantics> <mrow> <msub> <mi>F</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> </mrow> </semantics></math> and <math display='inline'><semantics> <mrow> <msub> <mi>H</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> </mrow> </semantics></math> are defined as:<div class='html-disp-formula-info' id='FD32-mathematics-10-00408'> <div class='f'> <math display='block'><semantics> <mrow> <mtable> <mtr> <mtd> <mrow> <mrow> <mo>{</mo> <mrow> <msub> <mi>A</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>,</mo> <mo> </mo> <msub> <mi>B</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>,</mo> <mo> </mo> <msub> <mi>D</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>,</mo> <mo> </mo> <msub> <mi>C</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>F</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>H</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> </mrow> <mo>}</mo> </mrow> <mo>=</mo> <mstyle displaystyle="true"> <munderover> <mstyle mathsize="140%" displaystyle="true"> <mo>∑</mo> </mstyle> <mrow> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> </mstyle> <munderover> <mstyle mathsize="140%" displaystyle="true"> <mo>∫</mo> </mstyle> <mrow> <msub> <mi>h</mi> <mrow> <mi>n</mi> <mo>−</mo> <mn>1</mn> </mrow> </msub> </mrow> <mrow> <msub> <mi>h</mi> <mi>n</mi> </msub> </mrow> </munderover> <msub> <mi>Q</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <msup> <mrow/> <mrow> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> </mrow> </msup> <mrow> <mo>{</mo> <mrow> <mn>1</mn> <mo>,</mo> <mo> </mo> <mi>z</mi> <mo>,</mo> <msup> <mi>z</mi> <mn>2</mn> </msup> <mo>,</mo> <mi>f</mi> <mrow> <mo>(</mo> <mi>z</mi> <mo>)</mo> </mrow> <mo>,</mo> <mi>z</mi> <mi>f</mi> <mrow> <mo>(</mo> <mi>z</mi> <mo>)</mo> </mrow> <mo>,</mo> <mi>f</mi> <msup> <mrow> <mrow> <mo>(</mo> <mi>z</mi> <mo>)</mo> </mrow> </mrow> <mn>2</mn> </msup> </mrow> <mo>}</mo> </mrow> <mi mathvariant="normal">d</mi> <mi>z</mi> <mo>,</mo> <mo> </mo> <mrow> <mo>(</mo> <mrow> <mi>i</mi> <mo>,</mo> <mi>j</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mn>6</mn> </mrow> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>J</mi> <mrow> <mi>i</mi> <mi>i</mi> </mrow> </msub> <mo>=</mo> <mstyle displaystyle="true"> <munderover> <mstyle mathsize="140%" displaystyle="true"> <mo>∑</mo> </mstyle> <mrow> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> </mstyle> <munderover> <mstyle mathsize="140%" displaystyle="true"> <mo>∫</mo> </mstyle> <mrow> <msub> <mi>h</mi> <mrow> <mi>n</mi> <mo>−</mo> <mn>1</mn> </mrow> </msub> </mrow> <mrow> <msub> <mi>h</mi> <mi>n</mi> </msub> </mrow> </munderover> <msub> <mi>Q</mi> <mrow> <mi>i</mi> <mi>i</mi> </mrow> </msub> <msup> <mrow/> <mrow> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> </mrow> </msup> <msup> <mrow> <mrow> <mo>[</mo> <mrow> <mfrac> <mrow> <mi mathvariant="normal">d</mi> <mi>f</mi> <mrow> <mo>(</mo> <mi>z</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mi mathvariant="normal">d</mi> <mi>z</mi> </mrow> </mfrac> </mrow> <mo>]</mo> </mrow> </mrow> <mn>2</mn> </msup> <mi mathvariant="normal">d</mi> <mi>z</mi> <mo>,</mo> <mrow> <mo>(</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>4</mn> <mo>,</mo> <mn>5</mn> </mrow> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> </mrow> </semantics></math> </div> <div class='l'> <label >(30)</label> </div> </div></div></section><section id='sec4-mathematics-10-00408' type=''><h2 data-nested='1'> 4. Variational Statements</h2><div class='html-p'>Hamilton’s principle is employed in this analysis to derive the equations of motion of the CNTs/fiber composite shell:<div class='html-disp-formula-info' id='FD33-mathematics-10-00408'> <div class='f'> <math display='block'><semantics> <mrow> <mi>δ</mi> <msubsup> <mstyle mathsize="140%" displaystyle="true"> <mo>∫</mo> </mstyle> <mrow> <msub> <mi>t</mi> <mn>2</mn> </msub> </mrow> <mrow> <msub> <mi>t</mi> <mn>1</mn> </msub> </mrow> </msubsup> <mi>δ</mi> <mrow> <mo>(</mo> <mrow> <mi>U</mi> <mo>−</mo> <mi>T</mi> <mo>+</mo> <mi>V</mi> </mrow> <mo>)</mo> </mrow> <mi>d</mi> <mi>t</mi> <mo> </mo> <mo>=</mo> <mo> </mo> <mn>0</mn> </mrow> </semantics></math> </div> <div class='l'> <label >(31)</label> </div> </div></div><div class='html-p'>The variation of the strain energy of the composite shell can be expressed as:<div class='html-disp-formula-info' id='FD34-mathematics-10-00408'> <div class='f'> <math display='block'><semantics> <mrow> <mi>δ</mi> <msub> <mi>U</mi> <mi>p</mi> </msub> <mo>=</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <msubsup> <mstyle mathsize="140%" displaystyle="true"> <mo>∫</mo> </mstyle> <mi>V</mi> <mrow/> </msubsup> <mrow> <mo>[</mo> <mrow> <msubsup> <mi>σ</mi> <mrow> <mi>x</mi> <mi>x</mi> </mrow> <mrow> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </mrow> </msubsup> <mi>δ</mi> <msub> <mi>ε</mi> <mrow> <mi>x</mi> <mi>x</mi> </mrow> </msub> <mo>+</mo> <msubsup> <mi>σ</mi> <mrow> <mi>y</mi> <mi>y</mi> </mrow> <mrow> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </mrow> </msubsup> <mi>δ</mi> <msub> <mi>ε</mi> <mrow> <mi>x</mi> <mi>x</mi> </mrow> </msub> <mo>+</mo> <msubsup> <mi>σ</mi> <mrow> <mi>x</mi> <mi>y</mi> </mrow> <mrow> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </mrow> </msubsup> <mi>δ</mi> <msub> <mi>γ</mi> <mrow> <mi>x</mi> <mi>y</mi> </mrow> </msub> <mo>+</mo> <msubsup> <mi>σ</mi> <mrow> <mi>x</mi> <mi>z</mi> </mrow> <mrow> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </mrow> </msubsup> <mi>δ</mi> <msub> <mi>γ</mi> <mrow> <mi>x</mi> <mi>z</mi> </mrow> </msub> <mo>+</mo> <msubsup> <mi>σ</mi> <mrow> <mi>y</mi> <mi>z</mi> </mrow> <mrow> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </mrow> </msubsup> <mi>δ</mi> <msub> <mi>γ</mi> <mrow> <mi>y</mi> <mi>z</mi> </mrow> </msub> </mrow> <mo>]</mo> </mrow> <mi mathvariant="normal">d</mi> <mi>V</mi> <mo>.</mo> <mtext> </mtext> </mrow> </semantics></math> </div> <div class='l'> <label >(32)</label> </div> </div></div><div class='html-p'>The variation of the kinetic energy of the composite shell at any moment is stated as:<div class='html-disp-formula-info' id='FD35-mathematics-10-00408'> <div class='f'> <math display='block'><semantics> <mrow> <mi>δ</mi> <mi>T</mi> <mo>=</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <msubsup> <mstyle mathsize="140%" displaystyle="true"> <mo>∫</mo> </mstyle> <mn>0</mn> <mi>L</mi> </msubsup> <msubsup> <mstyle mathsize="140%" displaystyle="true"> <mo>∫</mo> </mstyle> <mi>A</mi> <mrow/> </msubsup> <mi>ρ</mi> <mrow> <mo>(</mo> <mrow> <mover accent="true"> <mi>u</mi> <mo>˙</mo> </mover> <mi>δ</mi> <mover accent="true"> <mi>u</mi> <mo>˙</mo> </mover> <mo>+</mo> <mover accent="true"> <mi>v</mi> <mo>˙</mo> </mover> <mi>δ</mi> <mover accent="true"> <mi>v</mi> <mo>˙</mo> </mover> <mo>+</mo> <mover accent="true"> <mi>w</mi> <mo>˙</mo> </mover> <mi>δ</mi> <mover accent="true"> <mi>w</mi> <mo>˙</mo> </mover> </mrow> <mo>)</mo> </mrow> <mi>d</mi> <mi>A</mi> <mi>d</mi> <mi>x</mi> </mrow> </semantics></math> </div> <div class='l'> <label >(33)</label> </div> </div><div class='html-disp-formula-info' id='FD36-mathematics-10-00408'> <div class='f'> <math display='block'><semantics> <mrow> <mrow> <mi>δ</mi> <mi>T</mi> <mo>=</mo> <msub> <mstyle mathsize="140%" displaystyle="true"> <mo>∫</mo> </mstyle> <mi>V</mi> </msub> <mrow> <mo>{</mo> <mrow> <msub> <mi>I</mi> <mn>0</mn> </msub> <mrow> <mo>(</mo> <mrow> <msub> <mover accent="true"> <mi>u</mi> <mo>˙</mo> </mover> <mn>0</mn> </msub> <mi>δ</mi> <msub> <mover accent="true"> <mi>u</mi> <mo>˙</mo> </mover> <mn>0</mn> </msub> <mo>+</mo> <msub> <mover accent="true"> <mi>v</mi> <mo>˙</mo> </mover> <mn>0</mn> </msub> <mi>δ</mi> <msub> <mover accent="true"> <mi>v</mi> <mo>˙</mo> </mover> <mn>0</mn> </msub> <mo>+</mo> <msub> <mover accent="true"> <mi>w</mi> <mo>˙</mo> </mover> <mn>0</mn> </msub> <mi>δ</mi> <msub> <mover accent="true"> <mi>w</mi> <mo>˙</mo> </mover> <mn>0</mn> </msub> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>I</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mrow> <mfrac> <mrow> <mo>∂</mo> <msub> <mover accent="true"> <mi>w</mi> <mo>˙</mo> </mover> <mn>0</mn> </msub> </mrow> <mrow> <mo>∂</mo> <mi>x</mi> </mrow> </mfrac> <mi>δ</mi> <msub> <mover accent="true"> <mi>u</mi> <mo>˙</mo> </mover> <mn>0</mn> </msub> <mo>+</mo> <mfrac> <mrow> <mo>∂</mo> <msub> <mover accent="true"> <mi>w</mi> <mo>˙</mo> </mover> <mn>0</mn> </msub> </mrow> <mrow> <mo>∂</mo> <mi>y</mi> </mrow> </mfrac> <mi>δ</mi> <msub> <mover accent="true"> <mi>v</mi> <mo>˙</mo> </mover> <mn>0</mn> </msub> <mo>+</mo> <msub> <mover accent="true"> <mi>u</mi> <mo>˙</mo> </mover> <mn>0</mn> </msub> <mfrac> <mrow> <mo>∂</mo> <mi>δ</mi> <msub> <mover accent="true"> <mi>w</mi> <mo>˙</mo> </mover> <mn>0</mn> </msub> </mrow> <mrow> <mo>∂</mo> <mi>x</mi> </mrow> </mfrac> <msub> <mrow> <mover> <mrow> <mo>+</mo> <mi>v</mi> </mrow> <mo>˙</mo> </mover> </mrow> <mn>0</mn> </msub> <mfrac> <mrow> <mo>∂</mo> <mi>δ</mi> <msub> <mover accent="true"> <mi>w</mi> <mo>˙</mo> </mover> <mn>0</mn> </msub> </mrow> <mrow> <mo>∂</mo> <mi>y</mi> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> </mrow> </mrow> </mrow> <mspace linebreak="newline"/> <mrow> <mo>+</mo> <msub> <mi>I</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mrow> <mfrac> <mrow> <mo>∂</mo> <msub> <mover accent="true"> <mi>w</mi> <mo>˙</mo> </mover> <mn>0</mn> </msub> </mrow> <mrow> <mo>∂</mo> <mi>x</mi> </mrow> </mfrac> <mfrac> <mrow> <mo>∂</mo> <mi>δ</mi> <msub> <mover accent="true"> <mi>w</mi> <mo>˙</mo> </mover> <mn>0</mn> </msub> </mrow> <mrow> <mo>∂</mo> <mi>x</mi> </mrow> </mfrac> <mo>+</mo> <mfrac> <mrow> <mo>∂</mo> <msub> <mover accent="true"> <mi>w</mi> <mo>˙</mo> </mover> <mn>0</mn> </msub> </mrow> <mrow> <mo>∂</mo> <mi>y</mi> </mrow> </mfrac> <mfrac> <mrow> <mo>∂</mo> <mi>δ</mi> <msub> <mover accent="true"> <mi>w</mi> <mo>˙</mo> </mover> <mn>0</mn> </msub> </mrow> <mrow> <mo>∂</mo> <mi>y</mi> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>I</mi> <mn>3</mn> </msub> <mrow> <mo>(</mo> <mrow> <msub> <mover accent="true"> <mi>φ</mi> <mo>˙</mo> </mover> <mi>x</mi> </msub> <mi>δ</mi> <msub> <mover accent="true"> <mi>u</mi> <mo>˙</mo> </mover> <mn>0</mn> </msub> <mo>+</mo> <msub> <mover accent="true"> <mi>u</mi> <mo>˙</mo> </mover> <mn>0</mn> </msub> <mi>δ</mi> <msub> <mover accent="true"> <mi>φ</mi> <mo>˙</mo> </mover> <mi>x</mi> </msub> <mo>+</mo> <msub> <mover accent="true"> <mi>φ</mi> <mo>˙</mo> </mover> <mi>y</mi> </msub> <mi>δ</mi> <msub> <mover accent="true"> <mi>v</mi> <mo>˙</mo> </mover> <mn>0</mn> </msub> <mo>+</mo> <msub> <mover accent="true"> <mi>v</mi> <mo>˙</mo> </mover> <mn>0</mn> </msub> <mi>δ</mi> <msub> <mover accent="true"> <mi>φ</mi> <mo>˙</mo> </mover> <mi>y</mi> </msub> </mrow> <mo>)</mo> </mrow> </mrow> <mspace linebreak="newline"/> <mrow> <mrow> <mrow> <mo>+</mo> <msub> <mi>I</mi> <mn>4</mn> </msub> <mrow> <mo>(</mo> <mrow> <msub> <mover accent="true"> <mi>φ</mi> <mo>˙</mo> </mover> <mi>x</mi> </msub> <mfrac> <mrow> <mo>∂</mo> <mi>δ</mi> <msub> <mover accent="true"> <mi>w</mi> <mo>˙</mo> </mover> <mn>0</mn> </msub> </mrow> <mrow> <mo>∂</mo> <mi>x</mi> </mrow> </mfrac> <mo>+</mo> <mfrac> <mrow> <mo>∂</mo> <msub> <mover accent="true"> <mi>w</mi> <mo>˙</mo> </mover> <mn>0</mn> </msub> </mrow> <mrow> <mo>∂</mo> <mi>x</mi> </mrow> </mfrac> <mi>δ</mi> <msub> <mover accent="true"> <mi>φ</mi> <mo>˙</mo> </mover> <mi>x</mi> </msub> <mo>+</mo> <msub> <mover accent="true"> <mi>φ</mi> <mo>˙</mo> </mover> <mi>y</mi> </msub> <mfrac> <mrow> <mo>∂</mo> <mi>δ</mi> <msub> <mover accent="true"> <mi>w</mi> <mo>˙</mo> </mover> <mn>0</mn> </msub> </mrow> <mrow> <mo>∂</mo> <mi>y</mi> </mrow> </mfrac> <mo>+</mo> <mfrac> <mrow> <mo>∂</mo> <msub> <mover accent="true"> <mi>w</mi> <mo>˙</mo> </mover> <mn>0</mn> </msub> </mrow> <mrow> <mo>∂</mo> <mi>y</mi> </mrow> </mfrac> <mi>δ</mi> <msub> <mover accent="true"> <mi>φ</mi> <mo>˙</mo> </mover> <mi>y</mi> </msub> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>I</mi> <mn>5</mn> </msub> <mrow> <mo>(</mo> <mrow> <msub> <mover accent="true"> <mi>φ</mi> <mo>˙</mo> </mover> <mi>x</mi> </msub> <mi>δ</mi> <msub> <mover accent="true"> <mi>φ</mi> <mo>˙</mo> </mover> <mi>x</mi> </msub> <mo>+</mo> <msub> <mover accent="true"> <mi>φ</mi> <mo>˙</mo> </mover> <mi>y</mi> </msub> <mi>δ</mi> <msub> <mover accent="true"> <mi>φ</mi> <mo>˙</mo> </mover> <mi>y</mi> </msub> </mrow> <mo>)</mo> </mrow> </mrow> <mo>}</mo> </mrow> <mi mathvariant="normal">d</mi> <mi>x</mi> <mi mathvariant="normal">d</mi> <mi>y</mi> <mi mathvariant="normal">d</mi> <mi>z</mi> </mrow> </mrow> </semantics></math> </div> <div class='l'> <label >(34)</label> </div> </div> where:<div class='html-disp-formula-info' id='FD37-mathematics-10-00408'> <div class='f'> <math display='block'><semantics> <mrow> <mrow> <mo>{</mo> <mrow> <msub> <mi>I</mi> <mn>0</mn> </msub> <mo>,</mo> <mo> </mo> <msub> <mi>I</mi> <mn>1</mn> </msub> <mo>,</mo> <mo> </mo> <msub> <mi>I</mi> <mn>2</mn> </msub> <mo>,</mo> <mo> </mo> <msub> <mi>I</mi> <mn>3</mn> </msub> <mo>,</mo> <msub> <mi>I</mi> <mn>4</mn> </msub> <mo>,</mo> <msub> <mi>I</mi> <mn>5</mn> </msub> </mrow> <mo>}</mo> </mrow> <mo>=</mo> <munderover> <mstyle mathsize="140%" displaystyle="true"> <mo>∑</mo> </mstyle> <mrow> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>k</mi> </munderover> <mi>ρ</mi> <mrow> <mo>(</mo> <mi>z</mi> <mo>)</mo> </mrow> <mrow> <mo>{</mo> <mrow> <mn>1</mn> <mo>,</mo> <mo> </mo> <mi>z</mi> <mo>,</mo> <msup> <mi>z</mi> <mn>2</mn> </msup> <mo>,</mo> <mi>Φ</mi> <mrow> <mo>(</mo> <mi>z</mi> <mo>)</mo> </mrow> <mo>,</mo> <mi>z</mi> <mi>Φ</mi> <mrow> <mo>(</mo> <mi>z</mi> <mo>)</mo> </mrow> <mo>,</mo> <msup> <mrow> <mrow> <mo>(</mo> <mrow> <mi>Φ</mi> <mrow> <mo>(</mo> <mi>z</mi> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> <mn>2</mn> </msup> </mrow> <mo>}</mo> </mrow> <mi>d</mi> <mi>z</mi> </mrow> </semantics></math> </div> <div class='l'> <label >(35)</label> </div> </div></div><div class='html-p'>By inserting Equations (32)–(34) into Equation (19), the equilibrium equations for a CNTs/fiber composite shell can be obtained as follows:<div class='html-disp-formula-info' id='FD38-mathematics-10-00408'> <div class='f'> <math display='block'><semantics> <mrow> <mrow> <msub> <mi>A</mi> <mrow> <mn>11</mn> </mrow> </msub> <mfrac> <mrow> <msup> <mo>∂</mo> <mn>2</mn> </msup> <msub> <mi>u</mi> <mn>0</mn> </msub> </mrow> <mrow> <mo>∂</mo> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> </mfrac> <mo>+</mo> <msub> <mi>A</mi> <mrow> <mn>66</mn> </mrow> </msub> <mfrac> <mrow> <msup> <mo>∂</mo> <mn>2</mn> </msup> <msub> <mi>u</mi> <mn>0</mn> </msub> </mrow> <mrow> <mo>∂</mo> <msup> <mi>y</mi> <mn>2</mn> </msup> </mrow> </mfrac> <mo>+</mo> <mrow> <mo>(</mo> <mrow> <msub> <mi>A</mi> <mrow> <mn>12</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>A</mi> <mrow> <mn>66</mn> </mrow> </msub> </mrow> <mo>)</mo> </mrow> <mfrac> <mrow> <msup> <mo>∂</mo> <mn>2</mn> </msup> <msub> <mi>v</mi> <mn>0</mn> </msub> </mrow> <mrow> <mo>∂</mo> <mi>x</mi> <mo>∂</mo> <mi>y</mi> </mrow> </mfrac> <mo>+</mo> <mrow> <mo>(</mo> <mrow> <mfrac> <mrow> <msub> <mi>A</mi> <mrow> <mn>11</mn> </mrow> </msub> </mrow> <mrow> <msub> <mi>R</mi> <mi>x</mi> </msub> </mrow> </mfrac> <mo>+</mo> <mfrac> <mrow> <msub> <mi>A</mi> <mrow> <mn>12</mn> </mrow> </msub> </mrow> <mrow> <msub> <mi>R</mi> <mi>y</mi> </msub> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> <mfrac> <mrow> <mo>∂</mo> <msub> <mi>w</mi> <mn>0</mn> </msub> </mrow> <mrow> <mo>∂</mo> <mi>x</mi> </mrow> </mfrac> <mo>−</mo> <msub> <mi>B</mi> <mrow> <mn>11</mn> </mrow> </msub> <mfrac> <mrow> <msup> <mo>∂</mo> <mn>3</mn> </msup> <msub> <mi>w</mi> <mn>0</mn> </msub> </mrow> <mrow> <mo>∂</mo> <msup> <mi>x</mi> <mn>3</mn> </msup> </mrow> </mfrac> </mrow> <mspace linebreak="newline"/> <mrow> <mo>−</mo> <mrow> <mo>(</mo> <mrow> <msub> <mi>B</mi> <mrow> <mn>12</mn> </mrow> </msub> <mo>+</mo> <mn>2</mn> <msub> <mi>B</mi> <mrow> <mn>66</mn> </mrow> </msub> </mrow> <mo>)</mo> </mrow> <mfrac> <mrow> <msup> <mo>∂</mo> <mn>3</mn> </msup> <msub> <mi>w</mi> <mn>0</mn> </msub> </mrow> <mrow> <mo>∂</mo> <mi>x</mi> <mo>∂</mo> <msup> <mi>y</mi> <mn>2</mn> </msup> </mrow> </mfrac> <mo>+</mo> <msubsup> <mi>B</mi> <mrow> <mn>11</mn> </mrow> <mi>s</mi> </msubsup> <mfrac> <mrow> <msup> <mo>∂</mo> <mn>2</mn> </msup> <msub> <mi>ψ</mi> <mi>x</mi> </msub> </mrow> <mrow> <mo>∂</mo> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> </mfrac> <mo>+</mo> <msubsup> <mi>B</mi> <mrow> <mn>66</mn> </mrow> <mi>s</mi> </msubsup> <mfrac> <mrow> <msup> <mo>∂</mo> <mn>2</mn> </msup> <msub> <mi>ψ</mi> <mi>x</mi> </msub> </mrow> <mrow> <mo>∂</mo> <msup> <mi>y</mi> <mn>2</mn> </msup> </mrow> </mfrac> <mo>+</mo> <mrow> <mo>(</mo> <mrow> <msubsup> <mi>B</mi> <mrow> <mn>12</mn> </mrow> <mi>s</mi> </msubsup> <mo>+</mo> <msubsup> <mi>B</mi> <mrow> <mn>66</mn> </mrow> <mi>s</mi> </msubsup> </mrow> <mo>)</mo> </mrow> <mfrac> <mrow> <msup> <mo>∂</mo> <mn>2</mn> </msup> <msub> <mi>ψ</mi> <mi>y</mi> </msub> </mrow> <mrow> <mo>∂</mo> <mi>x</mi> <mo>∂</mo> <mi>y</mi> </mrow> </mfrac> </mrow> <mspace linebreak="newline"/> <mrow> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <msub> <mi>I</mi> <mn>0</mn> </msub> <mo>+</mo> <mn>2</mn> <mfrac> <mrow> <msub> <mi>I</mi> <mn>1</mn> </msub> </mrow> <mrow> <msub> <mi>R</mi> <mi>x</mi> </msub> </mrow> </mfrac> <mo>+</mo> <mfrac> <mrow> <msub> <mi>I</mi> <mn>3</mn> </msub> </mrow> <mrow> <msub> <mi>R</mi> <mi>y</mi> </msub> <msup> <mrow/> <mn>2</mn> </msup> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> <mfrac> <mrow> <msup> <mo>∂</mo> <mn>2</mn> </msup> <msub> <mi>u</mi> <mn>0</mn> </msub> </mrow> <mrow> <mo>∂</mo> <msup> <mi>t</mi> <mn>2</mn> </msup> </mrow> </mfrac> <mo>−</mo> <mrow> <mo>(</mo> <mrow> <msub> <mi>I</mi> <mn>1</mn> </msub> <mo>+</mo> <mfrac> <mrow> <msub> <mi>I</mi> <mn>2</mn> </msub> </mrow> <mrow> <msub> <mi>R</mi> <mi>x</mi> </msub> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> <mfrac> <mrow> <msup> <mo>∂</mo> <mn>3</mn> </msup> <msub> <mi>w</mi> <mn>0</mn> </msub> </mrow> <mrow> <mo>∂</mo> <mi>x</mi> <mo>∂</mo> <msup> <mi>t</mi> <mn>2</mn> </msup> </mrow> </mfrac> <mo>+</mo> <mrow> <mo>(</mo> <mrow> <msub> <mi>I</mi> <mn>3</mn> </msub> <mo>+</mo> <mfrac> <mrow> <msub> <mi>I</mi> <mn>4</mn> </msub> </mrow> <mrow> <msub> <mi>R</mi> <mi>x</mi> </msub> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> <mfrac> <mrow> <msup> <mo>∂</mo> <mn>2</mn> </msup> <msub> <mi>ψ</mi> <mi>x</mi> </msub> </mrow> <mrow> <mo>∂</mo> <msup> <mi>t</mi> <mn>2</mn> </msup> </mrow> </mfrac> </mrow> </mrow> </semantics></math> </div> <div class='l'> <label >(36)</label> </div> </div><div class='html-disp-formula-info' id='FD39-mathematics-10-00408'> <div class='f'> <math display='block'><semantics> <mrow> <mrow> <mrow> <mo>(</mo> <mrow> <msub> <mi>A</mi> <mrow> <mn>12</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>A</mi> <mrow> <mn>66</mn> </mrow> </msub> </mrow> <mo>)</mo> </mrow> <mfrac> <mrow> <msup> <mo>∂</mo> <mn>2</mn> </msup> <msub> <mi>u</mi> <mn>0</mn> </msub> </mrow> <mrow> <mo>∂</mo> <mi>x</mi> <mo>∂</mo> <mi>y</mi> </mrow> </mfrac> <mo>+</mo> <msub> <mi>A</mi> <mrow> <mn>22</mn> </mrow> </msub> <mfrac> <mrow> <msup> <mo>∂</mo> <mn>2</mn> </msup> <msub> <mi>v</mi> <mn>0</mn> </msub> </mrow> <mrow> <mo>∂</mo> <msup> <mi>y</mi> <mn>2</mn> </msup> </mrow> </mfrac> <mo>+</mo> <msub> <mi>A</mi> <mrow> <mn>66</mn> </mrow> </msub> <mfrac> <mrow> <msup> <mo>∂</mo> <mn>2</mn> </msup> <msub> <mi>v</mi> <mn>0</mn> </msub> </mrow> <mrow> <mo>∂</mo> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> </mfrac> <mo>−</mo> <mrow> <mo>(</mo> <mrow> <msub> <mi>B</mi> <mrow> <mn>12</mn> </mrow> </msub> <mo>+</mo> <mn>2</mn> <msub> <mi>B</mi> <mrow> <mn>66</mn> </mrow> </msub> </mrow> <mo>)</mo> </mrow> <mfrac> <mrow> <msup> <mo>∂</mo> <mn>3</mn> </msup> <msub> <mi>w</mi> <mn>0</mn> </msub> </mrow> <mrow> <mo>∂</mo> <msup> <mi>x</mi> <mn>2</mn> </msup> <mo>∂</mo> <mi>y</mi> </mrow> </mfrac> <mo>−</mo> <msub> <mi>B</mi> <mrow> <mn>22</mn> </mrow> </msub> <mfrac> <mrow> <msup> <mo>∂</mo> <mn>3</mn> </msup> <msub> <mi>w</mi> <mn>0</mn> </msub> </mrow> <mrow> <mo>∂</mo> <msup> <mi>y</mi> <mn>3</mn> </msup> </mrow> </mfrac> </mrow> <mspace linebreak="newline"/> <mrow> <mo>+</mo> <mrow> <mo>(</mo> <mrow> <mfrac> <mrow> <msub> <mi>A</mi> <mrow> <mn>12</mn> </mrow> </msub> </mrow> <mrow> <msub> <mi>R</mi> <mi>x</mi> </msub> </mrow> </mfrac> <mo>+</mo> <mfrac> <mrow> <msub> <mi>A</mi> <mrow> <mn>22</mn> </mrow> </msub> </mrow> <mrow> <msub> <mi>R</mi> <mi>y</mi> </msub> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> <mfrac> <mrow> <mo>∂</mo> <msub> <mi>w</mi> <mn>0</mn> </msub> </mrow> <mrow> <mo>∂</mo> <mi>x</mi> </mrow> </mfrac> <mo>+</mo> <mrow> <mo>(</mo> <mrow> <msubsup> <mi>B</mi> <mrow> <mn>12</mn> </mrow> <mi>s</mi> </msubsup> <mo>+</mo> <msubsup> <mi>B</mi> <mrow> <mn>66</mn> </mrow> <mi>s</mi> </msubsup> </mrow> <mo>)</mo> </mrow> <mfrac> <mrow> <msup> <mo>∂</mo> <mn>2</mn> </msup> <msub> <mi>ψ</mi> <mi>x</mi> </msub> </mrow> <mrow> <mo>∂</mo> <mi>x</mi> <mo>∂</mo> <mi>y</mi> </mrow> </mfrac> <mo>+</mo> <msubsup> <mi>B</mi> <mrow> <mn>22</mn> </mrow> <mi>s</mi> </msubsup> <mfrac> <mrow> <msup> <mo>∂</mo> <mn>2</mn> </msup> <msub> <mi>ψ</mi> <mi>y</mi> </msub> </mrow> <mrow> <mo>∂</mo> <msup> <mi>y</mi> <mn>2</mn> </msup> </mrow> </mfrac> <mo>+</mo> <msubsup> <mi>B</mi> <mrow> <mn>66</mn> </mrow> <mi>s</mi> </msubsup> <mfrac> <mrow> <msup> <mo>∂</mo> <mn>2</mn> </msup> <msub> <mi>ψ</mi> <mi>y</mi> </msub> </mrow> <mrow> <mo>∂</mo> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> </mfrac> </mrow> <mspace linebreak="newline"/> <mrow> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <msub> <mi>I</mi> <mn>0</mn> </msub> <mo>+</mo> <mn>2</mn> <mfrac> <mrow> <msub> <mi>I</mi> <mn>1</mn> </msub> </mrow> <mrow> <msub> <mi>R</mi> <mi>y</mi> </msub> </mrow> </mfrac> <mo>+</mo> <mfrac> <mrow> <msub> <mi>I</mi> <mn>2</mn> </msub> </mrow> <mrow> <msub> <mi>R</mi> <mi>y</mi> </msub> <msup> <mrow/> <mn>2</mn> </msup> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> <mfrac> <mrow> <msup> <mo>∂</mo> <mn>2</mn> </msup> <msub> <mi>v</mi> <mn>0</mn> </msub> </mrow> <mrow> <mo>∂</mo> <msup> <mi>t</mi> <mn>2</mn> </msup> </mrow> </mfrac> <mo>−</mo> <mrow> <mo>(</mo> <mrow> <msub> <mi>I</mi> <mn>1</mn> </msub> <mo>+</mo> <mfrac> <mrow> <msub> <mi>I</mi> <mn>2</mn> </msub> </mrow> <mrow> <msub> <mi>R</mi> <mi>y</mi> </msub> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> <mfrac> <mrow> <msup> <mo>∂</mo> <mn>3</mn> </msup> <msub> <mi>w</mi> <mn>0</mn> </msub> </mrow> <mrow> <mo>∂</mo> <mi>y</mi> <mo>∂</mo> <msup> <mi>t</mi> <mn>2</mn> </msup> </mrow> </mfrac> <mo>+</mo> <mrow> <mo>(</mo> <mrow> <msub> <mi>I</mi> <mn>3</mn> </msub> <mo>+</mo> <mfrac> <mrow> <msub> <mi>I</mi> <mn>4</mn> </msub> </mrow> <mrow> <msub> <mi>R</mi> <mi>y</mi> </msub> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> <mfrac> <mrow> <msup> <mo>∂</mo> <mn>2</mn> </msup> <msub> <mi>ψ</mi> <mi>y</mi> </msub> </mrow> <mrow> <mo>∂</mo> <msup> <mi>t</mi> <mn>2</mn> </msup> </mrow> </mfrac> </mrow> </mrow> </semantics></math> </div> <div class='l'> <label >(37)</label> </div> </div><div class='html-disp-formula-info' id='FD40-mathematics-10-00408'> <div class='f'> <math display='block'><semantics> <mrow> <mrow> <msub> <mi>B</mi> <mrow> <mn>11</mn> </mrow> </msub> <mfrac> <mrow> <msup> <mo>∂</mo> <mn>3</mn> </msup> <msub> <mi>u</mi> <mn>0</mn> </msub> </mrow> <mrow> <mo>∂</mo> <msup> <mi>x</mi> <mn>3</mn> </msup> </mrow> </mfrac> <mo>+</mo> <mrow> <mo>(</mo> <mrow> <msub> <mi>B</mi> <mrow> <mn>12</mn> </mrow> </msub> <mo>+</mo> <mn>2</mn> <msub> <mi>B</mi> <mrow> <mn>66</mn> </mrow> </msub> </mrow> <mo>)</mo> </mrow> <mfrac> <mrow> <msup> <mo>∂</mo> <mn>3</mn> </msup> <msub> <mi>u</mi> <mn>0</mn> </msub> </mrow> <mrow> <mo>∂</mo> <mi>x</mi> <mo>∂</mo> <msup> <mi>y</mi> <mn>2</mn> </msup> </mrow> </mfrac> <mo>−</mo> <mrow> <mo>(</mo> <mrow> <mfrac> <mrow> <msub> <mi>A</mi> <mrow> <mn>11</mn> </mrow> </msub> </mrow> <mrow> <msub> <mi>R</mi> <mi>x</mi> </msub> </mrow> </mfrac> <mo>+</mo> <mfrac> <mrow> <msub> <mi>A</mi> <mrow> <mn>12</mn> </mrow> </msub> </mrow> <mrow> <msub> <mi>R</mi> <mi>y</mi> </msub> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> <mfrac> <mrow> <mo>∂</mo> <msub> <mi>u</mi> <mn>0</mn> </msub> </mrow> <mrow> <mo>∂</mo> <mi>x</mi> </mrow> </mfrac> <mo>+</mo> <mrow> <mo>(</mo> <mrow> <msub> <mi>B</mi> <mrow> <mn>12</mn> </mrow> </msub> <mo>+</mo> <mn>2</mn> <msub> <mi>B</mi> <mrow> <mn>66</mn> </mrow> </msub> </mrow> <mo>)</mo> </mrow> <mfrac> <mrow> <msup> <mo>∂</mo> <mn>3</mn> </msup> <msub> <mi>v</mi> <mn>0</mn> </msub> </mrow> <mrow> <mo>∂</mo> <msup> <mi>x</mi> <mn>2</mn> </msup> <mo>∂</mo> <mi>y</mi> </mrow> </mfrac> <mo>+</mo> <msub> <mi>B</mi> <mrow> <mn>22</mn> </mrow> </msub> <mfrac> <mrow> <msup> <mo>∂</mo> <mn>3</mn> </msup> <msub> <mi>v</mi> <mn>0</mn> </msub> </mrow> <mrow> <mo>∂</mo> <msup> <mi>y</mi> <mn>3</mn> </msup> </mrow> </mfrac> <mo>−</mo> <mrow> <mo>(</mo> <mrow> <mfrac> <mrow> <msub> <mi>A</mi> <mrow> <mn>12</mn> </mrow> </msub> </mrow> <mrow> <msub> <mi>R</mi> <mi>x</mi> </msub> </mrow> </mfrac> <mo>+</mo> <mfrac> <mrow> <msub> <mi>A</mi> <mrow> <mn>22</mn> </mrow> </msub> </mrow> <mrow> <msub> <mi>R</mi> <mi>y</mi> </msub> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> <mfrac> <mrow> <mo>∂</mo> <msub> <mi>v</mi> <mn>0</mn> </msub> </mrow> <mrow> <mo>∂</mo> <mi>y</mi> </mrow> </mfrac> </mrow> <mspace linebreak="newline"/> <mrow> <mo>+</mo> <mrow> <mo>(</mo> <mrow> <mfrac> <mrow> <mn>2</mn> <msub> <mi>B</mi> <mrow> <mn>11</mn> </mrow> </msub> </mrow> <mrow> <msub> <mi>R</mi> <mi>x</mi> </msub> </mrow> </mfrac> <mo>+</mo> <mfrac> <mrow> <mn>2</mn> <msub> <mi>B</mi> <mrow> <mn>12</mn> </mrow> </msub> </mrow> <mrow> <msub> <mi>R</mi> <mi>y</mi> </msub> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> <mfrac> <mrow> <msup> <mo>∂</mo> <mn>2</mn> </msup> <msub> <mi>w</mi> <mn>0</mn> </msub> </mrow> <mrow> <mo>∂</mo> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> </mfrac> <mo>−</mo> <msub> <mi>D</mi> <mrow> <mn>11</mn> </mrow> </msub> <mfrac> <mrow> <msup> <mo>∂</mo> <mn>4</mn> </msup> <msub> <mi>w</mi> <mn>0</mn> </msub> </mrow> <mrow> <mo>∂</mo> <msup> <mi>x</mi> <mn>4</mn> </msup> </mrow> </mfrac> <mo>−</mo> <mrow> <mo>(</mo> <mrow> <mn>2</mn> <msub> <mi>D</mi> <mrow> <mn>12</mn> </mrow> </msub> <mo>+</mo> <mn>4</mn> <msub> <mi>D</mi> <mrow> <mn>66</mn> </mrow> </msub> </mrow> <mo>)</mo> </mrow> <mfrac> <mrow> <msup> <mo>∂</mo> <mn>4</mn> </msup> <msub> <mi>w</mi> <mn>0</mn> </msub> </mrow> <mrow> <mo>∂</mo> <msup> <mi>x</mi> <mn>2</mn> </msup> <mo>∂</mo> <msup> <mi>y</mi> <mn>2</mn> </msup> </mrow> </mfrac> <mo>−</mo> <msub> <mi>D</mi> <mrow> <mn>22</mn> </mrow> </msub> <mfrac> <mrow> <msup> <mo>∂</mo> <mn>4</mn> </msup> <msub> <mi>w</mi> <mn>0</mn> </msub> </mrow> <mrow> <mo>∂</mo> <msup> <mi>y</mi> <mn>4</mn> </msup> </mrow> </mfrac> <mo>+</mo> <mrow> <mo>(</mo> <mrow> <mfrac> <mrow> <mn>2</mn> <msub> <mi>B</mi> <mrow> <mn>12</mn> </mrow> </msub> </mrow> <mrow> <msub> <mi>R</mi> <mi>x</mi> </msub> </mrow> </mfrac> <mo>+</mo> <mfrac> <mrow> <mn>2</mn> <msub> <mi>B</mi> <mrow> <mn>22</mn> </mrow> </msub> </mrow> <mrow> <msub> <mi>R</mi> <mi>y</mi> </msub> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> <mfrac> <mrow> <msup> <mo>∂</mo> <mn>2</mn> </msup> <msub> <mi>w</mi> <mn>0</mn> </msub> </mrow> <mrow> <mo>∂</mo> <msup> <mi>y</mi> <mn>2</mn> </msup> </mrow> </mfrac> </mrow> <mspace linebreak="newline"/> <mrow> <mo>−</mo> <mrow> <mo>(</mo> <mrow> <mfrac> <mrow> <msub> <mi>A</mi> <mrow> <mn>11</mn> </mrow> </msub> </mrow> <mrow> <msub> <mi>R</mi> <mi>x</mi> </msub> <msup> <mrow/> <mn>2</mn> </msup> </mrow> </mfrac> <mo>+</mo> <mn>2</mn> <mfrac> <mrow> <msub> <mi>A</mi> <mrow> <mn>12</mn> </mrow> </msub> </mrow> <mrow> <msub> <mi>R</mi> <mi>x</mi> </msub> <msub> <mi>R</mi> <mi>y</mi> </msub> </mrow> </mfrac> <mo>+</mo> <mfrac> <mrow> <msub> <mi>A</mi> <mrow> <mn>22</mn> </mrow> </msub> </mrow> <mrow> <msub> <mi>R</mi> <mi>y</mi> </msub> <msup> <mrow/> <mn>2</mn> </msup> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> <msub> <mi>w</mi> <mn>0</mn> </msub> <mo>+</mo> <msubsup> <mi>D</mi> <mrow> <mn>11</mn> </mrow> <mi>s</mi> </msubsup> <mfrac> <mrow> <msup> <mo>∂</mo> <mn>3</mn> </msup> <msub> <mi>ψ</mi> <mi>x</mi> </msub> </mrow> <mrow> <mo>∂</mo> <msup> <mi>x</mi> <mn>3</mn> </msup> </mrow> </mfrac> <mo>+</mo> <mrow> <mo>(</mo> <mrow> <msubsup> <mi>D</mi> <mrow> <mn>12</mn> </mrow> <mi>s</mi> </msubsup> <mo>+</mo> <mn>2</mn> <msubsup> <mi>D</mi> <mrow> <mn>66</mn> </mrow> <mi>s</mi> </msubsup> </mrow> <mo>)</mo> </mrow> <mfrac> <mrow> <msup> <mo>∂</mo> <mn>3</mn> </msup> <msub> <mi>ψ</mi> <mi>x</mi> </msub> </mrow> <mrow> <mo>∂</mo> <mi>x</mi> <mo>∂</mo> <msup> <mi>y</mi> <mn>2</mn> </msup> </mrow> </mfrac> <mo>−</mo> <mrow> <mo>(</mo> <mrow> <mfrac> <mrow> <msubsup> <mi>B</mi> <mrow> <mn>11</mn> </mrow> <mi>s</mi> </msubsup> </mrow> <mrow> <msub> <mi>R</mi> <mi>x</mi> </msub> </mrow> </mfrac> <mo>+</mo> <mfrac> <mrow> <msubsup> <mi>B</mi> <mrow> <mn>12</mn> </mrow> <mi>s</mi> </msubsup> </mrow> <mrow> <msub> <mi>R</mi> <mi>y</mi> </msub> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> <mfrac> <mrow> <mo>∂</mo> <msub> <mi>ψ</mi> <mi>x</mi> </msub> </mrow> <mrow> <mo>∂</mo> <mi>x</mi> </mrow> </mfrac> </mrow> <mspace linebreak="newline"/> <mrow> <mo>+</mo> <mrow> <mo>(</mo> <mrow> <msubsup> <mi>D</mi> <mrow> <mn>12</mn> </mrow> <mi>s</mi> </msubsup> <mo>+</mo> <mn>2</mn> <msubsup> <mi>D</mi> <mrow> <mn>66</mn> </mrow> <mi>s</mi> </msubsup> </mrow> <mo>)</mo> </mrow> <mfrac> <mrow> <msup> <mo>∂</mo> <mn>3</mn> </msup> <msub> <mi>ψ</mi> <mi>y</mi> </msub> </mrow> <mrow> <mo>∂</mo> <msup> <mi>x</mi> <mn>2</mn> </msup> <mo>∂</mo> <mi>y</mi> </mrow> </mfrac> <mo>+</mo> <msubsup> <mi>D</mi> <mrow> <mn>22</mn> </mrow> <mi>s</mi> </msubsup> <mfrac> <mrow> <msup> <mo>∂</mo> <mn>3</mn> </msup> <msub> <mi>ψ</mi> <mi>y</mi> </msub> </mrow> <mrow> <mo>∂</mo> <msup> <mi>y</mi> <mn>3</mn> </msup> </mrow> </mfrac> <mo>−</mo> <mrow> <mo>(</mo> <mrow> <mfrac> <mrow> <msubsup> <mi>B</mi> <mrow> <mn>12</mn> </mrow> <mi>s</mi> </msubsup> </mrow> <mrow> <msub> <mi>R</mi> <mi>x</mi> </msub> </mrow> </mfrac> <mo>+</mo> <mfrac> <mrow> <msubsup> <mi>B</mi> <mrow> <mn>22</mn> </mrow> <mi>s</mi> </msubsup> </mrow> <mrow> <msub> <mi>R</mi> <mi>y</mi> </msub> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> <mfrac> <mrow> <mo>∂</mo> <msub> <mi>ψ</mi> <mi>y</mi> </msub> </mrow> <mrow> <mo>∂</mo> <mi>y</mi> </mrow> </mfrac> <mo>=</mo> <msub> <mi>I</mi> <mn>0</mn> </msub> <mfrac> <mrow> <msup> <mo>∂</mo> <mn>2</mn> </msup> <msub> <mi>w</mi> <mn>0</mn> </msub> </mrow> <mrow> <mo>∂</mo> <msup> <mi>t</mi> <mn>2</mn> </msup> </mrow> </mfrac> </mrow> <mspace linebreak="newline"/> <mrow> <mo>+</mo> <mrow> <mo>(</mo> <mrow> <msub> <mi>I</mi> <mn>1</mn> </msub> <mo>+</mo> <mfrac> <mrow> <msub> <mi>I</mi> <mn>2</mn> </msub> </mrow> <mrow> <msub> <mi>R</mi> <mi>x</mi> </msub> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> <mfrac> <mrow> <msup> <mo>∂</mo> <mn>3</mn> </msup> <msub> <mi>u</mi> <mn>0</mn> </msub> </mrow> <mrow> <mo>∂</mo> <mi>x</mi> <mo>∂</mo> <msup> <mi>t</mi> <mn>2</mn> </msup> </mrow> </mfrac> <mo>+</mo> <mrow> <mo>(</mo> <mrow> <msub> <mi>I</mi> <mn>1</mn> </msub> <mo>+</mo> <mfrac> <mrow> <msub> <mi>I</mi> <mn>2</mn> </msub> </mrow> <mrow> <msub> <mi>R</mi> <mi>y</mi> </msub> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> <mfrac> <mrow> <msup> <mo>∂</mo> <mn>3</mn> </msup> <msub> <mi>v</mi> <mn>0</mn> </msub> </mrow> <mrow> <mo>∂</mo> <mi>y</mi> <mo>∂</mo> <msup> <mi>t</mi> <mn>2</mn> </msup> </mrow> </mfrac> <mo>−</mo> <msub> <mi>I</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mrow> <mfrac> <mrow> <msup> <mo>∂</mo> <mn>4</mn> </msup> <msub> <mi>w</mi> <mn>0</mn> </msub> </mrow> <mrow> <mo>∂</mo> <msup> <mi>x</mi> <mn>2</mn> </msup> <mo>∂</mo> <msup> <mi>t</mi> <mn>2</mn> </msup> </mrow> </mfrac> <mo>+</mo> <mfrac> <mrow> <msup> <mo>∂</mo> <mn>4</mn> </msup> <msub> <mi>w</mi> <mn>0</mn> </msub> </mrow> <mrow> <mo>∂</mo> <msup> <mi>y</mi> <mn>2</mn> </msup> <mo>∂</mo> <msup> <mi>t</mi> <mn>2</mn> </msup> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>I</mi> <mn>4</mn> </msub> <mrow> <mo>(</mo> <mrow> <mfrac> <mrow> <msup> <mo>∂</mo> <mn>3</mn> </msup> <msub> <mi>ψ</mi> <mi>x</mi> </msub> </mrow> <mrow> <mo>∂</mo> <mi>x</mi> <mo>∂</mo> <msup> <mi>t</mi> <mn>2</mn> </msup> </mrow> </mfrac> <mo>+</mo> <mfrac> <mrow> <msup> <mo>∂</mo> <mn>3</mn> </msup> <msub> <mi>ψ</mi> <mi>y</mi> </msub> </mrow> <mrow> <mo>∂</mo> <mi>y</mi> <mo>∂</mo> <msup> <mi>t</mi> <mn>2</mn> </msup> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> </mrow> </mrow> </semantics></math> </div> <div class='l'> <label >(38)</label> </div> </div><div class='html-disp-formula-info' id='FD41-mathematics-10-00408'> <div class='f'> <math display='block'><semantics> <mrow> <mrow> <msubsup> <mi>B</mi> <mrow> <mn>11</mn> </mrow> <mi>s</mi> </msubsup> <mfrac> <mrow> <msup> <mo>∂</mo> <mn>2</mn> </msup> <msub> <mi>u</mi> <mn>0</mn> </msub> </mrow> <mrow> <mo>∂</mo> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> </mfrac> <mo>+</mo> <msubsup> <mi>B</mi> <mrow> <mn>66</mn> </mrow> <mi>s</mi> </msubsup> <mfrac> <mrow> <msup> <mo>∂</mo> <mn>2</mn> </msup> <msub> <mi>u</mi> <mn>0</mn> </msub> </mrow> <mrow> <mo>∂</mo> <msup> <mi>y</mi> <mn>2</mn> </msup> </mrow> </mfrac> <mo>+</mo> <mrow> <mo>(</mo> <mrow> <msubsup> <mi>B</mi> <mrow> <mn>12</mn> </mrow> <mi>s</mi> </msubsup> <mo>+</mo> <msubsup> <mi>B</mi> <mrow> <mn>66</mn> </mrow> <mi>s</mi> </msubsup> </mrow> <mo>)</mo> </mrow> <mfrac> <mrow> <msup> <mo>∂</mo> <mn>2</mn> </msup> <msub> <mi>v</mi> <mn>0</mn> </msub> </mrow> <mrow> <mo>∂</mo> <mi>x</mi> <mo>∂</mo> <mi>y</mi> </mrow> </mfrac> <mo>−</mo> <msubsup> <mi>D</mi> <mrow> <mn>11</mn> </mrow> <mi>s</mi> </msubsup> <mfrac> <mrow> <msup> <mo>∂</mo> <mn>3</mn> </msup> <msub> <mi>w</mi> <mn>0</mn> </msub> </mrow> <mrow> <mo>∂</mo> <msup> <mi>x</mi> <mn>3</mn> </msup> </mrow> </mfrac> <mo>−</mo> <mrow> <mo>(</mo> <mrow> <msubsup> <mi>D</mi> <mrow> <mn>12</mn> </mrow> <mi>s</mi> </msubsup> <mo>+</mo> <mn>2</mn> <msubsup> <mi>D</mi> <mrow> <mn>66</mn> </mrow> <mi>s</mi> </msubsup> </mrow> <mo>)</mo> </mrow> <mfrac> <mrow> <msup> <mo>∂</mo> <mn>3</mn> </msup> <msub> <mi>w</mi> <mn>0</mn> </msub> </mrow> <mrow> <mo>∂</mo> <mi>x</mi> <mo>∂</mo> <msup> <mi>y</mi> <mn>2</mn> </msup> </mrow> </mfrac> </mrow> <mspace linebreak="newline"/> <mrow> <mo>+</mo> <mrow> <mo>(</mo> <mrow> <mfrac> <mrow> <msubsup> <mi>B</mi> <mrow> <mn>11</mn> </mrow> <mi>s</mi> </msubsup> </mrow> <mrow> <msub> <mi>R</mi> <mi>x</mi> </msub> </mrow> </mfrac> <mo>+</mo> <mfrac> <mrow> <msubsup> <mi>B</mi> <mrow> <mn>12</mn> </mrow> <mi>s</mi> </msubsup> </mrow> <mrow> <msub> <mi>R</mi> <mi>y</mi> </msub> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> <mfrac> <mrow> <mo>∂</mo> <msub> <mi>w</mi> <mn>0</mn> </msub> </mrow> <mrow> <mo>∂</mo> <mi>x</mi> </mrow> </mfrac> <mo>+</mo> <msubsup> <mi>F</mi> <mrow> <mn>11</mn> </mrow> <mi>s</mi> </msubsup> <mfrac> <mrow> <msup> <mo>∂</mo> <mn>2</mn> </msup> <msub> <mi>ψ</mi> <mi>x</mi> </msub> </mrow> <mrow> <mo>∂</mo> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> </mfrac> <mo>+</mo> <msubsup> <mi>F</mi> <mrow> <mn>66</mn> </mrow> <mi>s</mi> </msubsup> <mfrac> <mrow> <msup> <mo>∂</mo> <mn>2</mn> </msup> <msub> <mi>ψ</mi> <mi>x</mi> </msub> </mrow> <mrow> <mo>∂</mo> <msup> <mi>y</mi> <mn>2</mn> </msup> </mrow> </mfrac> <mo>−</mo> <msubsup> <mi>A</mi> <mrow> <mn>44</mn> </mrow> <mi>s</mi> </msubsup> <msub> <mi>ψ</mi> <mi>x</mi> </msub> <mo>+</mo> <mrow> <mo>(</mo> <mrow> <msubsup> <mi>F</mi> <mrow> <mn>12</mn> </mrow> <mi>s</mi> </msubsup> <mo>+</mo> <msubsup> <mi>F</mi> <mrow> <mn>66</mn> </mrow> <mi>s</mi> </msubsup> </mrow> <mo>)</mo> </mrow> <mfrac> <mrow> <msup> <mo>∂</mo> <mn>2</mn> </msup> <msub> <mi>ψ</mi> <mi>y</mi> </msub> </mrow> <mrow> <mo>∂</mo> <mi>x</mi> <mo>∂</mo> <mi>y</mi> </mrow> </mfrac> </mrow> <mspace linebreak="newline"/> <mrow> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <msub> <mi>I</mi> <mn>3</mn> </msub> <mo>+</mo> <mfrac> <mrow> <msub> <mi>I</mi> <mn>4</mn> </msub> </mrow> <mrow> <msub> <mi>R</mi> <mi>x</mi> </msub> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> <mfrac> <mrow> <msup> <mo>∂</mo> <mn>2</mn> </msup> <msub> <mi>u</mi> <mn>0</mn> </msub> </mrow> <mrow> <mo>∂</mo> <msup> <mi>t</mi> <mn>2</mn> </msup> </mrow> </mfrac> <mo>−</mo> <msub> <mi>I</mi> <mn>4</mn> </msub> <mfrac> <mrow> <msup> <mo>∂</mo> <mn>3</mn> </msup> <msub> <mi>w</mi> <mn>0</mn> </msub> </mrow> <mrow> <mo>∂</mo> <mi>x</mi> <mo>∂</mo> <msup> <mi>t</mi> <mn>2</mn> </msup> </mrow> </mfrac> <mo>+</mo> <msub> <mi>I</mi> <mn>5</mn> </msub> <mfrac> <mrow> <msup> <mo>∂</mo> <mn>2</mn> </msup> <msub> <mi>ψ</mi> <mi>x</mi> </msub> </mrow> <mrow> <mo>∂</mo> <msup> <mi>t</mi> <mn>2</mn> </msup> </mrow> </mfrac> </mrow> </mrow> </semantics></math> </div> <div class='l'> <label >(39)</label> </div> </div><div class='html-disp-formula-info' id='FD42-mathematics-10-00408'> <div class='f'> <math display='block'><semantics> <mrow> <mrow> <mrow> <mo>(</mo> <mrow> <msubsup> <mi>B</mi> <mrow> <mn>12</mn> </mrow> <mi>s</mi> </msubsup> <mo>+</mo> <msubsup> <mi>B</mi> <mrow> <mn>66</mn> </mrow> <mi>s</mi> </msubsup> </mrow> <mo>)</mo> </mrow> <mfrac> <mrow> <msup> <mo>∂</mo> <mn>2</mn> </msup> <msub> <mi>u</mi> <mn>0</mn> </msub> </mrow> <mrow> <mo>∂</mo> <mi>x</mi> <mo>∂</mo> <mi>y</mi> </mrow> </mfrac> <mo>+</mo> <msubsup> <mi>B</mi> <mrow> <mn>11</mn> </mrow> <mi>s</mi> </msubsup> <mfrac> <mrow> <msup> <mo>∂</mo> <mn>2</mn> </msup> <msub> <mi>v</mi> <mn>0</mn> </msub> </mrow> <mrow> <mo>∂</mo> <msup> <mi>y</mi> <mn>2</mn> </msup> </mrow> </mfrac> <mo>+</mo> <msubsup> <mi>B</mi> <mrow> <mn>66</mn> </mrow> <mi>s</mi> </msubsup> <mfrac> <mrow> <msup> <mo>∂</mo> <mn>2</mn> </msup> <msub> <mi>v</mi> <mn>0</mn> </msub> </mrow> <mrow> <mo>∂</mo> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> </mfrac> <mo>−</mo> <mrow> <mo>(</mo> <mrow> <msubsup> <mi>D</mi> <mrow> <mn>12</mn> </mrow> <mi>s</mi> </msubsup> <mo>+</mo> <mn>2</mn> <msubsup> <mi>D</mi> <mrow> <mn>66</mn> </mrow> <mi>s</mi> </msubsup> </mrow> <mo>)</mo> </mrow> <mfrac> <mrow> <msup> <mo>∂</mo> <mn>3</mn> </msup> <msub> <mi>w</mi> <mn>0</mn> </msub> </mrow> <mrow> <mo>∂</mo> <msup> <mi>x</mi> <mn>2</mn> </msup> <mo>∂</mo> <mi>y</mi> </mrow> </mfrac> <mo>−</mo> <msubsup> <mi>D</mi> <mrow> <mn>22</mn> </mrow> <mi>s</mi> </msubsup> <mfrac> <mrow> <msup> <mo>∂</mo> <mn>3</mn> </msup> <msub> <mi>w</mi> <mn>0</mn> </msub> </mrow> <mrow> <mo>∂</mo> <msup> <mi>y</mi> <mn>3</mn> </msup> </mrow> </mfrac> </mrow> <mspace linebreak="newline"/> <mrow> <mo>+</mo> <mrow> <mo>(</mo> <mrow> <mfrac> <mrow> <msubsup> <mi>B</mi> <mrow> <mn>12</mn> </mrow> <mi>s</mi> </msubsup> </mrow> <mrow> <msub> <mi>R</mi> <mi>x</mi> </msub> </mrow> </mfrac> <mo>+</mo> <mfrac> <mrow> <msubsup> <mi>B</mi> <mrow> <mn>22</mn> </mrow> <mi>s</mi> </msubsup> </mrow> <mrow> <msub> <mi>R</mi> <mi>y</mi> </msub> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> <mfrac> <mrow> <mo>∂</mo> <msub> <mi>w</mi> <mn>0</mn> </msub> </mrow> <mrow> <mo>∂</mo> <mi>x</mi> </mrow> </mfrac> <mo>+</mo> <mrow> <mo>(</mo> <mrow> <msubsup> <mi>F</mi> <mrow> <mn>12</mn> </mrow> <mi>s</mi> </msubsup> <mo>+</mo> <msubsup> <mi>F</mi> <mrow> <mn>66</mn> </mrow> <mi>s</mi> </msubsup> </mrow> <mo>)</mo> </mrow> <mfrac> <mrow> <msup> <mo>∂</mo> <mn>2</mn> </msup> <msub> <mi>ψ</mi> <mi>x</mi> </msub> </mrow> <mrow> <mo>∂</mo> <mi>x</mi> <mo>∂</mo> <mi>y</mi> </mrow> </mfrac> <mo>+</mo> <msubsup> <mi>F</mi> <mrow> <mn>11</mn> </mrow> <mi>s</mi> </msubsup> <mfrac> <mrow> <msup> <mo>∂</mo> <mn>2</mn> </msup> <msub> <mi>ψ</mi> <mi>y</mi> </msub> </mrow> <mrow> <mo>∂</mo> <msup> <mi>y</mi> <mn>2</mn> </msup> </mrow> </mfrac> <mo>+</mo> <msubsup> <mi>F</mi> <mrow> <mn>66</mn> </mrow> <mi>s</mi> </msubsup> <mfrac> <mrow> <msup> <mo>∂</mo> <mn>2</mn> </msup> <msub> <mi>ψ</mi> <mi>y</mi> </msub> </mrow> <mrow> <mo>∂</mo> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> </mfrac> <mo>−</mo> <msubsup> <mi>A</mi> <mrow> <mn>44</mn> </mrow> <mi>s</mi> </msubsup> <msub> <mi>ψ</mi> <mi>y</mi> </msub> </mrow> <mspace linebreak="newline"/> <mrow> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <msub> <mi>I</mi> <mn>3</mn> </msub> <mo>+</mo> <mfrac> <mrow> <msub> <mi>I</mi> <mn>4</mn> </msub> </mrow> <mrow> <msub> <mi>R</mi> <mi>y</mi> </msub> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> <mfrac> <mrow> <msup> <mo>∂</mo> <mn>2</mn> </msup> <msub> <mi>v</mi> <mn>0</mn> </msub> </mrow> <mrow> <mo>∂</mo> <msup> <mi>t</mi> <mn>2</mn> </msup> </mrow> </mfrac> <mo>−</mo> <msub> <mi>I</mi> <mn>4</mn> </msub> <mfrac> <mrow> <msup> <mo>∂</mo> <mn>3</mn> </msup> <msub> <mi>w</mi> <mn>0</mn> </msub> </mrow> <mrow> <mo>∂</mo> <mi>y</mi> <mo>∂</mo> <msup> <mi>t</mi> <mn>2</mn> </msup> </mrow> </mfrac> <mo>+</mo> <msub> <mi>I</mi> <mn>5</mn> </msub> <mfrac> <mrow> <msup> <mo>∂</mo> <mn>2</mn> </msup> <msub> <mi>ψ</mi> <mi>y</mi> </msub> </mrow> <mrow> <mo>∂</mo> <msup> <mi>t</mi> <mn>2</mn> </msup> </mrow> </mfrac> </mrow> </mrow> </semantics></math> </div> <div class='l'> <label >(40)</label> </div> </div></div></section><section id='sec5-mathematics-10-00408' type=''><h2 data-nested='1'> 5. Analytical Solution</h2><div class='html-p'>The aim of this work is to expand the use of analytical solutions to analyze the response of various structures such as shells by considering different boundary conditions, as shown in <a href="#mathematics-10-00408-t002" class="html-table">Table 2</a>. Therefore, the Galerkin approach can provide accurate solutions. The expressions of generalized displacements can be expressed as:<div class='html-disp-formula-info' id='FD43-mathematics-10-00408'> <div class='f'> <math display='block'><semantics> <mrow> <mtable> <mtr> <mtd> <mrow> <mrow> <mo>{</mo> <mrow> <msub> <mi>u</mi> <mn>0</mn> </msub> <mo>,</mo> <msub> <mi>ψ</mi> <mi>x</mi> </msub> </mrow> <mo>}</mo> </mrow> <mo>=</mo> <mstyle displaystyle="true"> <munderover> <mstyle mathsize="140%" displaystyle="true"> <mo>∑</mo> </mstyle> <mrow> <mi>m</mi> <mo>=</mo> <mn>1</mn> </mrow> <mo>∞</mo> </munderover> </mstyle> <mstyle displaystyle="true"> <munderover> <mstyle mathsize="140%" displaystyle="true"> <mo>∑</mo> </mstyle> <mrow> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mo>∞</mo> </munderover> </mstyle> <mrow> <mo>{</mo> <mrow> <msub> <mi>U</mi> <mrow> <mi>m</mi> <mi>n</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>X</mi> <mrow> <mi>m</mi> <mi>n</mi> </mrow> </msub> </mrow> <mo>}</mo> </mrow> <mfrac> <mrow> <mo>∂</mo> <msub> <mi>X</mi> <mi>m</mi> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mo>∂</mo> <mi>x</mi> </mrow> </mfrac> <msub> <mi>Y</mi> <mi>n</mi> </msub> <mrow> <mo>(</mo> <mi>y</mi> <mo>)</mo> </mrow> <msup> <mi>e</mi> <mrow> <mi>i</mi> <mi>ω</mi> <mi>t</mi> </mrow> </msup> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mrow> <mo>{</mo> <mrow> <msub> <mi>v</mi> <mn>0</mn> </msub> <mo>,</mo> <msub> <mi>ψ</mi> <mi>y</mi> </msub> </mrow> <mo>}</mo> </mrow> <mo>=</mo> <mstyle displaystyle="true"> <munderover> <mstyle mathsize="140%" displaystyle="true"> <mo>∑</mo> </mstyle> <mrow> <mi>m</mi> <mo>=</mo> <mn>1</mn> </mrow> <mo>∞</mo> </munderover> </mstyle> <mstyle displaystyle="true"> <munderover> <mstyle mathsize="140%" displaystyle="true"> <mo>∑</mo> </mstyle> <mrow> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mo>∞</mo> </munderover> </mstyle> <mrow> <mo>{</mo> <mrow> <msub> <mi>V</mi> <mrow> <mi>m</mi> <mi>n</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>Z</mi> <mrow> <mi>m</mi> <mi>n</mi> </mrow> </msub> </mrow> <mo>}</mo> </mrow> <msub> <mi>X</mi> <mi>m</mi> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mfrac> <mrow> <mo>∂</mo> <msub> <mi>Y</mi> <mi>n</mi> </msub> <mrow> <mo>(</mo> <mi>y</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mo>∂</mo> <mi>y</mi> </mrow> </mfrac> <msup> <mi>e</mi> <mrow> <mi>i</mi> <mi>ω</mi> <mi>t</mi> </mrow> </msup> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>w</mi> <mn>0</mn> </msub> <mo>=</mo> <mstyle displaystyle="true"> <munderover> <mstyle mathsize="140%" displaystyle="true"> <mo>∑</mo> </mstyle> <mrow> <mi>m</mi> <mo>=</mo> <mn>1</mn> </mrow> <mo>∞</mo> </munderover> </mstyle> <mstyle displaystyle="true"> <munderover> <mstyle mathsize="140%" displaystyle="true"> <mo>∑</mo> </mstyle> <mrow> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mo>∞</mo> </munderover> </mstyle> <msub> <mi>W</mi> <mrow> <mi>m</mi> <mi>n</mi> </mrow> </msub> <msub> <mi>X</mi> <mi>m</mi> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <msub> <mi>Y</mi> <mi>n</mi> </msub> <mrow> <mo>(</mo> <mi>y</mi> <mo>)</mo> </mrow> <msup> <mi>e</mi> <mrow> <mi>i</mi> <mi>ω</mi> <mi>t</mi> </mrow> </msup> </mrow> </mtd> </mtr> </mtable> </mrow> </semantics></math> </div> <div class='l'> <label >(41)</label> </div> </div></div><div class='html-p'><math display='inline'><semantics> <mrow> <msub> <mi>U</mi> <mrow> <mi>m</mi> <mi>n</mi> </mrow> </msub> </mrow> </semantics></math>, <math display='inline'><semantics> <mrow> <msub> <mi>V</mi> <mrow> <mi>m</mi> <mi>n</mi> </mrow> </msub> </mrow> </semantics></math>, <math display='inline'><semantics> <mrow> <msub> <mi>X</mi> <mrow> <mi>m</mi> <mi>n</mi> </mrow> </msub> </mrow> </semantics></math>, and <math display='inline'><semantics> <mrow> <msub> <mi>Z</mi> <mrow> <mi>m</mi> <mi>n</mi> </mrow> </msub> </mrow> </semantics></math> are arbitrary parameters. The boundary conditions that can be imposed on all the four boundaries of the CNTs/F-RC shells are given in <a href="#mathematics-10-00408-t002" class="html-table">Table 2</a> as:</div><div class='html-p'>The functions <math display='inline'><semantics> <mrow> <msub> <mi>X</mi> <mi>m</mi> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> and <math display='inline'><semantics> <mrow> <msub> <mi>Y</mi> <mi>n</mi> </msub> <mrow> <mo>(</mo> <mi>y</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> that satisfy the above boundary conditions are given in <a href="#mathematics-10-00408-t003" class="html-table">Table 3</a>.</div><div class='html-p'>By substituting Equation (41) in Equations (36)–(40), one obtains:<div class='html-disp-formula-info' id='FD44-mathematics-10-00408'> <div class='f'> <math display='block'><semantics> <mrow> <mrow> <mrow> <mo>[</mo> <mi>K</mi> <mo>]</mo> </mrow> <mo>=</mo> <mrow> <mo>[</mo> <mrow> <mtable> <mtr> <mtd> <mrow> <mtable> <mtr> <mtd> <mrow> <msub> <mi>K</mi> <mrow> <mn>11</mn> </mrow> </msub> </mrow> </mtd> <mtd> <mrow> <msub> <mi>K</mi> <mrow> <mn>12</mn> </mrow> </msub> </mrow> </mtd> <mtd> <mrow> <mtable> <mtr> <mtd> <mrow> <msub> <mi>K</mi> <mrow> <mn>13</mn> </mrow> </msub> </mrow> </mtd> <mtd> <mrow> <msub> <mi>K</mi> <mrow> <mn>14</mn> </mrow> </msub> </mrow> </mtd> <mtd> <mrow> <msub> <mi>K</mi> <mrow> <mn>15</mn> </mrow> </msub> </mrow> </mtd> </mtr> </mtable> </mrow> </mtd> </mtr> </mtable> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mtable> <mtr> <mtd> <mrow> <msub> <mi>K</mi> <mrow> <mn>12</mn> </mrow> </msub> </mrow> </mtd> <mtd> <mrow> <msub> <mi>K</mi> <mrow> <mn>22</mn> </mrow> </msub> </mrow> </mtd> <mtd> <mrow> <mtable> <mtr> <mtd> <mrow> <msub> <mi>K</mi> <mrow> <mn>23</mn> </mrow> </msub> </mrow> </mtd> <mtd> <mrow> <msub> <mi>K</mi> <mrow> <mn>24</mn> </mrow> </msub> </mrow> </mtd> <mtd> <mrow> <msub> <mi>K</mi> <mrow> <mn>25</mn> </mrow> </msub> </mrow> </mtd> </mtr> </mtable> </mrow> </mtd> </mtr> </mtable> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mtable> <mtr> <mtd> <mrow> <mtable> <mtr> <mtd> <mrow> <msub> <mi>K</mi> <mrow> <mn>13</mn> </mrow> </msub> </mrow> </mtd> <mtd> <mrow> <msub> <mi>K</mi> <mrow> <mn>23</mn> </mrow> </msub> </mrow> </mtd> <mtd> <mrow> <mtable> <mtr> <mtd> <mrow> <msub> <mi>K</mi> <mrow> <mn>33</mn> </mrow> </msub> </mrow> </mtd> <mtd> <mrow> <msub> <mi>K</mi> <mrow> <mn>34</mn> </mrow> </msub> </mrow> </mtd> <mtd> <mrow> <msub> <mi>K</mi> <mrow> <mn>35</mn> </mrow> </msub> </mrow> </mtd> </mtr> </mtable> </mrow> </mtd> </mtr> </mtable> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mtable> <mtr> <mtd> <mrow> <msub> <mi>K</mi> <mrow> <mn>14</mn> </mrow> </msub> </mrow> </mtd> <mtd> <mrow> <msub> <mi>K</mi> <mrow> <mn>24</mn> </mrow> </msub> </mrow> </mtd> <mtd> <mrow> <mtable> <mtr> <mtd> <mrow> <msub> <mi>K</mi> <mrow> <mn>34</mn> </mrow> </msub> </mrow> </mtd> <mtd> <mrow> <msub> <mi>K</mi> <mrow> <mn>44</mn> </mrow> </msub> </mrow> </mtd> <mtd> <mrow> <msub> <mi>K</mi> <mrow> <mn>45</mn> </mrow> </msub> </mrow> </mtd> </mtr> </mtable> </mrow> </mtd> </mtr> </mtable> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mtable> <mtr> <mtd> <mrow> <msub> <mi>K</mi> <mrow> <mn>15</mn> </mrow> </msub> </mrow> </mtd> <mtd> <mrow> <msub> <mi>K</mi> <mrow> <mn>25</mn> </mrow> </msub> </mrow> </mtd> <mtd> <mrow> <mtable> <mtr> <mtd> <mrow> <msub> <mi>K</mi> <mrow> <mn>35</mn> </mrow> </msub> </mrow> </mtd> <mtd> <mrow> <msub> <mi>K</mi> <mrow> <mn>45</mn> </mrow> </msub> </mrow> </mtd> <mtd> <mrow> <msub> <mi>K</mi> <mrow> <mn>55</mn> </mrow> </msub> </mrow> </mtd> </mtr> </mtable> </mrow> </mtd> </mtr> </mtable> </mrow> </mtd> </mtr> </mtable> </mrow> </mtd> </mtr> </mtable> </mrow> <mo>]</mo> </mrow> <mo>,</mo> <mo> </mo> </mrow> <mrow> <mrow> <mo>[</mo> <mi>M</mi> <mo>]</mo> </mrow> <mo>=</mo> <mrow> <mo>[</mo> <mrow> <mtable> <mtr> <mtd> <mrow> <mtable> <mtr> <mtd> <mrow> <msub> <mi>M</mi> <mrow> <mn>11</mn> </mrow> </msub> </mrow> </mtd> <mtd> <mrow> <msub> <mi>M</mi> <mrow> <mn>12</mn> </mrow> </msub> </mrow> </mtd> <mtd> <mrow> <mtable> <mtr> <mtd> <mrow> <msub> <mi>M</mi> <mrow> <mn>13</mn> </mrow> </msub> </mrow> </mtd> <mtd> <mrow> <msub> <mi>M</mi> <mrow> <mn>14</mn> </mrow> </msub> </mrow> </mtd> <mtd> <mrow> <msub> <mi>M</mi> <mrow> <mn>15</mn> </mrow> </msub> </mrow> </mtd> </mtr> </mtable> </mrow> </mtd> </mtr> </mtable> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mtable> <mtr> <mtd> <mrow> <msub> <mi>M</mi> <mrow> <mn>21</mn> </mrow> </msub> </mrow> </mtd> <mtd> <mrow> <msub> <mi>M</mi> <mrow> <mn>22</mn> </mrow> </msub> </mrow> </mtd> <mtd> <mrow> <mtable> <mtr> <mtd> <mrow> <msub> <mi>M</mi> <mrow> <mn>23</mn> </mrow> </msub> </mrow> </mtd> <mtd> <mrow> <msub> <mi>M</mi> <mrow> <mn>24</mn> </mrow> </msub> </mrow> </mtd> <mtd> <mrow> <msub> <mi>M</mi> <mrow> <mn>25</mn> </mrow> </msub> </mrow> </mtd> </mtr> </mtable> </mrow> </mtd> </mtr> </mtable> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mtable> <mtr> <mtd> <mrow> <mtable> <mtr> <mtd> <mrow> <msub> <mi>M</mi> <mrow> <mn>13</mn> </mrow> </msub> </mrow> </mtd> <mtd> <mrow> <msub> <mi>M</mi> <mrow> <mn>23</mn> </mrow> </msub> </mrow> </mtd> <mtd> <mrow> <mtable> <mtr> <mtd> <mrow> <msub> <mi>M</mi> <mrow> <mn>33</mn> </mrow> </msub> </mrow> </mtd> <mtd> <mrow> <msub> <mi>M</mi> <mrow> <mn>34</mn> </mrow> </msub> </mrow> </mtd> <mtd> <mrow> <msub> <mi>M</mi> <mrow> <mn>35</mn> </mrow> </msub> </mrow> </mtd> </mtr> </mtable> </mrow> </mtd> </mtr> </mtable> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mtable> <mtr> <mtd> <mrow> <msub> <mi>M</mi> <mrow> <mn>14</mn> </mrow> </msub> </mrow> </mtd> <mtd> <mrow> <msub> <mi>M</mi> <mrow> <mn>24</mn> </mrow> </msub> </mrow> </mtd> <mtd> <mrow> <mtable> <mtr> <mtd> <mrow> <msub> <mi>M</mi> <mrow> <mn>34</mn> </mrow> </msub> </mrow> </mtd> <mtd> <mrow> <msub> <mi>M</mi> <mrow> <mn>44</mn> </mrow> </msub> </mrow> </mtd> <mtd> <mrow> <msub> <mi>M</mi> <mrow> <mn>45</mn> </mrow> </msub> </mrow> </mtd> </mtr> </mtable> </mrow> </mtd> </mtr> </mtable> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mtable> <mtr> <mtd> <mrow> <msub> <mi>M</mi> <mrow> <mn>15</mn> </mrow> </msub> </mrow> </mtd> <mtd> <mrow> <msub> <mi>M</mi> <mrow> <mn>25</mn> </mrow> </msub> </mrow> </mtd> <mtd> <mrow> <mtable> <mtr> <mtd> <mrow> <msub> <mi>M</mi> <mrow> <mn>35</mn> </mrow> </msub> </mrow> </mtd> <mtd> <mrow> <msub> <mi>M</mi> <mrow> <mn>45</mn> </mrow> </msub> </mrow> </mtd> <mtd> <mrow> <msub> <mi>M</mi> <mrow> <mn>55</mn> </mrow> </msub> </mrow> </mtd> </mtr> </mtable> </mrow> </mtd> </mtr> </mtable> </mrow> </mtd> </mtr> </mtable> </mrow> </mtd> </mtr> </mtable> </mrow> <mo>]</mo> </mrow> </mrow> </mrow> </semantics></math> </div> <div class='l'> <label >(42)</label> </div> </div> where <math display='inline'><semantics> <mrow> <mrow> <mo>[</mo> <mi>K</mi> <mo>]</mo> </mrow> </mrow> </semantics></math> et [M] are the rigidity matrix and mass matrix, respectively.</div><div class='html-p'>The elements <math display='inline'><semantics> <mrow> <msub> <mi>K</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> </mrow> </semantics></math> and <math display='inline'><semantics> <mrow> <msub> <mi>M</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> </mrow> </semantics></math> of the matrix <math display='inline'><semantics> <mrow> <mrow> <mo>[</mo> <mi>K</mi> <mo>]</mo> </mrow> </mrow> </semantics></math> and <math display='inline'><semantics> <mrow> <mrow> <mo>[</mo> <mi>M</mi> <mo>]</mo> </mrow> </mrow> </semantics></math> are given in <a href="#app1-mathematics-10-00408" class="html-app">Appendix A</a>.</div></section><section id='sec6-mathematics-10-00408' type='results'><h2 data-nested='1'> 6. Results and Discussions</h2><section id='sec6dot1-mathematics-10-00408' type=''><h4 class='html-italic' data-nested='2'> 6.1. Verification Analysis</h4><div class='html-p'>Firstly, to examine the accuracy and effectiveness of the developed model, the results for the free vibration of functionally graded shells were compared with those generated in the literature using various solution techniques (see <a href="#mathematics-10-00408-t004" class="html-table">Table 4</a>). The materials used were Alumina (AlO<sub>2</sub>) as the ceramic (<math display='inline'><semantics> <mrow> <msub> <mi>E</mi> <mi>c</mi> </msub> <mo>=</mo> <mn>380</mn> <mo> </mo> <mi>GPa</mi> </mrow> </semantics></math>, <math display='inline'><semantics> <mrow> <msub> <mi>ρ</mi> <mi>c</mi> </msub> <mo>=</mo> <mn>3800</mn> <mo> </mo> <mi>kg</mi> <mo>/</mo> <msup> <mi mathvariant="normal">m</mi> <mn>3</mn> </msup> </mrow> </semantics></math>) and Aluminium (Al) as the metal (<math display='inline'><semantics> <mrow> <msub> <mi>E</mi> <mi>m</mi> </msub> <mo>=</mo> <mn>70</mn> <mo> </mo> <mi>GPa</mi> </mrow> </semantics></math>, <math display='inline'><semantics> <mrow> <msub> <mi>ρ</mi> <mi>c</mi> </msub> <mo>=</mo> <mn>2707</mn> <mo> </mo> <mi>kg</mi> <mo>/</mo> <msup> <mi mathvariant="normal">m</mi> <mn>3</mn> </msup> </mrow> </semantics></math>). Poisson’s ratio was taken as <math display='inline'><semantics> <mrow> <mi>υ</mi> <mo>=</mo> <mn>0.3</mn> </mrow> </semantics></math>. It can be observed that the results computed by the proposed HSDT are absolutely identical to those generated in the literature.</div></section><section id='62ParametricStud' type=''><h4 class='html-italic' data-nested='2'> 6.2. Parametric Stud</h4><div class='html-p'>The analyzed composite shell was made of a mixture of the polymer, armchair (10, 10) single-walled CNTs, and long fibers as reinforcements. The material properties of the polymer were [<a href="#B57-mathematics-10-00408" class="html-bibr">57</a>]: <math display='inline'><semantics> <mrow> <msub> <mi>E</mi> <mi>p</mi> </msub> <mo>=</mo> <mn>2.5</mn> <mo> </mo> <mi>GPa</mi> </mrow> </semantics></math>, <math display='inline'><semantics> <mrow> <msub> <mi>ρ</mi> <mi>p</mi> </msub> <mo>=</mo> <mn>1190</mn> <mo> </mo> <mi>kg</mi> <mo>/</mo> <msup> <mi mathvariant="normal">m</mi> <mn>3</mn> </msup> </mrow> </semantics></math>, and <math display='inline'><semantics> <mrow> <msub> <mi>υ</mi> <mi>p</mi> </msub> <mo>=</mo> <mn>0.19</mn> </mrow> </semantics></math>, while the material properties of the fiber were [<a href="#B58-mathematics-10-00408" class="html-bibr">58</a>]: <math display='inline'><semantics> <mrow> <msubsup> <mi>E</mi> <mrow> <mn>11</mn> </mrow> <mi>f</mi> </msubsup> <mo>=</mo> <mn>233.5</mn> <mo> </mo> <mi>GPa</mi> </mrow> </semantics></math>, <math display='inline'><semantics> <mrow> <msubsup> <mi>E</mi> <mrow> <mn>22</mn> </mrow> <mi>f</mi> </msubsup> <mo>=</mo> <mn>23.1</mn> <mo> </mo> <mi>GPa</mi> </mrow> </semantics></math>, <math display='inline'><semantics> <mrow> <msubsup> <mi>G</mi> <mrow> <mn>12</mn> </mrow> <mi>f</mi> </msubsup> <mo>=</mo> <mn>8.96</mn> <mo> </mo> <mi>GPa</mi> </mrow> </semantics></math>, <math display='inline'><semantics> <mrow> <msub> <mi>ρ</mi> <mi>f</mi> </msub> <mo>=</mo> <mn>1750</mn> <mo> </mo> <mi>kg</mi> <mo>/</mo> <msup> <mi mathvariant="normal">m</mi> <mn>3</mn> </msup> </mrow> </semantics></math>, and <math display='inline'><semantics> <mrow> <msub> <mi>υ</mi> <mi>f</mi> </msub> <mo>=</mo> <mn>0.2</mn> </mrow> </semantics></math>. The density of the CNTs was assumed to be equal to <math display='inline'><semantics> <mrow> <msub> <mi>ρ</mi> <mi>f</mi> </msub> <mo>=</mo> <mn>1400</mn> <mo> </mo> <mi>kg</mi> <mo>/</mo> <msup> <mi mathvariant="normal">m</mi> <mn>3</mn> </msup> </mrow> </semantics></math>. To standardize and simplify calculations, the normalized parameters for the vibration analyses of the CNTs/fiber shells are described using the following forms:<div class='html-disp-formula-info' id='FD45-mathematics-10-00408'> <div class='f'> <math display='block'><semantics> <mrow> <mover accent="true"> <mi>ω</mi> <mo>¯</mo> </mover> <mo>=</mo> <mi>ω</mi> <mi>h</mi> <msqrt> <mrow> <mfrac> <mrow> <msub> <mi>ρ</mi> <mi>m</mi> </msub> </mrow> <mrow> <msub> <mi>E</mi> <mi>m</mi> </msub> </mrow> </mfrac> </mrow> </msqrt> </mrow> </semantics></math> </div> <div class='l'> <label >(43)</label> </div> </div></div><div class='html-p'>In the following analysis, a parametric study on the vibration of CNTs/F-RC shells is carried out. Two types of laminated shells are proposed: cross-ply laminates and unidirectional laminates. For the unidirectional laminates, the angle of the orientation <math display='inline'><semantics> <mi>θ</mi> </semantics></math> was equal to 0°. For the cross-ply laminates, the angle of the orientation <math display='inline'><semantics> <mi>θ</mi> </semantics></math> of each layer changed alternately (<math display='inline'><semantics> <mi>θ</mi> </semantics></math> = 0° or 90°), for example, in the case of five layers, the shell could be described as [0°/90°/0°/90°/0°] laminate. The effect of the number of layers <span class='html-italic'>N</span> and the fiber distribution patterns on the dimensionless frequency of simply supported cross-ply F/CNT-RC shells for various curvature radii was examined as shown in <a href="#mathematics-10-00408-t005" class="html-table">Table 5</a>. The maximum volume fraction was taken as <math display='inline'><semantics> <mrow> <msubsup> <mi>V</mi> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> <mi>f</mi> </msubsup> <mo>=</mo> <mn>30</mn> <mo>%</mo> </mrow> </semantics></math>, while the minimum is <math display='inline'><semantics> <mrow> <msubsup> <mi>V</mi> <mrow> <mi>m</mi> <mi>i</mi> <mi>n</mi> </mrow> <mi>f</mi> </msubsup> <mo>=</mo> <mn>10</mn> <mo>%</mo> </mrow> </semantics></math>. The volume fraction of the CNTs was taken as <math display='inline'><semantics> <mrow> <msub> <mi>V</mi> <mrow> <mi>c</mi> <mi>n</mi> <mi>t</mi> </mrow> </msub> <mo>=</mo> <mn>1</mn> <mo>%</mo> </mrow> </semantics></math>. The same analysis is discussed on the unidirectional F/CNT-RC shells in <a href="#mathematics-10-00408-t006" class="html-table">Table 6</a>.</div><div class='html-p'><a href="#mathematics-10-00408-t007" class="html-table">Table 7</a> shows the impact of the volume fraction and the fiber distribution patterns on the dimensionless frequency of simply supported cross-ply F/CNT-RC laminated shells. The number of layers was fixed at nine (9) layers. It is clear from this table that the change in the volume fraction of the CNTs had a significant influence on the free vibration behaviour of the shells.</div><div class='html-p'>The effect of the volume fraction and the distribution patterns of the fibers on the dimensionless frequency of simply supported cross-ply F/CNT-RC shells is demonstrated in <a href="#mathematics-10-00408-t008" class="html-table">Table 8</a>. The volume fraction of the CNTs was proposed as <math display='inline'><semantics> <mrow> <msub> <mi>V</mi> <mrow> <mi>c</mi> <mi>n</mi> <mi>t</mi> </mrow> </msub> <mo>=</mo> <mn>1</mn> <mo>%</mo> </mrow> </semantics></math>, whereas the minimal volume fraction of the fibers was <math display='inline'><semantics> <mrow> <msubsup> <mi>V</mi> <mrow> <mi>m</mi> <mi>i</mi> <mi>n</mi> </mrow> <mi>f</mi> </msubsup> <mo>=</mo> <mn>0.05</mn> </mrow> </semantics></math>. The increase in the fiber volume fraction further reinforced the composite plate; therefore, the dimensionless frequencies increased.</div><div class='html-p'><a href="#mathematics-10-00408-t009" class="html-table">Table 9</a> presents the influence of the fiber distribution patterns on the dimensionless frequency of cross-ply F/CNT-RC shells for various boundary conditions. The fully clamped plate (CCCC) had the highest frequencies, while the lowest frequencies were for the simply supported shells, wherever the fiber distribution pattern was.</div><div class='html-p'>The action of the geometric parameters <span class='html-italic'>a</span>/<span class='html-italic'>h</span> and <span class='html-italic'>b</span>/<span class='html-italic'>a</span> on the dimensionless frequency of simply supported cross-ply F/CNT-RC shells for various curvature radii is tabulated in <a href="#mathematics-10-00408-t010" class="html-table">Table 10</a>. It is observed that the frequencies decreased when the thickness ratio <span class='html-italic'>a</span>/<span class='html-italic'>h</span> was decreased and the aspect ratio <span class='html-italic'>b</span>/<span class='html-italic'>a</span> was increased.</div><div class='html-p'><a href="#mathematics-10-00408-f004" class="html-fig">Figure 4</a> shows the the impact of the number of layers “<span class='html-italic'>N</span>” on the vibration frequencies of simply supported CNTs/F-RC shells using different fiber distribution patterns. Two types of shells were analyzed: cross-ply fibers and unidirectional fibers. The number of layers “<span class='html-italic'>N</span>” changed from 3 to 19. In the case of cross-ply fibers, the increase in the number of layers “<span class='html-italic'>N</span>” led to an increment in the dimensionless frequencies. The FG-X fiber distribution shells had the highest frequencies because of their excellent rigidity. In the case of unidirectional fibers, contradictory results were obtained. Precisely, the dimensionless frequencies increased with the increase in the number of layers for the patterns FG-O and FG-B, while the opposite effect was seen for the FG-X patterns. As is known, to increase the rigidity of the structure, it is obligatory to increase the reinforcement materials at the superior and the inferior sheets. On the other hand, the increase in the number of layers meant that the thickness of each layer decreased; therefore, the thickness of the strongest layer (superior and inferior layers) decreased, and this can explain the reduction in the rigidity of the plate. For the case of unidirectional fibers with uniform distribution UD, the number of layers did not have any influence.</div><div class='html-p'><a href="#mathematics-10-00408-f005" class="html-fig">Figure 5</a> shows the variation of dimensionless frequencies in the function of the radii of curvature <math display='inline'><semantics> <mrow> <mrow> <mo>(</mo> <mrow> <msub> <mi>R</mi> <mi>x</mi> </msub> <mo>/</mo> <mi>a</mi> </mrow> <mo>)</mo> </mrow> </mrow> </semantics></math>. The radii of curvature <math display='inline'><semantics> <mrow> <msub> <mi>R</mi> <mi>y</mi> </msub> <mo>/</mo> <mi>b</mi> </mrow> </semantics></math> is fixed at inf, 5, and −5. In general, the increase in the radii of curvature <math display='inline'><semantics> <mrow> <msub> <mi>R</mi> <mi>x</mi> </msub> <mo>/</mo> <mi>a</mi> </mrow> </semantics></math> led to a critical decrement in frequencies for the values <math display='inline'><semantics> <mrow> <mrow> <mo>(</mo> <mrow> <msub> <mi>R</mi> <mi>x</mi> </msub> <mo>/</mo> <mi>a</mi> <mo>≤</mo> <mn>5</mn> </mrow> <mo>)</mo> </mrow> </mrow> </semantics></math>, and then, the frequencies continued to decrease in the cylindrical and the elliptical–paraboloid shells (<span class='html-italic'>R</span>/<span class='html-italic'>b</span> = inf, 5) slightly, and they increased in the case of the hyperbolic–paraboloid shell (<span class='html-italic'>R</span>/<span class='html-italic'>b</span> = −5).</div><div class='html-p'>In <a href="#mathematics-10-00408-f006" class="html-fig">Figure 6</a>, the influences of the volume fraction of fibers and CNTs on the vibration frequencies of simply supported FG-X CNTs/F-RC plate are plotted. The minimal volume fraction of the fibers was <math display='inline'><semantics> <mrow> <msubsup> <mi>V</mi> <mrow> <mi>m</mi> <mi>i</mi> <mi>n</mi> </mrow> <mi>f</mi> </msubsup> <mo>=</mo> <mn>0.05</mn> </mrow> </semantics></math>. It is evident that the increase in the volume fraction of the reinforcement led to an increment in plate stiffness; therefore, the natural frequencies increased. Comparing the two reinforcement materials, the increase in the volume fraction of the CNTs had a more important effect than the volume fraction of the fibers.</div><div class='html-p'>The effect of both the aspect ratio <span class='html-italic'>b</span>/<span class='html-italic'>a</span> and the thickness ratio <span class='html-italic'>a</span>/<span class='html-italic'>h</span> on the dimensionless frequency of a spherical shell <math display='inline'><semantics> <mrow> <mrow> <mo>(</mo> <mrow> <msub> <mi>R</mi> <mi>x</mi> </msub> <mo>/</mo> <mi>a</mi> <mo>=</mo> <msub> <mi>R</mi> <mi>y</mi> </msub> <mo>/</mo> <mi>b</mi> <mo>=</mo> <mn>5</mn> </mrow> <mo>)</mo> </mrow> </mrow> </semantics></math> for various boundary conditions is demonstrated in <a href="#mathematics-10-00408-f007" class="html-fig">Figure 7</a>. The increase in the aspect ratio led to a decrement in the dimensionless frequencies regardless of the boundary condition type. For the thickness ratio <span class='html-italic'>a</span>/<span class='html-italic'>h</span> effect, the frequencies decreased critically for values <math display='inline'><semantics> <mrow> <mi>a</mi> <mo>/</mo> <mi>h</mi> <mo>≤</mo> <mn>10</mn> </mrow> </semantics></math>. The fully clamped shells had the highest values of frequency, while the lowest values were for the simply supported shells.</div><div class='html-p'>Finally, in <a href="#mathematics-10-00408-f008" class="html-fig">Figure 8</a>, the effect of the modes of vibration “<span class='html-italic'>m</span>” and “<span class='html-italic'>n</span>” on the dimensionless frequency of a spherical shell is plotted. We can see that the dimensionless frequency is influenced by mode shapes <span class='html-italic'>m</span> and <span class='html-italic'>n</span>, where the frequency increased with the increase in the vibrational mode shapes.</div></section></section><section id='sec7-mathematics-10-00408' type='conclusions'><h2 data-nested='1'> 7. Conclusions</h2><div class='html-p'>The free vibration behavior of composite laminated plates and shells reinforced by both randomly oriented (10, 10) single-walled carbon nanotubes (SWCNTs) and functionally graded fibers is presented in this work. Four distribution patterns of fiber reinforcement including UD-distribution, V-distribution, O-distribution, and X-distribution were analyzed. The problem was tackled theoretically based on the Galerkin technique and accounting for different boundary conditions. A parametric study was performed systematically to check for the effect of some significant factors on the free vibration response of CNTs/F-RC laminated shells, namely the fiber reinforcement patterns and the volume fraction of CNTs, together with the geometric parameters of the shells. The results showed that the present solution is in close agreement with the other available solutions in the literature. Based on the parametric investigation, the following concluding remarks are revealed:</div><div class='html-p'><ul class='html-bullet'><li><div class='html-p'>It seems that the dimensionless frequencies increased for an increased volume fraction of CNTs/fibers because of a global augmentation in the stiffness of the CNTs/F-RC laminated shell;</div></li><li><div class='html-p'>Because of the considerable reinforcement in the superior and inferior layers, the distribution pattern of FG-X fibers produced the highest values of frequencies;</div></li><li><div class='html-p'>The variation of the geometric parameters such as aspect ratio, thickness ratio, and radii of curvature had a significant effect on the vibration response of the proposed structure;</div></li><li><div class='html-p'>The analytical solution proposed in this work could represent valid benchmarks for engineers and researchers for the purposes of the practical design of shell structures.</div></li></ul></div></section> </div> <div class="html-back"> <section class='html-notes'><h2 >Author Contributions</h2><div class='html-p'>A.M. (project administration, funding acquisition, data curation); A.A.D. (software, validation, formal analysis, investigation); M.B. (formal analysis, investigation); A.W. (software, visualization, data curation); R.O. (Conceptualization, methodology, formal analysis); K.H.A. (software, investigation, resources); M.A.H. (methodology, review and editing); A.A. (methodology, software, validation); M.A.E. (Conceptualization, methodology, review and editing). All authors have read and agreed to the published version of the manuscript.</div></section><section class='html-notes'><h2 >Funding</h2><div class='html-p'>This research was funded by the Institutional Fund Projects under Grant no. (IFPRC-012-135-2020). Therefore, the authors gratefully acknowledge technical and financial support from the Ministry of Education and King Abdulaziz University, DSR, Jeddah, Saudi Arabia. </div></section><section class='html-notes'><h2 >Institutional Review Board Statement</h2><div class='html-p'>Not applicable.</div></section><section class='html-notes'><h2 >Informed Consent Statement</h2><div class='html-p'>Not applicable.</div></section><section class='html-notes'><h2 >Data Availability Statement</h2><div class='html-p'>Not applicable.</div></section><section class='html-notes'><h2 >Conflicts of Interest</h2><div class='html-p'>The authors declare no conflict of interest.</div></section><section><section id='app1-mathematics-10-00408' type=''><h2 data-nested='1'> Appendix A</h2><div class='html-p'>Rigidity matrix elements; <div class='html-disp-formula-info' id='FD46-mathematics-10-00408'> <div class='f'> <math display='block'><semantics> <mrow> <msub> <mi>K</mi> <mrow> <mn>11</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>A</mi> <mrow> <mn>11</mn> </mrow> </msub> <munderover> <mstyle mathsize="140%" displaystyle="true"> <mo>∫</mo> </mstyle> <mn>0</mn> <mi>a</mi> </munderover> <munderover> <mstyle mathsize="140%" displaystyle="true"> <mo>∫</mo> </mstyle> <mn>0</mn> <mi>b</mi> </munderover> <mfrac> <mrow> <msup> <mo>∂</mo> <mn>3</mn> </msup> <msub> <mi>X</mi> <mi>m</mi> </msub> </mrow> <mrow> <mo>∂</mo> <msup> <mi>x</mi> <mn>3</mn> </msup> </mrow> </mfrac> <msub> <mi>Y</mi> <mi>n</mi> </msub> <mfrac> <mrow> <mo>∂</mo> <msub> <mi>X</mi> <mi>m</mi> </msub> </mrow> <mrow> <mo>∂</mo> <mi>x</mi> </mrow> </mfrac> <msub> <mi>Y</mi> <mi>n</mi> </msub> <mi mathvariant="normal">d</mi> <mi>x</mi> <mi mathvariant="normal">d</mi> <mi>y</mi> <mo>+</mo> <msub> <mi>A</mi> <mrow> <mn>66</mn> </mrow> </msub> <munderover> <mstyle mathsize="140%" displaystyle="true"> <mo>∫</mo> </mstyle> <mn>0</mn> <mi>a</mi> </munderover> <munderover> <mstyle mathsize="140%" displaystyle="true"> <mo>∫</mo> </mstyle> <mn>0</mn> <mi>b</mi> </munderover> <mfrac> <mrow> <mo>∂</mo> <msub> <mi>X</mi> <mi>m</mi> </msub> </mrow> <mrow> <mo>∂</mo> <mi>x</mi> </mrow> </mfrac> <mfrac> <mrow> <msup> <mo>∂</mo> <mn>2</mn> </msup> <msub> <mi>Y</mi> <mi>n</mi> </msub> </mrow> <mrow> <mo>∂</mo> <msup> <mi>y</mi> <mn>2</mn> </msup> </mrow> </mfrac> <mfrac> <mrow> <mo>∂</mo> <msub> <mi>X</mi> <mi>m</mi> </msub> </mrow> <mrow> <mo>∂</mo> <mi>x</mi> </mrow> </mfrac> <msub> <mi>Y</mi> <mi>n</mi> </msub> <mi mathvariant="normal">d</mi> <mi>x</mi> <mi mathvariant="normal">d</mi> <mi>y</mi> </mrow> </semantics></math> </div> <div class='l'> </div> </div><div class='html-disp-formula-info' id='FD47-mathematics-10-00408'> <div class='f'> <math display='block'><semantics> <mrow> <msub> <mi>K</mi> <mrow> <mn>12</mn> </mrow> </msub> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <msub> <mi>A</mi> <mrow> <mn>12</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>A</mi> <mrow> <mn>66</mn> </mrow> </msub> </mrow> <mo>)</mo> </mrow> <munderover> <mstyle mathsize="140%" displaystyle="true"> <mo>∫</mo> </mstyle> <mn>0</mn> <mi>a</mi> </munderover> <munderover> <mstyle mathsize="140%" displaystyle="true"> <mo>∫</mo> </mstyle> <mn>0</mn> <mi>b</mi> </munderover> <mfrac> <mrow> <mo>∂</mo> <msub> <mi>X</mi> <mi>m</mi> </msub> </mrow> <mrow> <mo>∂</mo> <mi>x</mi> </mrow> </mfrac> <mfrac> <mrow> <msup> <mo>∂</mo> <mn>2</mn> </msup> <msub> <mi>Y</mi> <mi>n</mi> </msub> </mrow> <mrow> <mo>∂</mo> <msup> <mi>y</mi> <mn>2</mn> </msup> </mrow> </mfrac> <mfrac> <mrow> <mo>∂</mo> <msub> <mi>X</mi> <mi>m</mi> </msub> </mrow> <mrow> <mo>∂</mo> <mi>x</mi> </mrow> </mfrac> <msub> <mi>Y</mi> <mi>n</mi> </msub> <mi mathvariant="normal">d</mi> <mi>x</mi> <mi mathvariant="normal">d</mi> <mi>y</mi> </mrow> </semantics></math> </div> <div class='l'> </div> </div><div class='html-disp-formula-info' id='FD48-mathematics-10-00408'> <div class='f'> <math display='block'><semantics> <mrow> <mrow> <msub> <mi>K</mi> <mrow> <mn>13</mn> </mrow> </msub> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <mfrac> <mrow> <msub> <mi>A</mi> <mrow> <mn>11</mn> </mrow> </msub> </mrow> <mrow> <msub> <mi>R</mi> <mi>x</mi> </msub> </mrow> </mfrac> <mo>+</mo> <mfrac> <mrow> <msub> <mi>A</mi> <mrow> <mn>12</mn> </mrow> </msub> </mrow> <mrow> <msub> <mi>R</mi> <mi>y</mi> </msub> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> <munderover> <mstyle mathsize="140%" displaystyle="true"> <mo>∫</mo> </mstyle> <mn>0</mn> <mi>a</mi> </munderover> <munderover> <mstyle mathsize="140%" displaystyle="true"> <mo>∫</mo> </mstyle> <mn>0</mn> <mi>b</mi> </munderover> <mfrac> <mrow> <mo>∂</mo> <msub> <mi>X</mi> <mi>m</mi> </msub> </mrow> <mrow> <mo>∂</mo> <mi>x</mi> </mrow> </mfrac> <msub> <mi>Y</mi> <mi>n</mi> </msub> <mfrac> <mrow> <mo>∂</mo> <msub> <mi>X</mi> <mi>m</mi> </msub> </mrow> <mrow> <mo>∂</mo> <mi>x</mi> </mrow> </mfrac> <msub> <mi>Y</mi> <mi>n</mi> </msub> <mi mathvariant="normal">d</mi> <mi>x</mi> <mi mathvariant="normal">d</mi> <mi>y</mi> <mo>−</mo> <msub> <mi>B</mi> <mrow> <mn>11</mn> </mrow> </msub> <munderover> <mstyle mathsize="140%" displaystyle="true"> <mo>∫</mo> </mstyle> <mn>0</mn> <mi>a</mi> </munderover> <munderover> <mstyle mathsize="140%" displaystyle="true"> <mo>∫</mo> </mstyle> <mn>0</mn> <mi>b</mi> </munderover> <mfrac> <mrow> <msup> <mo>∂</mo> <mn>3</mn> </msup> <msub> <mi>X</mi> <mi>m</mi> </msub> </mrow> <mrow> <mo>∂</mo> <msup> <mi>x</mi> <mn>3</mn> </msup> </mrow> </mfrac> <msub> <mi>Y</mi> <mi>n</mi> </msub> <mfrac> <mrow> <mo>∂</mo> <msub> <mi>X</mi> <mi>m</mi> </msub> </mrow> <mrow> <mo>∂</mo> <mi>x</mi> </mrow> </mfrac> <msub> <mi>Y</mi> <mi>n</mi> </msub> <mi mathvariant="normal">d</mi> <mi>x</mi> <mi mathvariant="normal">d</mi> <mi>y</mi> <mo>−</mo> </mrow> <mspace linebreak="newline"/> <mrow> <mrow> <mo>(</mo> <mrow> <msub> <mi>B</mi> <mrow> <mn>12</mn> </mrow> </msub> <mo>+</mo> <mn>2</mn> <msub> <mi>B</mi> <mrow> <mn>66</mn> </mrow> </msub> </mrow> <mo>)</mo> </mrow> <munderover> <mstyle mathsize="140%" displaystyle="true"> <mo>∫</mo> </mstyle> <mn>0</mn> <mi>a</mi> </munderover> <munderover> <mstyle mathsize="140%" displaystyle="true"> <mo>∫</mo> </mstyle> <mn>0</mn> <mi>b</mi> </munderover> <mfrac> <mrow> <mo>∂</mo> <msub> <mi>X</mi> <mi>m</mi> </msub> </mrow> <mrow> <mo>∂</mo> <mi>x</mi> </mrow> </mfrac> <mfrac> <mrow> <msup> <mo>∂</mo> <mn>2</mn> </msup> <msub> <mi>Y</mi> <mi>n</mi> </msub> </mrow> <mrow> <mo>∂</mo> <msup> <mi>y</mi> <mn>2</mn> </msup> </mrow> </mfrac> <mfrac> <mrow> <mo>∂</mo> <msub> <mi>X</mi> <mi>m</mi> </msub> </mrow> <mrow> <mo>∂</mo> <mi>x</mi> </mrow> </mfrac> <msub> <mi>Y</mi> <mi>n</mi> </msub> <mi mathvariant="normal">d</mi> <mi>x</mi> <mi mathvariant="normal">d</mi> <mi>y</mi> </mrow> </mrow> </semantics></math> </div> <div class='l'> </div> </div><div class='html-disp-formula-info' id='FD49-mathematics-10-00408'> <div class='f'> <math display='block'><semantics> <mrow> <mrow> <msub> <mi>K</mi> <mrow> <mn>14</mn> </mrow> </msub> <mo>=</mo> <msubsup> <mi>B</mi> <mrow> <mn>11</mn> </mrow> <mi>s</mi> </msubsup> <msubsup> <mo>∫</mo> <mn>0</mn> <mi>a</mi> </msubsup> <msubsup> <mo>∫</mo> <mn>0</mn> <mi>b</mi> </msubsup> <mfrac> <mrow> <msup> <mo>∂</mo> <mn>3</mn> </msup> <msub> <mi>X</mi> <mi>m</mi> </msub> </mrow> <mrow> <mo>∂</mo> <msup> <mi>x</mi> <mn>3</mn> </msup> </mrow> </mfrac> <msub> <mi>Y</mi> <mi>n</mi> </msub> <mfrac> <mrow> <mo>∂</mo> <msub> <mi>X</mi> <mi>m</mi> </msub> </mrow> <mrow> <mo>∂</mo> <mi>x</mi> </mrow> </mfrac> <msub> <mi>Y</mi> <mi>n</mi> </msub> <mi mathvariant="normal">d</mi> <mi>x</mi> <mi mathvariant="normal">d</mi> <mi>y</mi> <mo>+</mo> <msubsup> <mi>B</mi> <mrow> <mn>66</mn> </mrow> <mi>s</mi> </msubsup> <msubsup> <mo>∫</mo> <mn>0</mn> <mi>a</mi> </msubsup> <msubsup> <mo>∫</mo> <mn>0</mn> <mi>b</mi> </msubsup> <mfrac> <mrow> <mo>∂</mo> <msub> <mi>X</mi> <mi>m</mi> </msub> </mrow> <mrow> <mo>∂</mo> <mi>x</mi> </mrow> </mfrac> <mfrac> <mrow> <msup> <mo>∂</mo> <mn>2</mn> </msup> <msub> <mi>Y</mi> <mi>n</mi> </msub> </mrow> <mrow> <mo>∂</mo> <msup> <mi>y</mi> <mn>2</mn> </msup> </mrow> </mfrac> <mfrac> <mrow> <mo>∂</mo> <msub> <mi>X</mi> <mi>m</mi> </msub> </mrow> <mrow> <mo>∂</mo> <mi>x</mi> </mrow> </mfrac> <msub> <mi>Y</mi> <mi>n</mi> </msub> <mi mathvariant="normal">d</mi> <mi>x</mi> <mi mathvariant="normal">d</mi> <mi>y</mi> </mrow> <mspace linebreak="newline"/> <mrow> <msub> <mi>K</mi> <mrow> <mn>14</mn> </mrow> </msub> <mo>=</mo> <msubsup> <mi>B</mi> <mrow> <mn>11</mn> </mrow> <mi>s</mi> </msubsup> <munderover> <mstyle mathsize="140%" displaystyle="true"> <mo>∫</mo> </mstyle> <mn>0</mn> <mi>a</mi> </munderover> <munderover> <mstyle mathsize="140%" displaystyle="true"> <mo>∫</mo> </mstyle> <mn>0</mn> <mi>b</mi> </munderover> <mfrac> <mrow> <msup> <mo>∂</mo> <mn>3</mn> </msup> <msub> <mi>X</mi> <mi>m</mi> </msub> </mrow> <mrow> <mo>∂</mo> <msup> <mi>x</mi> <mn>3</mn> </msup> </mrow> </mfrac> <msub> <mi>Y</mi> <mi>n</mi> </msub> <mfrac> <mrow> <mo>∂</mo> <msub> <mi>X</mi> <mi>m</mi> </msub> </mrow> <mrow> <mo>∂</mo> <mi>x</mi> </mrow> </mfrac> <msub> <mi>Y</mi> <mi>n</mi> </msub> <mi mathvariant="normal">d</mi> <mi>x</mi> <mi mathvariant="normal">d</mi> <mi>y</mi> <mo>+</mo> <msubsup> <mi>B</mi> <mrow> <mn>66</mn> </mrow> <mi>s</mi> </msubsup> <munderover> <mstyle mathsize="140%" displaystyle="true"> <mo>∫</mo> </mstyle> <mn>0</mn> <mi>a</mi> </munderover> <munderover> <mstyle mathsize="140%" displaystyle="true"> <mo>∫</mo> </mstyle> <mn>0</mn> <mi>b</mi> </munderover> <mfrac> <mrow> <mo>∂</mo> <msub> <mi>X</mi> <mi>m</mi> </msub> </mrow> <mrow> <mo>∂</mo> <mi>x</mi> </mrow> </mfrac> <mfrac> <mrow> <msup> <mo>∂</mo> <mn>2</mn> </msup> <msub> <mi>Y</mi> <mi>n</mi> </msub> </mrow> <mrow> <mo>∂</mo> <msup> <mi>y</mi> <mn>2</mn> </msup> </mrow> </mfrac> <mfrac> <mrow> <mo>∂</mo> <msub> <mi>X</mi> <mi>m</mi> </msub> </mrow> <mrow> <mo>∂</mo> <mi>x</mi> </mrow> </mfrac> <msub> <mi>Y</mi> <mi>n</mi> </msub> <mi mathvariant="normal">d</mi> <mi>x</mi> <mi mathvariant="normal">d</mi> <mi>y</mi> </mrow> </mrow> </semantics></math> </div> <div class='l'> </div> </div><div class='html-disp-formula-info' id='FD50-mathematics-10-00408'> <div class='f'> <math display='block'><semantics> <mrow> <msub> <mi>K</mi> <mrow> <mn>15</mn> </mrow> </msub> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <msubsup> <mi>B</mi> <mrow> <mn>12</mn> </mrow> <mi>s</mi> </msubsup> <mo>+</mo> <msubsup> <mi>B</mi> <mrow> <mn>66</mn> </mrow> <mi>s</mi> </msubsup> </mrow> <mo>)</mo> </mrow> <munderover> <mstyle mathsize="140%" displaystyle="true"> <mo>∫</mo> </mstyle> <mn>0</mn> <mi>a</mi> </munderover> <munderover> <mstyle mathsize="140%" displaystyle="true"> <mo>∫</mo> </mstyle> <mn>0</mn> <mi>b</mi> </munderover> <mfrac> <mrow> <mo>∂</mo> <msub> <mi>X</mi> <mi>m</mi> </msub> </mrow> <mrow> <mo>∂</mo> <mi>x</mi> </mrow> </mfrac> <mfrac> <mrow> <msup> <mo>∂</mo> <mn>2</mn> </msup> <msub> <mi>Y</mi> <mi>n</mi> </msub> </mrow> <mrow> <mo>∂</mo> <msup> <mi>y</mi> <mn>2</mn> </msup> </mrow> </mfrac> <mfrac> <mrow> <mo>∂</mo> <msub> <mi>X</mi> <mi>m</mi> </msub> </mrow> <mrow> <mo>∂</mo> <mi>x</mi> </mrow> </mfrac> <msub> <mi>Y</mi> <mi>n</mi> </msub> <mi mathvariant="normal">d</mi> <mi>x</mi> <mi mathvariant="normal">d</mi> <mi>y</mi> </mrow> </semantics></math> </div> <div class='l'> </div> </div><div class='html-disp-formula-info' id='FD51-mathematics-10-00408'> <div class='f'> <math display='block'><semantics> <mrow> <msub> <mi>K</mi> <mrow> <mn>21</mn> </mrow> </msub> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <msub> <mi>A</mi> <mrow> <mn>12</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>A</mi> <mrow> <mn>66</mn> </mrow> </msub> </mrow> <mo>)</mo> </mrow> <msubsup> <mo>∫</mo> <mn>0</mn> <mi>a</mi> </msubsup> <msubsup> <mo>∫</mo> <mn>0</mn> <mi>b</mi> </msubsup> <mfrac> <mrow> <msup> <mo>∂</mo> <mn>2</mn> </msup> <msub> <mi>X</mi> <mi>m</mi> </msub> </mrow> <mrow> <mo>∂</mo> <msup> <mi>x</mi> <mn>1</mn> </msup> </mrow> </mfrac> <mfrac> <mrow> <mo>∂</mo> <msub> <mi>Y</mi> <mi>n</mi> </msub> </mrow> <mrow> <mo>∂</mo> <mi>y</mi> </mrow> </mfrac> <msub> <mi>X</mi> <mi>m</mi> </msub> <mfrac> <mrow> <mo>∂</mo> <msub> <mi>Y</mi> <mi>n</mi> </msub> </mrow> <mrow> <mo>∂</mo> <mi>y</mi> </mrow> </mfrac> <mi mathvariant="normal">d</mi> <mi>x</mi> <mi mathvariant="normal">d</mi> <mi>y</mi> </mrow> </semantics></math> </div> <div class='l'> </div> </div><div class='html-disp-formula-info' id='FD52-mathematics-10-00408'> <div class='f'> <math display='block'><semantics> <mrow> <msub> <mi>K</mi> <mrow> <mn>22</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>A</mi> <mrow> <mn>22</mn> </mrow> </msub> <munderover> <mstyle mathsize="140%" displaystyle="true"> <mo>∫</mo> </mstyle> <mn>0</mn> <mi>a</mi> </munderover> <munderover> <mstyle mathsize="140%" displaystyle="true"> <mo>∫</mo> </mstyle> <mn>0</mn> <mi>b</mi> </munderover> <msub> <mi>X</mi> <mi>m</mi> </msub> <mfrac> <mrow> <msup> <mo>∂</mo> <mn>3</mn> </msup> <msub> <mi>Y</mi> <mi>n</mi> </msub> </mrow> <mrow> <mo>∂</mo> <msup> <mi>y</mi> <mn>3</mn> </msup> </mrow> </mfrac> <msub> <mi>X</mi> <mi>m</mi> </msub> <mfrac> <mrow> <mo>∂</mo> <msub> <mi>Y</mi> <mi>n</mi> </msub> </mrow> <mrow> <mo>∂</mo> <mi>y</mi> </mrow> </mfrac> <mi mathvariant="normal">d</mi> <mi>x</mi> <mi mathvariant="normal">d</mi> <mi>y</mi> <mo>+</mo> <msub> <mi>A</mi> <mrow> <mn>66</mn> </mrow> </msub> <munderover> <mstyle mathsize="140%" displaystyle="true"> <mo>∫</mo> </mstyle> <mn>0</mn> <mi>a</mi> </munderover> <munderover> <mstyle mathsize="140%" displaystyle="true"> <mo>∫</mo> </mstyle> <mn>0</mn> <mi>b</mi> </munderover> <munderover> <mstyle mathsize="140%" displaystyle="true"> <mo>∫</mo> </mstyle> <mn>0</mn> <mi>b</mi> </munderover> <mfrac> <mrow> <msup> <mo>∂</mo> <mn>2</mn> </msup> <msub> <mi>X</mi> <mi>m</mi> </msub> </mrow> <mrow> <mo>∂</mo> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> </mfrac> <mfrac> <mrow> <mo>∂</mo> <msub> <mi>Y</mi> <mi>n</mi> </msub> </mrow> <mrow> <mo>∂</mo> <mi>y</mi> </mrow> </mfrac> <msub> <mi>X</mi> <mi>m</mi> </msub> <mfrac> <mrow> <mo>∂</mo> <msub> <mi>Y</mi> <mi>n</mi> </msub> </mrow> <mrow> <mo>∂</mo> <mi>y</mi> </mrow> </mfrac> <mi mathvariant="normal">d</mi> <mi>x</mi> <mi mathvariant="normal">d</mi> <mi>y</mi> </mrow> </semantics></math> </div> <div class='l'> </div> </div><div class='html-disp-formula-info' id='FD53-mathematics-10-00408'> <div class='f'> <math display='block'><semantics> <mrow> <mrow> <msub> <mi>K</mi> <mrow> <mn>23</mn> </mrow> </msub> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <mfrac> <mrow> <msub> <mi>A</mi> <mrow> <mn>12</mn> </mrow> </msub> </mrow> <mrow> <msub> <mi>R</mi> <mi>x</mi> </msub> </mrow> </mfrac> <mo>+</mo> <mfrac> <mrow> <msub> <mi>A</mi> <mrow> <mn>22</mn> </mrow> </msub> </mrow> <mrow> <msub> <mi>R</mi> <mi>y</mi> </msub> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> <msubsup> <mo>∫</mo> <mn>0</mn> <mi>a</mi> </msubsup> <msubsup> <mo>∫</mo> <mn>0</mn> <mi>b</mi> </msubsup> <msub> <mi>X</mi> <mi>m</mi> </msub> <mfrac> <mrow> <mo>∂</mo> <msub> <mi>Y</mi> <mi>n</mi> </msub> </mrow> <mrow> <mo>∂</mo> <mi>y</mi> </mrow> </mfrac> <msub> <mi>X</mi> <mi>m</mi> </msub> <mfrac> <mrow> <mo>∂</mo> <msub> <mi>Y</mi> <mi>n</mi> </msub> </mrow> <mrow> <mo>∂</mo> <mi>y</mi> </mrow> </mfrac> <mi mathvariant="normal">d</mi> <mi>x</mi> <mi mathvariant="normal">d</mi> <mi>y</mi> <mo>−</mo> <msub> <mi>B</mi> <mrow> <mn>22</mn> </mrow> </msub> <msubsup> <mo>∫</mo> <mn>0</mn> <mi>a</mi> </msubsup> <msubsup> <mo>∫</mo> <mn>0</mn> <mi>b</mi> </msubsup> <msub> <mi>X</mi> <mi>m</mi> </msub> <mfrac> <mrow> <msup> <mo>∂</mo> <mn>3</mn> </msup> <msub> <mi>Y</mi> <mi>n</mi> </msub> </mrow> <mrow> <mo>∂</mo> <msup> <mi>y</mi> <mn>3</mn> </msup> </mrow> </mfrac> <msub> <mi>X</mi> <mi>m</mi> </msub> <mfrac> <mrow> <mo>∂</mo> <msub> <mi>Y</mi> <mi>n</mi> </msub> </mrow> <mrow> <mo>∂</mo> <mi>y</mi> </mrow> </mfrac> <mi mathvariant="normal">d</mi> <mi>x</mi> <mi mathvariant="normal">d</mi> <mi>y</mi> <mo>−</mo> <mrow> <mo>(</mo> <mrow> <msub> <mi>B</mi> <mrow> <mn>12</mn> </mrow> </msub> <mo>+</mo> <mn>2</mn> <msub> <mi>B</mi> <mrow> <mn>66</mn> </mrow> </msub> </mrow> <mo>)</mo> </mrow> <msubsup> <mo>∫</mo> <mn>0</mn> <mi>a</mi> </msubsup> <msubsup> <mo>∫</mo> <mn>0</mn> <mi>b</mi> </msubsup> <mfrac> <mrow> <msup> <mo>∂</mo> <mn>2</mn> </msup> <msub> <mi>X</mi> <mi>m</mi> </msub> </mrow> <mrow> <mo>∂</mo> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> </mfrac> <mfrac> <mrow> <mo>∂</mo> <msub> <mi>Y</mi> <mi>n</mi> </msub> </mrow> <mrow> <mo>∂</mo> <mi>y</mi> </mrow> </mfrac> <msub> <mi>X</mi> <mi>m</mi> </msub> <mfrac> <mrow> <mo>∂</mo> <msub> <mi>Y</mi> <mi>n</mi> </msub> </mrow> <mrow> <mo>∂</mo> <mi>y</mi> </mrow> </mfrac> <mi mathvariant="normal">d</mi> <mi>x</mi> <mi mathvariant="normal">d</mi> <mi>y</mi> </mrow> <mspace linebreak="newline"/> <mrow> <msub> <mi>K</mi> <mrow> <mn>23</mn> </mrow> </msub> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <mfrac> <mrow> <msub> <mi>A</mi> <mrow> <mn>12</mn> </mrow> </msub> </mrow> <mrow> <msub> <mi>R</mi> <mi>x</mi> </msub> </mrow> </mfrac> <mo>+</mo> <mfrac> <mrow> <msub> <mi>A</mi> <mrow> <mn>22</mn> </mrow> </msub> </mrow> <mrow> <msub> <mi>R</mi> <mi>y</mi> </msub> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> <munderover> <mstyle mathsize="140%" displaystyle="true"> <mo>∫</mo> </mstyle> <mn>0</mn> <mi>a</mi> </munderover> <munderover> <mstyle mathsize="140%" displaystyle="true"> <mo>∫</mo> </mstyle> <mn>0</mn> <mi>b</mi> </munderover> <msub> <mi>X</mi> <mi>m</mi> </msub> <mfrac> <mrow> <mo>∂</mo> <msub> <mi>Y</mi> <mi>n</mi> </msub> </mrow> <mrow> <mo>∂</mo> <mi>y</mi> </mrow> </mfrac> <msub> <mi>X</mi> <mi>m</mi> </msub> <mfrac> <mrow> <mo>∂</mo> <msub> <mi>Y</mi> <mi>n</mi> </msub> </mrow> <mrow> <mo>∂</mo> <mi>y</mi> </mrow> </mfrac> <mi mathvariant="normal">d</mi> <mi>x</mi> <mi mathvariant="normal">d</mi> <mi>y</mi> <mo>−</mo> <msub> <mi>B</mi> <mrow> <mn>22</mn> </mrow> </msub> <munderover> <mstyle mathsize="140%" displaystyle="true"> <mo>∫</mo> </mstyle> <mn>0</mn> <mi>a</mi> </munderover> <munderover> <mstyle mathsize="140%" displaystyle="true"> <mo>∫</mo> </mstyle> <mn>0</mn> <mi>b</mi> </munderover> <msub> <mi>X</mi> <mi>m</mi> </msub> <mfrac> <mrow> <msup> <mo>∂</mo> <mn>3</mn> </msup> <msub> <mi>Y</mi> <mi>n</mi> </msub> </mrow> <mrow> <mo>∂</mo> <msup> <mi>y</mi> <mn>3</mn> </msup> </mrow> </mfrac> <msub> <mi>X</mi> <mi>m</mi> </msub> <mfrac> <mrow> <mo>∂</mo> <msub> <mi>Y</mi> <mi>n</mi> </msub> </mrow> <mrow> <mo>∂</mo> <mi>y</mi> </mrow> </mfrac> <mi mathvariant="normal">d</mi> <mi>x</mi> <mi mathvariant="normal">d</mi> <mi>y</mi> </mrow> <mspace linebreak="newline"/> <mrow> <mo>−</mo> <mrow> <mo>(</mo> <mrow> <msub> <mi>B</mi> <mrow> <mn>12</mn> </mrow> </msub> <mo>+</mo> <mn>2</mn> <msub> <mi>B</mi> <mrow> <mn>66</mn> </mrow> </msub> </mrow> <mo>)</mo> </mrow> <munderover> <mstyle mathsize="140%" displaystyle="true"> <mo>∫</mo> </mstyle> <mn>0</mn> <mi>a</mi> </munderover> <munderover> <mstyle mathsize="140%" displaystyle="true"> <mo>∫</mo> </mstyle> <mn>0</mn> <mi>b</mi> </munderover> <mfrac> <mrow> <msup> <mo>∂</mo> <mn>2</mn> </msup> <msub> <mi>X</mi> <mi>m</mi> </msub> </mrow> <mrow> <mo>∂</mo> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> </mfrac> <mfrac> <mrow> <mo>∂</mo> <msub> <mi>Y</mi> <mi>n</mi> </msub> </mrow> <mrow> <mo>∂</mo> <mi>y</mi> </mrow> </mfrac> <msub> <mi>X</mi> <mi>m</mi> </msub> <mfrac> <mrow> <mo>∂</mo> <msub> <mi>Y</mi> <mi>n</mi> </msub> </mrow> <mrow> <mo>∂</mo> <mi>y</mi> </mrow> </mfrac> <mi mathvariant="normal">d</mi> <mi>x</mi> <mi mathvariant="normal">d</mi> <mi>y</mi> </mrow> </mrow> </semantics></math> </div> <div class='l'> </div> </div><div class='html-disp-formula-info' id='FD54-mathematics-10-00408'> <div class='f'> <math display='block'><semantics> <mrow> <msub> <mi>K</mi> <mrow> <mn>24</mn> </mrow> </msub> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <msubsup> <mi>B</mi> <mrow> <mn>12</mn> </mrow> <mi>s</mi> </msubsup> <mo>+</mo> <msubsup> <mi>B</mi> <mrow> <mn>66</mn> </mrow> <mi>s</mi> </msubsup> </mrow> <mo>)</mo> </mrow> <munderover> <mstyle mathsize="140%" displaystyle="true"> <mo>∫</mo> </mstyle> <mn>0</mn> <mi>a</mi> </munderover> <munderover> <mstyle mathsize="140%" displaystyle="true"> <mo>∫</mo> </mstyle> <mn>0</mn> <mi>b</mi> </munderover> <mfrac> <mrow> <msup> <mo>∂</mo> <mn>2</mn> </msup> <msub> <mi>X</mi> <mi>m</mi> </msub> </mrow> <mrow> <mo>∂</mo> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> </mfrac> <mfrac> <mrow> <mo>∂</mo> <msub> <mi>Y</mi> <mi>n</mi> </msub> </mrow> <mrow> <mo>∂</mo> <mi>y</mi> </mrow> </mfrac> <msub> <mi>X</mi> <mi>m</mi> </msub> <mfrac> <mrow> <mo>∂</mo> <msub> <mi>Y</mi> <mi>n</mi> </msub> </mrow> <mrow> <mo>∂</mo> <mi>y</mi> </mrow> </mfrac> <mi mathvariant="normal">d</mi> <mi>x</mi> <mi mathvariant="normal">d</mi> <mi>y</mi> </mrow> </semantics></math> </div> <div class='l'> </div> </div><div class='html-disp-formula-info' id='FD55-mathematics-10-00408'> <div class='f'> <math display='block'><semantics> <mrow> <msub> <mi>K</mi> <mrow> <mn>25</mn> </mrow> </msub> <mo>=</mo> <msubsup> <mi>B</mi> <mrow> <mn>22</mn> </mrow> <mi>s</mi> </msubsup> <msubsup> <mo>∫</mo> <mn>0</mn> <mi>a</mi> </msubsup> <msubsup> <mo>∫</mo> <mn>0</mn> <mi>b</mi> </msubsup> <msub> <mi>X</mi> <mi>m</mi> </msub> <mfrac> <mrow> <msup> <mo>∂</mo> <mn>3</mn> </msup> <msub> <mi>Y</mi> <mi>n</mi> </msub> </mrow> <mrow> <mo>∂</mo> <msup> <mi>y</mi> <mn>3</mn> </msup> </mrow> </mfrac> <msub> <mi>X</mi> <mi>m</mi> </msub> <mfrac> <mrow> <mo>∂</mo> <msub> <mi>Y</mi> <mi>n</mi> </msub> </mrow> <mrow> <mo>∂</mo> <mi>y</mi> </mrow> </mfrac> <mi mathvariant="normal">d</mi> <mi>x</mi> <mi mathvariant="normal">d</mi> <mi>y</mi> <mo>+</mo> <msubsup> <mi>B</mi> <mrow> <mn>66</mn> </mrow> <mi>s</mi> </msubsup> <msubsup> <mo>∫</mo> <mn>0</mn> <mi>a</mi> </msubsup> <msubsup> <mo>∫</mo> <mn>0</mn> <mi>b</mi> </msubsup> <mfrac> <mrow> <msup> <mo>∂</mo> <mn>2</mn> </msup> <msub> <mi>X</mi> <mi>m</mi> </msub> </mrow> <mrow> <mo>∂</mo> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> </mfrac> <mfrac> <mrow> <mo>∂</mo> <msub> <mi>Y</mi> <mi>n</mi> </msub> </mrow> <mrow> <mo>∂</mo> <mi>y</mi> </mrow> </mfrac> <msub> <mi>X</mi> <mi>m</mi> </msub> <mfrac> <mrow> <mo>∂</mo> <msub> <mi>Y</mi> <mi>n</mi> </msub> </mrow> <mrow> <mo>∂</mo> <mi>y</mi> </mrow> </mfrac> <mi mathvariant="normal">d</mi> <mi>x</mi> <mi mathvariant="normal">d</mi> <mi>y</mi> </mrow> </semantics></math> </div> <div class='l'> </div> </div><div class='html-disp-formula-info' id='FD56-mathematics-10-00408'> <div class='f'> <math display='block'><semantics> <mrow> <msub> <mi>K</mi> <mrow> <mn>31</mn> </mrow> </msub> <mo>=</mo> <mo>−</mo> <mrow> <mo>(</mo> <mrow> <mfrac> <mrow> <msub> <mi>A</mi> <mrow> <mn>11</mn> </mrow> </msub> </mrow> <mrow> <msub> <mi>R</mi> <mi>x</mi> </msub> </mrow> </mfrac> <mo>+</mo> <mfrac> <mrow> <msub> <mi>A</mi> <mrow> <mn>12</mn> </mrow> </msub> </mrow> <mrow> <msub> <mi>R</mi> <mi>y</mi> </msub> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> <munderover> <mstyle mathsize="140%" displaystyle="true"> <mo>∫</mo> </mstyle> <mn>0</mn> <mi>a</mi> </munderover> <munderover> <mstyle mathsize="140%" displaystyle="true"> <mo>∫</mo> </mstyle> <mn>0</mn> <mi>b</mi> </munderover> <mfrac> <mrow> <msup> <mo>∂</mo> <mn>2</mn> </msup> <msub> <mi>X</mi> <mi>n</mi> </msub> </mrow> <mrow> <mo>∂</mo> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> </mfrac> <msub> <mi>Y</mi> <mi>n</mi> </msub> <msub> <mi>X</mi> <mi>m</mi> </msub> <msub> <mi>Y</mi> <mi>n</mi> </msub> <mi mathvariant="normal">d</mi> <mi>x</mi> <mi mathvariant="normal">d</mi> <mi>y</mi> <mo>+</mo> <msub> <mi>B</mi> <mrow> <mn>11</mn> </mrow> </msub> <munderover> <mstyle mathsize="140%" displaystyle="true"> <mo>∫</mo> </mstyle> <mn>0</mn> <mi>a</mi> </munderover> <munderover> <mstyle mathsize="140%" displaystyle="true"> <mo>∫</mo> </mstyle> <mn>0</mn> <mi>b</mi> </munderover> <mfrac> <mrow> <msup> <mo>∂</mo> <mn>4</mn> </msup> <msub> <mi>X</mi> <mi>n</mi> </msub> </mrow> <mrow> <mo>∂</mo> <msup> <mi>x</mi> <mn>4</mn> </msup> </mrow> </mfrac> <msub> <mi>Y</mi> <mi>n</mi> </msub> <msub> <mi>X</mi> <mi>m</mi> </msub> <msub> <mi>Y</mi> <mi>n</mi> </msub> <mi mathvariant="normal">d</mi> <mi>x</mi> <mi mathvariant="normal">d</mi> <mi>y</mi> <mo>+</mo> <mrow> <mo>(</mo> <mrow> <msub> <mi>B</mi> <mrow> <mn>12</mn> </mrow> </msub> <mo>+</mo> <mn>2</mn> <msub> <mi>B</mi> <mrow> <mn>66</mn> </mrow> </msub> </mrow> <mo>)</mo> </mrow> <munderover> <mstyle mathsize="140%" displaystyle="true"> <mo>∫</mo> </mstyle> <mn>0</mn> <mi>a</mi> </munderover> <munderover> <mstyle mathsize="140%" displaystyle="true"> <mo>∫</mo> </mstyle> <mn>0</mn> <mi>b</mi> </munderover> <mfrac> <mrow> <msup> <mo>∂</mo> <mn>2</mn> </msup> <msub> <mi>X</mi> <mi>m</mi> </msub> </mrow> <mrow> <mo>∂</mo> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> </mfrac> <mfrac> <mrow> <msup> <mo>∂</mo> <mn>2</mn> </msup> <msub> <mi>Y</mi> <mi>n</mi> </msub> </mrow> <mrow> <mo>∂</mo> <msup> <mi>y</mi> <mn>2</mn> </msup> </mrow> </mfrac> <msub> <mi>X</mi> <mi>m</mi> </msub> <msub> <mi>Y</mi> <mi>n</mi> </msub> <mi mathvariant="normal">d</mi> <mi>x</mi> <mi mathvariant="normal">d</mi> <mi>y</mi> </mrow> </semantics></math> </div> <div class='l'> </div> </div><div class='html-disp-formula-info' id='FD57-mathematics-10-00408'> <div class='f'> <math display='block'><semantics> <mrow> <msub> <mi>K</mi> <mrow> <mn>32</mn> </mrow> </msub> <mo>=</mo> <mo>−</mo> <mrow> <mo>(</mo> <mrow> <mfrac> <mrow> <msub> <mi>A</mi> <mrow> <mn>12</mn> </mrow> </msub> </mrow> <mrow> <msub> <mi>R</mi> <mi>x</mi> </msub> </mrow> </mfrac> <mo>+</mo> <mfrac> <mrow> <msub> <mi>A</mi> <mrow> <mn>22</mn> </mrow> </msub> </mrow> <mrow> <msub> <mi>R</mi> <mi>y</mi> </msub> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> <munderover> <mstyle mathsize="140%" displaystyle="true"> <mo>∫</mo> </mstyle> <mn>0</mn> <mi>a</mi> </munderover> <munderover> <mstyle mathsize="140%" displaystyle="true"> <mo>∫</mo> </mstyle> <mn>0</mn> <mi>b</mi> </munderover> <msub> <mi>X</mi> <mi>m</mi> </msub> <mfrac> <mrow> <msup> <mo>∂</mo> <mn>2</mn> </msup> <msub> <mi>Y</mi> <mi>n</mi> </msub> </mrow> <mrow> <mo>∂</mo> <msup> <mi>y</mi> <mn>2</mn> </msup> </mrow> </mfrac> <msub> <mi>X</mi> <mi>m</mi> </msub> <msub> <mi>Y</mi> <mi>n</mi> </msub> <mi mathvariant="normal">d</mi> <mi>x</mi> <mi mathvariant="normal">d</mi> <mi>y</mi> <mo>+</mo> <msub> <mi>B</mi> <mrow> <mn>22</mn> </mrow> </msub> <munderover> <mstyle mathsize="140%" displaystyle="true"> <mo>∫</mo> </mstyle> <mn>0</mn> <mi>a</mi> </munderover> <munderover> <mstyle mathsize="140%" displaystyle="true"> <mo>∫</mo> </mstyle> <mn>0</mn> <mi>b</mi> </munderover> <msub> <mi>X</mi> <mi>m</mi> </msub> <mfrac> <mrow> <msup> <mo>∂</mo> <mn>4</mn> </msup> <msub> <mi>Y</mi> <mi>n</mi> </msub> </mrow> <mrow> <mo>∂</mo> <msup> <mi>y</mi> <mn>4</mn> </msup> </mrow> </mfrac> <msub> <mi>X</mi> <mi>m</mi> </msub> <msub> <mi>Y</mi> <mi>n</mi> </msub> <mi mathvariant="normal">d</mi> <mi>x</mi> <mi mathvariant="normal">d</mi> <mi>y</mi> <mo>+</mo> <mrow> <mo>(</mo> <mrow> <msub> <mi>B</mi> <mrow> <mn>12</mn> </mrow> </msub> <mo>+</mo> <mn>2</mn> <msub> <mi>B</mi> <mrow> <mn>66</mn> </mrow> </msub> </mrow> <mo>)</mo> </mrow> <munderover> <mstyle mathsize="140%" displaystyle="true"> <mo>∫</mo> </mstyle> <mn>0</mn> <mi>a</mi> </munderover> <munderover> <mstyle mathsize="140%" displaystyle="true"> <mo>∫</mo> </mstyle> <mn>0</mn> <mi>b</mi> </munderover> <mfrac> <mrow> <msup> <mo>∂</mo> <mn>2</mn> </msup> <msub> <mi>X</mi> <mi>m</mi> </msub> </mrow> <mrow> <mo>∂</mo> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> </mfrac> <mfrac> <mrow> <msup> <mo>∂</mo> <mn>2</mn> </msup> <msub> <mi>Y</mi> <mi>n</mi> </msub> </mrow> <mrow> <mo>∂</mo> <msup> <mi>y</mi> <mn>2</mn> </msup> </mrow> </mfrac> <msub> <mi>X</mi> <mi>m</mi> </msub> <msub> <mi>Y</mi> <mi>n</mi> </msub> <mi mathvariant="normal">d</mi> <mi>x</mi> <mi mathvariant="normal">d</mi> <mi>y</mi> </mrow> </semantics></math> </div> <div class='l'> </div> </div><div class='html-disp-formula-info' id='FD157-mathematics-10-00408'> <div class='f'> <math display='block'><semantics> <mrow> <mrow> <msub> <mi>K</mi> <mrow> <mn>33</mn> </mrow> </msub> <mo>=</mo> <mn>2</mn> <mrow> <mo>(</mo> <mrow> <mfrac> <mrow> <msub> <mi>B</mi> <mrow> <mn>11</mn> </mrow> </msub> </mrow> <mrow> <msub> <mi>R</mi> <mi>x</mi> </msub> </mrow> </mfrac> <mo>+</mo> <mfrac> <mrow> <msub> <mi>B</mi> <mrow> <mn>12</mn> </mrow> </msub> </mrow> <mrow> <msub> <mi>R</mi> <mi>y</mi> </msub> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> <munderover> <mstyle mathsize="140%" displaystyle="true"> <mo>∫</mo> </mstyle> <mn>0</mn> <mi>a</mi> </munderover> <munderover> <mstyle mathsize="140%" displaystyle="true"> <mo>∫</mo> </mstyle> <mn>0</mn> <mi>b</mi> </munderover> <mfrac> <mrow> <msup> <mo>∂</mo> <mn>2</mn> </msup> <msub> <mi>X</mi> <mi>n</mi> </msub> </mrow> <mrow> <mo>∂</mo> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> </mfrac> <msub> <mi>Y</mi> <mi>n</mi> </msub> <msub> <mi>X</mi> <mi>m</mi> </msub> <msub> <mi>Y</mi> <mi>n</mi> </msub> <mi mathvariant="normal">d</mi> <mi>x</mi> <mi mathvariant="normal">d</mi> <mi>y</mi> <mo>+</mo> <mn>2</mn> <mrow> <mo>(</mo> <mrow> <mfrac> <mrow> <msub> <mi>B</mi> <mrow> <mn>12</mn> </mrow> </msub> </mrow> <mrow> <msub> <mi>R</mi> <mi>x</mi> </msub> </mrow> </mfrac> <mo>+</mo> <mfrac> <mrow> <msub> <mi>B</mi> <mrow> <mn>22</mn> </mrow> </msub> </mrow> <mrow> <msub> <mi>R</mi> <mi>y</mi> </msub> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> <munderover> <mstyle mathsize="140%" displaystyle="true"> <mo>∫</mo> </mstyle> <mn>0</mn> <mi>a</mi> </munderover> <munderover> <mstyle mathsize="140%" displaystyle="true"> <mo>∫</mo> </mstyle> <mn>0</mn> <mi>b</mi> </munderover> <msub> <mi>X</mi> <mi>m</mi> </msub> <mfrac> <mrow> <msup> <mo>∂</mo> <mn>2</mn> </msup> <msub> <mi>Y</mi> <mi>n</mi> </msub> </mrow> <mrow> <mo>∂</mo> <msup> <mi>y</mi> <mn>2</mn> </msup> </mrow> </mfrac> <msub> <mi>X</mi> <mi>m</mi> </msub> <msub> <mi>Y</mi> <mi>n</mi> </msub> <mi mathvariant="normal">d</mi> <mi>x</mi> <mi mathvariant="normal">d</mi> <mi>y</mi> </mrow> <mspace linebreak="newline"/> <mrow> <mo>−</mo> <mrow> <mo>(</mo> <mrow> <mfrac> <mrow> <msub> <mi>A</mi> <mrow> <mn>11</mn> </mrow> </msub> </mrow> <mrow> <msub> <mi>R</mi> <mi>x</mi> </msub> <msup> <mrow/> <mn>2</mn> </msup> </mrow> </mfrac> <mo>+</mo> <mn>2</mn> <mfrac> <mrow> <msub> <mi>A</mi> <mrow> <mn>12</mn> </mrow> </msub> </mrow> <mrow> <msub> <mi>R</mi> <mi>x</mi> </msub> <msub> <mi>R</mi> <mi>y</mi> </msub> </mrow> </mfrac> <mo>+</mo> <mfrac> <mrow> <msub> <mi>A</mi> <mrow> <mn>22</mn> </mrow> </msub> </mrow> <mrow> <msub> <mi>R</mi> <mi>y</mi> </msub> <msup> <mrow/> <mn>2</mn> </msup> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> <munderover> <mstyle mathsize="140%" displaystyle="true"> <mo>∫</mo> </mstyle> <mn>0</mn> <mi>a</mi> </munderover> <munderover> <mstyle mathsize="140%" displaystyle="true"> <mo>∫</mo> </mstyle> <mn>0</mn> <mi>b</mi> </munderover> <msub> <mi>X</mi> <mi>m</mi> </msub> <msub> <mi>Y</mi> <mi>n</mi> </msub> <msub> <mi>X</mi> <mi>m</mi> </msub> <msub> <mi>Y</mi> <mi>n</mi> </msub> <mi mathvariant="normal">d</mi> <mi>x</mi> <mi mathvariant="normal">d</mi> <mi>y</mi> <mo>−</mo> <msub> <mi>D</mi> <mrow> <mn>11</mn> </mrow> </msub> <munderover> <mstyle mathsize="140%" displaystyle="true"> <mo>∫</mo> </mstyle> <mn>0</mn> <mi>a</mi> </munderover> <munderover> <mstyle mathsize="140%" displaystyle="true"> <mo>∫</mo> </mstyle> <mn>0</mn> <mi>b</mi> </munderover> <mfrac> <mrow> <msup> <mo>∂</mo> <mn>4</mn> </msup> <msub> <mi>X</mi> <mi>m</mi> </msub> </mrow> <mrow> <mo>∂</mo> <msup> <mi>x</mi> <mn>4</mn> </msup> </mrow> </mfrac> <msub> <mi>Y</mi> <mi>n</mi> </msub> <msub> <mi>X</mi> <mi>m</mi> </msub> <msub> <mi>Y</mi> <mi>n</mi> </msub> <mi mathvariant="normal">d</mi> <mi>x</mi> <mi mathvariant="normal">d</mi> <mi>y</mi> </mrow> <mspace linebreak="newline"/> <mrow> <mo>−</mo> <msub> <mi>D</mi> <mrow> <mn>22</mn> </mrow> </msub> <munderover> <mstyle mathsize="140%" displaystyle="true"> <mo>∫</mo> </mstyle> <mn>0</mn> <mi>a</mi> </munderover> <munderover> <mstyle mathsize="140%" displaystyle="true"> <mo>∫</mo> </mstyle> <mn>0</mn> <mi>b</mi> </munderover> <msub> <mi>X</mi> <mi>m</mi> </msub> <mfrac> <mrow> <msup> <mo>∂</mo> <mn>4</mn> </msup> <msub> <mi>Y</mi> <mi>n</mi> </msub> </mrow> <mrow> <mo>∂</mo> <msup> <mi>y</mi> <mn>4</mn> </msup> </mrow> </mfrac> <msub> <mi>X</mi> <mi>m</mi> </msub> <msub> <mi>Y</mi> <mi>n</mi> </msub> <mi mathvariant="normal">d</mi> <mi>x</mi> <mi mathvariant="normal">d</mi> <mi>y</mi> <mo>−</mo> <mn>2</mn> <mrow> <mo>(</mo> <mrow> <msub> <mi>D</mi> <mrow> <mn>12</mn> </mrow> </msub> <mo>+</mo> <mn>2</mn> <msub> <mi>D</mi> <mrow> <mn>66</mn> </mrow> </msub> </mrow> <mo>)</mo> </mrow> <munderover> <mstyle mathsize="140%" displaystyle="true"> <mo>∫</mo> </mstyle> <mn>0</mn> <mi>a</mi> </munderover> <munderover> <mstyle mathsize="140%" displaystyle="true"> <mo>∫</mo> </mstyle> <mn>0</mn> <mi>b</mi> </munderover> <mfrac> <mrow> <msup> <mo>∂</mo> <mn>2</mn> </msup> <msub> <mi>X</mi> <mi>m</mi> </msub> </mrow> <mrow> <mo>∂</mo> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> </mfrac> <mfrac> <mrow> <msup> <mo>∂</mo> <mn>2</mn> </msup> <msub> <mi>Y</mi> <mi>n</mi> </msub> </mrow> <mrow> <mo>∂</mo> <msup> <mi>y</mi> <mn>2</mn> </msup> </mrow> </mfrac> <msub> <mi>X</mi> <mi>m</mi> </msub> <msub> <mi>Y</mi> <mi>n</mi> </msub> <mi mathvariant="normal">d</mi> <mi>x</mi> <mi mathvariant="normal">d</mi> <mi>y</mi> </mrow> </mrow> </semantics></math> </div> <div class='l'> </div> </div><div class='html-disp-formula-info' id='FD59-mathematics-10-00408'> <div class='f'> <math display='block'><semantics> <mrow> <msub> <mi>K</mi> <mrow> <mn>34</mn> </mrow> </msub> <mo>=</mo> <mo>−</mo> <mrow> <mo>(</mo> <mrow> <mfrac> <mrow> <msubsup> <mi>B</mi> <mrow> <mn>11</mn> </mrow> <mi>s</mi> </msubsup> </mrow> <mrow> <msub> <mi>R</mi> <mi>x</mi> </msub> </mrow> </mfrac> <mo>+</mo> <mfrac> <mrow> <msubsup> <mi>B</mi> <mrow> <mn>12</mn> </mrow> <mi>s</mi> </msubsup> </mrow> <mrow> <msub> <mi>R</mi> <mi>y</mi> </msub> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> <munderover> <mstyle mathsize="140%" displaystyle="true"> <mo>∫</mo> </mstyle> <mn>0</mn> <mi>a</mi> </munderover> <munderover> <mstyle mathsize="140%" displaystyle="true"> <mo>∫</mo> </mstyle> <mn>0</mn> <mi>b</mi> </munderover> <mfrac> <mrow> <msup> <mo>∂</mo> <mn>2</mn> </msup> <msub> <mi>X</mi> <mi>n</mi> </msub> </mrow> <mrow> <mo>∂</mo> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> </mfrac> <msub> <mi>Y</mi> <mi>n</mi> </msub> <msub> <mi>X</mi> <mi>m</mi> </msub> <msub> <mi>Y</mi> <mi>n</mi> </msub> <mi mathvariant="normal">d</mi> <mi>x</mi> <mi mathvariant="normal">d</mi> <mi>y</mi> <mo>+</mo> <msubsup> <mi>D</mi> <mrow> <mn>11</mn> </mrow> <mi>s</mi> </msubsup> <munderover> <mstyle mathsize="140%" displaystyle="true"> <mo>∫</mo> </mstyle> <mn>0</mn> <mi>a</mi> </munderover> <munderover> <mstyle mathsize="140%" displaystyle="true"> <mo>∫</mo> </mstyle> <mn>0</mn> <mi>b</mi> </munderover> <mfrac> <mrow> <msup> <mo>∂</mo> <mn>4</mn> </msup> <msub> <mi>X</mi> <mi>m</mi> </msub> </mrow> <mrow> <mo>∂</mo> <msup> <mi>x</mi> <mn>4</mn> </msup> </mrow> </mfrac> <msub> <mi>Y</mi> <mi>n</mi> </msub> <msub> <mi>X</mi> <mi>m</mi> </msub> <msub> <mi>Y</mi> <mi>n</mi> </msub> <mi mathvariant="normal">d</mi> <mi>x</mi> <mi mathvariant="normal">d</mi> <mi>y</mi> <mo>+</mo> <mrow> <mo>(</mo> <mrow> <msubsup> <mi>D</mi> <mrow> <mn>12</mn> </mrow> <mi>s</mi> </msubsup> <mo>+</mo> <mn>2</mn> <msubsup> <mi>D</mi> <mrow> <mn>66</mn> </mrow> <mi>s</mi> </msubsup> </mrow> <mo>)</mo> </mrow> <munderover> <mstyle mathsize="140%" displaystyle="true"> <mo>∫</mo> </mstyle> <mn>0</mn> <mi>a</mi> </munderover> <munderover> <mstyle mathsize="140%" displaystyle="true"> <mo>∫</mo> </mstyle> <mn>0</mn> <mi>b</mi> </munderover> <mfrac> <mrow> <msup> <mo>∂</mo> <mn>2</mn> </msup> <msub> <mi>X</mi> <mi>m</mi> </msub> </mrow> <mrow> <mo>∂</mo> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> </mfrac> <mfrac> <mrow> <msup> <mo>∂</mo> <mn>2</mn> </msup> <msub> <mi>Y</mi> <mi>n</mi> </msub> </mrow> <mrow> <mo>∂</mo> <msup> <mi>y</mi> <mn>2</mn> </msup> </mrow> </mfrac> <msub> <mi>X</mi> <mi>m</mi> </msub> <msub> <mi>Y</mi> <mi>n</mi> </msub> <mi mathvariant="normal">d</mi> <mi>x</mi> <mi mathvariant="normal">d</mi> <mi>y</mi> </mrow> </semantics></math> </div> <div class='l'> </div> </div><div class='html-disp-formula-info' id='FD60-mathematics-10-00408'> <div class='f'> <math display='block'><semantics> <mrow> <msub> <mi>K</mi> <mrow> <mn>35</mn> </mrow> </msub> <mo>=</mo> <mo>−</mo> <mrow> <mo>(</mo> <mrow> <mfrac> <mrow> <msubsup> <mi>B</mi> <mrow> <mn>12</mn> </mrow> <mi>s</mi> </msubsup> </mrow> <mrow> <msub> <mi>R</mi> <mi>x</mi> </msub> </mrow> </mfrac> <mo>+</mo> <mfrac> <mrow> <msubsup> <mi>B</mi> <mrow> <mn>22</mn> </mrow> <mi>s</mi> </msubsup> </mrow> <mrow> <msub> <mi>R</mi> <mi>y</mi> </msub> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> <munderover> <mstyle mathsize="140%" displaystyle="true"> <mo>∫</mo> </mstyle> <mn>0</mn> <mi>a</mi> </munderover> <munderover> <mstyle mathsize="140%" displaystyle="true"> <mo>∫</mo> </mstyle> <mn>0</mn> <mi>b</mi> </munderover> <msub> <mi>X</mi> <mi>m</mi> </msub> <mfrac> <mrow> <msup> <mo>∂</mo> <mn>2</mn> </msup> <msub> <mi>Y</mi> <mi>n</mi> </msub> </mrow> <mrow> <mo>∂</mo> <msup> <mi>y</mi> <mn>2</mn> </msup> </mrow> </mfrac> <msub> <mi>X</mi> <mi>m</mi> </msub> <msub> <mi>Y</mi> <mi>n</mi> </msub> <mi mathvariant="normal">d</mi> <mi>x</mi> <mi mathvariant="normal">d</mi> <mi>y</mi> <mo>+</mo> <msubsup> <mi>D</mi> <mrow> <mn>22</mn> </mrow> <mi>s</mi> </msubsup> <munderover> <mstyle mathsize="140%" displaystyle="true"> <mo>∫</mo> </mstyle> <mn>0</mn> <mi>a</mi> </munderover> <munderover> <mstyle mathsize="140%" displaystyle="true"> <mo>∫</mo> </mstyle> <mn>0</mn> <mi>b</mi> </munderover> <msub> <mi>X</mi> <mi>m</mi> </msub> <mfrac> <mrow> <msup> <mo>∂</mo> <mn>4</mn> </msup> <msub> <mi>Y</mi> <mi>n</mi> </msub> </mrow> <mrow> <mo>∂</mo> <msup> <mi>y</mi> <mn>4</mn> </msup> </mrow> </mfrac> <msub> <mi>X</mi> <mi>m</mi> </msub> <msub> <mi>Y</mi> <mi>n</mi> </msub> <mi mathvariant="normal">d</mi> <mi>x</mi> <mi mathvariant="normal">d</mi> <mi>y</mi> <mo>+</mo> <mrow> <mo>(</mo> <mrow> <msubsup> <mi>D</mi> <mrow> <mn>12</mn> </mrow> <mi>s</mi> </msubsup> <mo>+</mo> <mn>2</mn> <msubsup> <mi>D</mi> <mrow> <mn>66</mn> </mrow> <mi>s</mi> </msubsup> </mrow> <mo>)</mo> </mrow> <munderover> <mstyle mathsize="140%" displaystyle="true"> <mo>∫</mo> </mstyle> <mn>0</mn> <mi>a</mi> </munderover> <munderover> <mstyle mathsize="140%" displaystyle="true"> <mo>∫</mo> </mstyle> <mn>0</mn> <mi>b</mi> </munderover> <mfrac> <mrow> <msup> <mo>∂</mo> <mn>2</mn> </msup> <msub> <mi>X</mi> <mi>m</mi> </msub> </mrow> <mrow> <mo>∂</mo> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> </mfrac> <mfrac> <mrow> <msup> <mo>∂</mo> <mn>2</mn> </msup> <msub> <mi>Y</mi> <mi>n</mi> </msub> </mrow> <mrow> <mo>∂</mo> <msup> <mi>y</mi> <mn>2</mn> </msup> </mrow> </mfrac> <msub> <mi>X</mi> <mi>m</mi> </msub> <msub> <mi>Y</mi> <mi>n</mi> </msub> <mi mathvariant="normal">d</mi> <mi>x</mi> <mi mathvariant="normal">d</mi> <mi>y</mi> </mrow> </semantics></math> </div> <div class='l'> </div> </div><div class='html-disp-formula-info' id='FD61-mathematics-10-00408'> <div class='f'> <math display='block'><semantics> <mrow> <msub> <mi>K</mi> <mrow> <mn>41</mn> </mrow> </msub> <mo>=</mo> <msubsup> <mi>B</mi> <mrow> <mn>11</mn> </mrow> <mi>s</mi> </msubsup> <munderover> <mstyle mathsize="140%" displaystyle="true"> <mo>∫</mo> </mstyle> <mn>0</mn> <mi>a</mi> </munderover> <munderover> <mstyle mathsize="140%" displaystyle="true"> <mo>∫</mo> </mstyle> <mn>0</mn> <mi>b</mi> </munderover> <mfrac> <mrow> <msup> <mo>∂</mo> <mn>3</mn> </msup> <msub> <mi>X</mi> <mi>m</mi> </msub> </mrow> <mrow> <mo>∂</mo> <msup> <mi>x</mi> <mn>3</mn> </msup> </mrow> </mfrac> <msub> <mi>Y</mi> <mi>n</mi> </msub> <mfrac> <mrow> <mo>∂</mo> <msub> <mi>X</mi> <mi>m</mi> </msub> </mrow> <mrow> <mo>∂</mo> <mi>x</mi> </mrow> </mfrac> <msub> <mi>Y</mi> <mi>n</mi> </msub> <mi mathvariant="normal">d</mi> <mi>x</mi> <mi mathvariant="normal">d</mi> <mi>y</mi> <mo>+</mo> <msubsup> <mi>B</mi> <mrow> <mn>66</mn> </mrow> <mi>s</mi> </msubsup> <munderover> <mstyle mathsize="140%" displaystyle="true"> <mo>∫</mo> </mstyle> <mn>0</mn> <mi>a</mi> </munderover> <munderover> <mstyle mathsize="140%" displaystyle="true"> <mo>∫</mo> </mstyle> <mn>0</mn> <mi>b</mi> </munderover> <mfrac> <mrow> <mo>∂</mo> <msub> <mi>X</mi> <mi>m</mi> </msub> </mrow> <mrow> <mo>∂</mo> <mi>x</mi> </mrow> </mfrac> <mfrac> <mrow> <msup> <mo>∂</mo> <mn>2</mn> </msup> <msub> <mi>Y</mi> <mi>n</mi> </msub> </mrow> <mrow> <mo>∂</mo> <msup> <mi>y</mi> <mn>2</mn> </msup> </mrow> </mfrac> <mfrac> <mrow> <mo>∂</mo> <msub> <mi>X</mi> <mi>m</mi> </msub> </mrow> <mrow> <mo>∂</mo> <mi>x</mi> </mrow> </mfrac> <msub> <mi>Y</mi> <mi>n</mi> </msub> <mi mathvariant="normal">d</mi> <mi>x</mi> <mi mathvariant="normal">d</mi> <mi>y</mi> </mrow> </semantics></math> </div> <div class='l'> </div> </div><div class='html-disp-formula-info' id='FD62-mathematics-10-00408'> <div class='f'> <math display='block'><semantics> <mrow> <msub> <mi>K</mi> <mrow> <mn>42</mn> </mrow> </msub> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <msubsup> <mi>B</mi> <mrow> <mn>12</mn> </mrow> <mi>s</mi> </msubsup> <mo>+</mo> <msubsup> <mi>B</mi> <mrow> <mn>66</mn> </mrow> <mi>s</mi> </msubsup> </mrow> <mo>)</mo> </mrow> <munderover> <mstyle mathsize="140%" displaystyle="true"> <mo>∫</mo> </mstyle> <mn>0</mn> <mi>a</mi> </munderover> <munderover> <mstyle mathsize="140%" displaystyle="true"> <mo>∫</mo> </mstyle> <mn>0</mn> <mi>b</mi> </munderover> <mfrac> <mrow> <mo>∂</mo> <msub> <mi>X</mi> <mi>m</mi> </msub> </mrow> <mrow> <mo>∂</mo> <mi>x</mi> </mrow> </mfrac> <mfrac> <mrow> <msup> <mo>∂</mo> <mn>2</mn> </msup> <msub> <mi>Y</mi> <mi>n</mi> </msub> </mrow> <mrow> <mo>∂</mo> <msup> <mi>y</mi> <mn>2</mn> </msup> </mrow> </mfrac> <mfrac> <mrow> <mo>∂</mo> <msub> <mi>X</mi> <mi>m</mi> </msub> </mrow> <mrow> <mo>∂</mo> <mi>x</mi> </mrow> </mfrac> <msub> <mi>Y</mi> <mi>n</mi> </msub> <mi mathvariant="normal">d</mi> <mi>x</mi> <mi mathvariant="normal">d</mi> <mi>y</mi> </mrow> </semantics></math> </div> <div class='l'> </div> </div><div class='html-disp-formula-info' id='FD63-mathematics-10-00408'> <div class='f'> <math display='block'><semantics> <mrow> <msub> <mi>K</mi> <mrow> <mn>43</mn> </mrow> </msub> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <mfrac> <mrow> <msubsup> <mi>B</mi> <mrow> <mn>11</mn> </mrow> <mi>s</mi> </msubsup> </mrow> <mrow> <msub> <mi>R</mi> <mi>x</mi> </msub> </mrow> </mfrac> <mo>+</mo> <mfrac> <mrow> <msubsup> <mi>B</mi> <mrow> <mn>12</mn> </mrow> <mi>s</mi> </msubsup> </mrow> <mrow> <msub> <mi>R</mi> <mi>y</mi> </msub> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> <munderover> <mstyle mathsize="140%" displaystyle="true"> <mo>∫</mo> </mstyle> <mn>0</mn> <mi>a</mi> </munderover> <munderover> <mstyle mathsize="140%" displaystyle="true"> <mo>∫</mo> </mstyle> <mn>0</mn> <mi>b</mi> </munderover> <mfrac> <mrow> <mo>∂</mo> <msub> <mi>X</mi> <mi>m</mi> </msub> </mrow> <mrow> <mo>∂</mo> <mi>x</mi> </mrow> </mfrac> <msub> <mi>Y</mi> <mi>n</mi> </msub> <mfrac> <mrow> <mo>∂</mo> <msub> <mi>X</mi> <mi>m</mi> </msub> </mrow> <mrow> <mo>∂</mo> <mi>x</mi> </mrow> </mfrac> <msub> <mi>Y</mi> <mi>n</mi> </msub> <mi mathvariant="normal">d</mi> <mi>x</mi> <mi mathvariant="normal">d</mi> <mi>y</mi> <mo>−</mo> <msubsup> <mi>D</mi> <mrow> <mn>11</mn> </mrow> <mi>s</mi> </msubsup> <munderover> <mstyle mathsize="140%" displaystyle="true"> <mo>∫</mo> </mstyle> <mn>0</mn> <mi>a</mi> </munderover> <munderover> <mstyle mathsize="140%" displaystyle="true"> <mo>∫</mo> </mstyle> <mn>0</mn> <mi>b</mi> </munderover> <mfrac> <mrow> <msup> <mo>∂</mo> <mn>3</mn> </msup> <msub> <mi>X</mi> <mi>m</mi> </msub> </mrow> <mrow> <mo>∂</mo> <msup> <mi>x</mi> <mn>3</mn> </msup> </mrow> </mfrac> <msub> <mi>Y</mi> <mi>n</mi> </msub> <mfrac> <mrow> <mo>∂</mo> <msub> <mi>X</mi> <mi>m</mi> </msub> </mrow> <mrow> <mo>∂</mo> <mi>x</mi> </mrow> </mfrac> <msub> <mi>Y</mi> <mi>n</mi> </msub> <mi mathvariant="normal">d</mi> <mi>x</mi> <mi mathvariant="normal">d</mi> <mi>y</mi> <mo>−</mo> <mrow> <mo>(</mo> <mrow> <msubsup> <mi>D</mi> <mrow> <mn>12</mn> </mrow> <mi>s</mi> </msubsup> <mo>+</mo> <mn>2</mn> <msubsup> <mi>D</mi> <mrow> <mn>66</mn> </mrow> <mi>s</mi> </msubsup> </mrow> <mo>)</mo> </mrow> <munderover> <mstyle mathsize="140%" displaystyle="true"> <mo>∫</mo> </mstyle> <mn>0</mn> <mi>a</mi> </munderover> <munderover> <mstyle mathsize="140%" displaystyle="true"> <mo>∫</mo> </mstyle> <mn>0</mn> <mi>b</mi> </munderover> <mfrac> <mrow> <mo>∂</mo> <msub> <mi>X</mi> <mi>m</mi> </msub> </mrow> <mrow> <mo>∂</mo> <mi>x</mi> </mrow> </mfrac> <mfrac> <mrow> <msup> <mo>∂</mo> <mn>2</mn> </msup> <msub> <mi>Y</mi> <mi>n</mi> </msub> </mrow> <mrow> <mo>∂</mo> <msup> <mi>y</mi> <mn>2</mn> </msup> </mrow> </mfrac> <mfrac> <mrow> <mo>∂</mo> <msub> <mi>X</mi> <mi>m</mi> </msub> </mrow> <mrow> <mo>∂</mo> <mi>x</mi> </mrow> </mfrac> <msub> <mi>Y</mi> <mi>n</mi> </msub> <mi mathvariant="normal">d</mi> <mi>x</mi> <mi mathvariant="normal">d</mi> <mi>y</mi> </mrow> </semantics></math> </div> <div class='l'> </div> </div><div class='html-disp-formula-info' id='FD64-mathematics-10-00408'> <div class='f'> <math display='block'><semantics> <mrow> <msub> <mi>K</mi> <mrow> <mn>44</mn> </mrow> </msub> <mo>=</mo> <msubsup> <mi>F</mi> <mrow> <mn>11</mn> </mrow> <mi>s</mi> </msubsup> <munderover> <mstyle mathsize="140%" displaystyle="true"> <mo>∫</mo> </mstyle> <mn>0</mn> <mi>a</mi> </munderover> <munderover> <mstyle mathsize="140%" displaystyle="true"> <mo>∫</mo> </mstyle> <mn>0</mn> <mi>b</mi> </munderover> <mfrac> <mrow> <msup> <mo>∂</mo> <mn>3</mn> </msup> <msub> <mi>X</mi> <mi>m</mi> </msub> </mrow> <mrow> <mo>∂</mo> <msup> <mi>x</mi> <mn>3</mn> </msup> </mrow> </mfrac> <msub> <mi>Y</mi> <mi>n</mi> </msub> <mfrac> <mrow> <mo>∂</mo> <msub> <mi>X</mi> <mi>m</mi> </msub> </mrow> <mrow> <mo>∂</mo> <mi>x</mi> </mrow> </mfrac> <msub> <mi>Y</mi> <mi>n</mi> </msub> <mi mathvariant="normal">d</mi> <mi>x</mi> <mi mathvariant="normal">d</mi> <mi>y</mi> <mo>+</mo> <msubsup> <mi>F</mi> <mrow> <mn>66</mn> </mrow> <mi>s</mi> </msubsup> <munderover> <mstyle mathsize="140%" displaystyle="true"> <mo>∫</mo> </mstyle> <mn>0</mn> <mi>a</mi> </munderover> <munderover> <mstyle mathsize="140%" displaystyle="true"> <mo>∫</mo> </mstyle> <mn>0</mn> <mi>b</mi> </munderover> <mfrac> <mrow> <mo>∂</mo> <msub> <mi>X</mi> <mi>m</mi> </msub> </mrow> <mrow> <mo>∂</mo> <mi>x</mi> </mrow> </mfrac> <mfrac> <mrow> <msup> <mo>∂</mo> <mn>2</mn> </msup> <msub> <mi>Y</mi> <mi>n</mi> </msub> </mrow> <mrow> <mo>∂</mo> <msup> <mi>y</mi> <mn>2</mn> </msup> </mrow> </mfrac> <mfrac> <mrow> <mo>∂</mo> <msub> <mi>X</mi> <mi>m</mi> </msub> </mrow> <mrow> <mo>∂</mo> <mi>x</mi> </mrow> </mfrac> <msub> <mi>Y</mi> <mi>n</mi> </msub> <mi mathvariant="normal">d</mi> <mi>x</mi> <mi mathvariant="normal">d</mi> <mi>y</mi> <mo>−</mo> <msubsup> <mi>A</mi> <mrow> <mn>44</mn> </mrow> <mi>s</mi> </msubsup> <munderover> <mstyle mathsize="140%" displaystyle="true"> <mo>∫</mo> </mstyle> <mn>0</mn> <mi>a</mi> </munderover> <munderover> <mstyle mathsize="140%" displaystyle="true"> <mo>∫</mo> </mstyle> <mn>0</mn> <mi>b</mi> </munderover> <mfrac> <mrow> <mo>∂</mo> <msub> <mi>X</mi> <mi>m</mi> </msub> </mrow> <mrow> <mo>∂</mo> <mi>x</mi> </mrow> </mfrac> <msub> <mi>Y</mi> <mi>n</mi> </msub> <mfrac> <mrow> <mo>∂</mo> <msub> <mi>X</mi> <mi>m</mi> </msub> </mrow> <mrow> <mo>∂</mo> <mi>x</mi> </mrow> </mfrac> <msub> <mi>Y</mi> <mi>n</mi> </msub> <mi mathvariant="normal">d</mi> <mi>x</mi> <mi mathvariant="normal">d</mi> <mi>y</mi> </mrow> </semantics></math> </div> <div class='l'> </div> </div><div class='html-disp-formula-info' id='FD65-mathematics-10-00408'> <div class='f'> <math display='block'><semantics> <mrow> <msub> <mi>K</mi> <mrow> <mn>45</mn> </mrow> </msub> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <msubsup> <mi>F</mi> <mrow> <mn>12</mn> </mrow> <mi>s</mi> </msubsup> <mo>+</mo> <msubsup> <mi>F</mi> <mrow> <mn>66</mn> </mrow> <mi>s</mi> </msubsup> </mrow> <mo>)</mo> </mrow> <munderover> <mstyle mathsize="140%" displaystyle="true"> <mo>∫</mo> </mstyle> <mn>0</mn> <mi>a</mi> </munderover> <munderover> <mstyle mathsize="140%" displaystyle="true"> <mo>∫</mo> </mstyle> <mn>0</mn> <mi>b</mi> </munderover> <mfrac> <mrow> <mo>∂</mo> <msub> <mi>X</mi> <mi>m</mi> </msub> </mrow> <mrow> <mo>∂</mo> <mi>x</mi> </mrow> </mfrac> <mfrac> <mrow> <msup> <mo>∂</mo> <mn>2</mn> </msup> <msub> <mi>Y</mi> <mi>n</mi> </msub> </mrow> <mrow> <mo>∂</mo> <msup> <mi>y</mi> <mn>2</mn> </msup> </mrow> </mfrac> <mfrac> <mrow> <mo>∂</mo> <msub> <mi>X</mi> <mi>m</mi> </msub> </mrow> <mrow> <mo>∂</mo> <mi>x</mi> </mrow> </mfrac> <msub> <mi>Y</mi> <mi>n</mi> </msub> <mi mathvariant="normal">d</mi> <mi>x</mi> <mi mathvariant="normal">d</mi> <mi>y</mi> </mrow> </semantics></math> </div> <div class='l'> </div> </div><div class='html-disp-formula-info' id='FD66-mathematics-10-00408'> <div class='f'> <math display='block'><semantics> <mrow> <msub> <mi>K</mi> <mrow> <mn>51</mn> </mrow> </msub> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <msubsup> <mi>B</mi> <mrow> <mn>12</mn> </mrow> <mi>s</mi> </msubsup> <mo>+</mo> <msubsup> <mi>B</mi> <mrow> <mn>66</mn> </mrow> <mi>s</mi> </msubsup> </mrow> <mo>)</mo> </mrow> <msubsup> <mo>∫</mo> <mn>0</mn> <mi>a</mi> </msubsup> <msubsup> <mo>∫</mo> <mn>0</mn> <mi>b</mi> </msubsup> <mfrac> <mrow> <msup> <mo>∂</mo> <mn>2</mn> </msup> <msub> <mi>X</mi> <mi>m</mi> </msub> </mrow> <mrow> <mo>∂</mo> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> </mfrac> <mfrac> <mrow> <mo>∂</mo> <msub> <mi>Y</mi> <mi>n</mi> </msub> </mrow> <mrow> <mo>∂</mo> <mi>y</mi> </mrow> </mfrac> <msub> <mi>X</mi> <mi>m</mi> </msub> <mfrac> <mrow> <mo>∂</mo> <msub> <mi>Y</mi> <mi>n</mi> </msub> </mrow> <mrow> <mo>∂</mo> <mi>y</mi> </mrow> </mfrac> <mi mathvariant="normal">d</mi> <mi>x</mi> <mi mathvariant="normal">d</mi> <mi>y</mi> </mrow> </semantics></math> </div> <div class='l'> </div> </div><div class='html-disp-formula-info' id='FD67-mathematics-10-00408'> <div class='f'> <math display='block'><semantics> <mrow> <msub> <mi>K</mi> <mrow> <mn>52</mn> </mrow> </msub> <mo>=</mo> <msubsup> <mi>B</mi> <mrow> <mn>22</mn> </mrow> <mi>s</mi> </msubsup> <munderover> <mstyle mathsize="140%" displaystyle="true"> <mo>∫</mo> </mstyle> <mn>0</mn> <mi>a</mi> </munderover> <munderover> <mstyle mathsize="140%" displaystyle="true"> <mo>∫</mo> </mstyle> <mn>0</mn> <mi>b</mi> </munderover> <msub> <mi>X</mi> <mi>m</mi> </msub> <mfrac> <mrow> <msup> <mo>∂</mo> <mn>3</mn> </msup> <msub> <mi>Y</mi> <mi>n</mi> </msub> </mrow> <mrow> <mo>∂</mo> <msup> <mi>y</mi> <mn>3</mn> </msup> </mrow> </mfrac> <msub> <mi>X</mi> <mi>m</mi> </msub> <mfrac> <mrow> <mo>∂</mo> <msub> <mi>Y</mi> <mi>n</mi> </msub> </mrow> <mrow> <mo>∂</mo> <mi>y</mi> </mrow> </mfrac> <mi mathvariant="normal">d</mi> <mi>x</mi> <mi mathvariant="normal">d</mi> <mi>y</mi> <mo>+</mo> <msubsup> <mi>B</mi> <mrow> <mn>66</mn> </mrow> <mi>s</mi> </msubsup> <munderover> <mstyle mathsize="140%" displaystyle="true"> <mo>∫</mo> </mstyle> <mn>0</mn> <mi>a</mi> </munderover> <munderover> <mstyle mathsize="140%" displaystyle="true"> <mo>∫</mo> </mstyle> <mn>0</mn> <mi>b</mi> </munderover> <mfrac> <mrow> <msup> <mo>∂</mo> <mn>2</mn> </msup> <msub> <mi>X</mi> <mi>m</mi> </msub> </mrow> <mrow> <mo>∂</mo> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> </mfrac> <mfrac> <mrow> <mo>∂</mo> <msub> <mi>Y</mi> <mi>n</mi> </msub> </mrow> <mrow> <mo>∂</mo> <mi>y</mi> </mrow> </mfrac> <msub> <mi>X</mi> <mi>m</mi> </msub> <mfrac> <mrow> <mo>∂</mo> <msub> <mi>Y</mi> <mi>n</mi> </msub> </mrow> <mrow> <mo>∂</mo> <mi>y</mi> </mrow> </mfrac> <mi mathvariant="normal">d</mi> <mi>x</mi> <mi mathvariant="normal">d</mi> <mi>y</mi> </mrow> </semantics></math> </div> <div class='l'> </div> </div><div class='html-disp-formula-info' id='FD68-mathematics-10-00408'> <div class='f'> <math display='block'><semantics> <mrow> <msub> <mi>K</mi> <mrow> <mn>53</mn> </mrow> </msub> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <mfrac> <mrow> <msubsup> <mi>B</mi> <mrow> <mn>12</mn> </mrow> <mi>s</mi> </msubsup> </mrow> <mrow> <msub> <mi>R</mi> <mi>x</mi> </msub> </mrow> </mfrac> <mo>+</mo> <mfrac> <mrow> <msubsup> <mi>B</mi> <mrow> <mn>22</mn> </mrow> <mi>s</mi> </msubsup> </mrow> <mrow> <msub> <mi>R</mi> <mi>y</mi> </msub> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> <munderover> <mstyle mathsize="140%" displaystyle="true"> <mo>∫</mo> </mstyle> <mn>0</mn> <mi>a</mi> </munderover> <munderover> <mstyle mathsize="140%" displaystyle="true"> <mo>∫</mo> </mstyle> <mn>0</mn> <mi>b</mi> </munderover> <msub> <mi>X</mi> <mi>m</mi> </msub> <mfrac> <mrow> <mo>∂</mo> <msub> <mi>Y</mi> <mi>n</mi> </msub> </mrow> <mrow> <mo>∂</mo> <mi>y</mi> </mrow> </mfrac> <msub> <mi>X</mi> <mi>m</mi> </msub> <mfrac> <mrow> <mo>∂</mo> <msub> <mi>Y</mi> <mi>n</mi> </msub> </mrow> <mrow> <mo>∂</mo> <mi>y</mi> </mrow> </mfrac> <mi mathvariant="normal">d</mi> <mi>x</mi> <mi mathvariant="normal">d</mi> <mi>y</mi> <mo>−</mo> <msubsup> <mi>D</mi> <mrow> <mn>22</mn> </mrow> <mi>s</mi> </msubsup> <munderover> <mstyle mathsize="140%" displaystyle="true"> <mo>∫</mo> </mstyle> <mn>0</mn> <mi>a</mi> </munderover> <munderover> <mstyle mathsize="140%" displaystyle="true"> <mo>∫</mo> </mstyle> <mn>0</mn> <mi>b</mi> </munderover> <msub> <mi>X</mi> <mi>m</mi> </msub> <mfrac> <mrow> <msup> <mo>∂</mo> <mn>3</mn> </msup> <msub> <mi>Y</mi> <mi>n</mi> </msub> </mrow> <mrow> <mo>∂</mo> <msup> <mi>y</mi> <mn>3</mn> </msup> </mrow> </mfrac> <msub> <mi>X</mi> <mi>m</mi> </msub> <mfrac> <mrow> <mo>∂</mo> <msub> <mi>Y</mi> <mi>n</mi> </msub> </mrow> <mrow> <mo>∂</mo> <mi>y</mi> </mrow> </mfrac> <mi mathvariant="normal">d</mi> <mi>x</mi> <mi mathvariant="normal">d</mi> <mi>y</mi> <mo>−</mo> <mrow> <mo>(</mo> <mrow> <msubsup> <mi>D</mi> <mrow> <mn>12</mn> </mrow> <mi>s</mi> </msubsup> <mo>+</mo> <mn>2</mn> <msubsup> <mi>D</mi> <mrow> <mn>66</mn> </mrow> <mi>s</mi> </msubsup> </mrow> <mo>)</mo> </mrow> <munderover> <mstyle mathsize="140%" displaystyle="true"> <mo>∫</mo> </mstyle> <mn>0</mn> <mi>a</mi> </munderover> <munderover> <mstyle mathsize="140%" displaystyle="true"> <mo>∫</mo> </mstyle> <mn>0</mn> <mi>b</mi> </munderover> <mfrac> <mrow> <msup> <mo>∂</mo> <mn>2</mn> </msup> <msub> <mi>X</mi> <mi>m</mi> </msub> </mrow> <mrow> <mo>∂</mo> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> </mfrac> <mfrac> <mrow> <mo>∂</mo> <msub> <mi>Y</mi> <mi>n</mi> </msub> </mrow> <mrow> <mo>∂</mo> <mi>y</mi> </mrow> </mfrac> <msub> <mi>X</mi> <mi>m</mi> </msub> <mfrac> <mrow> <mo>∂</mo> <msub> <mi>Y</mi> <mi>n</mi> </msub> </mrow> <mrow> <mo>∂</mo> <mi>y</mi> </mrow> </mfrac> <mi mathvariant="normal">d</mi> <mi>x</mi> <mi mathvariant="normal">d</mi> <mi>y</mi> </mrow> </semantics></math> </div> <div class='l'> </div> </div><div class='html-disp-formula-info' id='FD69-mathematics-10-00408'> <div class='f'> <math display='block'><semantics> <mrow> <msub> <mi>K</mi> <mrow> <mn>54</mn> </mrow> </msub> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <msubsup> <mi>F</mi> <mrow> <mn>12</mn> </mrow> <mi>s</mi> </msubsup> <mo>+</mo> <msubsup> <mi>F</mi> <mrow> <mn>66</mn> </mrow> <mi>s</mi> </msubsup> </mrow> <mo>)</mo> </mrow> <munderover> <mstyle mathsize="140%" displaystyle="true"> <mo>∫</mo> </mstyle> <mn>0</mn> <mi>a</mi> </munderover> <munderover> <mstyle mathsize="140%" displaystyle="true"> <mo>∫</mo> </mstyle> <mn>0</mn> <mi>b</mi> </munderover> <mfrac> <mrow> <msup> <mo>∂</mo> <mn>2</mn> </msup> <msub> <mi>X</mi> <mi>m</mi> </msub> </mrow> <mrow> <mo>∂</mo> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> </mfrac> <mfrac> <mrow> <mo>∂</mo> <msub> <mi>Y</mi> <mi>n</mi> </msub> </mrow> <mrow> <mo>∂</mo> <mi>y</mi> </mrow> </mfrac> <msub> <mi>X</mi> <mi>m</mi> </msub> <mfrac> <mrow> <mo>∂</mo> <msub> <mi>Y</mi> <mi>n</mi> </msub> </mrow> <mrow> <mo>∂</mo> <mi>y</mi> </mrow> </mfrac> <mi mathvariant="normal">d</mi> <mi>x</mi> <mi mathvariant="normal">d</mi> <mi>y</mi> </mrow> </semantics></math> </div> <div class='l'> </div> </div><div class='html-disp-formula-info' id='FD70-mathematics-10-00408'> <div class='f'> <math display='block'><semantics> <mrow> <msub> <mi>K</mi> <mrow> <mn>55</mn> </mrow> </msub> <mo>=</mo> <msubsup> <mi>F</mi> <mrow> <mn>22</mn> </mrow> <mi>s</mi> </msubsup> <munderover> <mstyle mathsize="140%" displaystyle="true"> <mo>∫</mo> </mstyle> <mn>0</mn> <mi>a</mi> </munderover> <munderover> <mstyle mathsize="140%" displaystyle="true"> <mo>∫</mo> </mstyle> <mn>0</mn> <mi>b</mi> </munderover> <msub> <mi>X</mi> <mi>m</mi> </msub> <mfrac> <mrow> <msup> <mo>∂</mo> <mn>3</mn> </msup> <msub> <mi>Y</mi> <mi>n</mi> </msub> </mrow> <mrow> <mo>∂</mo> <msup> <mi>y</mi> <mn>3</mn> </msup> </mrow> </mfrac> <msub> <mi>X</mi> <mi>m</mi> </msub> <mfrac> <mrow> <mo>∂</mo> <msub> <mi>Y</mi> <mi>n</mi> </msub> </mrow> <mrow> <mo>∂</mo> <mi>y</mi> </mrow> </mfrac> <mi mathvariant="normal">d</mi> <mi>x</mi> <mi mathvariant="normal">d</mi> <mi>y</mi> <mo>+</mo> <msubsup> <mi>F</mi> <mrow> <mn>66</mn> </mrow> <mi>s</mi> </msubsup> <munderover> <mstyle mathsize="140%" displaystyle="true"> <mo>∫</mo> </mstyle> <mn>0</mn> <mi>a</mi> </munderover> <munderover> <mstyle mathsize="140%" displaystyle="true"> <mo>∫</mo> </mstyle> <mn>0</mn> <mi>b</mi> </munderover> <mfrac> <mrow> <msup> <mo>∂</mo> <mn>2</mn> </msup> <msub> <mi>X</mi> <mi>m</mi> </msub> </mrow> <mrow> <mo>∂</mo> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> </mfrac> <mfrac> <mrow> <mo>∂</mo> <msub> <mi>Y</mi> <mi>n</mi> </msub> </mrow> <mrow> <mo>∂</mo> <mi>y</mi> </mrow> </mfrac> <msub> <mi>X</mi> <mi>m</mi> </msub> <mfrac> <mrow> <mo>∂</mo> <msub> <mi>Y</mi> <mi>n</mi> </msub> </mrow> <mrow> <mo>∂</mo> <mi>y</mi> </mrow> </mfrac> <mi mathvariant="normal">d</mi> <mi>x</mi> <mi mathvariant="normal">d</mi> <mi>y</mi> <mo>−</mo> <msubsup> <mi>A</mi> <mrow> <mn>55</mn> </mrow> <mi>s</mi> </msubsup> <munderover> <mstyle mathsize="140%" displaystyle="true"> <mo>∫</mo> </mstyle> <mn>0</mn> <mi>a</mi> </munderover> <munderover> <mstyle mathsize="140%" displaystyle="true"> <mo>∫</mo> </mstyle> <mn>0</mn> <mi>b</mi> </munderover> <msub> <mi>X</mi> <mi>m</mi> </msub> <mfrac> <mrow> <mo>∂</mo> <msub> <mi>Y</mi> <mi>n</mi> </msub> </mrow> <mrow> <mo>∂</mo> <mi>y</mi> </mrow> </mfrac> <msub> <mi>X</mi> <mi>m</mi> </msub> <mfrac> <mrow> <mo>∂</mo> <msub> <mi>Y</mi> <mi>n</mi> </msub> </mrow> <mrow> <mo>∂</mo> <mi>y</mi> </mrow> </mfrac> <mi mathvariant="normal">d</mi> <mi>x</mi> <mi mathvariant="normal">d</mi> <mi>y</mi> </mrow> </semantics></math> </div> <div class='l'> </div> </div></div><div class='html-p'>Mass matrix elements; <div class='html-disp-formula-info' id='FD71-mathematics-10-00408'> <div class='f'> <math display='block'><semantics> <mrow> <msub> <mi>M</mi> <mrow> <mn>11</mn> </mrow> </msub> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <msub> <mi>I</mi> <mn>0</mn> </msub> <mo>+</mo> <mn>2</mn> <mfrac> <mrow> <msub> <mi>I</mi> <mn>1</mn> </msub> </mrow> <mrow> <msub> <mi>R</mi> <mi>x</mi> </msub> </mrow> </mfrac> <mo>+</mo> <mfrac> <mrow> <msub> <mi>I</mi> <mn>3</mn> </msub> </mrow> <mrow> <msub> <mi>R</mi> <mi>y</mi> </msub> <msup> <mrow/> <mn>2</mn> </msup> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> <munderover> <mstyle mathsize="140%" displaystyle="true"> <mo>∫</mo> </mstyle> <mn>0</mn> <mi>a</mi> </munderover> <munderover> <mstyle mathsize="140%" displaystyle="true"> <mo>∫</mo> </mstyle> <mn>0</mn> <mi>b</mi> </munderover> <mfrac> <mrow> <mo>∂</mo> <msub> <mi>X</mi> <mi>m</mi> </msub> </mrow> <mrow> <mo>∂</mo> <mi>x</mi> </mrow> </mfrac> <msub> <mi>Y</mi> <mi>n</mi> </msub> <mfrac> <mrow> <mo>∂</mo> <msub> <mi>X</mi> <mi>m</mi> </msub> </mrow> <mrow> <mo>∂</mo> <mi>x</mi> </mrow> </mfrac> <msub> <mi>Y</mi> <mi>n</mi> </msub> <mi mathvariant="normal">d</mi> <mi>x</mi> <mi mathvariant="normal">d</mi> <mi>y</mi> </mrow> </semantics></math> </div> <div class='l'> </div> </div><div class='html-disp-formula-info' id='FD72-mathematics-10-00408'> <div class='f'> <math display='block'><semantics> <mrow> <msub> <mi>M</mi> <mrow> <mn>13</mn> </mrow> </msub> <mo>=</mo> <mo>−</mo> <mrow> <mo>(</mo> <mrow> <msub> <mi>I</mi> <mn>1</mn> </msub> <mo>+</mo> <mfrac> <mrow> <msub> <mi>I</mi> <mn>2</mn> </msub> </mrow> <mrow> <msub> <mi>R</mi> <mi>x</mi> </msub> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> <mo>−</mo> <msubsup> <mo>∫</mo> <mn>0</mn> <mi>a</mi> </msubsup> <msubsup> <mo>∫</mo> <mn>0</mn> <mi>b</mi> </msubsup> <mfrac> <mrow> <mo>∂</mo> <msub> <mi>X</mi> <mi>m</mi> </msub> </mrow> <mrow> <mo>∂</mo> <mi>x</mi> </mrow> </mfrac> <msub> <mi>Y</mi> <mi>n</mi> </msub> <mfrac> <mrow> <mo>∂</mo> <msub> <mi>X</mi> <mi>m</mi> </msub> </mrow> <mrow> <mo>∂</mo> <mi>x</mi> </mrow> </mfrac> <msub> <mi>Y</mi> <mi>n</mi> </msub> <mi mathvariant="normal">d</mi> <mi>x</mi> <mi mathvariant="normal">d</mi> <mi>y</mi> </mrow> </semantics></math> </div> <div class='l'> </div> </div><div class='html-disp-formula-info' id='FD73-mathematics-10-00408'> <div class='f'> <math display='block'><semantics> <mrow> <msub> <mi>M</mi> <mrow> <mn>14</mn> </mrow> </msub> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <msub> <mi>I</mi> <mn>3</mn> </msub> <mo>+</mo> <mfrac> <mrow> <msub> <mi>I</mi> <mn>4</mn> </msub> </mrow> <mrow> <msub> <mi>R</mi> <mi>x</mi> </msub> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> <munderover> <mstyle mathsize="140%" displaystyle="true"> <mo>∫</mo> </mstyle> <mn>0</mn> <mi>a</mi> </munderover> <munderover> <mstyle mathsize="140%" displaystyle="true"> <mo>∫</mo> </mstyle> <mn>0</mn> <mi>b</mi> </munderover> <mfrac> <mrow> <mo>∂</mo> <msub> <mi>X</mi> <mi>m</mi> </msub> </mrow> <mrow> <mo>∂</mo> <mi>x</mi> </mrow> </mfrac> <msub> <mi>Y</mi> <mi>n</mi> </msub> <mfrac> <mrow> <mo>∂</mo> <msub> <mi>X</mi> <mi>m</mi> </msub> </mrow> <mrow> <mo>∂</mo> <mi>x</mi> </mrow> </mfrac> <msub> <mi>Y</mi> <mi>n</mi> </msub> <mi mathvariant="normal">d</mi> <mi>x</mi> <mi mathvariant="normal">d</mi> <mi>y</mi> </mrow> </semantics></math> </div> <div class='l'> </div> </div><div class='html-disp-formula-info' id='FD74-mathematics-10-00408'> <div class='f'> <math display='block'><semantics> <mrow> <msub> <mi>M</mi> <mrow> <mn>22</mn> </mrow> </msub> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <msub> <mi>I</mi> <mn>0</mn> </msub> <mo>+</mo> <mn>2</mn> <mfrac> <mrow> <msub> <mi>I</mi> <mn>1</mn> </msub> </mrow> <mrow> <msub> <mi>R</mi> <mi>y</mi> </msub> </mrow> </mfrac> <mo>+</mo> <mfrac> <mrow> <msub> <mi>I</mi> <mn>2</mn> </msub> </mrow> <mrow> <msub> <mi>R</mi> <mi>y</mi> </msub> <msup> <mrow/> <mn>2</mn> </msup> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> <munderover> <mstyle mathsize="140%" displaystyle="true"> <mo>∫</mo> </mstyle> <mn>0</mn> <mi>a</mi> </munderover> <munderover> <mstyle mathsize="140%" displaystyle="true"> <mo>∫</mo> </mstyle> <mn>0</mn> <mi>b</mi> </munderover> <msub> <mi>X</mi> <mi>m</mi> </msub> <mfrac> <mrow> <mo>∂</mo> <msub> <mi>Y</mi> <mi>n</mi> </msub> </mrow> <mrow> <mo>∂</mo> <mi>y</mi> </mrow> </mfrac> <msub> <mi>X</mi> <mi>m</mi> </msub> <mfrac> <mrow> <mo>∂</mo> <msub> <mi>Y</mi> <mi>n</mi> </msub> </mrow> <mrow> <mo>∂</mo> <mi>y</mi> </mrow> </mfrac> <mi mathvariant="normal">d</mi> <mi>x</mi> <mi mathvariant="normal">d</mi> <mi>y</mi> </mrow> </semantics></math> </div> <div class='l'> </div> </div><div class='html-disp-formula-info' id='FD75-mathematics-10-00408'> <div class='f'> <math display='block'><semantics> <mrow> <msub> <mi>M</mi> <mrow> <mn>23</mn> </mrow> </msub> <mo>=</mo> <mo>−</mo> <mrow> <mo>(</mo> <mrow> <msub> <mi>I</mi> <mn>1</mn> </msub> <mo>+</mo> <mfrac> <mrow> <msub> <mi>I</mi> <mn>2</mn> </msub> </mrow> <mrow> <msub> <mi>R</mi> <mi>y</mi> </msub> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> <msubsup> <mo>∫</mo> <mn>0</mn> <mi>a</mi> </msubsup> <msubsup> <mo>∫</mo> <mn>0</mn> <mi>b</mi> </msubsup> <msub> <mi>X</mi> <mi>m</mi> </msub> <mfrac> <mrow> <mo>∂</mo> <msub> <mi>Y</mi> <mi>n</mi> </msub> </mrow> <mrow> <mo>∂</mo> <mi>y</mi> </mrow> </mfrac> <msub> <mi>X</mi> <mi>m</mi> </msub> <mfrac> <mrow> <mo>∂</mo> <msub> <mi>Y</mi> <mi>n</mi> </msub> </mrow> <mrow> <mo>∂</mo> <mi>y</mi> </mrow> </mfrac> <mi mathvariant="normal">d</mi> <mi>x</mi> <mi mathvariant="normal">d</mi> <mi>y</mi> </mrow> </semantics></math> </div> <div class='l'> </div> </div><div class='html-disp-formula-info' id='FD76-mathematics-10-00408'> <div class='f'> <math display='block'><semantics> <mrow> <msub> <mi>M</mi> <mrow> <mn>25</mn> </mrow> </msub> <mo>=</mo> <mo>−</mo> <mrow> <mo>(</mo> <mrow> <msub> <mi>I</mi> <mn>3</mn> </msub> <mo>+</mo> <mfrac> <mrow> <msub> <mi>I</mi> <mn>4</mn> </msub> </mrow> <mrow> <msub> <mi>R</mi> <mi>y</mi> </msub> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> <msubsup> <mo>∫</mo> <mn>0</mn> <mi>a</mi> </msubsup> <msubsup> <mo>∫</mo> <mn>0</mn> <mi>b</mi> </msubsup> <msub> <mi>X</mi> <mi>m</mi> </msub> <mfrac> <mrow> <mo>∂</mo> <msub> <mi>Y</mi> <mi>n</mi> </msub> </mrow> <mrow> <mo>∂</mo> <mi>y</mi> </mrow> </mfrac> <msub> <mi>X</mi> <mi>m</mi> </msub> <mfrac> <mrow> <mo>∂</mo> <msub> <mi>Y</mi> <mi>n</mi> </msub> </mrow> <mrow> <mo>∂</mo> <mi>y</mi> </mrow> </mfrac> <mi mathvariant="normal">d</mi> <mi>x</mi> <mi mathvariant="normal">d</mi> <mi>y</mi> </mrow> </semantics></math> </div> <div class='l'> </div> </div><div class='html-disp-formula-info' id='FD77-mathematics-10-00408'> <div class='f'> <math display='block'><semantics> <mrow> <msub> <mi>M</mi> <mrow> <mn>31</mn> </mrow> </msub> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <msub> <mi>I</mi> <mn>1</mn> </msub> <mo>+</mo> <mfrac> <mrow> <msub> <mi>I</mi> <mn>2</mn> </msub> </mrow> <mrow> <msub> <mi>R</mi> <mi>x</mi> </msub> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> <munderover> <mstyle mathsize="140%" displaystyle="true"> <mo>∫</mo> </mstyle> <mn>0</mn> <mi>a</mi> </munderover> <munderover> <mstyle mathsize="140%" displaystyle="true"> <mo>∫</mo> </mstyle> <mn>0</mn> <mi>b</mi> </munderover> <mfrac> <mrow> <msup> <mo>∂</mo> <mn>2</mn> </msup> <msub> <mi>X</mi> <mi>m</mi> </msub> </mrow> <mrow> <mo>∂</mo> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> </mfrac> <msub> <mi>Y</mi> <mi>n</mi> </msub> <msub> <mi>X</mi> <mi>m</mi> </msub> <msub> <mi>Y</mi> <mi>n</mi> </msub> <mi mathvariant="normal">d</mi> <mi>x</mi> <mi mathvariant="normal">d</mi> <mi>y</mi> </mrow> </semantics></math> </div> <div class='l'> </div> </div><div class='html-disp-formula-info' id='FD78-mathematics-10-00408'> <div class='f'> <math display='block'><semantics> <mrow> <msub> <mi>M</mi> <mrow> <mn>32</mn> </mrow> </msub> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <msub> <mi>I</mi> <mn>1</mn> </msub> <mo>+</mo> <mfrac> <mrow> <msub> <mi>I</mi> <mn>2</mn> </msub> </mrow> <mrow> <msub> <mi>R</mi> <mi>y</mi> </msub> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> <msub> <mi>I</mi> <mn>1</mn> </msub> <munderover> <mstyle mathsize="140%" displaystyle="true"> <mo>∫</mo> </mstyle> <mn>0</mn> <mi>a</mi> </munderover> <munderover> <mstyle mathsize="140%" displaystyle="true"> <mo>∫</mo> </mstyle> <mn>0</mn> <mi>b</mi> </munderover> <msub> <mi>X</mi> <mi>m</mi> </msub> <mfrac> <mrow> <msup> <mo>∂</mo> <mn>2</mn> </msup> <msub> <mi>Y</mi> <mi>n</mi> </msub> </mrow> <mrow> <mo>∂</mo> <msup> <mi>y</mi> <mn>2</mn> </msup> </mrow> </mfrac> <msub> <mi>X</mi> <mi>m</mi> </msub> <msub> <mi>Y</mi> <mi>n</mi> </msub> <mi mathvariant="normal">d</mi> <mi>x</mi> <mi mathvariant="normal">d</mi> <mi>y</mi> </mrow> </semantics></math> </div> <div class='l'> </div> </div><div class='html-disp-formula-info' id='FD79-mathematics-10-00408'> <div class='f'> <math display='block'><semantics> <mrow> <msub> <mi>M</mi> <mrow> <mn>33</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>I</mi> <mn>0</mn> </msub> <munderover> <mstyle mathsize="140%" displaystyle="true"> <mo>∫</mo> </mstyle> <mn>0</mn> <mi>a</mi> </munderover> <munderover> <mstyle mathsize="140%" displaystyle="true"> <mo>∫</mo> </mstyle> <mn>0</mn> <mi>b</mi> </munderover> <msub> <mi>X</mi> <mi>m</mi> </msub> <msub> <mi>Y</mi> <mi>n</mi> </msub> <msub> <mi>X</mi> <mi>m</mi> </msub> <msub> <mi>Y</mi> <mi>n</mi> </msub> <mi mathvariant="normal">d</mi> <mi>x</mi> <mi mathvariant="normal">d</mi> <mi>y</mi> <mo>−</mo> <msub> <mi>I</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mrow> <munderover> <mstyle mathsize="140%" displaystyle="true"> <mo>∫</mo> </mstyle> <mn>0</mn> <mi>a</mi> </munderover> <munderover> <mstyle mathsize="140%" displaystyle="true"> <mo>∫</mo> </mstyle> <mn>0</mn> <mi>b</mi> </munderover> <mfrac> <mrow> <msup> <mo>∂</mo> <mn>2</mn> </msup> <msub> <mi>X</mi> <mi>m</mi> </msub> </mrow> <mrow> <mo>∂</mo> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> </mfrac> <msub> <mi>Y</mi> <mi>n</mi> </msub> <msub> <mi>X</mi> <mi>m</mi> </msub> <msub> <mi>Y</mi> <mi>n</mi> </msub> <mi mathvariant="normal">d</mi> <mi>x</mi> <mi mathvariant="normal">d</mi> <mi>y</mi> <mo>+</mo> <munderover> <mstyle mathsize="140%" displaystyle="true"> <mo>∫</mo> </mstyle> <mn>0</mn> <mi>a</mi> </munderover> <munderover> <mstyle mathsize="140%" displaystyle="true"> <mo>∫</mo> </mstyle> <mn>0</mn> <mi>b</mi> </munderover> <msub> <mi>X</mi> <mi>m</mi> </msub> <mfrac> <mrow> <msup> <mo>∂</mo> <mn>2</mn> </msup> <msub> <mi>Y</mi> <mi>n</mi> </msub> </mrow> <mrow> <mo>∂</mo> <msup> <mi>y</mi> <mn>2</mn> </msup> </mrow> </mfrac> <msub> <mi>X</mi> <mi>m</mi> </msub> <msub> <mi>Y</mi> <mi>n</mi> </msub> <mi mathvariant="normal">d</mi> <mi>x</mi> <mi mathvariant="normal">d</mi> <mi>y</mi> </mrow> <mo>)</mo> </mrow> </mrow> </semantics></math> </div> <div class='l'> </div> </div><div class='html-disp-formula-info' id='FD80-mathematics-10-00408'> <div class='f'> <math display='block'><semantics> <mrow> <msub> <mi>M</mi> <mrow> <mn>34</mn> </mrow> </msub> <mo>=</mo> <mo>−</mo> <msub> <mi>I</mi> <mn>4</mn> </msub> <munderover> <mstyle mathsize="140%" displaystyle="true"> <mo>∫</mo> </mstyle> <mn>0</mn> <mi>a</mi> </munderover> <munderover> <mstyle mathsize="140%" displaystyle="true"> <mo>∫</mo> </mstyle> <mn>0</mn> <mi>b</mi> </munderover> <mfrac> <mrow> <msup> <mo>∂</mo> <mn>2</mn> </msup> <msub> <mi>X</mi> <mi>m</mi> </msub> </mrow> <mrow> <mo>∂</mo> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> </mfrac> <msub> <mi>Y</mi> <mi>n</mi> </msub> <msub> <mi>X</mi> <mi>m</mi> </msub> <msub> <mi>Y</mi> <mi>n</mi> </msub> <mi mathvariant="normal">d</mi> <mi>x</mi> <mi mathvariant="normal">d</mi> <mi>y</mi> </mrow> </semantics></math> </div> <div class='l'> </div> </div><div class='html-disp-formula-info' id='FD81-mathematics-10-00408'> <div class='f'> <math display='block'><semantics> <mrow> <msub> <mi>M</mi> <mrow> <mn>34</mn> </mrow> </msub> <mo>=</mo> <mo>−</mo> <msub> <mi>I</mi> <mn>4</mn> </msub> <munderover> <mstyle mathsize="140%" displaystyle="true"> <mo>∫</mo> </mstyle> <mn>0</mn> <mi>a</mi> </munderover> <munderover> <mstyle mathsize="140%" displaystyle="true"> <mo>∫</mo> </mstyle> <mn>0</mn> <mi>b</mi> </munderover> <msub> <mi>X</mi> <mi>m</mi> </msub> <mfrac> <mrow> <msup> <mo>∂</mo> <mn>2</mn> </msup> <msub> <mi>Y</mi> <mi>n</mi> </msub> </mrow> <mrow> <mo>∂</mo> <msup> <mi>y</mi> <mn>2</mn> </msup> </mrow> </mfrac> <msub> <mi>X</mi> <mi>m</mi> </msub> <msub> <mi>Y</mi> <mi>n</mi> </msub> <mi mathvariant="normal">d</mi> <mi>x</mi> <mi mathvariant="normal">d</mi> <mi>y</mi> </mrow> </semantics></math> </div> <div class='l'> </div> </div><div class='html-disp-formula-info' id='FD82-mathematics-10-00408'> <div class='f'> <math display='block'><semantics> <mrow> <msub> <mi>M</mi> <mrow> <mn>41</mn> </mrow> </msub> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <msub> <mi>I</mi> <mn>3</mn> </msub> <mo>+</mo> <mfrac> <mrow> <msub> <mi>I</mi> <mn>4</mn> </msub> </mrow> <mrow> <msub> <mi>R</mi> <mi>x</mi> </msub> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> <munderover> <mstyle mathsize="140%" displaystyle="true"> <mo>∫</mo> </mstyle> <mn>0</mn> <mi>a</mi> </munderover> <munderover> <mstyle mathsize="140%" displaystyle="true"> <mo>∫</mo> </mstyle> <mn>0</mn> <mi>b</mi> </munderover> <mfrac> <mrow> <mo>∂</mo> <msub> <mi>X</mi> <mi>m</mi> </msub> </mrow> <mrow> <mo>∂</mo> <mi>x</mi> </mrow> </mfrac> <msub> <mi>Y</mi> <mi>n</mi> </msub> <mfrac> <mrow> <mo>∂</mo> <msub> <mi>X</mi> <mi>m</mi> </msub> </mrow> <mrow> <mo>∂</mo> <mi>x</mi> </mrow> </mfrac> <msub> <mi>Y</mi> <mi>n</mi> </msub> <mi mathvariant="normal">d</mi> <mi>x</mi> <mi mathvariant="normal">d</mi> <mi>y</mi> </mrow> </semantics></math> </div> <div class='l'> </div> </div><div class='html-disp-formula-info' id='FD83-mathematics-10-00408'> <div class='f'> <math display='block'><semantics> <mrow> <msub> <mi>M</mi> <mrow> <mn>43</mn> </mrow> </msub> <mo>=</mo> <mo>−</mo> <msub> <mi>I</mi> <mn>4</mn> </msub> <msubsup> <mo>∫</mo> <mn>0</mn> <mi>a</mi> </msubsup> <msubsup> <mo>∫</mo> <mn>0</mn> <mi>b</mi> </msubsup> <mfrac> <mrow> <mo>∂</mo> <msub> <mi>X</mi> <mi>m</mi> </msub> </mrow> <mrow> <mo>∂</mo> <mi>x</mi> </mrow> </mfrac> <msub> <mi>Y</mi> <mi>n</mi> </msub> <mfrac> <mrow> <mo>∂</mo> <msub> <mi>X</mi> <mi>m</mi> </msub> </mrow> <mrow> <mo>∂</mo> <mi>x</mi> </mrow> </mfrac> <msub> <mi>Y</mi> <mi>n</mi> </msub> <mi mathvariant="normal">d</mi> <mi>x</mi> <mi mathvariant="normal">d</mi> <mi>y</mi> </mrow> </semantics></math> </div> <div class='l'> </div> </div><div class='html-disp-formula-info' id='FD84-mathematics-10-00408'> <div class='f'> <math display='block'><semantics> <mrow> <msub> <mi>M</mi> <mrow> <mn>44</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>I</mi> <mn>5</mn> </msub> <msubsup> <mo>∫</mo> <mn>0</mn> <mi>a</mi> </msubsup> <msubsup> <mo>∫</mo> <mn>0</mn> <mi>b</mi> </msubsup> <mfrac> <mrow> <mo>∂</mo> <msub> <mi>X</mi> <mi>m</mi> </msub> </mrow> <mrow> <mo>∂</mo> <mi>x</mi> </mrow> </mfrac> <msub> <mi>Y</mi> <mi>n</mi> </msub> <mfrac> <mrow> <mo>∂</mo> <msub> <mi>X</mi> <mi>m</mi> </msub> </mrow> <mrow> <mo>∂</mo> <mi>x</mi> </mrow> </mfrac> <msub> <mi>Y</mi> <mi>n</mi> </msub> <mi mathvariant="normal">d</mi> <mi>x</mi> <mi mathvariant="normal">d</mi> <mi>y</mi> </mrow> </semantics></math> </div> <div class='l'> </div> </div><div class='html-disp-formula-info' id='FD85-mathematics-10-00408'> <div class='f'> <math display='block'><semantics> <mrow> <msub> <mi>M</mi> <mrow> <mn>52</mn> </mrow> </msub> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <msub> <mi>I</mi> <mn>3</mn> </msub> <mo>+</mo> <mfrac> <mrow> <msub> <mi>I</mi> <mn>4</mn> </msub> </mrow> <mrow> <msub> <mi>R</mi> <mi>y</mi> </msub> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> <munderover> <mstyle mathsize="140%" displaystyle="true"> <mo>∫</mo> </mstyle> <mn>0</mn> <mi>a</mi> </munderover> <munderover> <mstyle mathsize="140%" displaystyle="true"> <mo>∫</mo> </mstyle> <mn>0</mn> <mi>b</mi> </munderover> <msub> <mi>X</mi> <mi>m</mi> </msub> <mfrac> <mrow> <mo>∂</mo> <msub> <mi>Y</mi> <mi>n</mi> </msub> </mrow> <mrow> <mo>∂</mo> <mi>y</mi> </mrow> </mfrac> <msub> <mi>X</mi> <mi>m</mi> </msub> <mfrac> <mrow> <mo>∂</mo> <msub> <mi>Y</mi> <mi>n</mi> </msub> </mrow> <mrow> <mo>∂</mo> <mi>y</mi> </mrow> </mfrac> <mi mathvariant="normal">d</mi> <mi>x</mi> <mi mathvariant="normal">d</mi> <mi>y</mi> </mrow> </semantics></math> </div> <div class='l'> </div> </div><div class='html-disp-formula-info' id='FD86-mathematics-10-00408'> <div class='f'> <math display='block'><semantics> <mrow> <msub> <mi>M</mi> <mrow> <mn>53</mn> </mrow> </msub> <mo>=</mo> <mo>−</mo> <msub> <mi>I</mi> <mn>4</mn> </msub> <munderover> <mstyle mathsize="140%" displaystyle="true"> <mo>∫</mo> </mstyle> <mn>0</mn> <mi>a</mi> </munderover> <munderover> <mstyle mathsize="140%" displaystyle="true"> <mo>∫</mo> </mstyle> <mn>0</mn> <mi>b</mi> </munderover> <msub> <mi>X</mi> <mi>m</mi> </msub> <mfrac> <mrow> <mo>∂</mo> <msub> <mi>Y</mi> <mi>n</mi> </msub> </mrow> <mrow> <mo>∂</mo> <mi>y</mi> </mrow> </mfrac> <msub> <mi>X</mi> <mi>m</mi> </msub> <mfrac> <mrow> <mo>∂</mo> <msub> <mi>Y</mi> <mi>n</mi> </msub> </mrow> <mrow> <mo>∂</mo> <mi>y</mi> </mrow> </mfrac> <mi mathvariant="normal">d</mi> <mi>x</mi> <mi mathvariant="normal">d</mi> <mi>y</mi> </mrow> </semantics></math> </div> <div class='l'> </div> </div><div class='html-disp-formula-info' id='FD87-mathematics-10-00408'> <div class='f'> <math display='block'><semantics> <mrow> <msub> <mi>M</mi> <mrow> <mn>55</mn> </mrow> </msub> <mo>=</mo> <mo>−</mo> <msub> <mi>I</mi> <mn>5</mn> </msub> <munderover> <mstyle mathsize="140%" displaystyle="true"> <mo>∫</mo> </mstyle> <mn>0</mn> <mi>a</mi> </munderover> <munderover> <mstyle mathsize="140%" displaystyle="true"> <mo>∫</mo> </mstyle> <mn>0</mn> <mi>b</mi> </munderover> <msub> <mi>X</mi> <mi>m</mi> </msub> <mfrac> <mrow> <mo>∂</mo> <msub> <mi>Y</mi> <mi>n</mi> </msub> </mrow> <mrow> <mo>∂</mo> <mi>y</mi> </mrow> </mfrac> <msub> <mi>X</mi> <mi>m</mi> </msub> <mfrac> <mrow> <mo>∂</mo> <msub> <mi>Y</mi> <mi>n</mi> </msub> </mrow> <mrow> <mo>∂</mo> <mi>y</mi> </mrow> </mfrac> <mi mathvariant="normal">d</mi> <mi>x</mi> <mi mathvariant="normal">d</mi> <mi>y</mi> </mrow> </semantics></math> </div> <div class='l'> </div> </div><div class='html-disp-formula-info' id='FD88-mathematics-10-00408'> <div class='f'> <math display='block'><semantics> <mrow> <msub> <mi>M</mi> <mrow> <mn>12</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>M</mi> <mrow> <mn>15</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>M</mi> <mrow> <mn>21</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>M</mi> <mrow> <mn>24</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>M</mi> <mrow> <mn>42</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>M</mi> <mrow> <mn>45</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>M</mi> <mrow> <mn>51</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>M</mi> <mrow> <mn>54</mn> </mrow> </msub> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math> </div> <div class='l'> </div> </div></div></section></section><section id='html-references_list'><h2>References</h2><ol class='html-xx'><li id='B1-mathematics-10-00408' class='html-x' data-content='1.'>Daikh, A.A.; Houari MS, A.; Eltaher, M.A. A novel nonlocal strain gradient Quasi-3D bending analysis of sigmoid functionally graded sandwich nanoplates. <span class='html-italic'>Compos. Struct.</span> <b>2021</b>, <span class='html-italic'>262</span>, 113347. [<a href="https://scholar.google.com/scholar_lookup?title=A+novel+nonlocal+strain+gradient+Quasi-3D+bending+analysis+of+sigmoid+functionally+graded+sandwich+nanoplates&author=Daikh,+A.A.&author=Houari+MS,+A.&author=Eltaher,+M.A.&publication_year=2021&journal=Compos.+Struct.&volume=262&pages=113347&doi=10.1016/j.compstruct.2020.113347" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.compstruct.2020.113347" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B2-mathematics-10-00408' class='html-x' data-content='2.'>Mohamed, N.; Mohamed, S.A.; Eltaher, M.A. Buckling and post-buckling behaviors of higher order carbon nanotubes using energy-equivalent model. <span class='html-italic'>Eng. Comput.</span> <b>2021</b>, <span class='html-italic'>37</span>, 2823–2836. [<a href="https://scholar.google.com/scholar_lookup?title=Buckling+and+post-buckling+behaviors+of+higher+order+carbon+nanotubes+using+energy-equivalent+model&author=Mohamed,+N.&author=Mohamed,+S.A.&author=Eltaher,+M.A.&publication_year=2021&journal=Eng.+Comput.&volume=37&pages=2823%E2%80%932836&doi=10.1007/s00366-020-00976-2" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1007/s00366-020-00976-2" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B3-mathematics-10-00408' class='html-x' data-content='3.'>Zuo, Y.T.; Liu, H.J. Fractal approach to mechanical and electrical properties of graphene/sic composites. <span class='html-italic'>Facta Univ. Ser. Mech. Eng.</span> <b>2021</b>, <span class='html-italic'>19</span>, 271–284. [<a href="https://scholar.google.com/scholar_lookup?title=Fractal+approach+to+mechanical+and+electrical+properties+of+graphene/sic+composites&author=Zuo,+Y.T.&author=Liu,+H.J.&publication_year=2021&journal=Facta+Univ.+Ser.+Mech.+Eng.&volume=19&pages=271%E2%80%93284&doi=10.22190/FUME201212003Z" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.22190/FUME201212003Z" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B4-mathematics-10-00408' class='html-x' data-content='4.'>He, C.H.; Liu, S.H.; Liu, C.; Mohammad-Sedighi, H. A novel bond stress-slip model for 3-D printed concretes. <span class='html-italic'>Discret. Contin. Dyn. Syst.-S</span> <b>2021</b>, <span class='html-italic'>14</span>, 3459–3478. [<a href="https://scholar.google.com/scholar_lookup?title=A+novel+bond+stress-slip+model+for+3-D+printed+concretes&author=He,+C.H.&author=Liu,+S.H.&author=Liu,+C.&author=Mohammad-Sedighi,+H.&publication_year=2021&journal=Discret.+Contin.+Dyn.+Syst.-S&volume=14&pages=3459%E2%80%933478&doi=10.3934/dcdss.2021161" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.3934/dcdss.2021161" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B5-mathematics-10-00408' class='html-x' data-content='5.'>Ji, F.Y.; He, C.H.; Zhang, J.J.; He, J.H. A fractal Boussinesq equation for nonlinear transverse vibration of a nanofiber-reinforced concrete pillar. <span class='html-italic'>Appl. Math. Model.</span> <b>2020</b>, <span class='html-italic'>82</span>, 437–448. [<a href="https://scholar.google.com/scholar_lookup?title=A+fractal+Boussinesq+equation+for+nonlinear+transverse+vibration+of+a+nanofiber-reinforced+concrete+pillar&author=Ji,+F.Y.&author=He,+C.H.&author=Zhang,+J.J.&author=He,+J.H.&publication_year=2020&journal=Appl.+Math.+Model.&volume=82&pages=437%E2%80%93448&doi=10.1016/j.apm.2020.01.027" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.apm.2020.01.027" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B6-mathematics-10-00408' class='html-x' data-content='6.'>Boutahar, Y.; Lebaal, N.; Bassir, D. A Refined Theory for Bending Vibratory Analysis of Thick Functionally Graded Beams. <span class='html-italic'>Mathematics</span> <b>2021</b>, <span class='html-italic'>9</span>, 1422. [<a href="https://scholar.google.com/scholar_lookup?title=A+Refined+Theory+for+Bending+Vibratory+Analysis+of+Thick+Functionally+Graded+Beams&author=Boutahar,+Y.&author=Lebaal,+N.&author=Bassir,+D.&publication_year=2021&journal=Mathematics&volume=9&pages=1422&doi=10.3390/math9121422" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.3390/math9121422" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B7-mathematics-10-00408' class='html-x' data-content='7.'>Shen, H.S.; Zhang, C.L. Thermal buckling and postbuckling behavior of functionally graded carbon nanotube-reinforced composite plates. <span class='html-italic'>Mater. Des.</span> <b>2010</b>, <span class='html-italic'>31</span>, 3403–3411. [<a href="https://scholar.google.com/scholar_lookup?title=Thermal+buckling+and+postbuckling+behavior+of+functionally+graded+carbon+nanotube-reinforced+composite+plates&author=Shen,+H.S.&author=Zhang,+C.L.&publication_year=2010&journal=Mater.+Des.&volume=31&pages=3403%E2%80%933411&doi=10.1016/j.matdes.2010.01.048" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.matdes.2010.01.048" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B8-mathematics-10-00408' class='html-x' data-content='8.'>Zhu, P.; Lei, Z.X.; Liew, K.M. Static and free vibration analyses of carbon nanotube-reinforced composite plates using finite element method with first order shear deformation plate theory. <span class='html-italic'>Compos. Struct.</span> <b>2012</b>, <span class='html-italic'>94</span>, 1450–1460. [<a href="https://scholar.google.com/scholar_lookup?title=Static+and+free+vibration+analyses+of+carbon+nanotube-reinforced+composite+plates+using+finite+element+method+with+first+order+shear+deformation+plate+theory&author=Zhu,+P.&author=Lei,+Z.X.&author=Liew,+K.M.&publication_year=2012&journal=Compos.+Struct.&volume=94&pages=1450%E2%80%931460&doi=10.1016/j.compstruct.2011.11.010" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.compstruct.2011.11.010" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B9-mathematics-10-00408' class='html-x' data-content='9.'>Alibeigloo, A. Three-dimensional thermoelasticity solution of functionally graded carbon nanotube reinforced composite plate embedded in piezoelectric sensor and actuator layers. <span class='html-italic'>Compos. Struct.</span> <b>2014</b>, <span class='html-italic'>118</span>, 482–495. [<a href="https://scholar.google.com/scholar_lookup?title=Three-dimensional+thermoelasticity+solution+of+functionally+graded+carbon+nanotube+reinforced+composite+plate+embedded+in+piezoelectric+sensor+and+actuator+layers&author=Alibeigloo,+A.&publication_year=2014&journal=Compos.+Struct.&volume=118&pages=482%E2%80%93495&doi=10.1016/j.compstruct.2014.08.004" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.compstruct.2014.08.004" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B10-mathematics-10-00408' class='html-xx' data-content='10.'>Liew, K.M.; Lei, Z.X.; Zhang, L.W. Mechanical analysis of functionally graded carbon nanotube reinforced composites: A review. <span class='html-italic'>Compos. Struct.</span> <b>2015</b>, <span class='html-italic'>120</span>, 90–97. [<a href="https://scholar.google.com/scholar_lookup?title=Mechanical+analysis+of+functionally+graded+carbon+nanotube+reinforced+composites:+A+review&author=Liew,+K.M.&author=Lei,+Z.X.&author=Zhang,+L.W.&publication_year=2015&journal=Compos.+Struct.&volume=120&pages=90%E2%80%9397&doi=10.1016/j.compstruct.2014.09.041" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.compstruct.2014.09.041" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B11-mathematics-10-00408' class='html-xx' data-content='11.'>Zhang, L.W.; Lei, Z.X.; Liew, K.M. Computation of vibration solution for functionally graded carbon nanotube-reinforced composite thick plates resting on elastic foundations using the element-free IMLS-Ritz method. <span class='html-italic'>Appl. Math. Comput.</span> <b>2015</b>, <span class='html-italic'>256</span>, 488–504. [<a href="https://scholar.google.com/scholar_lookup?title=Computation+of+vibration+solution+for+functionally+graded+carbon+nanotube-reinforced+composite+thick+plates+resting+on+elastic+foundations+using+the+element-free+IMLS-Ritz+method&author=Zhang,+L.W.&author=Lei,+Z.X.&author=Liew,+K.M.&publication_year=2015&journal=Appl.+Math.+Comput.&volume=256&pages=488%E2%80%93504&doi=10.1016/j.amc.2015.01.066" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.amc.2015.01.066" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B12-mathematics-10-00408' class='html-xx' data-content='12.'>Phung-Van, P.; Thanh, C.L.; Nguyen-Xuan, H.; Abdel-Wahab, M. Nonlinear transient isogeometric analysis of FG-CNTRC nanoplates in thermal environments. <span class='html-italic'>Compos. Struct.</span> <b>2018</b>, <span class='html-italic'>201</span>, 882–892. [<a href="https://scholar.google.com/scholar_lookup?title=Nonlinear+transient+isogeometric+analysis+of+FG-CNTRC+nanoplates+in+thermal+environments&author=Phung-Van,+P.&author=Thanh,+C.L.&author=Nguyen-Xuan,+H.&author=Abdel-Wahab,+M.&publication_year=2018&journal=Compos.+Struct.&volume=201&pages=882%E2%80%93892&doi=10.1016/j.compstruct.2018.06.087" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.compstruct.2018.06.087" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B13-mathematics-10-00408' class='html-xx' data-content='13.'>Daikh, A.A.; Drai, A.; Houari MS, A.; Eltaher, M.A. Static analysis of multilayer nonlocal strain gradient nanobeam reinforced by carbon nanotubes. <span class='html-italic'>Steel Compos. Struct.</span> <b>2020</b>, <span class='html-italic'>36</span>, 643–656. [<a href="https://scholar.google.com/scholar_lookup?title=Static+analysis+of+multilayer+nonlocal+strain+gradient+nanobeam+reinforced+by+carbon+nanotubes&author=Daikh,+A.A.&author=Drai,+A.&author=Houari+MS,+A.&author=Eltaher,+M.A.&publication_year=2020&journal=Steel+Compos.+Struct.&volume=36&pages=643%E2%80%93656&doi=10.12989/scs.2020.36.6.643" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.12989/scs.2020.36.6.643" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B14-mathematics-10-00408' class='html-xx' data-content='14.'>He, X.T.; Yang, Z.X.; Li, Y.H.; Li, X.; Sun, J.Y. Application of multi-parameter perturbation method to functionally-graded, thin, circular piezoelectric plates. <span class='html-italic'>Mathematics</span> <b>2020</b>, <span class='html-italic'>8</span>, 342. [<a href="https://scholar.google.com/scholar_lookup?title=Application+of+multi-parameter+perturbation+method+to+functionally-graded,+thin,+circular+piezoelectric+plates&author=He,+X.T.&author=Yang,+Z.X.&author=Li,+Y.H.&author=Li,+X.&author=Sun,+J.Y.&publication_year=2020&journal=Mathematics&volume=8&pages=342&doi=10.3390/math8030342" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.3390/math8030342" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="https://www.mdpi.com/2227-7390/8/3/342/pdf" target='_blank' rel="noopener noreferrer">Green Version</a>]</li><li id='B15-mathematics-10-00408' class='html-xx' data-content='15.'>Liu, T.; Li, C.; Wang, C.; Lai, J.W.; Cheong, K.H. A simple-FSDT-based isogeometric method for piezoelectric functionally graded plates. <span class='html-italic'>Mathematics</span> <b>2020</b>, <span class='html-italic'>8</span>, 2177. [<a href="https://scholar.google.com/scholar_lookup?title=A+simple-FSDT-based+isogeometric+method+for+piezoelectric+functionally+graded+plates&author=Liu,+T.&author=Li,+C.&author=Wang,+C.&author=Lai,+J.W.&author=Cheong,+K.H.&publication_year=2020&journal=Mathematics&volume=8&pages=2177&doi=10.3390/math8122177" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.3390/math8122177" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B16-mathematics-10-00408' class='html-xx' data-content='16.'>Li, Y.D.; Tang, Z.C.; Fu, Z.J. Generalized Finite Difference Method for Plate Bending Analysis of Functionally Graded Materials. <span class='html-italic'>Mathematics</span> <b>2020</b>, <span class='html-italic'>8</span>, 1940. [<a href="https://scholar.google.com/scholar_lookup?title=Generalized+Finite+Difference+Method+for+Plate+Bending+Analysis+of+Functionally+Graded+Materials&author=Li,+Y.D.&author=Tang,+Z.C.&author=Fu,+Z.J.&publication_year=2020&journal=Mathematics&volume=8&pages=1940&doi=10.3390/math8111940" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.3390/math8111940" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B17-mathematics-10-00408' class='html-xx' data-content='17.'>Daikh, A.A.; Houari MS, A.; Belarbi, M.O.; Chakraverty, S.; Eltaher, M.A. Analysis of axially temperature-dependent functionally graded carbon nanotube reinforced composite plates. <span class='html-italic'>Eng. Comput.</span> <b>2021</b>, <span class='html-italic'>2021</span>, 1–22. [<a href="https://scholar.google.com/scholar_lookup?title=Analysis+of+axially+temperature-dependent+functionally+graded+carbon+nanotube+reinforced+composite+plates&author=Daikh,+A.A.&author=Houari+MS,+A.&author=Belarbi,+M.O.&author=Chakraverty,+S.&author=Eltaher,+M.A.&publication_year=2021&journal=Eng.+Comput.&volume=2021&pages=1%E2%80%9322&doi=10.1007/s00366-021-01413-8" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1007/s00366-021-01413-8" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B18-mathematics-10-00408' class='html-xx' data-content='18.'>Esen, I.; Daikh, A.A.; Eltaher, M.A. Dynamic response of nonlocal strain gradient FG nanobeam reinforced by carbon nanotubes under moving point load. <span class='html-italic'>Eur. Phys. J. Plus</span> <b>2021</b>, <span class='html-italic'>136</span>, 458. [<a href="https://scholar.google.com/scholar_lookup?title=Dynamic+response+of+nonlocal+strain+gradient+FG+nanobeam+reinforced+by+carbon+nanotubes+under+moving+point+load&author=Esen,+I.&author=Daikh,+A.A.&author=Eltaher,+M.A.&publication_year=2021&journal=Eur.+Phys.+J.+Plus&volume=136&pages=458&doi=10.1140/epjp/s13360-021-01419-7" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1140/epjp/s13360-021-01419-7" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B19-mathematics-10-00408' class='html-xx' data-content='19.'>Karamanli, A.; Vo, T.P. Finite element model for carbon nanotube-reinforced and graphene nanoplatelet-reinforced composite beams. <span class='html-italic'>Compos. Struct.</span> <b>2021</b>, <span class='html-italic'>264</span>, 113739. [<a href="https://scholar.google.com/scholar_lookup?title=Finite+element+model+for+carbon+nanotube-reinforced+and+graphene+nanoplatelet-reinforced+composite+beams&author=Karamanli,+A.&author=Vo,+T.P.&publication_year=2021&journal=Compos.+Struct.&volume=264&pages=113739&doi=10.1016/j.compstruct.2021.113739" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.compstruct.2021.113739" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B20-mathematics-10-00408' class='html-xx' data-content='20.'>Karamanli, A.; Aydogdu, M. Vibration behaviors of two-directional carbon nanotube reinforced functionally graded composite plates. <span class='html-italic'>Compos. Struct.</span> <b>2021</b>, <span class='html-italic'>262</span>, 113639. [<a href="https://scholar.google.com/scholar_lookup?title=Vibration+behaviors+of+two-directional+carbon+nanotube+reinforced+functionally+graded+composite+plates&author=Karamanli,+A.&author=Aydogdu,+M.&publication_year=2021&journal=Compos.+Struct.&volume=262&pages=113639&doi=10.1016/j.compstruct.2021.113639" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.compstruct.2021.113639" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B21-mathematics-10-00408' class='html-xx' data-content='21.'>Daikh, A.A.; Houari MS, A.; Belarbi, M.O.; Mohamed, S.A.; Eltaher, M.A. Static and dynamic stability responses of multilayer functionally graded carbon nanotubes reinforced composite nanoplates via quasi 3D nonlocal strain gradient theory. <span class='html-italic'>Def. Technol.</span> 2021, <span class='html-italic'>in press</span>. [<a href="https://doi.org/10.1016/j.dt.2021.09.011" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B22-mathematics-10-00408' class='html-xx' data-content='22.'>Daikh, A.A.; Houari MS, A.; Karami, B.; Eltaher, M.A.; Dimitri, R.; Tornabene, F. Buckling Analysis of CNTRC Curved Sandwich Nanobeams in Thermal Environment. <span class='html-italic'>Appl. Sci.</span> <b>2021</b>, <span class='html-italic'>11</span>, 3250. [<a href="https://scholar.google.com/scholar_lookup?title=Buckling+Analysis+of+CNTRC+Curved+Sandwich+Nanobeams+in+Thermal+Environment&author=Daikh,+A.A.&author=Houari+MS,+A.&author=Karami,+B.&author=Eltaher,+M.A.&author=Dimitri,+R.&author=Tornabene,+F.&publication_year=2021&journal=Appl.+Sci.&volume=11&pages=3250&doi=10.3390/app11073250" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.3390/app11073250" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B23-mathematics-10-00408' class='html-xx' data-content='23.'>Rostami, R.; Mohammadimehr, M. Dynamic stability and bifurcation analysis of sandwich plate with considering FG core and FG-CNTRC face sheets. <span class='html-italic'>J. Sandw. Struct. Mater.</span> <b>2021</b>, <span class='html-italic'>23</span>, 2296–2325. [<a href="https://scholar.google.com/scholar_lookup?title=Dynamic+stability+and+bifurcation+analysis+of+sandwich+plate+with+considering+FG+core+and+FG-CNTRC+face+sheets&author=Rostami,+R.&author=Mohammadimehr,+M.&publication_year=2021&journal=J.+Sandw.+Struct.+Mater.&volume=23&pages=2296%E2%80%932325&doi=10.1177/1099636220909766" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1177/1099636220909766" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B24-mathematics-10-00408' class='html-xx' data-content='24.'>Khadir, A.I.; Daikh, A.A.; Eltaher, M.A. Novel four-unknowns quasi 3D theory for bending, buckling and free vibration of functionally graded carbon nanotubes reinforced composite laminated nanoplates. <span class='html-italic'>Adv. Nano Res.</span> <b>2021</b>, <span class='html-italic'>11</span>, 621–640. [<a href="https://scholar.google.com/scholar_lookup?title=Novel+four-unknowns+quasi+3D+theory+for+bending,+buckling+and+free+vibration+of+functionally+graded+carbon+nanotubes+reinforced+composite+laminated+nanoplates&author=Khadir,+A.I.&author=Daikh,+A.A.&author=Eltaher,+M.A.&publication_year=2021&journal=Adv.+Nano+Res.&volume=11&pages=621%E2%80%93640&doi=10.12989/anr.2021.11.6.621" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.12989/anr.2021.11.6.621" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B25-mathematics-10-00408' class='html-xx' data-content='25.'>Babaei, H. On frequency response of FG-CNT reinforced composite pipes in thermally pre/post buckled configurations. <span class='html-italic'>Compos. Struct.</span> <b>2021</b>, <span class='html-italic'>276</span>, 114467. [<a href="https://scholar.google.com/scholar_lookup?title=On+frequency+response+of+FG-CNT+reinforced+composite+pipes+in+thermally+pre/post+buckled+configurations&author=Babaei,+H.&publication_year=2021&journal=Compos.+Struct.&volume=276&pages=114467&doi=10.1016/j.compstruct.2021.114467" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.compstruct.2021.114467" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B26-mathematics-10-00408' class='html-xx' data-content='26.'>Duc, N.D.; Minh, P.P. Free vibration analysis of cracked FG CNTRC plates using phase field theory. <span class='html-italic'>Aerosp. Sci. Technol.</span> <b>2021</b>, <span class='html-italic'>112</span>, 106654. [<a href="https://scholar.google.com/scholar_lookup?title=Free+vibration+analysis+of+cracked+FG+CNTRC+plates+using+phase+field+theory&author=Duc,+N.D.&author=Minh,+P.P.&publication_year=2021&journal=Aerosp.+Sci.+Technol.&volume=112&pages=106654&doi=10.1016/j.ast.2021.106654" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.ast.2021.106654" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B27-mathematics-10-00408' class='html-xx' data-content='27.'>Adhikari, B.; Singh, B.N. A Coupled Mori–Tanaka model and FEM RVE approach for the geometrical nonlinear dynamic response of the FG-CNTRC plate based on a novel shear strain function using isogeometric finite element procedure. <span class='html-italic'>Compos. Struct.</span> <b>2022</b>, <span class='html-italic'>280</span>, 114947. [<a href="https://scholar.google.com/scholar_lookup?title=A+Coupled+Mori%E2%80%93Tanaka+model+and+FEM+RVE+approach+for+the+geometrical+nonlinear+dynamic+response+of+the+FG-CNTRC+plate+based+on+a+novel+shear+strain+function+using+isogeometric+finite+element+procedure&author=Adhikari,+B.&author=Singh,+B.N.&publication_year=2022&journal=Compos.+Struct.&volume=280&pages=114947&doi=10.1016/j.compstruct.2021.114947" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.compstruct.2021.114947" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B28-mathematics-10-00408' class='html-xx' data-content='28.'>Shen, H.S. Postbuckling of nanotube-reinforced composite cylindrical shells in thermal environments, Part I: Axially-loaded shells. <span class='html-italic'>Compos. Struct.</span> <b>2011</b>, <span class='html-italic'>93</span>, 2096–2108. [<a href="https://scholar.google.com/scholar_lookup?title=Postbuckling+of+nanotube-reinforced+composite+cylindrical+shells+in+thermal+environments,+Part+I:+Axially-loaded+shells&author=Shen,+H.S.&publication_year=2011&journal=Compos.+Struct.&volume=93&pages=2096%E2%80%932108&doi=10.1016/j.compstruct.2011.02.011" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.compstruct.2011.02.011" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B29-mathematics-10-00408' class='html-xx' data-content='29.'>Shen, H.S. Postbuckling of nanotube-reinforced composite cylindrical shells in thermal environments, Part II: Pressure-loaded shells. <span class='html-italic'>Compos. Struct.</span> <b>2011</b>, <span class='html-italic'>93</span>, 2496–2503. [<a href="https://scholar.google.com/scholar_lookup?title=Postbuckling+of+nanotube-reinforced+composite+cylindrical+shells+in+thermal+environments,+Part+II:+Pressure-loaded+shells&author=Shen,+H.S.&publication_year=2011&journal=Compos.+Struct.&volume=93&pages=2496%E2%80%932503&doi=10.1016/j.compstruct.2011.04.005" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.compstruct.2011.04.005" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B30-mathematics-10-00408' class='html-xx' data-content='30.'>Aragh, B.S.; Barati, A.N.; Hedayati, H. Eshelby–Mori–Tanaka approach for vibrational behavior of continuously graded carbon nanotube-reinforced cylindrical panels. <span class='html-italic'>Compos. Part B Eng.</span> <b>2012</b>, <span class='html-italic'>43</span>, 1943–1954. [<a href="https://scholar.google.com/scholar_lookup?title=Eshelby%E2%80%93Mori%E2%80%93Tanaka+approach+for+vibrational+behavior+of+continuously+graded+carbon+nanotube-reinforced+cylindrical+panels&author=Aragh,+B.S.&author=Barati,+A.N.&author=Hedayati,+H.&publication_year=2012&journal=Compos.+Part+B+Eng.&volume=43&pages=1943%E2%80%931954&doi=10.1016/j.compositesb.2012.01.004" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.compositesb.2012.01.004" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B31-mathematics-10-00408' class='html-xx' data-content='31.'>Shen, H.S. Torsional postbuckling of nanotube-reinforced composite cylindrical shells in thermal environments. <span class='html-italic'>Compos. Struct.</span> <b>2014</b>, <span class='html-italic'>116</span>, 477–488. [<a href="https://scholar.google.com/scholar_lookup?title=Torsional+postbuckling+of+nanotube-reinforced+composite+cylindrical+shells+in+thermal+environments&author=Shen,+H.S.&publication_year=2014&journal=Compos.+Struct.&volume=116&pages=477%E2%80%93488&doi=10.1016/j.compstruct.2014.05.039" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.compstruct.2014.05.039" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B32-mathematics-10-00408' class='html-xx' data-content='32.'>Mirzaei, M.; Kiani, Y. Snap-through phenomenon in a thermally postbuckled temperature dependent sandwich beam with FG-CNTRC face sheets. <span class='html-italic'>Compos. Struct.</span> <b>2015</b>, <span class='html-italic'>134</span>, 1004–1013. [<a href="https://scholar.google.com/scholar_lookup?title=Snap-through+phenomenon+in+a+thermally+postbuckled+temperature+dependent+sandwich+beam+with+FG-CNTRC+face+sheets&author=Mirzaei,+M.&author=Kiani,+Y.&publication_year=2015&journal=Compos.+Struct.&volume=134&pages=1004%E2%80%931013&doi=10.1016/j.compstruct.2015.09.003" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.compstruct.2015.09.003" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B33-mathematics-10-00408' class='html-xx' data-content='33.'>Thomas, B.; Roy, T. Vibration analysis of functionally graded carbon nanotube-reinforced composite shell structures. <span class='html-italic'>Acta Mech.</span> <b>2016</b>, <span class='html-italic'>227</span>, 581–599. [<a href="https://scholar.google.com/scholar_lookup?title=Vibration+analysis+of+functionally+graded+carbon+nanotube-reinforced+composite+shell+structures&author=Thomas,+B.&author=Roy,+T.&publication_year=2016&journal=Acta+Mech.&volume=227&pages=581%E2%80%93599&doi=10.1007/s00707-015-1479-z" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1007/s00707-015-1479-z" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B34-mathematics-10-00408' class='html-xx' data-content='34.'>Pouresmaeeli, S.; Fazelzadeh, S. Frequency analysis of doubly curved functionally graded carbon nanotube-reinforced composite panels. <span class='html-italic'>Acta Mech.</span> <b>2016</b>, <span class='html-italic'>227</span>, 2765–2794. [<a href="https://scholar.google.com/scholar_lookup?title=Frequency+analysis+of+doubly+curved+functionally+graded+carbon+nanotube-reinforced+composite+panels&author=Pouresmaeeli,+S.&author=Fazelzadeh,+S.&publication_year=2016&journal=Acta+Mech.&volume=227&pages=2765%E2%80%932794&doi=10.1007/s00707-016-1647-9" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1007/s00707-016-1647-9" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B35-mathematics-10-00408' class='html-xx' data-content='35.'>Shojaee, M.; Setoodeh, A.R.; Malekzadeh, P. Vibration of functionally graded CNTs-reinforced skewed cylindrical panels using a transformed differential quadrature method. <span class='html-italic'>Acta Mech.</span> <b>2017</b>, <span class='html-italic'>228</span>, 2691–2711. [<a href="https://scholar.google.com/scholar_lookup?title=Vibration+of+functionally+graded+CNTs-reinforced+skewed+cylindrical+panels+using+a+transformed+differential+quadrature+method&author=Shojaee,+M.&author=Setoodeh,+A.R.&author=Malekzadeh,+P.&publication_year=2017&journal=Acta+Mech.&volume=228&pages=2691%E2%80%932711&doi=10.1007/s00707-017-1846-z" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1007/s00707-017-1846-z" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B36-mathematics-10-00408' class='html-xx' data-content='36.'>Tohidi, H.; Hosseini-Hashemi, S.H.; Maghsoudpour, A. Nonlinear size-dependent dynamic buckling analysis of embedded micro cylindrical shells reinforced with agglomerated CNTs using strain gradient theory. <span class='html-italic'>Microsyst. Technol.</span> <b>2017</b>, <span class='html-italic'>23</span>, 5727–5744. [<a href="https://scholar.google.com/scholar_lookup?title=Nonlinear+size-dependent+dynamic+buckling+analysis+of+embedded+micro+cylindrical+shells+reinforced+with+agglomerated+CNTs+using+strain+gradient+theory&author=Tohidi,+H.&author=Hosseini-Hashemi,+S.H.&author=Maghsoudpour,+A.&publication_year=2017&journal=Microsyst.+Technol.&volume=23&pages=5727%E2%80%935744&doi=10.1007/s00542-017-3407-8" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1007/s00542-017-3407-8" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B37-mathematics-10-00408' class='html-xx' data-content='37.'>Avramov, K.V.; Chernobryvko, M.; Uspensky, B.; Seitkazenova, K.K.; Myrzaliyev, D. Self-sustained vibrations of functionally graded carbon nanotubes-reinforced composite cylindrical shells in supersonic flow. <span class='html-italic'>Nonlinear Dyn.</span> <b>2019</b>, <span class='html-italic'>98</span>, 1853–1876. [<a href="https://scholar.google.com/scholar_lookup?title=Self-sustained+vibrations+of+functionally+graded+carbon+nanotubes-reinforced+composite+cylindrical+shells+in+supersonic+flow&author=Avramov,+K.V.&author=Chernobryvko,+M.&author=Uspensky,+B.&author=Seitkazenova,+K.K.&author=Myrzaliyev,+D.&publication_year=2019&journal=Nonlinear+Dyn.&volume=98&pages=1853%E2%80%931876&doi=10.1007/s11071-019-05292-z" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1007/s11071-019-05292-z" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B38-mathematics-10-00408' class='html-xx' data-content='38.'>Aminipour, H.; Janghorban, M.; Civalek, O. Analysis of functionally graded doubly-curved shells with different materials via higher order shear deformation theory. <span class='html-italic'>Compos. Struct.</span> <b>2020</b>, <span class='html-italic'>251</span>, 112645. [<a href="https://scholar.google.com/scholar_lookup?title=Analysis+of+functionally+graded+doubly-curved+shells+with+different+materials+via+higher+order+shear+deformation+theory&author=Aminipour,+H.&author=Janghorban,+M.&author=Civalek,+O.&publication_year=2020&journal=Compos.+Struct.&volume=251&pages=112645&doi=10.1016/j.compstruct.2020.112645" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.compstruct.2020.112645" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B39-mathematics-10-00408' class='html-xx' data-content='39.'>Ahmadi, H.; Bayat, A.; Duc, N.D. Nonlinear forced vibrations analysis of imperfect stiffened FG doubly curved shallow shell in thermal environment using multiple scales method. <span class='html-italic'>Compos. Struct.</span> <b>2021</b>, <span class='html-italic'>256</span>, 113090. [<a href="https://scholar.google.com/scholar_lookup?title=Nonlinear+forced+vibrations+analysis+of+imperfect+stiffened+FG+doubly+curved+shallow+shell+in+thermal+environment+using+multiple+scales+method&author=Ahmadi,+H.&author=Bayat,+A.&author=Duc,+N.D.&publication_year=2021&journal=Compos.+Struct.&volume=256&pages=113090&doi=10.1016/j.compstruct.2020.113090" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.compstruct.2020.113090" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B40-mathematics-10-00408' class='html-xx' data-content='40.'>Babaei, H.; Kiani, Y.; Eslami, M.R. Vibrational behavior of thermally pre-/post-buckled FG-CNTRC beams on a nonlinear elastic foundation: A two-step perturbation technique. <span class='html-italic'>Acta Mech.</span> <b>2021</b>, <span class='html-italic'>232</span>, 3897–3915. [<a href="https://scholar.google.com/scholar_lookup?title=Vibrational+behavior+of+thermally+pre-/post-buckled+FG-CNTRC+beams+on+a+nonlinear+elastic+foundation:+A+two-step+perturbation+technique&author=Babaei,+H.&author=Kiani,+Y.&author=Eslami,+M.R.&publication_year=2021&journal=Acta+Mech.&volume=232&pages=3897%E2%80%933915&doi=10.1007/s00707-021-03027-z" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1007/s00707-021-03027-z" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B41-mathematics-10-00408' class='html-xx' data-content='41.'>Chakraborty, S.; Dey, T. Non-linear stability analysis of CNT reinforced composite cylindrical shell panel subjected to thermomechanical loading. <span class='html-italic'>Compos. Struct.</span> <b>2021</b>, <span class='html-italic'>255</span>, 112995. [<a href="https://scholar.google.com/scholar_lookup?title=Non-linear+stability+analysis+of+CNT+reinforced+composite+cylindrical+shell+panel+subjected+to+thermomechanical+loading&author=Chakraborty,+S.&author=Dey,+T.&publication_year=2021&journal=Compos.+Struct.&volume=255&pages=112995&doi=10.1016/j.compstruct.2020.112995" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.compstruct.2020.112995" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B42-mathematics-10-00408' class='html-xx' data-content='42.'>Chakraborty, S.; Dey, T.; Kumar, R. Instability characteristics of damped CNT reinforced laminated shell panels subjected to in-plane excitations and thermal loading. <span class='html-italic'>Structures</span> <b>2021</b>, <span class='html-italic'>34</span>, 2936–2949. [<a href="https://scholar.google.com/scholar_lookup?title=Instability+characteristics+of+damped+CNT+reinforced+laminated+shell+panels+subjected+to+in-plane+excitations+and+thermal+loading&author=Chakraborty,+S.&author=Dey,+T.&author=Kumar,+R.&publication_year=2021&journal=Structures&volume=34&pages=2936%E2%80%932949&doi=10.1016/j.istruc.2021.09.047" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.istruc.2021.09.047" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B43-mathematics-10-00408' class='html-xx' data-content='43.'>Dai, Z.; Zhang, L.; Bolandi, S.Y.; Habibi, M. On the vibrations of the non-polynomial viscoelastic composite open-type shell under residual stresses. <span class='html-italic'>Compos. Struct.</span> <b>2021</b>, <span class='html-italic'>263</span>, 113599. [<a href="https://scholar.google.com/scholar_lookup?title=On+the+vibrations+of+the+non-polynomial+viscoelastic+composite+open-type+shell+under+residual+stresses&author=Dai,+Z.&author=Zhang,+L.&author=Bolandi,+S.Y.&author=Habibi,+M.&publication_year=2021&journal=Compos.+Struct.&volume=263&pages=113599&doi=10.1016/j.compstruct.2021.113599" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.compstruct.2021.113599" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B44-mathematics-10-00408' class='html-xx' data-content='44.'>Fares, M.E.; Elmarghany, M.K.; Atta, D.; Salem, M.G. An improved layerwise formulation for free vibrations of multilayered FG truncated conical shells reinforced by carbon nanotubes. <span class='html-italic'>Compos. Struct.</span> <b>2021</b>, <span class='html-italic'>275</span>, 114372. [<a href="https://scholar.google.com/scholar_lookup?title=An+improved+layerwise+formulation+for+free+vibrations+of+multilayered+FG+truncated+conical+shells+reinforced+by+carbon+nanotubes&author=Fares,+M.E.&author=Elmarghany,+M.K.&author=Atta,+D.&author=Salem,+M.G.&publication_year=2021&journal=Compos.+Struct.&volume=275&pages=114372&doi=10.1016/j.compstruct.2021.114372" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.compstruct.2021.114372" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B45-mathematics-10-00408' class='html-xx' data-content='45.'>Fu, T.; Wu, X.; Xiao, Z.; Chen, Z. Dynamic instability analysis of FG-CNTRC laminated conical shells surrounded by elastic foundations within FSDT. <span class='html-italic'>Eur. J. Mech.-A/Solids</span> <b>2021</b>, <span class='html-italic'>85</span>, 104139. [<a href="https://scholar.google.com/scholar_lookup?title=Dynamic+instability+analysis+of+FG-CNTRC+laminated+conical+shells+surrounded+by+elastic+foundations+within+FSDT&author=Fu,+T.&author=Wu,+X.&author=Xiao,+Z.&author=Chen,+Z.&publication_year=2021&journal=Eur.+J.+Mech.-A/Solids&volume=85&pages=104139&doi=10.1016/j.euromechsol.2020.104139" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.euromechsol.2020.104139" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B46-mathematics-10-00408' class='html-xx' data-content='46.'>Yadav, A.; Amabili, M.; Panda, S.K.; Dey, T.; Kumar, R. Nonlinear damped vibrations of three-phase CNT-FRC circular cylindrical shell. <span class='html-italic'>Compos. Struct.</span> <b>2021</b>, <span class='html-italic'>255</span>, 112939. [<a href="https://scholar.google.com/scholar_lookup?title=Nonlinear+damped+vibrations+of+three-phase+CNT-FRC+circular+cylindrical+shell&author=Yadav,+A.&author=Amabili,+M.&author=Panda,+S.K.&author=Dey,+T.&author=Kumar,+R.&publication_year=2021&journal=Compos.+Struct.&volume=255&pages=112939&doi=10.1016/j.compstruct.2020.112939" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.compstruct.2020.112939" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B47-mathematics-10-00408' class='html-xx' data-content='47.'>Mohammadi, H.; Setoodeh, A.R.; Vassilopoulos, A.P. Isogeometric Kirchhoff–Love shell patches in free and forced vibration of sinusoidally corrugated FG carbon nanotube-reinforced composite panels. <span class='html-italic'>Thin-Walled Struct.</span> <b>2022</b>, <span class='html-italic'>171</span>, 108707. [<a href="https://scholar.google.com/scholar_lookup?title=Isogeometric+Kirchhoff%E2%80%93Love+shell+patches+in+free+and+forced+vibration+of+sinusoidally+corrugated+FG+carbon+nanotube-reinforced+composite+panels&author=Mohammadi,+H.&author=Setoodeh,+A.R.&author=Vassilopoulos,+A.P.&publication_year=2022&journal=Thin-Walled+Struct.&volume=171&pages=108707&doi=10.1016/j.tws.2021.108707" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.tws.2021.108707" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B48-mathematics-10-00408' class='html-xx' data-content='48.'>Cong, P.H.; Trung, V.D.; Khoa, N.D.; Duc, N.D. Vibration and nonlinear dynamic response of temperature-dependent FG-CNTRC laminated double curved shallow shell with positive and negative Poisson’s ratio. <span class='html-italic'>Thin-Walled Struct.</span> <b>2022</b>, <span class='html-italic'>171</span>, 108713. [<a href="https://scholar.google.com/scholar_lookup?title=Vibration+and+nonlinear+dynamic+response+of+temperature-dependent+FG-CNTRC+laminated+double+curved+shallow+shell+with+positive+and+negative+Poisson%E2%80%99s+ratio&author=Cong,+P.H.&author=Trung,+V.D.&author=Khoa,+N.D.&author=Duc,+N.D.&publication_year=2022&journal=Thin-Walled+Struct.&volume=171&pages=108713&doi=10.1016/j.tws.2021.108713" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.tws.2021.108713" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B49-mathematics-10-00408' class='html-xx' data-content='49.'>Babaei, H. Free vibration and snap-through instability of FG-CNTRC shallow arches supported on nonlinear elastic foundation. <span class='html-italic'>Appl. Math. Comput.</span> <b>2022</b>, <span class='html-italic'>413</span>, 126606. [<a href="https://scholar.google.com/scholar_lookup?title=Free+vibration+and+snap-through+instability+of+FG-CNTRC+shallow+arches+supported+on+nonlinear+elastic+foundation&author=Babaei,+H.&publication_year=2022&journal=Appl.+Math.+Comput.&volume=413&pages=126606&doi=10.1016/j.amc.2021.126606" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.amc.2021.126606" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B50-mathematics-10-00408' class='html-xx' data-content='50.'>Yengejeh, S.I.; Kazemi, S.A.; Öchsner, A. Carbon nanotubes as reinforcement in composites: A review of the analytical, numerical and experimental approaches. <span class='html-italic'>Comput. Mater. Sci.</span> <b>2017</b>, <span class='html-italic'>136</span>, 85–101. [<a href="https://scholar.google.com/scholar_lookup?title=Carbon+nanotubes+as+reinforcement+in+composites:+A+review+of+the+analytical,+numerical+and+experimental+approaches&author=Yengejeh,+S.I.&author=Kazemi,+S.A.&author=%C3%96chsner,+A.&publication_year=2017&journal=Comput.+Mater.+Sci.&volume=136&pages=85%E2%80%93101&doi=10.1016/j.commatsci.2017.04.023" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.commatsci.2017.04.023" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B51-mathematics-10-00408' class='html-xx' data-content='51.'>Shahmohammadi, M.A.; Azhari, M.; Saadatpour, M.M.; Salehipour, H.; Civalek, Ö. Dynamic instability analysis of general shells reinforced with polymeric matrix and carbon fibers using a coupled IG-SFSM formulation. <span class='html-italic'>Compos. Struct.</span> <b>2021</b>, <span class='html-italic'>263</span>, 113720. [<a href="https://scholar.google.com/scholar_lookup?title=Dynamic+instability+analysis+of+general+shells+reinforced+with+polymeric+matrix+and+carbon+fibers+using+a+coupled+IG-SFSM+formulation&author=Shahmohammadi,+M.A.&author=Azhari,+M.&author=Saadatpour,+M.M.&author=Salehipour,+H.&author=Civalek,+%C3%96.&publication_year=2021&journal=Compos.+Struct.&volume=263&pages=113720&doi=10.1016/j.compstruct.2021.113720" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.compstruct.2021.113720" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B52-mathematics-10-00408' class='html-xx' data-content='52.'>Mehrabadi, S.J.; Aragh, B.S.; Khoshkhahesh, V.; Taherpour, A. Mechanical buckling of nanocomposite rectangular plate reinforced by aligned and straight single-walled carbon nanotubes. <span class='html-italic'>Compos. Part B Eng.</span> <b>2012</b>, <span class='html-italic'>43</span>, 2031–2040. [<a href="https://scholar.google.com/scholar_lookup?title=Mechanical+buckling+of+nanocomposite+rectangular+plate+reinforced+by+aligned+and+straight+single-walled+carbon+nanotubes&author=Mehrabadi,+S.J.&author=Aragh,+B.S.&author=Khoshkhahesh,+V.&author=Taherpour,+A.&publication_year=2012&journal=Compos.+Part+B+Eng.&volume=43&pages=2031%E2%80%932040&doi=10.1016/j.compositesb.2012.01.067" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.compositesb.2012.01.067" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B53-mathematics-10-00408' class='html-xx' data-content='53.'>Alijani, F.; Amabili, M.; Karagiozis, K.; Bakhtiari-Nejad, F. Nonlinear vibrations of functionally graded doubly curved shallow shells. <span class='html-italic'>J. Sound Vib.</span> <b>2011</b>, <span class='html-italic'>330</span>, 1432–1454. [<a href="https://scholar.google.com/scholar_lookup?title=Nonlinear+vibrations+of+functionally+graded+doubly+curved+shallow+shells&author=Alijani,+F.&author=Amabili,+M.&author=Karagiozis,+K.&author=Bakhtiari-Nejad,+F.&publication_year=2011&journal=J.+Sound+Vib.&volume=330&pages=1432%E2%80%931454&doi=10.1016/j.jsv.2010.10.003" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.jsv.2010.10.003" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B54-mathematics-10-00408' class='html-xx' data-content='54.'>Matsunaga, H. Free vibration and stability of functionally graded shallow shells according to a 2D higher-order deformation theory. <span class='html-italic'>Compos. Struct.</span> <b>2008</b>, <span class='html-italic'>84</span>, 132–146. [<a href="https://scholar.google.com/scholar_lookup?title=Free+vibration+and+stability+of+functionally+graded+shallow+shells+according+to+a+2D+higher-order+deformation+theory&author=Matsunaga,+H.&publication_year=2008&journal=Compos.+Struct.&volume=84&pages=132%E2%80%93146&doi=10.1016/j.compstruct.2007.07.006" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.compstruct.2007.07.006" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B55-mathematics-10-00408' class='html-xx' data-content='55.'>Chorfi, S.M.; Houmat, A. Non-linear free vibration of a functionally graded doubly-curved shallow shell of elliptical plan-form. <span class='html-italic'>Compos. Struct.</span> <b>2010</b>, <span class='html-italic'>92</span>, 2573–2581. [<a href="https://scholar.google.com/scholar_lookup?title=Non-linear+free+vibration+of+a+functionally+graded+doubly-curved+shallow+shell+of+elliptical+plan-form&author=Chorfi,+S.M.&author=Houmat,+A.&publication_year=2010&journal=Compos.+Struct.&volume=92&pages=2573%E2%80%932581&doi=10.1016/j.compstruct.2010.02.001" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.compstruct.2010.02.001" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B56-mathematics-10-00408' class='html-xx' data-content='56.'>Trinh, M.C.; Kim, S.E. A three variable refined shear deformation theory for porous functionally graded doubly curved shell analysis. <span class='html-italic'>Aerosp. Sci. Technol.</span> <b>2019</b>, <span class='html-italic'>94</span>, 105356. [<a href="https://scholar.google.com/scholar_lookup?title=A+three+variable+refined+shear+deformation+theory+for+porous+functionally+graded+doubly+curved+shell+analysis&author=Trinh,+M.C.&author=Kim,+S.E.&publication_year=2019&journal=Aerosp.+Sci.+Technol.&volume=94&pages=105356&doi=10.1016/j.ast.2019.105356" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.ast.2019.105356" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B57-mathematics-10-00408' class='html-xx' data-content='57.'>Tornabene, F.; Fantuzzi, N.; Bacciocchi, M. Linear static response of nanocomposite plates and shells reinforced by agglomerated carbon nanotubes. <span class='html-italic'>Compos. Part B Eng.</span> <b>2017</b>, <span class='html-italic'>115</span>, 449–476. [<a href="https://scholar.google.com/scholar_lookup?title=Linear+static+response+of+nanocomposite+plates+and+shells+reinforced+by+agglomerated+carbon+nanotubes&author=Tornabene,+F.&author=Fantuzzi,+N.&author=Bacciocchi,+M.&publication_year=2017&journal=Compos.+Part+B+Eng.&volume=115&pages=449%E2%80%93476&doi=10.1016/j.compositesb.2016.07.011" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.compositesb.2016.07.011" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B58-mathematics-10-00408' class='html-xx' data-content='58.'>Bowles, D.E.; Tompkins, S.S. Prediction of coefficients of thermal expansion for unidirectional composites. <span class='html-italic'>J. Compos. Mater.</span> <b>1989</b>, <span class='html-italic'>23</span>, 370–388. [<a href="https://scholar.google.com/scholar_lookup?title=Prediction+of+coefficients+of+thermal+expansion+for+unidirectional+composites&author=Bowles,+D.E.&author=Tompkins,+S.S.&publication_year=1989&journal=J.+Compos.+Mater.&volume=23&pages=370%E2%80%93388&doi=10.1177/002199838902300405" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1177/002199838902300405" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li></ol></section><section id='FiguresandTables' type='display-objects'><div class="html-fig-wrap" id="mathematics-10-00408-f001"> <div class='html-fig_img'> <div class="html-figpopup html-figpopup-link" data-counterslinkmanual = "https://www.mdpi.com/2227-7390/10/3/408/display" href="#fig_body_display_mathematics-10-00408-f001"> <img alt="Mathematics 10 00408 g001 550" data-large="/mathematics/mathematics-10-00408/article_deploy/html/images/mathematics-10-00408-g001.png" data-original="/mathematics/mathematics-10-00408/article_deploy/html/images/mathematics-10-00408-g001.png" data-lsrc="/mathematics/mathematics-10-00408/article_deploy/html/images/mathematics-10-00408-g001-550.jpg" /> <a class="html-expand html-figpopup" data-counterslinkmanual = "https://www.mdpi.com/2227-7390/10/3/408/display" href="#fig_body_display_mathematics-10-00408-f001"></a> </div> </div> <div class="html-fig_description"> <b>Figure 1.</b> The material properties, geometry, and coordinate system of the shell, (<b>a</b>) Geometry and coordinates, (<b>b</b>) Gradation types of material. <!-- <p><a class="html-figpopup" href="#fig_body_display_mathematics-10-00408-f001"> Click here to enlarge figure </a></p> --> </div> </div> <div class="html-fig_show mfp-hide" id ="fig_body_display_mathematics-10-00408-f001" > <div class="html-caption" > <b>Figure 1.</b> The material properties, geometry, and coordinate system of the shell, (<b>a</b>) Geometry and coordinates, (<b>b</b>) Gradation types of material.</div> <div class="html-img"><img alt="Mathematics 10 00408 g001" data-large="/mathematics/mathematics-10-00408/article_deploy/html/images/mathematics-10-00408-g001.png" data-original="/mathematics/mathematics-10-00408/article_deploy/html/images/mathematics-10-00408-g001.png" data-lsrc="/mathematics/mathematics-10-00408/article_deploy/html/images/mathematics-10-00408-g001.png" /></div> </div><div class="html-fig-wrap" id="mathematics-10-00408-f002"> <div class='html-fig_img'> <div class="html-figpopup html-figpopup-link" data-counterslinkmanual = "https://www.mdpi.com/2227-7390/10/3/408/display" href="#fig_body_display_mathematics-10-00408-f002"> <img alt="Mathematics 10 00408 g002 550" data-large="/mathematics/mathematics-10-00408/article_deploy/html/images/mathematics-10-00408-g002.png" data-original="/mathematics/mathematics-10-00408/article_deploy/html/images/mathematics-10-00408-g002.png" data-lsrc="/mathematics/mathematics-10-00408/article_deploy/html/images/mathematics-10-00408-g002-550.jpg" /> <a class="html-expand html-figpopup" data-counterslinkmanual = "https://www.mdpi.com/2227-7390/10/3/408/display" href="#fig_body_display_mathematics-10-00408-f002"></a> </div> </div> <div class="html-fig_description"> <b>Figure 2.</b> Forms of various plate/shells. <!-- <p><a class="html-figpopup" href="#fig_body_display_mathematics-10-00408-f002"> Click here to enlarge figure </a></p> --> </div> </div> <div class="html-fig_show mfp-hide" id ="fig_body_display_mathematics-10-00408-f002" > <div class="html-caption" > <b>Figure 2.</b> Forms of various plate/shells.</div> <div class="html-img"><img alt="Mathematics 10 00408 g002" data-large="/mathematics/mathematics-10-00408/article_deploy/html/images/mathematics-10-00408-g002.png" data-original="/mathematics/mathematics-10-00408/article_deploy/html/images/mathematics-10-00408-g002.png" data-lsrc="/mathematics/mathematics-10-00408/article_deploy/html/images/mathematics-10-00408-g002.png" /></div> </div><div class="html-fig-wrap" id="mathematics-10-00408-f003"> <div class='html-fig_img'> <div class="html-figpopup html-figpopup-link" data-counterslinkmanual = "https://www.mdpi.com/2227-7390/10/3/408/display" href="#fig_body_display_mathematics-10-00408-f003"> <img alt="Mathematics 10 00408 g003 550" data-large="/mathematics/mathematics-10-00408/article_deploy/html/images/mathematics-10-00408-g003.png" data-original="/mathematics/mathematics-10-00408/article_deploy/html/images/mathematics-10-00408-g003.png" data-lsrc="/mathematics/mathematics-10-00408/article_deploy/html/images/mathematics-10-00408-g003-550.jpg" /> <a class="html-expand html-figpopup" data-counterslinkmanual = "https://www.mdpi.com/2227-7390/10/3/408/display" href="#fig_body_display_mathematics-10-00408-f003"></a> </div> </div> <div class="html-fig_description"> <b>Figure 3.</b> The volume-fractions of the fibers along the thickness of the shell (<math display='inline'><semantics> <mrow> <msubsup> <mi>V</mi> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> <mi>f</mi> </msubsup> <mo>=</mo> <mn>0.3</mn> </mrow> </semantics></math>, <math display='inline'><semantics> <mrow> <msubsup> <mi>V</mi> <mrow> <mi>m</mi> <mi>i</mi> <mi>n</mi> </mrow> <mi>f</mi> </msubsup> <mo>=</mo> <mn>0.1</mn> </mrow> </semantics></math>). <!-- <p><a class="html-figpopup" href="#fig_body_display_mathematics-10-00408-f003"> Click here to enlarge figure </a></p> --> </div> </div> <div class="html-fig_show mfp-hide" id ="fig_body_display_mathematics-10-00408-f003" > <div class="html-caption" > <b>Figure 3.</b> The volume-fractions of the fibers along the thickness of the shell (<math display='inline'><semantics> <mrow> <msubsup> <mi>V</mi> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> <mi>f</mi> </msubsup> <mo>=</mo> <mn>0.3</mn> </mrow> </semantics></math>, <math display='inline'><semantics> <mrow> <msubsup> <mi>V</mi> <mrow> <mi>m</mi> <mi>i</mi> <mi>n</mi> </mrow> <mi>f</mi> </msubsup> <mo>=</mo> <mn>0.1</mn> </mrow> </semantics></math>).</div> <div class="html-img"><img alt="Mathematics 10 00408 g003" data-large="/mathematics/mathematics-10-00408/article_deploy/html/images/mathematics-10-00408-g003.png" data-original="/mathematics/mathematics-10-00408/article_deploy/html/images/mathematics-10-00408-g003.png" data-lsrc="/mathematics/mathematics-10-00408/article_deploy/html/images/mathematics-10-00408-g003.png" /></div> </div><div class="html-fig-wrap" id="mathematics-10-00408-f004"> <div class='html-fig_img'> <div class="html-figpopup html-figpopup-link" data-counterslinkmanual = "https://www.mdpi.com/2227-7390/10/3/408/display" href="#fig_body_display_mathematics-10-00408-f004"> <img alt="Mathematics 10 00408 g004 550" data-large="/mathematics/mathematics-10-00408/article_deploy/html/images/mathematics-10-00408-g004.png" data-original="/mathematics/mathematics-10-00408/article_deploy/html/images/mathematics-10-00408-g004.png" data-lsrc="/mathematics/mathematics-10-00408/article_deploy/html/images/mathematics-10-00408-g004-550.jpg" /> <a class="html-expand html-figpopup" data-counterslinkmanual = "https://www.mdpi.com/2227-7390/10/3/408/display" href="#fig_body_display_mathematics-10-00408-f004"></a> </div> </div> <div class="html-fig_description"> <b>Figure 4.</b> The effect of the number of layers “<span class='html-italic'>N</span>”: (<b>a</b>) Cross-ply fibers (<b>b</b>) Unidirectional fibers (Plate, SSSS, <math display='inline'><semantics> <mrow> <mi>b</mi> <mo>/</mo> <mi>a</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, <math display='inline'><semantics> <mrow> <mi>a</mi> <mo>/</mo> <mi>h</mi> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math>, <math display='inline'><semantics> <mrow> <msub> <mi>V</mi> <mrow> <mi>c</mi> <mi>n</mi> <mi>t</mi> </mrow> </msub> <mo>=</mo> <mn>0.01</mn> </mrow> </semantics></math>, <math display='inline'><semantics> <mrow> <msubsup> <mi>V</mi> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> <mi>f</mi> </msubsup> <mo>=</mo> <mn>0.3</mn> </mrow> </semantics></math>, <math display='inline'><semantics> <mrow> <msubsup> <mi>V</mi> <mrow> <mi>m</mi> <mi>i</mi> <mi>n</mi> </mrow> <mi>f</mi> </msubsup> <mo>=</mo> <mn>0.1</mn> </mrow> </semantics></math>). <!-- <p><a class="html-figpopup" href="#fig_body_display_mathematics-10-00408-f004"> Click here to enlarge figure </a></p> --> </div> </div> <div class="html-fig_show mfp-hide" id ="fig_body_display_mathematics-10-00408-f004" > <div class="html-caption" > <b>Figure 4.</b> The effect of the number of layers “<span class='html-italic'>N</span>”: (<b>a</b>) Cross-ply fibers (<b>b</b>) Unidirectional fibers (Plate, SSSS, <math display='inline'><semantics> <mrow> <mi>b</mi> <mo>/</mo> <mi>a</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, <math display='inline'><semantics> <mrow> <mi>a</mi> <mo>/</mo> <mi>h</mi> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math>, <math display='inline'><semantics> <mrow> <msub> <mi>V</mi> <mrow> <mi>c</mi> <mi>n</mi> <mi>t</mi> </mrow> </msub> <mo>=</mo> <mn>0.01</mn> </mrow> </semantics></math>, <math display='inline'><semantics> <mrow> <msubsup> <mi>V</mi> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> <mi>f</mi> </msubsup> <mo>=</mo> <mn>0.3</mn> </mrow> </semantics></math>, <math display='inline'><semantics> <mrow> <msubsup> <mi>V</mi> <mrow> <mi>m</mi> <mi>i</mi> <mi>n</mi> </mrow> <mi>f</mi> </msubsup> <mo>=</mo> <mn>0.1</mn> </mrow> </semantics></math>).</div> <div class="html-img"><img alt="Mathematics 10 00408 g004" data-large="/mathematics/mathematics-10-00408/article_deploy/html/images/mathematics-10-00408-g004.png" data-original="/mathematics/mathematics-10-00408/article_deploy/html/images/mathematics-10-00408-g004.png" data-lsrc="/mathematics/mathematics-10-00408/article_deploy/html/images/mathematics-10-00408-g004.png" /></div> </div><div class="html-fig-wrap" id="mathematics-10-00408-f005"> <div class='html-fig_img'> <div class="html-figpopup html-figpopup-link" data-counterslinkmanual = "https://www.mdpi.com/2227-7390/10/3/408/display" href="#fig_body_display_mathematics-10-00408-f005"> <img alt="Mathematics 10 00408 g005 550" data-large="/mathematics/mathematics-10-00408/article_deploy/html/images/mathematics-10-00408-g005.png" data-original="/mathematics/mathematics-10-00408/article_deploy/html/images/mathematics-10-00408-g005.png" data-lsrc="/mathematics/mathematics-10-00408/article_deploy/html/images/mathematics-10-00408-g005-550.jpg" /> <a class="html-expand html-figpopup" data-counterslinkmanual = "https://www.mdpi.com/2227-7390/10/3/408/display" href="#fig_body_display_mathematics-10-00408-f005"></a> </div> </div> <div class="html-fig_description"> <b>Figure 5.</b> The effect of the radius of curvature <span class='html-italic'>R</span>/<span class='html-italic'>a</span> on the dimensionless frequency of various shell types (Cross-ply, SSSS, <math display='inline'><semantics> <mrow> <mi>N</mi> <mo>=</mo> <mn>9</mn> </mrow> </semantics></math>, <math display='inline'><semantics> <mrow> <mi>b</mi> <mo>/</mo> <mi>a</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, <math display='inline'><semantics> <mrow> <mi>a</mi> <mo>/</mo> <mi>h</mi> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math>, <math display='inline'><semantics> <mrow> <msub> <mi>V</mi> <mrow> <mi>c</mi> <mi>n</mi> <mi>t</mi> </mrow> </msub> <mo>=</mo> <mn>0.01</mn> </mrow> </semantics></math>, <math display='inline'><semantics> <mrow> <msubsup> <mi>V</mi> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> <mi>f</mi> </msubsup> <mo>=</mo> <mn>0.3</mn> </mrow> </semantics></math>, <math display='inline'><semantics> <mrow> <msubsup> <mi>V</mi> <mrow> <mi>m</mi> <mi>i</mi> <mi>n</mi> </mrow> <mi>f</mi> </msubsup> <mo>=</mo> <mn>0.1</mn> </mrow> </semantics></math>). <!-- <p><a class="html-figpopup" href="#fig_body_display_mathematics-10-00408-f005"> Click here to enlarge figure </a></p> --> </div> </div> <div class="html-fig_show mfp-hide" id ="fig_body_display_mathematics-10-00408-f005" > <div class="html-caption" > <b>Figure 5.</b> The effect of the radius of curvature <span class='html-italic'>R</span>/<span class='html-italic'>a</span> on the dimensionless frequency of various shell types (Cross-ply, SSSS, <math display='inline'><semantics> <mrow> <mi>N</mi> <mo>=</mo> <mn>9</mn> </mrow> </semantics></math>, <math display='inline'><semantics> <mrow> <mi>b</mi> <mo>/</mo> <mi>a</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, <math display='inline'><semantics> <mrow> <mi>a</mi> <mo>/</mo> <mi>h</mi> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math>, <math display='inline'><semantics> <mrow> <msub> <mi>V</mi> <mrow> <mi>c</mi> <mi>n</mi> <mi>t</mi> </mrow> </msub> <mo>=</mo> <mn>0.01</mn> </mrow> </semantics></math>, <math display='inline'><semantics> <mrow> <msubsup> <mi>V</mi> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> <mi>f</mi> </msubsup> <mo>=</mo> <mn>0.3</mn> </mrow> </semantics></math>, <math display='inline'><semantics> <mrow> <msubsup> <mi>V</mi> <mrow> <mi>m</mi> <mi>i</mi> <mi>n</mi> </mrow> <mi>f</mi> </msubsup> <mo>=</mo> <mn>0.1</mn> </mrow> </semantics></math>).</div> <div class="html-img"><img alt="Mathematics 10 00408 g005" data-large="/mathematics/mathematics-10-00408/article_deploy/html/images/mathematics-10-00408-g005.png" data-original="/mathematics/mathematics-10-00408/article_deploy/html/images/mathematics-10-00408-g005.png" data-lsrc="/mathematics/mathematics-10-00408/article_deploy/html/images/mathematics-10-00408-g005.png" /></div> </div><div class="html-fig-wrap" id="mathematics-10-00408-f006"> <div class='html-fig_img'> <div class="html-figpopup html-figpopup-link" data-counterslinkmanual = "https://www.mdpi.com/2227-7390/10/3/408/display" href="#fig_body_display_mathematics-10-00408-f006"> <img alt="Mathematics 10 00408 g006 550" data-large="/mathematics/mathematics-10-00408/article_deploy/html/images/mathematics-10-00408-g006.png" data-original="/mathematics/mathematics-10-00408/article_deploy/html/images/mathematics-10-00408-g006.png" data-lsrc="/mathematics/mathematics-10-00408/article_deploy/html/images/mathematics-10-00408-g006-550.jpg" /> <a class="html-expand html-figpopup" data-counterslinkmanual = "https://www.mdpi.com/2227-7390/10/3/408/display" href="#fig_body_display_mathematics-10-00408-f006"></a> </div> </div> <div class="html-fig_description"> <b>Figure 6.</b> The effect of the volume fraction of fibers and CNTs (Plate, Cross-ply, SSSS, <math display='inline'><semantics> <mrow> <mi>N</mi> <mo>=</mo> <mn>9</mn> </mrow> </semantics></math>, <math display='inline'><semantics> <mrow> <mi>b</mi> <mo>/</mo> <mi>a</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, <math display='inline'><semantics> <mrow> <mi>a</mi> <mo>/</mo> <mi>h</mi> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math>, <math display='inline'><semantics> <mrow> <msubsup> <mi>V</mi> <mrow> <mi>m</mi> <mi>i</mi> <mi>n</mi> </mrow> <mi>f</mi> </msubsup> <mo>=</mo> <mn>0.05</mn> </mrow> </semantics></math>). <!-- <p><a class="html-figpopup" href="#fig_body_display_mathematics-10-00408-f006"> Click here to enlarge figure </a></p> --> </div> </div> <div class="html-fig_show mfp-hide" id ="fig_body_display_mathematics-10-00408-f006" > <div class="html-caption" > <b>Figure 6.</b> The effect of the volume fraction of fibers and CNTs (Plate, Cross-ply, SSSS, <math display='inline'><semantics> <mrow> <mi>N</mi> <mo>=</mo> <mn>9</mn> </mrow> </semantics></math>, <math display='inline'><semantics> <mrow> <mi>b</mi> <mo>/</mo> <mi>a</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, <math display='inline'><semantics> <mrow> <mi>a</mi> <mo>/</mo> <mi>h</mi> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math>, <math display='inline'><semantics> <mrow> <msubsup> <mi>V</mi> <mrow> <mi>m</mi> <mi>i</mi> <mi>n</mi> </mrow> <mi>f</mi> </msubsup> <mo>=</mo> <mn>0.05</mn> </mrow> </semantics></math>).</div> <div class="html-img"><img alt="Mathematics 10 00408 g006" data-large="/mathematics/mathematics-10-00408/article_deploy/html/images/mathematics-10-00408-g006.png" data-original="/mathematics/mathematics-10-00408/article_deploy/html/images/mathematics-10-00408-g006.png" data-lsrc="/mathematics/mathematics-10-00408/article_deploy/html/images/mathematics-10-00408-g006.png" /></div> </div><div class="html-fig-wrap" id="mathematics-10-00408-f007"> <div class='html-fig_img'> <div class="html-figpopup html-figpopup-link" data-counterslinkmanual = "https://www.mdpi.com/2227-7390/10/3/408/display" href="#fig_body_display_mathematics-10-00408-f007"> <img alt="Mathematics 10 00408 g007 550" data-large="/mathematics/mathematics-10-00408/article_deploy/html/images/mathematics-10-00408-g007.png" data-original="/mathematics/mathematics-10-00408/article_deploy/html/images/mathematics-10-00408-g007.png" data-lsrc="/mathematics/mathematics-10-00408/article_deploy/html/images/mathematics-10-00408-g007-550.jpg" /> <a class="html-expand html-figpopup" data-counterslinkmanual = "https://www.mdpi.com/2227-7390/10/3/408/display" href="#fig_body_display_mathematics-10-00408-f007"></a> </div> </div> <div class="html-fig_description"> <b>Figure 7.</b> The effect of the geometry parameters <span class='html-italic'>b</span>/<span class='html-italic'>a</span> and <span class='html-italic'>a</span>/<span class='html-italic'>h</span> on the dimensionless frequency of a spherical shell for various boundary conditions (<math display='inline'><semantics> <mrow> <mi>N</mi> <mo>=</mo> <mn>9</mn> </mrow> </semantics></math>, <math display='inline'><semantics> <mrow> <msub> <mi>V</mi> <mrow> <mi>c</mi> <mi>n</mi> <mi>t</mi> </mrow> </msub> <mo>=</mo> <mn>0.01</mn> </mrow> </semantics></math>, <math display='inline'><semantics> <mrow> <msubsup> <mi>V</mi> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> <mi>f</mi> </msubsup> <mo>=</mo> <mn>0.1</mn> </mrow> </semantics></math>, <math display='inline'><semantics> <mrow> <msubsup> <mi>V</mi> <mrow> <mi>m</mi> <mi>i</mi> <mi>n</mi> </mrow> <mi>f</mi> </msubsup> <mo>=</mo> <mn>0.3</mn> </mrow> </semantics></math>). (<b>a</b>) inplane ratio <span class='html-italic'>b</span>/<span class='html-italic'>a</span>, (<b>b</b>) slenderness ratio <span class='html-italic'>a</span>/<span class='html-italic'>h</span>. <!-- <p><a class="html-figpopup" href="#fig_body_display_mathematics-10-00408-f007"> Click here to enlarge figure </a></p> --> </div> </div> <div class="html-fig_show mfp-hide" id ="fig_body_display_mathematics-10-00408-f007" > <div class="html-caption" > <b>Figure 7.</b> The effect of the geometry parameters <span class='html-italic'>b</span>/<span class='html-italic'>a</span> and <span class='html-italic'>a</span>/<span class='html-italic'>h</span> on the dimensionless frequency of a spherical shell for various boundary conditions (<math display='inline'><semantics> <mrow> <mi>N</mi> <mo>=</mo> <mn>9</mn> </mrow> </semantics></math>, <math display='inline'><semantics> <mrow> <msub> <mi>V</mi> <mrow> <mi>c</mi> <mi>n</mi> <mi>t</mi> </mrow> </msub> <mo>=</mo> <mn>0.01</mn> </mrow> </semantics></math>, <math display='inline'><semantics> <mrow> <msubsup> <mi>V</mi> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> <mi>f</mi> </msubsup> <mo>=</mo> <mn>0.1</mn> </mrow> </semantics></math>, <math display='inline'><semantics> <mrow> <msubsup> <mi>V</mi> <mrow> <mi>m</mi> <mi>i</mi> <mi>n</mi> </mrow> <mi>f</mi> </msubsup> <mo>=</mo> <mn>0.3</mn> </mrow> </semantics></math>). (<b>a</b>) inplane ratio <span class='html-italic'>b</span>/<span class='html-italic'>a</span>, (<b>b</b>) slenderness ratio <span class='html-italic'>a</span>/<span class='html-italic'>h</span>.</div> <div class="html-img"><img alt="Mathematics 10 00408 g007" data-large="/mathematics/mathematics-10-00408/article_deploy/html/images/mathematics-10-00408-g007.png" data-original="/mathematics/mathematics-10-00408/article_deploy/html/images/mathematics-10-00408-g007.png" data-lsrc="/mathematics/mathematics-10-00408/article_deploy/html/images/mathematics-10-00408-g007.png" /></div> </div><div class="html-fig-wrap" id="mathematics-10-00408-f008"> <div class='html-fig_img'> <div class="html-figpopup html-figpopup-link" data-counterslinkmanual = "https://www.mdpi.com/2227-7390/10/3/408/display" href="#fig_body_display_mathematics-10-00408-f008"> <img alt="Mathematics 10 00408 g008 550" data-large="/mathematics/mathematics-10-00408/article_deploy/html/images/mathematics-10-00408-g008.png" data-original="/mathematics/mathematics-10-00408/article_deploy/html/images/mathematics-10-00408-g008.png" data-lsrc="/mathematics/mathematics-10-00408/article_deploy/html/images/mathematics-10-00408-g008-550.jpg" /> <a class="html-expand html-figpopup" data-counterslinkmanual = "https://www.mdpi.com/2227-7390/10/3/408/display" href="#fig_body_display_mathematics-10-00408-f008"></a> </div> </div> <div class="html-fig_description"> <b>Figure 8.</b> The effect of the modes of vibration “<span class='html-italic'>m</span>” and “<span class='html-italic'>n</span>” on the dimensionless frequency of a spherical shell (<math display='inline'><semantics> <mrow> <msub> <mi>R</mi> <mi>x</mi> </msub> <mo>=</mo> <msub> <mi>R</mi> <mi>y</mi> </msub> <mo>=</mo> <mn>5</mn> <mo> </mo> </mrow> </semantics></math>, SSSS, <math display='inline'><semantics> <mrow> <mi>N</mi> <mo>=</mo> <mn>9</mn> </mrow> </semantics></math>, <math display='inline'><semantics> <mrow> <mi>b</mi> <mo>/</mo> <mi>a</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, <math display='inline'><semantics> <mrow> <mi>a</mi> <mo>/</mo> <mi>h</mi> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math>, <math display='inline'><semantics> <mrow> <msub> <mi>V</mi> <mrow> <mi>c</mi> <mi>n</mi> <mi>t</mi> </mrow> </msub> <mo>=</mo> <mn>0.01</mn> </mrow> </semantics></math>, <math display='inline'><semantics> <mrow> <msubsup> <mi>V</mi> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> <mi>f</mi> </msubsup> <mo>=</mo> <mn>0.3</mn> </mrow> </semantics></math>, <math display='inline'><semantics> <mrow> <msubsup> <mi>V</mi> <mrow> <mi>m</mi> <mi>i</mi> <mi>n</mi> </mrow> <mi>f</mi> </msubsup> <mo>=</mo> <mn>0.1</mn> </mrow> </semantics></math>). <!-- <p><a class="html-figpopup" href="#fig_body_display_mathematics-10-00408-f008"> Click here to enlarge figure </a></p> --> </div> </div> <div class="html-fig_show mfp-hide" id ="fig_body_display_mathematics-10-00408-f008" > <div class="html-caption" > <b>Figure 8.</b> The effect of the modes of vibration “<span class='html-italic'>m</span>” and “<span class='html-italic'>n</span>” on the dimensionless frequency of a spherical shell (<math display='inline'><semantics> <mrow> <msub> <mi>R</mi> <mi>x</mi> </msub> <mo>=</mo> <msub> <mi>R</mi> <mi>y</mi> </msub> <mo>=</mo> <mn>5</mn> <mo> </mo> </mrow> </semantics></math>, SSSS, <math display='inline'><semantics> <mrow> <mi>N</mi> <mo>=</mo> <mn>9</mn> </mrow> </semantics></math>, <math display='inline'><semantics> <mrow> <mi>b</mi> <mo>/</mo> <mi>a</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, <math display='inline'><semantics> <mrow> <mi>a</mi> <mo>/</mo> <mi>h</mi> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math>, <math display='inline'><semantics> <mrow> <msub> <mi>V</mi> <mrow> <mi>c</mi> <mi>n</mi> <mi>t</mi> </mrow> </msub> <mo>=</mo> <mn>0.01</mn> </mrow> </semantics></math>, <math display='inline'><semantics> <mrow> <msubsup> <mi>V</mi> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> <mi>f</mi> </msubsup> <mo>=</mo> <mn>0.3</mn> </mrow> </semantics></math>, <math display='inline'><semantics> <mrow> <msubsup> <mi>V</mi> <mrow> <mi>m</mi> <mi>i</mi> <mi>n</mi> </mrow> <mi>f</mi> </msubsup> <mo>=</mo> <mn>0.1</mn> </mrow> </semantics></math>).</div> <div class="html-img"><img alt="Mathematics 10 00408 g008" data-large="/mathematics/mathematics-10-00408/article_deploy/html/images/mathematics-10-00408-g008.png" data-original="/mathematics/mathematics-10-00408/article_deploy/html/images/mathematics-10-00408-g008.png" data-lsrc="/mathematics/mathematics-10-00408/article_deploy/html/images/mathematics-10-00408-g008.png" /></div> </div><div class="html-table-wrap" id="mathematics-10-00408-t001"> <div class="html-table_wrap_td" > <div class="html-tablepopup html-tablepopup-link" data-counterslinkmanual = "https://www.mdpi.com/2227-7390/10/3/408/display" href='#table_body_display_mathematics-10-00408-t001'> <img alt="Table" data-lsrc="https://www.mdpi.com/img/table.png" /> <a class="html-expand html-tablepopup" data-counterslinkmanual = "https://www.mdpi.com/2227-7390/10/3/408/display" href="#table_body_display_mathematics-10-00408-t001"></a> </div> </div> <div class="html-table_wrap_discription"> <b>Table 1.</b> Hill’s elastic moduli for (10, 10) single-walled carbon nanotubes [<a href="#B52-mathematics-10-00408" class="html-bibr">52</a>]. </div> </div> <div class="html-table_show mfp-hide " id ="table_body_display_mathematics-10-00408-t001" > <div class="html-caption" ><b>Table 1.</b> Hill’s elastic moduli for (10, 10) single-walled carbon nanotubes [<a href="#B52-mathematics-10-00408" class="html-bibr">52</a>].</div> <table > <thead ><tr ><th align='center' valign='middle' style='border-top:solid thin;border-bottom:solid thin' class='html-align-center' ><math display='inline'> <semantics> <mstyle mathvariant="bold"> <mrow> <msub> <mi mathvariant="bold-italic">k</mi> <mrow> <mi mathvariant="bold-italic">c</mi> <mi mathvariant="bold-italic">n</mi> <mi mathvariant="bold-italic">t</mi> </mrow> </msub> <mo> </mo> <mrow> <mo>[</mo> <mrow> <mstyle mathvariant="bold" mathsize="normal"> <mi mathvariant="bold">G</mi> <mi mathvariant="bold">P</mi> <mi mathvariant="bold">a</mi> </mstyle> </mrow> <mo>]</mo> </mrow> </mrow> </mstyle> </semantics> </math></th><th align='center' valign='middle' style='border-top:solid thin;border-bottom:solid thin' class='html-align-center' ><math display='inline'> <semantics> <mstyle mathvariant="bold"> <mrow> <msub> <mi mathvariant="bold-italic">l</mi> <mrow> <mi mathvariant="bold-italic">c</mi> <mi mathvariant="bold-italic">n</mi> <mi mathvariant="bold-italic">t</mi> </mrow> </msub> <mo> </mo> <mrow> <mo>[</mo> <mrow> <mstyle mathvariant="bold" mathsize="normal"> <mi mathvariant="bold">G</mi> <mi mathvariant="bold">P</mi> <mi mathvariant="bold">a</mi> </mstyle> </mrow> <mo>]</mo> </mrow> </mrow> </mstyle> </semantics> </math></th><th align='center' valign='middle' style='border-top:solid thin;border-bottom:solid thin' class='html-align-center' ><math display='inline'> <semantics> <mstyle mathvariant="bold"> <mrow> <msub> <mi mathvariant="bold-italic">m</mi> <mrow> <mi mathvariant="bold-italic">c</mi> <mi mathvariant="bold-italic">n</mi> <mi mathvariant="bold-italic">t</mi> </mrow> </msub> <mo> </mo> <mrow> <mo>[</mo> <mrow> <mstyle mathvariant="bold" mathsize="normal"> <mi mathvariant="bold">G</mi> <mi mathvariant="bold">P</mi> <mi mathvariant="bold">a</mi> </mstyle> </mrow> <mo>]</mo> </mrow> </mrow> </mstyle> </semantics> </math></th><th align='center' valign='middle' style='border-top:solid thin;border-bottom:solid thin' class='html-align-center' ><math display='inline'> <semantics> <mstyle mathvariant="bold"> <mrow> <msub> <mi mathvariant="bold-italic">n</mi> <mrow> <mi mathvariant="bold-italic">c</mi> <mi mathvariant="bold-italic">n</mi> <mi mathvariant="bold-italic">t</mi> <mo> </mo> </mrow> </msub> <mrow> <mo>[</mo> <mrow> <mstyle mathvariant="bold" mathsize="normal"> <mi mathvariant="bold">G</mi> <mi mathvariant="bold">P</mi> <mi mathvariant="bold">a</mi> </mstyle> </mrow> <mo>]</mo> </mrow> </mrow> </mstyle> </semantics> </math></th><th align='center' valign='middle' style='border-top:solid thin;border-bottom:solid thin' class='html-align-center' ><math display='inline'> <semantics> <mstyle mathvariant="bold"> <mrow> <msub> <mi mathvariant="bold-italic">p</mi> <mrow> <mi mathvariant="bold-italic">c</mi> <mi mathvariant="bold-italic">n</mi> <mi mathvariant="bold-italic">t</mi> </mrow> </msub> <mo> </mo> <mrow> <mo>[</mo> <mrow> <mstyle mathvariant="bold" mathsize="normal"> <mi mathvariant="bold">G</mi> <mi mathvariant="bold">P</mi> <mi mathvariant="bold">a</mi> </mstyle> </mrow> <mo>]</mo> </mrow> </mrow> </mstyle> </semantics> </math></th></tr></thead><tbody ><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >271</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >88</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >17</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >1089</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >442</td></tr></tbody> </table> </div><div class="html-table-wrap" id="mathematics-10-00408-t002"> <div class="html-table_wrap_td" > <div class="html-tablepopup html-tablepopup-link" data-counterslinkmanual = "https://www.mdpi.com/2227-7390/10/3/408/display" href='#table_body_display_mathematics-10-00408-t002'> <img alt="Table" data-lsrc="https://www.mdpi.com/img/table.png" /> <a class="html-expand html-tablepopup" data-counterslinkmanual = "https://www.mdpi.com/2227-7390/10/3/408/display" href="#table_body_display_mathematics-10-00408-t002"></a> </div> </div> <div class="html-table_wrap_discription"> <b>Table 2.</b> The essential boundary conditions. </div> </div> <div class="html-table_show mfp-hide " id ="table_body_display_mathematics-10-00408-t002" > <div class="html-caption" ><b>Table 2.</b> The essential boundary conditions.</div> <table > <thead ><tr ><th align='center' valign='middle' style='border-top:solid thin;border-bottom:solid thin' class='html-align-center' >BCs.</th><th align='center' valign='middle' style='border-top:solid thin;border-bottom:solid thin' class='html-align-center' >Boundaries Parallel to the <span class='html-italic'>x</span>-Axis</th><th align='center' valign='middle' style='border-top:solid thin;border-bottom:solid thin' class='html-align-center' >Boundaries Parallel to the <span class='html-italic'>y</span>-Axis</th></tr></thead><tbody ><tr ><td align='center' valign='middle' class='html-align-center' >Simply supported (S)</td><td align='center' valign='middle' class='html-align-center' ><math display='inline'> <semantics> <mrow> <msub> <mi>u</mi> <mn>0</mn> </msub> <mo>=</mo> <msub> <mi>w</mi> <mn>0</mn> </msub> <mo>=</mo> <msub> <mi>ψ</mi> <mi>x</mi> </msub> <mo>=</mo> <msub> <mi>M</mi> <mrow> <mi>y</mi> <mi>y</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>N</mi> <mrow> <mi>y</mi> <mi>y</mi> </mrow> </msub> <mo>=</mo> <mn>0</mn> </mrow> </semantics> </math></td><td align='center' valign='middle' class='html-align-center' ><math display='inline'> <semantics> <mrow> <msub> <mi>v</mi> <mn>0</mn> </msub> <mo>=</mo> <msub> <mi>w</mi> <mn>0</mn> </msub> <mo>=</mo> <msub> <mi>ψ</mi> <mi>y</mi> </msub> <mo>=</mo> <msub> <mi>M</mi> <mrow> <mi>x</mi> <mi>x</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>N</mi> <mrow> <mi>x</mi> <mi>x</mi> </mrow> </msub> <mo>=</mo> <mn>0</mn> </mrow> </semantics> </math></td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Clamped (C)</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' ><math display='inline'> <semantics> <mrow> <msub> <mi>u</mi> <mn>0</mn> </msub> <mo>=</mo> <msub> <mi>v</mi> <mn>0</mn> </msub> <mo>=</mo> <msub> <mi>w</mi> <mn>0</mn> </msub> <mo>=</mo> <msub> <mi>ψ</mi> <mi>x</mi> </msub> <mo>=</mo> <msub> <mi>ψ</mi> <mi>y</mi> </msub> <mo>=</mo> <mn>0</mn> </mrow> </semantics> </math></td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' ><math display='inline'> <semantics> <mrow> <msub> <mi>u</mi> <mn>0</mn> </msub> <mo>=</mo> <msub> <mi>v</mi> <mn>0</mn> </msub> <mo>=</mo> <msub> <mi>w</mi> <mn>0</mn> </msub> <mo>=</mo> <msub> <mi>ψ</mi> <mi>x</mi> </msub> <mo>=</mo> <msub> <mi>ψ</mi> <mi>y</mi> </msub> <mo>=</mo> <mn>0</mn> </mrow> </semantics> </math></td></tr></tbody> </table> </div><div class="html-table-wrap" id="mathematics-10-00408-t003"> <div class="html-table_wrap_td" > <div class="html-tablepopup html-tablepopup-link" data-counterslinkmanual = "https://www.mdpi.com/2227-7390/10/3/408/display" href='#table_body_display_mathematics-10-00408-t003'> <img alt="Table" data-lsrc="https://www.mdpi.com/img/table.png" /> <a class="html-expand html-tablepopup" data-counterslinkmanual = "https://www.mdpi.com/2227-7390/10/3/408/display" href="#table_body_display_mathematics-10-00408-t003"></a> </div> </div> <div class="html-table_wrap_discription"> <b>Table 3.</b> The admissible functions <math display='inline'><semantics> <mrow> <msub> <mi mathvariant="bold-italic">X</mi> <mi mathvariant="bold-italic">m</mi> </msub> <mrow> <mo>(</mo> <mi mathvariant="bold-italic">x</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> and <math display='inline'><semantics> <mrow> <msub> <mi mathvariant="bold-italic">Y</mi> <mi mathvariant="bold-italic">n</mi> </msub> <mrow> <mo>(</mo> <mi mathvariant="bold-italic">y</mi> <mo>)</mo> </mrow> </mrow> </semantics></math>. </div> </div> <div class="html-table_show mfp-hide " id ="table_body_display_mathematics-10-00408-t003" > <div class="html-caption" ><b>Table 3.</b> The admissible functions <math display='inline'><semantics> <mrow> <msub> <mi mathvariant="bold-italic">X</mi> <mi mathvariant="bold-italic">m</mi> </msub> <mrow> <mo>(</mo> <mi mathvariant="bold-italic">x</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> and <math display='inline'><semantics> <mrow> <msub> <mi mathvariant="bold-italic">Y</mi> <mi mathvariant="bold-italic">n</mi> </msub> <mrow> <mo>(</mo> <mi mathvariant="bold-italic">y</mi> <mo>)</mo> </mrow> </mrow> </semantics></math>.</div> <table > <thead ><tr ><th align='center' valign='middle' style='border-top:solid thin;border-bottom:solid thin' class='html-align-center' >BCs.</th><th colspan='2' align='center' valign='middle' style='border-top:solid thin;border-bottom:solid thin' class='html-align-center' ><math display='inline'> <semantics> <mstyle mathvariant="bold"> <mrow> <mi mathvariant="bold">The</mi> <mtext> </mtext> <mi mathvariant="bold">Functions</mi> <mtext> </mtext> <msub> <mi mathvariant="bold-italic">X</mi> <mi mathvariant="bold-italic">m</mi> </msub> </mrow> </mstyle> </semantics> </math><math display='inline'> <semantics> <mstyle mathvariant="bold"> <mrow> <mtext> </mtext> <mi mathvariant="bold">and</mi> <mtext> </mtext> <msub> <mi mathvariant="bold-italic">Y</mi> <mi mathvariant="bold-italic">n</mi> </msub> </mrow> </mstyle> </semantics> </math></th></tr></thead><tbody ><tr ><td align='center' valign='middle' class='html-align-center' > </td><td align='left' valign='middle' class='html-align-left' ><math display='inline'> <semantics> <mrow> <msub> <mi mathvariant="bold-italic">X</mi> <mi mathvariant="bold-italic">m</mi> </msub> <mrow> <mo>(</mo> <mi mathvariant="bold-italic">x</mi> <mo>)</mo> </mrow> </mrow> </semantics> </math></td><td align='left' valign='middle' class='html-align-left' ><math display='inline'> <semantics> <mrow> <msub> <mi mathvariant="bold-italic">Y</mi> <mi mathvariant="bold-italic">n</mi> </msub> <mrow> <mo>(</mo> <mi mathvariant="bold-italic">y</mi> <mo>)</mo> </mrow> </mrow> </semantics> </math></td></tr><tr ><td align='center' valign='middle' class='html-align-center' >SSSS</td><td align='left' valign='middle' class='html-align-left' ><math display='inline'> <semantics> <mrow> <mi>sin</mi> <mrow> <mo>(</mo> <mrow> <mi>α</mi> <mi>x</mi> </mrow> <mo>)</mo> </mrow> </mrow> </semantics> </math></td><td align='left' valign='middle' class='html-align-left' ><math display='inline'> <semantics> <mrow> <mi>sin</mi> <mrow> <mo>(</mo> <mrow> <mi>β</mi> <mi>y</mi> </mrow> <mo>)</mo> </mrow> </mrow> </semantics> </math></td></tr><tr ><td align='center' valign='middle' class='html-align-center' >CCCC</td><td align='left' valign='middle' class='html-align-left' ><math display='inline'> <semantics> <mrow> <msup> <mrow> <mi>sin</mi> </mrow> <mn>2</mn> </msup> <mrow> <mo>(</mo> <mrow> <mi>α</mi> <mi>x</mi> </mrow> <mo>)</mo> </mrow> </mrow> </semantics> </math></td><td align='left' valign='middle' class='html-align-left' ><math display='inline'> <semantics> <mrow> <msup> <mrow> <mi>sin</mi> </mrow> <mn>2</mn> </msup> <mrow> <mo>(</mo> <mrow> <mi>β</mi> <mi>y</mi> </mrow> <mo>)</mo> </mrow> </mrow> </semantics> </math></td></tr><tr ><td align='center' valign='middle' class='html-align-center' >CSCS</td><td align='left' valign='middle' class='html-align-left' ><math display='inline'> <semantics> <mrow> <mi>sin</mi> <mrow> <mo>(</mo> <mrow> <mi>α</mi> <mi>x</mi> </mrow> <mo>)</mo> </mrow> <mrow> <mo>[</mo> <mrow> <mi>cos</mi> <mrow> <mo>(</mo> <mrow> <mi>α</mi> <mi>x</mi> </mrow> <mo>)</mo> </mrow> <mo>−</mo> <mn>1</mn> </mrow> <mo>]</mo> </mrow> </mrow> </semantics> </math></td><td align='left' valign='middle' class='html-align-left' ><math display='inline'> <semantics> <mrow> <mi>sin</mi> <mrow> <mo>(</mo> <mrow> <mi>β</mi> <mi>y</mi> </mrow> <mo>)</mo> </mrow> <mrow> <mo>[</mo> <mrow> <mi>cos</mi> <mrow> <mo>(</mo> <mrow> <mi>β</mi> <mi>y</mi> </mrow> <mo>)</mo> </mrow> <mo>−</mo> <mn>1</mn> </mrow> <mo>]</mo> </mrow> </mrow> </semantics> </math></td></tr><tr ><td align='center' valign='middle' class='html-align-center' >CCSS</td><td align='left' valign='middle' class='html-align-left' ><math display='inline'> <semantics> <mrow> <msup> <mrow> <mi>sin</mi> </mrow> <mn>2</mn> </msup> <mrow> <mo>(</mo> <mrow> <mi>α</mi> <mi>x</mi> </mrow> <mo>)</mo> </mrow> </mrow> </semantics> </math></td><td align='left' valign='middle' class='html-align-left' ><math display='inline'> <semantics> <mrow> <mi>sin</mi> <mrow> <mo>(</mo> <mrow> <mi>β</mi> <mi>y</mi> </mrow> <mo>)</mo> </mrow> </mrow> </semantics> </math></td></tr><tr ><td align='center' valign='middle' class='html-align-center' >CSSS</td><td align='left' valign='middle' class='html-align-left' ><math display='inline'> <semantics> <mrow> <mi>sin</mi> <mrow> <mo>(</mo> <mrow> <mi>α</mi> <mi>x</mi> </mrow> <mo>)</mo> </mrow> <mrow> <mo>[</mo> <mrow> <mi>cos</mi> <mrow> <mo>(</mo> <mrow> <mi>α</mi> <mi>x</mi> </mrow> <mo>)</mo> </mrow> <mo>−</mo> <mn>1</mn> </mrow> <mo>]</mo> </mrow> </mrow> </semantics> </math></td><td align='left' valign='middle' class='html-align-left' ><math display='inline'> <semantics> <mrow> <mi>sin</mi> <mrow> <mo>(</mo> <mrow> <mi>β</mi> <mi>y</mi> </mrow> <mo>)</mo> </mrow> </mrow> </semantics> </math></td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >CCCS</td><td align='left' valign='middle' style='border-bottom:solid thin' class='html-align-left' ><math display='inline'> <semantics> <mrow> <msup> <mrow> <mi>sin</mi> </mrow> <mn>2</mn> </msup> <mrow> <mo>(</mo> <mrow> <mi>α</mi> <mi>x</mi> </mrow> <mo>)</mo> </mrow> </mrow> </semantics> </math></td><td align='left' valign='middle' style='border-bottom:solid thin' class='html-align-left' ><math display='inline'> <semantics> <mrow> <mi>sin</mi> <mrow> <mo>(</mo> <mrow> <mi>β</mi> <mi>y</mi> </mrow> <mo>)</mo> </mrow> <mrow> <mo>[</mo> <mrow> <mi>cos</mi> <mrow> <mo>(</mo> <mrow> <mi>β</mi> <mi>y</mi> </mrow> <mo>)</mo> </mrow> <mo>−</mo> <mn>1</mn> </mrow> <mo>]</mo> </mrow> </mrow> </semantics> </math></td></tr></tbody> </table> <div class='html-table_foot html-p'><div class='html-p' style='text-indent:0em;'><span class='html-fn-content'>Where <math display='inline'><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mi>m</mi> <mi>π</mi> <mo>/</mo> <mi>a</mi> </mrow> </semantics></math>, <math display='inline'><semantics> <mrow> <mi>β</mi> <mo>=</mo> <mi>n</mi> <mi>π</mi> <mo>/</mo> <mi>b</mi> </mrow> </semantics></math>. <math display='inline'><semantics> <mi>m</mi> </semantics></math> and <math display='inline'><semantics> <mi>n</mi> </semantics></math> are mode numbers.</span></div><div style='clear:both;'></div></div> </div><div class="html-table-wrap" id="mathematics-10-00408-t004"> <div class="html-table_wrap_td" > <div class="html-tablepopup html-tablepopup-link" data-counterslinkmanual = "https://www.mdpi.com/2227-7390/10/3/408/display" href='#table_body_display_mathematics-10-00408-t004'> <img alt="Table" data-lsrc="https://www.mdpi.com/img/table.png" /> <a class="html-expand html-tablepopup" data-counterslinkmanual = "https://www.mdpi.com/2227-7390/10/3/408/display" href="#table_body_display_mathematics-10-00408-t004"></a> </div> </div> <div class="html-table_wrap_discription"> <b>Table 4.</b> Comparison of the natural frequency parameter <math display='inline'><semantics> <mrow> <mrow> <mo>(</mo> <mrow> <mover accent="true"> <mi>ω</mi> <mo>˜</mo> </mover> <mo>=</mo> <mi>ω</mi> <mi>h</mi> <msqrt> <mrow> <msub> <mi>ρ</mi> <mi>c</mi> </msub> <mo>/</mo> <msub> <mi>E</mi> <mi>c</mi> </msub> </mrow> </msqrt> </mrow> <mo>)</mo> </mrow> </mrow> </semantics></math> for simply supported Al/Al<sub>2</sub>O<sub>3</sub> functionally graded square plates and doubly curved shells (<span class='html-italic'>a</span> = <span class='html-italic'>b</span> = 10<span class='html-italic'>h</span>, <span class='html-italic'>m</span> = <span class='html-italic'>n</span> = 1). </div> </div> <div class="html-table_show mfp-hide " id ="table_body_display_mathematics-10-00408-t004" > <div class="html-caption" ><b>Table 4.</b> Comparison of the natural frequency parameter <math display='inline'><semantics> <mrow> <mrow> <mo>(</mo> <mrow> <mover accent="true"> <mi>ω</mi> <mo>˜</mo> </mover> <mo>=</mo> <mi>ω</mi> <mi>h</mi> <msqrt> <mrow> <msub> <mi>ρ</mi> <mi>c</mi> </msub> <mo>/</mo> <msub> <mi>E</mi> <mi>c</mi> </msub> </mrow> </msqrt> </mrow> <mo>)</mo> </mrow> </mrow> </semantics></math> for simply supported Al/Al<sub>2</sub>O<sub>3</sub> functionally graded square plates and doubly curved shells (<span class='html-italic'>a</span> = <span class='html-italic'>b</span> = 10<span class='html-italic'>h</span>, <span class='html-italic'>m</span> = <span class='html-italic'>n</span> = 1).</div> <table > <thead ><tr ><th align='center' valign='middle' style='border-top:solid thin;border-bottom:solid thin' class='html-align-center' > </th><th align='center' valign='middle' style='border-top:solid thin;border-bottom:solid thin' class='html-align-center' ><math display='inline'> <semantics> <mstyle mathvariant="bold"> <mrow> <mi mathvariant="bold-italic">a</mi> <mo>/</mo> <msub> <mi mathvariant="bold-italic">R</mi> <mi mathvariant="bold-italic">x</mi> </msub> </mrow> </mstyle> </semantics> </math></th><th align='center' valign='middle' style='border-top:solid thin;border-bottom:solid thin' class='html-align-center' ><math display='inline'> <semantics> <mstyle mathvariant="bold"> <mrow> <mi mathvariant="bold-italic">b</mi> <mo>/</mo> <msub> <mi mathvariant="bold-italic">R</mi> <mi mathvariant="bold-italic">y</mi> </msub> </mrow> </mstyle> </semantics> </math></th><th align='center' valign='middle' style='border-top:solid thin;border-bottom:solid thin' class='html-align-center' ><math display='inline'> <semantics> <mstyle mathvariant="bold"> <mi mathvariant="bold-italic">p</mi> </mstyle> </semantics> </math></th><th align='center' valign='middle' style='border-top:solid thin;border-bottom:solid thin' class='html-align-center' >Alijani<br>[<a href="#B53-mathematics-10-00408" class="html-bibr">53</a>]</th><th align='center' valign='middle' style='border-top:solid thin;border-bottom:solid thin' class='html-align-center' >Matsunaga<br>[<a href="#B54-mathematics-10-00408" class="html-bibr">54</a>]</th><th align='center' valign='middle' style='border-top:solid thin;border-bottom:solid thin' class='html-align-center' >Chorfi<br>[<a href="#B55-mathematics-10-00408" class="html-bibr">55</a>]</th><th align='center' valign='middle' style='border-top:solid thin;border-bottom:solid thin' class='html-align-center' >Trinh<br>[<a href="#B56-mathematics-10-00408" class="html-bibr">56</a>]</th><th align='center' valign='middle' style='border-top:solid thin;border-bottom:solid thin' class='html-align-center' >Present</th></tr></thead><tbody ><tr ><td rowspan='5' align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Plate</td><td rowspan='5' align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0</td><td rowspan='5' align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0</td><td align='center' valign='middle' class='html-align-center' >0</td><td align='center' valign='middle' class='html-align-center' >0.0597</td><td align='center' valign='middle' class='html-align-center' >0.0588</td><td align='center' valign='middle' class='html-align-center' >0.0577</td><td align='center' valign='middle' class='html-align-center' >0.0577</td><td align='center' valign='middle' class='html-align-center' >0.0577</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >0.5</td><td align='center' valign='middle' class='html-align-center' >0.0506</td><td align='center' valign='middle' class='html-align-center' >0.0492</td><td align='center' valign='middle' class='html-align-center' >0.0490</td><td align='center' valign='middle' class='html-align-center' >0.0490</td><td align='center' valign='middle' class='html-align-center' >0.0490</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >1</td><td align='center' valign='middle' class='html-align-center' >0.0456</td><td align='center' valign='middle' class='html-align-center' >0.0430</td><td align='center' valign='middle' class='html-align-center' >0.0442</td><td align='center' valign='middle' class='html-align-center' >0.0442</td><td align='center' valign='middle' class='html-align-center' >0.0442</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >4</td><td align='center' valign='middle' class='html-align-center' >0.0396</td><td align='center' valign='middle' class='html-align-center' >0.0381</td><td align='center' valign='middle' class='html-align-center' >0.0383</td><td align='center' valign='middle' class='html-align-center' >0.0381</td><td align='center' valign='middle' class='html-align-center' >0.0380</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >10</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.0380</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.0364</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.0366</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.0364</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.0363</td></tr><tr ><td rowspan='5' align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Spherical</td><td rowspan='5' align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.5</td><td rowspan='5' align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.5</td><td align='center' valign='middle' class='html-align-center' >0</td><td align='center' valign='middle' class='html-align-center' >0.0779</td><td align='center' valign='middle' class='html-align-center' >0.0751</td><td align='center' valign='middle' class='html-align-center' >0.0762</td><td align='center' valign='middle' class='html-align-center' >0.0761</td><td align='center' valign='middle' class='html-align-center' >0.0753</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >0.5</td><td align='center' valign='middle' class='html-align-center' >0.0676</td><td align='center' valign='middle' class='html-align-center' >0.0657</td><td align='center' valign='middle' class='html-align-center' >0.0664</td><td align='center' valign='middle' class='html-align-center' >0.0662</td><td align='center' valign='middle' class='html-align-center' >0.0653</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >1</td><td align='center' valign='middle' class='html-align-center' >0.0617</td><td align='center' valign='middle' class='html-align-center' >0.0601</td><td align='center' valign='middle' class='html-align-center' >0.0607</td><td align='center' valign='middle' class='html-align-center' >0.0605</td><td align='center' valign='middle' class='html-align-center' >0.0595</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >4</td><td align='center' valign='middle' class='html-align-center' >0.0519</td><td align='center' valign='middle' class='html-align-center' >0.0503</td><td align='center' valign='middle' class='html-align-center' >0.0509</td><td align='center' valign='middle' class='html-align-center' >0.0506</td><td align='center' valign='middle' class='html-align-center' >0.0496</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >10</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.0482</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.0464</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.0471</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.0467</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.0459</td></tr><tr ><td rowspan='5' align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Cylindrical</td><td rowspan='5' align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.5</td><td rowspan='5' align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0</td><td align='center' valign='middle' class='html-align-center' >0</td><td align='center' valign='middle' class='html-align-center' >0.0648</td><td align='center' valign='middle' class='html-align-center' >0.0622</td><td align='center' valign='middle' class='html-align-center' >0.0629</td><td align='center' valign='middle' class='html-align-center' >0.0628</td><td align='center' valign='middle' class='html-align-center' >0.0622</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >0.5</td><td align='center' valign='middle' class='html-align-center' >0.0553</td><td align='center' valign='middle' class='html-align-center' >0.0535</td><td align='center' valign='middle' class='html-align-center' >0.0540</td><td align='center' valign='middle' class='html-align-center' >0.0538</td><td align='center' valign='middle' class='html-align-center' >0.0533</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >1</td><td align='center' valign='middle' class='html-align-center' >0.0501</td><td align='center' valign='middle' class='html-align-center' >0.0485</td><td align='center' valign='middle' class='html-align-center' >0.0490</td><td align='center' valign='middle' class='html-align-center' >0.0488</td><td align='center' valign='middle' class='html-align-center' >0.0482</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >4</td><td align='center' valign='middle' class='html-align-center' >0.0430</td><td align='center' valign='middle' class='html-align-center' >0.0413</td><td align='center' valign='middle' class='html-align-center' >0.0419</td><td align='center' valign='middle' class='html-align-center' >0.0416</td><td align='center' valign='middle' class='html-align-center' >0.0410</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >10</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.0408</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.0390</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.0395</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.0392</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.0387</td></tr><tr ><td rowspan='5' align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Hyperbolic–paraboloidal</td><td rowspan='5' align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.5</td><td rowspan='5' align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >−0.5</td><td align='center' valign='middle' class='html-align-center' >0</td><td align='center' valign='middle' class='html-align-center' >0.0597</td><td align='center' valign='middle' class='html-align-center' >0.0563</td><td align='center' valign='middle' class='html-align-center' >0.0580</td><td align='center' valign='middle' class='html-align-center' >0.0577</td><td align='center' valign='middle' class='html-align-center' >0.0563</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >0.5</td><td align='center' valign='middle' class='html-align-center' >0.0506</td><td align='center' valign='middle' class='html-align-center' >0.0479</td><td align='center' valign='middle' class='html-align-center' >0.0493</td><td align='center' valign='middle' class='html-align-center' >0.0490</td><td align='center' valign='middle' class='html-align-center' >0.0478</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >1</td><td align='center' valign='middle' class='html-align-center' >0.0456</td><td align='center' valign='middle' class='html-align-center' >0.0432</td><td align='center' valign='middle' class='html-align-center' >0.0445</td><td align='center' valign='middle' class='html-align-center' >0.0442</td><td align='center' valign='middle' class='html-align-center' >0.0431</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >4</td><td align='center' valign='middle' class='html-align-center' >0.0396</td><td align='center' valign='middle' class='html-align-center' >0.0372</td><td align='center' valign='middle' class='html-align-center' >0.0385</td><td align='center' valign='middle' class='html-align-center' >0.0381</td><td align='center' valign='middle' class='html-align-center' >0.0371</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >10</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.0380</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.0355</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.0368</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.0364</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.0354</td></tr></tbody> </table> </div><div class="html-table-wrap" id="mathematics-10-00408-t005"> <div class="html-table_wrap_td" > <div class="html-tablepopup html-tablepopup-link" data-counterslinkmanual = "https://www.mdpi.com/2227-7390/10/3/408/display" href='#table_body_display_mathematics-10-00408-t005'> <img alt="Table" data-lsrc="https://www.mdpi.com/img/table.png" /> <a class="html-expand html-tablepopup" data-counterslinkmanual = "https://www.mdpi.com/2227-7390/10/3/408/display" href="#table_body_display_mathematics-10-00408-t005"></a> </div> </div> <div class="html-table_wrap_discription"> <b>Table 5.</b> The effect of the number of layers and fiber distribution patterns on the dimensionless frequency of cross-ply CNTs/F-RC shells for various curvature radii (SSSS, <math display='inline'><semantics> <mrow> <mi>b</mi> <mo>/</mo> <mi>a</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, <math display='inline'><semantics> <mrow> <mi>a</mi> <mo>/</mo> <mi>h</mi> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math>, <math display='inline'><semantics> <mrow> <msub> <mi>V</mi> <mrow> <mi>c</mi> <mi>n</mi> <mi>t</mi> </mrow> </msub> <mo>=</mo> <mn>0.01</mn> </mrow> </semantics></math>, <math display='inline'><semantics> <mrow> <msubsup> <mi>V</mi> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> <mi>f</mi> </msubsup> <mo>=</mo> <mn>0.3</mn> </mrow> </semantics></math>, <math display='inline'><semantics> <mrow> <msubsup> <mi>V</mi> <mrow> <mi>m</mi> <mi>i</mi> <mi>n</mi> </mrow> <mi>f</mi> </msubsup> <mo>=</mo> <mn>0.1</mn> </mrow> </semantics></math>). </div> </div> <div class="html-table_show mfp-hide " id ="table_body_display_mathematics-10-00408-t005" > <div class="html-caption" ><b>Table 5.</b> The effect of the number of layers and fiber distribution patterns on the dimensionless frequency of cross-ply CNTs/F-RC shells for various curvature radii (SSSS, <math display='inline'><semantics> <mrow> <mi>b</mi> <mo>/</mo> <mi>a</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, <math display='inline'><semantics> <mrow> <mi>a</mi> <mo>/</mo> <mi>h</mi> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math>, <math display='inline'><semantics> <mrow> <msub> <mi>V</mi> <mrow> <mi>c</mi> <mi>n</mi> <mi>t</mi> </mrow> </msub> <mo>=</mo> <mn>0.01</mn> </mrow> </semantics></math>, <math display='inline'><semantics> <mrow> <msubsup> <mi>V</mi> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> <mi>f</mi> </msubsup> <mo>=</mo> <mn>0.3</mn> </mrow> </semantics></math>, <math display='inline'><semantics> <mrow> <msubsup> <mi>V</mi> <mrow> <mi>m</mi> <mi>i</mi> <mi>n</mi> </mrow> <mi>f</mi> </msubsup> <mo>=</mo> <mn>0.1</mn> </mrow> </semantics></math>).</div> <table > <thead ><tr ><th align='center' valign='middle' style='border-top:solid thin;border-bottom:solid thin' class='html-align-center' > </th><th align='center' valign='middle' style='border-top:solid thin;border-bottom:solid thin' class='html-align-center' ><math display='inline'> <semantics> <mstyle mathvariant="bold"> <mrow> <msub> <mi mathvariant="bold-italic">R</mi> <mi mathvariant="bold-italic">x</mi> </msub> <mo>/</mo> <mi mathvariant="bold-italic">a</mi> </mrow> </mstyle> </semantics> </math></th><th align='center' valign='middle' style='border-top:solid thin;border-bottom:solid thin' class='html-align-center' ><math display='inline'> <semantics> <mstyle mathvariant="bold"> <mrow> <msub> <mi mathvariant="bold-italic">R</mi> <mi mathvariant="bold-italic">y</mi> </msub> <mo>/</mo> <mi mathvariant="bold-italic">b</mi> </mrow> </mstyle> </semantics> </math></th><th align='center' valign='middle' style='border-top:solid thin;border-bottom:solid thin' class='html-align-center' ><span class='html-italic'>N</span></th><th align='center' valign='middle' style='border-top:solid thin;border-bottom:solid thin' class='html-align-center' >UD</th><th align='center' valign='middle' style='border-top:solid thin;border-bottom:solid thin' class='html-align-center' >FG-X</th><th align='center' valign='middle' style='border-top:solid thin;border-bottom:solid thin' class='html-align-center' >FG-O</th><th align='center' valign='middle' style='border-top:solid thin;border-bottom:solid thin' class='html-align-center' >FG-V</th></tr></thead><tbody ><tr ><td rowspan='5' align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Plate</td><td rowspan='5' align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >inf</td><td rowspan='5' align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >inf</td><td align='center' valign='middle' class='html-align-center' >3</td><td align='center' valign='middle' class='html-align-center' >0.1896</td><td align='center' valign='middle' class='html-align-center' >0.1862</td><td align='center' valign='middle' class='html-align-center' >0.1750</td><td align='center' valign='middle' class='html-align-center' >0.1779</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >7</td><td align='center' valign='middle' class='html-align-center' >0.1900</td><td align='center' valign='middle' class='html-align-center' >0.1840</td><td align='center' valign='middle' class='html-align-center' >0.1734</td><td align='center' valign='middle' class='html-align-center' >0.1783</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >11</td><td align='center' valign='middle' class='html-align-center' >0.1900</td><td align='center' valign='middle' class='html-align-center' >0.1927</td><td align='center' valign='middle' class='html-align-center' >0.1823</td><td align='center' valign='middle' class='html-align-center' >0.1881</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >15</td><td align='center' valign='middle' class='html-align-center' >0.1901</td><td align='center' valign='middle' class='html-align-center' >0.2040</td><td align='center' valign='middle' class='html-align-center' >0.1934</td><td align='center' valign='middle' class='html-align-center' >0.1984</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >19</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.1901</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.1976</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.1821</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.1893</td></tr><tr ><td rowspan='5' align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Cylindrical shell</td><td rowspan='5' align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >5</td><td rowspan='5' align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >inf</td><td align='center' valign='middle' class='html-align-center' >3</td><td align='center' valign='middle' class='html-align-center' >0.1917</td><td align='center' valign='middle' class='html-align-center' >0.1883</td><td align='center' valign='middle' class='html-align-center' >0.1778</td><td align='center' valign='middle' class='html-align-center' >0.1789</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >7</td><td align='center' valign='middle' class='html-align-center' >0.1921</td><td align='center' valign='middle' class='html-align-center' >0.1862</td><td align='center' valign='middle' class='html-align-center' >0.1762</td><td align='center' valign='middle' class='html-align-center' >0.1792</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >11</td><td align='center' valign='middle' class='html-align-center' >0.1922</td><td align='center' valign='middle' class='html-align-center' >0.1948</td><td align='center' valign='middle' class='html-align-center' >0.1848</td><td align='center' valign='middle' class='html-align-center' >0.1888</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >15</td><td align='center' valign='middle' class='html-align-center' >0.1922</td><td align='center' valign='middle' class='html-align-center' >0.2059</td><td align='center' valign='middle' class='html-align-center' >0.1959</td><td align='center' valign='middle' class='html-align-center' >0.1988</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >19</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.1922</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.1997</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.1844</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.1899</td></tr><tr ><td rowspan='5' align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Spherical shell</td><td rowspan='5' align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >5</td><td rowspan='5' align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >5</td><td align='center' valign='middle' class='html-align-center' >3</td><td align='center' valign='middle' class='html-align-center' >0.1986</td><td align='center' valign='middle' class='html-align-center' >0.1953</td><td align='center' valign='middle' class='html-align-center' >0.1856</td><td align='center' valign='middle' class='html-align-center' >0.1855</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >7</td><td align='center' valign='middle' class='html-align-center' >0.1991</td><td align='center' valign='middle' class='html-align-center' >0.1933</td><td align='center' valign='middle' class='html-align-center' >0.1842</td><td align='center' valign='middle' class='html-align-center' >0.1854</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >11</td><td align='center' valign='middle' class='html-align-center' >0.1992</td><td align='center' valign='middle' class='html-align-center' >0.2016</td><td align='center' valign='middle' class='html-align-center' >0.1924</td><td align='center' valign='middle' class='html-align-center' >0.1947</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >15</td><td align='center' valign='middle' class='html-align-center' >0.1992</td><td align='center' valign='middle' class='html-align-center' >0.2125</td><td align='center' valign='middle' class='html-align-center' >0.2031</td><td align='center' valign='middle' class='html-align-center' >0.2041</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >19</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.1992</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.2064</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.1917</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.1955</td></tr><tr ><td rowspan='5' align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Elliptical–paraboloid shell</td><td rowspan='5' align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >5</td><td rowspan='5' align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >7.5</td><td align='center' valign='middle' class='html-align-center' >3</td><td align='center' valign='middle' class='html-align-center' >0.1959</td><td align='center' valign='middle' class='html-align-center' >0.1925</td><td align='center' valign='middle' class='html-align-center' >0.1825</td><td align='center' valign='middle' class='html-align-center' >0.1828</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >7</td><td align='center' valign='middle' class='html-align-center' >0.1964</td><td align='center' valign='middle' class='html-align-center' >0.1905</td><td align='center' valign='middle' class='html-align-center' >0.1811</td><td align='center' valign='middle' class='html-align-center' >0.1829</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >11</td><td align='center' valign='middle' class='html-align-center' >0.1964</td><td align='center' valign='middle' class='html-align-center' >0.1989</td><td align='center' valign='middle' class='html-align-center' >0.1894</td><td align='center' valign='middle' class='html-align-center' >0.1923</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >15</td><td align='center' valign='middle' class='html-align-center' >0.1964</td><td align='center' valign='middle' class='html-align-center' >0.2098</td><td align='center' valign='middle' class='html-align-center' >0.2003</td><td align='center' valign='middle' class='html-align-center' >0.2019</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >19</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.1964</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.2038</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.1888</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.1932</td></tr><tr ><td rowspan='5' align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Hyperbolic–paraboloidal shell</td><td rowspan='5' align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >5</td><td rowspan='5' align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >−5</td><td align='center' valign='middle' class='html-align-center' >3</td><td align='center' valign='middle' class='html-align-center' >0.1888</td><td align='center' valign='middle' class='html-align-center' >0.1855</td><td align='center' valign='middle' class='html-align-center' >0.1744</td><td align='center' valign='middle' class='html-align-center' >0.1769</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >7</td><td align='center' valign='middle' class='html-align-center' >0.1892</td><td align='center' valign='middle' class='html-align-center' >0.1834</td><td align='center' valign='middle' class='html-align-center' >0.1728</td><td align='center' valign='middle' class='html-align-center' >0.1776</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >11</td><td align='center' valign='middle' class='html-align-center' >0.1893</td><td align='center' valign='middle' class='html-align-center' >0.1920</td><td align='center' valign='middle' class='html-align-center' >0.1816</td><td align='center' valign='middle' class='html-align-center' >0.1873</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >15</td><td align='center' valign='middle' class='html-align-center' >0.1893</td><td align='center' valign='middle' class='html-align-center' >0.2032</td><td align='center' valign='middle' class='html-align-center' >0.1927</td><td align='center' valign='middle' class='html-align-center' >0.1975</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >19</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.1893</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.1969</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.1814</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.1885</td></tr></tbody> </table> </div><div class="html-table-wrap" id="mathematics-10-00408-t006"> <div class="html-table_wrap_td" > <div class="html-tablepopup html-tablepopup-link" data-counterslinkmanual = "https://www.mdpi.com/2227-7390/10/3/408/display" href='#table_body_display_mathematics-10-00408-t006'> <img alt="Table" data-lsrc="https://www.mdpi.com/img/table.png" /> <a class="html-expand html-tablepopup" data-counterslinkmanual = "https://www.mdpi.com/2227-7390/10/3/408/display" href="#table_body_display_mathematics-10-00408-t006"></a> </div> </div> <div class="html-table_wrap_discription"> <b>Table 6.</b> The effect of the number of layers and fiber distribution patterns on the dimensionless frequency of unidirectional F/CNT-RC shells for various curvature radii (SSSS, <math display='inline'><semantics> <mrow> <mi>b</mi> <mo>/</mo> <mi>a</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, <math display='inline'><semantics> <mrow> <mi>a</mi> <mo>/</mo> <mi>h</mi> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math>, <math display='inline'><semantics> <mrow> <msub> <mi>V</mi> <mrow> <mi>c</mi> <mi>n</mi> <mi>t</mi> </mrow> </msub> <mo>=</mo> <mn>0.01</mn> </mrow> </semantics></math>, <math display='inline'><semantics> <mrow> <msubsup> <mi>V</mi> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> <mi>f</mi> </msubsup> <mo>=</mo> <mn>0.3</mn> </mrow> </semantics></math>, <math display='inline'><semantics> <mrow> <msubsup> <mi>V</mi> <mrow> <mi>m</mi> <mi>i</mi> <mi>n</mi> </mrow> <mi>f</mi> </msubsup> <mo>=</mo> <mn>0.1</mn> </mrow> </semantics></math>). </div> </div> <div class="html-table_show mfp-hide " id ="table_body_display_mathematics-10-00408-t006" > <div class="html-caption" ><b>Table 6.</b> The effect of the number of layers and fiber distribution patterns on the dimensionless frequency of unidirectional F/CNT-RC shells for various curvature radii (SSSS, <math display='inline'><semantics> <mrow> <mi>b</mi> <mo>/</mo> <mi>a</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, <math display='inline'><semantics> <mrow> <mi>a</mi> <mo>/</mo> <mi>h</mi> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math>, <math display='inline'><semantics> <mrow> <msub> <mi>V</mi> <mrow> <mi>c</mi> <mi>n</mi> <mi>t</mi> </mrow> </msub> <mo>=</mo> <mn>0.01</mn> </mrow> </semantics></math>, <math display='inline'><semantics> <mrow> <msubsup> <mi>V</mi> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> <mi>f</mi> </msubsup> <mo>=</mo> <mn>0.3</mn> </mrow> </semantics></math>, <math display='inline'><semantics> <mrow> <msubsup> <mi>V</mi> <mrow> <mi>m</mi> <mi>i</mi> <mi>n</mi> </mrow> <mi>f</mi> </msubsup> <mo>=</mo> <mn>0.1</mn> </mrow> </semantics></math>).</div> <table > <thead ><tr ><th align='center' valign='middle' style='border-top:solid thin;border-bottom:solid thin' class='html-align-center' > </th><th align='center' valign='middle' style='border-top:solid thin;border-bottom:solid thin' class='html-align-center' ><math display='inline'> <semantics> <mstyle mathvariant="bold"> <mrow> <msub> <mi mathvariant="bold-italic">R</mi> <mi mathvariant="bold-italic">x</mi> </msub> <mo>/</mo> <mi mathvariant="bold-italic">a</mi> </mrow> </mstyle> </semantics> </math></th><th align='center' valign='middle' style='border-top:solid thin;border-bottom:solid thin' class='html-align-center' ><math display='inline'> <semantics> <mstyle mathvariant="bold"> <mrow> <msub> <mi mathvariant="bold-italic">R</mi> <mi mathvariant="bold-italic">y</mi> </msub> <mo>/</mo> <mi mathvariant="bold-italic">b</mi> </mrow> </mstyle> </semantics> </math></th><th align='center' valign='middle' style='border-top:solid thin;border-bottom:solid thin' class='html-align-center' ><b><span class='html-italic'>N</span></b></th><th align='center' valign='middle' style='border-top:solid thin;border-bottom:solid thin' class='html-align-center' ><b>UD</b></th><th align='center' valign='middle' style='border-top:solid thin;border-bottom:solid thin' class='html-align-center' ><b>FG-X</b></th><th align='center' valign='middle' style='border-top:solid thin;border-bottom:solid thin' class='html-align-center' ><b>FG-O</b></th><th align='center' valign='middle' style='border-top:solid thin;border-bottom:solid thin' class='html-align-center' ><b>FG-V</b></th></tr></thead><tbody ><tr ><td rowspan='5' align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Plate</td><td rowspan='5' align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >inf</td><td rowspan='5' align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >inf</td><td align='center' valign='middle' class='html-align-center' >3</td><td align='center' valign='middle' class='html-align-center' >0.1894</td><td align='center' valign='middle' class='html-align-center' >0.1858</td><td align='center' valign='middle' class='html-align-center' >0.1748</td><td align='center' valign='middle' class='html-align-center' >0.1776</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >7</td><td align='center' valign='middle' class='html-align-center' >0.1894</td><td align='center' valign='middle' class='html-align-center' >0.1834</td><td align='center' valign='middle' class='html-align-center' >0.1735</td><td align='center' valign='middle' class='html-align-center' >0.1773</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >11</td><td align='center' valign='middle' class='html-align-center' >0.1894</td><td align='center' valign='middle' class='html-align-center' >0.1919</td><td align='center' valign='middle' class='html-align-center' >0.1818</td><td align='center' valign='middle' class='html-align-center' >0.1868</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >15</td><td align='center' valign='middle' class='html-align-center' >0.1894</td><td align='center' valign='middle' class='html-align-center' >0.2029</td><td align='center' valign='middle' class='html-align-center' >0.1928</td><td align='center' valign='middle' class='html-align-center' >0.1968</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >19</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.1894</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.1967</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.1817</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.1879</td></tr><tr ><td rowspan='5' align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Cylindrical shell</td><td rowspan='5' align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >5</td><td rowspan='5' align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >inf</td><td align='center' valign='middle' class='html-align-center' >3</td><td align='center' valign='middle' class='html-align-center' >0.1913</td><td align='center' valign='middle' class='html-align-center' >0.1877</td><td align='center' valign='middle' class='html-align-center' >0.1771</td><td align='center' valign='middle' class='html-align-center' >0.1790</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >7</td><td align='center' valign='middle' class='html-align-center' >0.1913</td><td align='center' valign='middle' class='html-align-center' >0.1854</td><td align='center' valign='middle' class='html-align-center' >0.1754</td><td align='center' valign='middle' class='html-align-center' >0.1787</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >11</td><td align='center' valign='middle' class='html-align-center' >0.1913</td><td align='center' valign='middle' class='html-align-center' >0.1937</td><td align='center' valign='middle' class='html-align-center' >0.1840</td><td align='center' valign='middle' class='html-align-center' >0.1881</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >15</td><td align='center' valign='middle' class='html-align-center' >0.1913</td><td align='center' valign='middle' class='html-align-center' >0.2046</td><td align='center' valign='middle' class='html-align-center' >0.1948</td><td align='center' valign='middle' class='html-align-center' >0.1979</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >19</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.1913</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.1985</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.1838</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.1891</td></tr><tr ><td rowspan='5' align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Spherical shell</td><td rowspan='5' align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >5</td><td rowspan='5' align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >5</td><td align='center' valign='middle' class='html-align-center' >3</td><td align='center' valign='middle' class='html-align-center' >0.1979</td><td align='center' valign='middle' class='html-align-center' >0.1941</td><td align='center' valign='middle' class='html-align-center' >0.1841</td><td align='center' valign='middle' class='html-align-center' >0.1855</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >7</td><td align='center' valign='middle' class='html-align-center' >0.1979</td><td align='center' valign='middle' class='html-align-center' >0.1916</td><td align='center' valign='middle' class='html-align-center' >0.1822</td><td align='center' valign='middle' class='html-align-center' >0.1849</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >11</td><td align='center' valign='middle' class='html-align-center' >0.1979</td><td align='center' valign='middle' class='html-align-center' >0.1995</td><td align='center' valign='middle' class='html-align-center' >0.1901</td><td align='center' valign='middle' class='html-align-center' >0.1939</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >15</td><td align='center' valign='middle' class='html-align-center' >0.1979</td><td align='center' valign='middle' class='html-align-center' >0.2102</td><td align='center' valign='middle' class='html-align-center' >0.2007</td><td align='center' valign='middle' class='html-align-center' >0.2035</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >19</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.1979</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.2048</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.1906</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.1955</td></tr><tr ><td rowspan='5' align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Elliptical–paraboloid shell</td><td rowspan='5' align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >5</td><td rowspan='5' align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >7.5</td><td align='center' valign='middle' class='html-align-center' >3</td><td align='center' valign='middle' class='html-align-center' >0.1953</td><td align='center' valign='middle' class='html-align-center' >0.1915</td><td align='center' valign='middle' class='html-align-center' >0.1813</td><td align='center' valign='middle' class='html-align-center' >0.1829</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >7</td><td align='center' valign='middle' class='html-align-center' >0.1953</td><td align='center' valign='middle' class='html-align-center' >0.1891</td><td align='center' valign='middle' class='html-align-center' >0.1795</td><td align='center' valign='middle' class='html-align-center' >0.1824</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >11</td><td align='center' valign='middle' class='html-align-center' >0.1953</td><td align='center' valign='middle' class='html-align-center' >0.1972</td><td align='center' valign='middle' class='html-align-center' >0.1877</td><td align='center' valign='middle' class='html-align-center' >0.1916</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >15</td><td align='center' valign='middle' class='html-align-center' >0.1953</td><td align='center' valign='middle' class='html-align-center' >0.2079</td><td align='center' valign='middle' class='html-align-center' >0.1983</td><td align='center' valign='middle' class='html-align-center' >0.2012</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >19</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.1953</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.2023</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.1879</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.1929</td></tr><tr ><td rowspan='5' align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Hyperbolic–paraboloidal shell</td><td rowspan='5' align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >5</td><td rowspan='5' align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >−5</td><td align='center' valign='middle' class='html-align-center' >3</td><td align='center' valign='middle' class='html-align-center' >0.1887</td><td align='center' valign='middle' class='html-align-center' >0.1852</td><td align='center' valign='middle' class='html-align-center' >0.1743</td><td align='center' valign='middle' class='html-align-center' >0.1768</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >7</td><td align='center' valign='middle' class='html-align-center' >0.1887</td><td align='center' valign='middle' class='html-align-center' >0.1831</td><td align='center' valign='middle' class='html-align-center' >0.1728</td><td align='center' valign='middle' class='html-align-center' >0.1768</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >11</td><td align='center' valign='middle' class='html-align-center' >0.1887</td><td align='center' valign='middle' class='html-align-center' >0.1917</td><td align='center' valign='middle' class='html-align-center' >0.1817</td><td align='center' valign='middle' class='html-align-center' >0.1864</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >15</td><td align='center' valign='middle' class='html-align-center' >0.1887</td><td align='center' valign='middle' class='html-align-center' >0.2026</td><td align='center' valign='middle' class='html-align-center' >0.1926</td><td align='center' valign='middle' class='html-align-center' >0.1960</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >19</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.1887</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.1959</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.1810</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.1867</td></tr></tbody> </table> </div><div class="html-table-wrap" id="mathematics-10-00408-t007"> <div class="html-table_wrap_td" > <div class="html-tablepopup html-tablepopup-link" data-counterslinkmanual = "https://www.mdpi.com/2227-7390/10/3/408/display" href='#table_body_display_mathematics-10-00408-t007'> <img alt="Table" data-lsrc="https://www.mdpi.com/img/table.png" /> <a class="html-expand html-tablepopup" data-counterslinkmanual = "https://www.mdpi.com/2227-7390/10/3/408/display" href="#table_body_display_mathematics-10-00408-t007"></a> </div> </div> <div class="html-table_wrap_discription"> <b>Table 7.</b> The effect of the volume fraction of CNTs and fiber distribution patterns on the dimensionless frequency of cross-ply F/CNT-RC shells (SSSS, <math display='inline'><semantics> <mrow> <mi>b</mi> <mo>/</mo> <mi>a</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, <math display='inline'><semantics> <mrow> <mi>N</mi> <mo>=</mo> <mn>9</mn> </mrow> </semantics></math>, <math display='inline'><semantics> <mrow> <mi>a</mi> <mo>/</mo> <mi>h</mi> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math>, <math display='inline'><semantics> <mrow> <msubsup> <mi>V</mi> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> <mi>f</mi> </msubsup> <mo>=</mo> <mn>0.3</mn> </mrow> </semantics></math>, <math display='inline'><semantics> <mrow> <msubsup> <mi>V</mi> <mrow> <mi>m</mi> <mi>i</mi> <mi>n</mi> </mrow> <mi>f</mi> </msubsup> <mo>=</mo> <mn>0.1</mn> </mrow> </semantics></math>). </div> </div> <div class="html-table_show mfp-hide " id ="table_body_display_mathematics-10-00408-t007" > <div class="html-caption" ><b>Table 7.</b> The effect of the volume fraction of CNTs and fiber distribution patterns on the dimensionless frequency of cross-ply F/CNT-RC shells (SSSS, <math display='inline'><semantics> <mrow> <mi>b</mi> <mo>/</mo> <mi>a</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, <math display='inline'><semantics> <mrow> <mi>N</mi> <mo>=</mo> <mn>9</mn> </mrow> </semantics></math>, <math display='inline'><semantics> <mrow> <mi>a</mi> <mo>/</mo> <mi>h</mi> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math>, <math display='inline'><semantics> <mrow> <msubsup> <mi>V</mi> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> <mi>f</mi> </msubsup> <mo>=</mo> <mn>0.3</mn> </mrow> </semantics></math>, <math display='inline'><semantics> <mrow> <msubsup> <mi>V</mi> <mrow> <mi>m</mi> <mi>i</mi> <mi>n</mi> </mrow> <mi>f</mi> </msubsup> <mo>=</mo> <mn>0.1</mn> </mrow> </semantics></math>).</div> <table > <thead ><tr ><th rowspan='2' align='center' valign='middle' style='border-top:solid thin;border-bottom:solid thin' class='html-align-center' >Type of Shells</th><th align='center' valign='middle' style='border-top:solid thin;border-bottom:solid thin' class='html-align-center' > </th><th colspan='4' align='center' valign='middle' style='border-top:solid thin;border-bottom:solid thin' class='html-align-center' >Fiber Distribution Pattern</th></tr><tr ><th align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' ><math display='inline'> <semantics> <mstyle mathvariant="bold"> <mrow> <msub> <mi mathvariant="bold-italic">V</mi> <mrow> <mi mathvariant="bold-italic">c</mi> <mi mathvariant="bold-italic">n</mi> <mi mathvariant="bold-italic">t</mi> </mrow> </msub> </mrow> </mstyle> </semantics> </math></th><th align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >FRC UD</th><th align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >FRC FG-X</th><th align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >FRC FG-O</th><th align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >FRC FG-V</th></tr></thead><tbody ><tr ><td rowspan='6' align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Plate</td><td align='center' valign='middle' class='html-align-center' >0.0%</td><td align='center' valign='middle' class='html-align-center' >0.1176</td><td align='center' valign='middle' class='html-align-center' >0.1288</td><td align='center' valign='middle' class='html-align-center' >0.1033</td><td align='center' valign='middle' class='html-align-center' >0.1140</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >0.2%</td><td align='center' valign='middle' class='html-align-center' >0.1387</td><td align='center' valign='middle' class='html-align-center' >0.1508</td><td align='center' valign='middle' class='html-align-center' >0.1246</td><td align='center' valign='middle' class='html-align-center' >0.1358</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >0.4%</td><td align='center' valign='middle' class='html-align-center' >0.1543</td><td align='center' valign='middle' class='html-align-center' >0.1658</td><td align='center' valign='middle' class='html-align-center' >0.1414</td><td align='center' valign='middle' class='html-align-center' >0.1521</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >0.6%</td><td align='center' valign='middle' class='html-align-center' >0.1676</td><td align='center' valign='middle' class='html-align-center' >0.1781</td><td align='center' valign='middle' class='html-align-center' >0.1560</td><td align='center' valign='middle' class='html-align-center' >0.1659</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >0.8%</td><td align='center' valign='middle' class='html-align-center' >0.1794</td><td align='center' valign='middle' class='html-align-center' >0.1888</td><td align='center' valign='middle' class='html-align-center' >0.1691</td><td align='center' valign='middle' class='html-align-center' >0.1780</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >1.0%</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.1900</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.1984</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.1811</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.1891</td></tr><tr ><td rowspan='6' align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Cylindrical shell</td><td align='center' valign='middle' class='html-align-center' >0.0%</td><td align='center' valign='middle' class='html-align-center' >0.1181</td><td align='center' valign='middle' class='html-align-center' >0.1292</td><td align='center' valign='middle' class='html-align-center' >0.1039</td><td align='center' valign='middle' class='html-align-center' >0.1140</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >0.2%</td><td align='center' valign='middle' class='html-align-center' >0.1398</td><td align='center' valign='middle' class='html-align-center' >0.1517</td><td align='center' valign='middle' class='html-align-center' >0.1258</td><td align='center' valign='middle' class='html-align-center' >0.1358</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >0.4%</td><td align='center' valign='middle' class='html-align-center' >0.1557</td><td align='center' valign='middle' class='html-align-center' >0.1671</td><td align='center' valign='middle' class='html-align-center' >0.1430</td><td align='center' valign='middle' class='html-align-center' >0.1522</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >0.6%</td><td align='center' valign='middle' class='html-align-center' >0.1693</td><td align='center' valign='middle' class='html-align-center' >0.1797</td><td align='center' valign='middle' class='html-align-center' >0.1578</td><td align='center' valign='middle' class='html-align-center' >0.1661</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >0.8%</td><td align='center' valign='middle' class='html-align-center' >0.1813</td><td align='center' valign='middle' class='html-align-center' >0.1906</td><td align='center' valign='middle' class='html-align-center' >0.1712</td><td align='center' valign='middle' class='html-align-center' >0.1785</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >1.0%</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.1922</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.2004</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.1834</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.1896</td></tr><tr ><td rowspan='6' align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Spherical shell</td><td align='center' valign='middle' class='html-align-center' >0.0%</td><td align='center' valign='middle' class='html-align-center' >0.1200</td><td align='center' valign='middle' class='html-align-center' >0.1310</td><td align='center' valign='middle' class='html-align-center' >0.1062</td><td align='center' valign='middle' class='html-align-center' >0.1163</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >0.2%</td><td align='center' valign='middle' class='html-align-center' >0.1434</td><td align='center' valign='middle' class='html-align-center' >0.1551</td><td align='center' valign='middle' class='html-align-center' >0.1298</td><td align='center' valign='middle' class='html-align-center' >0.1389</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >0.4%</td><td align='center' valign='middle' class='html-align-center' >0.1605</td><td align='center' valign='middle' class='html-align-center' >0.1715</td><td align='center' valign='middle' class='html-align-center' >0.1481</td><td align='center' valign='middle' class='html-align-center' >0.1561</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >0.6%</td><td align='center' valign='middle' class='html-align-center' >0.1749</td><td align='center' valign='middle' class='html-align-center' >0.1850</td><td align='center' valign='middle' class='html-align-center' >0.1639</td><td align='center' valign='middle' class='html-align-center' >0.1707</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >0.8%</td><td align='center' valign='middle' class='html-align-center' >0.1877</td><td align='center' valign='middle' class='html-align-center' >0.1967</td><td align='center' valign='middle' class='html-align-center' >0.1779</td><td align='center' valign='middle' class='html-align-center' >0.1836</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >1.0%</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.1992</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.2071</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.1907</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.1953</td></tr><tr ><td rowspan='6' align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Elliptical–paraboloid shell</td><td align='center' valign='middle' class='html-align-center' >0.0%</td><td align='center' valign='middle' class='html-align-center' >0.1193</td><td align='center' valign='middle' class='html-align-center' >0.1303</td><td align='center' valign='middle' class='html-align-center' >0.1053</td><td align='center' valign='middle' class='html-align-center' >0.1154</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >0.2%</td><td align='center' valign='middle' class='html-align-center' >0.1419</td><td align='center' valign='middle' class='html-align-center' >0.1538</td><td align='center' valign='middle' class='html-align-center' >0.1283</td><td align='center' valign='middle' class='html-align-center' >0.1377</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >0.4%</td><td align='center' valign='middle' class='html-align-center' >0.1586</td><td align='center' valign='middle' class='html-align-center' >0.1698</td><td align='center' valign='middle' class='html-align-center' >0.1461</td><td align='center' valign='middle' class='html-align-center' >0.1545</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >0.6%</td><td align='center' valign='middle' class='html-align-center' >0.1727</td><td align='center' valign='middle' class='html-align-center' >0.1829</td><td align='center' valign='middle' class='html-align-center' >0.1615</td><td align='center' valign='middle' class='html-align-center' >0.1688</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >0.8%</td><td align='center' valign='middle' class='html-align-center' >0.1852</td><td align='center' valign='middle' class='html-align-center' >0.1943</td><td align='center' valign='middle' class='html-align-center' >0.1753</td><td align='center' valign='middle' class='html-align-center' >0.1815</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >1.0%</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.1964</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.2045</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.1878</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.1929</td></tr><tr ><td rowspan='6' align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Hyperbolic–paraboloidal shell</td><td align='center' valign='middle' class='html-align-center' >0.0%</td><td align='center' valign='middle' class='html-align-center' >0.1171</td><td align='center' valign='middle' class='html-align-center' >0.1283</td><td align='center' valign='middle' class='html-align-center' >0.1029</td><td align='center' valign='middle' class='html-align-center' >0.1125</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >0.2%</td><td align='center' valign='middle' class='html-align-center' >0.1382</td><td align='center' valign='middle' class='html-align-center' >0.1502</td><td align='center' valign='middle' class='html-align-center' >0.1241</td><td align='center' valign='middle' class='html-align-center' >0.1348</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >0.4%</td><td align='center' valign='middle' class='html-align-center' >0.1537</td><td align='center' valign='middle' class='html-align-center' >0.1651</td><td align='center' valign='middle' class='html-align-center' >0.1408</td><td align='center' valign='middle' class='html-align-center' >0.1511</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >0.6%</td><td align='center' valign='middle' class='html-align-center' >0.1669</td><td align='center' valign='middle' class='html-align-center' >0.1774</td><td align='center' valign='middle' class='html-align-center' >0.1554</td><td align='center' valign='middle' class='html-align-center' >0.1649</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >0.8%</td><td align='center' valign='middle' class='html-align-center' >0.1786</td><td align='center' valign='middle' class='html-align-center' >0.1888</td><td align='center' valign='middle' class='html-align-center' >0.1684</td><td align='center' valign='middle' class='html-align-center' >0.1771</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >1.0%</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.1893</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.1976</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.1804</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.1881</td></tr></tbody> </table> </div><div class="html-table-wrap" id="mathematics-10-00408-t008"> <div class="html-table_wrap_td" > <div class="html-tablepopup html-tablepopup-link" data-counterslinkmanual = "https://www.mdpi.com/2227-7390/10/3/408/display" href='#table_body_display_mathematics-10-00408-t008'> <img alt="Table" data-lsrc="https://www.mdpi.com/img/table.png" /> <a class="html-expand html-tablepopup" data-counterslinkmanual = "https://www.mdpi.com/2227-7390/10/3/408/display" href="#table_body_display_mathematics-10-00408-t008"></a> </div> </div> <div class="html-table_wrap_discription"> <b>Table 8.</b> The effect of the volume fraction and distribution patterns of the fibers on the dimensionless frequency of cross-ply F/CNT-RC shells (SSSS, <math display='inline'><semantics> <mrow> <mi>b</mi> <mo>/</mo> <mi>a</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, <math display='inline'><semantics> <mrow> <mi>a</mi> <mo>/</mo> <mi>h</mi> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math>, <math display='inline'><semantics> <mrow> <mi>N</mi> <mo>=</mo> <mn>9</mn> </mrow> </semantics></math>, <math display='inline'><semantics> <mrow> <msub> <mi>V</mi> <mrow> <mi>c</mi> <mi>n</mi> <mi>t</mi> </mrow> </msub> <mo>=</mo> <mn>0.01</mn> </mrow> </semantics></math>, <math display='inline'><semantics> <mrow> <msubsup> <mi>V</mi> <mrow> <mi>m</mi> <mi>i</mi> <mi>n</mi> </mrow> <mi>f</mi> </msubsup> <mo>=</mo> <mn>0.05</mn> </mrow> </semantics></math>). </div> </div> <div class="html-table_show mfp-hide " id ="table_body_display_mathematics-10-00408-t008" > <div class="html-caption" ><b>Table 8.</b> The effect of the volume fraction and distribution patterns of the fibers on the dimensionless frequency of cross-ply F/CNT-RC shells (SSSS, <math display='inline'><semantics> <mrow> <mi>b</mi> <mo>/</mo> <mi>a</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, <math display='inline'><semantics> <mrow> <mi>a</mi> <mo>/</mo> <mi>h</mi> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math>, <math display='inline'><semantics> <mrow> <mi>N</mi> <mo>=</mo> <mn>9</mn> </mrow> </semantics></math>, <math display='inline'><semantics> <mrow> <msub> <mi>V</mi> <mrow> <mi>c</mi> <mi>n</mi> <mi>t</mi> </mrow> </msub> <mo>=</mo> <mn>0.01</mn> </mrow> </semantics></math>, <math display='inline'><semantics> <mrow> <msubsup> <mi>V</mi> <mrow> <mi>m</mi> <mi>i</mi> <mi>n</mi> </mrow> <mi>f</mi> </msubsup> <mo>=</mo> <mn>0.05</mn> </mrow> </semantics></math>).</div> <table > <thead ><tr ><th rowspan='2' align='center' valign='middle' style='border-top:solid thin;border-bottom:solid thin' class='html-align-center' >Type of Shells</th><th align='center' valign='middle' style='border-top:solid thin;border-bottom:solid thin' class='html-align-center' > </th><th colspan='4' align='center' valign='middle' style='border-top:solid thin;border-bottom:solid thin' class='html-align-center' >Fiber Distribution Pattern</th></tr><tr ><th align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' ><math display='inline'> <semantics> <mstyle mathvariant="bold"> <mrow> <msub> <mi mathvariant="bold-italic">V</mi> <mi mathvariant="bold-italic">F</mi> </msub> </mrow> </mstyle> </semantics> </math></th><th align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >FRC UD</th><th align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >FRC FG-X</th><th align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >FRC FG-O</th><th align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >FRC FG-V</th></tr></thead><tbody ><tr ><td rowspan='4' align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Plate</td><td align='center' valign='middle' class='html-align-center' >5%</td><td align='center' valign='middle' class='html-align-center' >0.1735</td><td align='center' valign='middle' class='html-align-center' >0.1735</td><td align='center' valign='middle' class='html-align-center' >0.1735</td><td align='center' valign='middle' class='html-align-center' >0.1735</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >10%</td><td align='center' valign='middle' class='html-align-center' >0.1765</td><td align='center' valign='middle' class='html-align-center' >0.1790</td><td align='center' valign='middle' class='html-align-center' >0.1740</td><td align='center' valign='middle' class='html-align-center' >0.1765</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >20%</td><td align='center' valign='middle' class='html-align-center' >0.1822</td><td align='center' valign='middle' class='html-align-center' >0.1891</td><td align='center' valign='middle' class='html-align-center' >0.1751</td><td align='center' valign='middle' class='html-align-center' >0.18158</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >30%</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.1875</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.1982</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.1760</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.1859</td></tr><tr ><td rowspan='4' align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Cylindrical shell</td><td align='center' valign='middle' class='html-align-center' >5%</td><td align='center' valign='middle' class='html-align-center' >0.1758</td><td align='center' valign='middle' class='html-align-center' >0.1758</td><td align='center' valign='middle' class='html-align-center' >0.1758</td><td align='center' valign='middle' class='html-align-center' >0.1758</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >10%</td><td align='center' valign='middle' class='html-align-center' >0.1788</td><td align='center' valign='middle' class='html-align-center' >0.1812</td><td align='center' valign='middle' class='html-align-center' >0.1763</td><td align='center' valign='middle' class='html-align-center' >0.1782</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >20%</td><td align='center' valign='middle' class='html-align-center' >0.1844</td><td align='center' valign='middle' class='html-align-center' >0.1912</td><td align='center' valign='middle' class='html-align-center' >0.1774</td><td align='center' valign='middle' class='html-align-center' >0.1823</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >30%</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.1897</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.2002</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.1784</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.1860</td></tr><tr ><td rowspan='4' align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Spherical shell</td><td align='center' valign='middle' class='html-align-center' >5%</td><td align='center' valign='middle' class='html-align-center' >0.1831</td><td align='center' valign='middle' class='html-align-center' >0.1831</td><td align='center' valign='middle' class='html-align-center' >0.1831</td><td align='center' valign='middle' class='html-align-center' >0.1831</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >10%</td><td align='center' valign='middle' class='html-align-center' >0.1861</td><td align='center' valign='middle' class='html-align-center' >0.1884</td><td align='center' valign='middle' class='html-align-center' >0.1837</td><td align='center' valign='middle' class='html-align-center' >0.1850</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >20%</td><td align='center' valign='middle' class='html-align-center' >0.1916</td><td align='center' valign='middle' class='html-align-center' >0.1982</td><td align='center' valign='middle' class='html-align-center' >0.1848</td><td align='center' valign='middle' class='html-align-center' >0.1883</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >30%</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.1968</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.2069</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.1859</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.1912</td></tr><tr ><td rowspan='4' align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Elliptical–paraboloid shell</td><td align='center' valign='middle' class='html-align-center' >5%</td><td align='center' valign='middle' class='html-align-center' >0.1802</td><td align='center' valign='middle' class='html-align-center' >0.1802</td><td align='center' valign='middle' class='html-align-center' >0.1802</td><td align='center' valign='middle' class='html-align-center' >0.1802</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >10%</td><td align='center' valign='middle' class='html-align-center' >0.1832</td><td align='center' valign='middle' class='html-align-center' >0.1856</td><td align='center' valign='middle' class='html-align-center' >0.1808</td><td align='center' valign='middle' class='html-align-center' >0.1822</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >20%</td><td align='center' valign='middle' class='html-align-center' >0.1888</td><td align='center' valign='middle' class='html-align-center' >0.1954</td><td align='center' valign='middle' class='html-align-center' >0.1819</td><td align='center' valign='middle' class='html-align-center' >0.1858</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >30%</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.1940</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.2042</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.1829</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.1890</td></tr><tr ><td rowspan='4' align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Hyperbolic–paraboloidal shell</td><td align='center' valign='middle' class='html-align-center' >0.0%</td><td align='center' valign='middle' class='html-align-center' >0.1728</td><td align='center' valign='middle' class='html-align-center' >0.1728</td><td align='center' valign='middle' class='html-align-center' >0.1728</td><td align='center' valign='middle' class='html-align-center' >0.1728</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >0.2%</td><td align='center' valign='middle' class='html-align-center' >0.1758</td><td align='center' valign='middle' class='html-align-center' >0.1783</td><td align='center' valign='middle' class='html-align-center' >0.1733</td><td align='center' valign='middle' class='html-align-center' >0.1757</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >0.8%</td><td align='center' valign='middle' class='html-align-center' >0.1815</td><td align='center' valign='middle' class='html-align-center' >0.1884</td><td align='center' valign='middle' class='html-align-center' >0.1743</td><td align='center' valign='middle' class='html-align-center' >0.1808</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >1.0%</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.1868</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.1974</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.1753</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.1850</td></tr></tbody> </table> </div><div class="html-table-wrap" id="mathematics-10-00408-t009"> <div class="html-table_wrap_td" > <div class="html-tablepopup html-tablepopup-link" data-counterslinkmanual = "https://www.mdpi.com/2227-7390/10/3/408/display" href='#table_body_display_mathematics-10-00408-t009'> <img alt="Table" data-lsrc="https://www.mdpi.com/img/table.png" /> <a class="html-expand html-tablepopup" data-counterslinkmanual = "https://www.mdpi.com/2227-7390/10/3/408/display" href="#table_body_display_mathematics-10-00408-t009"></a> </div> </div> <div class="html-table_wrap_discription"> <b>Table 9.</b> The effect of different boundary conditions and fiber distribution patterns on the dimensionless frequency of cross-ply F/CNT-RC shells (<math display='inline'><semantics> <mrow> <mi>b</mi> <mo>/</mo> <mi>a</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, <math display='inline'><semantics> <mrow> <mi>N</mi> <mo>=</mo> <mn>9</mn> </mrow> </semantics></math>, <math display='inline'><semantics> <mrow> <mi>a</mi> <mo>/</mo> <mi>h</mi> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math>, <math display='inline'><semantics> <mrow> <msub> <mi>V</mi> <mrow> <mi>c</mi> <mi>n</mi> <mi>t</mi> </mrow> </msub> <mo>=</mo> <mn>0.01</mn> </mrow> </semantics></math>, <math display='inline'><semantics> <mrow> <msubsup> <mi>V</mi> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> <mi>f</mi> </msubsup> <mo>=</mo> <mn>0.3</mn> </mrow> </semantics></math>, <math display='inline'><semantics> <mrow> <msubsup> <mi>V</mi> <mrow> <mi>m</mi> <mi>i</mi> <mi>n</mi> </mrow> <mi>f</mi> </msubsup> <mo>=</mo> <mn>0.1</mn> </mrow> </semantics></math>). </div> </div> <div class="html-table_show mfp-hide " id ="table_body_display_mathematics-10-00408-t009" > <div class="html-caption" ><b>Table 9.</b> The effect of different boundary conditions and fiber distribution patterns on the dimensionless frequency of cross-ply F/CNT-RC shells (<math display='inline'><semantics> <mrow> <mi>b</mi> <mo>/</mo> <mi>a</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, <math display='inline'><semantics> <mrow> <mi>N</mi> <mo>=</mo> <mn>9</mn> </mrow> </semantics></math>, <math display='inline'><semantics> <mrow> <mi>a</mi> <mo>/</mo> <mi>h</mi> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math>, <math display='inline'><semantics> <mrow> <msub> <mi>V</mi> <mrow> <mi>c</mi> <mi>n</mi> <mi>t</mi> </mrow> </msub> <mo>=</mo> <mn>0.01</mn> </mrow> </semantics></math>, <math display='inline'><semantics> <mrow> <msubsup> <mi>V</mi> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> <mi>f</mi> </msubsup> <mo>=</mo> <mn>0.3</mn> </mrow> </semantics></math>, <math display='inline'><semantics> <mrow> <msubsup> <mi>V</mi> <mrow> <mi>m</mi> <mi>i</mi> <mi>n</mi> </mrow> <mi>f</mi> </msubsup> <mo>=</mo> <mn>0.1</mn> </mrow> </semantics></math>).</div> <table > <thead ><tr ><th rowspan='2' align='center' valign='middle' style='border-top:solid thin;border-bottom:solid thin' class='html-align-center' >Type of Shells</th><th rowspan='2' align='center' valign='middle' style='border-top:solid thin;border-bottom:solid thin' class='html-align-center' >BCs.</th><th colspan='4' align='center' valign='middle' style='border-top:solid thin;border-bottom:solid thin' class='html-align-center' >Fiber Distribution Pattern</th></tr><tr ><th align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >FRC UD</th><th align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >FRC FG-X</th><th align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >FRC FG-O</th><th align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >FRC FG-V</th></tr></thead><tbody ><tr ><td rowspan='6' align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Plate</td><td align='center' valign='middle' class='html-align-center' >SSSS</td><td align='center' valign='middle' class='html-align-center' >0.1900</td><td align='center' valign='middle' class='html-align-center' >0.1984</td><td align='center' valign='middle' class='html-align-center' >0.1811</td><td align='center' valign='middle' class='html-align-center' >0.1891</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >CCCC</td><td align='center' valign='middle' class='html-align-center' >0.3599</td><td align='center' valign='middle' class='html-align-center' >0.3778</td><td align='center' valign='middle' class='html-align-center' >0.3398</td><td align='center' valign='middle' class='html-align-center' >0.3572</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >CCSS</td><td align='center' valign='middle' class='html-align-center' >0.2978</td><td align='center' valign='middle' class='html-align-center' >0.3162</td><td align='center' valign='middle' class='html-align-center' >0.2767</td><td align='center' valign='middle' class='html-align-center' >0.2950</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >CSCS</td><td align='center' valign='middle' class='html-align-center' >0.3409</td><td align='center' valign='middle' class='html-align-center' >0.3567</td><td align='center' valign='middle' class='html-align-center' >0.3237</td><td align='center' valign='middle' class='html-align-center' >0.3389</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >CSSS</td><td align='center' valign='middle' class='html-align-center' >0.2821</td><td align='center' valign='middle' class='html-align-center' >0.2989</td><td align='center' valign='middle' class='html-align-center' >0.2634</td><td align='center' valign='middle' class='html-align-center' >0.2797</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >CCCS</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.2386</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.2581</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.2155</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.2353</td></tr><tr ><td rowspan='6' align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Cylindrical shell</td><td align='center' valign='middle' class='html-align-center' >SSSS</td><td align='center' valign='middle' class='html-align-center' >0.1922</td><td align='center' valign='middle' class='html-align-center' >0.2004</td><td align='center' valign='middle' class='html-align-center' >0.1834</td><td align='center' valign='middle' class='html-align-center' >0.1896</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >CCCC</td><td align='center' valign='middle' class='html-align-center' >0.3661</td><td align='center' valign='middle' class='html-align-center' >0.3839</td><td align='center' valign='middle' class='html-align-center' >0.3461</td><td align='center' valign='middle' class='html-align-center' >0.3633</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >CCSS</td><td align='center' valign='middle' class='html-align-center' >0.3053</td><td align='center' valign='middle' class='html-align-center' >0.3235</td><td align='center' valign='middle' class='html-align-center' >0.2844</td><td align='center' valign='middle' class='html-align-center' >0.3023</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >CSCS</td><td align='center' valign='middle' class='html-align-center' >0.3449</td><td align='center' valign='middle' class='html-align-center' >0.3607</td><td align='center' valign='middle' class='html-align-center' >0.3277</td><td align='center' valign='middle' class='html-align-center' >0.3421</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >CSSS</td><td align='center' valign='middle' class='html-align-center' >0.2866</td><td align='center' valign='middle' class='html-align-center' >0.3033</td><td align='center' valign='middle' class='html-align-center' >0.2681</td><td align='center' valign='middle' class='html-align-center' >0.2837</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >CCCS</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.2484</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.2676</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.2258</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.2452</td></tr><tr ><td rowspan='6' align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Spherical shell</td><td align='center' valign='middle' class='html-align-center' >SSSS</td><td align='center' valign='middle' class='html-align-center' >0.1992</td><td align='center' valign='middle' class='html-align-center' >0.2071</td><td align='center' valign='middle' class='html-align-center' >0.1907</td><td align='center' valign='middle' class='html-align-center' >0.1953</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >CCCC</td><td align='center' valign='middle' class='html-align-center' >0.3729</td><td align='center' valign='middle' class='html-align-center' >0.3904</td><td align='center' valign='middle' class='html-align-center' >0.3533</td><td align='center' valign='middle' class='html-align-center' >0.3706</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >CCSS</td><td align='center' valign='middle' class='html-align-center' >0.3083</td><td align='center' valign='middle' class='html-align-center' >0.3264</td><td align='center' valign='middle' class='html-align-center' >0.2877</td><td align='center' valign='middle' class='html-align-center' >0.3042</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >CSCS</td><td align='center' valign='middle' class='html-align-center' >0.3501</td><td align='center' valign='middle' class='html-align-center' >0.3656</td><td align='center' valign='middle' class='html-align-center' >0.3332</td><td align='center' valign='middle' class='html-align-center' >0.3470</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >CSSS</td><td align='center' valign='middle' class='html-align-center' >0.2911</td><td align='center' valign='middle' class='html-align-center' >0.3075</td><td align='center' valign='middle' class='html-align-center' >0.2729</td><td align='center' valign='middle' class='html-align-center' >0.2868</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >CCCS</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.2611</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.2794</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.2398</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.2584</td></tr><tr ><td rowspan='6' align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Elliptical–paraboloid shell</td><td align='center' valign='middle' class='html-align-center' >SSSS</td><td align='center' valign='middle' class='html-align-center' >0.1964</td><td align='center' valign='middle' class='html-align-center' >0.2045</td><td align='center' valign='middle' class='html-align-center' >0.1878</td><td align='center' valign='middle' class='html-align-center' >0.1929</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >CCCC</td><td align='center' valign='middle' class='html-align-center' >0.3694</td><td align='center' valign='middle' class='html-align-center' >0.3871</td><td align='center' valign='middle' class='html-align-center' >0.3496</td><td align='center' valign='middle' class='html-align-center' >0.3669</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >CCSS</td><td align='center' valign='middle' class='html-align-center' >0.3069</td><td align='center' valign='middle' class='html-align-center' >0.3251</td><td align='center' valign='middle' class='html-align-center' >0.2862</td><td align='center' valign='middle' class='html-align-center' >0.3032</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >CSCS</td><td align='center' valign='middle' class='html-align-center' >0.3476</td><td align='center' valign='middle' class='html-align-center' >0.3632</td><td align='center' valign='middle' class='html-align-center' >0.3305</td><td align='center' valign='middle' class='html-align-center' >0.3446</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >CSSS</td><td align='center' valign='middle' class='html-align-center' >0.2892</td><td align='center' valign='middle' class='html-align-center' >0.3057</td><td align='center' valign='middle' class='html-align-center' >0.2708</td><td align='center' valign='middle' class='html-align-center' >0.2853</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >CCCS</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.2546</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.2734</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.2327</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.2517</td></tr><tr ><td rowspan='6' align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Hyperbolic–paraboloidal shell</td><td align='center' valign='middle' class='html-align-center' >SSSS</td><td align='center' valign='middle' class='html-align-center' >0.1893</td><td align='center' valign='middle' class='html-align-center' >0.1976</td><td align='center' valign='middle' class='html-align-center' >0.1804</td><td align='center' valign='middle' class='html-align-center' >0.1881</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >CCCC</td><td align='center' valign='middle' class='html-align-center' >0.3703</td><td align='center' valign='middle' class='html-align-center' >0.3879</td><td align='center' valign='middle' class='html-align-center' >0.3506</td><td align='center' valign='middle' class='html-align-center' >0.3671</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >CCSS</td><td align='center' valign='middle' class='html-align-center' >0.3056</td><td align='center' valign='middle' class='html-align-center' >0.3238</td><td align='center' valign='middle' class='html-align-center' >0.2848</td><td align='center' valign='middle' class='html-align-center' >0.3038</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >CSCS</td><td align='center' valign='middle' class='html-align-center' >0.3469</td><td align='center' valign='middle' class='html-align-center' >0.3625</td><td align='center' valign='middle' class='html-align-center' >0.3298</td><td align='center' valign='middle' class='html-align-center' >0.3443</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >CSSS</td><td align='center' valign='middle' class='html-align-center' >0.2865</td><td align='center' valign='middle' class='html-align-center' >0.3031</td><td align='center' valign='middle' class='html-align-center' >0.2680</td><td align='center' valign='middle' class='html-align-center' >0.2851</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >CCCS</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.2566</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.2752</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.2349</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.2532</td></tr></tbody> </table> </div><div class="html-table-wrap" id="mathematics-10-00408-t010"> <div class="html-table_wrap_td" > <div class="html-tablepopup html-tablepopup-link" data-counterslinkmanual = "https://www.mdpi.com/2227-7390/10/3/408/display" href='#table_body_display_mathematics-10-00408-t010'> <img alt="Table" data-lsrc="https://www.mdpi.com/img/table.png" /> <a class="html-expand html-tablepopup" data-counterslinkmanual = "https://www.mdpi.com/2227-7390/10/3/408/display" href="#table_body_display_mathematics-10-00408-t010"></a> </div> </div> <div class="html-table_wrap_discription"> <b>Table 10.</b> The effect of geometric parameters <span class='html-italic'>a</span>/<span class='html-italic'>h</span> and <span class='html-italic'>b</span>/<span class='html-italic'>a</span> on the dimensionless frequency of cross-ply F/CNT-RC shells for various curvature radii (SSSS, <math display='inline'><semantics> <mrow> <mi>N</mi> <mo>=</mo> <mn>9</mn> </mrow> </semantics></math>, <math display='inline'><semantics> <mrow> <msub> <mi>V</mi> <mrow> <mi>c</mi> <mi>n</mi> <mi>t</mi> </mrow> </msub> <mo>=</mo> <mn>0.01</mn> </mrow> </semantics></math>, <math display='inline'><semantics> <mrow> <msubsup> <mi>V</mi> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> <mi>f</mi> </msubsup> <mo>=</mo> <mn>0.3</mn> </mrow> </semantics></math>, <math display='inline'><semantics> <mrow> <msubsup> <mi>V</mi> <mrow> <mi>m</mi> <mi>i</mi> <mi>n</mi> </mrow> <mi>f</mi> </msubsup> <mo>=</mo> <mn>0.1</mn> </mrow> </semantics></math>). </div> </div> <div class="html-table_show mfp-hide " id ="table_body_display_mathematics-10-00408-t010" > <div class="html-caption" ><b>Table 10.</b> The effect of geometric parameters <span class='html-italic'>a</span>/<span class='html-italic'>h</span> and <span class='html-italic'>b</span>/<span class='html-italic'>a</span> on the dimensionless frequency of cross-ply F/CNT-RC shells for various curvature radii (SSSS, <math display='inline'><semantics> <mrow> <mi>N</mi> <mo>=</mo> <mn>9</mn> </mrow> </semantics></math>, <math display='inline'><semantics> <mrow> <msub> <mi>V</mi> <mrow> <mi>c</mi> <mi>n</mi> <mi>t</mi> </mrow> </msub> <mo>=</mo> <mn>0.01</mn> </mrow> </semantics></math>, <math display='inline'><semantics> <mrow> <msubsup> <mi>V</mi> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> <mi>f</mi> </msubsup> <mo>=</mo> <mn>0.3</mn> </mrow> </semantics></math>, <math display='inline'><semantics> <mrow> <msubsup> <mi>V</mi> <mrow> <mi>m</mi> <mi>i</mi> <mi>n</mi> </mrow> <mi>f</mi> </msubsup> <mo>=</mo> <mn>0.1</mn> </mrow> </semantics></math>).</div> <table > <thead ><tr ><th rowspan='2' align='center' valign='middle' style='border-top:solid thin;border-bottom:solid thin' class='html-align-center' >Type of Shells</th><th rowspan='2' align='center' valign='middle' style='border-top:solid thin;border-bottom:solid thin' class='html-align-center' ><math display='inline'> <semantics> <mstyle mathvariant="bold"> <mrow> <mi mathvariant="bold-italic">b</mi> <mo>/</mo> <mi mathvariant="bold-italic">a</mi> </mrow> </mstyle> </semantics> </math></th><th colspan='4' align='center' valign='middle' style='border-top:solid thin;border-bottom:solid thin' class='html-align-center' ><span class='html-italic'>a</span>/<span class='html-italic'>h</span></th></tr><tr ><th align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >5</th><th align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >10</th><th align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >20</th><th align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >30</th></tr></thead><tbody ><tr ><td rowspan='4' align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Plate</td><td align='center' valign='middle' class='html-align-center' >0.5</td><td align='center' valign='middle' class='html-align-center' >1.4689</td><td align='center' valign='middle' class='html-align-center' >0.4559</td><td align='center' valign='middle' class='html-align-center' >0.1231</td><td align='center' valign='middle' class='html-align-center' >0.0556</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >1</td><td align='center' valign='middle' class='html-align-center' >0.7077</td><td align='center' valign='middle' class='html-align-center' >0.1984</td><td align='center' valign='middle' class='html-align-center' >0.0513</td><td align='center' valign='middle' class='html-align-center' >0.0230</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >2</td><td align='center' valign='middle' class='html-align-center' >0.5230</td><td align='center' valign='middle' class='html-align-center' >0.1437</td><td align='center' valign='middle' class='html-align-center' >0.0369</td><td align='center' valign='middle' class='html-align-center' >0.0165</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >3</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.4952</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.1358</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.0348</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.0156</td></tr><tr ><td rowspan='4' align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Cylindrical shell</td><td align='center' valign='middle' class='html-align-center' >0.5</td><td align='center' valign='middle' class='html-align-center' >1.4715</td><td align='center' valign='middle' class='html-align-center' >0.4587</td><td align='center' valign='middle' class='html-align-center' >0.1260</td><td align='center' valign='middle' class='html-align-center' >0.0584</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >1</td><td align='center' valign='middle' class='html-align-center' >0.7092</td><td align='center' valign='middle' class='html-align-center' >0.2004</td><td align='center' valign='middle' class='html-align-center' >0.0535</td><td align='center' valign='middle' class='html-align-center' >0.0251</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >2</td><td align='center' valign='middle' class='html-align-center' >0.5226</td><td align='center' valign='middle' class='html-align-center' >0.1440</td><td align='center' valign='middle' class='html-align-center' >0.0374</td><td align='center' valign='middle' class='html-align-center' >0.0170</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >3</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.4944</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.1356</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.0350</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.0157</td></tr><tr ><td rowspan='4' align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Spherical shell</td><td align='center' valign='middle' class='html-align-center' >0.5</td><td align='center' valign='middle' class='html-align-center' >1.4749</td><td align='center' valign='middle' class='html-align-center' >0.4620</td><td align='center' valign='middle' class='html-align-center' >0.1294</td><td align='center' valign='middle' class='html-align-center' >0.0617</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >1</td><td align='center' valign='middle' class='html-align-center' >0.7164</td><td align='center' valign='middle' class='html-align-center' >0.2071</td><td align='center' valign='middle' class='html-align-center' >0.0597</td><td align='center' valign='middle' class='html-align-center' >0.0307</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >2</td><td align='center' valign='middle' class='html-align-center' >0.5276</td><td align='center' valign='middle' class='html-align-center' >0.1486</td><td align='center' valign='middle' class='html-align-center' >0.0417</td><td align='center' valign='middle' class='html-align-center' >0.0210</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >3</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.4973</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.1383</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.0375</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.0181</td></tr><tr ><td rowspan='4' align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Elliptical–paraboloid shell</td><td align='center' valign='middle' class='html-align-center' >0.5</td><td align='center' valign='middle' class='html-align-center' >1.4741</td><td align='center' valign='middle' class='html-align-center' >0.4609</td><td align='center' valign='middle' class='html-align-center' >0.1282</td><td align='center' valign='middle' class='html-align-center' >0.0605</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >1</td><td align='center' valign='middle' class='html-align-center' >0.7137</td><td align='center' valign='middle' class='html-align-center' >0.2045</td><td align='center' valign='middle' class='html-align-center' >0.0572</td><td align='center' valign='middle' class='html-align-center' >0.0286</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >2</td><td align='center' valign='middle' class='html-align-center' >0.5255</td><td align='center' valign='middle' class='html-align-center' >0.1466</td><td align='center' valign='middle' class='html-align-center' >0.0399</td><td align='center' valign='middle' class='html-align-center' >0.0193</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >3</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.4960</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.1371</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.0363</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.0170</td></tr><tr ><td rowspan='4' align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Hyperbolic–paraboloidal shell</td><td align='center' valign='middle' class='html-align-center' >0.5</td><td align='center' valign='middle' class='html-align-center' >1.4652</td><td align='center' valign='middle' class='html-align-center' >0.4552</td><td align='center' valign='middle' class='html-align-center' >0.1235</td><td align='center' valign='middle' class='html-align-center' >0.0562</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >1</td><td align='center' valign='middle' class='html-align-center' >0.7049</td><td align='center' valign='middle' class='html-align-center' >0.1976</td><td align='center' valign='middle' class='html-align-center' >0.0511</td><td align='center' valign='middle' class='html-align-center' >0.0229</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >2</td><td align='center' valign='middle' class='html-align-center' >0.5219</td><td align='center' valign='middle' class='html-align-center' >0.1438</td><td align='center' valign='middle' class='html-align-center' >0.0374</td><td align='center' valign='middle' class='html-align-center' >0.0170</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >3</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.4947</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.1361</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.0354</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.0162</td></tr></tbody> </table> </div></section><section class='html-fn_group'><table><tr id=''><td></td><td><div class='html-p'><b>Publisher’s Note:</b> MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.</div></td></tr></table></section> <section id="html-copyright"><br>© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (<a href='https://creativecommons.org/licenses/by/4.0/' target='_blank' rel="noopener noreferrer" >https://creativecommons.org/licenses/by/4.0/</a>).</section> </div> </div> <div class="additional-content"> <h2><a name="cite"></a>Share and Cite</h2> <div class="social-media-links" style="text-align: left;"> <a href="/cdn-cgi/l/email-protection#0d322b6c607d367e786f67686e79304b7f6260283f3d40495d44283e4c283f3d283f3f4c283f3d4974636c60646e283f3d4c636c61747e647e283f3d626b283f3d5f6c636962606174283f3d427f646863796869283f3d4b78636e796462636c616174283f3d4a7f6c696869283f3d4e6c7f6f6263283f3d436c636279786f687e283f4b4b646f687f205f6864636b627f6e6869283f3d4e62607d627e647968283f3d416c6064636c796869283f3d5e656861617e283f3d7a647965283f3d49646b6b687f686379283f3d4a68626068797f64687e2b7c786279362b6c607d366f626974306579797d7e3722227a7a7a2360697d64236e6260223c393a3f3e3b3f283e4c283d4c283d4c4c283f3d4974636c60646e283f3d4c636c61747e647e283f3d626b283f3d5f6c636962606174283f3d427f646863796869283f3d4b78636e796462636c616174283f3d4a7f6c696869283f3d4e6c7f6f6263283f3d436c636279786f687e283f4b4b646f687f205f6864636b627f6e6869283f3d4e62607d627e647968283f3d416c6064636c796869283f3d5e656861617e283f3d7a647965283f3d49646b6b687f686379283f3d4a68626068797f64687e283d4c283d4c4c6f7e797f6c6e79283e4c283f3d596568283f3d7d7f687e686379283f3d7e79786974283f3d69686062637e797f6c79687e283f3d796568283f3d6b7f6868283f3d7b646f7f6c79646263283f3d6f68656c7b64627f283f3d626b283f3d6e62607d627e647968283f3d616c6064636c796869283f3d7e656861617e283f3d7f6864636b627f6e6869283f3d6f74283f3d6f627965283f3d7f6c636962606174283f3d627f646863796869283f3d7e64636a6168207a6c61616869283f3d6e6c7f6f6263283f3d636c636279786f687e283f3d283f355e5a4e43597e283f34283f3d6c6369283f3d6b78636e796462636c616174283f3d6a7f6c696869283f3d6b646f687f7e23283f3d596568283f3d7e65686161283f3d7e797f786e79787f687e283f3d7a647965283f3d69646b6b687f686379283f3d7d7f64636e647d6c61283f3d7f6c696464283f3d626b283f3d6e787f7b6c79787f68283f3d6c7f68283f3d6e62637e6469687f6869283f4e283f3d7e786e65283f3d6c7e283f3d6e74616463697f646e6c61283f4e283f3d7e7d65687f646e6c61283f4e283f3d686161647d79646e6c61283f3b63696c7e65283e4f7d6c7f6c6f6261626469283f3d7e65686161283f4e283f3d65747d687f6f6261646e283f3b63696c7e65283e4f7d6c7f6c6f6261626469283f3d7e65686161283f4e283f3d6c6369283f3d7d616c796823283f3d596568283f3d7b6261786068283f3d6b7f6c6e79646263283f3d626b283f3d796568283f3d6b646f687f7e283f3d656c7e283f3d6c283f3d616463686c7f283f3d7b6c7f646c79646263283f3d6c6162636a283f3d796568283f3d7e65686161283f3d7965646e6663687e7e283f3d6b7f6260283f3d616c74687f283f3d7962283f3d616c74687f283f4e283f3d7a65646168283f3d796568283f3d7b6261786068283f3d6b7f6c6e79646263283f3d626b283f3d4e43597e283f3d647e283f3d6e62637e796c6379283f3d6463283f3d6c6161283f3d7e65686161283f3d616c74687f7e283f3d6c6369283f3d7863646b627f606174283f3d69647e797f646f7879686923283f3d596568283f3d6b646f687f207f6864636b627f6e6869283f3d686168606863797e283f3d6c7f68283f3d69647e797f646f78796869283f3d7a647965283f3d79657f6868283f3d6b78636e796462637e283f3d7a65646e65283f3d6c7f68283f3d5b2069647e797f646f7879646263283f4e283f3d422069647e797f646f7879646263283f4e283f3d6c6369283f3d552069647e797f646f7879646263283f3d6463283f3d6c69696479646263283f3d7962283f3d796568283f3d7863646b627f60283f3d69647e797f646f787964626323283f3d4c283f3d637860687f646e6c61283f3d6c636c61747e647e283f3d7a6c7e283f3d6e6c7f7f646869283f3d627879283f3d7e747e7968606c79646e6c616174283f3d7962283f3d7b6c6164696c7968283f3d796568283f3d7d7f627d627e6869283f3d7e6261787964626323283f3d4c283f3d63687a283f3d6c636c617479646e6c61283f3d7e62617879646263283f3d647e283f3d7d7f687e6863796869283f3d6f6c7e6869283f3d6263283f3d796568283f3d4a6c61687f666463283f3d6c7d7d7f626c6e65283f3d6b627f283f3d7e656861617e283f3d6c6369283f3d647e283f3d68757d616264796869283f3d7962283f3d646161787e797f6c7968283f3d796568283f3d64636b617868636e68283f3d626b283f3d7e626068283f3d6b6c6e79627f7e283f3d6263283f3d796568283f3d6b7f6868283f3d7b646f7f6c79646263283f3d6f68656c7b64627f283f3d626b283f3d4e43597e283f4b6b646f68207f6864636b627f6e6869283f3d6e62607d627e647968283f3d283f354e43597e283f4b4b205f4e283f34283f3d616c6064636c796869283f3d7e656861617e283f4e283f3d64636e61786964636a283f3d796568283f3d69647e797f646f78796462637e283f3d6c6369283f3d7b6261786068283f3d6b7f6c6e796462637e283f4e283f3d7b6c7f6462787e5623232350" title="Email"> <i class="fa fa-envelope-square" style="font-size: 30px;"></i> </a> <a href="https://twitter.com/intent/tweet?text=A+Dynamic+Analysis+of+Randomly+Oriented+Functionally+Graded+Carbon+Nanotubes%2FFiber-Reinforced+Composite+Laminated+Shells+with+Different+Geometries&hashtags=mdpimathematics&url=https%3A%2F%2Fwww.mdpi.com%2F1472362&via=MathematicsMDPI" onclick="windowOpen(this.href,600,800); return false" target="_blank" rel="noopener noreferrer"> <i class="fa fa-twitter-x-square" style="font-size: 30px;"></i> </a> <a href=" http://www.linkedin.com/shareArticle?mini=true&url=https%3A%2F%2Fwww.mdpi.com%2F1472362&title=A%20Dynamic%20Analysis%20of%20Randomly%20Oriented%20Functionally%20Graded%20Carbon%20Nanotubes%2FFiber-Reinforced%20Composite%20Laminated%20Shells%20with%20Different%20Geometries%26source%3Dhttps%3A%2F%2Fwww.mdpi.com%26summary%3DThe%20present%20study%20demonstrates%20the%20free%20vibration%20behavior%20of%20composite%20laminated%20shells%20reinforced%20by%20both%20randomly%20oriented%20single-walled%20carbon%20nanotubes%20%28SWCNTs%29%20and%20functionally%20graded%20fibers.%20The%20shell%20structures%20with%20different%20principal%20radii%20%5B...%5D" onclick="windowOpen(this.href,600,800); return false" title="LinkedIn" target="_blank" rel="noopener noreferrer"> <i class="fa fa-linkedin-square" style="font-size: 30px;"></i> </a> <a href="https://www.facebook.com/sharer.php?u=https://www.mdpi.com/1472362" title="facebook" target="_blank" rel="noopener noreferrer"> <i class="fa fa-facebook-square" style="font-size: 30px;"></i> </a> <a href="javascript:void(0);" title="Wechat" data-reveal-id="weixin-share-modal"> <i class="fa fa-weixin-square" style="font-size: 26px;"></i> </a> <a href="http://www.reddit.com/submit?url=https://www.mdpi.com/1472362" title="Reddit" target="_blank" rel="noopener noreferrer"> <i class="fa fa-reddit-square" style="font-size: 30px;"></i> </a> <a href="http://www.mendeley.com/import/?url=https://www.mdpi.com/1472362" title="Mendeley" target="_blank" rel="noopener noreferrer"> <i class="fa fa-mendeley-square" style="font-size: 30px;"></i> </a> </div> <div class="in-tab" style="padding-top: 0px!important; margin-top: 15px;"> <div><b>MDPI and ACS Style</b></div> <p> Melaibari, A.; Daikh, A.A.; Basha, M.; Wagih, A.; Othman, R.; Almitani, K.H.; Hamed, M.A.; Abdelrahman, A.; Eltaher, M.A. A Dynamic Analysis of Randomly Oriented Functionally Graded Carbon Nanotubes/Fiber-Reinforced Composite Laminated Shells with Different Geometries. <em>Mathematics</em> <b>2022</b>, <em>10</em>, 408. https://doi.org/10.3390/math10030408 </p> <div style="display: block"> <b>AMA Style</b><br> <p> Melaibari A, Daikh AA, Basha M, Wagih A, Othman R, Almitani KH, Hamed MA, Abdelrahman A, Eltaher MA. A Dynamic Analysis of Randomly Oriented Functionally Graded Carbon Nanotubes/Fiber-Reinforced Composite Laminated Shells with Different Geometries. <em>Mathematics</em>. 2022; 10(3):408. https://doi.org/10.3390/math10030408 </p> <b>Chicago/Turabian Style</b><br> <p> Melaibari, Ammar, Ahmed Amine Daikh, Muhammad Basha, Ahmed Wagih, Ramzi Othman, Khalid H. Almitani, Mostafa A. Hamed, Alaa Abdelrahman, and Mohamed A. Eltaher. 2022. "A Dynamic Analysis of Randomly Oriented Functionally Graded Carbon Nanotubes/Fiber-Reinforced Composite Laminated Shells with Different Geometries" <em>Mathematics</em> 10, no. 3: 408. https://doi.org/10.3390/math10030408 </p> <b>APA Style</b><br> <p> Melaibari, A., Daikh, A. A., Basha, M., Wagih, A., Othman, R., Almitani, K. H., Hamed, M. A., Abdelrahman, A., & Eltaher, M. A. (2022). A Dynamic Analysis of Randomly Oriented Functionally Graded Carbon Nanotubes/Fiber-Reinforced Composite Laminated Shells with Different Geometries. <em>Mathematics</em>, <em>10</em>(3), 408. https://doi.org/10.3390/math10030408 </p> </div> </div> <div class="info-box no-margin"> Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details <a target="_blank" href="https://www.mdpi.com/about/announcements/784">here</a>. </div> <h2><a name="metrics"></a>Article Metrics</h2> <div class="row"> <div class="small-12 columns"> <div id="loaded_cite_count" style="display:none">No</div> <div id="framed_div_cited_count" class="in-tab" style="display: none; overflow: auto;"></div> <div id="loaded" style="display:none">No</div> <div id="framed_div" class="in-tab" style="display: none; margin-top: 10px;"></div> </div> <div class="small-12 columns"> <div id="article_stats_div" style="display: none; margin-bottom: 1em;"> <h3>Article Access Statistics</h3> <div id="article_stats_swf" ></div> For more information on the journal statistics, click <a href="/journal/mathematics/stats">here</a>. <div class="info-box"> Multiple requests from the same IP address are counted as one view. </div> </div> </div> </div> </div> </div> </article> </div> </div></div> <div class="webpymol-controls webpymol-controls-template" style="margin-top: 10px; display: none;"> <a class="bzoom">Zoom</a> <span style="display: inline-block; margin-left: 5px; margin-right: 5px;">|</span> <a class="borient"> Orient </a> <span style="display: inline-block; margin-left: 5px; margin-right: 5px;">|</span> <a class="blines"> As Lines </a> <span style="display: inline-block; margin-left: 5px; margin-right: 5px;">|</span> <a class="bsticks"> As Sticks </a> <span style="display: inline-block; margin-left: 5px; margin-right: 5px;">|</span> <a class="bcartoon"> As Cartoon </a> <span style="display: inline-block; margin-left: 5px; margin-right: 5px;">|</span> <a class="bsurface"> As Surface </a> <span style="display: inline-block; margin-left: 5px; margin-right: 5px;">|</span> <a class="bprevscene">Previous Scene</a> <span style="display: inline-block; margin-left: 5px; margin-right: 5px;">|</span> <a class="bnextscene">Next Scene</a> </div> <div id="scifeed-modal" class="reveal-modal reveal-modal-new" data-reveal aria-labelledby="modalTitle" aria-hidden="true" role="dialog"> </div> <div id="recommended-articles-modal" class="reveal-modal reveal-modal-new" data-reveal aria-labelledby="modalTitle" aria-hidden="true" role="dialog"> </div> <div id="author-biographies-modal" class="reveal-modal reveal-modal-new" data-reveal aria-labelledby="modalTitle" aria-hidden="true" role="dialog"> </div> <div id="cite-modal" class="reveal-modal reveal-modal-new" data-reveal aria-labelledby="Captcha" aria-hidden="true" role="dialog"> <div class="row"> <div class="small-12 columns"> <h2 style="margin: 0;">Cite</h2> </div> <div class="small-12 columns"> <!-- BibTeX --> <form style="margin:0; padding:0; display:inline;" name="export-bibtex" method="POST" action="/export"> <input type="hidden" name="articles_ids[]" value="736181"> <input type="hidden" name="export_format_top" value="bibtex"> <input type="hidden" name="export_submit_top" value=""> </form> <!-- EndNote --> <form style="margin:0; padding:0; display:inline;" name="export-endnote" method="POST" action="/export"> <input type="hidden" name="articles_ids[]" value="736181"> <input type="hidden" name="export_format_top" value="endnote_no_abstract"> <input type="hidden" name="export_submit_top" value=""> </form> <!-- RIS --> <form style="margin:0; padding:0; display:inline;" name="export-ris" method="POST" action="/export"> <input type="hidden" name="articles_ids[]" value="736181"> <input type="hidden" name="export_format_top" value="ris"> <input type="hidden" name="export_submit_top" value=""> </form> <div> Export citation file: <a href="javascript:window.document.forms['export-bibtex'].submit()">BibTeX</a> | <a href="javascript:window.document.forms['export-endnote'].submit()">EndNote</a> | <a href="javascript:window.document.forms['export-ris'].submit()">RIS</a> </div> </div> <div class="small-12 columns"> <div class="in-tab"> <div><b>MDPI and ACS Style</b></div> <p> Melaibari, A.; Daikh, A.A.; Basha, M.; Wagih, A.; Othman, R.; Almitani, K.H.; Hamed, M.A.; Abdelrahman, A.; Eltaher, M.A. A Dynamic Analysis of Randomly Oriented Functionally Graded Carbon Nanotubes/Fiber-Reinforced Composite Laminated Shells with Different Geometries. <em>Mathematics</em> <b>2022</b>, <em>10</em>, 408. https://doi.org/10.3390/math10030408 </p> <div style="display: block"> <b>AMA Style</b><br> <p> Melaibari A, Daikh AA, Basha M, Wagih A, Othman R, Almitani KH, Hamed MA, Abdelrahman A, Eltaher MA. A Dynamic Analysis of Randomly Oriented Functionally Graded Carbon Nanotubes/Fiber-Reinforced Composite Laminated Shells with Different Geometries. <em>Mathematics</em>. 2022; 10(3):408. https://doi.org/10.3390/math10030408 </p> <b>Chicago/Turabian Style</b><br> <p> Melaibari, Ammar, Ahmed Amine Daikh, Muhammad Basha, Ahmed Wagih, Ramzi Othman, Khalid H. Almitani, Mostafa A. Hamed, Alaa Abdelrahman, and Mohamed A. Eltaher. 2022. "A Dynamic Analysis of Randomly Oriented Functionally Graded Carbon Nanotubes/Fiber-Reinforced Composite Laminated Shells with Different Geometries" <em>Mathematics</em> 10, no. 3: 408. https://doi.org/10.3390/math10030408 </p> <b>APA Style</b><br> <p> Melaibari, A., Daikh, A. A., Basha, M., Wagih, A., Othman, R., Almitani, K. H., Hamed, M. A., Abdelrahman, A., & Eltaher, M. A. (2022). A Dynamic Analysis of Randomly Oriented Functionally Graded Carbon Nanotubes/Fiber-Reinforced Composite Laminated Shells with Different Geometries. <em>Mathematics</em>, <em>10</em>(3), 408. https://doi.org/10.3390/math10030408 </p> </div> </div> <div class="info-box no-margin"> Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details <a target="_blank" href="https://www.mdpi.com/about/announcements/784">here</a>. </div> </div> </div> <a class="close-reveal-modal" aria-label="Close"> <i class="material-icons">clear</i> </a> </div> </div> </div> </div> </div> </section> <div id="footer"> <div class="journal-info"> <span> <em><a class="Var_JournalInfo" href="/journal/mathematics">Mathematics</a></em>, EISSN 2227-7390, Published by MDPI </span> <div class="large-right"> <span> <a href="/rss/journal/mathematics" class="rss-link">RSS</a> </span> <span> <a href="/journal/mathematics/toc-alert">Content Alert</a> </span> </div> </div> <div class="row full-width footer-links" data-equalizer="footer" data-equalizer-mq="small"> <div class="large-2 large-push-4 medium-3 small-6 columns" data-equalizer-watch="footer"> <h3> Further Information </h3> <a href="/apc"> Article Processing Charges </a> <a href="/about/payment"> Pay an Invoice </a> <a href="/openaccess"> Open Access Policy </a> <a href="/about/contact"> Contact MDPI </a> <a href="https://careers.mdpi.com" target="_blank" rel="noopener noreferrer"> Jobs at MDPI </a> </div> <div class="large-2 large-push-4 medium-3 small-6 columns" data-equalizer-watch="footer"> <h3> Guidelines </h3> <a href="/authors"> For Authors </a> <a href="/reviewers"> For Reviewers </a> <a href="/editors"> For Editors </a> <a href="/librarians"> For Librarians </a> <a href="/publishing_services"> For Publishers </a> <a href="/societies"> For Societies </a> <a href="/conference_organizers"> For Conference Organizers </a> </div> <div class="large-2 large-push-4 medium-3 small-6 columns"> <h3> MDPI Initiatives </h3> <a href="https://sciforum.net" target="_blank" rel="noopener noreferrer"> Sciforum </a> <a href="https://www.mdpi.com/books" target="_blank" rel="noopener noreferrer"> MDPI Books </a> <a href="https://www.preprints.org" target="_blank" rel="noopener noreferrer"> Preprints.org </a> <a href="https://www.scilit.net" target="_blank" rel="noopener noreferrer"> Scilit </a> <a href="https://sciprofiles.com?utm_source=mpdi.com&utm_medium=bottom_menu&utm_campaign=initiative" target="_blank" rel="noopener noreferrer"> SciProfiles </a> <a href="https://encyclopedia.pub" target="_blank" rel="noopener noreferrer"> Encyclopedia </a> <a href="https://jams.pub" target="_blank" rel="noopener noreferrer"> JAMS </a> <a href="/about/proceedings"> Proceedings Series </a> </div> <div class="large-2 large-push-4 medium-3 small-6 right-border-large-without columns UA_FooterFollowMDPI"> <h3> Follow MDPI </h3> <a href="https://www.linkedin.com/company/mdpi" target="_blank" rel="noopener noreferrer"> LinkedIn </a> <a href="https://www.facebook.com/MDPIOpenAccessPublishing" target="_blank" rel="noopener noreferrer"> Facebook </a> <a href="https://twitter.com/MDPIOpenAccess" target="_blank" rel="noopener noreferrer"> Twitter </a> </div> <div id="footer-subscribe" class="large-4 large-pull-8 medium-12 small-12 left-border-large columns"> <div class="footer-subscribe__container"> <img class="show-for-large-up" src="https://pub.mdpi-res.com/img/design/mdpi-pub-logo-white-small.png?71d18e5f805839ab?1732884643" alt="MDPI" title="MDPI Open Access Journals" style="height: 50px; margin-bottom: 10px;"> <form id="newsletter" method="POST" action="/subscribe"> <p> Subscribe to receive issue release notifications and newsletters from MDPI journals </p> <select multiple id="newsletter-journal" class="foundation-select" name="journals[]"> <option value="acoustics">Acoustics</option> <option value="amh">Acta Microbiologica Hellenica</option> <option value="actuators">Actuators</option> <option value="admsci">Administrative Sciences</option> <option value="adolescents">Adolescents</option> <option value="arm">Advances in Respiratory Medicine</option> <option value="aerobiology">Aerobiology</option> <option value="aerospace">Aerospace</option> <option value="agriculture">Agriculture</option> <option value="agriengineering">AgriEngineering</option> <option value="agrochemicals">Agrochemicals</option> <option value="agronomy">Agronomy</option> <option value="ai">AI</option> <option value="air">Air</option> <option value="algorithms">Algorithms</option> <option value="allergies">Allergies</option> <option value="alloys">Alloys</option> <option value="analytica">Analytica</option> <option value="analytics">Analytics</option> <option value="anatomia">Anatomia</option> <option value="anesthres">Anesthesia Research</option> <option value="animals">Animals</option> <option value="antibiotics">Antibiotics</option> <option value="antibodies">Antibodies</option> <option value="antioxidants">Antioxidants</option> <option value="applbiosci">Applied Biosciences</option> <option value="applmech">Applied Mechanics</option> <option value="applmicrobiol">Applied Microbiology</option> <option value="applnano">Applied Nano</option> <option value="applsci">Applied Sciences</option> <option value="asi">Applied System Innovation</option> <option value="appliedchem">AppliedChem</option> <option value="appliedmath">AppliedMath</option> <option value="aquacj">Aquaculture Journal</option> <option value="architecture">Architecture</option> <option value="arthropoda">Arthropoda</option> <option value="arts">Arts</option> <option value="astronomy">Astronomy</option> <option value="atmosphere">Atmosphere</option> <option value="atoms">Atoms</option> <option value="audiolres">Audiology Research</option> <option value="automation">Automation</option> <option value="axioms">Axioms</option> <option value="bacteria">Bacteria</option> <option value="batteries">Batteries</option> <option value="behavsci">Behavioral Sciences</option> <option value="beverages">Beverages</option> <option value="BDCC">Big Data and Cognitive Computing</option> <option value="biochem">BioChem</option> <option value="bioengineering">Bioengineering</option> <option value="biologics">Biologics</option> <option value="biology">Biology</option> <option value="blsf">Biology and Life Sciences Forum</option> <option value="biomass">Biomass</option> <option value="biomechanics">Biomechanics</option> <option value="biomed">BioMed</option> <option value="biomedicines">Biomedicines</option> <option value="biomedinformatics">BioMedInformatics</option> <option value="biomimetics">Biomimetics</option> <option value="biomolecules">Biomolecules</option> <option value="biophysica">Biophysica</option> <option value="biosensors">Biosensors</option> <option value="biotech">BioTech</option> <option value="birds">Birds</option> <option value="blockchains">Blockchains</option> <option value="brainsci">Brain Sciences</option> <option value="buildings">Buildings</option> <option value="businesses">Businesses</option> <option value="carbon">C</option> <option value="cancers">Cancers</option> <option value="cardiogenetics">Cardiogenetics</option> <option value="catalysts">Catalysts</option> <option value="cells">Cells</option> <option value="ceramics">Ceramics</option> <option value="challenges">Challenges</option> <option value="ChemEngineering">ChemEngineering</option> <option value="chemistry">Chemistry</option> <option value="chemproc">Chemistry Proceedings</option> <option value="chemosensors">Chemosensors</option> <option value="children">Children</option> <option value="chips">Chips</option> <option value="civileng">CivilEng</option> <option value="cleantechnol">Clean Technologies</option> <option value="climate">Climate</option> <option value="ctn">Clinical and Translational Neuroscience</option> <option value="clinbioenerg">Clinical Bioenergetics</option> <option value="clinpract">Clinics and Practice</option> <option value="clockssleep">Clocks & Sleep</option> <option value="coasts">Coasts</option> <option value="coatings">Coatings</option> <option value="colloids">Colloids and Interfaces</option> <option value="colorants">Colorants</option> <option value="commodities">Commodities</option> <option value="complications">Complications</option> <option value="compounds">Compounds</option> <option value="computation">Computation</option> <option value="csmf">Computer Sciences & Mathematics Forum</option> <option value="computers">Computers</option> <option value="condensedmatter">Condensed Matter</option> <option value="conservation">Conservation</option> <option value="constrmater">Construction Materials</option> <option value="cmd">Corrosion and Materials Degradation</option> <option value="cosmetics">Cosmetics</option> <option value="covid">COVID</option> <option value="crops">Crops</option> <option value="cryo">Cryo</option> <option value="cryptography">Cryptography</option> <option value="crystals">Crystals</option> <option value="cimb">Current Issues in Molecular Biology</option> <option value="curroncol">Current Oncology</option> <option value="dairy">Dairy</option> <option value="data">Data</option> <option value="dentistry">Dentistry Journal</option> <option value="dermato">Dermato</option> <option value="dermatopathology">Dermatopathology</option> <option value="designs">Designs</option> <option value="diabetology">Diabetology</option> <option value="diagnostics">Diagnostics</option> <option value="dietetics">Dietetics</option> <option value="digital">Digital</option> <option value="disabilities">Disabilities</option> <option value="diseases">Diseases</option> <option value="diversity">Diversity</option> <option value="dna">DNA</option> <option value="drones">Drones</option> <option value="ddc">Drugs and Drug Candidates</option> <option value="dynamics">Dynamics</option> <option value="earth">Earth</option> <option value="ecologies">Ecologies</option> <option value="econometrics">Econometrics</option> <option value="economies">Economies</option> <option value="education">Education Sciences</option> <option value="electricity">Electricity</option> <option value="electrochem">Electrochem</option> <option value="electronicmat">Electronic Materials</option> <option value="electronics">Electronics</option> <option value="ecm">Emergency Care and Medicine</option> <option value="encyclopedia">Encyclopedia</option> <option value="endocrines">Endocrines</option> <option value="energies">Energies</option> <option value="esa">Energy Storage and Applications</option> <option value="eng">Eng</option> <option value="engproc">Engineering Proceedings</option> <option value="entropy">Entropy</option> <option value="environsciproc">Environmental Sciences Proceedings</option> <option value="environments">Environments</option> <option value="epidemiologia">Epidemiologia</option> <option value="epigenomes">Epigenomes</option> <option value="ebj">European Burn Journal</option> <option value="ejihpe">European Journal of Investigation in Health, Psychology and Education</option> <option value="fermentation">Fermentation</option> <option value="fibers">Fibers</option> <option value="fintech">FinTech</option> <option value="fire">Fire</option> <option value="fishes">Fishes</option> <option value="fluids">Fluids</option> <option value="foods">Foods</option> <option value="forecasting">Forecasting</option> <option value="forensicsci">Forensic Sciences</option> <option value="forests">Forests</option> <option value="fossstud">Fossil Studies</option> <option value="foundations">Foundations</option> <option value="fractalfract">Fractal and Fractional</option> <option value="fuels">Fuels</option> <option value="future">Future</option> <option value="futureinternet">Future Internet</option> <option value="futurepharmacol">Future Pharmacology</option> <option value="futuretransp">Future Transportation</option> <option value="galaxies">Galaxies</option> <option value="games">Games</option> <option value="gases">Gases</option> <option value="gastroent">Gastroenterology Insights</option> <option value="gastrointestdisord">Gastrointestinal Disorders</option> <option value="gastronomy">Gastronomy</option> <option value="gels">Gels</option> <option value="genealogy">Genealogy</option> <option value="genes">Genes</option> <option value="geographies">Geographies</option> <option value="geohazards">GeoHazards</option> <option value="geomatics">Geomatics</option> <option value="geometry">Geometry</option> <option value="geosciences">Geosciences</option> <option value="geotechnics">Geotechnics</option> <option value="geriatrics">Geriatrics</option> <option value="glacies">Glacies</option> <option value="gucdd">Gout, Urate, and Crystal Deposition Disease</option> <option value="grasses">Grasses</option> <option value="hardware">Hardware</option> <option value="healthcare">Healthcare</option> <option value="hearts">Hearts</option> <option value="hemato">Hemato</option> <option value="hematolrep">Hematology Reports</option> <option value="heritage">Heritage</option> <option value="histories">Histories</option> <option value="horticulturae">Horticulturae</option> <option value="hospitals">Hospitals</option> <option value="humanities">Humanities</option> <option value="humans">Humans</option> <option value="hydrobiology">Hydrobiology</option> <option value="hydrogen">Hydrogen</option> <option value="hydrology">Hydrology</option> <option value="hygiene">Hygiene</option> <option value="immuno">Immuno</option> <option value="idr">Infectious Disease Reports</option> <option value="informatics">Informatics</option> <option value="information">Information</option> <option value="infrastructures">Infrastructures</option> <option value="inorganics">Inorganics</option> <option value="insects">Insects</option> <option value="instruments">Instruments</option> <option value="iic">Intelligent Infrastructure and Construction</option> <option value="ijerph">International Journal of Environmental Research and Public Health</option> <option value="ijfs">International Journal of Financial Studies</option> <option value="ijms">International Journal of Molecular Sciences</option> <option value="IJNS">International Journal of Neonatal Screening</option> <option value="ijpb">International Journal of Plant Biology</option> <option value="ijt">International Journal of Topology</option> <option value="ijtm">International Journal of Translational Medicine</option> <option value="ijtpp">International Journal of Turbomachinery, Propulsion and Power</option> <option value="ime">International Medical Education</option> <option value="inventions">Inventions</option> <option value="IoT">IoT</option> <option value="ijgi">ISPRS International Journal of Geo-Information</option> <option value="J">J</option> <option value="jal">Journal of Ageing and Longevity</option> <option value="jcdd">Journal of Cardiovascular Development and Disease</option> <option value="jcto">Journal of Clinical & Translational Ophthalmology</option> <option value="jcm">Journal of Clinical Medicine</option> <option value="jcs">Journal of Composites Science</option> <option value="jcp">Journal of Cybersecurity and Privacy</option> <option value="jdad">Journal of Dementia and Alzheimer's Disease</option> <option value="jdb">Journal of Developmental Biology</option> <option value="jeta">Journal of Experimental and Theoretical Analyses</option> <option value="jfb">Journal of Functional Biomaterials</option> <option value="jfmk">Journal of Functional Morphology and Kinesiology</option> <option value="jof">Journal of Fungi</option> <option value="jimaging">Journal of Imaging</option> <option value="jintelligence">Journal of Intelligence</option> <option value="jlpea">Journal of Low Power Electronics and Applications</option> <option value="jmmp">Journal of Manufacturing and Materials Processing</option> <option value="jmse">Journal of Marine Science and Engineering</option> <option value="jmahp">Journal of Market Access & Health Policy</option> <option value="jmp">Journal of Molecular Pathology</option> <option value="jnt">Journal of Nanotheranostics</option> <option value="jne">Journal of Nuclear Engineering</option> <option value="ohbm">Journal of Otorhinolaryngology, Hearing and Balance Medicine</option> <option value="jop">Journal of Parks</option> <option value="jpm">Journal of Personalized Medicine</option> <option value="jpbi">Journal of Pharmaceutical and BioTech Industry</option> <option value="jor">Journal of Respiration</option> <option value="jrfm">Journal of Risk and Financial Management</option> <option value="jsan">Journal of Sensor and Actuator Networks</option> <option value="joma">Journal of the Oman Medical Association</option> <option value="jtaer">Journal of Theoretical and Applied Electronic Commerce Research</option> <option value="jvd">Journal of Vascular Diseases</option> <option value="jox">Journal of Xenobiotics</option> <option value="jzbg">Journal of Zoological and Botanical Gardens</option> <option value="journalmedia">Journalism and Media</option> <option value="kidneydial">Kidney and Dialysis</option> <option value="kinasesphosphatases">Kinases and Phosphatases</option> <option value="knowledge">Knowledge</option> <option value="labmed">LabMed</option> <option value="laboratories">Laboratories</option> <option value="land">Land</option> <option value="languages">Languages</option> <option value="laws">Laws</option> <option value="life">Life</option> <option value="limnolrev">Limnological Review</option> <option value="lipidology">Lipidology</option> <option value="liquids">Liquids</option> <option value="literature">Literature</option> <option value="livers">Livers</option> <option value="logics">Logics</option> <option value="logistics">Logistics</option> <option value="lubricants">Lubricants</option> <option value="lymphatics">Lymphatics</option> <option value="make">Machine Learning and Knowledge Extraction</option> <option value="machines">Machines</option> <option value="macromol">Macromol</option> <option value="magnetism">Magnetism</option> <option value="magnetochemistry">Magnetochemistry</option> <option value="marinedrugs">Marine Drugs</option> <option value="materials">Materials</option> <option value="materproc">Materials Proceedings</option> <option value="mca">Mathematical and Computational Applications</option> <option value="mathematics">Mathematics</option> <option value="medsci">Medical Sciences</option> <option value="msf">Medical Sciences Forum</option> <option value="medicina">Medicina</option> <option value="medicines">Medicines</option> <option value="membranes">Membranes</option> <option value="merits">Merits</option> <option value="metabolites">Metabolites</option> <option value="metals">Metals</option> <option value="meteorology">Meteorology</option> <option value="methane">Methane</option> <option value="mps">Methods and Protocols</option> <option value="metrics">Metrics</option> <option value="metrology">Metrology</option> <option value="micro">Micro</option> <option value="microbiolres">Microbiology Research</option> <option value="micromachines">Micromachines</option> <option value="microorganisms">Microorganisms</option> <option value="microplastics">Microplastics</option> <option value="minerals">Minerals</option> <option value="mining">Mining</option> <option value="modelling">Modelling</option> <option value="mmphys">Modern Mathematical Physics</option> <option value="molbank">Molbank</option> <option value="molecules">Molecules</option> <option value="mti">Multimodal Technologies and Interaction</option> <option value="muscles">Muscles</option> <option value="nanoenergyadv">Nanoenergy Advances</option> <option value="nanomanufacturing">Nanomanufacturing</option> <option value="nanomaterials">Nanomaterials</option> <option value="ndt">NDT</option> <option value="network">Network</option> <option value="neuroglia">Neuroglia</option> <option value="neurolint">Neurology International</option> <option value="neurosci">NeuroSci</option> <option value="nitrogen">Nitrogen</option> <option value="ncrna">Non-Coding RNA</option> <option value="nursrep">Nursing Reports</option> <option value="nutraceuticals">Nutraceuticals</option> <option value="nutrients">Nutrients</option> <option value="obesities">Obesities</option> <option value="oceans">Oceans</option> <option value="onco">Onco</option> <option value="optics">Optics</option> <option value="oral">Oral</option> <option value="organics">Organics</option> <option value="organoids">Organoids</option> <option value="osteology">Osteology</option> <option value="oxygen">Oxygen</option> <option value="parasitologia">Parasitologia</option> <option value="particles">Particles</option> <option value="pathogens">Pathogens</option> <option value="pathophysiology">Pathophysiology</option> <option value="pediatrrep">Pediatric Reports</option> <option value="pets">Pets</option> <option value="pharmaceuticals">Pharmaceuticals</option> <option value="pharmaceutics">Pharmaceutics</option> <option value="pharmacoepidemiology">Pharmacoepidemiology</option> <option value="pharmacy">Pharmacy</option> <option value="philosophies">Philosophies</option> <option value="photochem">Photochem</option> <option value="photonics">Photonics</option> <option value="phycology">Phycology</option> <option value="physchem">Physchem</option> <option value="psf">Physical Sciences Forum</option> <option value="physics">Physics</option> <option value="physiologia">Physiologia</option> <option value="plants">Plants</option> <option value="plasma">Plasma</option> <option value="platforms">Platforms</option> <option value="pollutants">Pollutants</option> <option value="polymers">Polymers</option> <option value="polysaccharides">Polysaccharides</option> <option value="populations">Populations</option> <option value="poultry">Poultry</option> <option value="powders">Powders</option> <option value="proceedings">Proceedings</option> <option value="processes">Processes</option> <option value="prosthesis">Prosthesis</option> <option value="proteomes">Proteomes</option> <option value="psychiatryint">Psychiatry International</option> <option value="psychoactives">Psychoactives</option> <option value="psycholint">Psychology International</option> <option value="publications">Publications</option> <option value="qubs">Quantum Beam Science</option> <option value="quantumrep">Quantum Reports</option> <option value="quaternary">Quaternary</option> <option value="radiation">Radiation</option> <option value="reactions">Reactions</option> <option value="realestate">Real Estate</option> <option value="receptors">Receptors</option> <option value="recycling">Recycling</option> <option value="rsee">Regional Science and Environmental Economics</option> <option value="religions">Religions</option> <option value="remotesensing">Remote Sensing</option> <option value="reports">Reports</option> <option value="reprodmed">Reproductive Medicine</option> <option value="resources">Resources</option> <option value="rheumato">Rheumato</option> <option value="risks">Risks</option> <option value="robotics">Robotics</option> <option value="ruminants">Ruminants</option> <option value="safety">Safety</option> <option value="sci">Sci</option> <option value="scipharm">Scientia Pharmaceutica</option> <option value="sclerosis">Sclerosis</option> <option value="seeds">Seeds</option> <option value="sensors">Sensors</option> <option value="separations">Separations</option> <option value="sexes">Sexes</option> <option value="signals">Signals</option> <option value="sinusitis">Sinusitis</option> <option value="smartcities">Smart Cities</option> <option value="socsci">Social Sciences</option> <option value="siuj">Société Internationale d’Urologie Journal</option> <option value="societies">Societies</option> <option value="software">Software</option> <option value="soilsystems">Soil Systems</option> <option value="solar">Solar</option> <option value="solids">Solids</option> <option value="spectroscj">Spectroscopy Journal</option> <option value="sports">Sports</option> <option value="standards">Standards</option> <option value="stats">Stats</option> <option value="stresses">Stresses</option> <option value="surfaces">Surfaces</option> <option value="surgeries">Surgeries</option> <option value="std">Surgical Techniques Development</option> <option value="sustainability">Sustainability</option> <option value="suschem">Sustainable Chemistry</option> <option value="symmetry">Symmetry</option> <option value="synbio">SynBio</option> <option value="systems">Systems</option> <option value="targets">Targets</option> <option value="taxonomy">Taxonomy</option> <option value="technologies">Technologies</option> <option value="telecom">Telecom</option> <option value="textiles">Textiles</option> <option value="thalassrep">Thalassemia Reports</option> <option value="therapeutics">Therapeutics</option> <option value="thermo">Thermo</option> <option value="timespace">Time and Space</option> <option value="tomography">Tomography</option> <option value="tourismhosp">Tourism and Hospitality</option> <option value="toxics">Toxics</option> <option value="toxins">Toxins</option> <option value="transplantology">Transplantology</option> <option value="traumacare">Trauma Care</option> <option value="higheredu">Trends in Higher Education</option> <option value="tropicalmed">Tropical Medicine and Infectious Disease</option> <option value="universe">Universe</option> <option value="urbansci">Urban Science</option> <option value="uro">Uro</option> <option value="vaccines">Vaccines</option> <option value="vehicles">Vehicles</option> <option value="venereology">Venereology</option> <option value="vetsci">Veterinary Sciences</option> <option value="vibration">Vibration</option> <option value="virtualworlds">Virtual Worlds</option> <option value="viruses">Viruses</option> <option value="vision">Vision</option> <option value="waste">Waste</option> <option value="water">Water</option> <option value="wild">Wild</option> <option value="wind">Wind</option> <option value="women">Women</option> <option value="world">World</option> <option value="wevj">World Electric Vehicle Journal</option> <option value="youth">Youth</option> <option value="zoonoticdis">Zoonotic Diseases</option> </select> <input name="email" type="email" placeholder="Enter your email address..." required="required" /> <button class="genericCaptcha button button--dark UA_FooterNewsletterSubscribeButton" type="submit">Subscribe</button> </form> </div> </div> </div> <div id="footer-copyright"> <div class="row"> <div class="columns large-6 medium-6 small-12 text-left"> © 1996-2024 MDPI (Basel, Switzerland) unless otherwise stated </div> <div class="columns large-6 medium-6 small-12 small-text-left medium-text-right large-text-right"> <a data-dropdown="drop-view-disclaimer" aria-controls="drop-view-disclaimer" aria-expanded="false" data-options="align:top; is_hover:true; hover_timeout:2000;"> Disclaimer </a> <div id="drop-view-disclaimer" class="f-dropdown label__btn__dropdown label__btn__dropdown--wide text-left" data-dropdown-content aria-hidden="true" tabindex="-1"> Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. </div> <a href="/about/terms-and-conditions"> Terms and Conditions </a> <a href="/about/privacy"> Privacy Policy </a> </div> </div> </div> </div> <div id="cookie-notification" class="js-allow-cookies" style="display: none;"> <div class="columns large-10 medium-10 small-12"> We use cookies on our website to ensure you get the best experience.<br class="show-for-medium-up"/> Read more about our cookies <a href="/about/privacy">here</a>. </div> <div class="columns large-2 medium-2 small-12 small-only-text-left text-right"> <a class="button button--default" href="/accept_cookies">Accept</a> </div> </div> </div> <div id="main-share-modal" class="reveal-modal reveal-modal-new reveal-modal-new--small" data-reveal aria-labelledby="modalTitle" aria-hidden="true" role="dialog"> <div class="row"> <div class="small-12 columns"> <h2 style="margin: 0;">Share Link</h2> </div> <div class="small-12 columns"> <div class="social-media-links UA_ShareModalLinks" style="text-align: left;"> <a href="/cdn-cgi/l/email-protection#39061f585449024a4c5b535c5a4d047f4b56541c0b09747d69701c0a781c0b091c0b0b781c0b097d40575854505a1c0b0978575855404a504a1c0b09565f1c0b096b58575d565455401c0b09764b505c574d5c5d1c0b097f4c575a4d505657585555401c0b097e4b585d5c5d1c0b097a584b5b56571c0b09775857564d4c5b5c4a1c0b7f7f505b5c4b146b5c50575f564b5a5c5d1c0b097a565449564a504d5c1c0b097558545057584d5c5d1c0b096a515c55554a1c0b094e504d511c0b097d505f5f5c4b5c574d1c0b097e5c56545c4d4b505c4a1f484c564d021f585449025b565d4004514d4d494a0316164e4e4e17545d4950175a565416080d0e0b0a0f0b1c0a781c09781c0978781c0b097d40575854505a1c0b0978575855404a504a1c0b09565f1c0b096b58575d565455401c0b09764b505c574d5c5d1c0b097f4c575a4d505657585555401c0b097e4b585d5c5d1c0b097a584b5b56571c0b09775857564d4c5b5c4a1c0b7f7f505b5c4b146b5c50575f564b5a5c5d1c0b097a565449564a504d5c1c0b097558545057584d5c5d1c0b096a515c55554a1c0b094e504d511c0b097d505f5f5c4b5c574d1c0b097e5c56545c4d4b505c4a33336d515c1c0b09494b5c4a5c574d1c0b094a4d4c5d401c0b095d5c5456574a4d4b584d5c4a1c0b094d515c1c0b095f4b5c5c1c0b094f505b4b584d5056571c0b095b5c51584f50564b1c0b09565f1c0b095a565449564a504d5c1c0b095558545057584d5c5d1c0b094a515c55554a1c0b094b5c50575f564b5a5c5d1c0b095b401c0b095b564d511c0b094b58575d565455401c0b09564b505c574d5c5d1c0b094a50575e555c144e5855555c5d1c0b095a584b5b56571c0b09575857564d4c5b5c4a1c0b091c0b016a6e7a776d4a1c0b001c0b0958575d1c0b095f4c575a4d505657585555401c0b095e4b585d5c5d1c0b095f505b5c4b4a171c0b096d515c1c0b094a515c55551c0b094a4d4b4c5a4d4c4b5c4a1c0b094e504d511c0b095d505f5f5c4b5c574d1c0b09494b50575a504958551c0b094b585d50501c0b09565f1c0b095a4c4b4f584d4c4b5c1c0b09584b5c1c0b095a56574a505d5c4b5c5d1c0b7a1c0b094a4c5a511c0b09584a1c0b095a405550575d4b505a58551c0b7a1c0b094a49515c4b505a58551c0b7a1c0b095c555550494d505a58551c7c0b1c01091c000a49584b585b565556505d1c0b094a515c55551c0b7a1c0b095140495c4b5b5655505a1c7c0b1c01091c000a49584b585b565556505d1c0b094a515c55551c0b7a1c0b0958575d1c0b094955584d5c171c0b096d515c1c0b094f56554c545c1c0b095f4b585a4d5056571c0b09565f1c0b094d515c1c0b095f505b5c4b4a1c0b0951584a1c0b09581c0b095550575c584b1c0b094f584b50584d5056571c0b09585556575e1c0b094d515c1c0b094a515c55551c0b094d51505a52575c4a4a1c0b095f4b56541c0b095558405c4b1c0b094d561c0b095558405c4b1c0b7a1c0b094e5150555c1c0b094d515c1c0b094f56554c545c1c0b095f4b585a4d5056571c0b09565f1c0b097a776d4a1c0b09504a1c0b095a56574a4d58574d1c0b0950571c0b095855551c0b094a515c55551c0b095558405c4b4a1c0b0958575d1c0b094c57505f564b5455401c0b095d504a4d4b505b4c4d5c5d171c0b096d515c1c0b095f505b5c4b144b5c50575f564b5a5c5d1c0b095c555c545c574d4a1c0b09584b5c1c0b095d504a4d4b505b4c4d5c5d1c0b094e504d511c0b094d514b5c5c1c0b095f4c575a4d5056574a1c0b094e51505a511c0b09584b5c1c0b096f145d504a4d4b505b4c4d5056571c0b7a1c0b0976145d504a4d4b505b4c4d5056571c0b7a1c0b0958575d1c0b0961145d504a4d4b505b4c4d5056571c0b0950571c0b09585d5d504d5056571c0b094d561c0b094d515c1c0b094c57505f564b541c0b095d504a4d4b505b4c4d505657171c0b09781c0b09574c545c4b505a58551c0b0958575855404a504a1c0b094e584a1c0b095a584b4b505c5d1c0b09564c4d1c0b094a404a4d5c54584d505a585555401c0b094d561c0b094f5855505d584d5c1c0b094d515c1c0b09494b5649564a5c5d1c0b094a56554c4d505657171c0b09781c0b09575c4e1c0b0958575855404d505a58551c0b094a56554c4d5056571c0b09504a1c0b09494b5c4a5c574d5c5d1c0b095b584a5c5d1c0b0956571c0b094d515c1c0b097e58555c4b5250571c0b095849494b56585a511c0b095f564b1c0b094a515c55554a1c0b0958575d1c0b09504a1c0b095c41495556504d5c5d1c0b094d561c0b095055554c4a4d4b584d5c1c0b094d515c1c0b0950575f554c5c575a5c1c0b09565f1c0b094a56545c1c0b095f585a4d564b4a1c0b0956571c0b094d515c1c0b095f4b5c5c1c0b094f505b4b584d5056571c0b095b5c51584f50564b1c0b09565f1c0b097a776d4a1c0b7f5f505b5c144b5c50575f564b5a5c5d1c0b095a565449564a504d5c1c0b091c0b017a776d4a1c0b7f7f146b7a1c0b001c0b095558545057584d5c5d1c0b094a515c55554a1c0b7a1c0b0950575a554c5d50575e1c0b094d515c1c0b095d504a4d4b505b4c4d5056574a1c0b0958575d1c0b094f56554c545c1c0b095f4b585a4d5056574a1c0b7a1c0b094f584b50564c4a1c0b095b564c575d584b406217171764" title="Email"> <i class="fa fa-envelope-square" style="font-size: 30px;"></i> </a> <a href="https://twitter.com/intent/tweet?text=A+Dynamic+Analysis+of+Randomly+Oriented+Functionally+Graded+Carbon+Nanotubes%2FFiber-Reinforced+Composite+Laminated+Shells+with+Different+Geometries&hashtags=mdpimathematics&url=https%3A%2F%2Fwww.mdpi.com%2F1472362&via=MathematicsMDPI" onclick="windowOpen(this.href,600,800); return false" title="Twitter" target="_blank" rel="noopener noreferrer"> <i class="fa fa-twitter-x-square" style="font-size: 30px;"></i> </a> <a href=" http://www.linkedin.com/shareArticle?mini=true&url=https%3A%2F%2Fwww.mdpi.com%2F1472362&title=A%20Dynamic%20Analysis%20of%20Randomly%20Oriented%20Functionally%20Graded%20Carbon%20Nanotubes%2FFiber-Reinforced%20Composite%20Laminated%20Shells%20with%20Different%20Geometries%26source%3Dhttps%3A%2F%2Fwww.mdpi.com%26summary%3DThe%20present%20study%20demonstrates%20the%20free%20vibration%20behavior%20of%20composite%20laminated%20shells%20reinforced%20by%20both%20randomly%20oriented%20single-walled%20carbon%20nanotubes%20%28SWCNTs%29%20and%20functionally%20graded%20fibers.%20The%20shell%20structures%20with%20different%20principal%20radii%20%5B...%5D" onclick="windowOpen(this.href,600,800); return false" title="LinkedIn" target="_blank" rel="noopener noreferrer"> <i class="fa fa-linkedin-square" style="font-size: 30px;"></i> </a> <a href="https://www.facebook.com/sharer.php?u=https://www.mdpi.com/1472362" title="facebook" target="_blank" rel="noopener noreferrer"> <i class="fa fa-facebook-square" style="font-size: 30px;"></i> </a> <a href="javascript:void(0);" title="Wechat" data-reveal-id="weixin-share-modal"> <i class="fa fa-weixin-square" style="font-size: 26px;"></i> </a> <a href="http://www.reddit.com/submit?url=https://www.mdpi.com/1472362" title="Reddit" target="_blank" rel="noopener noreferrer"> <i class="fa fa-reddit-square" style="font-size: 30px;"></i> </a> <a href="http://www.mendeley.com/import/?url=https://www.mdpi.com/1472362" title="Mendeley" target="_blank" rel="noopener noreferrer"> <i class="fa fa-mendeley-square" style="font-size: 30px;"></i> </a> <a href="http://www.citeulike.org/posturl?url=https://www.mdpi.com/1472362" title="CiteULike" target="_blank" rel="noopener noreferrer"> <i class="fa fa-citeulike-square" style="font-size: 30px;"></i> </a> </div> </div> <div class="small-9 columns"> <input id="js-clipboard-text" type="text" readonly value="https://www.mdpi.com/1472362" /> </div> <div class="small-3 columns text-left"> <a class="button button--color js-clipboard-copy" data-clipboard-target="#js-clipboard-text">Copy</a> </div> </div> <a class="close-reveal-modal" aria-label="Close"> <i class="material-icons">clear</i> </a> </div> <div id="weixin-share-modal" class="reveal-modal reveal-modal-new" data-reveal aria-labelledby="weixin-share-modal-title" aria-hidden="true" role="dialog"> <div class="row"> <div class="small-12 columns"> <h2 id="weixin-share-modal-title" style="margin: 0;">Share</h2> </div> <div class="small-12 columns"> <div class="weixin-qr-code-section"> <?xml version="1.0" standalone="no"?> <!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN" "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd"> <svg width="300" height="300" version="1.1" xmlns="http://www.w3.org/2000/svg"> <desc>https://www.mdpi.com/1472362</desc> <g id="elements" fill="black" stroke="none"> <rect x="0" y="0" width="12" height="12" /> <rect x="12" y="0" width="12" height="12" /> <rect x="24" y="0" width="12" height="12" /> <rect x="36" y="0" width="12" height="12" /> <rect x="48" y="0" width="12" height="12" /> <rect x="60" y="0" width="12" height="12" /> <rect x="72" y="0" width="12" height="12" /> <rect x="120" y="0" width="12" height="12" /> <rect x="168" y="0" width="12" height="12" /> <rect x="180" y="0" width="12" height="12" /> <rect x="216" y="0" width="12" height="12" /> <rect x="228" y="0" width="12" height="12" /> <rect x="240" y="0" width="12" height="12" /> <rect x="252" y="0" width="12" height="12" /> <rect x="264" y="0" width="12" height="12" /> <rect x="276" y="0" width="12" height="12" /> <rect x="288" y="0" width="12" height="12" /> <rect x="0" y="12" width="12" height="12" /> <rect x="72" y="12" width="12" height="12" /> <rect x="108" y="12" width="12" height="12" /> <rect x="180" y="12" width="12" height="12" /> <rect x="216" y="12" width="12" height="12" /> <rect x="288" y="12" width="12" height="12" /> <rect x="0" y="24" width="12" height="12" /> <rect x="24" y="24" width="12" height="12" /> <rect x="36" y="24" width="12" height="12" /> <rect x="48" y="24" width="12" height="12" /> <rect x="72" y="24" width="12" height="12" /> <rect x="96" y="24" width="12" height="12" /> <rect x="132" y="24" width="12" height="12" /> <rect x="180" y="24" width="12" height="12" /> <rect x="216" y="24" width="12" height="12" /> <rect x="240" y="24" width="12" height="12" /> <rect x="252" y="24" width="12" height="12" /> <rect x="264" y="24" width="12" height="12" /> <rect x="288" y="24" width="12" height="12" /> <rect x="0" y="36" width="12" height="12" /> <rect x="24" y="36" width="12" height="12" /> <rect x="36" y="36" width="12" height="12" /> <rect x="48" y="36" width="12" height="12" /> <rect x="72" y="36" width="12" height="12" /> <rect x="108" y="36" width="12" height="12" /> <rect x="168" y="36" width="12" height="12" /> <rect x="216" y="36" width="12" height="12" /> <rect x="240" y="36" width="12" height="12" /> <rect x="252" y="36" width="12" height="12" /> <rect x="264" y="36" width="12" height="12" /> <rect x="288" y="36" width="12" height="12" /> <rect x="0" y="48" width="12" height="12" /> <rect x="24" y="48" width="12" height="12" /> <rect x="36" y="48" width="12" height="12" /> <rect x="48" y="48" width="12" height="12" /> <rect x="72" y="48" width="12" height="12" /> <rect x="108" y="48" width="12" height="12" /> <rect x="144" y="48" width="12" height="12" /> <rect x="156" y="48" width="12" height="12" /> <rect x="168" y="48" width="12" height="12" /> <rect x="180" y="48" width="12" height="12" /> <rect x="192" y="48" width="12" height="12" /> <rect x="216" y="48" width="12" height="12" /> <rect x="240" y="48" width="12" height="12" /> <rect x="252" y="48" width="12" height="12" /> <rect x="264" y="48" width="12" height="12" /> <rect x="288" y="48" width="12" height="12" /> <rect x="0" y="60" width="12" height="12" /> <rect x="72" y="60" width="12" height="12" /> <rect x="120" y="60" width="12" height="12" /> <rect x="132" y="60" width="12" height="12" /> <rect x="168" y="60" width="12" height="12" /> <rect x="180" y="60" width="12" height="12" /> <rect x="192" y="60" width="12" height="12" /> <rect x="216" y="60" width="12" height="12" /> <rect x="288" y="60" width="12" height="12" /> <rect x="0" y="72" width="12" height="12" /> <rect x="12" y="72" width="12" height="12" /> <rect x="24" y="72" width="12" height="12" /> <rect x="36" y="72" width="12" height="12" /> <rect x="48" y="72" width="12" height="12" /> <rect x="60" y="72" width="12" height="12" /> <rect x="72" y="72" width="12" height="12" /> <rect x="96" y="72" width="12" height="12" /> <rect x="120" y="72" width="12" height="12" /> <rect x="144" y="72" width="12" height="12" /> <rect x="168" y="72" width="12" height="12" /> <rect x="192" y="72" width="12" height="12" /> <rect x="216" y="72" width="12" height="12" /> <rect x="228" y="72" width="12" height="12" /> <rect x="240" y="72" width="12" height="12" /> <rect x="252" y="72" width="12" height="12" /> <rect x="264" y="72" width="12" height="12" /> <rect x="276" y="72" width="12" height="12" /> <rect x="288" y="72" width="12" height="12" /> <rect x="96" y="84" width="12" height="12" /> <rect x="132" y="84" width="12" height="12" /> <rect x="156" y="84" width="12" height="12" /> <rect x="168" y="84" width="12" height="12" /> <rect x="180" y="84" width="12" height="12" /> <rect x="0" y="96" width="12" height="12" /> <rect x="12" y="96" width="12" height="12" /> <rect x="24" y="96" width="12" height="12" /> <rect x="48" y="96" width="12" height="12" /> <rect x="60" y="96" width="12" height="12" /> <rect x="72" y="96" width="12" height="12" /> <rect x="84" y="96" width="12" height="12" /> <rect x="96" y="96" width="12" height="12" /> <rect x="144" y="96" width="12" height="12" /> <rect x="156" y="96" width="12" height="12" /> <rect x="180" y="96" width="12" height="12" /> <rect x="192" y="96" width="12" height="12" /> <rect x="204" y="96" width="12" height="12" /> <rect x="216" y="96" width="12" height="12" /> <rect x="264" y="96" width="12" height="12" /> <rect x="24" y="108" width="12" height="12" /> <rect x="96" y="108" width="12" height="12" /> <rect x="108" y="108" width="12" height="12" /> <rect x="132" y="108" width="12" height="12" /> <rect x="192" y="108" width="12" height="12" /> <rect x="216" y="108" width="12" height="12" /> <rect x="288" y="108" width="12" height="12" /> <rect x="0" y="120" width="12" height="12" /> <rect x="12" y="120" width="12" height="12" /> <rect x="24" y="120" width="12" height="12" /> <rect x="48" y="120" width="12" height="12" /> <rect x="60" y="120" width="12" height="12" /> <rect x="72" y="120" width="12" height="12" /> <rect x="96" y="120" width="12" height="12" /> <rect x="120" y="120" width="12" height="12" /> <rect x="144" y="120" width="12" height="12" /> <rect x="192" y="120" width="12" height="12" /> <rect x="204" y="120" width="12" height="12" /> <rect x="216" y="120" width="12" height="12" /> <rect x="228" y="120" width="12" height="12" /> <rect x="264" y="120" width="12" height="12" /> <rect x="276" y="120" width="12" height="12" /> <rect x="288" y="120" width="12" height="12" /> <rect x="24" y="132" width="12" height="12" /> <rect x="48" y="132" width="12" height="12" /> <rect x="84" y="132" width="12" height="12" /> <rect x="108" y="132" width="12" height="12" /> <rect x="120" y="132" width="12" height="12" /> <rect x="132" y="132" width="12" height="12" /> <rect x="156" y="132" width="12" height="12" /> <rect x="168" y="132" width="12" height="12" /> <rect x="180" y="132" width="12" height="12" /> <rect x="216" y="132" width="12" height="12" /> <rect x="276" y="132" width="12" height="12" /> <rect x="0" y="144" width="12" height="12" /> <rect x="72" y="144" width="12" height="12" /> <rect x="84" y="144" width="12" height="12" /> <rect x="120" y="144" width="12" height="12" /> <rect x="132" y="144" width="12" height="12" /> <rect x="144" y="144" width="12" height="12" /> <rect x="156" y="144" width="12" height="12" /> <rect x="168" y="144" width="12" height="12" /> <rect x="204" y="144" width="12" height="12" /> <rect x="216" y="144" width="12" height="12" /> <rect x="228" y="144" width="12" height="12" /> <rect x="252" y="144" width="12" height="12" /> <rect x="276" y="144" width="12" height="12" /> <rect x="288" y="144" width="12" height="12" /> <rect x="60" y="156" width="12" height="12" /> <rect x="84" y="156" width="12" height="12" /> <rect x="120" y="156" width="12" height="12" /> <rect x="132" y="156" width="12" height="12" /> <rect x="156" y="156" width="12" height="12" /> <rect x="192" y="156" width="12" height="12" /> <rect x="216" y="156" width="12" height="12" /> <rect x="252" y="156" width="12" height="12" /> <rect x="288" y="156" width="12" height="12" /> <rect x="0" y="168" width="12" height="12" /> <rect x="24" y="168" width="12" height="12" /> <rect x="36" y="168" width="12" height="12" /> <rect x="60" y="168" width="12" height="12" /> <rect x="72" y="168" width="12" height="12" /> <rect x="108" y="168" width="12" height="12" /> <rect x="132" y="168" width="12" height="12" /> <rect x="144" y="168" width="12" height="12" /> <rect x="168" y="168" width="12" height="12" /> <rect x="192" y="168" width="12" height="12" /> <rect x="204" y="168" width="12" height="12" /> <rect x="216" y="168" width="12" height="12" /> <rect x="228" y="168" width="12" height="12" /> <rect x="264" y="168" width="12" height="12" /> <rect x="276" y="168" width="12" height="12" /> <rect x="288" y="168" width="12" height="12" /> <rect x="12" y="180" width="12" height="12" /> <rect x="36" y="180" width="12" height="12" /> <rect x="48" y="180" width="12" height="12" /> <rect x="60" y="180" width="12" height="12" /> <rect x="84" y="180" width="12" height="12" /> <rect x="120" y="180" width="12" height="12" /> <rect x="132" y="180" width="12" height="12" /> <rect x="144" y="180" width="12" height="12" /> <rect x="156" y="180" width="12" height="12" /> <rect x="180" y="180" width="12" height="12" /> <rect x="192" y="180" width="12" height="12" /> <rect x="216" y="180" width="12" height="12" /> <rect x="240" y="180" width="12" height="12" /> <rect x="276" y="180" width="12" height="12" /> <rect x="0" y="192" width="12" height="12" /> <rect x="48" y="192" width="12" height="12" /> <rect x="60" y="192" width="12" height="12" /> <rect x="72" y="192" width="12" height="12" /> <rect x="120" y="192" width="12" height="12" /> <rect x="192" y="192" width="12" height="12" /> <rect x="204" y="192" width="12" height="12" /> <rect x="216" y="192" width="12" height="12" /> <rect x="228" y="192" width="12" height="12" /> <rect x="240" y="192" width="12" height="12" /> <rect x="252" y="192" width="12" height="12" /> <rect x="96" y="204" width="12" height="12" /> <rect x="120" y="204" width="12" height="12" /> <rect x="144" y="204" width="12" height="12" /> <rect x="156" y="204" width="12" height="12" /> <rect x="180" y="204" width="12" height="12" /> <rect x="192" y="204" width="12" height="12" /> <rect x="240" y="204" width="12" height="12" /> <rect x="252" y="204" width="12" height="12" /> <rect x="276" y="204" width="12" height="12" /> <rect x="288" y="204" width="12" height="12" /> <rect x="0" y="216" width="12" height="12" /> <rect x="12" y="216" width="12" height="12" /> <rect x="24" y="216" width="12" height="12" /> <rect x="36" y="216" width="12" height="12" /> <rect x="48" y="216" width="12" height="12" /> <rect x="60" y="216" width="12" height="12" /> <rect x="72" y="216" width="12" height="12" /> <rect x="96" y="216" width="12" height="12" /> <rect x="120" y="216" width="12" height="12" /> <rect x="156" y="216" width="12" height="12" /> <rect x="180" y="216" width="12" height="12" /> <rect x="192" y="216" width="12" height="12" /> <rect x="216" y="216" width="12" height="12" /> <rect x="240" y="216" width="12" height="12" /> <rect x="252" y="216" width="12" height="12" /> <rect x="276" y="216" width="12" height="12" /> <rect x="288" y="216" width="12" height="12" /> <rect x="0" y="228" width="12" height="12" /> <rect x="72" y="228" width="12" height="12" /> <rect x="96" y="228" width="12" height="12" /> <rect x="108" y="228" width="12" height="12" /> <rect x="132" y="228" width="12" height="12" /> <rect x="168" y="228" width="12" height="12" /> <rect x="192" y="228" width="12" height="12" /> <rect x="240" y="228" width="12" height="12" /> <rect x="252" y="228" width="12" height="12" /> <rect x="276" y="228" width="12" height="12" /> <rect x="0" y="240" width="12" height="12" /> <rect x="24" y="240" width="12" height="12" /> <rect x="36" y="240" width="12" height="12" /> <rect x="48" y="240" width="12" height="12" /> <rect x="72" y="240" width="12" height="12" /> <rect x="96" y="240" width="12" height="12" /> <rect x="108" y="240" width="12" height="12" /> <rect x="144" y="240" width="12" height="12" /> <rect x="168" y="240" width="12" height="12" /> <rect x="192" y="240" width="12" height="12" /> <rect x="204" y="240" width="12" height="12" /> <rect x="216" y="240" width="12" height="12" /> <rect x="228" y="240" width="12" height="12" /> <rect x="240" y="240" width="12" height="12" /> <rect x="252" y="240" width="12" height="12" /> <rect x="276" y="240" width="12" height="12" /> <rect x="288" y="240" width="12" height="12" /> <rect x="0" y="252" width="12" height="12" /> <rect x="24" y="252" width="12" height="12" /> <rect x="36" y="252" width="12" height="12" /> <rect x="48" y="252" width="12" height="12" /> <rect x="72" y="252" width="12" height="12" /> <rect x="108" y="252" width="12" height="12" /> <rect x="120" y="252" width="12" height="12" /> <rect x="144" y="252" width="12" height="12" /> <rect x="156" y="252" width="12" height="12" /> <rect x="168" y="252" width="12" height="12" /> <rect x="204" y="252" width="12" height="12" /> <rect x="228" y="252" width="12" height="12" /> <rect x="240" y="252" width="12" height="12" /> <rect x="252" y="252" width="12" height="12" /> <rect x="264" y="252" width="12" height="12" /> <rect x="0" y="264" width="12" height="12" /> <rect x="24" y="264" width="12" height="12" /> <rect x="36" y="264" width="12" height="12" /> <rect x="48" y="264" width="12" height="12" /> <rect x="72" y="264" width="12" height="12" /> <rect x="96" y="264" width="12" height="12" /> <rect x="168" y="264" width="12" height="12" /> <rect x="180" y="264" width="12" height="12" /> <rect x="240" y="264" width="12" height="12" /> <rect x="288" y="264" width="12" height="12" /> <rect x="0" y="276" width="12" height="12" /> <rect x="72" y="276" width="12" height="12" /> <rect x="96" y="276" width="12" height="12" /> <rect x="120" y="276" width="12" height="12" /> <rect x="144" y="276" width="12" height="12" /> <rect x="156" y="276" width="12" height="12" /> <rect x="180" y="276" width="12" height="12" /> <rect x="192" y="276" width="12" height="12" /> <rect x="216" y="276" width="12" height="12" /> <rect x="240" y="276" width="12" height="12" /> <rect x="252" y="276" width="12" height="12" /> <rect x="276" y="276" width="12" height="12" /> <rect x="0" y="288" width="12" height="12" /> <rect x="12" y="288" width="12" height="12" /> <rect x="24" y="288" width="12" height="12" /> <rect x="36" y="288" width="12" height="12" /> <rect x="48" y="288" width="12" height="12" /> <rect x="60" y="288" width="12" height="12" /> <rect x="72" y="288" width="12" height="12" /> <rect x="96" y="288" width="12" height="12" /> <rect x="108" y="288" width="12" height="12" /> <rect x="168" y="288" width="12" height="12" /> <rect x="180" y="288" width="12" height="12" /> <rect x="192" y="288" width="12" height="12" /> <rect x="228" y="288" width="12" height="12" /> <rect x="276" y="288" width="12" height="12" /> <rect x="288" y="288" width="12" height="12" /> </g> </svg> </div> </div> </div> <a class="close-reveal-modal" aria-label="Close"> <i class="material-icons">clear</i> </a> </div> <a href="#" class="back-to-top"><span class="show-for-medium-up">Back to Top</span><span class="show-for-small">Top</span></a> <script data-cfasync="false" src="/cdn-cgi/scripts/5c5dd728/cloudflare-static/email-decode.min.js"></script><script src="https://pub.mdpi-res.com/assets/js/modernizr-2.8.3.min.js?5227e0738f7f421d?1732884643"></script> <script src="https://pub.mdpi-res.com/assets/js/jquery-1.12.4.min.js?4f252523d4af0b47?1732884643"></script> <script src="https://pub.mdpi-res.com/assets/js/foundation-5.5.3.min.js?6b2ec41c18b29054?1732884643"></script> <script src="https://pub.mdpi-res.com/assets/js/foundation-5.5.3.equalizer.min.js?0f6c549b75ec554c?1732884643"></script> <script src="https://pub.mdpi-res.com/assets/js/jquery.multiselect.js?0edd3998731d1091?1732884643"></script> <script src="https://pub.mdpi-res.com/assets/js/jquery.cycle2.min.js?63413052928f97ee?1732884643"></script> <script> // old browser fix - this way the console log rows won't throw (silent) errors in browsers not supporting console log if (!window.console) window.console = {}; if (!window.console.log) window.console.log = function () { }; var currentJournalNameSystem = "mathematics"; $(document).ready(function() { $('select.foundation-select').multiselect({ search: true, minHeight: 130, maxHeight: 130, }); $(document).foundation({ orbit: { timer_speed: 4000, }, reveal: { animation: 'fadeAndPop', animation_speed: 100, } }); $(".chosen-select").each(function(element) { var maxSelected = (undefined !== $(this).data('maxselectedoptions') ? $(this).data('maxselectedoptions') : 100); $(this).on('chosen:ready', function(event, data) { var select = $(data.chosen.form_field); if (select.attr('id') === 'journal-browser-volume') { $(data.chosen.dropdown).addClass('UI_JournalBrowser_Volume_Options'); } if (select.attr('id') === 'journal-browser-issue') { $(data.chosen.dropdown).addClass('UI_JournalBrowser_Issue_Options'); } }).chosen({ display_disabled_options: false, disable_search_threshold: 7, max_selected_options: maxSelected, width: "100%" }); }); $(".toEncode").each(function(e) { var oldHref = $(this).attr("href"); var newHref = oldHref.replace('.botdefense.please.enable.javascript.','@'); $(this).attr("href", newHref); if (!$(this).hasClass("emailCaptcha")) { $(this).html(newHref.replace('mailto:', '')); } $(this).removeClass("visibility-hidden"); }); $(document).on('opened.fndtn.reveal', '[data-reveal]', function() { $(document).foundation('equalizer', 'reflow'); }); // fix the images that have tag height / width defined // otherwise the default foundation styles overwrite the tag definitions $("img").each(function() { if ($(this).attr('width') != undefined || $(this).attr('height') != undefined) { $(this).addClass("img-fixed"); } }); $("#basic_search, #advanced_search").submit(function(e) { var searchArguments = false; $(this).find("input,select").not("#search,.search-button").each(function() { if (undefined === $(this).val() || "" === $(this).val()) { $(this).attr('name', null); } else { $(this).attr('name'); searchArguments = true; } }); if (!searchArguments) { window.location = $(this).attr('action'); return false; } }); $(".hide-show-desktop-option").click(function(e) { e.preventDefault(); var parentDiv = $(this).closest("div"); $.ajax({ url: $(this).attr('href'), success: function(msg) { parentDiv.removeClass().hide(); } }); }); $(".generic-toggleable-header").click(function(e) { $(this).toggleClass("active"); $(this).next(".generic-toggleable-content").toggleClass("active"); }); /* * handle whole row as a link if the row contains only one visible link */ $("table.new tr").hover(function() { if ($(this).find("td:visible a").length == 1) { $(this).addClass("single-link"); } }, function() { $(this).removeClass("single-link"); }); $("table.new:not(.table-of-tables)").on("click", "tr.single-link", function(e) { var target = $(e.target); if (!e.ctrlKey && !target.is("a")) { $(this).find("td:visible a")[0].click(); } }); $(document).on("click", ".custom-accordion-for-small-screen-link", function(e) { if ($(this).closest("#basic_search").length > 0) { if ($(".search-container__advanced").first().is(":visible")) { openAdvanced() } } if (Foundation.utils.is_small_only()) { if ($(this).hasClass("active")) { $(this).removeClass("active"); $(this).next(".custom-accordion-for-small-screen-content").addClass("show-for-medium-up"); } else { $(this).addClass("active"); $(this).next(".custom-accordion-for-small-screen-content").removeClass("show-for-medium-up"); $(document).foundation('orbit', 'reflow'); } } if (undefined !== $(this).data("callback")) { var customCallback = $(this).data("callback"); func = window[customCallback]; func(); } }); $(document).on("click", ".js-open-small-search", function(e) { e.preventDefault(); $(this).toggleClass("active").closest(".tab-bar").toggleClass("active"); $(".search-container").toggleClass("hide-for-small-down"); }); $(document).on("click", ".js-open-menu", function(e) { $(".search-container").addClass("hide-for-small-down"); }); $(window).on('resize', function() { recalculate_main_browser_position(); recalculate_responsive_moving_containers(); }); updateSearchLabelVisibilities(); recalculate_main_browser_position(); recalculate_responsive_moving_containers(); if (window.document.documentMode == 11) { $("<link/>", { rel: "stylesheet", type: "text/css", href: "https://fonts.googleapis.com/icon?family=Material+Icons"}).appendTo("head"); } }); function recalculate_main_browser_position() { if (Foundation.utils.is_small_only()) { if ($("#js-main-top-container").parent("#js-large-main-top-container").length > 0) { $("#js-main-top-container").appendTo($("#js-small-main-top-container")); } } else { if ($("#js-main-top-container").parent("#js-small-main-top-container").length > 0) { $("#js-main-top-container").appendTo($("#js-large-main-top-container")); } } } function recalculate_responsive_moving_containers() { $(".responsive-moving-container.large").each(function() { var previousParent = $(".responsive-moving-container.active[data-id='"+$(this).data("id")+"']"); var movingContent = previousParent.html(); if (Foundation.utils.is_small_only()) { var currentParent = $(".responsive-moving-container.small[data-id='"+$(this).data("id")+"']"); } else if (Foundation.utils.is_medium_only()) { var currentParent = $(".responsive-moving-container.medium[data-id='"+$(this).data("id")+"']"); } else { var currentParent = $(".responsive-moving-container.large[data-id='"+$(this).data("id")+"']"); } if (previousParent.attr("class") !== currentParent.attr("class")) { currentParent.html(movingContent); previousParent.html(); currentParent.addClass("active"); previousParent.removeClass("active"); } }); } // cookies allowed is checked from a) local storage and b) from server separately so that the footer bar doesn't // get included in the custom page caches function checkCookiesAllowed() { var cookiesEnabled = localStorage.getItem("mdpi_cookies_enabled"); if (null === cookiesEnabled) { $.ajax({ url: "/ajax_cookie_value/mdpi_cookies_accepted", success: function(data) { if (data.value) { localStorage.setItem("mdpi_cookies_enabled", true); checkDisplaySurvey(); } else { $(".js-allow-cookies").show(); } } }); } else { checkDisplaySurvey(); } } function checkDisplaySurvey() { } window.addEventListener('CookiebotOnAccept', function (e) { var CookieDate = new Date; if (Cookiebot.consent.preferences) { CookieDate.setFullYear(CookieDate.getFullYear() + 1); document.cookie = "mdpi_layout_type_v2=mobile; path=/; expires=" + CookieDate.toUTCString() + ";"; $(".js-toggle-desktop-layout-link").css("display", "inline-block"); } }, false); window.addEventListener('CookiebotOnDecline', function (e) { if (!Cookiebot.consent.preferences) { $(".js-toggle-desktop-layout-link").hide(); if ("" === "desktop") { window.location = "/toggle_desktop_layout_cookie"; } } }, false); var hash = $(location).attr('hash'); if ("#share" === hash) { if (1 === $("#main-share-modal").length) { $('#main-share-modal').foundation('reveal', 'open'); } } </script> <script src="https://pub.mdpi-res.com/assets/js/lib.js?f8d3d71b3a772f9d?1732884643"></script> <script src="https://pub.mdpi-res.com/assets/js/mdpi.js?c267ce58392b15da?1732884643"></script> <script>var banners_url = 'https://serve.mdpi.com';</script> <script type='text/javascript' src='https://pub.mdpi-res.com/assets/js/ifvisible.min.js?c621d19ecb761212?1732884643'></script> <script src="https://pub.mdpi-res.com/assets/js/xmltohtml/affix.js?ac4ea55275297c15?1732884643"></script> <script src="https://pub.mdpi-res.com/assets/js/clipboard.min.js?3f3688138a1b9fc4?1732884643"></script> <script type="text/javascript"> $(document).ready(function() { var helpFunctions = $(".middle-column__help__fixed"); var leftColumnAffix = $(".left-column__fixed"); var middleColumn = $("#middle-column"); var clone = null; helpFunctions.affix({ offset: { top: function() { return middleColumn.offset().top - 8 - (Foundation.utils.is_medium_only() ? 30 : 0); }, bottom: function() { return $("#footer").innerHeight() + 74 + (Foundation.utils.is_medium_only() ? 0 : 0); } } }); if (leftColumnAffix.length > 0) { clone = leftColumnAffix.clone(); clone.addClass("left-column__fixed__affix"); clone.insertBefore(leftColumnAffix); clone.css('width', leftColumnAffix.outerWidth() + 50); clone.affix({ offset: { top: function() { return leftColumnAffix.offset().top - 30 - (Foundation.utils.is_medium_only() ? 50 : 0); }, bottom: function() { return $("#footer").innerHeight() + 92 + (Foundation.utils.is_medium_only() ? 0 : 0); } } }); } $(window).on("resize", function() { if (clone !== null) { clone.css('width', leftColumnAffix.outerWidth() + 50); } }); new ClipboardJS('.js-clipboard-copy'); }); </script> <script src="https://pub.mdpi-res.com/assets/js/jquery-ui-1.13.2.min.js?1e2047978946a1d2?1732884643"></script> <script src="https://pub.mdpi-res.com/assets/js/slick.min.js?d5a61c749e44e471?1732884643"></script> <script> $(document).ready(function() { $(".link-article-menu").click(function(e) { e.preventDefault(); $(this).find('span').toggle(); $(this).next("div").toggleClass("active"); }); $(".js-similarity-related-articles").click(function(e) { e.preventDefault(); if ('' !== $('#recommended-articles-modal').attr('data-url')) { $('#recommended-articles-modal').foundation('reveal', 'open', $('#recommended-articles-modal').attr('data-url')); } }); $.ajax({ url: "/article/736181/similarity-related/show-link", success: function(result) { if (result.show) { $('#recommended-articles-modal').attr('data-url', result.link); $('.js-article-similarity-container').show(); } } }); $(document).on('opened.fndtn.reveal', '[data-reveal]', function() { var modal = $(this); if (modal.attr('id') === "author-biographies-modal") { modal.find('.multiple-items').slick({ slidesToShow: 1, nextArrow: '<a class="slick-next" href="#"><i class="material-icons">chevron_right</i></a>', prevArrow: '<a class="slick-prev" href="#"><i class="material-icons">chevron_left</i></a>', slidesToScroll: 1, draggable: false, }); modal.find('.multiple-items').slick('refresh'); } }); }); </script> <script> $(document).ready(function() { $(document).on('keyup', function (e) { if (e.keyCode == 27) { var hElem = $(this).find(".annotator-adder"); if (hElem.length){ hElem.css({'visibility':'hidden'}); } else { document.querySelector("hypothesis-adder").shadowRoot.querySelector(".annotator-adder").style.visibility = "hidden"; } } }); }); </script> <script> window.hypothesisConfig = function () { return { sidebarAppUrl: 'https://commenting.mdpi.com/app.html', showHighlights: 'whenSidebarOpen' , openSidebar: false , assetRoot: 'https://commentingres.mdpi.com/hypothesis', services: [{ apiUrl: 'https://commenting.mdpi.com/api/', authority: 'mdpi', grantToken: '', doi: '10.3390/math10030408' }], }; }; </script> <script async id="hypothesis_frame"></script> <script type="text/javascript"> if (-1 !== window.location.href.indexOf("?src=")) { window.history.replaceState({}, '', `${location.pathname}`); } $(document).ready(function() { var scifeedCounter = 0; var search = window.location.search; var mathjaxReady = false; // late image file loading $("img[data-lsrc]").each(function() { $(this).attr("src", $(this).data("lsrc")); }); // late mathjax initialization var head = document.getElementsByTagName("head")[0]; var script = document.createElement("script"); script.type = "text/x-mathjax-config"; script[(window.opera ? "innerHTML" : "text")] = "MathJax.Hub.processSectionDelay = 0;\n" + "MathJax.Hub.Config({\n" + " \"menuSettings\": {\n" + " CHTMLpreview: false\n" + " },\n" + " \"CHTML-preview\":{\n" + " disabled: true\n" + " },\n" + " \"HTML-CSS\": {\n" + " scale: 90,\n" + " availableFonts: [],\n" + " preferredFont: null,\n" + " preferredFonts: null,\n" + " webFont:\"Gyre-Pagella\",\n" + " imageFont:'TeX',\n" + " undefinedFamily:\"'Arial Unicode MS',serif\",\n" + " linebreaks: { automatic: false }\n" + " },\n" + " \"TeX\": {\n" + " extensions: ['noErrors.js'],\n" + " noErrors: {\n" + " inlineDelimiters: [\"\",\"\"],\n" + " multiLine: true,\n" + " style: {\n" + " 'font-size': '90%',\n" + " 'text-align': 'left',\n" + " 'color': 'black',\n" + " 'padding': '1px 3px',\n" + " 'border': '1px solid'\n" + " }\n" + " }\n" + " }\n" + "});\n" + "MathJax.Hub.Register.StartupHook('End', function() {\n" + " refreshMathjaxWidths();\n" + " mathjaxReady = true;\n" + "});\n" + "MathJax.Hub.Startup.signal.Interest(function (message) {\n" + " if (message == 'End') {\n" + " var hypoLink = document.getElementById('hypothesis_frame');\n" + " if (null !== hypoLink) {\n" + " hypoLink.setAttribute('src', 'https://commenting.mdpi.com/embed.js');\n" + " }\n" + " }\n" + "});"; head.appendChild(script); script = document.createElement("script"); script.type = "text/javascript"; script.src = "https://pub.mdpi-res.com/bundles/mathjax/MathJax.js?config=TeX-AMS-MML_HTMLorMML"; head.appendChild(script); // article version checker if (0 === search.indexOf('?type=check_update&version=')) { $.ajax({ url: "/2227-7390/10/3/408" + "/versioncheck" + search, success: function(result) { $(".js-check-update-container").html(result); } }); } $('#feed_option').click(function() { // tracker if ($('#scifeed_clicked').length<1) { $(this).append('<span style="display:none" id="scifeed_clicked">done</span>'); } $('#feed_data').toggle('slide', { direction: 'up'}, '1000'); // slideToggle(700); OR toggle(700) $("#scifeed_error_msg").html('').hide(); $("#scifeed_notice_msg").html('').hide(); }); $('#feed_option').click(function(event) { setTimeout(function(){ var captchaSection = $("#captchaSection"); captchaSection.removeClass('ui-helper-hidden').find('input').prop('disabled', false); // var img = captchaSection.find('img'); // img.attr('src', img.data('url') + "?" + (new Date()).getTime()); // $(".captcha_reload").trigger("click"); var img = document.getElementById('gregwar_captcha_scifeed'); img.src = '/generate-captcha/gcb_captcha?n=' + (new Date()).getTime(); },800); }); $(document).on('click', '.split_feeds', function() { var name = $( this ).attr('name'); var flag = 1 - ($(this).is(":checked")*1); $('.split_feeds').each(function (index) { if ($( this ).attr('name') !== name) { $(this)[0].checked = flag; } }); }); $(document).on('click', '#scifeed_submit, #scifeed_submit1', function(event) { event.preventDefault(); $(".captcha_reload").trigger("click"); $("#scifeed_error_msg").html(""); $("#scifeed_error_msg").hide(); }); $(document).on('click', '.subscription_toggle', function(event) { if ($(this).val() === 'Create SciFeed' && $('#scifeed_hidden_flag').length>0) { event.preventDefault(); // alert('Here there would be a captcha because user is not logged in'); var captchaSection = $("#captchaSection"); if (captchaSection.hasClass('ui-helper-hidden')) { captchaSection.removeClass('ui-helper-hidden').find('input').prop('disabled', false); var img = captchaSection.find('img'); img.attr('src', img.data('url') + "?" + (new Date()).getTime()); $("#reloadCaptcha").trigger("click"); } } }); $(document).on('click', '.scifeed_msg', function(){ $(this).hide(); }); $(document).on('click', '.article-scilit-search', function(e) { e.preventDefault(); var data = $(".article-scilit-search-data").val(); var dataArray = data.split(';').map(function(keyword) { return "(\"" + keyword.trim() + "\")"; }); var searchQuery = dataArray.join(" OR "); var searchUrl = encodeURI("https://www.scilit.net/articles/search?q="+ searchQuery + "&advanced=1&highlight=1"); var win = window.open(searchUrl, '_blank'); if (win) { win.focus(); } else { window.location(searchUrl); } }); display_stats(); citedCount(); follow_goto(); // Select the node that will be observed for mutations const targetNodes = document.getElementsByClassName('hypothesis-count-container'); // Options for the observer (which mutations to observe) const config = { attributes: false, childList: true, subtree: false }; // Callback function to execute when mutations are observed const callback = function(mutationList, observer) { for(const mutation of mutationList) { if (mutation.type === 'childList') { let node = $(mutation.target); if (parseInt(node.html()) > 0) { node.show(); } } } }; // Create an observer instance linked to the callback function const observer = new MutationObserver(callback); // Start observing the target node for configured mutations for(const targetNode of targetNodes) { observer.observe(targetNode, config); } // Select the node that will be observed for mutations const mathjaxTargetNode = document.getElementById('middle-column'); // Callback function to execute when mutations are observed const mathjaxCallback = function(mutationList, observer) { if (mathjaxReady && typeof(MathJax) !== 'undefined') { refreshMathjaxWidths(); } }; // Create an observer instance linked to the callback function const mathjaxObserver = new ResizeObserver(mathjaxCallback); // Start observing the target node for configured mutations mathjaxObserver.observe(mathjaxTargetNode); }); /* END $(document).ready */ function refreshMathjaxWidths() { let width = ($('.html-body').width()*0.9) + "px"; $('.MathJax_Display').css('max-width', width); $('.MJXc-display').css('max-width', width); } function sendScifeedFrom(form) { if (!$('#scifeed_email').val().trim()) { // empty email alert('Please, provide an email for subscribe to this scifeed'); return false; } else if (!$('#captchaSection').hasClass('ui-helper-hidden') && !$('#captchaSection').find('input').val().trim()) { // empty captcha alert('Please, fill the captcha field.'); return false; } else if( ((($('#scifeed_form').find('input:checkbox:checked').length)-($('#split_feeds:checked').length))<1) || ($('#scifeed_kwd_txt').length < 0 && !$('#scifeed_kwd_txt').val().trim()) || ($('#scifeed_author_txt').length<0 &&!$('#scifeed_author_txt').val().trim()) ) { alert('You did not select anything to subscribe'); return false; } else if(($('#scifeed_form').find('input:checkbox:checked').length)-($('#split_feeds2:checked').length)<1){ alert("You did not select anything to subscribe"); return false; } else { var url = $('#scifeed_subscribe_url').html(); var formData = $(form).serializeArray(); $.post(url, formData).done(function (data) { if (JSON.parse(data)) { $('.scifeed_msg').hide(); var res = JSON.parse(data); var successFeeds = 0; var errorFeeds = 0; if (res) { $('.scifeed_msg').html(''); $.each(res, function (index, val) { if (val) { if (val.error) { errorFeeds++; $("#scifeed_error_msg").append(index+' - '+val.error+'<br>'); } if (val.notice) // for successful feed creation { successFeeds++; // $("#scifeed_notice_msg").append(index+' - '+val.notice+'<br>'); $("#scifeed_notice_msg").append('<li>'+index+'</li>'); } } }); if (successFeeds>0) { text = $('#scifeed_notice_msg').html(); text = 'The following feed'+(successFeeds>1?'s have':' has')+ ' been sucessfully created:<br><ul>'+ text + '</ul>' +($('#scifeed_hidden_flag').length>0 ? 'You are not logged in, so you probably need to validate '+ (successFeeds>1?'them':' it')+'.<br>' :'' ) +'Please check your email'+(successFeeds>1?'s':'')+' for more details.'; //(successFeeds>1?' for each of them':'')+'.<br>'; $("#scifeed_notice_msg").html(text); $("#scifeed_notice_msg").show(); } if (errorFeeds>0) { $("#scifeed_error_msg").show();; } } $("#feed_data").hide(); } }); } } function follow_goto() { var hashStr = location.hash.replace("#",""); if(typeof hashStr !== 'undefined') { if( hashStr == 'supplementary') { document.getElementById('suppl_id').scrollIntoView(); } if( hashStr == 'citedby') { document.getElementById('cited_id').scrollIntoView(); } } } function cited() { $("#framed_div").toggle('fast', function(){ if ($(this).css('display') != 'none') { var loaded = document.getElementById("loaded"); if(loaded.innerHTML == "No") { // Load Xref result var container = document.getElementById("framed_div"); // This replace the content container.innerHTML = "<img src=\"https://pub.mdpi-res.com/img/loading_circle.gif?9a82694213036313?1732884643\" height=\"20\" width=\"20\" alt=\"Processing...\" style=\"vertical-align:middle; margin-right:0.6em;\">"; var url = "/citedby/10.3390%252Fmath10030408/154"; $.post(url, function(result) { if (result.success) { container.innerHTML = result.view; } loaded.innerHTML = "Yes"; }); } } return true; // for not going at the beginning of the page... }) return true; // for not going at the beginning of the page... } function detect_device() { // Added by Bastien (18/08/2014): based on the http://detectmobilebrowsers.com/ detector var check = false; (function(a){if(/(android|bb\d+|meego).+mobile|avantgo|bada\/|blackberry|blazer|compal|elaine|fennec|hiptop|iemobile|ip(hone|od)|iris|kindle|lge |maemo|midp|mmp|mobile.+firefox|netfront|opera m(ob|in)i|palm( os)?|phone|p(ixi|re)\/|plucker|pocket|psp|series(4|6)0|symbian|treo|up\.(browser|link)|vodafone|wap|windows (ce|phone)|xda|xiino/i.test(a)||/1207|6310|6590|3gso|4thp|50[1-6]i|770s|802s|a wa|abac|ac(er|oo|s\-)|ai(ko|rn)|al(av|ca|co)|amoi|an(ex|ny|yw)|aptu|ar(ch|go)|as(te|us)|attw|au(di|\-m|r |s )|avan|be(ck|ll|nq)|bi(lb|rd)|bl(ac|az)|br(e|v)w|bumb|bw\-(n|u)|c55\/|capi|ccwa|cdm\-|cell|chtm|cldc|cmd\-|co(mp|nd)|craw|da(it|ll|ng)|dbte|dc\-s|devi|dica|dmob|do(c|p)o|ds(12|\-d)|el(49|ai)|em(l2|ul)|er(ic|k0)|esl8|ez([4-7]0|os|wa|ze)|fetc|fly(\-|_)|g1 u|g560|gene|gf\-5|g\-mo|go(\.w|od)|gr(ad|un)|haie|hcit|hd\-(m|p|t)|hei\-|hi(pt|ta)|hp( i|ip)|hs\-c|ht(c(\-| |_|a|g|p|s|t)|tp)|hu(aw|tc)|i\-(20|go|ma)|i230|iac( |\-|\/)|ibro|idea|ig01|ikom|im1k|inno|ipaq|iris|ja(t|v)a|jbro|jemu|jigs|kddi|keji|kgt( |\/)|klon|kpt |kwc\-|kyo(c|k)|le(no|xi)|lg( g|\/(k|l|u)|50|54|\-[a-w])|libw|lynx|m1\-w|m3ga|m50\/|ma(te|ui|xo)|mc(01|21|ca)|m\-cr|me(rc|ri)|mi(o8|oa|ts)|mmef|mo(01|02|bi|de|do|t(\-| |o|v)|zz)|mt(50|p1|v )|mwbp|mywa|n10[0-2]|n20[2-3]|n30(0|2)|n50(0|2|5)|n7(0(0|1)|10)|ne((c|m)\-|on|tf|wf|wg|wt)|nok(6|i)|nzph|o2im|op(ti|wv)|oran|owg1|p800|pan(a|d|t)|pdxg|pg(13|\-([1-8]|c))|phil|pire|pl(ay|uc)|pn\-2|po(ck|rt|se)|prox|psio|pt\-g|qa\-a|qc(07|12|21|32|60|\-[2-7]|i\-)|qtek|r380|r600|raks|rim9|ro(ve|zo)|s55\/|sa(ge|ma|mm|ms|ny|va)|sc(01|h\-|oo|p\-)|sdk\/|se(c(\-|0|1)|47|mc|nd|ri)|sgh\-|shar|sie(\-|m)|sk\-0|sl(45|id)|sm(al|ar|b3|it|t5)|so(ft|ny)|sp(01|h\-|v\-|v )|sy(01|mb)|t2(18|50)|t6(00|10|18)|ta(gt|lk)|tcl\-|tdg\-|tel(i|m)|tim\-|t\-mo|to(pl|sh)|ts(70|m\-|m3|m5)|tx\-9|up(\.b|g1|si)|utst|v400|v750|veri|vi(rg|te)|vk(40|5[0-3]|\-v)|vm40|voda|vulc|vx(52|53|60|61|70|80|81|83|85|98)|w3c(\-| )|webc|whit|wi(g |nc|nw)|wmlb|wonu|x700|yas\-|your|zeto|zte\-/i.test(a.substr(0,4)))check = true})(navigator.userAgent||navigator.vendor||window.opera); return check; } function display_stats(){ $("#article_stats_div").toggle(); return false; } /* * Cited By Scopus */ function citedCount(){ $("#framed_div_cited_count").toggle('fast', function(){ if ($(this).css('display') != 'none') { var loaded = document.getElementById("loaded_cite_count"); // to load only once the result! if(loaded.innerHTML == "No") { // Load Xref result var d = document.getElementById("framed_div_cited_count"); // This replace the content d.innerHTML = "<img src=\"https://pub.mdpi-res.com/img/loading_circle.gif?9a82694213036313?1732884643\" height=\"20\" width=\"20\" alt=\"Processing...\" style=\"vertical-align:middle; margin-right:0.6em;\">"; $.ajax({ method : "POST", url : "/cite-count/10.3390%252Fmath10030408", success : function(data) { if (data.succ) { d.innerHTML = data.view; loaded.innerHTML = "Yes"; follow_goto(); } } }); } } // end else return true; // for not going at the beginning of the page... }) return true; // for not going at the beginning of the page... } </script><script type="text/javascript" src="https://pub.mdpi-res.com/assets/js/third-party/highcharts/highcharts.js?bdd06f45e34c33df?1732884643"></script><script type="text/javascript" src="https://pub.mdpi-res.com/assets/js/third-party/highcharts/modules/exporting.js?944dc938d06de3a8?1732884643"></script><script type="text/javascript" defer="defer"> var advancedStatsData; var selectedStatsType = "abstract"; $(function(){ var countWrapper = $('#counts-wrapper'); $('#author_stats_id #type_links a').on('click', function(e) { e.preventDefault(); selectedStatsType = $(this).data('type'); $('#article_advanced_stats').vectorMap('set', 'values', advancedStatsData[selectedStatsType]); $('#advanced_stats_max').html(advancedStatsData[selectedStatsType].max); $('#type_links a').removeClass('active'); $(this).addClass('active'); }); $.get('/2227-7390/10/3/408/stats', function (result) { if (!result.success) { return; } // process article metrics part in left column var viewNumber = countWrapper.find(".view-number"); viewNumber.html(result.metrics.views); viewNumber.parent().toggleClass("count-div--grey", result.metrics.views == 0); var downloadNumber = countWrapper.find(".download-number"); downloadNumber.html(result.metrics.downloads); downloadNumber.parent().toggleClass("count-div--grey", result.metrics.downloads == 0); var citationsNumber = countWrapper.find(".citations-number"); citationsNumber.html(result.metrics.citations); citationsNumber.parent().toggleClass("count-div--grey", result.metrics.citations == 0); if (result.metrics.views > 0 || result.metrics.downloads > 0 || result.metrics.citations > 0) { countWrapper.find("#js-counts-wrapper__views, #js-counts-wrapper__downloads").addClass("visible").show(); if (result.metrics.citations > 0) { countWrapper.find('.citations-number').html(result.metrics.citations).show(); countWrapper.find("#js-counts-wrapper__citations").addClass("visible").show(); } else { countWrapper.find("#js-counts-wrapper__citations").remove(); } $("[data-id='article-counters']").removeClass("hidden"); } if (result.metrics.altmetrics_score > 0) { $("#js-altmetrics-donut").show(); } // process view chart in main column var jsondata = result.chart; var series = new Array(); $.each(jsondata.elements, function(i, element) { var dataValues = new Array(); $.each(element.values, function(i, value) { dataValues.push(new Array(value.tip, value.value)); }); series[i] = {name: element.text, data:dataValues}; }); Highcharts.setOptions({ chart: { style: { fontFamily: 'Arial,sans-serif' } } }); $('#article_stats_swf').highcharts({ chart: { type: 'line', width: $("#tabs").width() //* 0.91 }, credits: { enabled: false }, exporting: { enabled: true }, title: { text: jsondata.title.text, x: -20 //center }, xAxis: { categories: jsondata.x_axis.labels.labels, offset: jsondata.x_axis.offset, labels:{ step: jsondata.x_axis.labels.steps, rotation: 30 } }, yAxis: { max: jsondata.y_axis.max, min: jsondata.y_axis.min, offset: jsondata.y_axis.offset, labels: { steps: jsondata.y_axis.steps }, title: { enabled: false } }, tooltip: { formatter: function (){ return this.key.replace("#val#", this.y); } }, legend: { align: 'top', itemDistance: 50 }, series: series }); }); $('#supplement_link').click(function() { document.getElementById('suppl_id').scrollIntoView(); }); $('#stats_link').click(function() { document.getElementById('stats_id').scrollIntoView(); }); // open mol viewer for molbank special supplementary files $('.showJmol').click(function(e) { e.preventDefault(); var jmolModal = $("#jmolModal"); var url = "/article/736181/jsmol_viewer/__supplementary_id__"; url = url.replace(/__supplementary_id__/g, $(this).data('index')); $('#jsmol-content').attr('src', url); jmolModal.find(".content").html($(this).data('description')); jmolModal.foundation("reveal", "open"); }); }); !function() { "use strict"; function e(e) { try { if ("undefined" == typeof console) return; "error"in console ? console.error(e) : console.log(e) } catch (e) {} } function t(e) { return d.innerHTML = '<a href="' + e.replace(/"/g, """) + '"></a>', d.childNodes[0].getAttribute("href") || "" } function n(n, c) { var o = ""; var k = parseInt(n.substr(c + 4, 2), 16); for (var i = c; i < n.length; i += 2) { if (i != c + 4) { var s = parseInt(n.substr(i, 2), 16) ^ k; o += String.fromCharCode(s); } } try { o = decodeURIComponent(escape(o)); } catch (error) { console.error(error); } return t(o); } function c(t) { for (var r = t.querySelectorAll("a"), c = 0; c < r.length; c++) try { var o = r[c] , a = o.href.indexOf(l); a > -1 && (o.href = "mailto:" + n(o.href, a + l.length)) } catch (i) { e(i) } } function o(t) { for (var r = t.querySelectorAll(u), c = 0; c < r.length; c++) try { var o = r[c] , a = o.parentNode , i = o.getAttribute(f); if (i) { var l = n(i, 0) , d = document.createTextNode(l); a.replaceChild(d, o) } } catch (h) { e(h) } } function a(t) { for (var r = t.querySelectorAll("template"), n = 0; n < r.length; n++) try { i(r[n].content) } catch (c) { e(c) } } function i(t) { try { c(t), o(t), a(t) } catch (r) { e(r) } } var l = "/cnd-cgi/l/email-protection#" , u = ".__cf_email__" , f = "data-cfemail" , d = document.createElement("div"); i(document), function() { var e = document.currentScript || document.scripts[document.scripts.length - 1]; e.parentNode.removeChild(e) }() }(); </script><script type="text/javascript"> function setCookie(cname, cvalue, ctime) { ctime = (typeof ctime === 'undefined') ? 10*365*24*60*60*1000 : ctime; // default => 10 years var d = new Date(); d.setTime(d.getTime() + ctime); // ==> 1 hour = 60*60*1000 var expires = "expires="+d.toUTCString(); document.cookie = cname + "=" + cvalue + "; " + expires +"; path=/"; } function getCookie(cname) { var name = cname + "="; var ca = document.cookie.split(';'); for(var i=0; i<ca.length; i++) { var c = ca[i]; while (c.charAt(0)==' ') c = c.substring(1); if (c.indexOf(name) == 0) return c.substring(name.length, c.length); } return ""; } </script><script type="text/javascript" src="https://d1bxh8uas1mnw7.cloudfront.net/assets/embed.js"></script><script> $(document).ready(function() { if ($("#js-similarity-related-data").length > 0) { $.ajax({ url: '/article/736181/similarity-related', success: function(response) { $("#js-similarity-related-data").html(response); $("#js-related-articles-menu").show(); $(document).foundation('tab', 'reflow'); MathJax.Hub.Queue(["Typeset", MathJax.Hub]); } }); } }); </script><link rel="stylesheet" href="https://pub.mdpi-res.com/assets/css/jquery-ui-1.10.4.custom.min.css?80647d88647bf347?1732884643"><link rel="stylesheet" href="https://pub.mdpi-res.com/assets/css/magnific-popup.min.css?04d343e036f8eecd?1732884643"><script type="text/javascript" src="https://pub.mdpi-res.com/assets/js/magnific-popup.min.js?2be3d9e7dc569146?1732884643"></script><script> $(function() { $(".js-show-more-academic-editors").on("click", function(e) { e.preventDefault(); $(this).hide(); $(".academic-editor-container").removeClass("hidden"); }); }); </script> <link rel="stylesheet" href="https://pub.mdpi-res.com/assets/css/vmap/jqvmap.min.css?126a06688aa11c13?1732884643"> <script src="https://pub.mdpi-res.com/assets/js/vmap/jquery.vmap.min.js?935f68d33bdd88a1?1732884643"></script> <script src="https://pub.mdpi-res.com/assets/js/vmap/jquery.vmap.world.js?16677403c0e1bef1?1732884643"></script> <script> function updateSlick() { $('.multiple-items').slick('setPosition'); } $(document).ready(function() { $('.multiple-items').slick({ slidesToShow: 1, nextArrow: '<a class="slick-next" href="#"><i class="material-icons">chevron_right</i></a>', prevArrow: '<a class="slick-prev" href="#"><i class="material-icons">chevron_left</i></a>', slidesToScroll: 1, responsive: [ { breakpoint: 1024, settings: { slidesToShow: 1, slidesToScroll: 1, } }, { breakpoint: 600, settings: { slidesToShow: 1, slidesToScroll: 1, } }, { breakpoint: 480, settings: { slidesToShow: 1, slidesToScroll: 1, } } ] }); $('.multiple-items').show(); $(document).on('click', '.reviewReportSelector', function(e) { let path = $(this).attr('data-path'); handleReviews(path, $(this)); }); $(document).on('click', '.viewReviewReports', function(e) { let versionOne = $('#versionTab_1'); if (!versionOne.hasClass('activeTab')) { let path = $(this).attr('data-path'); handleReviews(path, versionOne); } location.href = "#reviewReports"; }); $(document).on('click', '.reviewersResponse, .authorResponse', function(e) { let version = $(this).attr('data-version'); let targetVersion = $('#versionTab_' + version); if (!targetVersion.hasClass('activeTab')) { let path = targetVersion.attr('data-path'); handleReviews(path, targetVersion); } location.href = $(this).attr('data-link'); }); $(document).on('click', '.tab', function (e) { e.preventDefault(); $('.tab').removeClass('activeTab'); $(this).addClass('activeTab') $('.tab').each(function() { $(this).closest('.tab-title').removeClass('active'); }); $(this).closest('.tab-title').addClass('active') }); }); function handleReviews(path, target) { $.ajax({ url: path, context: this, success: function (data) { $('.activeTab').removeClass('activeTab'); target.addClass('activeTab'); $('#reviewSection').html(data.view); }, error: function (xhr, ajaxOptions, thrownError) { console.log(xhr.status); console.log(thrownError); } }); } </script> <script src="https://pub.mdpi-res.com/assets/js/xmltohtml/affix.js?v1?1732884643"></script> <script src="https://pub.mdpi-res.com/assets/js/xmltohtml/storage.js?e9b262d3a3476d25?1732884643"></script> <script src="https://pub.mdpi-res.com/assets/js/xmltohtml/jquery-scrollspy.js?09cbaec0dbb35a67?1732884643"></script> <script src="https://pub.mdpi-res.com/assets/js/xmltohtml/magnific-popup.js?4a09c18460afb26c?1732884643"></script> <script src="https://pub.mdpi-res.com/assets/js/xmltohtml/underscore.js?f893e294cde60c24?1732884643"></script> <script type="text/javascript"> $('document').ready(function(){ $("#left-column").addClass("show-for-large-up"); $("#middle-column").removeClass("medium-9").removeClass("left-bordered").addClass("medium-12"); $(window).on('resize scroll', function() { /* if ($('.button--drop-down').isInViewport($(".top-bar").outerHeight())) { */ if ($('.button--drop-down').isInViewport()) { $("#js-button-download").hide(); } else { $("#js-button-download").show(); } }); }); $(document).on('DOMNodeInserted', function(e) { var element = $(e.target); if (element.hasClass('menu') && element.hasClass('html-nav') ) { element.addClass("side-menu-ul"); } }); </script> <script src="https://pub.mdpi-res.com/assets/js/xmltohtml/articles.js?5118449d9ad8913a?1732884643"></script> <script> repositionOpenSideBar = function() { $('#left-column').addClass("show-for-large-up show-for-medium-up").show(); $('#middle-column').removeClass('large-12').removeClass('medium-12'); $('#middle-column').addClass('large-9'); } repositionCloseSideBar = function() { $('#left-column').removeClass("show-for-large-up show-for-medium-up").hide(); $('#middle-column').removeClass('large-9'); $('#middle-column').addClass('large-12').addClass('medium-12'); } </script> <!--[if lt IE 9]> <script src="https://pub.mdpi-res.com/assets/js/ie8/ie8.js?6eef8fcbc831f5bd?1732884643"></script> <script src="https://pub.mdpi-res.com/assets/js/ie8/jquery.xdomainrequest.min.js?a945caca315782b0?1732884643"></script> <![endif]--> <!-- Twitter universal website tag code --> <script type="text/plain" data-cookieconsent="marketing"> !function(e,t,n,s,u,a){e.twq||(s=e.twq=function(){s.exe?s.exe.apply(s,arguments):s.queue.push(arguments); },s.version='1.1',s.queue=[],u=t.createElement(n),u.async=!0,u.src='//static.ads-twitter.com/uwt.js', a=t.getElementsByTagName(n)[0],a.parentNode.insertBefore(u,a))}(window,document,'script'); // Insert Twitter Pixel ID and Standard Event data below twq('init','o2pip'); twq('track','PageView'); </script> <!-- End Twitter universal website tag code --> <script>(function(){function c(){var b=a.contentDocument||a.contentWindow.document;if(b){var d=b.createElement('script');d.innerHTML="window.__CF$cv$params={r:'8ec5cf5788e78965',t:'MTczMzI1MjUzNS4wMDAwMDA='};var a=document.createElement('script');a.nonce='';a.src='/cdn-cgi/challenge-platform/scripts/jsd/main.js';document.getElementsByTagName('head')[0].appendChild(a);";b.getElementsByTagName('head')[0].appendChild(d)}}if(document.body){var a=document.createElement('iframe');a.height=1;a.width=1;a.style.position='absolute';a.style.top=0;a.style.left=0;a.style.border='none';a.style.visibility='hidden';document.body.appendChild(a);if('loading'!==document.readyState)c();else if(window.addEventListener)document.addEventListener('DOMContentLoaded',c);else{var e=document.onreadystatechange||function(){};document.onreadystatechange=function(b){e(b);'loading'!==document.readyState&&(document.onreadystatechange=e,c())}}}})();</script></body> </html>