CINXE.COM

Search results for: boreholes

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: boreholes</title> <meta name="description" content="Search results for: boreholes"> <meta name="keywords" content="boreholes"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="boreholes" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="boreholes"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 60</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: boreholes</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">60</span> Vertical Electrical Sounding and Seismic Refraction Techniques in Resolving Groundwater Problems at Kujama Prison Farm, Kaduna, Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20D.%20Dogara">M. D. Dogara</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20G"> C. G</a>, <a href="https://publications.waset.org/abstracts/search?q=Afuwai"> Afuwai</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20O.%20Esther"> O. O. Esther</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20M.%20Dawai"> A. M. Dawai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> For two decades, the inhabitants of Kujama Prison Farm faced problems of water for domestic and agricultural purposes, even after the drilling of three deep boreholes. The scarcity of this groundwater resource led to the geophysical investigation of the basement complex of the prison farm. Two geophysical techniques, vertical electrical sounding and seismic refraction methods were deployed to unravel the cause(s) of the non-productivity of the three boreholes. The area of investigation covered was 400,000 m2 of ten profiles with six investigative points. In all, 60 vertical electrical points were sounded, and sixty sets of seismic refraction data were collected using the forward and reverse approach. From the geoelectric sections, it is suggestive that the area is underlain by three to five geoelectric layers of varying thicknesses and resistivities. The result of the interpreted seismic data revealed two geovelocity layers, with velocities ranging between 478m/s to 1666m/s for the first layer and 1166m/s to 7141m/s for the second layer. From the combined results of the two techniques, it was suggestive that all the three unproductive boreholes were drilled at points that were neither weathered nor fractured. It was, therefore, suggested that new boreholes should be drilled at areas identified with depressed bedrock topography having geophysical evidence of intense weathering and fracturing within the fresh basement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=groundwater" title="groundwater">groundwater</a>, <a href="https://publications.waset.org/abstracts/search?q=Kujama%20prison%20farm" title=" Kujama prison farm"> Kujama prison farm</a>, <a href="https://publications.waset.org/abstracts/search?q=kaduna" title=" kaduna"> kaduna</a>, <a href="https://publications.waset.org/abstracts/search?q=nigeria" title=" nigeria"> nigeria</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20refraction" title=" seismic refraction"> seismic refraction</a>, <a href="https://publications.waset.org/abstracts/search?q=vertical%20electrical%20sounding" title=" vertical electrical sounding "> vertical electrical sounding </a> </p> <a href="https://publications.waset.org/abstracts/118010/vertical-electrical-sounding-and-seismic-refraction-techniques-in-resolving-groundwater-problems-at-kujama-prison-farm-kaduna-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/118010.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">155</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">59</span> Water Quality at a Ventilated Improved Pit Latrine Sludge Entrenchment Site</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Babatunde%20Femi%20Bakare">Babatunde Femi Bakare </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Groundwater quality was evaluated at a site for three years after the site was used for entrenchment of Ventilated Improved Pit (VIP) latrine sludge. Analysis performed on the soil characteristics at the entrenchment site indicated that, the soils at the entrenchment site are predominantly sandy. Depth of the water table at the entrenchment site was found to be approximately five meters. Five monitoring boreholes were dug along the perimeter of the sludge trenches and water samples taken from these monitoring boreholes were analyzed for pH, conductivity, sodium ions, chloride ions, phosphate, nitrate, ammonia, and bacteriological analysis. The results obtained from the analysis conducted were compared with the South African Bureau of Standards for drinking water and it was found that the parameters analyzed falls below the specified range. The data obtained from this study indicate that, given the relatively high sludge loading rates, poor soil quality, and the duration of the groundwater quality monitoring, it is unlikely that contamination of groundwater at the entrenchment site will be a major concern. However, caution is advised in extrapolating these results to other locations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=boreholes" title="boreholes">boreholes</a>, <a href="https://publications.waset.org/abstracts/search?q=contamination" title=" contamination"> contamination</a>, <a href="https://publications.waset.org/abstracts/search?q=entrenchment" title=" entrenchment"> entrenchment</a>, <a href="https://publications.waset.org/abstracts/search?q=groundwater%20quality" title=" groundwater quality"> groundwater quality</a>, <a href="https://publications.waset.org/abstracts/search?q=VIP%20latrines" title=" VIP latrines"> VIP latrines</a> </p> <a href="https://publications.waset.org/abstracts/3677/water-quality-at-a-ventilated-improved-pit-latrine-sludge-entrenchment-site" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3677.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">410</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">58</span> Analyses of Extent of Effects of Siting Boreholes Nearby Open Landfill Dumpsite at Obosi Anambra Southeast of Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=George%20Obinna%20Akuaka">George Obinna Akuaka</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Solid waste disposal techniques in Nigeria pose an environmental threat to the environment and to nearby resident. The presence of microbial physical and chemical concentration in boreholes samples nearby dumpsite implies that groundwater is normally contaminated by leachate infiltration from an open landfill dumpsite. In this study, the physicochemical and microbial analyses of water samples from hand dug well in the site and boreholes were carried out around the active landfill and from different distances (50 m to 200 m). leachate samples collected were used to ascertain the effect or extent of contamination on the groundwater quality. A total of 5 leachate samples and 5 samples of groundwater were collected, and all samples were analyzed for various physical and chemical parameters according to the standard methods. These include pH, Electrical conductivity, Total dissolved solid, BOD, OD, Temperature, major cations such as Mg²+ Ca²+, Fe²+ Cu²+, major anions NO³-, Cl-,SO⁴- PO⁴-, Zn, Ar, Cd, Cr, Hg, Pb, Ni are the heavy metals and metalloids. The mean values of the physical and chemical parameters obtained from both sites were compared with the established of the World Health Organization (WHO). The leachate samples were found to be higher in the concentration of the results obtained than that of the boreholes water, and the recorded mean values of heavy metals were above approved standard minimum limits. The results indicated that mercury and copper were not found in all the borehole water samples. Microbial analyses showed that total heterotrophic bacteria mean count ranged from 10.6 X10⁷ cfu/ml to 2.04x10⁷cfu/ml and 9.5 X 10⁷ cfu/ml to 18.9 X 10⁷ cfu/ml in leachate and borehole samples respectively. It also revealed that almost at the bacteria isolated in the leachate were also found in the water samples. This results indicated that heavy pollution in all the samples with most physicochemical parameters and microbes showed traceable pollution, which occurred as a result of leachate infiltration into the ground water. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=physicochemical" title="physicochemical">physicochemical</a>, <a href="https://publications.waset.org/abstracts/search?q=landfill%20dumpsite" title=" landfill dumpsite"> landfill dumpsite</a>, <a href="https://publications.waset.org/abstracts/search?q=microbial" title=" microbial"> microbial</a>, <a href="https://publications.waset.org/abstracts/search?q=leachate" title=" leachate"> leachate</a>, <a href="https://publications.waset.org/abstracts/search?q=groundwater" title=" groundwater"> groundwater</a> </p> <a href="https://publications.waset.org/abstracts/136349/analyses-of-extent-of-effects-of-siting-boreholes-nearby-open-landfill-dumpsite-at-obosi-anambra-southeast-of-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/136349.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">204</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">57</span> Analysis of Aquifer Productivity in the Mbouda Area (West Cameroon)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Folong%20Tchoffo%20Marlyse%20Fabiola">Folong Tchoffo Marlyse Fabiola</a>, <a href="https://publications.waset.org/abstracts/search?q=Anaba%20Onana%20Achille%20Basile"> Anaba Onana Achille Basile</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Located in the western region of Cameroon, in the BAMBOUTOS department, the city of Mbouda belongs to the Pan-African basement. The water resources exploited in this region consist of surface water and groundwater from weathered and fractured aquifers within the same basement. To study the factors determining the productivity of aquifers in the Mbouda area, we adopted a methodology based on collecting data from boreholes drilled in the region, identifying different types of rocks, analyzing structures, and conducting geophysical surveys in the field. The results obtained allowed us to distinguish two main types of rocks: metamorphic rocks composed of amphibolites and migmatitic gneisses and igneous rocks, namely granodiorites and granites. Several types of structures were also observed, including planar structures (foliation and schistosity), folded structures (folds), and brittle structures (fractures and lineaments). A structural synthesis combines all these elements into three major phases of deformation. Phase D1 is characterized by foliation and schistosity, phase D2 is marked by shear planes and phase D3 is characterized by open and sealed fractures. The analysis of structures (fractures in outcrops, Landsat lineaments, subsurface structures) shows a predominance of ENE-WSW and WNW-ESE directions. Through electrical surveys and borehole data, we were able to identify the sequence of different geological formations. Four geo-electric layers were identified, each with a different electrical conductivity: conductive, semi-resistive, or resistive. The last conductive layer is considered a potentially aquiferous zone. The flow rates of the boreholes ranged from 2.6 to 12 m3/h, classified as moderate to high according to the CIEH classification. The boreholes were mainly located in basalts, which are mineralogically rich in ferromagnesian minerals. This mineral composition contributes to their high productivity as they are more likely to be weathered. The boreholes were positioned along linear structures or at their intersections. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mbouda" title="Mbouda">Mbouda</a>, <a href="https://publications.waset.org/abstracts/search?q=Pan-African%20basement" title=" Pan-African basement"> Pan-African basement</a>, <a href="https://publications.waset.org/abstracts/search?q=productivity" title=" productivity"> productivity</a>, <a href="https://publications.waset.org/abstracts/search?q=west-Cameroon" title=" west-Cameroon"> west-Cameroon</a> </p> <a href="https://publications.waset.org/abstracts/177744/analysis-of-aquifer-productivity-in-the-mbouda-area-west-cameroon" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/177744.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">62</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">56</span> A Hybrid System for Boreholes Soil Sample</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Ulvi%20Uzer">Ali Ulvi Uzer</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Data reduction is an important topic in the field of pattern recognition applications. The basic concept is the reduction of multitudinous amounts of data down to the meaningful parts. The Principal Component Analysis (PCA) method is frequently used for data reduction. The Support Vector Machine (SVM) method is a discriminative classifier formally defined by a separating hyperplane. In other words, given labeled training data, the algorithm outputs an optimal hyperplane which categorizes new examples. This study offers a hybrid approach that uses the PCA for data reduction and Support Vector Machines (SVM) for classification. In order to detect the accuracy of the suggested system, two boreholes taken from the soil sample was used. The classification accuracies for this dataset were obtained through using ten-fold cross-validation method. As the results suggest, this system, which is performed through size reduction, is a feasible system for faster recognition of dataset so our study result appears to be very promising. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=feature%20selection" title="feature selection">feature selection</a>, <a href="https://publications.waset.org/abstracts/search?q=sequential%20forward%20selection" title=" sequential forward selection"> sequential forward selection</a>, <a href="https://publications.waset.org/abstracts/search?q=support%20vector%20machines" title=" support vector machines"> support vector machines</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20sample" title=" soil sample"> soil sample</a> </p> <a href="https://publications.waset.org/abstracts/11096/a-hybrid-system-for-boreholes-soil-sample" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11096.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">455</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">55</span> Design of an Innovative Geothermal Heat Pump with a PCM Thermal Storage</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Emanuele%20Bonamente">Emanuele Bonamente</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrea%20Aquino"> Andrea Aquino</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study presents an innovative design for geothermal heat pumps with the goal of maximizing the system efficiency (COP - Coefficient of Performance), reducing the soil use (e.g. length/depth of geothermal boreholes) and initial investment costs. Based on experimental data obtained from a two-year monitoring of a working prototype implemented for a commercial building in the city of Perugia, Italy, an upgrade of the system is proposed and the performance is evaluated via CFD simulations. The prototype was designed to include a thermal heat storage (i.e. water), positioned between the boreholes and the heat pump, acting as a flywheel. Results from the monitoring campaign show that the system is still capable of providing the required heating and cooling energy with a reduced geothermal installation (approx. 30% of the standard length). In this paper, an optimization of the system is proposed, re-designing the heat storage to include phase change materials (PCMs). Two stacks of PCMs, characterized by melting temperatures equal to those needed to maximize the system COP for heating and cooling, are disposed within the storage. During the working cycle, the latent heat of the PCMs is used to heat (cool) the water used by the heat pump while the boreholes independently cool (heat) the storage. The new storage is approximately 10 times smaller and can be easily placed close to the heat pump in the technical room. First, a validation of the CFD simulation of the storage is performed against experimental data. The simulation is then used to test possible alternatives of the original design and it is finally exploited to evaluate the PCM-storage performance for two different configurations (i.e. single- and double-loop systems). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=geothermal%20heat%20pump" title="geothermal heat pump">geothermal heat pump</a>, <a href="https://publications.waset.org/abstracts/search?q=phase%20change%20materials%20%28PCM%29" title=" phase change materials (PCM)"> phase change materials (PCM)</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20storage" title=" energy storage"> energy storage</a>, <a href="https://publications.waset.org/abstracts/search?q=renewable%20energies" title=" renewable energies"> renewable energies</a> </p> <a href="https://publications.waset.org/abstracts/41063/design-of-an-innovative-geothermal-heat-pump-with-a-pcm-thermal-storage" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41063.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">314</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">54</span> Prediction of in situ Permeability for Limestone Rock Using Rock Quality Designation Index</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20T.%20Farid">Ahmed T. Farid</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammed%20Rizwan"> Muhammed Rizwan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Geotechnical study for evaluating soil or rock permeability is a highly important parameter. Permeability values for rock formations are more difficult for determination than soil formation as it is an effect of the rock quality and its fracture values. In this research, the prediction of in situ permeability of limestone rock formations was predicted. The limestone rock permeability was evaluated using Lugeon tests (in-situ packer permeability). Different sites which spread all over the Riyadh region of Saudi Arabia were chosen to conduct our study of predicting the in-situ permeability of limestone rock. Correlations were deducted between the values of in-situ permeability of the limestone rock with the value of the rock quality designation (RQD) calculated during the execution of the boreholes of the study areas. The study was performed for different ranges of RQD values measured during drilling of the sites boreholes. The developed correlations are recommended for the onsite determination of the in-situ permeability of limestone rock only. For the other sedimentary formations of rock, more studies are needed for predicting the actual correlations related to each type. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=In%20situ" title="In situ">In situ</a>, <a href="https://publications.waset.org/abstracts/search?q=packer" title=" packer"> packer</a>, <a href="https://publications.waset.org/abstracts/search?q=permeability" title=" permeability"> permeability</a>, <a href="https://publications.waset.org/abstracts/search?q=rock" title=" rock"> rock</a>, <a href="https://publications.waset.org/abstracts/search?q=quality" title=" quality"> quality</a> </p> <a href="https://publications.waset.org/abstracts/64850/prediction-of-in-situ-permeability-for-limestone-rock-using-rock-quality-designation-index" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64850.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">372</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">53</span> Investigation of Yard Seam Workings for the Proposed Newcastle Light Rail Project</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=David%20L.%20Knott">David L. Knott</a>, <a href="https://publications.waset.org/abstracts/search?q=Robert%20Kingsland"> Robert Kingsland</a>, <a href="https://publications.waset.org/abstracts/search?q=Alistair%20Hitchon"> Alistair Hitchon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The proposed Newcastle Light Rail is a key part of the revitalisation of Newcastle, NSW and will provide a frequent and reliable travel option throughout the city centre, running from Newcastle Interchange at Wickham to Pacific Park in Newcastle East, a total of 2.7 kilometers in length. Approximately one-third of the route, along Hunter and Scott Streets, is subject to potential shallow underground mine workings. The extent of mining and seams mined is unclear. Convicts mined the Yard Seam and overlying Dudley (Dirty) Seam in Newcastle sometime between 1800 and 1830. The Australian Agricultural Company mined the Yard Seam from about 1831 to the 1860s in the alignment area. The Yard Seam was about 3 feet (0.9m) thick, and therefore, known as the Yard Seam. Mine maps do not exist for the workings in the area of interest and it was unclear if both or just one seam was mined. Information from 1830s geological mapping and other data showing shaft locations were used along Scott Street and information from the 1908 Royal Commission was used along Hunter Street to develop an investigation program. In addition, mining was encountered for several sites to the south of the alignment at depths of about 7 m to 25 m. Based on the anticipated depths of mining, it was considered prudent to assess the potential for sinkhole development on the proposed alignment and realigned underground utilities and to obtain approval for the work from Subsidence Advisory NSW (SA NSW). The assessment consisted of a desktop study, followed by a subsurface investigation. Four boreholes were drilled along Scott Street and three boreholes were drilled along Hunter Street using HQ coring techniques in the rock. The placement of boreholes was complicated by the presence of utilities in the roadway and traffic constraints. All the boreholes encountered the Yard Seam, with conditions varying from unmined coal to an open void, indicating the presence of mining. The geotechnical information obtained from the boreholes was expanded by using various downhole techniques including; borehole camera, borehole sonar, and downhole geophysical logging. The camera provided views of the rock and helped to explain zones of no recovery. In addition, timber props within the void were observed. Borehole sonar was performed in the void and provided an indication of room size as well as the presence of timber props within the room. Downhole geophysical logging was performed in the boreholes to measure density, natural gamma, and borehole deviation. The data helped confirm that all the mining was in the Yard Seam and that the overlying Dudley Seam had been eroded in the past over much of the alignment. In summary, the assessment allowed the potential for sinkhole subsidence to be assessed and a mitigation approach developed to allow conditional approval by SA NSW. It also confirmed the presence of mining in the Yard Seam, the depth to the seam and mining conditions, and indicated that subsidence did not appear to have occurred in the past. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=downhole%20investigation%20techniques" title="downhole investigation techniques">downhole investigation techniques</a>, <a href="https://publications.waset.org/abstracts/search?q=drilling" title=" drilling"> drilling</a>, <a href="https://publications.waset.org/abstracts/search?q=mine%20subsidence" title=" mine subsidence"> mine subsidence</a>, <a href="https://publications.waset.org/abstracts/search?q=yard%20seam" title=" yard seam"> yard seam</a> </p> <a href="https://publications.waset.org/abstracts/88140/investigation-of-yard-seam-workings-for-the-proposed-newcastle-light-rail-project" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/88140.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">314</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">52</span> Combining Bio-Molecular and Isotopic Tools to Determine the Fate of Halogenated Compounds in Polluted Groundwater</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Balaban">N. Balaban</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Buernstein"> A. Buernstein</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Gelman"> F. Gelman</a>, <a href="https://publications.waset.org/abstracts/search?q=Z.%20Ronen"> Z. Ronen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Brominated flame retardants are widespread pollutants, and are known to be toxic, carcinogenic, endocrinic disrupting as well as recalcitrant. The industrial complex Neot Hovav, in the Northern Negev, Israel, is situated above a fractured chalk aquitard, which is polluted by a wide variety of halogenated organic compounds. Two of the abundant pollutants found in the site are Dibromoneopentyl-glycol (DBNPG) and tribromoneopentyl-alcohol (TBNPA). Due to the elusive nature of the groundwater flow, it is difficult to connect between the spatial changes in contaminant concentrations to degradation. In this study, we attempt to determine whether these compounds are biodegraded in the groundwater, and to gain a better understanding concerning the bacterial community in the groundwater. This was achieved through the application of compound-specific isotope analysis (CSIA) of carbon (13^C/12^C) and bromine (81^Br/79^Br), and new-generation MiSeq pyrosequencing. The sampled boreholes were distributed among three main areas of the industrial complex: around the production plant of TBNPA and DBNPG; along the Hovav Wadi (small ephemeral stream) which crosses and drains the industrial complex; and downstream to the industrial area. TBNPA and DBNPG are found in all three areas, with no clear connection to the proximity of the borehole to the production plant. Initial isotopic data of TBNPA from boreholes in the area surrounding the production plant, reveal no changes in the carbon and bromine isotopic values. When observing the microbial groundwater community, the dominant phylum is Proteobacteria. Known anaerobic dehalogenating bacteria such as Dehalococcoides from the Chloroflexi phylum have also been detected. A statistical comparison of the groundwater microbial diversity using a multi-variant ordination of non-metric multidimensional scaling (NMDS) reveals three main clusters in accordance to spatial location in the industrial complex: all the boreholes sampled adjacent to the production plant cluster together and separately from the Wadi Hovav boreholes cluster and the downstream to the industrial area borehole cluster. This work provides the basis for the development and implication of an isotopic fractionation based tool for assessing the biodegradation of brominated organic compounds in contaminated environments, and a novel attempt to characterize the spatial microbial diversity in the contaminated site. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biodegradation" title="biodegradation">biodegradation</a>, <a href="https://publications.waset.org/abstracts/search?q=brominated%20flame%20retardants" title=" brominated flame retardants"> brominated flame retardants</a>, <a href="https://publications.waset.org/abstracts/search?q=groundwater" title=" groundwater"> groundwater</a>, <a href="https://publications.waset.org/abstracts/search?q=isotopic%20fractionation" title=" isotopic fractionation"> isotopic fractionation</a>, <a href="https://publications.waset.org/abstracts/search?q=microbial%20diversity" title=" microbial diversity "> microbial diversity </a> </p> <a href="https://publications.waset.org/abstracts/49813/combining-bio-molecular-and-isotopic-tools-to-determine-the-fate-of-halogenated-compounds-in-polluted-groundwater" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49813.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">235</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">51</span> Physiochemical Parameters Assessment and Evaluation of the Quality of Drinking Water in Some Parts of Lagos State</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G.%20T.%20Mudashiru">G. T. Mudashiru</a>, <a href="https://publications.waset.org/abstracts/search?q=Mayowa%20P.%20Ibitola"> Mayowa P. Ibitola </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Investigation was carried out at Ikorodu North local council development area of Lagos state using physiochemical parameters to study the quality drinking water. It was ascertained that the human functions and activities were dependent on the continuous and availability of good drinking water. Six water samples were collected at six different boreholes from various outlets and homes in Ikorodu North local council development area. Lagos state Nigeria. Analysis was carried out to determine the purity of water for domestic use. Physicochemical properties evaluation was adapted using standard chemical methods. A number of parameters such as PH, turbidity, conductivity, total dissolved solids, color, chloride, sulphate, nitrate, hardness were determined. Heavy metals such as Zn, Mg, Fe, Pb, Hg, and Mn as well as total coliform counts were observed. The resulted values of each parameter were justified with World Health Organization (WHO) and Lagos state water regulatory commission LSWRC standard values for quantitative comparison. The result reveals that all the water had pH value well below the WHO maximum permissible level for potable water. Other physicochemical parameters were within the safe limit of WHO standard showing the portability nature of the water. It can be concluded that though the water is potable, there should be a kind of treatment of the water before consumption to prevent outbreak of diseases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=drinking%20water" title="drinking water">drinking water</a>, <a href="https://publications.waset.org/abstracts/search?q=physiology" title=" physiology"> physiology</a>, <a href="https://publications.waset.org/abstracts/search?q=boreholes" title=" boreholes"> boreholes</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20metals" title=" heavy metals"> heavy metals</a>, <a href="https://publications.waset.org/abstracts/search?q=domestic" title=" domestic"> domestic</a> </p> <a href="https://publications.waset.org/abstracts/83128/physiochemical-parameters-assessment-and-evaluation-of-the-quality-of-drinking-water-in-some-parts-of-lagos-state" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/83128.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">220</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">50</span> Delineation of Fracture Zones for Investigation of Groundwater Potentials Using Vertical Electrical Sounding in a Sedimentary Complex Terrain</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20N.%20Yahaya">M. N. Yahaya</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20A.%20Salako"> K. A. Salako</a>, <a href="https://publications.waset.org/abstracts/search?q=U.%20Z.%20Magawata"> U. Z. Magawata</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Vertical electrical sounding (VES) method was used to investigate the groundwater potential at the southern part of Gulumbe district, Kebbi State, north-western part of Nigeria. The study was carried out with the aim of determining the subsurface layer’s parameters (resistivity and thickness) and uses the same to characterize the groundwater potential of the study area. The Schlumberger configuration was used for data acquisition. A total number of thirty-three (33) sounding points (VES) were surveyed over six profiles. The software IPI2WIN was used to obtain n-layered geo-electric sections. The geo-electric section drawn from the results of the interpretation revealed that three subsurface layers could be delineated, which comprise of top soil, sand, sandstone, coarse sand, limestone, and gravelly sand. The results of the resistivity sounding were correlated with the lithological logs of nearby boreholes that expose cross-section geologic units around the study area. We found out that the area is dominated by three subsurface layers. The coarse sand layers constituted the aquifer zones in the majority of sounding stations. Thus, this present study concluded that the depth of any borehole in the study area should be located between the depth of 18.5 to 39 m. The study further classified the VES points penetrated based on their conductivity content as highly suitable, suitable, moderately suitably, and poor zones for groundwater exploration. Hence, from this research, we recommended that boreholes can be sited in high conductivity zones across VES 2, 11, 13, 16, 20, 21, 27, and 33, respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=vertical%20electrical%20sounding" title="vertical electrical sounding">vertical electrical sounding</a>, <a href="https://publications.waset.org/abstracts/search?q=resistivity" title=" resistivity"> resistivity</a>, <a href="https://publications.waset.org/abstracts/search?q=geo-electric" title=" geo-electric"> geo-electric</a>, <a href="https://publications.waset.org/abstracts/search?q=resistivity" title=" resistivity"> resistivity</a>, <a href="https://publications.waset.org/abstracts/search?q=aquifer%20and%20groundwater" title=" aquifer and groundwater"> aquifer and groundwater</a> </p> <a href="https://publications.waset.org/abstracts/115309/delineation-of-fracture-zones-for-investigation-of-groundwater-potentials-using-vertical-electrical-sounding-in-a-sedimentary-complex-terrain" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/115309.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">164</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">49</span> Evaluation of Heavy Metal Contamination and Assessment of the Suitability of Water for Irrigation: A Case Study of the Sand River, Limpopo Province, South Africa</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ngonidzashe%20Moyo">Ngonidzashe Moyo</a>, <a href="https://publications.waset.org/abstracts/search?q=Mmaditshaba%20Rapatsa"> Mmaditshaba Rapatsa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The primary objective of this study was to determine heavy metal contamination in the water, sediment, grass and fish in Sand River, South Africa. This river passes through an urban area and sewage effluent is discharged into it. Water from the Sand river is subsequently used for irrigation downstream of the sewage treatment works. The suitability of this water and the surrounding boreholes for irrigation was determined. This study was undertaken between January, 2014 and January, 2015. Monthly samples were taken from four sites. Sites 1 was upstream of the Polokwane Wastewater Treatment Plant, sites 2, 3 and 4 were downstream. Ten boreholes in the vicinity of the Sand River were randomly selected and the water was tested for heavy metal contamination. The concentration of heavy metals in Sand River water followed the order Mn>Fe>Pb>Cu≥Zn≥Cd. Manganese concentration averaged 0.34 mg/L. Heavy metal concentration in the sediment, grass and fish followed the order Fe>Mn>Zn>Cu>Pb>Cd. The bioaccumulation factor from grass to fish was highest in manganese (19.25), followed by zinc (16.39) and iron (14.14). Soil permeability index (PI) and sodium adsorption ratio (SAR) were used to determine the suitability of Sand River and borehole water for irrigation. The PI index for Sand River water was 75.1% and this indicates that Sand River water is suitable for irrigation of crops. The PI index for the borehole water ranged from 65.8-72.8% and again this indicates suitability of borehole water for crop irrigation. The sodium adsorption ratio also indicated that both Sand River and borehole water were suitable for irrigation. A risk assessment study is recommended to determine the suitability of the fish for human consumption. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bioaccumulation" title="bioaccumulation">bioaccumulation</a>, <a href="https://publications.waset.org/abstracts/search?q=bioavailability" title=" bioavailability"> bioavailability</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20metals" title=" heavy metals"> heavy metals</a>, <a href="https://publications.waset.org/abstracts/search?q=sodium%20adsorption%20ratio" title=" sodium adsorption ratio"> sodium adsorption ratio</a> </p> <a href="https://publications.waset.org/abstracts/81675/evaluation-of-heavy-metal-contamination-and-assessment-of-the-suitability-of-water-for-irrigation-a-case-study-of-the-sand-river-limpopo-province-south-africa" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81675.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">223</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">48</span> Household Water Practices in a Rapidly Urbanizing City and Its Implications for the Future of Potable Water: A Case Study of Abuja Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Emmanuel%20Maiyanga">Emmanuel Maiyanga</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Access to sufficiently good quality freshwater has been a global challenge, but more notably in low-income countries, particularly in the Sub-Saharan countries, which Nigeria is one. Urban population is soaring, especially in many low-income countries, the existing centralised water supply infrastructures are ageing and inadequate, moreover in households peoples’ lifestyles have become more water-demanding. So, people mostly device coping strategies where municipal supply is perceived to have failed. This development threatens the futures of groundwater and calls for a review of management strategy and research approach. The various issues associated with water demand management in low-income countries and Nigeria, in particular, are well documented in the literature. However, the way people use water daily in households and the reasons they do so, and how the situation is constructing demand among the middle-class population in Abuja Nigeria is poorly understood. This is what this research aims to unpack. This is achieved by using the social practices research approach (which is based on the Theory of Practices) to understand how this situation impacts on the shared groundwater resource. A qualitative method was used for data gathering. This involved audio-recorded interviews of householders and water professionals in the private and public sectors. It also involved observation, note-taking, and document study. The data were analysed thematically using NVIVO software. The research reveals the major household practices that draw on the water on a domestic scale, and they include water sourcing, body hygiene and sanitation, laundry, kitchen, and outdoor practices (car washing, domestic livestock farming, and gardening). Among all the practices, water sourcing, body hygiene, kitchen, and laundry practices, are identified to impact most on groundwater, with impact scale varying with household peculiarities. Water sourcing practices involve people sourcing mostly from personal boreholes because the municipal water supply is perceived inadequate and unreliable in terms of service delivery and water quality, and people prefer easier and unlimited access and control using boreholes. Body hygiene practices reveal that every respondent prefers bucket bathing at least once daily, and the majority bathe twice or more every day. Frequency is determined by the feeling of hotness and dirt on the skin. Thus, people bathe to cool down, stay clean, and satisfy perceived social, religious, and hygiene demand. Kitchen practice consumes water significantly as people run the tap for vegetable washing in daily food preparation and dishwashing after each meal. Laundry practice reveals that most people wash clothes most frequently (twice in a week) during hot and dusty weather, and washing with hands in basins and buckets is the most prevalent and water wasting due to soap overdose. The research also reveals poor water governance as a major cause of current inadequate municipal water delivery. The implication poor governance and widespread use of boreholes is an uncontrolled abstraction of groundwater to satisfy desired household practices, thereby putting the future of the shared aquifer at great risk of total depletion with attendant multiplying effects on the people and the environment and population continues to soar. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=boreholes" title="boreholes">boreholes</a>, <a href="https://publications.waset.org/abstracts/search?q=groundwater" title=" groundwater"> groundwater</a>, <a href="https://publications.waset.org/abstracts/search?q=household%20water%20practices" title=" household water practices"> household water practices</a>, <a href="https://publications.waset.org/abstracts/search?q=self-supply" title=" self-supply"> self-supply</a> </p> <a href="https://publications.waset.org/abstracts/121886/household-water-practices-in-a-rapidly-urbanizing-city-and-its-implications-for-the-future-of-potable-water-a-case-study-of-abuja-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/121886.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">123</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">47</span> Drippers Scaling Inhibition of the Localized Irrigation System by Green Inhibitors Based on Plant Extracts</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Driouiche%20Ali">Driouiche Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Karmal%20Ilham"> Karmal Ilham</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Agadir region is characterized by a dry climate, ranging from arid attenuated by oceanic influences to hyper-arid. The water mobilized in the agricultural sector of greater Agadir is 95% of underground origin and comes from the water table of Chtouka. The rest represents the surface waters of the Youssef Ben Tachfine dam. These waters are intended for the irrigation of 26880 hectares of modern agriculture. More than 120 boreholes and wells are currently exploited. Their depth varies between 10 m and 200 m and the unit flow rates of the boreholes are 5 to 50 l/s. A drop in the level of the water table of about 1.5 m/year, on average, has been observed during the last five years. Farmers are thus called upon to improve irrigation methods. Thus, localized or drip irrigation is adopted to allow rational use of water. The importance of this irrigation system is due to the fact that water is applied directly to the root zone and its compatibility with fertilization. However, this irrigation system faces a thorny problem which is the clogging of pipes and drippers. This leads to a lack of uniformity of irrigation over time. This so-called scaling phenomenon, the consequences of which are harmful (cleaning or replacement of pipes), leads to considerable unproductive expenditure. The objective set by this work is the search for green inhibitors likely to prevent this phenomenon of scaling. This study requires a better knowledge of these waters, their physico-chemical characteristics and their scaling power. Thus, using the "LCGE" controlled degassing technique, we initially evaluated, on pure calco-carbonic water at 30°F, the scaling-inhibiting power of some available plant extracts in our region of Souss-Massa. We then carried out a comparative study of the efficacy of these green inhibitors. The action of the most effective green inhibitor on real agricultural waters was then studied. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=green%20inhibitors" title="green inhibitors">green inhibitors</a>, <a href="https://publications.waset.org/abstracts/search?q=localized%20irrigation" title=" localized irrigation"> localized irrigation</a>, <a href="https://publications.waset.org/abstracts/search?q=plant%20extracts" title=" plant extracts"> plant extracts</a>, <a href="https://publications.waset.org/abstracts/search?q=scaling%20inhibition" title=" scaling inhibition"> scaling inhibition</a> </p> <a href="https://publications.waset.org/abstracts/155083/drippers-scaling-inhibition-of-the-localized-irrigation-system-by-green-inhibitors-based-on-plant-extracts" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/155083.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">81</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">46</span> Water Quality, Risk, Management and Distribution in Abeokuta, Ogun State</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ayedun%20Hassan">Ayedun Hassan</a>, <a href="https://publications.waset.org/abstracts/search?q=Ayadi%20Odunayo%20Peter"> Ayadi Odunayo Peter</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The ancient city of Abeokuta has been supplied with pipe borne water since 1911, yet, a continuous increase in population and unplanned city expansion makes water a very precious and scarce commodity. The government reserved areas (GRA’s) are well planned, and public water supply is available; however, the sub-urban areas consist of scattered structures with individuals trying to source water by digging wells and boreholes. The geology of the city consists of basement rock which makes digging wells and boreholes very difficult. The present study was conducted to assess the risk arising from the consumption of toxic elements in the groundwater of Abeokuta, Ogun State, Nigeria. Forty-five groundwater samples were collected from nine different areas of Abeokuta and analyzed for physicochemical parameters and toxic elements. The physicochemical parameters were determined using standard methods, while the toxic elements were determined using Inductively Coupled Plasma-Mass Spectrometer (ICP/MS). Ninety-six percent (96%) of the water sample has pH < 6.5, and 11% has conductivity > 250 µSCm⁻¹ limits in drinking water as recommended by WHO. Seven percent (7%) of the samples have Pb concentration >10 µgL⁻¹ while 75% have Al concentration >200 µgL⁻¹ recommended by WHO. The order for risk of cancer from different area of Abeokuta are Cd²⁺ > As³⁺ > Pb²⁺ > Cr⁶⁺ for Funaab, Camp and Obantoko; As³⁺ > Cd²⁺ > Pb²⁺ > Cr⁶⁺ for Ita Osin, Isale Igbein, Ake and Itoku; Cd²⁺ >As > Cr⁶⁺ > Pb²⁺ for Totoro; Pb²⁺ > Cd²⁺ > As³⁺ > Cr⁶⁺ for Idiaba. The order of non-cancer hazard index (HI) calculated for groundwater of Abeokuta City are Cd²⁺ > As³⁺ > Mn²⁺ > Pb²⁺ > Ni²⁺ and were all greater than one, which implies susceptibility to other illnesses. The sources of these elements are the rock and inappropriate waste disposal method, which leached the elements into the groundwater. A combination of sources from food will accumulate these elements in the human body system. Treatment to remove Al and Pb is necessary, while the method of water distribution should be reviewed to ensure access to potable water by the residents. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abeokuta" title="Abeokuta">Abeokuta</a>, <a href="https://publications.waset.org/abstracts/search?q=groundwater" title=" groundwater"> groundwater</a>, <a href="https://publications.waset.org/abstracts/search?q=Nigeria" title=" Nigeria"> Nigeria</a>, <a href="https://publications.waset.org/abstracts/search?q=risk" title=" risk"> risk</a> </p> <a href="https://publications.waset.org/abstracts/147871/water-quality-risk-management-and-distribution-in-abeokuta-ogun-state" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/147871.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">93</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">45</span> Effect of Duration and Frequency on Ground Motion: Case Study of Guwahati City</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amar%20F.%20Siddique">Amar F. Siddique</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Guwahati city is one of the fastest growing cities of the north-eastern region of India, situated on the South Bank of the Brahmaputra River falls in the highest seismic zone level V. The city has witnessed many high magnitude earthquakes in the past decades. The Assam earthquake occurred on August 15, 1950, of moment magnitude 8.7 epicentered near Rima, Tibet was one of the major earthquakes which caused a serious structural damage and widespread soil liquefaction in and around the region. Hence the study of ground motion characteristics of Guwahati city is very essential. In this present work 1D equivalent linear ground response analysis (GRA) has been adopted using Deep soil software. The analysis has been done for two typical sites namely, Panbazar and Azara comprising total four boreholes location in Guwahati city of India. GRA of the sites is carried out by using an input motion recorded at Nongpoh station (recorded PGA 0.048g) and Nongstoin station (recorded PGA 0.047g) of 1997 Indo-Burma earthquake. In comparison to motion recorded at Nongpoh, different amplifications of bedrock peak ground acceleration (PGA) are obtained for all the boreholes by the motion recorded at Nongstoin station; although, the Fourier amplitude ratios (FAR) and fundamental frequencies remain almost same. The difference in recorded duration and frequency content of the two motions mainly influence the amplification of motions thus getting different surface PGA and amplification factor keeping a constant bedrock PGA. From the results of response spectra, it is found that at the period of less than 0.2 sec the ground motion recorded at Nongpoh station will give a high spectral acceleration (SA) on the structures than at Nongstoin station. Again for a period greater than 0.2 sec the ground motion recorded at Nongstoin station will give a high SA on the structures than at Nongpoh station. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fourier%20amplitude%20ratio" title="fourier amplitude ratio">fourier amplitude ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=ground%20response%20analysis" title=" ground response analysis"> ground response analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=peak%20ground%20acceleration" title=" peak ground acceleration"> peak ground acceleration</a>, <a href="https://publications.waset.org/abstracts/search?q=spectral%20acceleration" title=" spectral acceleration"> spectral acceleration</a> </p> <a href="https://publications.waset.org/abstracts/86487/effect-of-duration-and-frequency-on-ground-motion-case-study-of-guwahati-city" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/86487.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">179</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">44</span> Hydrochemistry and Stable Isotopes (ẟ18O and ẟ2H) Tools Applied to the Study of Karst Aquifers in Wonderfonteinspruit Valley: North West, South Africa</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Naziha%20Mokadem">Naziha Mokadem</a>, <a href="https://publications.waset.org/abstracts/search?q=Rainier%20Dennis"> Rainier Dennis</a>, <a href="https://publications.waset.org/abstracts/search?q=Ingrid%20Dennis"> Ingrid Dennis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In South Africa, Karst aquifers are receiving greater attention since they provide large supplies of water which is used for domestic and agricultural purposes as well as for industry. Accordingly, a better insight into the origin of water mineralization and the geochemical processes controlling the recharge of the aquifer is crucial. Analyses of geochemical and environmental isotopes could lead to relevant information regarding karstification and infiltration processes, groundwater chemistry and isotopy. A study was conducted in a typical karst landscape of Wonderfonteinspruit catchment, also known as Wonderfonteinspruit Valley in North-western -South Africa. Furthermore, fifty-two samples were collected from (35 boreholes, 5 surface waters, 4 Dams, 4 springs, 1 canal, 2 pipelines, 1 cave) within the study area for hydrochemistry and 2H and 18O analysis. The determination of the anions (Cl-, SO42-, NO2, NO3-) were performed using Metrohm ion chromatography, model: 761 compact IC, with a precision of ± 0.001 mg/l. While, the cations (Na+, Mg2+, K+, Ca2+) were determined using Metrohm ion chromatography, Model: ICP-MS 7500 series. The alkalinity (Alk) was determined by pH meter with volumetric titration using HCL to pH 4.5; 4.2; and 8.2. In addition, 18O and 2H relative to the Vienna-Standard Mean Ocean Water (RVSMOW), were determined by picarro L2130-I Isotopic H2O (Cavity Ringdown laser spectrometer, Picarro Ltd). The hydrochemical analysis of Wonderfonteinspruit groundwater showed a dominance of the cations Ca-Mg and the anion HCO3. Piper diagram shows that the groundwater sample of study area is characterized by four hydrochemical facies: Two main groups: (1) Ca–Mg–Cl–SO4; (2) Ca–Mg–HCO3 and two minor groups: (3) Ca–Mg–Cl; (4) Na–K–HCO3. The majority of boreholes of Malmani (Transvaal Supergroup) aquifer are plotted in Ca–Mg–HCO3.Oxygen-18 (18O‰SMOW) and deuterium (D‰SMOW) isotopic data indicate that the aquifer’s recharge is influenced by two phenomena; precipitation rates for most of the samples and river flow (Wonderfonteinspruit, Middelvieinspruit, Renfonteinspruit) for some samples. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=South%20Africa" title="South Africa">South Africa</a>, <a href="https://publications.waset.org/abstracts/search?q=Wonderfonteinspruit%20Valley" title=" Wonderfonteinspruit Valley"> Wonderfonteinspruit Valley</a>, <a href="https://publications.waset.org/abstracts/search?q=isotopic" title=" isotopic"> isotopic</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrochemical" title=" hydrochemical"> hydrochemical</a>, <a href="https://publications.waset.org/abstracts/search?q=carbonate%20aquifers" title=" carbonate aquifers"> carbonate aquifers</a> </p> <a href="https://publications.waset.org/abstracts/106126/hydrochemistry-and-stable-isotopes-18o-and-2h-tools-applied-to-the-study-of-karst-aquifers-in-wonderfonteinspruit-valley-north-west-south-africa" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/106126.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">154</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">43</span> Microfacies and Sedimentary Environment of Potentially Hydrocarbon-Bearing Ordovician and Silurian Deposits of Selected Boreholes in the Baltic Syneclise (NE Poland)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Katarzyna%20Sobczak">Katarzyna Sobczak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Over the last few years extensive research on the Lower Palaeozic of the Baltic region has been carried out, associated with growing interest in the unconventional hydrocarbon resources of the area. The present study contributes to this investigation by providing relevant microfacies analysis of Ordovician and Silurian carbonate and clastic deposits of the Polish part of the Baltic Syneclise, using data from the Kętrzyn IG-1, Henrykowo 1 and Babiak 1 boreholes. The analytical data, encompassing sedimentological, palaeontological, and petrographic indicators enables the interpretation of the sedimentary environments and their control factors. The main microfacies types distinguished within the studied interval are: bioclastic wackestone, bioclastic packstone, carbonate-rich mudstone, marlstone, nodular limestone and bituminous claystone. The Ordovician is represented by redeposited carbonate rocks formed in a relatively high-energy environment (middle shelf setting). The Upper Ordovician-Lower Silurian rocks of the studied basin represent sedimentary succession formed during a distinctive marine transgression. Considering the sedimentological and petrological data from the Silurian, a low-energy sedimentary environment (offshore setting) with intermittent high-energy events (tempestites) can be inferred for the sedimentary basin of NE Poland. Slow sedimentation of carbonate ooze and fine-grained siliciclastic rocks, formed under oxygen-deficient conditions of the seabed, favoured organic matter preservation. The presence of the storm beds suggests an episodic nature of seabed oxygenation. A significant part of the analysed depositional successions shows characteristics indicative of deposition from gravity flows, but lacks evidence of its turbidity origins. There is, however, evidence for storms acting as a mechanism of flow activation. The discussed Ordovician-Silurian transition of depositional environments in the Baltic area fits well to the global environmental changes encompassing the Upper Ordovician and the Lower Silurian. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Baltic%20Syneclise" title="Baltic Syneclise">Baltic Syneclise</a>, <a href="https://publications.waset.org/abstracts/search?q=microfacies%20analysis" title=" microfacies analysis"> microfacies analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=Ordovician" title=" Ordovician"> Ordovician</a>, <a href="https://publications.waset.org/abstracts/search?q=Silurian" title=" Silurian"> Silurian</a>, <a href="https://publications.waset.org/abstracts/search?q=unconventional%20hydrocarbons" title=" unconventional hydrocarbons"> unconventional hydrocarbons</a> </p> <a href="https://publications.waset.org/abstracts/23705/microfacies-and-sedimentary-environment-of-potentially-hydrocarbon-bearing-ordovician-and-silurian-deposits-of-selected-boreholes-in-the-baltic-syneclise-ne-poland" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23705.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">433</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">42</span> Optimal Implementation of Photovoltaic Water Pumping System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sarah%20Abdourraziq">Sarah Abdourraziq</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To improve the efficiency of photovoltaic pumping system, more attention has been paid to their setting up. This paper presents an optimal technique to establish an efficient system under different conditions of irradiance and temperature. The state of place should be carefully studied before stage of installation of the over system: local climate, boreholes, soil, crops and water resources. The studied system consists of a PV panel, a DC-DC boost converter, a DC motor-pump, and storage tank. The concepts shown in this paper presents a support for an optimal installation of each solar pump. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=photovoltaic%20pumping%20system" title="photovoltaic pumping system">photovoltaic pumping system</a>, <a href="https://publications.waset.org/abstracts/search?q=optimal%20implementation" title=" optimal implementation"> optimal implementation</a>, <a href="https://publications.waset.org/abstracts/search?q=boost%20converter" title=" boost converter"> boost converter</a>, <a href="https://publications.waset.org/abstracts/search?q=motor-pump" title=" motor-pump"> motor-pump</a> </p> <a href="https://publications.waset.org/abstracts/59913/optimal-implementation-of-photovoltaic-water-pumping-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59913.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">350</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">41</span> Physiochemical Analysis of Ground Water in Zaria, Kaduna state, Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=E.%20D.%20Paul">E. D. Paul</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20G.%20Okibe"> F. G. Okibe</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20E.%20Gimba"> C. E. Gimba</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Yakubu"> S. Yakubu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Some physicochemical characteristics and heavy metal concentrations of water samples collected from ten boreholes in Samaru, Zaria, Kaduna state, Nigeria were analysed in order to assess the drinking water quality. Physicochemical parameters were determined using classical methods while the heavy metals were determined using Atomic Absorption Spectrometry. Results of the analysis obtained were as follows: Temperature 29 – 310C, pH 5.74 – 6.19, Electrical conductivity 3.21 – 7.54 µs, DO 0.51 – 1.00 mg/L, BOD 0.0001 – 0.006 mg/L, COD 160 – 260 mg/L, TDS 2.08 – 4.55 mg/L, Total Hardness 97.44 – 401.36 mg/L CaCO3, and Chloride 0.97 – 59.12 mg/L. Concentrations of heavy metals were in the range; Zinc 0.000 – 0.7568 mg/L, Lead 0.000 – 0.070 mg/L and Cadmium 0.000 – 0.009 mg/L. The implications of these findings are discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ground%20water" title="ground water">ground water</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20quality" title=" water quality"> water quality</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20metals" title=" heavy metals"> heavy metals</a>, <a href="https://publications.waset.org/abstracts/search?q=Atomic%20Absorption%20Spectrometry%20%28AAS%29" title=" Atomic Absorption Spectrometry (AAS)"> Atomic Absorption Spectrometry (AAS)</a> </p> <a href="https://publications.waset.org/abstracts/16516/physiochemical-analysis-of-ground-water-in-zaria-kaduna-state-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16516.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">532</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">40</span> Assessment of Groundwater Potential Sampled in Hand Dug Wells and Boreholes in Ado-Ekiti, Southwestern Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20J.%20Olatunji">A. J. Olatunji</a>, <a href="https://publications.waset.org/abstracts/search?q=Adebolu%20Temitope%20Johnson"> Adebolu Temitope Johnson</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Groundwater samples were collected randomly from hand-dug wells and boreholes in parts of the Ado Ekiti metropolis and were subjected to quality assessment and characterization. Physicochemical analyses, which include the in-situ parameters (pH units, Turbidity, and Electrical Conductivity) and laboratory analysis of selected ionic concentrations, were carried out following standard methods. Hydrochemistry of the present study revealed relative mean concentrations of cations in the order Ca2+ > Na+ > Mg2+ > Cu2+> Fe > Mn2+ and that of anions: Cl- > NO3- > SO42- > F - respectively considering World Health Organisation Standard (WHO) range of values for potable water. The result shows that values of certain parameters (Total Dissolved Solid (TDS), Manganese, Calcium, Magnesium, Fluoride, and Sulphate) were below the Highest Desirable Level of the Standards, while values of some other parameters (pH Units, Electrical Conductivity, Turbidity, Alkalinity, Sodium, Copper, Chloride, and Total Hardness) were within the range of figures between Highest Desirable Level (HDL) and Maximum Permissible Level (MPL) of World Health Organization (WHO) drinking water Standards. The reduction in the mean concentration value of Total Dissolved Solids (TDS) of most borehole samples follows the fact that water had been allowed to settle in the overhead tanks before usage; we discussed and brainstormed in the course of sampling and agreed to take a sample that way because that represents what the people consume, it also shows an indication while there was slightly concentration increase of these soluble ions in hand-dug wells samples than borehole samples only with the exception of borehole sample seven BH7 because BH7 uses the mono-pumping system. These in-situ parameters and ionic concentrations were further displayed and or represented on bar charts along with the WHO standards for better pictorial clarifications. Deductions from field observation indices revealed the imprints of natural weathering, ion-exchange processes, and anthropogenic activities influencing groundwater quality. A strong degree of association was found to exist between sodium and chlorine ions in both hand-dug well and borehole groundwater samples through the use of Pearson’s correlation coefficient; this association can further be supported by the chemistry of the parent bedrock associated with the study area because the chemistry of groundwater is a replica of its host rock. The correlation of those two ions must have begun from the period of mountain building, indicating an identical source from which they were released to the groundwater. Moreover, considering the comparison of ionic species concentrations of all samples with the (WHO) standards, there were no anomalous increases or decreases in the laboratory analysis results; this simply reveals an insignificant state of pollution of the groundwater. The study and its sampling techniques were not set to target the likely area and extent of groundwater pollution but its portability. It could be said that the samples were safe for human consumption. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=groundwater" title="groundwater">groundwater</a>, <a href="https://publications.waset.org/abstracts/search?q=physicochemical" title=" physicochemical"> physicochemical</a>, <a href="https://publications.waset.org/abstracts/search?q=parameters%20ionic" title=" parameters ionic"> parameters ionic</a>, <a href="https://publications.waset.org/abstracts/search?q=concentrations" title=" concentrations"> concentrations</a>, <a href="https://publications.waset.org/abstracts/search?q=WHO%20standards" title=" WHO standards"> WHO standards</a> </p> <a href="https://publications.waset.org/abstracts/186725/assessment-of-groundwater-potential-sampled-in-hand-dug-wells-and-boreholes-in-ado-ekiti-southwestern-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/186725.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">39</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">39</span> Evaluation of Phthalates Contents and Their Health Effects in Consumed Sachet Water Brands in Delta State, Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Edjere%20Oghenekohwiroro">Edjere Oghenekohwiroro</a>, <a href="https://publications.waset.org/abstracts/search?q=Asibor%20Irabor%20Godwin"> Asibor Irabor Godwin</a>, <a href="https://publications.waset.org/abstracts/search?q=Uwem%20Bassey"> Uwem Bassey</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper determines the presence and levels of phthalates in sachet and borehole water source in some parts of Delta State, Nigeria. Sachet and borehole water samples were collected from seven different water packaging facilities and level of phthalates determined using GC-MS instrumentation. Phthalates concentration in borehole samples varied from 0.00-0.01 (DMP), 0.06-0.20 (DEP), 0.10-0.98 (DBP), 0.21-0.36 (BEHP), 0.01-0.03 (DnOP) µg/L and (BBP) was not detectable; while sachet water varied from 0.03-0.95 (DMP), 0.16-12.45 (DEP), 0.57-3.38 (DBP), 0.00-0.03 (BBP), 0.08-0.31 (BEHP) and 0-0.03 (DnOP) µg/L. Phthalates concentration in the sachet water was higher than that of the corresponding boreholes sources and also showed significant difference (p < 0.05) between the two. Sources of these phthalate esters were the interaction between water molecules and plastic storage facilities. Although concentration of all phthalate esters analyzed were lower than the threshold limit value(TLV), over time storage of water samples in this medium can lead to substantial increase with negative effects on individuals consuming them. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=phthalate%20esters" title="phthalate esters">phthalate esters</a>, <a href="https://publications.waset.org/abstracts/search?q=borehole" title=" borehole"> borehole</a>, <a href="https://publications.waset.org/abstracts/search?q=sachet%20water" title=" sachet water"> sachet water</a>, <a href="https://publications.waset.org/abstracts/search?q=sample%20extraction" title=" sample extraction"> sample extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20chromatography" title=" gas chromatography"> gas chromatography</a>, <a href="https://publications.waset.org/abstracts/search?q=GC-MS" title=" GC-MS"> GC-MS</a> </p> <a href="https://publications.waset.org/abstracts/44400/evaluation-of-phthalates-contents-and-their-health-effects-in-consumed-sachet-water-brands-in-delta-state-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44400.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">244</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">38</span> Evaluation of the Environmental Risk from the Co-Deposition of Waste Rock Material and Fly Ash</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Mavrikos">A. Mavrikos</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Petsas"> N. Petsas</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Kaltsi"> E. Kaltsi</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Kaliampakos"> D. Kaliampakos</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The lignite-fired power plants in the Western Macedonia Lignite Center produce more than 8 106 t of fly ash per year. Approximately 90% of this quantity is used for restoration-reclamation of exhausted open-cast lignite mines and slope stabilization of the overburden. The purpose of this work is to evaluate the environmental behavior of the mixture of waste rock and fly ash that is being used in the external deposition site of the South Field lignite mine. For this reason, a borehole was made within the site and 86 samples were taken and subjected to chemical analyses and leaching tests. The results showed very limited leaching of trace elements and heavy metals from this mixture. Moreover, when compared to the limit values set for waste acceptable in inert waste landfills, only few excesses were observed, indicating only minor risk for groundwater pollution. However, due to the complexity of both the leaching process and the contaminant pathway, more boreholes and analyses should be made in nearby locations and a systematic groundwater monitoring program should be implemented both downstream and within the external deposition site. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=co-deposition" title="co-deposition">co-deposition</a>, <a href="https://publications.waset.org/abstracts/search?q=fly%20ash" title=" fly ash"> fly ash</a>, <a href="https://publications.waset.org/abstracts/search?q=leaching%20tests" title=" leaching tests"> leaching tests</a>, <a href="https://publications.waset.org/abstracts/search?q=lignite" title=" lignite"> lignite</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20rock" title=" waste rock"> waste rock</a> </p> <a href="https://publications.waset.org/abstracts/9875/evaluation-of-the-environmental-risk-from-the-co-deposition-of-waste-rock-material-and-fly-ash" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9875.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">238</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">37</span> Physicochemical and Bacteriological Quality Characterization of Some Selected Wells in Ado-Ekiti, Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Olu%20Ale">Olu Ale</a>, <a href="https://publications.waset.org/abstracts/search?q=Olugbenga%20Aribisala"> Olugbenga Aribisala</a>, <a href="https://publications.waset.org/abstracts/search?q=Sanmi%20Awopetu"> Sanmi Awopetu </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Groundwater (Wells) is obtained from several well-defined and different water-bearing geological layers or strata. The physical, chemical and bacteriological quality of the water contributed from each of these water-bearing formations and resultant effects of indiscriminate wastes disposal will be dependent on the dissolution of material within the formation. Therefore, water withdrawn from any ground water source will be a composite of these individual aquifers. The water quality was determined by actual sampling and analysis of the completed wells. This study attempted to examine the physicochemical and bacteriological water quality of twenty five selected wells comprising twenty boreholes (deep wells) and five hand dug wells (shallow wells). The twenty five wells cut across the entire Ado Ekiti Metropolitan area. The water samples collected using standard method was promptly taken to water laboratory at the Federal Polytechnic Ado-Ekiti for analysis, physical, chemical and bacteriological tests were carried out. Quality characteristics tested were found to meet WHO’s standard and generally acceptable, making it potable for drinking in most situations, thus encouraging the use of groundwater. Possible improvement strategies to groundwater exploitation were highlighted while remedies to poor quality water were suggested. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bacteriological" title="bacteriological">bacteriological</a>, <a href="https://publications.waset.org/abstracts/search?q=physicochemical" title=" physicochemical"> physicochemical</a>, <a href="https://publications.waset.org/abstracts/search?q=quality" title=" quality"> quality</a>, <a href="https://publications.waset.org/abstracts/search?q=wells" title=" wells"> wells</a>, <a href="https://publications.waset.org/abstracts/search?q=Ado%20Ekiti" title=" Ado Ekiti"> Ado Ekiti</a> </p> <a href="https://publications.waset.org/abstracts/35884/physicochemical-and-bacteriological-quality-characterization-of-some-selected-wells-in-ado-ekiti-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35884.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">368</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">36</span> Critical Evaluation of Groundwater Monitoring Networks for Machine Learning Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pedro%20Martinez-Santos">Pedro Martinez-Santos</a>, <a href="https://publications.waset.org/abstracts/search?q=V%C3%ADctor%20G%C3%B3mez-Escalonilla"> Víctor Gómez-Escalonilla</a>, <a href="https://publications.waset.org/abstracts/search?q=Silvia%20D%C3%ADaz-Alcaide"> Silvia Díaz-Alcaide</a>, <a href="https://publications.waset.org/abstracts/search?q=Esperanza%20Montero"> Esperanza Montero</a>, <a href="https://publications.waset.org/abstracts/search?q=Miguel%20Mart%C3%ADn-Loeches"> Miguel Martín-Loeches</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Groundwater monitoring networks are critical in evaluating the vulnerability of groundwater resources to depletion and contamination, both in space and time. Groundwater monitoring networks typically grow over decades, often in organic fashion, with relatively little overall planning. The groundwater monitoring networks in the Madrid area, Spain, were reviewed for the purpose of identifying gaps and opportunities for improvement. Spatial analysis reveals the presence of various monitoring networks belonging to different institutions, with several hundred observation wells in an area of approximately 4000 km2. This represents several thousand individual data entries, some going back to the early 1970s. Major issues included overlap between the networks, unknown screen depth/vertical distribution for many observation boreholes, uneven time series, uneven monitored species, and potentially suboptimal locations. Results also reveal there is sufficient information to carry out a spatial and temporal analysis of groundwater vulnerability based on machine learning applications. These can contribute to improve the overall planning of monitoring networks’ expansion into the future. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=groundwater%20monitoring" title="groundwater monitoring">groundwater monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=observation%20networks" title=" observation networks"> observation networks</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=madrid" title=" madrid"> madrid</a> </p> <a href="https://publications.waset.org/abstracts/173455/critical-evaluation-of-groundwater-monitoring-networks-for-machine-learning-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/173455.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">78</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">35</span> Estimation of Aquifer Parameters Using Vertical Electrical Sounding in Ochudo City, Abakaliki Urban Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Moses.%20O.%20Eyankware">Moses. O. Eyankware</a>, <a href="https://publications.waset.org/abstracts/search?q=Benard%20I.%20Odoh"> Benard I. Odoh</a>, <a href="https://publications.waset.org/abstracts/search?q=Omoleomo%20O.%20Omo-Irabor"> Omoleomo O. Omo-Irabor</a>, <a href="https://publications.waset.org/abstracts/search?q=Alex%20O.%20I.%20Selemo"> Alex O. I. Selemo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Knowledge of hydraulic conductivity and transmissivity is essential for the determination of natural water flow through an aquifer. These parameters are commonly estimated from the analysis of electrical conductivity, soil properties and fluid flow data. In order to achieve a faster and cost effective analysis of aquifer parameters in Ochudo City in Abakaliki, this study relied on non-invasive geophysical methods. As part of this approach, Vertical Electrical Sounding (VES) was conducted at 20 sites in the study area for the identification of the vertical variation in subsurface lithology and for the characterization of the groundwater system. The area variously consists of between five to seven geoelectric layers of different thicknesses. Depth to aquifer ranges from 9.94 m-134.0 m while the thickness of the identified aquifer varies between 8.43 m and 44.31 m. Based on the electrical conductivity values of water samples collected from two boreholes and two hand-dug wells within the study area, the hydraulic conductivity was determined to range from 0.10 to 0.433 m/day. The estimated thickness of the aquifer and calculated hydraulic conductivity were used to derive the aquifer transmissivity. The results indicate that this parameter ranges from 1.58-7.56 m²/day with a formation factor of between 0.31-3.6. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Asu%20river%20group" title="Asu river group">Asu river group</a>, <a href="https://publications.waset.org/abstracts/search?q=transmissivity" title=" transmissivity"> transmissivity</a>, <a href="https://publications.waset.org/abstracts/search?q=hydraulic%20conductivity" title=" hydraulic conductivity"> hydraulic conductivity</a>, <a href="https://publications.waset.org/abstracts/search?q=abakaliki" title=" abakaliki"> abakaliki</a>, <a href="https://publications.waset.org/abstracts/search?q=vertical%20electrical%20sounding%20%28VES%29" title=" vertical electrical sounding (VES)"> vertical electrical sounding (VES)</a> </p> <a href="https://publications.waset.org/abstracts/35836/estimation-of-aquifer-parameters-using-vertical-electrical-sounding-in-ochudo-city-abakaliki-urban-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35836.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">395</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">34</span> Physicochemical and Bacteriological Assessment of Water Resources in Ughelli and Its Environs, Delta State Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20O.%20Eyankware">M. O. Eyankware</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20O.%20Ufomata"> D. O. Ufomata </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Groundwater samples were collected from Otovwodo-Ughelli and Environ with the aim of assessing groundwater quality of the area. Twenty (20) water samples from Boreholes (BH) (six) and Hand Dug Wells (HDW) (fourteen) were randomly sampled and were analysed for different physiochemical and bacteriological parameters. The following 16 parameters have been considered viz: pH, electrical conductivity, temperature, total hardness, total dissolved solids, dissolved oxygen, biological oxygen demand, phosphate, sulphate, chloride, nitrate, calcium, sodium, chloride, magnesium, and total suspended solids. On comparing the results against drinking quality standards laid by World Health Organization and Nigeria industrial standard, it was found that the water quality parameters were not above the (WHO, 2011 and NIS, 2007) permissible limit. Microbial analysis reveals the presence of coliform and E.coli in two hand-dug well (HDW7 and 13) and one borehole well (BH20). These contaminations are perhaps traceable to have originated from human activities (septic tanks, latrines, dumpsites) and have affected the quality of groundwater in Otovwodo-Ughelli. From the piper trilinear diagram, the dominant ionic species is alkali bicarbonate water type, with bicarbonate as the predominant ion (Na+ + K+)-HCO3. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=groundwater" title="groundwater">groundwater</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20water" title=" surface water"> surface water</a>, <a href="https://publications.waset.org/abstracts/search?q=Ughelli" title=" Ughelli"> Ughelli</a>, <a href="https://publications.waset.org/abstracts/search?q=Nigeria%20industrial%20standard" title=" Nigeria industrial standard"> Nigeria industrial standard</a>, <a href="https://publications.waset.org/abstracts/search?q=who%20standard" title=" who standard"> who standard</a> </p> <a href="https://publications.waset.org/abstracts/30654/physicochemical-and-bacteriological-assessment-of-water-resources-in-ughelli-and-its-environs-delta-state-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30654.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">444</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">33</span> Parametric Study of Underground Opening Stability under Uncertainty Conditions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aram%20Yakoby">Aram Yakoby</a>, <a href="https://publications.waset.org/abstracts/search?q=Yossef%20H.%20Hatzor"> Yossef H. Hatzor</a>, <a href="https://publications.waset.org/abstracts/search?q=Shmulik%20Pinkert"> Shmulik Pinkert</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work presents an applied engineering method for evaluating the stability of underground openings under conditions of uncertainty. The developed method is demonstrated by a comprehensive parametric study on a case of large-diameter vertical borehole stability analysis, with uncertainties regarding the in-situ stress distribution. To this aim, a safety factor analysis is performed for the stability of both supported and unsupported boreholes. In the analysis, we used analytic geomechanical calculations and advanced numerical modeling to evaluate the estimated stress field. In addition, the work presents the development of a boundary condition for the numerical model that fits the nature of the problem and yields excellent accuracy. The borehole stability analysis is studied in terms of (1) the stress ratio in the vertical and horizontal directions, (2) the mechanical properties and geometry of the support system, and (3) the parametric sensitivity. The method's results are studied in light of a real case study of an underground waste disposal site. The conclusions of this study focus on the developed method for capturing the parametric uncertainty, the definition of critical geological depths, the criteria for implementing structural support, and the effectiveness of further in-situ investigations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=borehole%20stability" title="borehole stability">borehole stability</a>, <a href="https://publications.waset.org/abstracts/search?q=in-situ%20stress" title=" in-situ stress"> in-situ stress</a>, <a href="https://publications.waset.org/abstracts/search?q=parametric%20study" title=" parametric study"> parametric study</a>, <a href="https://publications.waset.org/abstracts/search?q=factor%20of%20safety" title=" factor of safety"> factor of safety</a> </p> <a href="https://publications.waset.org/abstracts/182965/parametric-study-of-underground-opening-stability-under-uncertainty-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/182965.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">68</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">32</span> Reliability of Using Standard Penetration Test (SPT) in Evaluation of Soil Properties</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hossein%20Alimohammadi">Hossein Alimohammadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohsen%20Amirmojahedi"> Mohsen Amirmojahedi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehrdad%20%20Rowhani"> Mehrdad Rowhani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Soil properties are used by geotechnical engineers to evaluate and analyze site conditions for designing purposes. Although basic soil classification tests are easy to perform and provide useful information to determine the properties of soils, it may take time to get the result and add some costs to the projects. Standard Penetration Test (SPT) provides an opportunity to evaluate soil parameters without performing laboratory tests. In addition to its simplicity and cheapness, the results become available immediately. This research provides a guideline on the application of the SPT test method, reliability of adapting the SPT test results in evaluating soil physical and mechanical properties such as Atterberg limits, shear strength, and compressive strength compressibility parameters. A total of 70 boreholes were investigated in this study by taking soil samples between depths of 1.2 to 15.25 meters. The project site was located in Morrow County, Ohio. A regression-based formula was proposed based on Tobit regression with a stepwise variable selection analysis conducted between SPT and other typical soil properties obtained from soil tests. The results of the research illustrated that the shear strength and physical properties of the soil affect the SPT number. The proposed correlation can help engineers to use SPT test results in their design with higher accuracy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=standard%20penetration%20test" title="standard penetration test">standard penetration test</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20properties" title=" soil properties"> soil properties</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20classification" title=" soil classification"> soil classification</a>, <a href="https://publications.waset.org/abstracts/search?q=regression%20method" title=" regression method"> regression method</a> </p> <a href="https://publications.waset.org/abstracts/137933/reliability-of-using-standard-penetration-test-spt-in-evaluation-of-soil-properties" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/137933.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">188</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">31</span> Correlations Between Electrical Resistivity and Some Properties of Clayey Soils</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=F.%20A.%20Hassona">F. A. Hassona</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20M.%20Abu-Heleika"> M. M. Abu-Heleika</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Hassan"> M. A. Hassan</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20E.%20Sidhom"> A. E. Sidhom</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Application of electrical measurements to evaluate engineering properties of soils has gained a wide, promising field of research in recent years. So, understanding of the relation between in-situ electrical resistivity of clay soil, and their mechanical and physical properties consider a promising field of research. This would assist in introducing a new technique for the determination of soil properties based on electrical resistivity. In this work soil physical and mechanical properties of clayey soil have been determined by experimental tests and correlated with the in-situ electrical resistivity. The research program was conducted through measuring fifteen vertical electrical sounding stations along with fifteen selected boreholes. These samples were analyzed and subjected to experimental tests such as physical tests namely bulk density, water content, specific gravity, and grain size distribution, and Attereberg limits tests. Mechanical test was also conducted such as direct shear test. The electrical resistivity data were interpreted and correlated with each one of the measured experimental parameters. Based on this study mathematical relations were extracted and discussed. These results exhibit an excellent match with the results reported in the literature. This study demonstrates the utility of the developed methodology for determining the mechanical properties of soils easily and rapidly depending on their electrical resistivity measurements. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrical%20resistivity" title="electrical resistivity">electrical resistivity</a>, <a href="https://publications.waset.org/abstracts/search?q=clayey%20soil" title=" clayey soil"> clayey soil</a>, <a href="https://publications.waset.org/abstracts/search?q=physical%20properties" title=" physical properties"> physical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20properties" title=" shear properties"> shear properties</a> </p> <a href="https://publications.waset.org/abstracts/2558/correlations-between-electrical-resistivity-and-some-properties-of-clayey-soils" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2558.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">295</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=boreholes&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=boreholes&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10