CINXE.COM

Northeast - Fourth National Climate Assessment

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"> <meta name="viewport" content="width=device-width, initial-scale=1"> <link rel="apple-touch-icon" href="/apple-touch-icon.png"> <script>(function(w,d,s,l,i){w[l]=w[l]||[];w[l].push({'gtm.start': new Date().getTime(),event:'gtm.js'});var f=d.getElementsByTagName(s)[0], j=d.createElement(s),dl=l!='dataLayer'?'&l='+l:'';j.async=true;j.src= 'https://www.googletagmanager.com/gtm.js?id='+i+dl;f.parentNode.insertBefore(j,f); })(window,document,'script','dataLayer','GTM-NMWPQ83');</script> <meta property="og:url" content="https://nca2018.globalchange.govhttps://nca2018.globalchange.gov/chapter/18"/> <meta property="og:type" content="website"/> <meta property="og:image" content="https://nca2018.globalchange.gov/img/background/ch18_bg_northeast.jpg"/> <meta name="og:image:alt" content="Report cover image" /> <meta property="og:image:width" content="1200" /> <meta property="og:image:height" content="630" /> <meta name="twitter:image" content="https://nca2018.globalchange.gov/img/background/ch18_bg_northeast.jpg" /> <meta name="twitter:image:alt" content="Chapter header image" /> <meta name="twitter:description" content="This report is an authoritative assessment of the science of climate change, with a focus on the United States. It represents the second of two volumes of the Fourth National Climate Assessment, mandated by the Global Change Research Act of 1990." /> <meta property="og:description" content="This report is an authoritative assessment of the science of climate change, with a focus on the United States. It represents the second of two volumes of the Fourth National Climate Assessment, mandated by the Global Change Research Act of 1990."/> <meta name="keywords" content=""/> <meta name="twitter:card" content="summary_large_image" /> <meta name="twitter:site" content="@usgcrp" /> <meta name="twitter:title" content="Fourth National Climate Assessment: Chapter 18: Northeast " /> <meta property="og:title" content="Fourth National Climate Assessment: Chapter 18: Northeast " /> <meta name="twitter:description" content="This report is an authoritative assessment of the science of climate change, with a focus on the United States. It represents the second of two volumes of the Fourth National Climate Assessment, mandated by the Global Change Research Act of 1990." /> <meta name="citation_title" content="Fourth National Climate Assessment"> <meta name="citation_author" content="USGCRP"> <meta name="citation_publication_date" content="2018"> <meta name="citation_technical_report_institution" content="U.S. Global Change Research Program, Washington, DC"> <meta name="citation_firstpage" content="1"> <meta name="citation_lastpage" content="470"> <meta name="citation_pdf_url" content="https://nca2018.globalchange.gov/downloads/NCA2018_FullReport.pdf"> <link rel="alternate" href="/index.xml" type="application/rss+xml" title="Fourth National Climate Assessment"> <link rel="icon" href="/favicon.ico"> <title>Northeast - Fourth National Climate Assessment</title> <link rel="stylesheet" href="/css/google-fonts.css"> <link rel="stylesheet" href="/css/bootstrap.min.css"> <link rel="stylesheet" href="/css/animate.css"> <link rel="stylesheet" href="/css/slick.css"> <link rel="stylesheet" href="/css/slick-theme.css"> <link rel="stylesheet" href="/css/jquery.qtip.min.css"> <link rel='stylesheet' href='/css/leaflet.css'> <link href='https://api.mapbox.com/mapbox.js/plugins/leaflet-fullscreen/v1.0.1/leaflet.fullscreen.css' rel='stylesheet'> <link rel='stylesheet' href='/css/MarkerCluster.Default.css'> <link rel='stylesheet' href='/css/MarkerCluster.css'> <link rel="stylesheet" href="/css/leaflet.zoomhome.css"/> <link rel="stylesheet" href="/css/yamm.css"> <link rel="stylesheet" href="/css/nca4-site.css"> <link rel="stylesheet" href="/css/figures.css"> <style> #intro-header { background: url(/img/background/ch18_bg_northeast.jpg) no-repeat center center fixed; background-size: cover; } #executive-summary { display: none; } </style> <script> var MAPBOX_TOKEN = "pk.eyJ1IjoidXNnY3JwZGlnaXRhbCIsImEiOiJjam80aDBkZW0xN3d1M3FxaTU2enZwdGc5In0.wF6wNsvvozs-DUXqVNnzWg"; </script> <script type="application/javascript"> var doNotTrack = false; if (!doNotTrack) { window.ga=window.ga||function(){(ga.q=ga.q||[]).push(arguments)};ga.l=+new Date; ga('create', 'UA-15963001-5', 'auto'); ga('send', 'pageview'); } </script> <script async src='https://www.google-analytics.com/analytics.js'></script> </head> <body role="document" class="node-type-chapter" data-spy="scroll" data-target="#dot-nav" data-offset="70"> <noscript><iframe src="https://www.googletagmanager.com/ns.html?id=GTM-NMWPQ83" height="0" width="0" style="display:none;visibility:hidden"></iframe></noscript> <a href="#maincontent" class="sr-only sr-only-focusable" id="skip-link"> <div class="container"> <span class="skiplink-text">Skip to main content</span> </div> </a> <nav class="navbar yamm fixed-top navbar-expand-md navbar-dark" role="navigation"> <a class="navbar-brand" href="/"><img src="/img/nca4-logo.svg" width="35" alt="NCA4" /></a> <span class="nca4-title-mobile">Northeast</span> <button class="navbar-toggler" type="button" data-toggle="collapse" data-target="#navbarSupportedContent" aria-controls="navbarSupportedContent" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="collapse navbar-collapse" id="navbarSupportedContent"> <ul class="navbar-nav mr-auto"> <li class="nav-item"> <div class="dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdown" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> ABOUT </a> <div class="dropdown-menu" aria-labelledby="navbarDropdown"> <a class="dropdown-item" href="/chapter/front-matter-about">About this Report</a> <a class="dropdown-item" href="/chapter/front-matter-guide">Guide to this Report</a> <a class="dropdown-item" href="/credits">Report Credits</a> </div> </div> </li> <li class="nav-item"> <div class="dropdown yamm-fw"> <a href="#" class="nav-link dropdown-toggle" id="navbarMegamenu" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false">CHAPTERS <span class="caret"></span></a> <div class="dropdown-menu" aria-labelledby="navbarMegamenu"> <div class="yamm-content"> <div class="row"> <div class="col-md-4"> <h3>Front Matter</h3> <ul class="list-unstyled" role="menu"> <li><a href="/chapter/front-matter-about">About this Report</a></li> <li><a href="/chapter/front-matter-guide">Guide to the Report</a></li> </ul> <div style="padding:10px; margin-top: 1em; background-color: #f0efed;"> <a href="/#sf-1"><strong>Summary Findings</strong></a><br> 1. <a href="/chapter/1"><strong>Overview</strong></a> </i> </div> <h3 style="margin-top: .25em;">National Topics</h3> <ol start="2" role="menu"> <li><a href="/chapter/2">Our Changing Climate</a></li> <li><a href="/chapter/3">Water</a></li> <li><a href="/chapter/4">Energy Supply, Delivery &amp; Demand</a></li> <li><a href="/chapter/5">Land Cover &amp; Land-Use Change</a></li> <li><a href="/chapter/6">Forests</a></li> <li><a href="/chapter/7">Ecosystems, Ecosystem Services, &amp; Biodiversity</a></li> <li><a href="/chapter/8">Coastal Effects</a></li> <li><a href="/chapter/9">Oceans &amp; Marine Resources</a></li> <li><a href="/chapter/10">Agriculture &amp; Rural Communities</a></li> <li><a href="/chapter/11">Built Environment, Urban Systems, &amp; Cities</a></li> <li><a href="/chapter/12">Transportation</a></li> </ol> </div> <div class="col-md-4"> <h3 class="national-topics">National Topics (cont.)</h3> <ol start="13" role="menu"> <li><a href="/chapter/13">Air Quality</a></li> <li><a href="/chapter/14">Human Health</a></li> <li><a href="/chapter/15">Tribes &amp; Indigenous Peoples</a></li> <li><a href="/chapter/16">Climate Effects on U.S. International Interests</a></li> <li><a href="/chapter/17">Sector Interactions, Multiple Stressors, &amp; Complex Systems</a></li> </ol> <h3 style="margin-top: 0.25em">Regions</h3> <ol start="18" role="menu"> <li><a href="/chapter/18">Northeast</a></i></li> <li><a href="/chapter/19">Southeast</a></li> <li><a href="/chapter/20">U.S. Caribbean</a></li> <li><a href="/chapter/21">Midwest</a></li> <li><a href="/chapter/22">Northern Great Plains</a></li> <li><a href="/chapter/23">Southern Great Plains</a></li> <li><a href="/chapter/24">Northwest</a></li> <li><a href="/chapter/25">Southwest</a></li> <li><a href="/chapter/26">Alaska</a></li> <li><a href="/chapter/27">Hawai‘i &amp; U.S.-Affiliated Pacific Islands</a></li> </ol> </div> <div class="col-md-4"> <h3 style="margin-top: .25em;">Responses</h3> <ol start="28" role="menu"> <li><a href="/chapter/28">Reducing Risks Through Adaptation Actions</a></li> <li><a href="/chapter/29">Reducing Risks Through Emissions Mitigation</a></li> </ol> <h3 style="margin-top: .25em;">Appendices</h3> <ol role="menu"> <li><a href="/chapter/appendix-1">Report Development Process</a></li> <li><a href="/chapter/appendix-2">Information in the Fourth National Climate Assessment</a></li> <li><a href="/chapter/appendix-3">Data Tools &amp; Scenario Products</a></li> <li><a href="/chapter/appendix-4">Looking Abroad</a></li> <li><a href="/chapter/appendix-5">Frequently Asked Questions</a></li> </ol> </div> </div> </div> </div> </div> </li> <li class="nav-item"> <div class="dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdown" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> DOWNLOADS </a> <div class="dropdown-menu" aria-labelledby="navbarDropdown"> <a class="dropdown-item" href="/downloads">View All Report Downloads</a> <a class="dropdown-item" href="/downloads/NCA4_Ch18_Northeast_ExecSum.pdf">Chapter Executive Summary PDF</a> <a class="dropdown-item" href="/downloads/NCA4_Ch18_Northeast_Full.pdf">Full Chapter PDF</a> <a class="dropdown-item" href="/downloads/figures-18.zip">Chapter Figures (.zip)</a> <a class="dropdown-item" href="/downloads/NCA4_Ch18_Northeast.ris">Chapter Bibliography (RIS)</a> <a class="dropdown-item" href="/downloads/NCA4_Ch18_Northeast.pptx">Chapter Presentation Package</a> </div> </div> </li> </ul> <span class="nca4-title navbar-text">CH 18: Northeast</span> <div id="navbar-search"> <button id="search-button" aria-label="Search Button" class="btn" onclick="open_search();"><i class="fas fa-search"></i></button> </div> </div> </nav> <div id="search_overlay" class="search-overlay"> <span role="button" class="close-button" onclick="close_search()" title="Close Overlay">×</span> <div class="search-overlay-content"> <form action="/search/index.html"> <div role="search"> <label class="sr-only" for="search-input">Search</label> <input id="search-input" type="search" placeholder="SEARCH&hellip;" name="query"> <button type="submit" aria-label="Submit Search"><i class="fa fa-search"></i></button> </div> </form> </div> </div> <style> #intro-header { background: url(/img/background/ch18_bg_northeast.jpg) no-repeat center center; width: 100%; height: 100vh; background-size: cover; } @media (max-width: 792px) { #intro-header { position: relative; top: 0; z-index: auto; } } @media (min-width: 320px) { #intro-header { background: url(/img/styles-bg/ch18_bg_northeast-320.jpg) no-repeat center center; background-size: cover; } @media (min-width: 320px) and (-webkit-min-device-pixel-ratio: 1.25), (min-width: 320px) and (min-device-pixel-ratio: 1.25), (min-width: 320px) and (min-resolution 200dpi), (min-width: 320px) and (min-resolution 1.25dppx) { #intro-header { background: url(/img/styles-bg/ch18_bg_northeast-320@2x.jpg) no-repeat center center; background-size: cover; } } } @media (min-width: 480px) { #intro-header { background: url(/img/styles-bg/ch18_bg_northeast-480.jpg) no-repeat center center; background-size: cover; } @media (min-width: 480px) and (-webkit-min-device-pixel-ratio: 1.25), (min-width: 480px) and (min-device-pixel-ratio: 1.25), (min-width: 480px) and (min-resolution 200dpi), (min-width: 480px) and (min-resolution 1.25dppx) { #intro-header { background: url(/img/styles-bg/ch18_bg_northeast-480@2x.jpg) no-repeat center center; background-size: cover; } } } @media (min-width: 768px) { #intro-header { background: url(/img/styles-bg/ch18_bg_northeast-768.jpg) no-repeat center center; background-size: cover; } @media (min-width: 768px) and (-webkit-min-device-pixel-ratio: 1.25), (min-width: 768px) and (min-device-pixel-ratio: 1.25), (min-width: 768px) and (min-resolution 200dpi), (min-width: 768px) and (min-resolution 1.25dppx) { #intro-header { background: url(/img/styles-bg/ch18_bg_northeast-768@2x.jpg) no-repeat center center; background-size: cover; } } } @media (min-width: 992px) { #intro-header { background: url(/img/styles-bg/ch18_bg_northeast-992.jpg) no-repeat center center; background-size: cover; } @media (min-width: 992px) and (-webkit-min-device-pixel-ratio: 1.25), (min-width: 992px) and (min-device-pixel-ratio: 1.25), (min-width: 992px) and (min-resolution 200dpi), (min-width: 992px) and (min-resolution 1.25dppx) { #intro-header { background: url(/img/styles-bg/ch18_bg_northeast-992@2x.jpg) no-repeat center center; background-size: cover; } } } @media (min-width: 1200px) { #intro-header { background: url(/img/styles-bg/ch18_bg_northeast-1200.jpg) no-repeat center center; background-size: cover; } @media (min-width: 1200px) and (-webkit-min-device-pixel-ratio: 1.25), (min-width: 1200px) and (min-device-pixel-ratio: 1.25), (min-width: 1200px) and (min-resolution 200dpi), (min-width: 1200px) and (min-resolution 1.25dppx) { #intro-header { background: url(/img/styles-bg/ch18_bg_northeast-1200@2x.jpg) no-repeat center center; background-size: cover; } } } </style> <header id="intro-header"> <div class="nav-arrow"> <a id="nav-arrow-button" role="button" href="#ch18-kfs" aria-label="Scroll to chapter"><i class="fas fa-chevron-down"></i></a> </div> <div class="intro-header-outer"> <div class="container-fluid intro-header-inner no-spacer"> <div class="row no-gutters"> <div class="col-lg-12"> <h1 class="pb-0 nca4-header"> <small class="balance-text">FOURTH NATIONAL CLIMATE ASSESSMENT</small> </h1> <h1 style="line-height: 1.3;"> <span class="balance-text">CHAPTER 18: NORTHEAST</span> </h1> </div> </div> </div> </div> </header> <div id="maincontent" role="main"></div> <section id="ch18-kfs" aria-label="Chapter Key Messages" class="container-fluid kfs report-section no-spacer blackish pt-0 pb-0"> <div class="row no-gutters"> <div class="col-lg-12"> <div id="slick-carousel"> <div id="finding-181" class="slick-carousel-item"> <h3>Key Message 1<br>Changing Seasons Affect Rural Ecosystems, Environments, and Economies</h3> <p><p>The seasonality of the Northeast is central to the region’s sense of place and is an important driver of rural economies. Less distinct seasons with milder winter and earlier spring conditions are already altering ecosystems and environments in ways that adversely impact tourism, farming, and forestry. The region’s rural industries and livelihoods are at risk from further changes to forests, wildlife, snowpack, and streamflow.</p> </p> <div class="supporting-evidence"> <a href="#key-message-1" class="traceable_account_a" aria-label="Read More about Key Message 1">Read More</a> </div> </div> <div id="finding-182" class="slick-carousel-item"> <h3>Key Message 2<br>Changing Coastal and Ocean Habitats, Ecosystem Services, and Livelihoods</h3> <p><p>The Northeast’s coast and ocean support commerce, tourism, and recreation that are important to the region’s economy and way of life. Warmer ocean temperatures, sea level rise, and ocean acidification threaten these services. The adaptive capacity of marine ecosystems and coastal communities will influence ecological and socioeconomic outcomes as climate risks increase.</p> </p> <div class="supporting-evidence"> <a href="#key-message-2" class="traceable_account_a" aria-label="Read More about Key Message 2">Read More</a> </div> </div> <div id="finding-183" class="slick-carousel-item"> <h3>Key Message 3<br>Maintaining Urban Areas and Communities and Their Interconnectedness</h3> <p><p>The Northeast’s urban centers and their interconnections are regional and national hubs for cultural and economic activity. Major negative impacts on critical infrastructure, urban economies, and nationally significant historic sites are already occurring and will become more common with a changing climate.</p> </p> <div class="supporting-evidence"> <a href="#key-message-3" class="traceable_account_a" aria-label="Read More about Key Message 3">Read More</a> </div> </div> <div id="finding-184" class="slick-carousel-item"> <h3>Key Message 4<br>Threats to Human Health</h3> <p><p>Changing climate threatens the health and well-being of people in the Northeast through more extreme weather, warmer temperatures, degradation of air and water quality, and sea level rise. These environmental changes are expected to lead to health-related impacts and costs, including additional deaths, emergency room visits and hospitalizations, and a lower quality of life. Health impacts are expected to vary by location, age, current health, and other characteristics of individuals and communities.</p> </p> <div class="supporting-evidence"> <a href="#key-message-4" class="traceable_account_a" aria-label="Read More about Key Message 4">Read More</a> </div> </div> <div id="finding-185" class="slick-carousel-item"> <h3>Key Message 5<br>Adaptation to Climate Change Is Underway</h3> <p><p>Communities in the Northeast are proactively planning and implementing actions to reduce risks posed by climate change. Using decision support tools to develop and apply adaptation strategies informs both the value of adopting solutions and the remaining challenges. Experience since the last assessment provides a foundation to advance future adaptation efforts.</p> </p> <div class="supporting-evidence"> <a href="#key-message-5" class="traceable_account_a" aria-label="Read More about Key Message 5">Read More</a> </div> </div> </div> </div> </div> </section> <div id="all-key-findings-div" class="all-key-findings-div" data-title="Northeast Key Findings"> <div id="all-key-findings-div-inner" class="view-content"> <div class="panel panel-default"> <div class="panel-heading"> <h3>Key Message 1</h3> </div> <div class="panel-body"> <p>The seasonality of the Northeast is central to the region’s sense of place and is an important driver of rural economies. Less distinct seasons with milder winter and earlier spring conditions are already altering ecosystems and environments in ways that adversely impact tourism, farming, and forestry. The region’s rural industries and livelihoods are at risk from further changes to forests, wildlife, snowpack, and streamflow.</p> </div> </div> <div class="panel panel-default"> <div class="panel-heading"> <h3>Key Message 2</h3> </div> <div class="panel-body"> <p>The Northeast’s coast and ocean support commerce, tourism, and recreation that are important to the region’s economy and way of life. Warmer ocean temperatures, sea level rise, and ocean acidification threaten these services. The adaptive capacity of marine ecosystems and coastal communities will influence ecological and socioeconomic outcomes as climate risks increase.</p> </div> </div> <div class="panel panel-default"> <div class="panel-heading"> <h3>Key Message 3</h3> </div> <div class="panel-body"> <p>The Northeast’s urban centers and their interconnections are regional and national hubs for cultural and economic activity. Major negative impacts on critical infrastructure, urban economies, and nationally significant historic sites are already occurring and will become more common with a changing climate.</p> </div> </div> <div class="panel panel-default"> <div class="panel-heading"> <h3>Key Message 4</h3> </div> <div class="panel-body"> <p>Changing climate threatens the health and well-being of people in the Northeast through more extreme weather, warmer temperatures, degradation of air and water quality, and sea level rise. These environmental changes are expected to lead to health-related impacts and costs, including additional deaths, emergency room visits and hospitalizations, and a lower quality of life. Health impacts are expected to vary by location, age, current health, and other characteristics of individuals and communities.</p> </div> </div> <div class="panel panel-default"> <div class="panel-heading"> <h3>Key Message 5</h3> </div> <div class="panel-body"> <p>Communities in the Northeast are proactively planning and implementing actions to reduce risks posed by climate change. Using decision support tools to develop and apply adaptation strategies informs both the value of adopting solutions and the remaining challenges. Experience since the last assessment provides a foundation to advance future adaptation efforts.</p> </div> </div> </div> </div> <div id="likely-confidence-div"> <div class="likely-confidence-div-inner"> <h4>Likelihood</h4> <table class="table likelihood"> <tbody> <tr> <th scope="col">Virtually Certain</th> <th scope="col">Extremely Likely</th> <th scope="col">Very Likely</th> <th scope="col">Likely</th> <th scope="col">About as Likely as Not</th> <th scope="col">Unlikely</th> <th scope="col">Very Unikely</th> <th scope="col">Extremely Unlikely</th> <th scope="col">Exceptionally Unlikely</th> </tr> <tr> <td>99%–100%</td> <td>95%–100%</td> <td>90%–100%</td> <td>66%-100%</td> <td>33%-66%</td> <td>0%-33%</td> <td>0%-10%</td> <td>0%-5%</td> <td>0%-1%</td> </tr> </tbody> </table> <h4>Confidence Level</h4> <table class="table confidence"> <tbody> <tr> <th scope="col">Very High</th> <th scope="col">High</th> <th scope="col">Medium</th> <th scope="col">Low</th> </tr> <tr> <td>Strong evidence (established theory, multiple sources, consistent results, well documented and accepted methods, etc.), high consensus</td> <td>Moderate evidence (several sources, some consistency, methods vary and/or documentation limited, etc.), medium consensus</td> <td>Suggestive evidence (a few sources, limited consistency, models incomplete, methods emerging, etc.), competing schools of thought</td> <td>Inconclusive evidence (limited sources, extrapolations, inconsistent findings, poor documentation and/or methods not tested, etc.), disagreement or lack of opinions among experts</td> </tr> </tbody> </table> <div style="clear:both;"> &nbsp; </div> </div> <p> <strong>Documenting Uncertainty:</strong> This assessment relies on two metrics to communicate the degree of certainty in Key Findings. See <a href="/chapter/front-matter-guide">Guide to this Report</a> for more on assessments of likelihood and confidence. </p> </div> <section id="view-executive-summary" class="container-fluid"> <div class="row no-gutters"> <div class="offset-lg-1 col-lg-10"> <p class="text-center mb-0"> <button type="button" class="btn btn-outline-secondary btn-lg">VIEW THE EXECUTIVE SUMMARY <i class="fas fa-chevron-down"></i></button> </p> </div> </div> </section> <nav id="dot-nav" style="display: none;"> <ul class="nav nav-tabs flex-column" role="tablist"> <li class="header"><span class="dot-nav-close float-left" role="button"><i class="fas fa-minus-circle"></i></span> SECTIONS</li> <li class="dot-tip nav-item" role="tab"><a class="nav-link" href="#executive-summary">Executive Summary</a></li> <li class="dot-tip nav-item" role="tab"><a class="nav-link" href="#section-1">Background</a></li> <li class="dot-tip nav-item" role="tab"><a class="nav-link" href="#key-message-1">KM 1: Seasons Impact Rural Areas</a></li> <li class="dot-tip nav-item" role="tab"><a class="nav-link" href="#key-message-2">KM 2: Oceans &amp; Coasts</a></li> <li class="dot-tip nav-item" role="tab"><a class="nav-link" href="#key-message-3">KM 3: Urban Interconnectedness</a></li> <li class="dot-tip nav-item" role="tab"><a class="nav-link" href="#key-message-4">KM 4: Threats to Human Health</a></li> <li class="dot-tip nav-item" role="tab"><a class="nav-link" href="#key-message-5">KM 5: Adaptation Efforts</a></li> <li class="dot-tip nav-item" role="tab"><a class="nav-link" href="#traceable-accounts">Traceable Accounts</a></li> <li class="dot-tip nav-item" role="tab"><a class="nav-link" href="#references">References</a></li> </ul> </nav> <div id="executive-summary"> <section id="es-1" class="container-fluid report-section blackish glossary"> <div class="offset-lg-1 col-lg-10 node-narrative"> <div class="figure-social-icons"> <a role="button" href="#" aria-label="Share this content" title="Share" class="share qtip-bottom" ></a> <div class="social-icons"> <a role="button" href="#" aria-label="Share this content on Facebook" data-fb-image="https://nca2018.globalchange.gov/img/background/ch18_bg_northeast.jpg" data-fb-title="Fourth National Climate Assessment: Executive Summary" class="social-icon facebook-icon"></a> <a role="button" href="https://www.twitter.com/intent/tweet?url=https://nca2018.globalchange.gov/chapter/18&amp;text=Fourth%20National%20Climate%20Assessment:%20Chapter%20executive-summary:%20Executive%20Summary&amp;via=usgcrp&amp;hashtags=NCA4" aria-label="Share this content on Twitter" class="social-icon twitter-icon" target="_blank"></a> <a role="button" href="#" aria-label="Share the link to this content" class="social-icon link-icon"></a> <a role="button" href="mailto:?subject=Shared%20With%20You:%20Fourth%20National%20Climate%20Assessment&amp;body=Read%20this%20content%20from%20the%20Fourth%20National%20Climate%20Assessment:%20https://nca2018.globalchange.gov/chapter/18#chapter-executive-summary" aria-label="Share this content via e-mail" class="social-icon email-icon"></a> <div class="link-content"><input aria-label="Link to content" type="text" value="https://nca2018.globalchange.gov/chapter/18#chapter-executive-summary" readonly/></div> </div> </div> <h1> <small class="balance-text">EXECUTIVE SUMMARY:</small><br/> <span class="balance-text">Chapter 18: Northeast</span> </h1> </div><div class="offset-lg-1 col-lg-7"> <p>The distinct seasonality of the Northeast’s climate supports a diverse natural landscape adapted to the extremes of cold, snowy winters and warm to hot, humid summers. This natural landscape provides the economic and cultural foundation for many rural communities, which are largely supported by a diverse range of agricultural, tourism, and natural resource-dependent industries <em>(see <a href="/chapter/10#key-message-4">Ch. 10: Ag &amp; Rural, Key Message 4</a>)</em>.<sup id="fnref:3a4d80de-cbdb-480e-8e12-3c9f2aa9e852"><a href="#fn:1" rel="footnote" onclick="return false;">1</a></sup> The recent dominant trend in precipitation throughout the Northeast has been towards increases in rainfall intensity,<sup id="fnref:6782b38a-17f4-40d2-9cff-da07da38f76a"><a href="#fn:2" rel="footnote" onclick="return false;">2</a></sup> with increases in intensity exceeding those in other regions of the contiguous United States. Further increases in rainfall intensity are expected,<sup id="fnref:56148bf0-62f5-4ec7-8dbc-1e356e40bd42"><a href="#fn:3" rel="footnote" onclick="return false;">3</a></sup> with increases in total precipitation expected during the winter and spring but with little change in the summer.<sup id="fnref:4de020df-232e-45f8-8d44-f864565f0b84"><a href="#fn:4" rel="footnote" onclick="return false;">4</a></sup> Monthly precipitation in the Northeast is projected to be about 1 inch greater for December through April by end of century (2070–2100) under the higher scenario (RCP8.5).<sup id="fnref:4de020df-232e-45f8-8d44-f864565f0b84"><a href="#fn:4" rel="footnote" onclick="return false;">4</a></sup></p> <p>Ocean and coastal ecosystems are being affected by large changes in a variety of climate-related environmental conditions. These ecosystems support fishing and aquaculture,<sup id="fnref:cc3188b2-2dd2-4a5d-8a37-21f523744e75"><a href="#fn:5" rel="footnote" onclick="return false;">5</a></sup> tourism and recreation, and coastal communities.<sup id="fnref:874f9406-dd99-4e92-b64a-4542c23d0d16"><a href="#fn:6" rel="footnote" onclick="return false;">6</a></sup> Observed and projected increases in temperature, acidification, storm frequency and intensity, and sea levels are of particular concern for coastal and ocean ecosystems, as well as local communities and their interconnected social and economic systems. Increasing temperatures and changing seasonality on the Northeast Continental Shelf have affected marine organisms and the ecosystem in various ways. The warming trend experienced in the Northeast Continental Shelf has been associated with many fish and invertebrate species moving northward and to greater depths.<sup id="fnref:8b09bbe8-9f42-412e-a4d6-ef4889f56556"><a href="#fn:7" rel="footnote" onclick="return false;">7</a></sup><sup class="cm">,</sup><sup id="fnref:71910705-6b0b-4f61-8249-5a2d444ad5fb"><a href="#fn:8" rel="footnote" onclick="return false;">8</a></sup><sup class="cm">,</sup><sup id="fnref:90b451be-10f8-4612-848e-6a48d3e48ec1"><a href="#fn:9" rel="footnote" onclick="return false;">9</a></sup><sup class="cm">,</sup><sup id="fnref:8576d351-1b18-4e20-a651-4ab791c17b51"><a href="#fn:10" rel="footnote" onclick="return false;">10</a></sup><sup class="cm">,</sup><sup id="fnref:e453e153-fe51-4bac-857f-689639d2e4f2"><a href="#fn:11" rel="footnote" onclick="return false;">11</a></sup> Because of the diversity of the Northeast’s coastal landscape, the impacts from storms and sea level rise will vary at different locations along the coast.<sup id="fnref:b58704d1-b4ec-46d0-9dd5-e7573523951e"><a href="#fn:12" rel="footnote" onclick="return false;">12</a></sup><sup class="cm">,</sup><sup id="fnref:94b5c52a-8411-431d-8967-97a508db217c"><a href="#fn:13" rel="footnote" onclick="return false;">13</a></sup></p> <p>Northeastern cities, with their abundance of concrete and asphalt and relative lack of vegetation, tend to have higher temperatures than surrounding regions due to the urban heat island effect. During extreme heat events, nighttime temperatures in the region’s big cities are generally several degrees higher than surrounding regions, leading to higher risk of heat-related death. Urban areas are at risk for large numbers of evacuated and displaced populations and damaged infrastructure due to both extreme precipitation events and recurrent flooding, potentially requiring significant emergency response efforts and consideration of a long-term commitment to rebuilding and adaptation, and/or support for relocation where needed. Much of the infrastructure in the Northeast, including drainage and sewer systems, flood and storm protection assets, transportation systems, and power supply, is nearing the end of its planned life expectancy. Climate-related disruptions will only exacerbate existing issues with aging infrastructure. Sea level rise has amplified storm impacts in the Northeast (Key Message 2), contributing to higher surges that extend farther inland, as demonstrated in New York City in the aftermath of Superstorm Sandy in 2012.<sup id="fnref:8a3b0b9a-fc45-4ea2-b732-90222ff624ba"><a href="#fn:14" rel="footnote" onclick="return false;">14</a></sup><sup class="cm">,</sup><sup id="fnref:63483c02-d727-4dbc-b771-32de7345ab8a"><a href="#fn:15" rel="footnote" onclick="return false;">15</a></sup><sup class="cm">,</sup><sup id="fnref:ce69b827-921d-4966-bbdc-2cdda61d1b2f"><a href="#fn:16" rel="footnote" onclick="return false;">16</a></sup> Service and resource supply infrastructure in the Northeast is at increasing risk of disruption, resulting in lower quality of life, economic declines, and increased social inequality.<sup id="fnref:15df801e-f052-4327-9b08-47c13d894ea7"><a href="#fn:17" rel="footnote" onclick="return false;">17</a></sup> Loss of public services affects the capacity of communities to function as administrative and economic centers and triggers disruptions of interconnected supply chains <em>(<a href="/chapter/16">Ch. 16: International, Key Message 1</a>)</em>.</p> <p>Increases in annual average temperatures across the Northeast range from less than 1°F (0.6°C) in West Virginia to about 3°F (1.7°C) or more in New England since 1901.<sup id="fnref:586086ee-e57a-4772-8f25-2a8f083a6e11"><a href="#fn:18" rel="footnote" onclick="return false;">18</a></sup><sup class="cm">,</sup><sup id="fnref:10b4bf0b-2dbd-47d4-bfc9-b1a7cb66d32e"><a href="#fn:19" rel="footnote" onclick="return false;">19</a></sup> Although the relative risk of death on very hot days is lower today than it was a few decades ago, heat-related illness and death remain significant public health problems in the Northeast.<sup id="fnref:6b3cd0ec-1e3e-42e8-ad82-5c12ed7ab0e8"><a href="#fn:20" rel="footnote" onclick="return false;">20</a></sup><sup class="cm">,</sup><sup id="fnref:e65c896d-395c-4347-80ed-64af1333f3a7"><a href="#fn:21" rel="footnote" onclick="return false;">21</a></sup><sup class="cm">,</sup><sup id="fnref:b151fd56-2d07-47fb-88df-173212cd5059"><a href="#fn:22" rel="footnote" onclick="return false;">22</a></sup><sup class="cm">,</sup><sup id="fnref:028a4c4b-3a7f-47b3-8a78-432fd7840f21"><a href="#fn:23" rel="footnote" onclick="return false;">23</a></sup> For example, a study in New York City estimated that in 2013 there were 133 excess deaths due to extreme heat.<sup id="fnref:16ccfd2c-9115-4840-bde1-107b81aeedd2"><a href="#fn:24" rel="footnote" onclick="return false;">24</a></sup> These projected increases in temperature are expected to lead to substantially more premature deaths, hospital admissions, and emergency department visits across the Northeast.<sup id="fnref:028a4c4b-3a7f-47b3-8a78-432fd7840f21"><a href="#fn:23" rel="footnote" onclick="return false;">23</a></sup><sup class="cm">,</sup><sup id="fnref:97024533-f9d5-4ee9-abb6-56733744a4d0"><a href="#fn:25" rel="footnote" onclick="return false;">25</a></sup><sup class="cm">,</sup><sup id="fnref:ec9926c5-6257-49b3-8bfd-c9a02c0bf75b"><a href="#fn:26" rel="footnote" onclick="return false;">26</a></sup><sup class="cm">,</sup><sup id="fnref:5f6814af-7a3a-422f-9c47-bab08e4f6f91"><a href="#fn:27" rel="footnote" onclick="return false;">27</a></sup><sup class="cm">,</sup><sup id="fnref:e805bfdc-c4c2-43a0-b2e5-5a66945c74e4"><a href="#fn:28" rel="footnote" onclick="return false;">28</a></sup><sup class="cm">,</sup><sup id="fnref:0b30f1ab-e4c4-4837-aa8b-0e19faccdb94"><a href="#fn:29" rel="footnote" onclick="return false;">29</a></sup> For example, in the Northeast we can expect approximately 650 additional premature deaths per year from extreme heat by the year 2050 under either a lower (RCP4.5) or higher (RCP8.5) scenario and from 960 (under RCP4.5) to 2,300 (under RCP8.5) more premature deaths per year by 2090.<sup id="fnref:0b30f1ab-e4c4-4837-aa8b-0e19faccdb94"><a href="#fn:29" rel="footnote" onclick="return false;">29</a></sup></p> <p>Communities, towns, cities, counties, states, and tribes across the Northeast are engaged in efforts to build resilience to environmental challenges and adapt to a changing climate. Developing and implementing climate adaptation strategies in daily practice often occur in collaboration with state and federal agencies (e.g., New Jersey Climate Adaptation Alliance 2017, New York Climate Clearinghouse 2017, Rhode Island STORMTOOLS 2017, EPA 2017, CDC 2015<sup id="fnref:452bb2dd-a1ab-4e9e-854e-a7f1c677c49d"><a href="#fn:30" rel="footnote" onclick="return false;">30</a></sup><sup class="cm">,</sup><sup id="fnref:4612baaf-a0ca-4a09-98ff-8936030286cb"><a href="#fn:31" rel="footnote" onclick="return false;">31</a></sup><sup class="cm">,</sup><sup id="fnref:0f0774a4-9637-44af-bcc3-096ed901d1cc"><a href="#fn:32" rel="footnote" onclick="return false;">32</a></sup><sup class="cm">,</sup><sup id="fnref:468447f6-f42b-4450-9300-cc55ad67a544"><a href="#fn:33" rel="footnote" onclick="return false;">33</a></sup><sup class="cm">,</sup><sup id="fnref:4a3e0916-7ee3-4589-8d95-9669a6310268"><a href="#fn:34" rel="footnote" onclick="return false;">34</a></sup>). Advances in rural towns, cities, and suburban areas include low-cost adjustments of existing building codes and standards. In coastal areas, partnerships among local communities and federal and state agencies leverage federal adaptation tools and decision support frameworks (for example, NOAA’s Digital Coast, USGS’s Coastal Change Hazards Portal, and New Jersey’s Getting to Resilience). Increasingly, cities and towns across the Northeast are developing or implementing plans for adaptation and resilience in the face of changing climate (e.g., EPA 2017<sup id="fnref:468447f6-f42b-4450-9300-cc55ad67a544"><a href="#fn:33" rel="footnote" onclick="return false;">33</a></sup>). The approaches are designed to maintain and enhance the everyday lives of residents and promote economic development. In some cities, adaptation planning has been used to respond to present and future challenges in the built environment. Regional efforts have recommended changes in design standards when building, replacing, or retrofitting infrastructure to account for a changing climate.</p> </div> <section id="fig-18-3-es" class="offset-lg-1 col-lg-7 big-figure figure"> <div class="figure-social-icons"> <a role="button" href="http://noaa.maps.arcgis.com/apps/MapJournal/index.html?appid=92260a6bcf154d72bab62e50231e64c8&amp;section=5" aria-label="See related content from the U.S. Climate Resilience Toolkit or the USGCRP Indicator Platform" target="'' " title=" See related content from the U.S. Climate Resilience Toolkit " class="climatelink qtip-bottom"></a>&nbsp; <a role="button" href="/img/figure/figure18_3.png" aria-label="Download" title="Download" class="download_a qtip-top" download></a>&nbsp; <a role="button" href="/report/nca4/chapter/northeast/figure/changes-in-growing-season-length-and-nighttime-temperatures" aria-label="Metadata" title="Metadata" class="metadata_a qtip-top" ></a>&nbsp; <a role="button" href="#" aria-label="Share this content" title="Share" class="share qtip-bottom" ></a> <div class="social-icons"> <a role="button" href="#" aria-label="Share this content on Facebook" data-fb-image="https://nca2018.globalchange.gov/img/figure/figure18_3.png" data-fb-title="Fourth National Climate Assessment: Lengthening of the Freeze-Free Period" class="social-icon facebook-icon"></a> <a role="button" href="https://www.twitter.com/intent/tweet?url=https://nca2018.globalchange.gov/chapter/18%23fig-18-3-es&amp;text=Fourth%20National%20Climate%20Assessment:%20Figure%2018.3:%20Lengthening%20of%20the%20Freeze-Free%20Period&amp;via=usgcrp&amp;hashtags=NCA4" aria-label="Share this content on Twitter" class="social-icon twitter-icon" target="_blank"></a> <a role="button" href="#" aria-label="Share the link to this content" class="social-icon link-icon"></a> <a role="button" href="mailto:?subject=Shared%20With%20You:%20Fourth%20National%20Climate%20Assessment&amp;body=Check%20out%20this%20site:%20https://nca2018.globalchange.gov/chapter/18#fig-18-3-es" aria-label="Share this content via e-mail" class="social-icon email-icon"></a> <div class="link-content"><input aria-label="Link to content" type="text" value="https://nca2018.globalchange.gov/chapter/18#fig-18-3-es" readonly/></div> </div> </div> <h2>Lengthening of the Freeze-Free Period</h2> <div class="figure-inner"> <a class="lightbox" href="/img/figure/figure18_3.png" data-title='Figure 18.3 Lengthening of the Freeze-Free Period'> <picture> <source media="(min-width: 1200px)" data-srcset="/img/styles/figure18_3-1200.png, /img/styles/figure18_3-1200@2x.png 2x"> <source media="(min-width: 992px)" data-srcset="/img/styles/figure18_3-992.png, /img/styles/figure18_3-992@2x.png 2x"> <source media="(min-width: 768px)" data-srcset="/img/styles/figure18_3-768.png, /img/styles/figure18_3-768@2x.png 2x"> <source media="(min-width: 480px)" data-srcset="/img/styles/figure18_3-480.png, /img/styles/figure18_3-480@2x.png 2x"> <source media="(min-width: 320px)" data-srcset="/img/styles/figure18_3-320.png, /img/styles/figure18_3-320@2x.png 2x"> <img data-src="/img/figure/figure18_3.png" alt="Lengthening of the Freeze-Free Period" class="big-img img-fluid lazyload" aria-describedby="description-18-3-es" /> </picture> </a> <aside id="description-18-3-es" class="sr-only">Three pairs of maps of the Northeast region of the United States, which includes states from West Virginia north to Maine, are shown. The maps illustrate projected changes in the length of the freeze-free season by mid-century under thea lower RCP4.5 scenario and the higher RCP8.5 scenario and by the end of the century under the higher scenario only. Refer to the figure caption for a detailed description of the projected changes.</aside> <div class="caption" data-href="/img/figure/figure18_3.png" data-title='Figure 18.3 Lengthening of the Freeze-Free Period'>These maps show projected shifts in the date of the last spring freeze (left column) and the date of the first fall freeze (right column) for the middle of the century (as compared to 1979–2008) under the lower scenario (RCP4.5; top row) and the higher scenario (RCP8.5; middle row). The bottom row shows the shift in these dates for the end of the century under the higher scenario. By the middle of the century, the freeze-free period across much of the Northeast is expected to lengthen by as much as two weeks under the lower scenario and by two to three weeks under the higher scenario. By the end of the century, the freeze-free period is expected to increase by at least three weeks over most of the region. <em>From Figure 18.3 (Source: adapted from Wolfe et al. 2018).<sup id='fnref:b6e8b67c-7042-4b85-b432-033983875e14'><a href='#fn:35' rel='footnote' onclick='return false;'>35</a></sup></em></div> </div> </section> <section id="fig-18-7-es" class="offset-lg-1 col-lg-7 big-figure figure"> <div class="figure-social-icons"> <a role="button" href="/img/figure/figure18_7.png" aria-label="Download" title="Download" class="download_a qtip-top" download></a>&nbsp; <a role="button" href="/report/nca4/chapter/northeast/figure/coastal-effects-cartoon" aria-label="Metadata" title="Metadata" class="metadata_a qtip-top" ></a>&nbsp; <a role="button" href="#" aria-label="Share this content" title="Share" class="share qtip-bottom" ></a> <div class="social-icons"> <a role="button" href="#" aria-label="Share this content on Facebook" data-fb-image="https://nca2018.globalchange.gov/img/figure/figure18_7.png" data-fb-title="Fourth National Climate Assessment: Coastal Impacts of Climate Change" class="social-icon facebook-icon"></a> <a role="button" href="https://www.twitter.com/intent/tweet?url=https://nca2018.globalchange.gov/chapter/18%23fig-18-7-es&amp;text=Fourth%20National%20Climate%20Assessment:%20Figure%2018.7:%20Coastal%20Impacts%20of%20Climate%20Change&amp;via=usgcrp&amp;hashtags=NCA4" aria-label="Share this content on Twitter" class="social-icon twitter-icon" target="_blank"></a> <a role="button" href="#" aria-label="Share the link to this content" class="social-icon link-icon"></a> <a role="button" href="mailto:?subject=Shared%20With%20You:%20Fourth%20National%20Climate%20Assessment&amp;body=Check%20out%20this%20site:%20https://nca2018.globalchange.gov/chapter/18#fig-18-7-es" aria-label="Share this content via e-mail" class="social-icon email-icon"></a> <div class="link-content"><input aria-label="Link to content" type="text" value="https://nca2018.globalchange.gov/chapter/18#fig-18-7-es" readonly/></div> </div> </div> <h2>Coastal Impacts of Climate Change</h2> <div style="width: 85%;" class="figure-inner"> <a class="lightbox" href="/img/figure/figure18_7.png" data-title='Figure 18.7 Coastal Impacts of Climate Change'> <picture> <source media="(min-width: 1200px)" data-srcset="/img/styles/figure18_7-1200.png, /img/styles/figure18_7-1200@2x.png 2x"> <source media="(min-width: 992px)" data-srcset="/img/styles/figure18_7-992.png, /img/styles/figure18_7-992@2x.png 2x"> <source media="(min-width: 768px)" data-srcset="/img/styles/figure18_7-768.png, /img/styles/figure18_7-768@2x.png 2x"> <source media="(min-width: 480px)" data-srcset="/img/styles/figure18_7-480.png, /img/styles/figure18_7-480@2x.png 2x"> <source media="(min-width: 320px)" data-srcset="/img/styles/figure18_7-320.png, /img/styles/figure18_7-320@2x.png 2x"> <img data-src="/img/figure/figure18_7.png" alt="Coastal Impacts of Climate Change" class="big-img img-fluid lazyload" aria-describedby="description-18-7-es" /> </picture> </a> <aside id="description-18-7-es" class="sr-only">A diagram shows present and possible future scenarios of a northeastern coastal landscape. In the present view, we are reminded that the coastal landscape provides a number of essential services to humans and to coastal species, including providing habitats and recreation. The possible future diagram shows how coastal landscapes will be impacted by storm activity and sea level rise in years to come. For example, forests and marshlands will either migrate inland or become submerged. Bluffs will erode, and barrier islands and beaches will migrate inland, narrow, or erode. And areas of development will require ongoing efforts to remain protected from coastal erosion and flooding.</aside> <div class="caption" data-href="/img/figure/figure18_7.png" data-title='Figure 18.7 Coastal Impacts of Climate Change'>(top) The northeastern coastal landscape is composed of uplands and forested areas, wetlands and estuarine systems, mainland and barrier beaches, bluffs, headlands, and rocky shores, as well as developed areas, all of which provide a variety of important services to people and species. (bottom) Future impacts from intense storm activity and sea level rise will vary across the landscape, requiring a variety of adaptation strategies if people, habitats, traditions, and livelihoods are to be protected. <em>From Figure 18.7 (Source: U.S. Geological Survey).</em></div> </div> </section> <div id="hide-executive-summary"> <div class="offset-lg-1 col-lg-7"> <p class="text-center mb-0"> <button type="button" class="btn btn-outline-secondary btn-lg">HIDE THE EXECUTIVE SUMMARY <i class="fas fa-chevron-up"></i></button> </p> </div> </div> </section> </div> <div class="chapter-content"></div> <section id="section-1" class="container-fluid report-section no-spacer blackish glossary clearfix"> <div class="offset-lg-1 col-lg-10 node-narrative"> <div class="figure-social-icons"> <a role="button" href="#" aria-label="Share this content" title="Share" class="share qtip-bottom" ></a> <div class="social-icons"> <a role="button" href="#" aria-label="Share this content on Facebook" data-fb-image="https://nca2018.globalchange.gov/img/background/ch18_bg_northeast.jpg" data-fb-title="Fourth National Climate Assessment: Northeast" class="social-icon facebook-icon"></a> <a role="button" href="https://www.twitter.com/intent/tweet?url=https://nca2018.globalchange.gov/chapter/18&amp;text=Fourth%20National%20Climate%20Assessment:%20Chapter%2018:%20Northeast&amp;via=usgcrp&amp;hashtags=NCA4" aria-label="Share this content on Twitter" class="social-icon twitter-icon" target="_blank"></a> <a role="button" href="#" aria-label="Share the link to this content" class="social-icon link-icon"></a> <a role="button" href="mailto:?subject=Shared%20With%20You:%20Fourth%20National%20Climate%20Assessment&amp;body=Read%20this%20content%20from%20the%20Fourth%20National%20Climate%20Assessment:%20https://nca2018.globalchange.gov/chapter/18#chapter-18" aria-label="Share this content via e-mail" class="social-icon email-icon"></a> <div class="link-content"><input aria-label="Link to content" type="text" value="https://nca2018.globalchange.gov/chapter/18#chapter-18" readonly/></div> </div> </div> <h1> <small>CHAPTER 18</small><br/> <span class="balance-text">Northeast</span> </h1> </div> <div class="offset-lg-1 col-lg-7 node-narrative" aria-flowto="content-18-1"> <div class="figure-social-icons"> <a role="button" href="#" aria-label="Share this content" title="Share" class="share qtip-bottom" ></a> <div class="social-icons"> <a role="button" href="#" aria-label="Share this content on Facebook" data-fb-image="https://nca2018.globalchange.gov/img/background/ch18_bg_northeast.jpg" data-fb-title="Fourth National Climate Assessment: Background" class="social-icon facebook-icon"></a> <a role="button" href="https://www.twitter.com/intent/tweet?url=https://nca2018.globalchange.gov/chapter/18%23section-1&amp;text=Fourth%20National%20Climate%20Assessment:%20Background&amp;via=usgcrp&amp;hashtags=NCA4" aria-label="Share this content on Twitter" class="social-icon twitter-icon" target="_blank"></a> <a role="button" href="#" aria-label="Share the link to this content" class="social-icon link-icon"></a> <a role="button" href="mailto:?subject=Shared%20With%20You:%20Fourth%20National%20Climate%20Assessment&amp;body=Check%20out%20this%20site:%20https://nca2018.globalchange.gov/chapter/18#section-1" aria-label="Share this content via e-mail" class="social-icon email-icon"></a> <div class="link-content"><input aria-label="Link to content" type="text" value="https://nca2018.globalchange.gov/chapter/18#section-1" readonly/></div> </div> </div> <h2> Background</h2> </div> <div class="md-3" style="z-index: 998;"> <div id="aside-accordion"> <div class="card"> <div class="card-header" id="authors-heading"> <h5 class="mb-0"> <button class="btn btn-link collapsed" data-toggle="collapse" data-target="#authors-collapse" aria-expanded="false" aria-controls="authors-collapse"> Authors </button> </h5> </div> <div id="authors-collapse" class="collapse" aria-labelledby="authors-heading" data-parent="#aside-accordion"> <div class="card-body accordion-scroll"> <dl> <dt class="blue-lite">Federal Coordinating Lead Author:</dt> <dd> <strong>Ellen L. Mecray</strong>, National Oceanic and Atmospheric Administration </dd> <dt class="blue-lite">Chapter Lead:</dt> <dd> <strong>Lesley-Ann L. Dupigny-Giroux</strong>, University of Vermont </dd> <dt class="blue-lite">Chapter Authors:</dt> <dd> <strong>Mary D. Lemcke-Stampone</strong>, University of New Hampshire </dd> <dd> <strong>Glenn A. Hodgkins</strong>, U.S. Geological Survey </dd> <dd> <strong>Erika E. Lentz</strong>, U.S. Geological Survey </dd> <dd> <strong>Katherine E. Mills</strong>, Gulf of Maine Research Institute </dd> <dd> <strong>Erin D. Lane</strong>, U.S. Department of Agriculture </dd> <dd> <strong>Rawlings Miller</strong>, WSP (formerly U.S. Department of Transportation Volpe Center) </dd> <dd> <strong>David Y. Hollinger</strong>, U.S. Department of Agriculture </dd> <dd> <strong>William D. Solecki</strong>, City University of New York-Hunter College </dd> <dd> <strong>Gregory A. Wellenius</strong>, Brown University </dd> <dd> <strong>Perry E. Sheffield</strong>, Icahn School of Medicine at Mount Sinai </dd> <dd> <strong>Anthony B. MacDonald</strong>, Monmouth University </dd> <dd> <strong>Christopher Caldwell</strong>, College of Menominee Nation </dd> <dt class="blue-lite">Review Editor:</dt> <dd> <strong>Jayne F. Knott</strong>, University of New Hampshire </dd> </dl> </div> </div> </div> <div class="card"> <div class="card-header" id="tech-contributors-heading"> <h5 class="mb-0"> <button class="btn btn-link collapsed" data-toggle="collapse" data-target="#contributors-heading" aria-expanded="false" aria-controls="contributors-heading"> Contributors </button> </h5> </div> <div id="contributors-heading" class="collapse" aria-labelledby="tech-contributors-heading" data-parent="#aside-accordion"> <div class="card-body "> <dl> <dt class="blue-lite">Technical Contributors:</dt> <dd> <strong>Zoe P. Johnson</strong>, U.S. Department of Defense, Naval Facilities Engineering Command (formerly NOAA Chesapeake Bay Office) </dd> <dd> <strong>Amanda Babson</strong>, U.S. National Park Service </dd> <dd> <strong>Elizabeth Pendleton</strong>, U.S. Geological Survey </dd> <dd> <strong>Benjamin T. Gutierrez</strong>, U.S. Geological Survey </dd> <dd> <strong>Joseph Salisbury</strong>, University of New Hampshire </dd> <dd> <strong>Andrew Sven McCall Jr.</strong>, University of Vermont </dd> <dd> <strong>E. Robert Thieler</strong>, U.S. Geological Survey </dd> <dd> <strong>Sara L. Zeigler</strong>, U.S. Geological Survey </dd> <dt class="blue-lite">USGCRP Coordinators:</dt> <dd> <strong>Christopher W. Avery</strong>, Senior Manager </dd> <dd> <strong>Matthew Dzaugis</strong>, Program Coordinator </dd> <dd> <strong>Allyza Lustig</strong>, Program Coordinator </dd> </dl> </div> </div> </div> <div class="card"> <div class="card-header" id="recommended-citation-heading"> <h5 class="mb-0"> <button class="btn btn-link collapsed" data-toggle="collapse" data-target="#citation-heading" aria-expanded="false" aria-controls="citation-heading"> Recommended Citation </button> </h5> </div> <div id="citation-heading" class="collapse" aria-labelledby="recommended-citation-heading" data-parent="#aside-accordion"> <div class="card-body"> <p class="recommended-citation">&lt;b&gt;Dupigny-Giroux&lt;/b&gt;, L.A., E.L. Mecray, M.D. Lemcke-Stampone, G.A. Hodgkins, E.E. Lentz, K.E. Mills, E.D. Lane, R. Miller, D.Y. Hollinger, W.D. Solecki, G.A. Wellenius, P.E. Sheffield, A.B. MacDonald, and C. Caldwell, 2018: Northeast. In &lt;i&gt;Impacts, Risks, and Adaptation in the United States: Fourth National Climate Assessment, Volume II&lt;/i&gt; [Reidmiller, D.R., C.W. Avery, D.R. Easterling, K.E. Kunkel, K.L.M. Lewis, T.K. Maycock, and B.C. Stewart (eds.)]. U.S. Global Change Research Program, Washington, DC, USA, pp. 669–742. doi: 10.7930/NCA4.2018.CH18</p> </div> </div> </div> <div class="card"> <div class="card-header" id="related-links-heading"> <h5 class="mb-0"> <button class="btn btn-link collapsed" data-toggle="collapse" data-target="#links-heading" aria-expanded="false" aria-controls="links-heading"> Related Links </button> </h5> </div> <div id="links-heading" class="collapse" aria-labelledby="related-links-heading" data-parent="#aside-accordion"> <div class="card-body"> <ul> <li><a target="_blank" href="https://toolkit.climate.gov/regions/northeast" aria-label="Chapter Related Link" title="Chapter Related Link">U.S. Climate Resilience Toolkit</a></li> <li><a target="_blank" href="https://science2017.globalchange.gov" aria-label="Chapter Related Link" title="Chapter Related Link">Climate Science Special Report</a></li> <li><a target="_blank" href="https://scenarios.globalchange.gov" aria-label="Chapter Related Link" title="Chapter Related Link">Scenarios for the National Climate Assessment</a></li> <li><a target="_blank" href="https://stateclimatesummaries.globalchange.gov" aria-label="Chapter Related Link" title="Chapter Related Link">State Climate Summaries</a></li> </ul> </div> </div> </div> </div> </div> <div id="content-18-1"><div class="offset-lg-1 col-lg-7"> <p>The Northeast region is characterized by four distinct seasons and a diverse landscape that is central to the region’s cultural identity, quality of life, and economic success. It is both the most heavily forested and most densely populated region in the country. Residents have ready access to beaches, forests, and other natural areas and use them heavily for recreation. Colorful autumn foliage, winter recreation, and summer vacations in the mountains or at the beach are all important parts of the Northeast’s cultural identity, and this tourism contributes billions of dollars to the regional economy. The seasonal climate, natural systems, and accessibility of certain types of recreation are threatened by declining snow and ice, rising sea levels, and rising temperatures. By 2035, and under both lower and higher scenarios (RCP4.5 and RCP8.5), the Northeast is projected to be more than 3.6°F (2°C) warmer on average than during the preindustrial era. This would be the largest increase in the contiguous United States and would occur as much as two decades before global average temperatures reach a similar milestone.<sup id="fnref:4aa6c489-e993-4378-bb2b-b368557ee7f9"><a href="#fn:36" rel="footnote" onclick="return false;">36</a></sup></p> <p>The region’s oceans and coasts support a rich maritime heritage and provide an iconic landscape, as well as economic and ecological services. Highly productive marshes,<sup id="fnref:f516a114-4604-4062-a1b3-e70a4cbbba9e"><a href="#fn:37" rel="footnote" onclick="return false;">37</a></sup><sup class="cm">,</sup><sup id="fnref:d5ef4e17-17d7-48ad-8d0a-d980811e903d"><a href="#fn:38" rel="footnote" onclick="return false;">38</a></sup> fisheries,<sup id="fnref:fb1f46cd-8b70-4a44-923a-66df61ffa0be"><a href="#fn:39" rel="footnote" onclick="return false;">39</a></sup><sup class="cm">,</sup><sup id="fnref:fda5d878-d7b2-48d9-a2c4-bb0721262ce5"><a href="#fn:40" rel="footnote" onclick="return false;">40</a></sup> ecosystems,<sup id="fnref:8be5daa4-2526-49b8-9b71-c9434e436a87"><a href="#fn:41" rel="footnote" onclick="return false;">41</a></sup><sup class="cm">,</sup><sup id="fnref:27775d55-2293-45cd-8f21-1245472c5c7f"><a href="#fn:42" rel="footnote" onclick="return false;">42</a></sup> and coastal infrastructure<sup id="fnref:1aee1274-4945-4762-8117-18fbbd6dfea1"><a href="#fn:43" rel="footnote" onclick="return false;">43</a></sup><sup class="cm">,</sup><sup id="fnref:b4808700-a94a-44da-b2bb-d360a83146f1"><a href="#fn:44" rel="footnote" onclick="return false;">44</a></sup> are sensitive to changing environmental conditions, including shifts in temperature, ocean acidification, sea level, storm surge, flooding, and erosion. Many of these changes are already affecting coastal and marine ecosystems, posing increasing risks to people, traditions, infrastructure, and economies (e.g., Colburn et al. 2016<sup id="fnref:548bc141-7fd7-45bb-9c1b-e2a25bcb4e24"><a href="#fn:45" rel="footnote" onclick="return false;">45</a></sup>). These risks are exacerbated by increasing demands on these ecosystems to support human use and development. The Northeast has experienced some of the highest rates of sea level rise<sup id="fnref:480ff362-8434-4861-a8bb-2dc6615bdcdc"><a href="#fn:46" rel="footnote" onclick="return false;">46</a></sup> and ocean warming<sup id="fnref:fb1f46cd-8b70-4a44-923a-66df61ffa0be"><a href="#fn:39" rel="footnote" onclick="return false;">39</a></sup> in the United States, and these exceptional increases relative to other regions are projected to continue through the end of the century.<sup id="fnref:c66bf5a9-a6d7-4043-ad99-db0ae6ae562c"><a href="#fn:47" rel="footnote" onclick="return false;">47</a></sup><sup class="cm">,</sup><sup id="fnref:f44f9474-6d98-43a9-8d7f-ee808ecaf41e"><a href="#fn:48" rel="footnote" onclick="return false;">48</a></sup><sup class="cm">,</sup><sup id="fnref:0826d3d5-2742-415f-a9de-3621c4b79442"><a href="#fn:49" rel="footnote" onclick="return false;">49</a></sup><sup class="cm">,</sup><sup id="fnref:75cf1c0b-cc62-4ca4-96a7-082afdfe2ab1"><a href="#fn:50" rel="footnote" onclick="return false;">50</a></sup></p> <p>The Northeast is quite varied geographically, with a wide spectrum of communities including densely populated cities and metropolitan regions and relatively remote hamlets and villages (Figure 18.1). Rural and urban areas have distinct vulnerabilities, impacts, and adaptation responses to climate change.<sup id="fnref:27c73e8f-5ac8-491c-8300-629df017ab4e"><a href="#fn:51" rel="footnote" onclick="return false;">51</a></sup><sup class="cm">,</sup><sup id="fnref:895f3c9b-021d-4e91-95bd-2da7219d8be9"><a href="#fn:52" rel="footnote" onclick="return false;">52</a></sup> The urbanized parts of the Northeast are dependent on the neighboring rural areas’ natural and recreational services, while the rural communities are dependent on the economic vitality and wealth-generating capacity of the region’s major cities. Rural and urban communities together are under increasing threat of climate change and the resulting impacts, and adaptation strategies reveal their interdependence and opportunities for successful climate resilience.<sup id="fnref:27c73e8f-5ac8-491c-8300-629df017ab4e"><a href="#fn:51" rel="footnote" onclick="return false;">51</a></sup> Rural–urban linkages<sup id="fnref:5574415c-503c-4767-b9f5-ad7a5e4ffa63"><a href="#fn:53" rel="footnote" onclick="return false;">53</a></sup><sup class="cm">,</sup><sup id="fnref:8bba9081-08cb-488b-a5c8-3689e5c11258"><a href="#fn:54" rel="footnote" onclick="return false;">54</a></sup><sup class="cm">,</sup><sup id="fnref:304c8aad-bad3-44a8-a063-dbdd55881107"><a href="#fn:55" rel="footnote" onclick="return false;">55</a></sup> in the region could also be altered by climate change impacts.</p> </div> <section id="fig-18-1" class="md-3 small-figure figure"> <div class="figure-social-icons"> <a role="button" href="/img/figure/figure18_1.png" aria-label="Download" title="Download" class="download_a qtip-top" download></a>&nbsp; <a role="button" href="/report/nca4/chapter/northeast/figure/population-density" aria-label="Metadata" title="Metadata" class="metadata_a qtip-top" ></a>&nbsp; <a role="button" href="#" aria-label="Share this content" title="Share" class="share qtip-bottom" ></a> <div class="social-icons"> <a role="button" href="#" aria-label="Share this content on Facebook" data-fb-image="https://nca2018.globalchange.gov/img/figure/figure18_1.png" data-fb-title="Fourth National Climate Assessment: Population Density" class="social-icon facebook-icon"></a> <a role="button" href="https://www.twitter.com/intent/tweet?url=https://nca2018.globalchange.gov/chapter/18%23fig-18-1&amp;text=Fourth%20National%20Climate%20Assessment:%20Figure%2018.1:%20Population%20Density&amp;via=usgcrp&amp;hashtags=NCA4" aria-label="Share this content on Twitter" class="social-icon twitter-icon" target="_blank"></a> <a role="button" href="#" aria-label="Share the link to this content" class="social-icon link-icon"></a> <a role="button" href="mailto:?subject=Shared%20With%20You:%20Fourth%20National%20Climate%20Assessment&amp;body=Check%20out%20this%20site:%20https://nca2018.globalchange.gov/chapter/18#fig-18-1" aria-label="Share this content via e-mail" class="social-icon email-icon"></a> <div class="link-content"><input aria-label="Link to content" type="text" value="https://nca2018.globalchange.gov/chapter/18#fig-18-1" readonly/></div> </div> </div> <h2>Figure 18.1: Population Density</h2> <div class="figure-inner"> <a class="lightbox" href="/img/figure/figure18_1.png" data-title='Figure 18.1 Population Density'> <picture> <source media="(min-width: 1200px)" data-srcset="/img/styles/figure18_1-1200.png, /img/styles/figure18_1-1200@2x.png 2x"> <source media="(min-width: 992px)" data-srcset="/img/styles/figure18_1-992.png, /img/styles/figure18_1-992@2x.png 2x"> <source media="(min-width: 768px)" data-srcset="/img/styles/figure18_1-768.png, /img/styles/figure18_1-768@2x.png 2x"> <source media="(min-width: 480px)" data-srcset="/img/styles/figure18_1-480.png, /img/styles/figure18_1-480@2x.png 2x"> <source media="(min-width: 320px)" data-srcset="/img/styles/figure18_1-320.png, /img/styles/figure18_1-320@2x.png 2x"> <img data-src="/img/figure/figure18_1.png" alt="Population Density" class="img-fluid lazyload" aria-describedby="description-18-1"/> </picture> </a> <aside id="description-18-1" class="sr-only">A map of the Northeast region of the United States shows population density patterns in relation to major roadways. Population density varies considerably, from fewer than 400 people per square mile to more than 14,000 people per square mile. Population centers of the greatest sizes occur at the intersections of primary roads, most notably at those along the Northeast Continental Shelf. </aside> <div class="caption" data-href="/img/figure/figure18_1.png" data-title='Figure 18.1 Population Density'><strong>Figure 18.1: </strong>A map showing primary roads and population density highlights the diverse characteristics of the region in terms of settlement patterns, interconnections among population centers of varying sizes, and variability in relief across the ocean shelf. Sources: U.S. Department of Transportation, U.S. Geological Survey, and ERT, Inc. <i>This caption was revised in June 2019. See Errata for details: <a href='https://nca2018.globalchange.gov/downloads'><a href="https://nca2018.globalchange.gov/downloads">https://nca2018.globalchange.gov/downloads</a></a></i></div> <p class="text-center"><span class="view-figure"><a role="button" class="expand" href="#">EXPAND</a></span></p> </div> </section> <div class="offset-lg-1 col-lg-7"> <p>In rural areas, community identity is often built around the prominence of small, multigenerational, owner-operated businesses and the natural resources of the local area. Climate variability can affect human migration patterns<sup id="fnref:3329e4f4-00bf-44c1-938d-b0c600a403ce"><a href="#fn:56" rel="footnote" onclick="return false;">56</a></sup> and may change flows into or out of the Northeast as well as between rural and urban locations. Published research in this area, however, is limited. The Northeast has long been losing residents to other regions of the country.<sup id="fnref:5489421f-20da-4453-a0be-0ddcb063ad68"><a href="#fn:57" rel="footnote" onclick="return false;">57</a></sup> Droughts and flooding can adversely affect ecosystem function, farm economic viability, and land use. Although future projections of major floods remain ambiguous, more intense precipitation events <em>(<a href="/chapter/2#key-message-6">Ch. 2: Climate, KM 6</a>)</em><sup id="fnref:e8089a19-413e-4bc5-8c4a-7610399e268c"><a href="#fn:58" rel="footnote" onclick="return false;">58</a></sup> have increased the risk of some types of inland floods, particularly in valleys, where people, infrastructure, and agriculture tend to be concentrated. With little redundancy in their infrastructure and, therefore, limited economic resilience, many rural communities have limited ability to cope with climate-related changes.</p> <p>Residents in urban areas face multiple climate hazards, including temperature extremes, episodes of poor air quality, recurrent waterfront and coastal flooding, and intense precipitation events that can lead to increased flooding on urban streams. These physical changes may lead to large numbers of evacuated and displaced populations and damaged infrastructure; sustaining communities may require significant investment and planning to provide emergency response efforts, a long-term commitment to rebuilding and adaptation, and support for relocation. Underrepresented communities, such as the poor, elderly, language-isolated, and recent immigrants, are more vulnerable due to their limited ability to prepare for and cope with extreme weather and climate events.<sup id="fnref:97507d87-be9d-4b04-aeb3-69c5abc788d0"><a href="#fn:59" rel="footnote" onclick="return false;">59</a></sup> Service infrastructure in the Northeast is at increasing risk of disruption, resulting in lower quality of life, economic declines, and enhanced social inequality.<sup id="fnref:15df801e-f052-4327-9b08-47c13d894ea7"><a href="#fn:17" rel="footnote" onclick="return false;">17</a></sup> Interdependencies across critical infrastructure sectors such as water, energy, transportation, and telecommunication (and related climate security issues) can lead to cascading failures during extreme weather and climate-related disruptions <em>(<a href="/chapter/17">Ch. 17: Complex Systems</a>)</em>.<sup id="fnref:15df801e-f052-4327-9b08-47c13d894ea7"><a href="#fn:17" rel="footnote" onclick="return false;">17</a></sup><sup class="cm">,</sup><sup id="fnref:97507d87-be9d-4b04-aeb3-69c5abc788d0"><a href="#fn:59" rel="footnote" onclick="return false;">59</a></sup><sup class="cm">,</sup><sup id="fnref:69235029-160e-46db-937e-e5e53b78969a"><a href="#fn:60" rel="footnote" onclick="return false;">60</a></sup> The region’s high density of built environment sites and facilities, large number of historic structures, and older housing and infrastructure compared to other regions suggest that urban centers in the Northeast are particularly vulnerable to climate shifts and extreme weather events. For example, because much of the historical development of industry and commerce in New England occurred along rivers, canals, coasts, and other bodies of water, these areas often have a higher density of contaminated sites, waste management facilities, and petroleum storage facilities that are potentially vulnerable to flooding. As a result, increases in flood frequency or severity could increase the spread of contaminants into soils and waterways, resulting in increased risks to the health of nearby ecosystems, animals, and people—a set of phenomena well documented following Superstorm Sandy.<sup id="fnref:73c00c13-43e8-4d37-b66d-8f8a20e1664a"><a href="#fn:61" rel="footnote" onclick="return false;">61</a></sup><sup class="cm">,</sup><sup id="fnref:35bc9c98-0a0d-4e48-b6a9-2b0ebb2745e4"><a href="#fn:62" rel="footnote" onclick="return false;">62</a></sup><sup class="cm">,</sup><sup id="fnref:f748e431-5842-4f3e-afa6-372b159353bf"><a href="#fn:63" rel="footnote" onclick="return false;">63</a></sup></p> <p>The changing climate of the Northeast threatens the health and well-being of residents through environmental changes that lead to health-related impacts and costs, including additional deaths, emergency room visits and hospitalizations, higher risk of infectious diseases, lower quality of life, and increased costs associated with healthcare utilization. Health impacts of climate change vary across people and communities of the Northeast and depend on social, socioeconomic, demographic, and societal factors; community adaptation efforts; and underlying individual vulnerability (see Key Message 5) <em>(see also <a href="/chapter/28">Ch. 28: Adaptation</a>)</em>.</p> <p>Maintaining functioning, sustainable communities in the face of climate change requires effective adaptation strategies that anticipate and buffer impacts, while also enabling communities to capitalize upon new opportunities. Many northeastern cities already have or are rapidly developing short-term and long-term plans to mitigate climate effects and to plan for efficient investments in sustainable development and long-term adaptation strategies. Although timely adaptation to climate-related impacts would help reduce threats to people’s health, safety, economic well-being, and ways of life, changes to those societal elements will not be avoided completely.</p> </div> </div> </section> <section id="key-message-1" class="container-fluid report-section no-spacer blackish glossary clearfix"> <div id="content-18-2"><p></div> <div class="row no-gutters"> <div class="col-lg-12"> <div class="row key-message-display"> <div class="col-sm-1"> <p class="text-center"><img class="align-self-center" src="/img/km-shape-1.png" alt="Key Message 1" /></p> </div> <div class="col-sm-7 key-message-msg"></p> <div class="figure-social-icons"> <a role="button" href="#" aria-label="Share this content" title="Share" class="share qtip-bottom" ></a> <div class="social-icons"> <a role="button" href="#" aria-label="Share this content on Facebook" data-fb-image="https://nca2018.globalchange.gov" data-fb-title="Fourth National Climate Assessment: Changing Seasons Affect Rural Ecosystems, Environments, and Economies" class="social-icon facebook-icon"></a> <a role="button" href="https://www.twitter.com/intent/tweet?url=https://nca2018.globalchange.gov/chapter/18%23key-message-1&amp;text=Fourth%20National%20Climate%20Assessment:%20Chapter%2018,%20Key%20Message%201:%20Changing%20Seasons%20Affect%20Rural%20Ecosystems,%20Environments,%20and%20Economies&amp;via=usgcrp&amp;hashtags=NCA4" aria-label="Share this content on Twitter" class="social-icon twitter-icon" target="_blank"></a> <a role="button" href="#" aria-label="Share the link to this content" class="social-icon link-icon"></a> <a role="button" href="mailto:?subject=Shared%20With%20You:%20Fourth%20National%20Climate%20Assessment&amp;body=Read%20this%20content%20from%20the%20Fourth%20National%20Climate%20Assessment:%20https://nca2018.globalchange.gov/chapter/18#key-message-1" aria-label="Share this content via e-mail" class="social-icon email-icon"></a> <div class="link-content"><input aria-label="Link to content" type="text" value="https://nca2018.globalchange.gov/chapter/18#key-message-1" readonly/></div> </div> </div> <p><h2 class="balance-text">Changing Seasons Affect Rural Ecosystems, Environments, and Economies</h2> <p><p>The seasonality of the Northeast is central to the region’s sense of place and is an important driver of rural economies. Less distinct seasons with milder winter and earlier spring conditions are already altering ecosystems and environments in ways that adversely impact tourism, farming, and forestry. The region’s rural industries and livelihoods are at risk from further changes to forests, wildlife, snowpack, and streamflow.</p> </p> </div> </div> </div> </div></p> <div class="offset-lg-1 col-lg-7"> <p>The distinct seasonality of the Northeast’s climate supports a diverse natural landscape adapted to the extremes of cold, snowy winters and warm to hot, humid summers. This natural landscape provides the economic and cultural foundation for many rural communities, which are largely supported by a diverse range of agricultural, tourism, and natural resource-dependent industries <em>(<a href="/chapter/10#key-message-4">Ch. 10: Ag &amp; Rural, KM 4</a>)</em>.<sup id="fnref:3a4d80de-cbdb-480e-8e12-3c9f2aa9e852"><a href="#fn:1" rel="footnote" onclick="return false;">1</a></sup> The outdoor recreation industry contributes nearly $150 billion in consumer spending to the Northeast economy and supports more than one million jobs across the region.<sup id="fnref:1c0557f9-50b1-4c9d-8a06-c9c3f96bfb7f"><a href="#fn:64" rel="footnote" onclick="return false;">64</a></sup> Additionally, agriculture, fishing, forestry, and related industries together generate over $100 billion in economic activity annually, supporting more than half a million jobs in production and processing region-wide.<sup id="fnref:42308b9a-9441-4b4e-acab-ca8a503a2629"><a href="#fn:65" rel="footnote" onclick="return false;">65</a></sup> Projected changes in the Northeast’s seasons will continue to affect terrestrial and aquatic ecosystems, forest productivity, agricultural land use, and other resource-based industries.<sup id="fnref:3a4d80de-cbdb-480e-8e12-3c9f2aa9e852"><a href="#fn:1" rel="footnote" onclick="return false;">1</a></sup> Alpine, freshwater aquatic, and certain forest habitats are most at risk.<sup id="fnref:0095368f-c79d-47b5-89bd-856b38752d03"><a href="#fn:66" rel="footnote" onclick="return false;">66</a></sup> Without efforts to mitigate climate change, warming winters and earlier spring conditions under a higher scenario (RCP8.5) will affect native ecosystems and the very character of the rural Northeast.<sup id="fnref:953d1436-e0d0-426c-8dcc-68e5c02eef30"><a href="#fn:67" rel="footnote" onclick="return false;">67</a></sup></p> <p>Seasonal differences in Northeast temperature have decreased in recent years as winters have warmed three times faster than summers.<sup id="fnref:56148bf0-62f5-4ec7-8dbc-1e356e40bd42"><a href="#fn:3" rel="footnote" onclick="return false;">3</a></sup> By the middle of this century, winters are projected to be milder still, with fewer cold extremes, particularly across inland and northern portions of the Northeast.<sup id="fnref:56148bf0-62f5-4ec7-8dbc-1e356e40bd42"><a href="#fn:3" rel="footnote" onclick="return false;">3</a></sup> This will likely result in a shorter and less pronounced cold season with fewer frost days and a longer transition out of winter into the growing season.<sup id="fnref:74f1e179-6237-49cd-ae8c-acf2980a5803"><a href="#fn:68" rel="footnote" onclick="return false;">68</a></sup> Under the higher scenario (RCP8.5), the trend of decreasing seasonality continues for the northern half of the region through the end of the century, but by then summer temperatures across the Mid-Atlantic are projected to rise faster than those in winter.<sup id="fnref:4de020df-232e-45f8-8d44-f864565f0b84"><a href="#fn:4" rel="footnote" onclick="return false;">4</a></sup></p> <h3>A Changing Winter–Spring Transition</h3> <p>Forests are already responding to the ongoing shift to a warmer climate, and changes in the timing of leaf-out affect plant productivity, plant–animal interactions, and other essential ecosystem processes.<sup id="fnref:c347b3b8-35f9-4a48-8b9d-5d19ed233cf4"><a href="#fn:69" rel="footnote" onclick="return false;">69</a></sup><sup class="cm">,</sup><sup id="fnref:1b7a06b8-7d34-467f-86c8-3755fe9306c0"><a href="#fn:70" rel="footnote" onclick="return false;">70</a></sup> Warmer late-winter and early-spring temperatures in the Northeast have resulted in trends towards earlier leaf-out and blooming, including changes of 1.6 and 1.2 days per decade, respectively, for lilac and honeysuckle <em>(<a href="/chapter/7#fig-7-3">Ch. 7: Ecosystems, Figure 7.3</a>)</em>.<sup id="fnref:3307a62c-ed45-4399-bcb9-f77e71b1e626"><a href="#fn:71" rel="footnote" onclick="return false;">71</a></sup> The increase in growing season length is partially responsible for observed increases in forest growth and carbon sequestration.<sup id="fnref:2cf345a8-4496-4f48-899f-4cbc020b8039"><a href="#fn:72" rel="footnote" onclick="return false;">72</a></sup></p> <p>While unusual winter or early-spring warmth has caused plants to start growing and emerge from winter dormancy earlier in the spring, the increased vulnerability of species to subsequent cold spells is yet unknown. Early emergence from winter dormancy causes plants to lose their tolerance to cold temperatures and risk damage by temperatures they would otherwise tolerate. Early budbreak followed by hard freezes has led to widespread loss of fruit crops and reduced seasonal growth of native tree species in the Northeast.<sup id="fnref:b6e8b67c-7042-4b85-b432-033983875e14"><a href="#fn:35" rel="footnote" onclick="return false;">35</a></sup><sup class="cm">,</sup><sup id="fnref:68d9349a-ec2f-4a72-b0f7-35ebccf1d0bb"><a href="#fn:73" rel="footnote" onclick="return false;">73</a></sup></p> <p>Shifting seasonality can also negatively affect the health of forests <em>(<a href="/chapter/6#key-message-1">Ch. 6: Forests, KM 1</a>)</em> and wildlife, thereby impacting the rural industries dependent upon them. Warmer winters will likely contribute to earlier insect emergence<sup id="fnref:5d339b6f-883e-4cec-afe2-e75a0f638730"><a href="#fn:74" rel="footnote" onclick="return false;">74</a></sup> and expansion in the geographic range and population size of important tree pests such as the hemlock woolly adelgid, emerald ash borer, and southern pine beetle.<sup id="fnref:ee783a2f-7351-41f0-b8f6-75e93e93f8a7"><a href="#fn:75" rel="footnote" onclick="return false;">75</a></sup><sup class="cm">,</sup><sup id="fnref:c6d3b428-8683-47fa-b429-511329ccaa17"><a href="#fn:76" rel="footnote" onclick="return false;">76</a></sup><sup class="cm">,</sup><sup id="fnref:df3eda2a-432a-4fb1-a224-3cec020b3b8e"><a href="#fn:77" rel="footnote" onclick="return false;">77</a></sup> Increases in less desired herbivore populations are also likely, with white-tailed deer and nutria (exotic South American rodents) already being a major concern in different parts of the region.<sup id="fnref:c94e7da1-3648-49d7-8dc2-6ca97ec26738"><a href="#fn:78" rel="footnote" onclick="return false;">78</a></sup> According to State Farm Insurance,<sup id="fnref:c2ae7c5d-8dd7-4363-a594-a031370b3be4"><a href="#fn:79" rel="footnote" onclick="return false;">79</a></sup> motorists in West Virginia and Pennsylvania are already the first and third group of claimants most likely to file an insurance claim that is deer-related. Erosion from nutria feeding in lower Eastern Shore watersheds of Maryland has resulted in widespread conversion of marsh to shallow open water, changing important ecosystems that can buffer against the adverse impacts from climate change.<sup id="fnref:2a50e645-654e-45cd-94bc-1bca59f4d3ec"><a href="#fn:80" rel="footnote" onclick="return false;">80</a></sup> Species such as moose, which drive a multimillion-dollar tourism industry, are already experiencing increased parasite infections and deaths from ticks.<sup id="fnref:440bd774-59c5-420f-9fa3-460ece82c2b4"><a href="#fn:81" rel="footnote" onclick="return false;">81</a></sup><sup class="cm">,</sup><sup id="fnref:2ffa1be3-d6af-4c87-a1c3-553777fb75d0"><a href="#fn:82" rel="footnote" onclick="return false;">82</a></sup><sup class="cm">,</sup><sup id="fnref:29660bef-813d-427d-bdb1-0249dda0f692"><a href="#fn:83" rel="footnote" onclick="return false;">83</a></sup> Warmer spring temperatures are associated with earlier arrivals of migratory songbirds,<sup id="fnref:39d1cdc8-6302-4642-a4e3-457ee307946f"><a href="#fn:84" rel="footnote" onclick="return false;">84</a></sup> while birds dependent upon spruce–fir forests in the northern and mountainous parts of the region are already declining and especially vulnerable to future change.<sup id="fnref:9f8f0e5d-4f54-4f4a-81ed-b39399a2b0b7"><a href="#fn:85" rel="footnote" onclick="return false;">85</a></sup> Northern and high-elevation tree species such as spruce and fir are among the most vulnerable to climate change in the Northeast.<sup id="fnref:1b7a06b8-7d34-467f-86c8-3755fe9306c0"><a href="#fn:70" rel="footnote" onclick="return false;">70</a></sup><sup class="cm">,</sup><sup id="fnref:97620c64-209c-42e5-8c6f-694a17d2904d"><a href="#fn:86" rel="footnote" onclick="return false;">86</a></sup><sup class="cm">,</sup><sup id="fnref:ed8dafef-de0c-4353-8e90-01370fce5863"><a href="#fn:87" rel="footnote" onclick="return false;">87</a></sup></p> </div> <section id="fig-18-15" class="md-3 small-figure filler_photo"> <div class="figure-inner"> <a class="lightbox" href="/img/figure/figure18_15.jpg" data-title=''> <picture> <source media="(min-width: 1200px)" data-srcset="/img/styles/figure18_15-1200.jpg, /img/styles/figure18_15-1200@2x.jpg 2x"> <source media="(min-width: 992px)" data-srcset="/img/styles/figure18_15-992.jpg, /img/styles/figure18_15-992@2x.jpg 2x"> <source media="(min-width: 768px)" data-srcset="/img/styles/figure18_15-768.jpg, /img/styles/figure18_15-768@2x.jpg 2x"> <source media="(min-width: 480px)" data-srcset="/img/styles/figure18_15-480.jpg, /img/styles/figure18_15-480@2x.jpg 2x"> <source media="(min-width: 320px)" data-srcset="/img/styles/figure18_15-320.jpg, /img/styles/figure18_15-320@2x.jpg 2x"> <img data-src="/img/figure/figure18_15.jpg" alt="A photo shows a nutria—a semiaquatic rodent that resembles a small beaver—standing at the water’s edge surrounded by aquatic grasses and reeds." class="img-fluid lazyload" /> </picture> </a> <aside id="description-18-15" class="sr-only">A photo shows a nutria—a semiaquatic rodent that resembles a small beaver—standing at the water’s edge surrounded by aquatic grasses and reeds.</aside> <div class="caption" data-expandedcaption="A nutria shows off its signature orange teeth. These large South American rodents are already a major concern in parts of the Northeast. Photo credit: ©Jason Erickson/iStock/Getty Images Plus." data-href="/img/figure/figure18_15.jpg" data-title=''>A nutria shows off its signature orange teeth. These large South American rodents are already a …</div> <p class="text-center"><span class="view-figure"><a role="button" class="expand" href="#">EXPAND</a></span></p> </div> </section> <div class="offset-lg-1 col-lg-7"> <h3>Challenges for Natural Resource-Based Industries</h3> <p>Shorter, more moderate winters will present new challenges for rural industries. Poor surface and road conditions or washout have the potential to limit future logging operations, which need frozen or snow-covered soils to meet environmental requirements for winter operations.<sup id="fnref:1b7a06b8-7d34-467f-86c8-3755fe9306c0"><a href="#fn:70" rel="footnote" onclick="return false;">70</a></sup><sup class="cm">,</sup><sup id="fnref:8a427d3d-8b74-4ed8-8ec0-530b4a2fcdc1"><a href="#fn:88" rel="footnote" onclick="return false;">88</a></sup> Maple syrup production is linked to climate through potential shifts in sugar maple habitat,<sup id="fnref:d8318aa9-d00b-487e-aef3-9eac99955380"><a href="#fn:89" rel="footnote" onclick="return false;">89</a></sup> tapping season timing and duration,<sup id="fnref:037c23c0-5e34-443e-b73c-259b1f24d359"><a href="#fn:90" rel="footnote" onclick="return false;">90</a></sup><sup class="cm">,</sup><sup id="fnref:893a705b-4937-46ac-b037-ca24166f65f2"><a href="#fn:91" rel="footnote" onclick="return false;">91</a></sup> and the quality of both the trees and sap.<sup id="fnref:3a34df66-0854-42f7-8e39-09be4ca935f2"><a href="#fn:92" rel="footnote" onclick="return false;">92</a></sup><sup class="cm">,</sup><sup id="fnref:dd5b893d-4462-4bb3-9205-67b532919566"><a href="#fn:93" rel="footnote" onclick="return false;">93</a></sup> Climate change is making sugar maple tapping more challenging by increasing variability within and between seasons. Research into how the industry can adapt to these changes is ongoing.<sup id="fnref:d8318aa9-d00b-487e-aef3-9eac99955380"><a href="#fn:89" rel="footnote" onclick="return false;">89</a></sup><sup class="cm">,</sup><sup id="fnref:454c75fb-c213-4be8-b196-c5b2e85c5752"><a href="#fn:94" rel="footnote" onclick="return false;">94</a></sup><sup class="cm">,</sup><sup id="fnref:473fb12e-ad58-4052-a5a6-2c33f875c6b7"><a href="#fn:95" rel="footnote" onclick="return false;">95</a></sup> With changes in weather and ecology come shifts in the cultural relationships to seasons as they have historically existed. Indigenous women from across these northeastern forests have come together to protect and sustain cultural traditions of the land they call Maple Nation. These climate impacts not only threaten the maple tree itself but also the seeds, soil, water, plants, and cultural lifeways that Indigenous peoples and tribal nations in the region associate with them.<sup id="fnref:3a1f619d-b28f-40e8-b2cd-589c5f77b67f"><a href="#fn:96" rel="footnote" onclick="return false;">96</a></sup><sup class="cm">,</sup><sup id="fnref:5b754441-464c-49fd-90e8-c184fc2ba1f5"><a href="#fn:97" rel="footnote" onclick="return false;">97</a></sup></p> <p>On the other hand, the impacts of warming on forests and ecosystems during the summer and autumn are less well understood.<sup id="fnref:f773b2e9-428c-455b-82f9-a4dbf065d44b"><a href="#fn:98" rel="footnote" onclick="return false;">98</a></sup> In the summer, flowering in many agricultural crops and tree fruits is regulated in part by nighttime temperature, and growers risk lower yields as these temperatures rise.<sup id="fnref:b6e8b67c-7042-4b85-b432-033983875e14"><a href="#fn:35" rel="footnote" onclick="return false;">35</a></sup> Warmer autumn temperatures<sup id="fnref:f773b2e9-428c-455b-82f9-a4dbf065d44b"><a href="#fn:98" rel="footnote" onclick="return false;">98</a></sup> influence processes such as leaf senescence (the change in leaf color as photosynthesis ceases), fruit ripening, insect phenology,<sup id="fnref:b6e8b67c-7042-4b85-b432-033983875e14"><a href="#fn:35" rel="footnote" onclick="return false;">35</a></sup> and the start of bird migration and animal hibernation.<sup id="fnref:641eae64-187e-43cb-892d-40cf97feef0e"><a href="#fn:99" rel="footnote" onclick="return false;">99</a></sup> October temperatures are the best predictor of leaf senescence in the northern hemisphere,<sup id="fnref:a43e31be-0af1-45bc-9fae-fc83ec8c74bd"><a href="#fn:100" rel="footnote" onclick="return false;">100</a></sup> but other climatic factors can also shift the timing of autumn processes. Agricultural drought can advance leaf coloring and leaf drop, while abundant soil moisture can delay senescence.<sup id="fnref:2c15e479-1345-4564-b9f0-35dd239e93c1"><a href="#fn:101" rel="footnote" onclick="return false;">101</a></sup><sup class="cm">,</sup><sup id="fnref:91e3d072-2473-4fbb-8acb-12a5f2105e29"><a href="#fn:102" rel="footnote" onclick="return false;">102</a></sup> Early frost events or strong winds can also result in sudden leaf senescence and loss.<sup id="fnref:f773b2e9-428c-455b-82f9-a4dbf065d44b"><a href="#fn:98" rel="footnote" onclick="return false;">98</a></sup> Many deciduous trees are projected to experience an overall increase in their amount of autumn foliage color.<sup id="fnref:f947ac52-b0ce-4279-9925-63584393c70b"><a href="#fn:103" rel="footnote" onclick="return false;">103</a></sup></p> <p>As Northeast winters warm, scenarios project a combination of less early winter snowfall and earlier snowmelt, leading to a shorter snow season.<sup id="fnref:ce928607-18d8-4f83-bf39-db7573fa1a03"><a href="#fn:104" rel="footnote" onclick="return false;">104</a></sup><sup class="cm">,</sup><sup id="fnref:dc7250b8-b20f-4b9f-818e-1729746d08c2"><a href="#fn:105" rel="footnote" onclick="return false;">105</a></sup> The proportion of winter precipitation falling as rain has already increased and will likely continue to do so in response to a northward shift in the snow–rain transition zone projected under both lower and higher scenarios (RCP4.5 and RCP8.5).<sup id="fnref:c04c2b8e-8a0e-479a-9fb9-924fb41eec95"><a href="#fn:106" rel="footnote" onclick="return false;">106</a></sup><sup class="cm">,</sup><sup id="fnref:ea2c3f43-b493-4001-8489-959c0f55080a"><a href="#fn:107" rel="footnote" onclick="return false;">107</a></sup><sup class="cm">,</sup><sup id="fnref:25c6b777-dbb6-49a7-8b04-4b509b58966b"><a href="#fn:108" rel="footnote" onclick="return false;">108</a></sup> The shift in precipitation type and fewer days below freezing<sup id="fnref:56148bf0-62f5-4ec7-8dbc-1e356e40bd42"><a href="#fn:3" rel="footnote" onclick="return false;">3</a></sup><sup class="cm">,</sup><sup id="fnref:4de020df-232e-45f8-8d44-f864565f0b84"><a href="#fn:4" rel="footnote" onclick="return false;">4</a></sup><sup class="cm">,</sup><sup id="fnref:b6e8b67c-7042-4b85-b432-033983875e14"><a href="#fn:35" rel="footnote" onclick="return false;">35</a></sup> are expected to result in fewer days with snow on the ground; decreased snow depth, water equivalent, and extent; an earlier snowmelt;<sup id="fnref:dc7250b8-b20f-4b9f-818e-1729746d08c2"><a href="#fn:105" rel="footnote" onclick="return false;">105</a></sup><sup class="cm">,</sup><sup id="fnref:73760c11-7b97-4876-a24f-8fb54b01bca9"><a href="#fn:109" rel="footnote" onclick="return false;">109</a></sup><sup class="cm">,</sup><sup id="fnref:f8ba9ecd-1983-4a78-8fd7-f59e1ab07908"><a href="#fn:110" rel="footnote" onclick="return false;">110</a></sup> and less lake ice.<sup id="fnref:042cfc85-6eb9-4e13-9a25-339a3b468ce0"><a href="#fn:111" rel="footnote" onclick="return false;">111</a></sup> Warming during the winter–spring transition has already led to earlier snowmelt-related runoff in areas of the Northeast with substantial snowpack (Figure 18.2).<sup id="fnref:f9dc4907-65ae-4582-a285-29b5d4732a9f"><a href="#fn:112" rel="footnote" onclick="return false;">112</a></sup> Earlier snowmelt-related runoff and lower spring peak streamflows in these areas are expected in the 2041–2095 period compared with the 1951–2005 period.<sup id="fnref:dc7250b8-b20f-4b9f-818e-1729746d08c2"><a href="#fn:105" rel="footnote" onclick="return false;">105</a></sup></p> </div> <section id="fig-18-2" class="md-3 small-figure figure"> <div class="figure-social-icons"> <a role="button" href="/img/figure/figure18_2.png" aria-label="Download" title="Download" class="download_a qtip-top" download></a>&nbsp; <a role="button" href="/report/nca4/chapter/northeast/figure/streamflow" aria-label="Metadata" title="Metadata" class="metadata_a qtip-top" ></a>&nbsp; <a role="button" href="#" aria-label="Share this content" title="Share" class="share qtip-bottom" ></a> <div class="social-icons"> <a role="button" href="#" aria-label="Share this content on Facebook" data-fb-image="https://nca2018.globalchange.gov/img/figure/figure18_2.png" data-fb-title="Fourth National Climate Assessment: Historical Changes in the Timing of Snowmelt-Related Streamflow" class="social-icon facebook-icon"></a> <a role="button" href="https://www.twitter.com/intent/tweet?url=https://nca2018.globalchange.gov/chapter/18%23fig-18-2&amp;text=Fourth%20National%20Climate%20Assessment:%20Figure%2018.2:%20Historical%20Changes%20in%20the%20Timing%20of%20Snowmelt-Related%20Streamflow&amp;via=usgcrp&amp;hashtags=NCA4" aria-label="Share this content on Twitter" class="social-icon twitter-icon" target="_blank"></a> <a role="button" href="#" aria-label="Share the link to this content" class="social-icon link-icon"></a> <a role="button" href="mailto:?subject=Shared%20With%20You:%20Fourth%20National%20Climate%20Assessment&amp;body=Check%20out%20this%20site:%20https://nca2018.globalchange.gov/chapter/18#fig-18-2" aria-label="Share this content via e-mail" class="social-icon email-icon"></a> <div class="link-content"><input aria-label="Link to content" type="text" value="https://nca2018.globalchange.gov/chapter/18#fig-18-2" readonly/></div> </div> </div> <h2>Figure 18.2: Historical Changes in the Timing of Snowmelt-Related Streamflow</h2> <div class="figure-inner"> <a class="lightbox" href="/img/figure/figure18_2.png" data-title='Figure 18.2 Historical Changes in the Timing of Snowmelt-Related Streamflow'> <picture> <source media="(min-width: 1200px)" data-srcset="/img/styles/figure18_2-1200.png, /img/styles/figure18_2-1200@2x.png 2x"> <source media="(min-width: 992px)" data-srcset="/img/styles/figure18_2-992.png, /img/styles/figure18_2-992@2x.png 2x"> <source media="(min-width: 768px)" data-srcset="/img/styles/figure18_2-768.png, /img/styles/figure18_2-768@2x.png 2x"> <source media="(min-width: 480px)" data-srcset="/img/styles/figure18_2-480.png, /img/styles/figure18_2-480@2x.png 2x"> <source media="(min-width: 320px)" data-srcset="/img/styles/figure18_2-320.png, /img/styles/figure18_2-320@2x.png 2x"> <img data-src="/img/figure/figure18_2.png" alt="Historical Changes in the Timing of Snowmelt-Related Streamflow" class="img-fluid lazyload" aria-describedby="description-18-2"/> </picture> </a> <aside id="description-18-2" class="sr-only">A map of the Northeast region of the United States shows changes in the timing of snowmelt-related river streamflow over the period 1960 to 2014. For most rivers across the region, snowmelt-related streamflow has occurred 5 to 10 days earlier. Streamflows along the Connecticut River have changed the most and occur more than 10 days earlier.</aside> <div class="caption" data-href="/img/figure/figure18_2.png" data-title='Figure 18.2 Historical Changes in the Timing of Snowmelt-Related Streamflow'><strong>Figure 18.2: </strong>This map of part of the Northeast region shows consistently earlier snowmelt-related streamflow timing for rivers from 1960 to 2014. Each symbol represents the change for an individual river over the entire period. Changes in the timing of snowmelt potentially interfere with the reproduction of many aquatic species<sup id='fnref:b13ae849-e3b5-4f06-87f8-38dcfe0e7d65'><a href='#fn:113' rel='footnote' onclick='return false;'>113</a></sup> and impact water-supply reservoir management because of higher winter flows and lower spring flows.<sup id='fnref:10990ae9-39d0-462d-8357-a39a689d90b2'><a href='#fn:114' rel='footnote' onclick='return false;'>114</a></sup> The timing of snowmelt-related streamflow in the Northeast is sensitive to small changes in air temperature. The average winter–spring air temperature increase of 1.67°F in the Northeast from 1940 to 2014 is thought to be the cause of average earlier streamflow timing of 7.7 days.<sup id='fnref:f9dc4907-65ae-4582-a285-29b5d4732a9f'><a href='#fn:112' rel='footnote' onclick='return false;'>112</a></sup> The timing of snowmelt-related streamflow is a valuable long-term indicator of winter–spring changes in the Northeast. Source: adapted from Dudley et al. 2017;<sup id='fnref:f9dc4907-65ae-4582-a285-29b5d4732a9f'><a href='#fn:112' rel='footnote' onclick='return false;'>112</a></sup> Digital Elevation Model CGIAR–CSI (CGIAR Consortium for Spatial Information). Reprinted with permission from Elsevier.</div> <p class="text-center"><span class="view-figure"><a role="button" class="expand" href="#">EXPAND</a></span></p> </div> </section> <div class="offset-lg-1 col-lg-7"> <p>The Northeast winter recreation industry is an important economic resource for rural areas, supporting approximately 44,500 jobs and generating between $2.6–$2.7 billion in revenue annually.<sup id="fnref:bff3f502-9bc7-4d5f-859f-636a30c71624"><a href="#fn:115" rel="footnote" onclick="return false;">115</a></sup><sup class="cm">,</sup><sup id="fnref:abb5bf8c-998f-4fe9-b53e-bc8e5dbc6abe"><a href="#fn:116" rel="footnote" onclick="return false;">116</a></sup> Like other outdoor tourism industries, it is strongly influenced by weather and climate, making it particularly vulnerable to climate change.<sup id="fnref:abb5bf8c-998f-4fe9-b53e-bc8e5dbc6abe"><a href="#fn:116" rel="footnote" onclick="return false;">116</a></sup><sup class="cm">,</sup><sup id="fnref:69deec00-efdd-44f2-b2fd-2b92252d1bec"><a href="#fn:117" rel="footnote" onclick="return false;">117</a></sup><sup class="cm">,</sup><sup id="fnref:80dd6dfe-4dea-4253-a65b-53f620805f9a"><a href="#fn:118" rel="footnote" onclick="return false;">118</a></sup> Even under the lower scenario (RCP4.5), the average length of the winter recreation season and the number of recreational visits are projected to decrease by mid-century.<sup id="fnref:80dd6dfe-4dea-4253-a65b-53f620805f9a"><a href="#fn:118" rel="footnote" onclick="return false;">118</a></sup> Under the same scenario, lost time for snowmaking is expected to delay the start of the ski season across southern areas, potentially impacting revenues during the winter holiday season. Activities that rely on natural snow and ice cover are projected to remain economically viable in only far northern parts of the region by end of century under the higher scenario (RCP8.5).<sup id="fnref:69deec00-efdd-44f2-b2fd-2b92252d1bec"><a href="#fn:117" rel="footnote" onclick="return false;">117</a></sup><sup class="cm">,</sup><sup id="fnref:80dd6dfe-4dea-4253-a65b-53f620805f9a"><a href="#fn:118" rel="footnote" onclick="return false;">118</a></sup></p> <p>Sensitivity to projected changes in winter climate varies geographically, and venues are adapting by investing in artificial snowmaking, opening higher-elevation trails, and offering a greater range of activities and services.<sup id="fnref:bff3f502-9bc7-4d5f-859f-636a30c71624"><a href="#fn:115" rel="footnote" onclick="return false;">115</a></sup><sup class="cm">,</sup><sup id="fnref:69deec00-efdd-44f2-b2fd-2b92252d1bec"><a href="#fn:117" rel="footnote" onclick="return false;">117</a></sup> As the margin for an economically viable winter recreation season (a season with more than 100 days for skiing; more than 50 for snowmobiling) shifts northward and toward higher elevations, some affected areas will be able to extend their seasons with artificial snowmaking. However, the capacity of some vulnerable southern and low-elevation locations to adapt in the long term is expected to be limited by warming nighttime temperatures.<sup id="fnref:bff3f502-9bc7-4d5f-859f-636a30c71624"><a href="#fn:115" rel="footnote" onclick="return false;">115</a></sup><sup class="cm">,</sup><sup id="fnref:abb5bf8c-998f-4fe9-b53e-bc8e5dbc6abe"><a href="#fn:116" rel="footnote" onclick="return false;">116</a></sup><sup class="cm">,</sup><sup id="fnref:570ce116-beb6-4468-b2a8-dfa2065bb376"><a href="#fn:119" rel="footnote" onclick="return false;">119</a></sup> Markets farther north may benefit from a greater share of regional participation depending on recreationist preferences like travel time<sup id="fnref:80dd6dfe-4dea-4253-a65b-53f620805f9a"><a href="#fn:118" rel="footnote" onclick="return false;">118</a></sup><sup class="cm">,</sup><sup id="fnref:fab372dc-91d4-40c5-bbfb-1a6188f207fd"><a href="#fn:120" rel="footnote" onclick="return false;">120</a></sup> and perceived snow cover conditions informed by local weather, referred to as the backyard effect.<sup id="fnref:3d86294a-89cd-458e-97d8-d3d10f9e006c"><a href="#fn:121" rel="footnote" onclick="return false;">121</a></sup></p> <h3>Intense Precipitation</h3> <p>The recent dominant trend in precipitation throughout the Northeast has been towards increases in rainfall intensity,<sup id="fnref:6782b38a-17f4-40d2-9cff-da07da38f76a"><a href="#fn:2" rel="footnote" onclick="return false;">2</a></sup><sup class="cm">,</sup><sup id="fnref:e8089a19-413e-4bc5-8c4a-7610399e268c"><a href="#fn:58" rel="footnote" onclick="return false;">58</a></sup> with recent increases in intensity exceeding those in other regions in the contiguous United States. Further increases in rainfall intensity are expected,<sup id="fnref:56148bf0-62f5-4ec7-8dbc-1e356e40bd42"><a href="#fn:3" rel="footnote" onclick="return false;">3</a></sup> with increases in precipitation expected during the winter and spring with little change in the summer.<sup id="fnref:4de020df-232e-45f8-8d44-f864565f0b84"><a href="#fn:4" rel="footnote" onclick="return false;">4</a></sup> Monthly precipitation in the Northeast is projected to be about 1 inch greater for December through April by end of century (2070–2100) under the higher scenario (RCP8.5).<sup id="fnref:4de020df-232e-45f8-8d44-f864565f0b84"><a href="#fn:4" rel="footnote" onclick="return false;">4</a></sup></p> </div> <section id="fig-18-3" class="md-3 small-figure figure"> <div class="figure-social-icons"> <a role="button" href="http://noaa.maps.arcgis.com/apps/MapJournal/index.html?appid=92260a6bcf154d72bab62e50231e64c8&amp;section=5" aria-label="See related content from the U.S. Climate Resilience Toolkit or the USGCRP Indicator Platform" target="'' " title=" See related content from the U.S. Climate Resilience Toolkit " class="climatelink qtip-bottom"></a>&nbsp; <a role="button" href="/img/figure/figure18_3.png" aria-label="Download" title="Download" class="download_a qtip-top" download></a>&nbsp; <a role="button" href="/report/nca4/chapter/northeast/figure/changes-in-growing-season-length-and-nighttime-temperatures" aria-label="Metadata" title="Metadata" class="metadata_a qtip-top" ></a>&nbsp; <a role="button" href="#" aria-label="Share this content" title="Share" class="share qtip-bottom" ></a> <div class="social-icons"> <a role="button" href="#" aria-label="Share this content on Facebook" data-fb-image="https://nca2018.globalchange.gov/img/figure/figure18_3.png" data-fb-title="Fourth National Climate Assessment: Lengthening of the Freeze-Free Period" class="social-icon facebook-icon"></a> <a role="button" href="https://www.twitter.com/intent/tweet?url=https://nca2018.globalchange.gov/chapter/18%23fig-18-3&amp;text=Fourth%20National%20Climate%20Assessment:%20Figure%2018.3:%20Lengthening%20of%20the%20Freeze-Free%20Period&amp;via=usgcrp&amp;hashtags=NCA4" aria-label="Share this content on Twitter" class="social-icon twitter-icon" target="_blank"></a> <a role="button" href="#" aria-label="Share the link to this content" class="social-icon link-icon"></a> <a role="button" href="mailto:?subject=Shared%20With%20You:%20Fourth%20National%20Climate%20Assessment&amp;body=Check%20out%20this%20site:%20https://nca2018.globalchange.gov/chapter/18#fig-18-3" aria-label="Share this content via e-mail" class="social-icon email-icon"></a> <div class="link-content"><input aria-label="Link to content" type="text" value="https://nca2018.globalchange.gov/chapter/18#fig-18-3" readonly/></div> </div> </div> <h2>Figure 18.3: Lengthening of the Freeze-Free Period</h2> <div class="figure-inner"> <a class="lightbox" href="/img/figure/figure18_3.png" data-title='Figure 18.3 Lengthening of the Freeze-Free Period'> <picture> <source media="(min-width: 1200px)" data-srcset="/img/styles/figure18_3-1200.png, /img/styles/figure18_3-1200@2x.png 2x"> <source media="(min-width: 992px)" data-srcset="/img/styles/figure18_3-992.png, /img/styles/figure18_3-992@2x.png 2x"> <source media="(min-width: 768px)" data-srcset="/img/styles/figure18_3-768.png, /img/styles/figure18_3-768@2x.png 2x"> <source media="(min-width: 480px)" data-srcset="/img/styles/figure18_3-480.png, /img/styles/figure18_3-480@2x.png 2x"> <source media="(min-width: 320px)" data-srcset="/img/styles/figure18_3-320.png, /img/styles/figure18_3-320@2x.png 2x"> <img data-src="/img/figure/figure18_3.png" alt="Lengthening of the Freeze-Free Period" class="img-fluid lazyload" aria-describedby="description-18-3"/> </picture> </a> <aside id="description-18-3" class="sr-only">Three pairs of maps of the Northeast region of the United States, which includes states from West Virginia north to Maine, are shown. The maps illustrate projected changes in the length of the freeze-free season by mid-century under thea lower RCP4.5 scenario and the higher RCP8.5 scenario and by the end of the century under the higher scenario only. Refer to the figure caption for a detailed description of the projected changes.</aside> <div class="caption" data-href="/img/figure/figure18_3.png" data-title='Figure 18.3 Lengthening of the Freeze-Free Period'><strong>Figure 18.3: </strong>These maps show projected shifts in the date of the last spring freeze (left column) and the date of the first fall freeze (right column) for the middle of the century (as compared to 1979–2008) under the lower scenario (RCP4.5; top row) and the higher scenario (RCP8.5; middle row). The bottom row shows the shift in these dates for the end of the century under the higher scenario. By the middle of the century, the freeze-free period across much of the Northeast is expected to lengthen by as much as two weeks under the lower scenario and by two to three weeks under the higher scenario. By the end of the century, the freeze-free period is expected to increase by at least three weeks over most of the region. Source: adapted from Wolfe et al. 2018.<sup id='fnref:b6e8b67c-7042-4b85-b432-033983875e14'><a href='#fn:35' rel='footnote' onclick='return false;'>35</a></sup></div> <p class="text-center"><span class="view-figure"><a role="button" class="expand" href="#">EXPAND</a></span></p> </div> </section> <div class="offset-lg-1 col-lg-7"> <p>Studies suggest that Northeast agriculture, with nearly $21 billion in annual commodity sales,<sup id="fnref:1002d699-e8a9-4572-aec0-16524400e7a5"><a href="#fn:122" rel="footnote" onclick="return false;">122</a></sup> will benefit from the changing climate over the next half-century<sup id="fnref:b6e8b67c-7042-4b85-b432-033983875e14"><a href="#fn:35" rel="footnote" onclick="return false;">35</a></sup><sup class="cm">,</sup><sup id="fnref:fad9e8ec-8951-4daa-9a9c-e093ef86af16"><a href="#fn:123" rel="footnote" onclick="return false;">123</a></sup> due to greater productivity over a longer growing season (Figure 18.3) <em>(see also <a href="/chapter/10">Ch. 10: Ag &amp; Rural</a>)</em>. However, excess moisture is already a leading cause of crop loss in the Northeast.<sup id="fnref:b6e8b67c-7042-4b85-b432-033983875e14"><a href="#fn:35" rel="footnote" onclick="return false;">35</a></sup> Recent and projected increases in precipitation amount, intensity, and persistence<sup id="fnref:29eee9a5-5945-4651-b199-764cb2400aed"><a href="#fn:124" rel="footnote" onclick="return false;">124</a></sup><sup class="cm">,</sup><sup id="fnref:588d6d3e-8c99-4f9c-971b-fcee898756bd"><a href="#fn:125" rel="footnote" onclick="return false;">125</a></sup> indicate increasing impacts on agricultural operations. Increased precipitation can result in soil compaction,<sup id="fnref:2aec5d5e-449b-4a3e-a8c9-46e5c2658037"><a href="#fn:126" rel="footnote" onclick="return false;">126</a></sup> delays in planting, and reductions in the number of days when fields are workable.<sup id="fnref:8d3d4222-da39-4f5e-a431-77bc7be9f772"><a href="#fn:127" rel="footnote" onclick="return false;">127</a></sup> If the trend in the frequency of heavy rainfall prior to the last frost continues, overly wet fields could potentially prevent Northeast farmers from taking full advantage of an earlier spring.<sup id="fnref:b6e8b67c-7042-4b85-b432-033983875e14"><a href="#fn:35" rel="footnote" onclick="return false;">35</a></sup> Increased soil erosion and agricultural runoff—including manure, fertilizer, and pesticides<sup id="fnref:c36896f6-76af-4813-b5ef-168a5da217e3"><a href="#fn:128" rel="footnote" onclick="return false;">128</a></sup><sup class="cm">,</sup><sup id="fnref:3708643f-ab74-4a1d-bfca-2cac517d8142"><a href="#fn:129" rel="footnote" onclick="return false;">129</a></sup>—are linked to excess nutrient loading of water bodies as well as possible food safety or public health issues from food and waterborne infections.<sup id="fnref:55ea2c86-0c0f-4626-910e-46c57f5ecde8"><a href="#fn:130" rel="footnote" onclick="return false;">130</a></sup> Warmer winters are likely to increase livestock productivity in the Northeast<sup id="fnref:3708643f-ab74-4a1d-bfca-2cac517d8142"><a href="#fn:129" rel="footnote" onclick="return false;">129</a></sup> but are expected to also increase pressure from weeds and pests,<sup id="fnref:b6e8b67c-7042-4b85-b432-033983875e14"><a href="#fn:35" rel="footnote" onclick="return false;">35</a></sup> demand for pesticides,<sup id="fnref:c36896f6-76af-4813-b5ef-168a5da217e3"><a href="#fn:128" rel="footnote" onclick="return false;">128</a></sup> and the risk of human health effects from increased chemical exposures.<sup id="fnref:55ea2c86-0c0f-4626-910e-46c57f5ecde8"><a href="#fn:130" rel="footnote" onclick="return false;">130</a></sup></p> <p>The projected changes in precipitation intensity and temperature seasonality would also affect streams and the biological communities that live in them. Freshwater aquatic ecosystems are vulnerable to changes in streamflow, higher temperatures, and reduced water quality.<sup id="fnref:33aecbc7-c56d-4933-ab86-8d0dd57bde45"><a href="#fn:131" rel="footnote" onclick="return false;">131</a></sup> Such ecosystems are especially vulnerable to increases in high flows, decreases in low flows, and the timing of snowmelt.<sup id="fnref:b13ae849-e3b5-4f06-87f8-38dcfe0e7d65"><a href="#fn:113" rel="footnote" onclick="return false;">113</a></sup><sup class="cm">,</sup><sup id="fnref:34f0c23f-6348-4d57-9229-42def2a76b13"><a href="#fn:132" rel="footnote" onclick="return false;">132</a></sup><sup class="cm">,</sup><sup id="fnref:9dc780be-c325-40c4-a7ea-4846b7c53b59"><a href="#fn:133" rel="footnote" onclick="return false;">133</a></sup> The impact of heavy precipitation on streamflows partly depends upon watershed conditions such as prior soil moisture and snowpack conditions, which vary throughout the year.<sup id="fnref:9198fc67-7dba-4696-8d3d-32d09347674d"><a href="#fn:134" rel="footnote" onclick="return false;">134</a></sup><sup class="cm">,</sup><sup id="fnref:1906e730-e10d-4f82-a507-51339906d4be"><a href="#fn:135" rel="footnote" onclick="return false;">135</a></sup><sup class="cm">,</sup><sup id="fnref:a85f048a-f1f6-4502-98ac-260225e0371b"><a href="#fn:136" rel="footnote" onclick="return false;">136</a></sup><sup class="cm">,</sup><sup id="fnref:005ccdb0-238f-4ade-9271-affa7c61bed9"><a href="#fn:137" rel="footnote" onclick="return false;">137</a></sup> Although the annual minimum streamflows have increased during the last century,<sup id="fnref:ed73b71b-e2bd-41b4-8cf8-b6f293e951da"><a href="#fn:138" rel="footnote" onclick="return false;">138</a></sup><sup class="cm">,</sup><sup id="fnref:208a7c69-bbda-45e4-bded-c44fd8ad21e5"><a href="#fn:139" rel="footnote" onclick="return false;">139</a></sup><sup class="cm">,</sup><sup id="fnref:75c746be-4e8b-48b8-97f9-4e9d31d5df21"><a href="#fn:140" rel="footnote" onclick="return false;">140</a></sup> late-summer warming<sup id="fnref:4de020df-232e-45f8-8d44-f864565f0b84"><a href="#fn:4" rel="footnote" onclick="return false;">4</a></sup><sup class="cm">,</sup><sup id="fnref:d4e6a0d4-8428-40e4-8dd9-34b0276d0d40"><a href="#fn:141" rel="footnote" onclick="return false;">141</a></sup> could lead to decreases in the minimum streamflows in the late summer and early fall by mid-century.<sup id="fnref:f04a91c4-6cb2-4918-9213-b48f459bca10"><a href="#fn:142" rel="footnote" onclick="return false;">142</a></sup></p> <p>Species that are particularly vulnerable to temperature and flow changes include stream invertebrates, freshwater mussels, amphibians, and coldwater fish.<sup id="fnref:0095368f-c79d-47b5-89bd-856b38752d03"><a href="#fn:66" rel="footnote" onclick="return false;">66</a></sup><sup class="cm">,</sup><sup id="fnref:33aecbc7-c56d-4933-ab86-8d0dd57bde45"><a href="#fn:131" rel="footnote" onclick="return false;">131</a></sup><sup class="cm">,</sup><sup id="fnref:7da52043-249d-4413-9e1a-40ed0659b2f8"><a href="#fn:143" rel="footnote" onclick="return false;">143</a></sup> For example, a recent study of the habitat suitable for dragonflies and damselflies (species that are a good indicator of ecosystem health along rivers) in the Northeast projected, under both the lower and higher scenarios (RCP4.5 and RCP8.5), habitat declines of 45%–99% by 2080, depending on the species.<sup id="fnref:83cdfd6d-0110-4ec0-985b-44e609401da1"><a href="#fn:144" rel="footnote" onclick="return false;">144</a></sup> Other particularly vulnerable groups include species with water-dependent habitats, such as salamanders and coldwater fish.<sup id="fnref:0095368f-c79d-47b5-89bd-856b38752d03"><a href="#fn:66" rel="footnote" onclick="return false;">66</a></sup><sup class="cm">,</sup><sup id="fnref:c343ebfa-929a-4ae6-b4ca-7e3a067e374a"><a href="#fn:145" rel="footnote" onclick="return false;">145</a></sup> Increasing temperatures within freshwater streams threaten coldwater fisheries across northern New England and south through the Appalachian Mountains. A decrease in recreational fishing revenue is expected by end of this century under a higher scenario (RCP8.5) with the loss of coldwater habitat.<sup id="fnref:0b30f1ab-e4c4-4837-aa8b-0e19faccdb94"><a href="#fn:29" rel="footnote" onclick="return false;">29</a></sup><sup class="cm">,</sup><sup id="fnref:33aecbc7-c56d-4933-ab86-8d0dd57bde45"><a href="#fn:131" rel="footnote" onclick="return false;">131</a></sup><sup class="cm">,</sup><sup id="fnref:9cf6d9b3-0d5a-4c85-9a95-ac2896677936"><a href="#fn:146" rel="footnote" onclick="return false;">146</a></sup></p> </div> </div> </section> <section id="key-message-2" class="container-fluid report-section no-spacer blackish glossary clearfix"> <div id="content-18-3"><p></div> <div class="row no-gutters"> <div class="col-lg-12"> <div class="row key-message-display"> <div class="col-sm-1"> <p class="text-center"><img class="align-self-center" src="/img/km-shape-2.png" alt="Key Message 2" /></p> </div> <div class="col-sm-7 key-message-msg"></p> <div class="figure-social-icons"> <a role="button" href="#" aria-label="Share this content" title="Share" class="share qtip-bottom" ></a> <div class="social-icons"> <a role="button" href="#" aria-label="Share this content on Facebook" data-fb-image="https://nca2018.globalchange.gov" data-fb-title="Fourth National Climate Assessment: Changing Coastal and Ocean Habitats, Ecosystem Services, and Livelihoods" class="social-icon facebook-icon"></a> <a role="button" href="https://www.twitter.com/intent/tweet?url=https://nca2018.globalchange.gov/chapter/18%23key-message-2&amp;text=Fourth%20National%20Climate%20Assessment:%20Chapter%2018,%20Key%20Message%202:%20Changing%20Coastal%20and%20Ocean%20Habitats,%20Ecosystem%20Services,%20and%20Livelihoods&amp;via=usgcrp&amp;hashtags=NCA4" aria-label="Share this content on Twitter" class="social-icon twitter-icon" target="_blank"></a> <a role="button" href="#" aria-label="Share the link to this content" class="social-icon link-icon"></a> <a role="button" href="mailto:?subject=Shared%20With%20You:%20Fourth%20National%20Climate%20Assessment&amp;body=Read%20this%20content%20from%20the%20Fourth%20National%20Climate%20Assessment:%20https://nca2018.globalchange.gov/chapter/18#key-message-2" aria-label="Share this content via e-mail" class="social-icon email-icon"></a> <div class="link-content"><input aria-label="Link to content" type="text" value="https://nca2018.globalchange.gov/chapter/18#key-message-2" readonly/></div> </div> </div> <p><h2 class="balance-text">Changing Coastal and Ocean Habitats, Ecosystem Services, and Livelihoods</h2> <p><p>The Northeast’s coast and ocean support commerce, tourism, and recreation that are important to the region’s economy and way of life. Warmer ocean temperatures, sea level rise, and ocean acidification threaten these services. The adaptive capacity of marine ecosystems and coastal communities will influence ecological and socioeconomic outcomes as climate risks increase.</p> </p> </div> </div> </div> </div></p> <div class="offset-lg-1 col-lg-7"> <p>Ocean and coastal ecosystems are being affected by large changes in a variety of climate-related environmental conditions. These ecosystems support fishing and aquaculture,<sup id="fnref:cc3188b2-2dd2-4a5d-8a37-21f523744e75"><a href="#fn:5" rel="footnote" onclick="return false;">5</a></sup> tourism and recreation, and coastal communities.<sup id="fnref:874f9406-dd99-4e92-b64a-4542c23d0d16"><a href="#fn:6" rel="footnote" onclick="return false;">6</a></sup> They also provide important ecosystem services (benefits to people provided by the functions of various ecosystems), including carbon sequestration,<sup id="fnref:9c0e208a-9eb3-49ba-95cd-66c034c3a4de"><a href="#fn:147" rel="footnote" onclick="return false;">147</a></sup> wave attenuation,<sup id="fnref:e3f20c98-abc3-400f-bde6-2ba15a7e4dd5"><a href="#fn:148" rel="footnote" onclick="return false;">148</a></sup><sup class="cm">,</sup><sup id="fnref:9bc95c98-f1cf-4836-a3d2-62818bf12166"><a href="#fn:149" rel="footnote" onclick="return false;">149</a></sup> and fish<sup id="fnref:2217b86e-a2c1-4200-b69a-6d93ce79e08e"><a href="#fn:150" rel="footnote" onclick="return false;">150</a></sup> and shorebird<sup id="fnref:68fcc8c6-b20a-4739-aae6-e98b893d5163"><a href="#fn:151" rel="footnote" onclick="return false;">151</a></sup> habitats. Observed and projected increases in temperature, acidification, storm frequency and intensity, and sea levels are of particular concern for coastal and ocean ecosystems, as well as local communities and their interconnected social and economic systems (Box 18.1).</p> <h3>Ocean Warming</h3> <p>Ocean and coastal temperatures along the Northeast Continental Shelf have warmed by 0.06°F (0.033°C) per year over the period 1982–2016 (Figure 18.4), which is three times faster than the 1982–2013 global average rate of 0.018°F (0.01°C) per year.<sup id="fnref:fb1f46cd-8b70-4a44-923a-66df61ffa0be"><a href="#fn:39" rel="footnote" onclick="return false;">39</a></sup> Over the last decade (2007–2016), the regional warming rate has been four times faster than the long-term trend, with temperatures rising 0.25°F (0.14°C) per year (Figure 18.4). Variability in ocean temperatures over the Northeast Continental Shelf (see Figure 18.1 for the location) has been related to the northern position of the Gulf Stream, the volume of water entering from the Labrador Current, and large-scale background warming of the oceans.<sup id="fnref:fb1f46cd-8b70-4a44-923a-66df61ffa0be"><a href="#fn:39" rel="footnote" onclick="return false;">39</a></sup><sup class="cm">,</sup><sup id="fnref:f44f9474-6d98-43a9-8d7f-ee808ecaf41e"><a href="#fn:48" rel="footnote" onclick="return false;">48</a></sup><sup class="cm">,</sup><sup id="fnref:9ce7426c-0b7d-408e-a5b4-d449c12e2c17"><a href="#fn:152" rel="footnote" onclick="return false;">152</a></sup><sup class="cm">,</sup><sup id="fnref:f0cc1187-b9cf-4fef-bdb2-9f919c8d11da"><a href="#fn:153" rel="footnote" onclick="return false;">153</a></sup> In addition to this warming trend, seasonality is also changing. Warming has been strongest during the summer months, and the duration of summer-like sea surface temperatures has expanded.<sup id="fnref:55f15317-d7a2-4ae3-99f1-5e77129d2dfe"><a href="#fn:154" rel="footnote" onclick="return false;">154</a></sup> In parts of the Gulf of Maine, the summer-like season lengthened by two days per year since 1982, largely due to later fall cooling; the summer-like period expanded less rapidly (about 1 day per year) in the Mid-Atlantic, primarily due to earlier spring warming.<sup id="fnref:55f15317-d7a2-4ae3-99f1-5e77129d2dfe"><a href="#fn:154" rel="footnote" onclick="return false;">154</a></sup></p> </div> <section id="fig-18-4" class="offset-lg-1 col-lg-7 big-figure figure"> <div class="figure-social-icons"> <a role="button" href="/img/figure/figure18_4.png" aria-label="Download" title="Download" class="download_a qtip-top" download></a>&nbsp; <a role="button" href="/report/nca4/chapter/northeast/figure/sst-plot-example--gom-only" aria-label="Metadata" title="Metadata" class="metadata_a qtip-top" ></a>&nbsp; <a role="button" href="#" aria-label="Share this content" title="Share" class="share qtip-bottom" ></a> <div class="social-icons"> <a role="button" href="#" aria-label="Share this content on Facebook" data-fb-image="https://nca2018.globalchange.gov/img/figure/figure18_4.png" data-fb-title="Fourth National Climate Assessment: Change in Sea Surface Temperature on the Northeast Continental Shelf" class="social-icon facebook-icon"></a> <a role="button" href="https://www.twitter.com/intent/tweet?url=https://nca2018.globalchange.gov/chapter/18%23fig-18-4&amp;text=Fourth%20National%20Climate%20Assessment:%20Figure%2018.4:%20Change%20in%20Sea%20Surface%20Temperature%20on%20the%20Northeast%20Continental%20Shelf&amp;via=usgcrp&amp;hashtags=NCA4" aria-label="Share this content on Twitter" class="social-icon twitter-icon" target="_blank"></a> <a role="button" href="#" aria-label="Share the link to this content" class="social-icon link-icon"></a> <a role="button" href="mailto:?subject=Shared%20With%20You:%20Fourth%20National%20Climate%20Assessment&amp;body=Check%20out%20this%20site:%20https://nca2018.globalchange.gov/chapter/18#fig-18-4" aria-label="Share this content via e-mail" class="social-icon email-icon"></a> <div class="link-content"><input aria-label="Link to content" type="text" value="https://nca2018.globalchange.gov/chapter/18#fig-18-4" readonly/></div> </div> </div> <h2>Figure 18.4: Change in Sea Surface Temperature on the Northeast Continental Shelf</h2> <div class="figure-inner"> <a class="lightbox" href="/img/figure/figure18_4.png" data-title='Figure 18.4 Change in Sea Surface Temperature on the Northeast Continental Shelf'> <picture> <source media="(min-width: 1200px)" data-srcset="/img/styles/figure18_4-1200.png, /img/styles/figure18_4-1200@2x.png 2x"> <source media="(min-width: 992px)" data-srcset="/img/styles/figure18_4-992.png, /img/styles/figure18_4-992@2x.png 2x"> <source media="(min-width: 768px)" data-srcset="/img/styles/figure18_4-768.png, /img/styles/figure18_4-768@2x.png 2x"> <source media="(min-width: 480px)" data-srcset="/img/styles/figure18_4-480.png, /img/styles/figure18_4-480@2x.png 2x"> <source media="(min-width: 320px)" data-srcset="/img/styles/figure18_4-320.png, /img/styles/figure18_4-320@2x.png 2x"> <img data-src="/img/figure/figure18_4.png" alt="Change in Sea Surface Temperature on the Northeast Continental Shelf" class="big-img img-fluid lazyload" aria-describedby="description-18-4" /> </picture> </a> <aside id="description-18-4" class="sr-only">Two line graphs are shown. One is inset in the upper left corner of the other. The larger line graph shows the annual sea surface temperature (SST) changes (in degrees Fahrenheit) on the Northeast Continental Shelf over the period 1982 to 2016, compared to the 1982 to 2011 average. While annual SSTs have ranged from nearly 2 degrees below average to nearly 4 degrees above average over the period, a warming trend is evident, as described in the caption. The inset line graph shows SST differences from the 1982 to 2011 average as five-year rolling averages for summer and winter. Summer and winter SSTs have also warmed over the period, but the summer warming rate has been more pronounced in recent years.</aside> <div class="caption" data-href="/img/figure/figure18_4.png" data-title='Figure 18.4 Change in Sea Surface Temperature on the Northeast Continental Shelf'><strong>Figure 18.4: </strong>The figure shows annual average sea surface temperature (SST) differences from the 1982–2011 average (black dots and line). Over the period 1982–2016, sea surface temperature on the Northeast Continental Shelf has warmed at a rate of 0.06°F (0.033°C) per year (red dashed line). This rate is three times faster than the 1982–2013 global SST warming rate of 0.018°F (0.01°C) per year (gray dotted line).<sup id='fnref:fb1f46cd-8b70-4a44-923a-66df61ffa0be'><a href='#fn:39' rel='footnote' onclick='return false;'>39</a></sup> The inset shows Northeast Continental Shelf seasonal SST differences from the 1982–2011 average as five-year rolling means for summer (July, August, September; red line) and winter (January, February, March; blue line). These seasons are centered on the warmest (summer) and coolest (winter) months for Northeast Shelf SSTs. Both seasons have warmed over the time period, but the summer warming rate has been stronger. Source: Gulf of Maine Research Institute.</div> <p class="text-center"><span class="view-figure"><a role="button" class="shrink" href="#">SHRINK</a></span></p> </div> </section> <div class="offset-lg-1 col-lg-7"> <aside id="box-18_1" class="section-box box clearfix"> <div class="figure-social-icons"> <a role="button" href="https://toolkit.climate.gov/case-studies/maines-lobster-fishing-community-confronts-their-changing-climate" aria-label="See related content from the U.S. Climate Resilience Toolkit or the USGCRP Indicator Platform" target="'' " title=" See related content from the U.S. Climate Resilience Toolkit " class="climatelink qtip-bottom"></a>&nbsp; <a role="button" href="#" aria-label="Share this content" title="Share" class="share qtip-bottom" ></a> <div class="social-icons"> <a role="button" href="#" aria-label="Share this content on Facebook" data-fb-image="https://nca2018.globalchange.gov" data-fb-title="Fourth National Climate Assessment: Box 18.1: Ocean Heat Wave Provides Glimpse of Climate Future" class="social-icon facebook-icon"></a> <a role="button" href="https://www.twitter.com/intent/tweet?url=https://nca2018.globalchange.gov/chapter/18%23box-18_1&amp;text=Fourth%20National%20Climate%20Assessment:%20Box%2018.1:%20Ocean%20Heat%20Wave%20Provides%20Glimpse%20of%20Climate%20Future&amp;via=usgcrp&amp;hashtags=NCA4" aria-label="Share this content on Twitter" class="social-icon twitter-icon" target="_blank"></a> <a role="button" href="#" aria-label="Share the link to this content" class="social-icon link-icon"></a> <a role="button" href="mailto:?subject=Shared%20With%20You:%20Fourth%20National%20Climate%20Assessment&amp;body=Read%20this%20content%20from%20the%20Fourth%20National%20Climate%20Assessment:%20https://nca2018.globalchange.gov/chapter/18#box-18_1" aria-label="Share this content via e-mail" class="social-icon email-icon"></a> <div class="link-content"><input aria-label="Link to content" type="text" value="https://nca2018.globalchange.gov/chapter/18#box-18_1" readonly/></div> </div> </div> <h2><span class="balance-text">Box 18.1: Ocean Heat Wave Provides Glimpse of Climate Future</span></h2> <div class="box-inner"> <p>In 2012, sea surface temperatures on the Northeast Continental Shelf rose approximately 3.6°F (2°C) above the 1982–2011 average. This departure from normal was similar in magnitude to the changes projected for the end of the century under the higher scenario (RCP8.5) and represented the largest, most intense warm water event ever observed in the Northwest Atlantic Ocean <em>(<a href="/chapter/9">Ch. 9: Oceans</a>)</em>.<sup id="fnref:1dfd2171-2be3-40b2-a8e2-c0df84ec462a"><a href="#fn:155" rel="footnote" onclick="return false;">155</a></sup><sup class="cm">,</sup><sup id="fnref:273a1e86-544e-4a0a-a95b-c0855e9dcc32"><a href="#fn:156" rel="footnote" onclick="return false;">156</a></sup><sup class="cm">,</sup><sup id="fnref:8d65a2de-6cac-407f-8906-79fd025c282c"><a href="#fn:157" rel="footnote" onclick="return false;">157</a></sup> This heat wave altered seasonal cycles of phytoplankton and zooplankton,<sup id="fnref:ee25e7ff-68f2-4935-81d9-b012b0aa88c5"><a href="#fn:158" rel="footnote" onclick="return false;">158</a></sup><sup class="cm">,</sup><sup id="fnref:76230a06-2c07-4072-a132-d890762094f6"><a href="#fn:159" rel="footnote" onclick="return false;">159</a></sup> brought mid-Atlantic fish species into the Gulf of Maine,<sup id="fnref:1dfd2171-2be3-40b2-a8e2-c0df84ec462a"><a href="#fn:155" rel="footnote" onclick="return false;">155</a></sup> and altered the occurrence of North Atlantic right whales in the Gulf of Maine.<sup id="fnref:2dbcc8af-5f4e-4282-8d79-9dd93b241cdd"><a href="#fn:160" rel="footnote" onclick="return false;">160</a></sup> Commercial fisheries were also affected. A fishery for squid developed quickly along the coast of Maine, but the New England lobster fishery was negatively affected. Specifically, early spring warming triggered an early start of the fishing season, creating a glut of lobster in the supply chain and leading to a severe price collapse.<sup id="fnref:1dfd2171-2be3-40b2-a8e2-c0df84ec462a"><a href="#fn:155" rel="footnote" onclick="return false;">155</a></sup> During 2012, the dockside price for lobster hit its lowest level in the past decade and dropped from an average per-pound value of $3.62 for June and July 2000–2011 to just $2.37 in those months in 2012. The experience during the 2012 ocean heat wave revealed vulnerabilities in the lobster industry and prompted a variety of adaptive responses, such as expanding processing capacity and further developing domestic and international markets<sup id="fnref:e82d279e-163d-46e6-aac6-f8f103c3aa67"><a href="#fn:161" rel="footnote" onclick="return false;">161</a></sup> in an attempt to buffer against similar industry impacts in the future. Although an outlier when compared with our current climate, the ocean temperatures in 2012 were well within the range projected for the region by the end of the century under the higher scenario (RCP8.5).<sup id="fnref:cf81101a-7180-4e13-aa17-18c768b5ff65"><a href="#fn:162" rel="footnote" onclick="return false;">162</a></sup> The 2012 ocean heat wave provided a glimpse of impacts affecting ecological and social systems, and experiences during this event can serve as a stress test to guide adaptation planning in years to come (akin to 2015 in the Northwest) <em>(see <a href="/chapter/24#box-24_7">Ch. 24: Northwest, Box 24.7</a>)</em>.</p> <section id="fig-18-5" class="offset-lg-1 col-lg-7 big-figure figure"> <div class="figure-social-icons"> <a role="button" href="/img/figure/figure18_5.png" aria-label="Download" title="Download" class="download_a qtip-top" download></a>&nbsp; <a role="button" href="/report/nca4/chapter/northeast/figure/heat-wave-in-sea-surface-temperatures-in-the-northwest-atlantic-in-summer-2012" aria-label="Metadata" title="Metadata" class="metadata_a qtip-top" ></a>&nbsp; <a role="button" href="#" aria-label="Share this content" title="Share" class="share qtip-bottom" ></a> <div class="social-icons"> <a role="button" href="#" aria-label="Share this content on Facebook" data-fb-image="https://nca2018.globalchange.gov/img/figure/figure18_5.png" data-fb-title="Fourth National Climate Assessment: Ocean Heat Wave of 2012" class="social-icon facebook-icon"></a> <a role="button" href="https://www.twitter.com/intent/tweet?url=https://nca2018.globalchange.gov/chapter/18%23fig-18-5&amp;text=Fourth%20National%20Climate%20Assessment:%20Figure%2018.5:%20Ocean%20Heat%20Wave%20of%202012&amp;via=usgcrp&amp;hashtags=NCA4" aria-label="Share this content on Twitter" class="social-icon twitter-icon" target="_blank"></a> <a role="button" href="#" aria-label="Share the link to this content" class="social-icon link-icon"></a> <a role="button" href="mailto:?subject=Shared%20With%20You:%20Fourth%20National%20Climate%20Assessment&amp;body=Check%20out%20this%20site:%20https://nca2018.globalchange.gov/chapter/18#fig-18-5" aria-label="Share this content via e-mail" class="social-icon email-icon"></a> <div class="link-content"><input aria-label="Link to content" type="text" value="https://nca2018.globalchange.gov/chapter/18#fig-18-5" readonly/></div> </div> </div> <h2>Figure 18.5: Ocean Heat Wave of 2012</h2> <div class="figure-inner"> <a class="lightbox" href="/img/figure/figure18_5.png" data-title='Figure 18.5 Ocean Heat Wave of 2012'> <picture> <source media="(min-width: 1200px)" data-srcset="/img/styles/figure18_5-1200.png, /img/styles/figure18_5-1200@2x.png 2x"> <source media="(min-width: 992px)" data-srcset="/img/styles/figure18_5-992.png, /img/styles/figure18_5-992@2x.png 2x"> <source media="(min-width: 768px)" data-srcset="/img/styles/figure18_5-768.png, /img/styles/figure18_5-768@2x.png 2x"> <source media="(min-width: 480px)" data-srcset="/img/styles/figure18_5-480.png, /img/styles/figure18_5-480@2x.png 2x"> <source media="(min-width: 320px)" data-srcset="/img/styles/figure18_5-320.png, /img/styles/figure18_5-320@2x.png 2x"> <img data-src="/img/figure/figure18_5.png" alt="Ocean Heat Wave of 2012" class="big-img img-fluid lazyload" aria-describedby="description-18-5" /> </picture> </a> <aside id="description-18-5" class="sr-only">A map of the Northwest Atlantic Ocean shows how sea surface temperatures (SSTs) for June through August 2012 compare to average SSTs for those months for the period 1982 to 2011. In 2012, the waters surrounding the northeastern states, Greenland, eastern Canada, and the U.S. Great Lakes were up to 5.4 degrees Fahrenheit warmer than average. Temperatures in the middle of the Atlantic and in the Mediterranean Sea were around 1.8 to 3.6 degrees Fahrenheit warmer.</aside> <div class="caption" data-href="/img/figure/figure18_5.png" data-title='Figure 18.5 Ocean Heat Wave of 2012'><strong>Figure 18.5: </strong>The map shows the difference between sea surface temperatures (SST) for June–August 2012 in the Northwest Atlantic and the average values for those months in 1982–2011.<sup id='fnref:1dfd2171-2be3-40b2-a8e2-c0df84ec462a'><a href='#fn:155' rel='footnote' onclick='return false;'>155</a></sup> While ocean temperatures during 2012 were exceptionally high compared to the current climate, they were within the range of end-of-century temperatures projected for the region under the higher scenario (RCP8.5). This heat wave affected the Northeast Continental Shelf ecosystem and fisheries, and similar extreme events are expected to become more common in the future <em>(<a href='/chapter/9'>Ch. 9: Oceans</a>)</em>. Source: adapted from Mills et al. 2013.<sup id='fnref:1dfd2171-2be3-40b2-a8e2-c0df84ec462a'><a href='#fn:155' rel='footnote' onclick='return false;'>155</a></sup> Reprinted with permission from Elsevier.</div> </div> </section> </div> </aside> <p>Increasing temperatures and changing seasonality on the Northeast Continental Shelf have affected marine organisms and the ecosystem in various ways <em>(<a href="/chapter/7#key-message-1">Ch. 7: Ecosystems, KM 1</a>; <a href="/chapter/9">Ch. 9: Oceans</a>)</em>. Seasonal ocean temperature changes have shifted characteristics of the spring phytoplankton blooms<sup id="fnref:ee25e7ff-68f2-4935-81d9-b012b0aa88c5"><a href="#fn:158" rel="footnote" onclick="return false;">158</a></sup> and the timing of fish and invertebrate reproduction,<sup id="fnref:321b9ab8-573b-4f45-989d-8d1c978c7626"><a href="#fn:163" rel="footnote" onclick="return false;">163</a></sup><sup class="cm">,</sup><sup id="fnref:0ce13198-a924-4762-bd5c-00519d8ae3fc"><a href="#fn:164" rel="footnote" onclick="return false;">164</a></sup> migration of marine fish that return to freshwater to spawn,<sup id="fnref:e5c21763-2a2c-4cae-ac25-762f4dc66638"><a href="#fn:165" rel="footnote" onclick="return false;">165</a></sup><sup class="cm">,</sup><sup id="fnref:18e57808-1999-4c24-911d-abce180ac68b"><a href="#fn:166" rel="footnote" onclick="return false;">166</a></sup> and marine fisheries.<sup id="fnref:1dfd2171-2be3-40b2-a8e2-c0df84ec462a"><a href="#fn:155" rel="footnote" onclick="return false;">155</a></sup> As the timing of ecosystem conditions and biological events shifts, interactions between species and human activities such as fishing or whale watching will likely be affected.<sup id="fnref:27775d55-2293-45cd-8f21-1245472c5c7f"><a href="#fn:42" rel="footnote" onclick="return false;">42</a></sup><sup class="cm">,</sup><sup id="fnref:1dfd2171-2be3-40b2-a8e2-c0df84ec462a"><a href="#fn:155" rel="footnote" onclick="return false;">155</a></sup><sup class="cm">,</sup><sup id="fnref:321b9ab8-573b-4f45-989d-8d1c978c7626"><a href="#fn:163" rel="footnote" onclick="return false;">163</a></sup><sup class="cm">,</sup><sup id="fnref:18e57808-1999-4c24-911d-abce180ac68b"><a href="#fn:166" rel="footnote" onclick="return false;">166</a></sup><sup class="cm">,</sup><sup id="fnref:bdbff3fd-0351-4029-901c-29614796f083"><a href="#fn:167" rel="footnote" onclick="return false;">167</a></sup><sup class="cm">,</sup><sup id="fnref:c11efdce-b948-425b-a120-bfeba86e0bbf"><a href="#fn:168" rel="footnote" onclick="return false;">168</a></sup> These changes have the potential to affect economic activity and social features of fishing communities, working waterfronts, travel and tourism, and other natural resource-dependent local economies.</p> <p>The warming trend experienced in the Northeast Continental Shelf has been associated with many fish and invertebrate species moving northward and to greater depths <em>(<a href="/chapter/1#fig-1-2">Ch. 1: Overview, Figure 1.2h</a>)</em>.<sup id="fnref:8b09bbe8-9f42-412e-a4d6-ef4889f56556"><a href="#fn:7" rel="footnote" onclick="return false;">7</a></sup><sup class="cm">,</sup><sup id="fnref:71910705-6b0b-4f61-8249-5a2d444ad5fb"><a href="#fn:8" rel="footnote" onclick="return false;">8</a></sup><sup class="cm">,</sup><sup id="fnref:90b451be-10f8-4612-848e-6a48d3e48ec1"><a href="#fn:9" rel="footnote" onclick="return false;">9</a></sup><sup class="cm">,</sup><sup id="fnref:8576d351-1b18-4e20-a651-4ab791c17b51"><a href="#fn:10" rel="footnote" onclick="return false;">10</a></sup><sup class="cm">,</sup><sup id="fnref:e453e153-fe51-4bac-857f-689639d2e4f2"><a href="#fn:11" rel="footnote" onclick="return false;">11</a></sup> As these shifts have occurred, communities of animals present in a given area have changed substantially.<sup id="fnref:6e848e96-9b83-4b3a-bce8-46bfc81da3fa"><a href="#fn:169" rel="footnote" onclick="return false;">169</a></sup> Species interactions can be affected if species do not shift at the same rate; generally, species groups appear to be moving together,<sup id="fnref:8576d351-1b18-4e20-a651-4ab791c17b51"><a href="#fn:10" rel="footnote" onclick="return false;">10</a></sup> but overlap between pairs of specific species has changed.<sup id="fnref:27775d55-2293-45cd-8f21-1245472c5c7f"><a href="#fn:42" rel="footnote" onclick="return false;">42</a></sup></p> <p>Rising ocean temperatures have also affected the productivity of marine populations. Species at the southern extent of their range, such as northern shrimp, surf clams, and Atlantic cod, are declining as waters warm,<sup id="fnref:fb1f46cd-8b70-4a44-923a-66df61ffa0be"><a href="#fn:39" rel="footnote" onclick="return false;">39</a></sup><sup class="cm">,</sup><sup id="fnref:2ab7a396-bb86-4dd4-b79c-975858b8aef8"><a href="#fn:170" rel="footnote" onclick="return false;">170</a></sup><sup class="cm">,</sup><sup id="fnref:ec11f41b-7d8e-41b6-a967-6ba6f33595af"><a href="#fn:171" rel="footnote" onclick="return false;">171</a></sup> while other species, such as black sea bass, are experiencing increased productivity.<sup id="fnref:e453e153-fe51-4bac-857f-689639d2e4f2"><a href="#fn:11" rel="footnote" onclick="return false;">11</a></sup> Some species, such as American lobster and surf clam, have declined in southern regions where temperatures have exceeded their biological tolerances but have increased in northern areas as warming waters have enhanced their productivity.<sup id="fnref:fda5d878-d7b2-48d9-a2c4-bb0721262ce5"><a href="#fn:40" rel="footnote" onclick="return false;">40</a></sup><sup class="cm">,</sup><sup id="fnref:ec11f41b-7d8e-41b6-a967-6ba6f33595af"><a href="#fn:171" rel="footnote" onclick="return false;">171</a></sup><sup class="cm">,</sup><sup id="fnref:543c75a4-735f-43d6-a3c0-ef5f0c1a3e74"><a href="#fn:172" rel="footnote" onclick="return false;">172</a></sup><sup class="cm">,</sup><sup id="fnref:e38a7ce3-351a-4c6b-8afe-b9080f69582e"><a href="#fn:173" rel="footnote" onclick="return false;">173</a></sup> The productivity of some harvested and cultured species may also be indirectly influenced by changing levels of marine pathogens and diseases. For example, increasing prevalence of shell disease in lobsters and several pathogens in oysters have been associated with rising water temperatures;<sup id="fnref:8adc7522-0961-4d7f-8063-0cccf29f6fe7"><a href="#fn:174" rel="footnote" onclick="return false;">174</a></sup><sup class="cm">,</sup><sup id="fnref:8b120393-5c19-4ce1-96e6-845ecbd03b43"><a href="#fn:175" rel="footnote" onclick="return false;">175</a></sup> other pathogens that infect shellfish pose risks to human health (see Key Message 4).</p> <p>Temperature-related changes in the distribution and productivity of species are affecting fisheries. Some fishermen now travel farther to catch certain species<sup id="fnref:f147452b-e846-4fdd-aad9-3110322e071c"><a href="#fn:176" rel="footnote" onclick="return false;">176</a></sup> or target new species that are becoming more prevalent as waters warm.<sup id="fnref:1dfd2171-2be3-40b2-a8e2-c0df84ec462a"><a href="#fn:155" rel="footnote" onclick="return false;">155</a></sup> However, these types of responses do not always keep pace with ecosystem change due to constraints associated with markets, shoreside infrastructure, and regulatory limits such as access to quota licenses or permits.<sup id="fnref:afee0ca6-fc14-4212-863a-b34fbaae517f"><a href="#fn:177" rel="footnote" onclick="return false;">177</a></sup><sup class="cm">,</sup><sup id="fnref:ad9cbd45-a115-4a2a-9e9f-9ed17a171a8b"><a href="#fn:178" rel="footnote" onclick="return false;">178</a></sup><sup class="cm">,</sup><sup id="fnref:82c7d687-eba6-4ec7-aff7-c8c417e2abe8"><a href="#fn:179" rel="footnote" onclick="return false;">179</a></sup> In addition, stock assessment and fishery management processes do not explicitly account for temperature influences on the managed species. In the case of Gulf of Maine cod, rising temperatures have been associated with changes in recruitment, growth, and mortality; failure to account for declining productivity as a result of warming led to catch advice that allowed for overfishing on the stock.<sup id="fnref:fb1f46cd-8b70-4a44-923a-66df61ffa0be"><a href="#fn:39" rel="footnote" onclick="return false;">39</a></sup><sup class="cm">,</sup><sup id="fnref:055f93de-69d5-42fb-b4b9-6ffe8c60eea3"><a href="#fn:180" rel="footnote" onclick="return false;">180</a></sup> Proactive conservation and management measures can support climate resilience of fished species. For example, long-standing industry and management measures to protect female and large lobsters have supported the growth of the Gulf of Maine–Georges Bank stock as waters warmed, but the lack of these measures in southern New England exacerbated declines in that stock as temperatures increased.<sup id="fnref:fda5d878-d7b2-48d9-a2c4-bb0721262ce5"><a href="#fn:40" rel="footnote" onclick="return false;">40</a></sup></p> <h3>Ocean Acidification</h3> <p>In addition to warming, coastal waters in the Northeast, particularly in the Gulf of Maine, are sensitive to the effects of ocean acidification because they have a low capacity for maintaining stable pH levels.<sup id="fnref:07043123-9da3-43da-a9fa-36885cd77331"><a href="#fn:181" rel="footnote" onclick="return false;">181</a></sup><sup class="cm">,</sup><sup id="fnref:713bb290-1c8c-4d9a-8b65-3941399b48b9"><a href="#fn:182" rel="footnote" onclick="return false;">182</a></sup> These waters are particularly vulnerable to acidification due to hypoxia (low-oxygen conditions)<sup id="fnref:5ad983a9-534d-41f5-972e-e83425330b8e"><a href="#fn:183" rel="footnote" onclick="return false;">183</a></sup> and freshwater inputs, which are expected to increase as climate change progresses.<sup id="fnref:f04a91c4-6cb2-4918-9213-b48f459bca10"><a href="#fn:142" rel="footnote" onclick="return false;">142</a></sup><sup class="cm">,</sup><sup id="fnref:07043123-9da3-43da-a9fa-36885cd77331"><a href="#fn:181" rel="footnote" onclick="return false;">181</a></sup><sup class="cm">,</sup><sup id="fnref:be37867f-0936-4b6e-8dc2-2a737552e5de"><a href="#fn:184" rel="footnote" onclick="return false;">184</a></sup> At the coastal margins, acidification is exacerbated by nutrient loading from land-based runoff and atmospheric deposition during heavy rainfall events. When added to the system, these nutrients promote the growth of algae that release carbon dioxide, which contributes to acidification, as they decay.<sup id="fnref:55845ff1-7044-45c7-a618-c126c0138ece"><a href="#fn:185" rel="footnote" onclick="return false;">185</a></sup></p> <p>Fisheries and aquaculture rely on shell-forming organisms that can suffer in more acidic conditions <em>(<a href="/chapter/9">Ch. 9: Oceans</a>)</em>.<sup id="fnref:07043123-9da3-43da-a9fa-36885cd77331"><a href="#fn:181" rel="footnote" onclick="return false;">181</a></sup><sup class="cm">,</sup><sup id="fnref:713bb290-1c8c-4d9a-8b65-3941399b48b9"><a href="#fn:182" rel="footnote" onclick="return false;">182</a></sup><sup class="cm">,</sup><sup id="fnref:0b185997-744b-4272-9381-d7b94a26d7e2"><a href="#fn:186" rel="footnote" onclick="return false;">186</a></sup> Some of the most valuable wild- and culture-based fisheries in the region harvest shelled organisms—including lobsters, scallops, blue crabs, oysters, surf clams, and mussels.<sup id="fnref:cc3188b2-2dd2-4a5d-8a37-21f523744e75"><a href="#fn:5" rel="footnote" onclick="return false;">5</a></sup> To date, there have been few studies of how local populations and different life stages will be affected by ocean acidification,<sup id="fnref:713bb290-1c8c-4d9a-8b65-3941399b48b9"><a href="#fn:182" rel="footnote" onclick="return false;">182</a></sup> but actions taken by industry to counter the potential negative impacts are emerging. For example, when an oyster hatchery in Maine experienced low survival rates of larval oysters following exposure to low pH water during large runoff events, it collaborated with scientists to develop systems to monitor and control carbonate conditions in the facility <em>(<a href="/chapter/9">Ch. 9: Oceans</a>)</em>.<sup id="fnref:3cadab64-e89e-40e3-ad1e-043ee3e6d60f"><a href="#fn:187" rel="footnote" onclick="return false;">187</a></sup></p> <h3>Future Projections of Ocean Warming and Acidification</h3> <p>Climate projections indicate that in the future, the ocean over the Northeast Continental Shelf will experience more warming than most other marine ecosystems around the world.<sup id="fnref:f44f9474-6d98-43a9-8d7f-ee808ecaf41e"><a href="#fn:48" rel="footnote" onclick="return false;">48</a></sup><sup class="cm">,</sup><sup id="fnref:0826d3d5-2742-415f-a9de-3621c4b79442"><a href="#fn:49" rel="footnote" onclick="return false;">49</a></sup> Continued warming and acidification are expected to further affect species and fisheries in the region. Future projections indicate that declines in the density of a zooplankton species, <em>Calanus finmarchicus</em>—an important food source for many fish and whales in the Northeast Shelf region—will occur as waters continue to warm through the end of the century.<sup id="fnref:c92ace9d-3bc2-4b2b-9a28-9d2d435f5dc1"><a href="#fn:188" rel="footnote" onclick="return false;">188</a></sup> Northward species distribution trends are projected to continue as ocean waters warm further.<sup id="fnref:03aea694-50fe-4d1e-b29e-091adfb0353b"><a href="#fn:189" rel="footnote" onclick="return false;">189</a></sup> A species vulnerability assessment indicated that approximately 50% of the commercial, forage, and protected fish and invertebrate species on the Northeast Continental Shelf will be highly or very highly vulnerable to climate change through 2050 under the higher scenario (RCP8.5).<sup id="fnref:7da52043-249d-4413-9e1a-40ed0659b2f8"><a href="#fn:143" rel="footnote" onclick="return false;">143</a></sup> In general, species in the southern portion of the region are expected to remain stable through mid-century, but many species in the northern portion are expected to be negatively affected by warming and acidification over that timeframe.<sup id="fnref:7da52043-249d-4413-9e1a-40ed0659b2f8"><a href="#fn:143" rel="footnote" onclick="return false;">143</a></sup><sup class="cm">,</sup><sup id="fnref:0b185997-744b-4272-9381-d7b94a26d7e2"><a href="#fn:186" rel="footnote" onclick="return false;">186</a></sup> Species population models projected forward under future ocean conditions also indicate declines of species that support some of the most valuable and iconic fisheries in the Northeast, including Atlantic cod,<sup id="fnref:fb1f46cd-8b70-4a44-923a-66df61ffa0be"><a href="#fn:39" rel="footnote" onclick="return false;">39</a></sup><sup class="cm">,</sup><sup id="fnref:1742491d-0791-4bdd-8f24-e789347359f8"><a href="#fn:190" rel="footnote" onclick="return false;">190</a></sup> Atlantic sea scallops,<sup id="fnref:867d1e64-e364-496c-9e0c-1593182bb40d"><a href="#fn:191" rel="footnote" onclick="return false;">191</a></sup> and American lobster.<sup id="fnref:fda5d878-d7b2-48d9-a2c4-bb0721262ce5"><a href="#fn:40" rel="footnote" onclick="return false;">40</a></sup> In addition, species that are already endangered and federally protected in the Northeast—such as Atlantic sturgeon, Atlantic salmon, and right whales—are expected to be further threatened by climate change.<sup id="fnref:35a809e3-4fce-494d-b33e-d757b5bd51f3"><a href="#fn:192" rel="footnote" onclick="return false;">192</a></sup><sup class="cm">,</sup><sup id="fnref:a2d9f488-5112-4e3e-84e7-c396abaf7dfb"><a href="#fn:193" rel="footnote" onclick="return false;">193</a></sup><sup class="cm">,</sup><sup id="fnref:8448d569-1801-4a9e-8fc9-659b7bf31858"><a href="#fn:194" rel="footnote" onclick="return false;">194</a></sup><sup class="cm">,</sup><sup id="fnref:9a694d05-1278-4911-8d80-a22c148f8a7b"><a href="#fn:195" rel="footnote" onclick="return false;">195</a></sup></p> <p>A number of coastal communities in the Northeast region have strong social and cultural ties to marine fisheries, and in some communities, fisheries represent an important economic activity as well.<sup id="fnref:dafcc587-9557-41d7-931c-09b1788d6bfe"><a href="#fn:196" rel="footnote" onclick="return false;">196</a></sup><sup class="cm">,</sup><sup id="fnref:9756981a-a224-4bff-a6d0-5e3a9d31c478"><a href="#fn:197" rel="footnote" onclick="return false;">197</a></sup> Future ocean warming and acidification, which are expected under all scenarios considered, would affect fish stocks and fishing opportunities available to coastal communities. Fisheries targeting species at the southern extent of their range have already experienced substantial declines in landings with rising ocean temperatures,<sup id="fnref:2ab7a396-bb86-4dd4-b79c-975858b8aef8"><a href="#fn:170" rel="footnote" onclick="return false;">170</a></sup><sup class="cm">,</sup><sup id="fnref:e38a7ce3-351a-4c6b-8afe-b9080f69582e"><a href="#fn:173" rel="footnote" onclick="return false;">173</a></sup><sup class="cm">,</sup><sup id="fnref:5e0a2446-ddec-4b9b-9602-df4e5c0a20a4"><a href="#fn:198" rel="footnote" onclick="return false;">198</a></sup><sup class="cm">,</sup><sup id="fnref:9da35575-588b-4076-a7b6-9484ea7d5007"><a href="#fn:199" rel="footnote" onclick="return false;">199</a></sup><sup class="cm">,</sup><sup id="fnref:e26419d1-d4f6-49ff-bf8a-352478b39cce"><a href="#fn:200" rel="footnote" onclick="return false;">200</a></sup> and this pattern is projected to continue in the future (e.g., Cooley et al. 2015, Pershing et al. 2015, Le Bris et al. 2018<sup id="fnref:fb1f46cd-8b70-4a44-923a-66df61ffa0be"><a href="#fn:39" rel="footnote" onclick="return false;">39</a></sup><sup class="cm">,</sup><sup id="fnref:fda5d878-d7b2-48d9-a2c4-bb0721262ce5"><a href="#fn:40" rel="footnote" onclick="return false;">40</a></sup><sup class="cm">,</sup><sup id="fnref:867d1e64-e364-496c-9e0c-1593182bb40d"><a href="#fn:191" rel="footnote" onclick="return false;">191</a></sup>). Fishers may need to travel farther to fishing locations for species they currently catch,<sup id="fnref:03aea694-50fe-4d1e-b29e-091adfb0353b"><a href="#fn:189" rel="footnote" onclick="return false;">189</a></sup> increasing fuel and crew costs. Distribution shifts (Figure 18.6) can also create opportunities to target new species moving into an area.<sup id="fnref:1dfd2171-2be3-40b2-a8e2-c0df84ec462a"><a href="#fn:155" rel="footnote" onclick="return false;">155</a></sup> The impacts and opportunities associated with these changes will not be evenly shared within or among fisheries, fleets, or communities; as such, adaptation may alter social dynamics, cultural ties, and economic benefits.<sup id="fnref:9f2aa77e-6f16-4ba2-b082-cb9bd5128986"><a href="#fn:201" rel="footnote" onclick="return false;">201</a></sup><sup class="cm">,</sup><sup id="fnref:41fe71c8-2116-4e9e-b2d6-6730467eac64"><a href="#fn:202" rel="footnote" onclick="return false;">202</a></sup><sup class="cm">,</sup><sup id="fnref:d46d23b7-cc5a-489d-8b29-0e22077b7853"><a href="#fn:203" rel="footnote" onclick="return false;">203</a></sup></p> </div> <section id="fig-18-6" class="offset-lg-1 col-lg-7 big-figure figure"> <div class="figure-social-icons"> <a role="button" href="/img/figure/figure18_6.png" aria-label="Download" title="Download" class="download_a qtip-top" download></a>&nbsp; <a role="button" href="/report/nca4/chapter/northeast/figure/species-distribution-and-abundance" aria-label="Metadata" title="Metadata" class="metadata_a qtip-top" ></a>&nbsp; <a role="button" href="#" aria-label="Share this content" title="Share" class="share qtip-bottom" ></a> <div class="social-icons"> <a role="button" href="#" aria-label="Share this content on Facebook" data-fb-image="https://nca2018.globalchange.gov/img/figure/figure18_6.png" data-fb-title="Fourth National Climate Assessment: Changes in Distribution and Abundance of Marine Species" class="social-icon facebook-icon"></a> <a role="button" href="https://www.twitter.com/intent/tweet?url=https://nca2018.globalchange.gov/chapter/18%23fig-18-6&amp;text=Fourth%20National%20Climate%20Assessment:%20Figure%2018.6:%20Changes%20in%20Distribution%20and%20Abundance%20of%20Marine%20Species&amp;via=usgcrp&amp;hashtags=NCA4" aria-label="Share this content on Twitter" class="social-icon twitter-icon" target="_blank"></a> <a role="button" href="#" aria-label="Share the link to this content" class="social-icon link-icon"></a> <a role="button" href="mailto:?subject=Shared%20With%20You:%20Fourth%20National%20Climate%20Assessment&amp;body=Check%20out%20this%20site:%20https://nca2018.globalchange.gov/chapter/18#fig-18-6" aria-label="Share this content via e-mail" class="social-icon email-icon"></a> <div class="link-content"><input aria-label="Link to content" type="text" value="https://nca2018.globalchange.gov/chapter/18#fig-18-6" readonly/></div> </div> </div> <h2>Figure 18.6: Changes in Distribution and Abundance of Marine Species</h2> <div style="width: 80%;" class="figure-inner"> <a class="lightbox" href="/img/figure/figure18_6.png" data-title='Figure 18.6 Changes in Distribution and Abundance of Marine Species'> <picture> <source media="(min-width: 1200px)" data-srcset="/img/styles/figure18_6-1200.png, /img/styles/figure18_6-1200@2x.png 2x"> <source media="(min-width: 992px)" data-srcset="/img/styles/figure18_6-992.png, /img/styles/figure18_6-992@2x.png 2x"> <source media="(min-width: 768px)" data-srcset="/img/styles/figure18_6-768.png, /img/styles/figure18_6-768@2x.png 2x"> <source media="(min-width: 480px)" data-srcset="/img/styles/figure18_6-480.png, /img/styles/figure18_6-480@2x.png 2x"> <source media="(min-width: 320px)" data-srcset="/img/styles/figure18_6-320.png, /img/styles/figure18_6-320@2x.png 2x"> <img data-src="/img/figure/figure18_6.png" alt="Changes in Distribution and Abundance of Marine Species" class="big-img img-fluid lazyload" aria-describedby="description-18-6" /> </picture> </a> <aside id="description-18-6" class="sr-only">Five line graphs are shown. The first graph illustrates changes in geographic distribution of the Atlantic cod, the American lobster, and the black sea bass along the Northeast Continental Shelf from 1970 to 2015. While all three species have shifted to more northerly latitudes, the shift is more pronounced for the American lobster and black sea bass. The remaining four graphs illustrate changes in biomass (in metric tons) of the Gulf of Maine-Georges Bank lobster, the Southern New England lobster, the Gulf of Maine cod, and the black sea bass. The Gulf of Maine cod and the Southern New England lobster stocks have declined in biomass to under 5,000 metric tons and under 500 metric tons, respectively. The stocks of Gulf of Maine-Georges Bank lobster and black sea bass have increased in biomass to more than 20,000 metric tons and more than 15,000 metric tons, respectively.</aside> <div class="caption" data-href="/img/figure/figure18_6.png" data-title='Figure 18.6 Changes in Distribution and Abundance of Marine Species'><strong>Figure 18.6: </strong>The figure shows changes over time in geographic distribution (left panel) and biomass (four panels at right) for various marine species along the Northeast Shelf. As waters in the region have warmed, the spatial distributions of many fish species have been shifting northward, while population trends of several marine species show more variability over time. The left panel shows shifts in spatial distribution over time for select fish species, based on their latitudinal centers of biomass. The four panels on right show biomass estimates for the same marine resource stocks. Gulf of Maine cod, a coldwater species, has not shifted in location but has declined in biomass, while black sea bass (a warmwater species) has moved northward and increased in biomass as waters have warmed. The lobster distribution shift reflects declines in productivity of the southern stock and increasing biomass of the northern stock. Sources: (black sea bass) adapted from Northeast Fisheries Science Center 2017;<sup id='fnref:029f7d58-249d-4399-81f0-de85cc2da3c1'><a href='#fn:204' rel='footnote' onclick='return false;'>204</a></sup> (all others) Gulf of Maine Research Institute.</div> <p class="text-center"><span class="view-figure"><a role="button" class="shrink" href="#">SHRINK</a></span></p> </div> </section> <div class="offset-lg-1 col-lg-7"> <h3>Sea Level Rise, Storms, and Flooding</h3> <p>Along the Mid-Atlantic coast (from Cape Hatteras, North Carolina, to Cape Cod, Massachusetts), several decades of tide gauge data through 2009 have shown that sea level rise rates were three to four times higher than the global average rate.<sup id="fnref:480ff362-8434-4861-a8bb-2dc6615bdcdc"><a href="#fn:46" rel="footnote" onclick="return false;">46</a></sup><sup class="cm">,</sup><sup id="fnref:70b9fb1f-c611-4bb7-ad28-ea752489a5de"><a href="#fn:205" rel="footnote" onclick="return false;">205</a></sup><sup class="cm">,</sup><sup id="fnref:df484606-34bd-40f9-b6f7-55980a18a737"><a href="#fn:206" rel="footnote" onclick="return false;">206</a></sup> The region’s sea level rise rates are increased by land subsidence (sinking)—largely due to vertical land movement related to the melting of glaciers from the last ice age—which leaves much of the land in this region sinking with respect to current sea level.<sup id="fnref:c66bf5a9-a6d7-4043-ad99-db0ae6ae562c"><a href="#fn:47" rel="footnote" onclick="return false;">47</a></sup><sup class="cm">,</sup><sup id="fnref:a26008f1-a98f-45f7-b964-9dda3dee8a0c"><a href="#fn:207" rel="footnote" onclick="return false;">207</a></sup><sup class="cm">,</sup><sup id="fnref:fe939844-ef16-412c-afe6-42017bad20d5"><a href="#fn:208" rel="footnote" onclick="return false;">208</a></sup><sup class="cm">,</sup><sup id="fnref:10fe1f35-74b2-4636-a0b0-a1f85879367e"><a href="#fn:209" rel="footnote" onclick="return false;">209</a></sup> Additionally, shorter-term fluctuations in the variability of ocean dynamics,<sup id="fnref:199b0e91-24ab-429c-ab3f-1930b96c62a0"><a href="#fn:210" rel="footnote" onclick="return false;">210</a></sup><sup class="cm">,</sup><sup id="fnref:143752b0-3899-41fe-963b-5b040305a5be"><a href="#fn:211" rel="footnote" onclick="return false;">211</a></sup> atmospheric shifts,<sup id="fnref:1724fddf-0454-4565-a66e-bf17d47a48ce"><a href="#fn:212" rel="footnote" onclick="return false;">212</a></sup><sup class="cm">,</sup><sup id="fnref:c02e02f3-5a54-40ab-9f09-76e98edcbd48"><a href="#fn:213" rel="footnote" onclick="return false;">213</a></sup> and ice mass loss from Greenland and Antarctica<sup id="fnref:4531ff9e-d432-4564-9b72-2d334532ceb8"><a href="#fn:214" rel="footnote" onclick="return false;">214</a></sup> have been connected to these recent accelerations in the sea level rise rate in the region. For example, a slowdown of the Gulf Stream during a shorter period of extreme sea level rise observed over 2009–2010 has been linked to a weakening of the Atlantic meridional overturning circulation—the northward flow of upper-level warm, salty waters in the Atlantic (including the Gulf Stream current) and the southward flow of colder, deeper waters.<sup id="fnref:18a2427b-fb63-48b1-8b74-fd476a4cac1f"><a href="#fn:215" rel="footnote" onclick="return false;">215</a></sup> These higher-than-average rates of sea level rise measured in the Northeast have also led to a 100%–200% increase in high tide flooding in some places, causing more persistent and frequent (so-called nuisance flooding) impacts over the last few decades.<sup id="fnref:b4808700-a94a-44da-b2bb-d360a83146f1"><a href="#fn:44" rel="footnote" onclick="return false;">44</a></sup><sup class="cm">,</sup><sup id="fnref:c66bf5a9-a6d7-4043-ad99-db0ae6ae562c"><a href="#fn:47" rel="footnote" onclick="return false;">47</a></sup><sup class="cm">,</sup><sup id="fnref:91aeffdb-e82f-4645-abe9-f6ea6909e979"><a href="#fn:216" rel="footnote" onclick="return false;">216</a></sup><sup class="cm">,</sup><sup id="fnref:b072d10e-db78-421e-a708-e2bdcb25de6e"><a href="#fn:217" rel="footnote" onclick="return false;">217</a></sup></p> <p>Coastal flood risks from storm-driven precipitation and surges are major drivers of coastal change<sup id="fnref:0f346599-ef45-4a4c-8ead-98ce47ea0da8"><a href="#fn:218" rel="footnote" onclick="return false;">218</a></sup><sup class="cm">,</sup><sup id="fnref:6feb1a0b-e856-4353-9bb2-ce0622f0d7ec"><a href="#fn:219" rel="footnote" onclick="return false;">219</a></sup> and are also amplified by sea level increases.<sup id="fnref:b072d10e-db78-421e-a708-e2bdcb25de6e"><a href="#fn:217" rel="footnote" onclick="return false;">217</a></sup><sup class="cm">,</sup><sup id="fnref:be9c98a9-915f-4d78-80b9-239b70f93ae2"><a href="#fn:220" rel="footnote" onclick="return false;">220</a></sup><sup class="cm">,</sup><sup id="fnref:728f4919-d8c6-4749-968e-18a16550540b"><a href="#fn:221" rel="footnote" onclick="return false;">221</a></sup> Storms have unique climatological features in the Northeast—Nor’easters (named for the low-pressure systems typically impacting New England and the Mid-Atlantic with strong northeasterly winds blowing from the ocean over coastal areas) typically occur between September and April, and when coupled with the Atlantic hurricane season between June and September, the region is susceptible to major storms nearly year-round. Storm flood heights driven by hurricanes in New York City increased by more than 3.9 feet (1.2 m) over the last thousand years.<sup id="fnref:8a3b0b9a-fc45-4ea2-b732-90222ff624ba"><a href="#fn:14" rel="footnote" onclick="return false;">14</a></sup> When coupled with storm surges, sea level rise can pose severe risks of flooding, with consequent physical and mental health impacts on coastal populations (see Key Messages 4 and 5).</p> <h3>Landscape Change and Impacts on Ecosystems Services</h3> </div> <section id="fig-18-7" class="md-3 small-figure figure"> <div class="figure-social-icons"> <a role="button" href="/img/figure/figure18_7.png" aria-label="Download" title="Download" class="download_a qtip-top" download></a>&nbsp; <a role="button" href="/report/nca4/chapter/northeast/figure/coastal-effects-cartoon" aria-label="Metadata" title="Metadata" class="metadata_a qtip-top" ></a>&nbsp; <a role="button" href="#" aria-label="Share this content" title="Share" class="share qtip-bottom" ></a> <div class="social-icons"> <a role="button" href="#" aria-label="Share this content on Facebook" data-fb-image="https://nca2018.globalchange.gov/img/figure/figure18_7.png" data-fb-title="Fourth National Climate Assessment: Coastal Impacts of Climate Change" class="social-icon facebook-icon"></a> <a role="button" href="https://www.twitter.com/intent/tweet?url=https://nca2018.globalchange.gov/chapter/18%23fig-18-7&amp;text=Fourth%20National%20Climate%20Assessment:%20Figure%2018.7:%20Coastal%20Impacts%20of%20Climate%20Change&amp;via=usgcrp&amp;hashtags=NCA4" aria-label="Share this content on Twitter" class="social-icon twitter-icon" target="_blank"></a> <a role="button" href="#" aria-label="Share the link to this content" class="social-icon link-icon"></a> <a role="button" href="mailto:?subject=Shared%20With%20You:%20Fourth%20National%20Climate%20Assessment&amp;body=Check%20out%20this%20site:%20https://nca2018.globalchange.gov/chapter/18#fig-18-7" aria-label="Share this content via e-mail" class="social-icon email-icon"></a> <div class="link-content"><input aria-label="Link to content" type="text" value="https://nca2018.globalchange.gov/chapter/18#fig-18-7" readonly/></div> </div> </div> <h2>Figure 18.7: Coastal Impacts of Climate Change</h2> <div class="figure-inner"> <a class="lightbox" href="/img/figure/figure18_7.png" data-title='Figure 18.7 Coastal Impacts of Climate Change'> <picture> <source media="(min-width: 1200px)" data-srcset="/img/styles/figure18_7-1200.png, /img/styles/figure18_7-1200@2x.png 2x"> <source media="(min-width: 992px)" data-srcset="/img/styles/figure18_7-992.png, /img/styles/figure18_7-992@2x.png 2x"> <source media="(min-width: 768px)" data-srcset="/img/styles/figure18_7-768.png, /img/styles/figure18_7-768@2x.png 2x"> <source media="(min-width: 480px)" data-srcset="/img/styles/figure18_7-480.png, /img/styles/figure18_7-480@2x.png 2x"> <source media="(min-width: 320px)" data-srcset="/img/styles/figure18_7-320.png, /img/styles/figure18_7-320@2x.png 2x"> <img data-src="/img/figure/figure18_7.png" alt="Coastal Impacts of Climate Change" class="img-fluid lazyload" aria-describedby="description-18-7"/> </picture> </a> <aside id="description-18-7" class="sr-only">A diagram shows present and possible future scenarios of a northeastern coastal landscape. In the present view, we are reminded that the coastal landscape provides a number of essential services to humans and to coastal species, including providing habitats and recreation. The possible future diagram shows how coastal landscapes will be impacted by storm activity and sea level rise in years to come. For example, forests and marshlands will either migrate inland or become submerged. Bluffs will erode, and barrier islands and beaches will migrate inland, narrow, or erode. And areas of development will require ongoing efforts to remain protected from coastal erosion and flooding.</aside> <div class="caption" data-href="/img/figure/figure18_7.png" data-title='Figure 18.7 Coastal Impacts of Climate Change'><strong>Figure 18.7: </strong>(top) The northeastern coastal landscape is composed of uplands and forested areas, wetlands and estuarine systems, mainland and barrier beaches, bluffs, headlands, and rocky shores, as well as developed areas, all of which provide a variety of important services to people and species. (bottom) Future impacts from intense storm activity and sea level rise will vary across the landscape, requiring a variety of adaptation strategies if people, habitats, traditions, and livelihoods are to be protected. Source: U.S. Geological Survey.</div> <p class="text-center"><span class="view-figure"><a role="button" class="expand" href="#">EXPAND</a></span></p> </div> </section> <div class="offset-lg-1 col-lg-7"> <p>Because of the diversity of the Northeast’s coastal landscape, the impacts from storms and sea level rise will vary at different locations along the coast (Figure 18.7).<sup id="fnref:b58704d1-b4ec-46d0-9dd5-e7573523951e"><a href="#fn:12" rel="footnote" onclick="return false;">12</a></sup><sup class="cm">,</sup><sup id="fnref:94b5c52a-8411-431d-8967-97a508db217c"><a href="#fn:13" rel="footnote" onclick="return false;">13</a></sup> Rocky and heavily developed coasts have limited infiltration capacity to absorb these impacts, and thus, these low-elevation areas will become gradually inundated.<sup id="fnref:1aaf9c59-8a8a-4450-af56-8023fa2f7dc5"><a href="#fn:222" rel="footnote" onclick="return false;">222</a></sup><sup class="cm">,</sup><sup id="fnref:97387e44-8bfc-413a-948c-e6dc67f5e7cd"><a href="#fn:223" rel="footnote" onclick="return false;">223</a></sup> However, more dynamic environments, such as mainland and barrier beaches, bluffs, and coastal wetlands, have evolved over thousands of years in response to physical drivers. Such responses include erosion, overwashing, vertical accretion (increasing elevation due to sediment movement), flooding in response to storm events,<sup id="fnref:0f346599-ef45-4a4c-8ead-98ce47ea0da8"><a href="#fn:218" rel="footnote" onclick="return false;">218</a></sup><sup class="cm">,</sup><sup id="fnref:5fde38f4-be63-40ce-88fa-392a869e7c88"><a href="#fn:224" rel="footnote" onclick="return false;">224</a></sup><sup class="cm">,</sup><sup id="fnref:a84974cf-4526-41a9-8073-4d73f1f9846b"><a href="#fn:225" rel="footnote" onclick="return false;">225</a></sup> and landward migration over the longer term as sea level has risen.<sup id="fnref:15451c8d-0add-40c7-a7e6-c286ccbf76f6"><a href="#fn:226" rel="footnote" onclick="return false;">226</a></sup> Uplands, forests, and agricultural lands can provide transitional areas for these more dynamic settings, wherein the land gradually converts to a tidal marsh.</p> <p>Varied ecosystem services and natural features have long attracted and sustained people along the coast of the Northeast region. Ecosystem services—including the provisioning of groundwater resources, the filtering of non-point source pollution, sequestering carbon, mitigating storm impacts and erosion, and sustaining working waterfronts and cultural features such as iconic regional landscapes, recreation, and traditions—are facing multiple climate threats. Marshes and beaches serve as the first line of defense for coastal property and infrastructure in the face of storms.<sup id="fnref:203ed214-e061-4174-8cd1-59646c4ba363"><a href="#fn:227" rel="footnote" onclick="return false;">227</a></sup> They also provide critical habitat for a variety of migratory shorebirds and, when combined with nearshore seagrass and estuaries, serve as nurseries for many commercial marine species.<sup id="fnref:f516a114-4604-4062-a1b3-e70a4cbbba9e"><a href="#fn:37" rel="footnote" onclick="return false;">37</a></sup><sup class="cm">,</sup><sup id="fnref:d5ef4e17-17d7-48ad-8d0a-d980811e903d"><a href="#fn:38" rel="footnote" onclick="return false;">38</a></sup><sup class="cm">,</sup><sup id="fnref:2217b86e-a2c1-4200-b69a-6d93ce79e08e"><a href="#fn:150" rel="footnote" onclick="return false;">150</a></sup><sup class="cm">,</sup><sup id="fnref:68fcc8c6-b20a-4739-aae6-e98b893d5163"><a href="#fn:151" rel="footnote" onclick="return false;">151</a></sup><sup class="cm">,</sup><sup id="fnref:1fc654e7-6602-44f3-99ed-0db8b915655f"><a href="#fn:228" rel="footnote" onclick="return false;">228</a></sup><sup class="cm">,</sup><sup id="fnref:799c6c1c-6b4e-4cda-ba36-84d86dc8b57e"><a href="#fn:229" rel="footnote" onclick="return false;">229</a></sup> Regional marshes trap and store carbon<sup id="fnref:9c0e208a-9eb3-49ba-95cd-66c034c3a4de"><a href="#fn:147" rel="footnote" onclick="return false;">147</a></sup><sup class="cm">,</sup><sup id="fnref:b94f80d0-3116-4341-a8ff-ebfb1662c293"><a href="#fn:230" rel="footnote" onclick="return false;">230</a></sup><sup class="cm">,</sup><sup id="fnref:8167f8b3-a162-4071-b5e7-2639cdfef17b"><a href="#fn:231" rel="footnote" onclick="return false;">231</a></sup><sup class="cm">,</sup><sup id="fnref:5d548755-f788-497e-bbaf-783162f52bde"><a href="#fn:232" rel="footnote" onclick="return false;">232</a></sup> and help to capture non-point source pollution before it enters seawater.<sup id="fnref:e4b00dd0-26b1-45c4-996a-b9e0cf19752a"><a href="#fn:233" rel="footnote" onclick="return false;">233</a></sup><sup class="cm">,</sup><sup id="fnref:2ab56c13-3607-4f5a-aeb6-3e85da8e64ee"><a href="#fn:234" rel="footnote" onclick="return false;">234</a></sup><sup class="cm">,</sup><sup id="fnref:dddc8c61-d94c-4541-ad8e-4122906fc09c"><a href="#fn:235" rel="footnote" onclick="return false;">235</a></sup> Regional beaches are important tourist and recreational attractions, and many coastal national parks and national historic sites throughout the region help preserve cultural heritage and iconic coastal landscapes.<sup id="fnref:e25ea9e7-07f8-4104-9ea0-b0d48ae82ee1"><a href="#fn:236" rel="footnote" onclick="return false;">236</a></sup><sup class="cm">,</sup><sup id="fnref:892d75a5-dc85-4ad9-b90d-68cb41365152"><a href="#fn:237" rel="footnote" onclick="return false;">237</a></sup> The Northeast coast is also home to many Indigenous peoples whose traditions and ways of life are deeply tied to land and water (Box 18.2). Coastal tribes often have limited resources, infrastructure, and land ownership, and these limitations can worsen the impacts of climate change and prohibit relocation <em>(<a href="/chapter/15#key-message-1">Ch. 15: Tribes, KM 1</a> and <a href="/chapter/15#key-message-3">3</a>)</em>.</p> <aside id="box-18_2" class="section-box box clearfix"> <div class="figure-social-icons"> <a role="button" href="#" aria-label="Share this content" title="Share" class="share qtip-bottom" ></a> <div class="social-icons"> <a role="button" href="#" aria-label="Share this content on Facebook" data-fb-image="https://nca2018.globalchange.gov" data-fb-title="Fourth National Climate Assessment: Box 18.2: Indigenous Peoples and Tribal Nations" class="social-icon facebook-icon"></a> <a role="button" href="https://www.twitter.com/intent/tweet?url=https://nca2018.globalchange.gov/chapter/18%23box-18_2&amp;text=Fourth%20National%20Climate%20Assessment:%20Box%2018.2:%20Indigenous%20Peoples%20and%20Tribal%20Nations&amp;via=usgcrp&amp;hashtags=NCA4" aria-label="Share this content on Twitter" class="social-icon twitter-icon" target="_blank"></a> <a role="button" href="#" aria-label="Share the link to this content" class="social-icon link-icon"></a> <a role="button" href="mailto:?subject=Shared%20With%20You:%20Fourth%20National%20Climate%20Assessment&amp;body=Read%20this%20content%20from%20the%20Fourth%20National%20Climate%20Assessment:%20https://nca2018.globalchange.gov/chapter/18#box-18_2" aria-label="Share this content via e-mail" class="social-icon email-icon"></a> <div class="link-content"><input aria-label="Link to content" type="text" value="https://nca2018.globalchange.gov/chapter/18#box-18_2" readonly/></div> </div> </div> <h2><span class="balance-text">Box 18.2: Indigenous Peoples and Tribal Nations</span></h2> <div class="box-inner"> <p>Indigenous peoples and tribal nations of the Northeast region have millennia-long relationships with the diverse landscapes and climate zones found throughout the region.<sup id="fnref:990ae60c-a393-4383-b3ca-604ec576bda8"><a href="#fn:238" rel="footnote" onclick="return false;">238</a></sup><sup class="cm">,</sup><sup id="fnref:93a1158a-17b9-43b9-9743-111f9c7ab8ab"><a href="#fn:239" rel="footnote" onclick="return false;">239</a></sup><sup class="cm">,</sup><sup id="fnref:2ffbb14f-4d5b-4843-9a23-11fd13341319"><a href="#fn:240" rel="footnote" onclick="return false;">240</a></sup> Currently, for the 18 federally recognized, numerous state-recognized, and federally unrecognized tribal nations of the Northeast,<sup id="fnref:da44d950-4ad6-4023-a675-b774083b861f"><a href="#fn:241" rel="footnote" onclick="return false;">241</a></sup><sup class="cm">,</sup><sup id="fnref:b098593a-064a-4684-b2ee-5fa167a4a705"><a href="#fn:242" rel="footnote" onclick="return false;">242</a></sup> the challenges of adapting to a changing climate add additional uncertainty to existing efforts for reclamation of land and sovereignty and the revitalization of languages and cultures <em>(<a href="/chapter/15#key-message-1">Ch. 15: Tribes, KM 1</a> and <a href="/chapter/15#key-message-3">3</a>)</em>.<sup id="fnref:5b754441-464c-49fd-90e8-c184fc2ba1f5"><a href="#fn:97" rel="footnote" onclick="return false;">97</a></sup><sup class="cm">,</sup><sup id="fnref:fdefb9cf-f1ea-4aac-9b33-7a2b37e6357a"><a href="#fn:243" rel="footnote" onclick="return false;">243</a></sup> However, in response to a regional shift in the seasons, there has been an increase in climate adaptation work by tribes over the last decade <em>(<a href="/chapter/15#fig-15-1">15: Tribes, Figure 15.1</a>)</em>. These projects have been framed by Indigenous knowledges to address impacts to culturally and economically important resources and species, such as brown ash, sweetgrass, forests, and sugar maple, as well inland and ocean fisheries.<sup id="fnref:990ae60c-a393-4383-b3ca-604ec576bda8"><a href="#fn:238" rel="footnote" onclick="return false;">238</a></sup><sup class="cm">,</sup><sup id="fnref:3de02023-4b21-4bca-9324-1db1d2bc5faf"><a href="#fn:244" rel="footnote" onclick="return false;">244</a></sup><sup class="cm">,</sup><sup id="fnref:9d5963b5-717e-4a33-84d7-dbd5a13dbc8f"><a href="#fn:245" rel="footnote" onclick="return false;">245</a></sup><sup class="cm">,</sup><sup id="fnref:6848eec2-534b-4629-967c-53d8530089a3"><a href="#fn:246" rel="footnote" onclick="return false;">246</a></sup> These projects provide important results for the tribal nations themselves but could also provide examples of adaptation and survival for other tribal nations and non-tribal communities to consider as they work towards a deeper and more complex engagement to address future landscapes.<sup id="fnref:5b754441-464c-49fd-90e8-c184fc2ba1f5"><a href="#fn:97" rel="footnote" onclick="return false;">97</a></sup><sup class="cm">,</sup><sup id="fnref:2ffbb14f-4d5b-4843-9a23-11fd13341319"><a href="#fn:240" rel="footnote" onclick="return false;">240</a></sup> Although not all tribally led climate research and projects across regions have been reported or published, there are even fewer publicly available examples in the Northeast region, and especially for state-recognized and unrecognized tribes. This seems to present itself as a potential future research opportunity for tribal engagement and collaborations in the Northeast <em>(<a href="/chapter/15">Ch. 15: Tribes</a>)</em>.<sup id="fnref:5b754441-464c-49fd-90e8-c184fc2ba1f5"><a href="#fn:97" rel="footnote" onclick="return false;">97</a></sup></p> </div> </aside> <h3>Projections of Future Sea Level Rise and Coastal Flooding</h3> <p>Projections for the region suggest that sea level rise in the Northeast will be greater than the global average of approximately 0.12 inches (3 mm) per year.<sup id="fnref:94a8514e-063e-45ef-b893-11c82b49a597"><a href="#fn:247" rel="footnote" onclick="return false;">247</a></sup><sup class="cm">,</sup><sup id="fnref:7c318710-b8fb-4e09-9982-546f2b60be67"><a href="#fn:248" rel="footnote" onclick="return false;">248</a></sup> According to Sweet et al. (2017),<sup id="fnref:c66bf5a9-a6d7-4043-ad99-db0ae6ae562c"><a href="#fn:47" rel="footnote" onclick="return false;">47</a></sup> the more probable sea level rise scenarios—the Intermediate-Low and Intermediate scenarios from a recent federal interagency sea level rise report <em>(App. 3: Data &amp; Scenarios)</em>—project sea level rise of 2 feet and 4.5 feet (0.6 m and 1.4 m) on average in the region by 2100, respectively.<sup id="fnref:c66bf5a9-a6d7-4043-ad99-db0ae6ae562c"><a href="#fn:47" rel="footnote" onclick="return false;">47</a></sup> The worst-case and lowest-probability scenarios, however, project that sea levels in the region would rise upwards of 11 feet (3 m) on average by the end of the century.<sup id="fnref:c66bf5a9-a6d7-4043-ad99-db0ae6ae562c"><a href="#fn:47" rel="footnote" onclick="return false;">47</a></sup> The higher projections for the region as compared with most others in the United States are due to continued changes in oceanic and atmospheric dynamics, thermal expansion, ice melt contributions from Greenland and Antarctica, and ongoing subsidence in the region due to tectonics and non-tectonic effects such as groundwater withdrawal.<sup id="fnref:c66bf5a9-a6d7-4043-ad99-db0ae6ae562c"><a href="#fn:47" rel="footnote" onclick="return false;">47</a></sup><sup class="cm">,</sup><sup id="fnref:75cf1c0b-cc62-4ca4-96a7-082afdfe2ab1"><a href="#fn:50" rel="footnote" onclick="return false;">50</a></sup><sup class="cm">,</sup><sup id="fnref:0e116266-7679-409f-b1d6-99c31edfcd9e"><a href="#fn:249" rel="footnote" onclick="return false;">249</a></sup><sup class="cm">,</sup><sup id="fnref:9d9fd9a7-2def-4cf2-8e2e-2c23423f0a6e"><a href="#fn:250" rel="footnote" onclick="return false;">250</a></sup><sup class="cm">,</sup><sup id="fnref:38924fa0-a0dd-44c9-a2a0-366ca610b280"><a href="#fn:251" rel="footnote" onclick="return false;">251</a></sup><sup class="cm">,</sup><sup id="fnref:9a5f3738-4283-4df2-adb6-8a0cac785d22"><a href="#fn:252" rel="footnote" onclick="return false;">252</a></sup> Furthermore, the strongest hurricanes are anticipated to become both more frequent and more intense in the future, with greater amounts of precipitation <em>(<a href="/chapter/2#box-2_5">Ch. 2: Climate, Box 2.5</a>)</em>.<sup id="fnref:75cf1c0b-cc62-4ca4-96a7-082afdfe2ab1"><a href="#fn:50" rel="footnote" onclick="return false;">50</a></sup><sup class="cm">,</sup><sup id="fnref:4f1e7aa1-0c36-4220-ac77-7d55bcb33061"><a href="#fn:253" rel="footnote" onclick="return false;">253</a></sup><sup class="cm">,</sup><sup id="fnref:30f063e3-4595-4c30-8fc2-917b12b7dca6"><a href="#fn:254" rel="footnote" onclick="return false;">254</a></sup><sup class="cm">,</sup><sup id="fnref:52ce1b63-1b04-4728-9f1b-daee39af665e"><a href="#fn:255" rel="footnote" onclick="return false;">255</a></sup> Thirty-two percent of open-coast north and Mid-Atlantic beaches are predicted to overwash during an intense future nor’easter type storm,<sup id="fnref:8de8f6f9-4357-4630-afd5-a6ea5c79d25a"><a href="#fn:256" rel="footnote" onclick="return false;">256</a></sup> a number that increases to more than 80% during a Category 4 hurricane.<sup id="fnref:f42ac321-5f3f-4222-a273-b2064a727ffb"><a href="#fn:257" rel="footnote" onclick="return false;">257</a></sup><sup class="cm">,</sup><sup id="fnref:1ddd36b9-851b-48ac-a9f6-b5fee00fa092"><a href="#fn:258" rel="footnote" onclick="return false;">258</a></sup></p> <h3>Future Adaptability of the Coastal Landscape</h3> <p>The dynamic ability of coastal ecosystems to adapt to climate-driven changes depends heavily upon sufficient sediment supply, elevation and slope, barriers to migration,<sup id="fnref:a84974cf-4526-41a9-8073-4d73f1f9846b"><a href="#fn:225" rel="footnote" onclick="return false;">225</a></sup> tidal restrictions, wave climatology,<sup id="fnref:6feb1a0b-e856-4353-9bb2-ce0622f0d7ec"><a href="#fn:219" rel="footnote" onclick="return false;">219</a></sup><sup class="cm">,</sup><sup id="fnref:3dfa60a1-5063-41e1-80c7-c202d68fef32"><a href="#fn:259" rel="footnote" onclick="return false;">259</a></sup> and the rates of sea level rise. Although nearly 70% of the Northeast coast has some physical ability to dynamically change,<sup id="fnref:94b5c52a-8411-431d-8967-97a508db217c"><a href="#fn:13" rel="footnote" onclick="return false;">13</a></sup> an estimated 88% of the Northeast population lives on developed coastal landforms that have limited ability to naturally adapt to sea level rise.<sup id="fnref:9f559c9b-c78e-4593-bcbe-f07661d29e16"><a href="#fn:260" rel="footnote" onclick="return false;">260</a></sup> Built infrastructure along the coast, such as seawalls, bulkheads, and revetments, as well as natural barriers, such as coastal bluffs, limits landward erosion; jetties and groins interrupt alongshore sediment supply; and culverts and dams create tidal restrictions that can limit habitat suitability for fish communities (see Figure 18.7).<sup id="fnref:9c2c8985-b1af-4d32-903f-3c670863a75e"><a href="#fn:261" rel="footnote" onclick="return false;">261</a></sup> An estimated 26% of open ocean coast from Maine to Virginia contains engineering structures.<sup id="fnref:8d98f407-f380-4365-b5f5-a6f4a35b5c6f"><a href="#fn:262" rel="footnote" onclick="return false;">262</a></sup> While these structures can help mitigate hazards to people and property, they also reduce the land area for ecosystem migration, as well as the adaptive capacity of natural coastal environments.<sup id="fnref:1aee1274-4945-4762-8117-18fbbd6dfea1"><a href="#fn:43" rel="footnote" onclick="return false;">43</a></sup><sup class="cm">,</sup><sup id="fnref:203ed214-e061-4174-8cd1-59646c4ba363"><a href="#fn:227" rel="footnote" onclick="return false;">227</a></sup><sup class="cm">,</sup><sup id="fnref:1afa6fa0-959e-4b0e-a327-5feb744293a4"><a href="#fn:263" rel="footnote" onclick="return false;">263</a></sup><sup class="cm">,</sup><sup id="fnref:c03472e1-9d6d-4b9c-9636-6f55917e8951"><a href="#fn:264" rel="footnote" onclick="return false;">264</a></sup> The ability of marshes in the region to respond to sea level-induced change varies by location, with some areas increasing in elevation, experiencing vegetation shifts, and/or expanding in extent while others are not.<sup id="fnref:feb05a46-1a26-4007-85d7-d455699e651d"><a href="#fn:265" rel="footnote" onclick="return false;">265</a></sup><sup class="cm">,</sup><sup id="fnref:10d8123f-e4c0-402a-98bd-84e2a156686b"><a href="#fn:266" rel="footnote" onclick="return false;">266</a></sup><sup class="cm">,</sup><sup id="fnref:86496fac-2211-4e7b-a8a5-52d45f9b787a"><a href="#fn:267" rel="footnote" onclick="return false;">267</a></sup><sup class="cm">,</sup><sup id="fnref:cf22595d-dd65-41de-9be2-d2a7d8e32f94"><a href="#fn:268" rel="footnote" onclick="return false;">268</a></sup><sup class="cm">,</sup><sup id="fnref:e5dd9ecb-4526-4d23-b960-6b4b34ea3a38"><a href="#fn:269" rel="footnote" onclick="return false;">269</a></sup><sup class="cm">,</sup><sup id="fnref:194da562-dd7c-41d3-a540-e2e9b8a35ecb"><a href="#fn:270" rel="footnote" onclick="return false;">270</a></sup><sup class="cm">,</sup><sup id="fnref:2ffdedca-017c-4411-b7f9-7f7c3ad0baa8"><a href="#fn:271" rel="footnote" onclick="return false;">271</a></sup> Forest diebacks, or “ghost forests,” due to wetland encroachment<sup id="fnref:1b7a06b8-7d34-467f-86c8-3755fe9306c0"><a href="#fn:70" rel="footnote" onclick="return false;">70</a></sup><sup class="cm">,</sup><sup id="fnref:1bc74f07-688c-482c-a923-483f5d3de8b5"><a href="#fn:272" rel="footnote" onclick="return false;">272</a></sup> are being observed in southern New Jersey and Maryland (Figure 18.8), although one study found that southern New England forests are not showing similar signs of dieback.<sup id="fnref:36241c10-12fb-4191-8d8a-58d3d15d2aaf"><a href="#fn:273" rel="footnote" onclick="return false;">273</a></sup></p> </div> <section id="fig-18-8" class="md-3 small-figure photo"> <h2>Forest Dieback Due to Sea Level Rise</h2> <div class="figure-inner"> <a class="lightbox" href="/img/figure/figure18_8.jpg" data-title='Forest Dieback Due to Sea Level Rise'> <picture> <source media="(min-width: 1200px)" data-srcset="/img/styles/figure18_8-1200.jpg, /img/styles/figure18_8-1200@2x.jpg 2x"> <source media="(min-width: 992px)" data-srcset="/img/styles/figure18_8-992.jpg, /img/styles/figure18_8-992@2x.jpg 2x"> <source media="(min-width: 768px)" data-srcset="/img/styles/figure18_8-768.jpg, /img/styles/figure18_8-768@2x.jpg 2x"> <source media="(min-width: 480px)" data-srcset="/img/styles/figure18_8-480.jpg, /img/styles/figure18_8-480@2x.jpg 2x"> <source media="(min-width: 320px)" data-srcset="/img/styles/figure18_8-320.jpg, /img/styles/figure18_8-320@2x.jpg 2x"> <img data-src="/img/figure/figure18_8.jpg" alt="Forest Dieback Due to Sea Level Rise" class="img-fluid lazyload" aria-describedby="description-18-8"/> </picture> </a> <aside id="description-18-8" class="sr-only">A photo shows an aerial view of the Bass River in New Jersey. The white pines bordering the river’s edge are dead, but their naked trunks remain standing. Further inland, a blend of healthy and dead pines is visible.</aside> <div class="caption" data-expandedcaption="<strong>Figure 18.8:</strong> Atlantic white cedars dying near the banks of the Bass River in New Jersey show wetland encroachment on forested areas. Photo credit: Ted Blanco/Climate Central." data-href="/img/figure/figure18_8.jpg" data-title='Forest Dieback Due to Sea Level Rise'><strong>Figure 18.8: </strong>Atlantic white cedars dying near the banks of the Bass River in New Jersey show wetland encroachment …</div> <p class="text-center"><span class="view-figure"><a role="button" class="expand" href="#">EXPAND</a></span></p> </div> </section> <div class="offset-lg-1 col-lg-7"> <p>Projected changes in climate will threaten the integrity of coastal landforms and ecosystems that provide services people and animals rely on and that act as important natural buffers to hazards. Under more extreme scenarios (such as the higher scenario, RCP8.5), marshes are unlikely to survive and, thus, would convert to open water.<sup id="fnref:5fde38f4-be63-40ce-88fa-392a869e7c88"><a href="#fn:224" rel="footnote" onclick="return false;">224</a></sup><sup class="cm">,</sup><sup id="fnref:f4de2290-29cf-421e-b520-55e3e2fbde02"><a href="#fn:274" rel="footnote" onclick="return false;">274</a></sup><sup class="cm">,</sup><sup id="fnref:4071d07b-0079-4055-abaa-71db3428a613"><a href="#fn:275" rel="footnote" onclick="return false;">275</a></sup> At lower rates of sea level rise, marsh health will depend heavily upon site-specific hydrologic, physical, and sediment supply conditions.<sup id="fnref:3dfa60a1-5063-41e1-80c7-c202d68fef32"><a href="#fn:259" rel="footnote" onclick="return false;">259</a></sup><sup class="cm">,</sup><sup id="fnref:4071d07b-0079-4055-abaa-71db3428a613"><a href="#fn:275" rel="footnote" onclick="return false;">275</a></sup><sup class="cm">,</sup><sup id="fnref:674bb136-f8a3-47e5-bfda-c1096f1b637b"><a href="#fn:276" rel="footnote" onclick="return false;">276</a></sup><sup class="cm">,</sup><sup id="fnref:0702b6c9-25a7-4185-a48d-c0b5579275b6"><a href="#fn:277" rel="footnote" onclick="return false;">277</a></sup><sup class="cm">,</sup><sup id="fnref:2b2f7f55-b510-4169-81e0-f46b51de5b6d"><a href="#fn:278" rel="footnote" onclick="return false;">278</a></sup> Long-term coastal erosion, as driven by sea level rise and storms, is projected to continue, with one study finding the shoreline likely to erode inland at rates of at least 3.3 feet (1 m) per year among 30% of sandy beaches along the U.S. Atlantic coast.<sup id="fnref:a2887179-dcd1-4831-b274-035f4699f859"><a href="#fn:279" rel="footnote" onclick="return false;">279</a></sup> Continued increases in the rate of sea level rise—on the order of 0.08 inches (2 mm) per year above the 20th-century rate—could cause much of the open ocean coasts in the Mid-Atlantic to transition to a state wherein coastal barrier systems migrate landward more rapidly, experience reductions in width or height, and overwash and breach more frequently.<sup id="fnref:0fe018b1-0ae5-4480-a662-0d2c1d6ee5ee"><a href="#fn:280" rel="footnote" onclick="return false;">280</a></sup> Such an increase is projected to occur this century under the Intermediate-Low scenario, which suggests that global sea levels will rise approximately 0.24 inches (6 mm) per year.<sup id="fnref:c66bf5a9-a6d7-4043-ad99-db0ae6ae562c"><a href="#fn:47" rel="footnote" onclick="return false;">47</a></sup></p> <p>An ongoing challenge, now and in the future, is to adequately account for and determine the monetary value of the ecosystem services provided by marine and coastal environments<sup id="fnref:874f9406-dd99-4e92-b64a-4542c23d0d16"><a href="#fn:6" rel="footnote" onclick="return false;">6</a></sup><sup class="cm">,</sup><sup id="fnref:8be5daa4-2526-49b8-9b71-c9434e436a87"><a href="#fn:41" rel="footnote" onclick="return false;">41</a></sup><sup class="cm">,</sup><sup id="fnref:512ea1ca-1e76-4c71-9ba7-97eac0140255"><a href="#fn:281" rel="footnote" onclick="return false;">281</a></sup> and to adaptively manage the ecosystems to achieve targets that are responsive to both development and conservation.<sup id="fnref:366e6cc9-5880-44dd-8760-dfd7eee765d7"><a href="#fn:282" rel="footnote" onclick="return false;">282</a></sup></p> <p>These changes to the coastal landscape would threaten the sustainability of communities and their livelihoods. Historical settlement patterns and ongoing development combine to increase the regional vulnerability of coastal communities to sea level rise, coastal storms, and increased inundation during high tides and minor storms. For example, estimates of coastal property losses and protective investments through 2100 due to sea level rise and storm surge vary from less than $15 billion for southeastern Massachusetts to in excess of $30 billion for coastal New Jersey and Delaware under either the lower (RCP4.5) or higher (RCP8.5) scenarios (discounted at 3%).<sup id="fnref:0b30f1ab-e4c4-4837-aa8b-0e19faccdb94"><a href="#fn:29" rel="footnote" onclick="return false;">29</a></sup> Saltwater intrusion can also impact drinking water supplies, including the alteration of groundwater systems.<sup id="fnref:dda96916-21aa-4a0d-aba8-6bcfcb0ae623"><a href="#fn:283" rel="footnote" onclick="return false;">283</a></sup><sup class="cm">,</sup><sup id="fnref:052e6197-e63e-4bcd-b1fa-f6446b65d40b"><a href="#fn:284" rel="footnote" onclick="return false;">284</a></sup> A growing area of research explores potential migration patterns in response to climate-related coastal impacts, where coastal states such as Massachusetts, New Jersey, and New York are anticipated to see large outflows of migrants, a pattern that would stress regional locations further inland.<sup id="fnref:2ddba35f-6036-4428-b4c7-800dd57b3313"><a href="#fn:285" rel="footnote" onclick="return false;">285</a></sup> In addition to property and infrastructure impacts (Key Message 3), the facilities and cultural resources that support coastal tourism and recreation (such as parking lots, pavilions, and boardwalks), as well as cultural landscapes and historic structures,<sup id="fnref:e25ea9e7-07f8-4104-9ea0-b0d48ae82ee1"><a href="#fn:236" rel="footnote" onclick="return false;">236</a></sup><sup class="cm">,</sup><sup id="fnref:892d75a5-dc85-4ad9-b90d-68cb41365152"><a href="#fn:237" rel="footnote" onclick="return false;">237</a></sup> will be at increased risk from high tide flooding, storm surge, and long-term inundation. In some locations, these culturally and socially important structures also support economic activity; for example, many fishing communities rely on small docks and other shoreside infrastructure for their fishing operations, increasing the risk of substantial disruption if they are lost to sea level rise and increasing storm frequency.<sup id="fnref:548bc141-7fd7-45bb-9c1b-e2a25bcb4e24"><a href="#fn:45" rel="footnote" onclick="return false;">45</a></sup><sup class="cm">,</sup><sup id="fnref:6bd9d217-1efd-4190-ac59-8add0c4acf90"><a href="#fn:286" rel="footnote" onclick="return false;">286</a></sup></p> </div> </div> </section> <section id="key-message-3" class="container-fluid report-section no-spacer blackish glossary clearfix"> <div id="content-18-4"><p></div> <div class="row no-gutters"> <div class="col-lg-12"> <div class="row key-message-display"> <div class="col-sm-1"> <p class="text-center"><img class="align-self-center" src="/img/km-shape-3.png" alt="Key Message 3" /></p> </div> <div class="col-sm-7 key-message-msg"></p> <div class="figure-social-icons"> <a role="button" href="#" aria-label="Share this content" title="Share" class="share qtip-bottom" ></a> <div class="social-icons"> <a role="button" href="#" aria-label="Share this content on Facebook" data-fb-image="https://nca2018.globalchange.gov" data-fb-title="Fourth National Climate Assessment: Maintaining Urban Areas and Communities and Their Interconnectedness" class="social-icon facebook-icon"></a> <a role="button" href="https://www.twitter.com/intent/tweet?url=https://nca2018.globalchange.gov/chapter/18%23key-message-3&amp;text=Fourth%20National%20Climate%20Assessment:%20Chapter%2018,%20Key%20Message%203:%20Maintaining%20Urban%20Areas%20and%20Communities%20and%20Their%20Interconnectedness&amp;via=usgcrp&amp;hashtags=NCA4" aria-label="Share this content on Twitter" class="social-icon twitter-icon" target="_blank"></a> <a role="button" href="#" aria-label="Share the link to this content" class="social-icon link-icon"></a> <a role="button" href="mailto:?subject=Shared%20With%20You:%20Fourth%20National%20Climate%20Assessment&amp;body=Read%20this%20content%20from%20the%20Fourth%20National%20Climate%20Assessment:%20https://nca2018.globalchange.gov/chapter/18#key-message-3" aria-label="Share this content via e-mail" class="social-icon email-icon"></a> <div class="link-content"><input aria-label="Link to content" type="text" value="https://nca2018.globalchange.gov/chapter/18#key-message-3" readonly/></div> </div> </div> <p><h2 class="balance-text">Maintaining Urban Areas and Communities and Their Interconnectedness</h2> <p><p>The Northeast’s urban centers and their interconnections are regional and national hubs for cultural and economic activity. Major negative impacts on critical infrastructure, urban economies, and nationally significant historic sites are already occurring and will become more common with a changing climate.</p> </p> </div> </div> </div> </div></p> <div class="offset-lg-1 col-lg-7"> <h3>Climate–Infrastructure Interaction and Heightened Risks</h3> <p>Northeastern cities, with their abundance of concrete and asphalt and relative lack of vegetation, tend to have higher temperatures than surrounding regions due to the urban heat island effect (increased temperatures, typically measured during overnight periods, in highly urbanized areas in comparison to outlying suburban, exurban, and rural locations). During extreme heat events, nighttime temperatures in the region’s big cities are generally several degrees higher than surrounding regions, leading to higher risk of heat-related death. In urban areas, the hottest days in the Northeast are also often associated with high concentrations of urban air pollutants including ground-level ozone <em>(<a href="/chapter/13#key-message-1">Ch. 13: Air Quality, KM 1</a>)</em>. This combination of heat stress and poor urban air quality can pose a major health risk to vulnerable groups: young children, elderly, socially or linguistically isolated, economically disadvantaged, and those with preexisting health conditions, including asthma. Vulnerability is further heightened as key infrastructure, including electricity for air conditioning, is more likely to fail precisely when it is most needed—when demand exceeds available supply—with the potential for substantial negative health consequences.<sup id="fnref:9a6c7a87-5c0f-4d64-904c-c707f68f2115"><a href="#fn:287" rel="footnote" onclick="return false;">287</a></sup> Finally, vulnerability to heat waves is not evenly distributed throughout the region. Rather, outdoor versus indoor air temperatures, baseline health, occupation, and access to air conditioning are important determinants of vulnerability (see Key Message 4).</p> <p>Urban areas are at risk for large numbers of evacuated and displaced populations and damaged infrastructure due to both extreme precipitation events and recurrent flooding, potentially requiring significant emergency response efforts and consideration of long-term commitment to rebuilding and adaptation, and/or support for relocation where needed. Poor, elderly, historically marginalized, recent immigrants, and linguistically or socially isolated individuals as well as those populations with existing health disparities are more vulnerable to precipitation events and flooding due to a limited ability to prepare for and cope with such events.<sup id="fnref:97507d87-be9d-4b04-aeb3-69c5abc788d0"><a href="#fn:59" rel="footnote" onclick="return false;">59</a></sup></p> <h3>Critical Infrastructure Service Disruption</h3> <p>Much of the infrastructure in the Northeast, including drainage and sewer systems, flood and storm protection assets, transportation systems, and power supply, is nearing the end of its planned life expectancy. Current water-related infrastructure in the United States is not designed for the projected wider variability of future climate conditions compared to those recorded in the last century <em>(<a href="/chapter/3#key-message-2">Ch. 3: Water, KM 2</a>)</em>. In order to make Northeast systems resilient to the kind of extreme climate-related disruptions the region has experienced recently—and the sort of disruptions projected for the future—would require significant new investments in infrastructure. For example, in Pennsylvania, bridges are expected to be more prone to damage during extreme weather events, because the state leads the country in the highest percentage of structurally deficient bridges.<sup id="fnref:769c5ac7-4c34-41a1-be90-6b6cfcc0f7fc"><a href="#fn:288" rel="footnote" onclick="return false;">288</a></sup> Pennsylvania’s water treatment and wastewater systems are also notably aging, requiring an estimated $28 billion in new investment over the next 20 years for repairs and to meet increasing demands.<sup id="fnref:769c5ac7-4c34-41a1-be90-6b6cfcc0f7fc"><a href="#fn:288" rel="footnote" onclick="return false;">288</a></sup></p> </div> <section id="fig-18-9" class="md-3 small-figure photo"> <h2>King Tide Flooding in Northeast</h2> <div class="figure-inner"> <a class="lightbox" href="/img/figure/figure18_9.png" data-title='King Tide Flooding in Northeast'> <picture> <source media="(min-width: 1200px)" data-srcset="/img/styles/figure18_9-1200.png, /img/styles/figure18_9-1200@2x.png 2x"> <source media="(min-width: 992px)" data-srcset="/img/styles/figure18_9-992.png, /img/styles/figure18_9-992@2x.png 2x"> <source media="(min-width: 768px)" data-srcset="/img/styles/figure18_9-768.png, /img/styles/figure18_9-768@2x.png 2x"> <source media="(min-width: 480px)" data-srcset="/img/styles/figure18_9-480.png, /img/styles/figure18_9-480@2x.png 2x"> <source media="(min-width: 320px)" data-srcset="/img/styles/figure18_9-320.png, /img/styles/figure18_9-320@2x.png 2x"> <img data-src="/img/figure/figure18_9.png" alt="King Tide Flooding in Northeast" class="img-fluid lazyload" aria-describedby="description-18-9"/> </picture> </a> <aside id="description-18-9" class="sr-only">A photo shows king tide flooding on Dock Street in Annapolis, Maryland, in December 2012. Several inches of water cover the street and rise up to the stoops of buildings lining the street. Holiday garland and wreaths hang from storefronts. A small group of onlookers, some with cameras, survey the flooded roadway from a dry patch of sidewalk.</aside> <div class="caption" data-expandedcaption="<strong>Figure 18.9:</strong> The photo shows king tide flooding on Dock Street in Annapolis, Maryland, on December 21, 2012. Photo credit: Amy McGovern (&amp;lt;a href=&amp;#39;https://creativecommons.org/licenses/by/2.0/&amp;#39;&amp;gt;CC BY 2.0&amp;lt;/a&amp;gt;)." data-href="/img/figure/figure18_9.png" data-title='King Tide Flooding in Northeast'><strong>Figure 18.9: </strong>The photo shows king tide flooding on Dock Street in Annapolis, Maryland, on December 21, 2012. …</div> <p class="text-center"><span class="view-figure"><a role="button" class="expand" href="#">EXPAND</a></span></p> </div> </section> <div class="offset-lg-1 col-lg-7"> <p>Climate-related disruptions will only exacerbate existing issues with aging infrastructure. Sea level rise has amplified storm impacts in the Northeast region (Key Message 2), contributing to higher surges that extend further inland, as demonstrated in New York City.<sup id="fnref:8a3b0b9a-fc45-4ea2-b732-90222ff624ba"><a href="#fn:14" rel="footnote" onclick="return false;">14</a></sup><sup class="cm">,</sup><sup id="fnref:63483c02-d727-4dbc-b771-32de7345ab8a"><a href="#fn:15" rel="footnote" onclick="return false;">15</a></sup><sup class="cm">,</sup><sup id="fnref:ce69b827-921d-4966-bbdc-2cdda61d1b2f"><a href="#fn:16" rel="footnote" onclick="return false;">16</a></sup> Sea level rise is leading to an increase in the frequency of coastal flooding, a trend that is projected to grow for cities such as Baltimore and Washington, DC.<sup id="fnref:493e26f3-3374-43b9-ad00-f6581ac6877b"><a href="#fn:289" rel="footnote" onclick="return false;">289</a></sup> High tide flooding has increased by a factor of 10 or more over the last 50 years for many cities in the Northeast region and will become increasingly synonymous with regular inundation, exceeding 30 days per year for an estimated 20 cities by 2050 even under a very low scenario (RCP2.6).<sup id="fnref:91aeffdb-e82f-4645-abe9-f6ea6909e979"><a href="#fn:216" rel="footnote" onclick="return false;">216</a></sup> More frequent high tide flooding (also referred to as nuisance, or sunny day, flooding) will be experienced at low-elevation cities and towns in the region (Figure 18.9). Sea level rise (see Key Message 2) under higher scenarios will likely increase property losses from hurricanes and other coastal storms for the region by $6–$9 billion per year by 2100, while changes in hurricane activity could raise these estimates to $11–$17 billion per year.<sup id="fnref:9f559c9b-c78e-4593-bcbe-f07661d29e16"><a href="#fn:260" rel="footnote" onclick="return false;">260</a></sup> In other words, projected future costs are estimated to continue along a steep upward trend relative to what is being experienced today. However, there is limited published research that quantifies the costs associated with increased damage across an entire system in response to amplified storm events. Actions to replace and/or significantly modify the Northeast’s aging infrastructure provide opportunities to incorporate climate change adaptation and resilience into standard capital upgrades, reducing these future costs.</p> <section class="section-box big-figure"> <aside class="ugly-green text-left"> <h2>Mitigation in the Northeast</h2> <p>The Northeast region has traditionally been a leader in greenhouse gas mitigation action, serving as a potential model for other states. The Regional Greenhouse Gas Initiative is the first mandatory market-based program in the United States to cap and reduce CO<sub>2</sub> emissions from the power sector through a cooperative effort among Connecticut, Delaware, Maine, Maryland, Massachusetts, New Hampshire, New York, Rhode Island, and Vermont.</p> </aside> </section> <h3>Impacts on Urban Economies</h3> <p>Service and resource supply infrastructure in the Northeast region is at increasing risk of disruption, resulting in lower quality of life, economic declines, and increased social inequality.<sup id="fnref:15df801e-f052-4327-9b08-47c13d894ea7"><a href="#fn:17" rel="footnote" onclick="return false;">17</a></sup> Loss of public services affects the capacity of communities to function as administrative and economic centers and triggers disruptions of interconnected supply chains <em>(<a href="/chapter/16#key-message-1">Ch. 16: International, KM 1</a>)</em>. Interdependencies across critical infrastructure sectors such as water, energy, transportation, and telecommunication can lead to cascading failures during extreme weather and climate-related disruptions, <sup id="fnref:15df801e-f052-4327-9b08-47c13d894ea7"><a href="#fn:17" rel="footnote" onclick="return false;">17</a></sup><sup class="cm">,</sup><sup id="fnref:97507d87-be9d-4b04-aeb3-69c5abc788d0"><a href="#fn:59" rel="footnote" onclick="return false;">59</a></sup> as occurred during the 2003 blackout in New York City <em>(<a href="/chapter/17#box-17_5">Ch. 17: Complex Systems, Box 17.5</a>; <a href="/chapter/11">Ch. 11: Urban</a>)</em>. For example, the Northeast is projected to experience a significant increase in summer heat and the number and/or duration of heat waves that will further stress summertime energy peak load demands from higher air conditioning use and the greater need to pump and treat water. Energy supply failures can also affect transportation operations, and even after electricity is restored, a significant time lag can occur until transportation services such as subway signals and traffic lights return to operation.<sup id="fnref:3b1be81f-26f9-4db8-bc95-00c533047e84"><a href="#fn:290" rel="footnote" onclick="return false;">290</a></sup> Understanding and coping with these interdependencies require cross-sector analysis and engagement by the private sector and within and across different levels of government. As a result, the connection between climate impacts, adaptation, and sustained economic development of cities is a major concern in the region.</p> <p>The large number of manufacturing, distribution, and storage facilities, as well as historic structures, in the region are also vulnerable to climate shifts and extremes. For example, power plants in New York City tend to be located along the coastline for easy access to water for cooling and maritime-delivered fuel and are often located within about 16 feet (5 m) of sea level.<sup id="fnref:97507d87-be9d-4b04-aeb3-69c5abc788d0"><a href="#fn:59" rel="footnote" onclick="return false;">59</a></sup> This is not unusual, as there are many power plants and petroleum storage facilities located along the Northeast coastline.<sup id="fnref:19d7bcaa-1edf-4456-8212-0f68650e9639"><a href="#fn:291" rel="footnote" onclick="return false;">291</a></sup></p> <p>The historic preservation community has begun to address the issue of climate change.<sup id="fnref:b50e695c-e433-4633-9d4f-574a325df5d9"><a href="#fn:292" rel="footnote" onclick="return false;">292</a></sup><sup class="cm">,</sup><sup id="fnref:a860e354-1095-4244-b159-b72d34b07fa1"><a href="#fn:293" rel="footnote" onclick="return false;">293</a></sup> Many historic districts in cities and towns, such as Annapolis, Maryland, and Newport, Rhode Island, are at low elevations along the coast and now face the threat of rising sea levels.</p> <h3>Preparedness in Cities and Towns</h3> <p>Projected increases in coastal flooding, heavy precipitation, runoff, and extreme heat would have negative impacts on urban centers with disproportionate effects on at-risk communities. Larger cities, including Boston, MA, Burlington, VT, Hartford, CT, Newark, NJ, Manchester, NH, New York, Philadelphia, PA, Pittsburgh, PA, Portland, ME, Providence, RI, and Washington, DC, have begun to plan for climate change and in some instances have started to implement action, particularly when upgrading aging infrastructure (e.g., NYC Special Initiative for Rebuilding and Resiliency 2013, Climate Ready Boston 2016, City of Philadelphia 2016, City of Pittsburgh 2017<sup id="fnref:2c3fa093-b4b8-49d9-8856-5c786377657d"><a href="#fn:294" rel="footnote" onclick="return false;">294</a></sup><sup class="cm">,</sup><sup id="fnref:4d61fbc8-2282-49e8-bb8c-e7d87075f424"><a href="#fn:295" rel="footnote" onclick="return false;">295</a></sup><sup class="cm">,</sup><sup id="fnref:10863220-0837-453e-b732-006f0fa9a24e"><a href="#fn:296" rel="footnote" onclick="return false;">296</a></sup><sup class="cm">,</sup><sup id="fnref:3ffcff6a-8fed-4131-b32b-e1fb4837d02c"><a href="#fn:297" rel="footnote" onclick="return false;">297</a></sup>). Examples from municipalities of varying sizes are common (e.g., U.S. EPA 2017<sup id="fnref:468447f6-f42b-4450-9300-cc55ad67a544"><a href="#fn:33" rel="footnote" onclick="return false;">33</a></sup>). These cities seek to maintain the within-city and intercity connectivity that fosters growth, diversity, liveliness of urban neighborhoods, and protection of vulnerable populations, including the elderly, young, and disadvantaged. Further, city leaders hope to avoid forced migration of highly vulnerable populations and the loss of historical and cultural resources. City managers and stakeholders recognize that extreme heat events, sea level rise, and storm surge have the potential to lead to complex disasters and sustained critical infrastructure damage. Specific actions cities are taking focus largely on promoting the resilience of critical infrastructure, enhancing the social resilience of communities (especially of vulnerable populations), promoting ecosystem service hazard mitigation, and developing new indicators and monitoring systems to achieve a better understanding of climate risks and to identify adaptation strategies (see Key Message 5) <em>(see also <a href="/chapter/11">Ch. 11: Urban</a>)</em>. In the Northeast region, Superstorm Sandy illustrated urban coastal flooding risk, and many localities, not just those directly impacted by the storm, have developed increased coastal resilience plans and efforts. New York City has been able to put in place a broad set of efforts in a variety of critical infrastructure sectors, including making the subway more protected from flooding (Figure 18.10).</p> </div> <section id="fig-18-10" class="md-3 small-figure photo"> <h2>Subway Air Vent Flood Protection</h2> <div class="figure-inner"> <a class="lightbox" href="/img/figure/figure18_10.jpg" data-title='Subway Air Vent Flood Protection'> <picture> <source media="(min-width: 1200px)" data-srcset="/img/styles/figure18_10-1200.jpg, /img/styles/figure18_10-1200@2x.jpg 2x"> <source media="(min-width: 992px)" data-srcset="/img/styles/figure18_10-992.jpg, /img/styles/figure18_10-992@2x.jpg 2x"> <source media="(min-width: 768px)" data-srcset="/img/styles/figure18_10-768.jpg, /img/styles/figure18_10-768@2x.jpg 2x"> <source media="(min-width: 480px)" data-srcset="/img/styles/figure18_10-480.jpg, /img/styles/figure18_10-480@2x.jpg 2x"> <source media="(min-width: 320px)" data-srcset="/img/styles/figure18_10-320.jpg, /img/styles/figure18_10-320@2x.jpg 2x"> <img data-src="/img/figure/figure18_10.jpg" alt="Subway Air Vent Flood Protection" class="img-fluid lazyload" aria-describedby="description-18-10"/> </picture> </a> <aside id="description-18-10" class="sr-only">A photo shows a series of raised subway vents along a lower Manhattan sidewalk in New York City. The vents double as bicycle racks, and several bicycles are parked on top of them.</aside> <div class="caption" data-expandedcaption="<strong>Figure 18.10:</strong> The photo shows a subway air vent with a multiuse raised flood protection grate that was installed as part of the post–Superstorm Sandy coastal resilience efforts on West Broadway in lower Manhattan, New York City. Photo credit: William Solecki." data-href="/img/figure/figure18_10.jpg" data-title='Subway Air Vent Flood Protection'><strong>Figure 18.10: </strong>The photo shows a subway air vent with a multiuse raised flood protection grate that was installed …</div> <p class="text-center"><span class="view-figure"><a role="button" class="expand" href="#">EXPAND</a></span></p> </div> </section> <div class="offset-lg-1 col-lg-7"> <p>Many Northeast cities are served by combined sewer systems that collect and treat both storm water and municipal wastewater. During heavy rain events, combined systems can be overwhelmed and release untreated sewage into local bodies of water.<sup id="fnref:d4ed906f-cc7b-422c-aef1-96a1b1d5c80f"><a href="#fn:298" rel="footnote" onclick="return false;">298</a></sup> Moderate flooding events are expected to become more frequent in most of the Northeast during the 21st century because of more intense precipitation related to climate change.<sup id="fnref:e8089a19-413e-4bc5-8c4a-7610399e268c"><a href="#fn:58" rel="footnote" onclick="return false;">58</a></sup><sup class="cm">,</sup><sup id="fnref:f04a91c4-6cb2-4918-9213-b48f459bca10"><a href="#fn:142" rel="footnote" onclick="return false;">142</a></sup> Finally, increased precipitation and high streamflows also increase streambed erosion, especially when coupled with wetter soils prior to storm events.<sup id="fnref:462ac1d0-e26d-4491-acb5-78d2d84a7909"><a href="#fn:299" rel="footnote" onclick="return false;">299</a></sup><sup class="cm">,</sup><sup id="fnref:1b350ab0-d4b3-4ac9-9b22-9da0b8c0eccd"><a href="#fn:300" rel="footnote" onclick="return false;">300</a></sup> Erosion at bridges can cause bridge failures,<sup id="fnref:c96e5047-2887-4def-a977-9ee57c9e04e3"><a href="#fn:301" rel="footnote" onclick="return false;">301</a></sup> leading to transportation disruption, injuries, and potential fatalities.</p> <p>The impacts of changes in precipitation and temperature on water supply system behavior in the Northeast are complex. Future potable water supplies are expected to be adequate to meet future demand on average across the Northeast, but the number of watersheds where demand exceeds supply is projected to increase under most climate change scenarios.<sup id="fnref:5e012394-93f7-431c-8e19-1022945a6506"><a href="#fn:302" rel="footnote" onclick="return false;">302</a></sup> Studies of specific water systems in the Northeast show mixed results. The New York City reservoir system shows high resilience and reliability under different climate change scenarios.<sup id="fnref:cecf8cc7-1c1c-4497-94f1-8b82ebf3f77a"><a href="#fn:303" rel="footnote" onclick="return false;">303</a></sup> Projected flows in the Potomac River, the primary water supply for the Washington, DC, metropolitan area, are lower in most climate change scenarios, with minor to major impacts on water supply.<sup id="fnref:3258fcdc-5c7f-46a1-be18-29e440a0489a"><a href="#fn:304" rel="footnote" onclick="return false;">304</a></sup></p> </div> </div> </section> <section id="key-message-4" class="container-fluid report-section no-spacer blackish glossary clearfix"> <div id="content-18-5"><p></div> <div class="row no-gutters"> <div class="col-lg-12"> <div class="row key-message-display"> <div class="col-sm-1"> <p class="text-center"><img class="align-self-center" src="/img/km-shape-4.png" alt="Key Message 4" /></p> </div> <div class="col-sm-7 key-message-msg"></p> <div class="figure-social-icons"> <a role="button" href="#" aria-label="Share this content" title="Share" class="share qtip-bottom" ></a> <div class="social-icons"> <a role="button" href="#" aria-label="Share this content on Facebook" data-fb-image="https://nca2018.globalchange.gov" data-fb-title="Fourth National Climate Assessment: Threats to Human Health" class="social-icon facebook-icon"></a> <a role="button" href="https://www.twitter.com/intent/tweet?url=https://nca2018.globalchange.gov/chapter/18%23key-message-4&amp;text=Fourth%20National%20Climate%20Assessment:%20Chapter%2018,%20Key%20Message%204:%20Threats%20to%20Human%20Health&amp;via=usgcrp&amp;hashtags=NCA4" aria-label="Share this content on Twitter" class="social-icon twitter-icon" target="_blank"></a> <a role="button" href="#" aria-label="Share the link to this content" class="social-icon link-icon"></a> <a role="button" href="mailto:?subject=Shared%20With%20You:%20Fourth%20National%20Climate%20Assessment&amp;body=Read%20this%20content%20from%20the%20Fourth%20National%20Climate%20Assessment:%20https://nca2018.globalchange.gov/chapter/18#key-message-4" aria-label="Share this content via e-mail" class="social-icon email-icon"></a> <div class="link-content"><input aria-label="Link to content" type="text" value="https://nca2018.globalchange.gov/chapter/18#key-message-4" readonly/></div> </div> </div> <p><h2 class="balance-text">Threats to Human Health</h2> <p><p>Changing climate threatens the health and well-being of people in the Northeast through more extreme weather, warmer temperatures, degradation of air and water quality, and sea level rise. These environmental changes are expected to lead to health-related impacts and costs, including additional deaths, emergency room visits and hospitalizations, and a lower quality of life. Health impacts are expected to vary by location, age, current health, and other characteristics of individuals and communities.</p> </p> </div> </div> </div> </div></p> <div class="offset-lg-1 col-lg-7"> <h3>Health Effects of Extreme Heat</h3> <p>Present-day high temperatures (heat) have been conclusively linked to a higher risk of illness and death, particularly among older adults, pregnant women, and children <em>(<a href="/chapter/14">Ch. 14: Human Health</a>)</em>. A number of studies have replicated these findings specifically in the Northeast (see Box 18.3; e.g., Wellenius et al. 2017, Bobb et al. 2014, Hondula et al. 2012<sup id="fnref:33b39dea-d868-4ce9-9605-1fdfd3355811"><a href="#fn:305" rel="footnote" onclick="return false;">305</a></sup><sup class="cm">,</sup><sup id="fnref:aa10dde0-072c-459a-ab20-65ba830d43bd"><a href="#fn:306" rel="footnote" onclick="return false;">306</a></sup><sup class="cm">,</sup><sup id="fnref:d7ef401f-6a34-4410-ab1e-4690f3c4d161"><a href="#fn:307" rel="footnote" onclick="return false;">307</a></sup>). Ambient temperatures and heat-related health effects can vary significantly over small geographic areas due to local land cover (for example, due to the urban heat island effect; see Key Message 3) <em>(see also <a href="/chapter/5#key-message-1">Ch. 5: Land Changes, KM 1</a>)</em>, topography, and the resilience of individuals and communities.<sup id="fnref:d7ef401f-6a34-4410-ab1e-4690f3c4d161"><a href="#fn:307" rel="footnote" onclick="return false;">307</a></sup><sup class="cm">,</sup><sup id="fnref:bb6cb91e-fd58-4222-8d22-023901f265eb"><a href="#fn:308" rel="footnote" onclick="return false;">308</a></sup> For example, older or sicker individuals and those persons who are without access to air conditioning, living in older homes, socially isolated, or working outdoors are considered particularly vulnerable to the effects of heat.<sup id="fnref:5d64215d-ed74-4268-93c0-defdcfa2d5e1"><a href="#fn:309" rel="footnote" onclick="return false;">309</a></sup><sup class="cm">,</sup><sup id="fnref:e50c39e5-c4b8-402e-9f9d-683045357a43"><a href="#fn:310" rel="footnote" onclick="return false;">310</a></sup><sup class="cm">,</sup><sup id="fnref:a3926522-eb27-4144-9e68-9d0005ce865a"><a href="#fn:311" rel="footnote" onclick="return false;">311</a></sup></p> <p>Annual average temperature over the contiguous United States has increased by 1.2°F (0.7°C) over the last few decades and by 1.8°F (1.0°C) relative to the beginning of the last century. Recent decades are the warmest in at least the past 1,500 years.<sup id="fnref:5a3d5be0-e40f-4ea7-8f99-422db7954577"><a href="#fn:312" rel="footnote" onclick="return false;">312</a></sup> Average annual temperatures across the Northeast have increased from less than 1°F (0.6°C) in West Virginia to about 3°F (1.7°C) or more in New England since 1901.<sup id="fnref:586086ee-e57a-4772-8f25-2a8f083a6e11"><a href="#fn:18" rel="footnote" onclick="return false;">18</a></sup><sup class="cm">,</sup><sup id="fnref:10b4bf0b-2dbd-47d4-bfc9-b1a7cb66d32e"><a href="#fn:19" rel="footnote" onclick="return false;">19</a></sup> Although the relative risk of death on very hot days is lower today than it was a few decades ago, heat-related illness and death remain significant public health problems in the Northeast.<sup id="fnref:6b3cd0ec-1e3e-42e8-ad82-5c12ed7ab0e8"><a href="#fn:20" rel="footnote" onclick="return false;">20</a></sup><sup class="cm">,</sup><sup id="fnref:e65c896d-395c-4347-80ed-64af1333f3a7"><a href="#fn:21" rel="footnote" onclick="return false;">21</a></sup><sup class="cm">,</sup><sup id="fnref:b151fd56-2d07-47fb-88df-173212cd5059"><a href="#fn:22" rel="footnote" onclick="return false;">22</a></sup><sup class="cm">,</sup><sup id="fnref:028a4c4b-3a7f-47b3-8a78-432fd7840f21"><a href="#fn:23" rel="footnote" onclick="return false;">23</a></sup> For example, a study in New York City estimated that in 2013 there were 133 excess deaths due to extreme heat.<sup id="fnref:16ccfd2c-9115-4840-bde1-107b81aeedd2"><a href="#fn:24" rel="footnote" onclick="return false;">24</a></sup></p> <p>Annual average temperature in the contiguous United States is expected to increase by an additional 2.5°F (1.4°C) over the next few decades regardless of future greenhouse gas emissions <em>(<a href="/chapter/2">Ch. 2: Climate</a>)</em>.<sup id="fnref:75cf1c0b-cc62-4ca4-96a7-082afdfe2ab1"><a href="#fn:50" rel="footnote" onclick="return false;">50</a></sup> By 2050, average annual temperatures in the Northeast are expected to increase by 4.0°F (2.2°C) under the lower scenario (RCP4.5) and 5.1°F (2.8°C) under the higher scenario (RCP8.5) relative to the near present (1975–2005),<sup id="fnref:75cf1c0b-cc62-4ca4-96a7-082afdfe2ab1"><a href="#fn:50" rel="footnote" onclick="return false;">50</a></sup> with several more days of extreme heat occurring throughout the region each year.</p> <p>These projected increases in temperature are expected to lead to substantially more premature deaths, hospital admissions, and emergency department visits due to heat across the Northeast.<sup id="fnref:028a4c4b-3a7f-47b3-8a78-432fd7840f21"><a href="#fn:23" rel="footnote" onclick="return false;">23</a></sup><sup class="cm">,</sup><sup id="fnref:97024533-f9d5-4ee9-abb6-56733744a4d0"><a href="#fn:25" rel="footnote" onclick="return false;">25</a></sup><sup class="cm">,</sup><sup id="fnref:ec9926c5-6257-49b3-8bfd-c9a02c0bf75b"><a href="#fn:26" rel="footnote" onclick="return false;">26</a></sup><sup class="cm">,</sup><sup id="fnref:5f6814af-7a3a-422f-9c47-bab08e4f6f91"><a href="#fn:27" rel="footnote" onclick="return false;">27</a></sup><sup class="cm">,</sup><sup id="fnref:e805bfdc-c4c2-43a0-b2e5-5a66945c74e4"><a href="#fn:28" rel="footnote" onclick="return false;">28</a></sup><sup class="cm">,</sup><sup id="fnref:0b30f1ab-e4c4-4837-aa8b-0e19faccdb94"><a href="#fn:29" rel="footnote" onclick="return false;">29</a></sup> For example, in the Northeast we can expect approximately 650 more excess deaths per year caused by extreme heat by 2050 under either a lower or higher scenario (RCP4.5 or RCP8.5) and 960 (under RCP4.5) to 2,300 (under RCP8.5) more excess deaths per year by 2090.<sup id="fnref:0b30f1ab-e4c4-4837-aa8b-0e19faccdb94"><a href="#fn:29" rel="footnote" onclick="return false;">29</a></sup></p> <p>The risks associated with present-day and projected future heat can be minimized by reducing greenhouse gas emissions, minimizing exposure through urban design, or increasing individual and community resilience.<sup id="fnref:028a4c4b-3a7f-47b3-8a78-432fd7840f21"><a href="#fn:23" rel="footnote" onclick="return false;">23</a></sup><sup class="cm">,</sup><sup id="fnref:0b30f1ab-e4c4-4837-aa8b-0e19faccdb94"><a href="#fn:29" rel="footnote" onclick="return false;">29</a></sup><sup class="cm">,</sup><sup id="fnref:d3a3ca44-1e49-41ee-9063-dc1be22dec3c"><a href="#fn:313" rel="footnote" onclick="return false;">313</a></sup> For example, in the Northeast region, Philadelphia and New York City have been leaders in implementing policies and investing in infrastructure aimed at reducing the number of excess deaths from extreme heat.<sup id="fnref:3c9ee7d3-5de6-42a8-a936-0e55bd89e344"><a href="#fn:314" rel="footnote" onclick="return false;">314</a></sup> Compared to the higher scenario (RCP8.5), 1,400 premature deaths from extreme temperatures could be avoided in the Northeast each year by 2090 if global greenhouse gas emissions are consistent with the lower scenario (RCP4.5), resulting in $21 billion in annual savings (in 2015 dollars).<sup id="fnref:0b30f1ab-e4c4-4837-aa8b-0e19faccdb94"><a href="#fn:29" rel="footnote" onclick="return false;">29</a></sup></p> <aside id="box-18_3" class="section-box box clearfix"> <div class="figure-social-icons"> <a role="button" href="#" aria-label="Share this content" title="Share" class="share qtip-bottom" ></a> <div class="social-icons"> <a role="button" href="#" aria-label="Share this content on Facebook" data-fb-image="https://nca2018.globalchange.gov" data-fb-title="Fourth National Climate Assessment: Box 18.3: Rising Temperatures and Heat-Related Emergency Room Visits in Rhode Island" class="social-icon facebook-icon"></a> <a role="button" href="https://www.twitter.com/intent/tweet?url=https://nca2018.globalchange.gov/chapter/18%23box-18_3&amp;text=Fourth%20National%20Climate%20Assessment:%20Box%2018.3:%20Rising%20Temperatures%20and%20Heat-Related%20Emergency%20Room%20Visits%20in%20Rhode%20Island&amp;via=usgcrp&amp;hashtags=NCA4" aria-label="Share this content on Twitter" class="social-icon twitter-icon" target="_blank"></a> <a role="button" href="#" aria-label="Share the link to this content" class="social-icon link-icon"></a> <a role="button" href="mailto:?subject=Shared%20With%20You:%20Fourth%20National%20Climate%20Assessment&amp;body=Read%20this%20content%20from%20the%20Fourth%20National%20Climate%20Assessment:%20https://nca2018.globalchange.gov/chapter/18#box-18_3" aria-label="Share this content via e-mail" class="social-icon email-icon"></a> <div class="link-content"><input aria-label="Link to content" type="text" value="https://nca2018.globalchange.gov/chapter/18#box-18_3" readonly/></div> </div> </div> <h2><span class="balance-text">Box 18.3: Rising Temperatures and Heat-Related Emergency Room Visits in Rhode Island</span></h2> <div class="box-inner"> <p>Moderate and extreme heat events already pose a health risk today,<sup id="fnref:33b39dea-d868-4ce9-9605-1fdfd3355811"><a href="#fn:305" rel="footnote" onclick="return false;">305</a></sup><sup class="cm">,</sup><sup id="fnref:aa10dde0-072c-459a-ab20-65ba830d43bd"><a href="#fn:306" rel="footnote" onclick="return false;">306</a></sup><sup class="cm">,</sup><sup id="fnref:7513f4d2-671e-4a73-b3a3-cd354fa62c29"><a href="#fn:315" rel="footnote" onclick="return false;">315</a></sup><sup class="cm">,</sup><sup id="fnref:46dac165-52c4-43dd-9330-54fff5dc29b7"><a href="#fn:316" rel="footnote" onclick="return false;">316</a></sup> and climate change could increase this risk. Of note, days of moderate heat occur much more often compared to days of extreme heat, such that days of moderate heat may, in aggregate, be associated with a larger number of adverse health events.<sup id="fnref:7513f4d2-671e-4a73-b3a3-cd354fa62c29"><a href="#fn:315" rel="footnote" onclick="return false;">315</a></sup> Average summertime temperatures are projected to continue to rise through the end of the century, raising concern about the public health impact of climate change across Northeast communities. A nationwide study projected that some of the largest increases in heat-related mortality would occur in the Northeast region, with an additional 50–100 heat-related deaths per year per million people by 2050 and 120–180 additional deaths per million people by 2100 under the mid-high scenario (RCP6.0).<sup id="fnref:e805bfdc-c4c2-43a0-b2e5-5a66945c74e4"><a href="#fn:28" rel="footnote" onclick="return false;">28</a></sup> Heat health risks seem to be highest at the start of the warm weather each year<sup id="fnref:6d895576-07eb-44f8-b3a3-c97f214e6e8c"><a href="#fn:317" rel="footnote" onclick="return false;">317</a></sup> and among vulnerable populations such as outdoor workers, young children, and the elderly.</p> <p>In the small, coastal northeastern state of Rhode Island (population of about 1 million), maximum daily temperatures in the summer have trended upwards over the last 60 years such that Rhode Islanders experienced about three more weeks of uncomfortably hot weather over 2015–2016 than in the 1950s (Figure 18.11, left panel). A recent study looking at visits to hospital emergency rooms (ERs) found that the risk of heat-related ER visits increased sharply as maximum daily temperatures climbed above 80°F (Figure 18.11, middle panel).<sup id="fnref:ec9926c5-6257-49b3-8bfd-c9a02c0bf75b"><a href="#fn:26" rel="footnote" onclick="return false;">26</a></sup> The researchers projected that with continued climate change, Rhode Islanders could experience an additional 400 (6.8% more) heat-related ER visits each year by 2050 and up to an additional 1,500 (24.4% more) such visits each year by 2095 under the higher scenario (RCP8.5; Figure 18.11, right panel). Importantly, about 1,000 fewer annual heat-related ER visits are projected for the end of the century under the lower scenario (RCP4.5) compared to the higher scenario (RCP8.5), representing the potential protective benefit of limiting greenhouse gas emissions. Such reductions would also lead to improvements in air pollution and health starting today.<sup id="fnref:c826f3cd-fcd9-46b1-b781-f33ff27d0680"><a href="#fn:318" rel="footnote" onclick="return false;">318</a></sup><sup class="cm">,</sup><sup id="fnref:81f96860-7931-48b6-9d57-32682728636f"><a href="#fn:319" rel="footnote" onclick="return false;">319</a></sup></p> <p>In response to the health threat from heat, local National Weather Service offices issue heat advisories and excessive heat warnings when the forecast calls for very hot weather. Based on the results of a study across multiple states,<sup id="fnref:33b39dea-d868-4ce9-9605-1fdfd3355811"><a href="#fn:305" rel="footnote" onclick="return false;">305</a></sup> the National Weather Service Northeast Region updated its heat advisory guidelines to be issued when the heat index is forecast to exceed 95°F for any amount of time on two or more days or 100°F for any amount of time on a single day. Many communities in the Northeast have implemented plans to respond to these heat alerts to better protect the public’s health (for example, with the Centers for Disease Control and Prevention’s Building Resilience Against Climate Effects program), although gaps in knowledge remain.<sup id="fnref:4a3e0916-7ee3-4589-8d95-9669a6310268"><a href="#fn:34" rel="footnote" onclick="return false;">34</a></sup><sup class="cm">,</sup><sup id="fnref:3c9ee7d3-5de6-42a8-a936-0e55bd89e344"><a href="#fn:314" rel="footnote" onclick="return false;">314</a></sup> Uncertainties exist in the estimation of the cumulative impact on health of multiple aspects of weather, including heat, drought,<sup id="fnref:c2e222fc-c5e0-4e34-8f28-ab1fad575053"><a href="#fn:320" rel="footnote" onclick="return false;">320</a></sup> and heavy precipitation,<sup id="fnref:197b91b6-04d3-429a-9a6c-90c784d86c1f"><a href="#fn:321" rel="footnote" onclick="return false;">321</a></sup><sup class="cm">,</sup><sup id="fnref:d746e578-c6fd-4b73-8a3c-d91365668348"><a href="#fn:322" rel="footnote" onclick="return false;">322</a></sup><sup class="cm">,</sup><sup id="fnref:cfc21fbc-96bb-4bdb-a452-8745bd770fbd"><a href="#fn:323" rel="footnote" onclick="return false;">323</a></sup> all of which have potential adverse impacts on human health.</p> <section id="fig-18-11" class="offset-lg-1 col-lg-7 big-figure figure"> <div class="figure-social-icons"> <a role="button" href="/img/figure/figure18_11.png" aria-label="Download" title="Download" class="download_a qtip-top" download></a>&nbsp; <a role="button" href="/report/nca4/chapter/northeast/figure/ri-extreme-heat-case-study" aria-label="Metadata" title="Metadata" class="metadata_a qtip-top" ></a>&nbsp; <a role="button" href="#" aria-label="Share this content" title="Share" class="share qtip-bottom" ></a> <div class="social-icons"> <a role="button" href="#" aria-label="Share this content on Facebook" data-fb-image="https://nca2018.globalchange.gov/img/figure/figure18_11.png" data-fb-title="Fourth National Climate Assessment: Observed and Projected Impacts of Excess Heat on Emergency Room Visits in Rhode Island" class="social-icon facebook-icon"></a> <a role="button" href="https://www.twitter.com/intent/tweet?url=https://nca2018.globalchange.gov/chapter/18%23fig-18-11&amp;text=Fourth%20National%20Climate%20Assessment:%20Figure%2018.11:%20Observed%20and%20Projected%20Impacts%20of%20Excess%20Heat%20on%20Emergency%20Room%20Visits%20in%20Rhode%20Island&amp;via=usgcrp&amp;hashtags=NCA4" aria-label="Share this content on Twitter" class="social-icon twitter-icon" target="_blank"></a> <a role="button" href="#" aria-label="Share the link to this content" class="social-icon link-icon"></a> <a role="button" href="mailto:?subject=Shared%20With%20You:%20Fourth%20National%20Climate%20Assessment&amp;body=Check%20out%20this%20site:%20https://nca2018.globalchange.gov/chapter/18#fig-18-11" aria-label="Share this content via e-mail" class="social-icon email-icon"></a> <div class="link-content"><input aria-label="Link to content" type="text" value="https://nca2018.globalchange.gov/chapter/18#fig-18-11" readonly/></div> </div> </div> <h2>Figure 18.11: Observed and Projected Impacts of Excess Heat on Emergency Room Visits in Rhode Island</h2> <div style="width: 100%;" class="figure-inner"> <a class="lightbox" href="/img/figure/figure18_11.png" data-title='Figure 18.11 Observed and Projected Impacts of Excess Heat on Emergency Room Visits in Rhode Island'> <picture> <source media="(min-width: 1200px)" data-srcset="/img/styles/figure18_11-1200.png, /img/styles/figure18_11-1200@2x.png 2x"> <source media="(min-width: 992px)" data-srcset="/img/styles/figure18_11-992.png, /img/styles/figure18_11-992@2x.png 2x"> <source media="(min-width: 768px)" data-srcset="/img/styles/figure18_11-768.png, /img/styles/figure18_11-768@2x.png 2x"> <source media="(min-width: 480px)" data-srcset="/img/styles/figure18_11-480.png, /img/styles/figure18_11-480@2x.png 2x"> <source media="(min-width: 320px)" data-srcset="/img/styles/figure18_11-320.png, /img/styles/figure18_11-320@2x.png 2x"> <img data-src="/img/figure/figure18_11.png" alt="Observed and Projected Impacts of Excess Heat on Emergency Room Visits in Rhode Island" class="big-img img-fluid lazyload" aria-describedby="description-18-11" /> </picture> </a> <aside id="description-18-11" class="sr-only">A bar graph, a line graph, and a box and whiskers graph display observed and projected impacts of extreme heat on emergency room visits in Rhode Island. The bar graph shows how the number of extreme heat days (with temperatures of 80 to 90 degrees Fahrenheit, and some with temperatures of 90 to 100 degrees Fahrenheit) have increased from 1950 to 2016. The line graph shows that as temperature increases, the relative risk of heat-related emergency room visits also increases, with relative risk starting to increase around 80 degrees Fahrenheit. The box and whiskers graph projects the increase in number of heat-related emergency room visits in the future. By 2046 to 2053, heat-related emergency room visits are projected to increase by about 250 visits per year under the lower RCP4.5 scenario and by 500 under the higher RCP8.5 scenario. By 2092 to 2099, this number is expected to increase by about 500 visits under the lower scenario and by about 1,400 visits under the higher scenario.</aside> <div class="caption" data-href="/img/figure/figure18_11.png" data-title='Figure 18.11 Observed and Projected Impacts of Excess Heat on Emergency Room Visits in Rhode Island'><strong>Figure 18.11: </strong>This figure shows the observed and projected impacts of excess heat on emergency room visits in Rhode Island. (left) In Rhode Island, maximum daily temperatures in the summer have trended upwards over the last 60 years, such that residents experienced about three more weeks of health-threatening hot weather over 2015–2016 than in the 1950s. (middle) A recent study looking at visits to hospital emergency rooms (ERs) found that the incidence rate of heat-related ER visits rose sharply as maximum daily temperatures climbed above 80°F. (right) The study estimates that with continued climate change, Rhode Islanders could experience an additional 400 (6.8% more) heat-related ER visits each year by 2050 and up to an additional 1,500 (24.4% more) such visits each year by 2095 under the higher scenario (RCP8.5). About 1,000 fewer annual heat-related ER visits are projected for the end of the century under the lower scenario (RCP4.5) compared to the higher scenario (RCP8.5), reflecting the estimated health benefits of adhering to a lower greenhouse gas emissions scenario. Sources: (left) Brown University; (middle, right) adapted from Kingsley et al. 2016.<sup id='fnref:ec9926c5-6257-49b3-8bfd-c9a02c0bf75b'><a href='#fn:26' rel='footnote' onclick='return false;'>26</a></sup> Reproduced from Environmental Health Perspectives.</div> </div> </section> </div> </aside> <h3>Health Effects of Air Pollution, Aeroallergens, and Wildfires</h3> <p>Climate change is increasing the risk of illness and death due to higher concentrations of air pollutants in many parts of the United States <em>(<a href="/chapter/13">Ch. 13: Air Quality</a>)</em>. In the Northeast, climate change threatens to reverse improvements in air quality that have been achieved over the past couple of decades. For example, climate change is projected to influence future levels of ground-level ozone pollution in the Northeast by altering weather conditions and impacting emissions from human and natural sources.<sup id="fnref:54a66159-1675-43bb-b5d3-a9b7f283e4de"><a href="#fn:324" rel="footnote" onclick="return false;">324</a></sup><sup class="cm">,</sup><sup id="fnref:70c0501a-5944-49f1-9749-2cc083802da1"><a href="#fn:325" rel="footnote" onclick="return false;">325</a></sup><sup class="cm">,</sup><sup id="fnref:59666474-282e-4dea-b833-acb24f736eaf"><a href="#fn:326" rel="footnote" onclick="return false;">326</a></sup> This “climate penalty,” whereby reductions in ozone precursor emissions are at least partially offset by a changing climate, is projected to lead to substantially more ozone pollution-related deaths;<sup id="fnref:54a66159-1675-43bb-b5d3-a9b7f283e4de"><a href="#fn:324" rel="footnote" onclick="return false;">324</a></sup><sup class="cm">,</sup><sup id="fnref:70c0501a-5944-49f1-9749-2cc083802da1"><a href="#fn:325" rel="footnote" onclick="return false;">325</a></sup><sup class="cm">,</sup><sup id="fnref:0b30f1ab-e4c4-4837-aa8b-0e19faccdb94"><a href="#fn:29" rel="footnote" onclick="return false;">29</a></sup> 200–300 more excess deaths per year by 2050 compared to 2000 by one estimate.<sup id="fnref:70c0501a-5944-49f1-9749-2cc083802da1"><a href="#fn:325" rel="footnote" onclick="return false;">325</a></sup></p> <p>Excess deaths due to ground-level ozone pollution are projected to increase substantially under both lower (RCP4.5) and higher (RCP8.5) scenarios.<sup id="fnref:0b30f1ab-e4c4-4837-aa8b-0e19faccdb94"><a href="#fn:29" rel="footnote" onclick="return false;">29</a></sup> Reducing global emissions of greenhouse gases from a higher scenario to a lower scenario could prevent approximately 360 deaths per year due to air quality in 2090, saving approximately $5.3 billion per year (in 2015 dollars, undiscounted).<sup id="fnref:5b52af56-61c6-4663-9d7d-302e8570800f"><a href="#fn:327" rel="footnote" onclick="return false;">327</a></sup> Moreover, many sources of the greenhouse gas emissions that contribute to climate change also contribute to degraded air quality today, with adverse effects on people’s health. The adverse health risks from air pollution can be reduced in the present and in the future by addressing these common emission sources.<sup id="fnref:81f96860-7931-48b6-9d57-32682728636f"><a href="#fn:319" rel="footnote" onclick="return false;">319</a></sup></p> <p>More frequent and severe wildfires due to climate change pose an increasing risk to human health through impacts on air quality <em>(<a href="/chapter/13#key-message-2">Ch. 13: Air Quality, KM 2</a>)</em>. Wildfire smoke can travel hundreds of miles, as occurred in 2015 when Canadian wildfire smoke caused air quality exceedance days in Baltimore, Maryland.<sup id="fnref:c011d507-b5f4-44e2-9ae3-d75db98b6cbc"><a href="#fn:328" rel="footnote" onclick="return false;">328</a></sup></p> <p>Climate change is also expected to lengthen and intensify pollen seasons in parts of the United States, potentially leading to additional cases of allergic rhinitis (also known as hay fever) and allergic asthma episodes <em>(<a href="/chapter/13#key-message-3">Ch. 13: Air Quality, KM 3</a>)</em>.<sup id="fnref:0b30f1ab-e4c4-4837-aa8b-0e19faccdb94"><a href="#fn:29" rel="footnote" onclick="return false;">29</a></sup><sup class="cm">,</sup><sup id="fnref:2d1ffd71-6c31-4d2e-9867-bdf330be45c1"><a href="#fn:329" rel="footnote" onclick="return false;">329</a></sup> Among individuals with allergic asthma, exposure to certain types of pollen can result in worsening of symptoms leading to increases in allergy medication sales and emergency room visits for asthma, as already documented in New York City.<sup id="fnref:dde59604-068a-4b52-b37e-62d6d713e1d5"><a href="#fn:330" rel="footnote" onclick="return false;">330</a></sup></p> <p>Indoors, climate change is expected to bring conditions that foster mold growth, such as more dampness, and more frequent power outages that impair ventilation. Damp indoor conditions and mold are both known to be associated with respiratory illnesses including asthma symptoms and wheezing.<sup id="fnref:c2e46e42-7cb9-4bb0-91df-c676943cd62a"><a href="#fn:331" rel="footnote" onclick="return false;">331</a></sup> When damp conditions occur in buildings, rapid action could be warranted—remediation in a northeastern office building after the development of respiratory or severe non-respiratory symptoms by building inhabitants was not effective in reducing symptoms.<sup id="fnref:b439f51a-fc99-4f47-8b26-b653c24e71b9"><a href="#fn:332" rel="footnote" onclick="return false;">332</a></sup></p> <h3>Changing Ecosystems and Risk of Vector-Borne Disease</h3> <p>The risk posed by vector-borne diseases (those transmitted by disease-carriers such as fleas, ticks, and mosquitoes) such as Lyme disease and West Nile virus under a changing climate is also of concern in the Northeast region. These diseases, specifically tick-related Lyme disease, have been linked to climate, particularly with abundant late-spring and early-summer moisture. By 2065–2080, under the higher scenario (RCP8.5) it is projected that the period of elevated risk of Lyme disease transmission in the Northeast will begin 0.9–2.8 weeks earlier between Maine and Pennsylvania, compared to the climate observed over 1992–2007).<sup id="fnref:953d1436-e0d0-426c-8dcc-68e5c02eef30"><a href="#fn:67" rel="footnote" onclick="return false;">67</a></sup> Similarly, a recent analysis estimates that there would be an additional 490 cases of West Nile neuroinvasive disease per year in the Northeast by 2090 under the higher scenario (RCP8.5) versus 210 additional cases per year under the lower scenario (RCP4.5).<sup id="fnref:0b30f1ab-e4c4-4837-aa8b-0e19faccdb94"><a href="#fn:29" rel="footnote" onclick="return false;">29</a></sup> The geographic range of suitable habitats for other mosquito vectors such as the northern house mosquito (<em>Culex pipiens</em> and <em>Culex restuans</em>, which transmit West Nile virus) and the Asian tiger mosquito (<em>Aedes albopictus</em>, which can also transmit West Nile virus and other mosquito-borne diseases) is expected to continue shifting northward into New England in the next several decades and through the end of the century as a result of climate change.<sup id="fnref:5a091036-8e68-41b5-a63a-ff33b8fc1889"><a href="#fn:333" rel="footnote" onclick="return false;">333</a></sup><sup class="cm">,</sup><sup id="fnref:6c4943e6-2a76-4989-b80e-8b4d9bacd78a"><a href="#fn:334" rel="footnote" onclick="return false;">334</a></sup></p> <h3>Gastrointestinal Illness from Waterborne and Foodborne Contaminants</h3> <p>Another consequence of climate change is the spread of marine toxins and pathogens (Key Message 2). Some of these pathogens pose health risks through consumption of contaminated seafood. Harmful algal blooms, which can cause paralytic shellfish poisoning in humans, have become more frequent and longer lasting in the Gulf of Maine.<sup id="fnref:59d0bcfb-805b-472d-b6fe-3b70bacc3d25"><a href="#fn:335" rel="footnote" onclick="return false;">335</a></sup> Similarly, pathogenic strains of the waterborne bacteria <em>Vibrio</em>—which are already causing thousands of foodborne illnesses per year—have expanded northward and have been responsible for increasing cases of illness in oyster consumers in the Northeast region.<sup id="fnref:48649c66-55d7-4e5f-b64a-42e0a8ad2e56"><a href="#fn:336" rel="footnote" onclick="return false;">336</a></sup><sup class="cm">,</sup><sup id="fnref:9cef4119-4454-439b-829a-bdb8f458dd15"><a href="#fn:337" rel="footnote" onclick="return false;">337</a></sup><sup class="cm">,</sup><sup id="fnref:00de8fc2-eacc-487d-9b67-5243e8f4f263"><a href="#fn:338" rel="footnote" onclick="return false;">338</a></sup></p> </div> <section id="fig-18-12" class="md-3 small-figure photo"> <h2>District of Columbia Water and Sewer Authority’s Clean Rivers Project</h2> <div class="figure-inner"> <a class="lightbox" href="/img/figure/figure18_12.jpg" data-title='District of Columbia Water and Sewer Authority’s Clean Rivers Project'> <picture> <source media="(min-width: 1200px)" data-srcset="/img/styles/figure18_12-1200.jpg, /img/styles/figure18_12-1200@2x.jpg 2x"> <source media="(min-width: 992px)" data-srcset="/img/styles/figure18_12-992.jpg, /img/styles/figure18_12-992@2x.jpg 2x"> <source media="(min-width: 768px)" data-srcset="/img/styles/figure18_12-768.jpg, /img/styles/figure18_12-768@2x.jpg 2x"> <source media="(min-width: 480px)" data-srcset="/img/styles/figure18_12-480.jpg, /img/styles/figure18_12-480@2x.jpg 2x"> <source media="(min-width: 320px)" data-srcset="/img/styles/figure18_12-320.jpg, /img/styles/figure18_12-320@2x.jpg 2x"> <img data-src="/img/figure/figure18_12.jpg" alt="District of Columbia Water and Sewer Authority’s Clean Rivers Project" class="img-fluid lazyload" aria-describedby="description-18-12"/> </picture> </a> <aside id="description-18-12" class="sr-only">A photo shows a District of Columbia water and sewer authority warning sign that states “combined sewer overflow discharge point; pollution may occur during rainfall.” The Potomac River, the Key Bridge, and several area hotels are visible in the background.</aside> <div class="caption" data-expandedcaption="<strong>Figure 18.12:</strong> The District of Columbia Water and Sewer Authority’s Clean Rivers Project&amp;lt;sup id=&amp;#39;fnref:cb1e62ba-c589-4f6c-9719-844b3e063a9f&amp;#39;&amp;gt;&amp;lt;a href=&amp;#39;#fn:342&amp;#39; rel=&amp;#39;footnote&amp;#39; onclick=&amp;#39;return false;&amp;#39;&amp;gt;342&amp;lt;/a&amp;gt;&amp;lt;/sup&amp;gt; aims to reduce combined sewer overflows into area waterways. The Clean Rivers Project is expected to reduce overflows annually by 96% throughout the system and by 98% for the Anacostia River. In addition, the project is expected to reduce the chance of flooding in the areas it serves from approximately 50% to 7% in any given year and reduce nitrogen discharged to the Chesapeake Bay by approximately 1 million pounds per year. Photo credit: Daniel Lobo (&amp;lt;a href=&amp;#39;https://creativecommons.org/licenses/by/2.0/&amp;#39;&amp;gt;CC BY 2.0&amp;lt;/a&amp;gt;)." data-href="/img/figure/figure18_12.jpg" data-title='District of Columbia Water and Sewer Authority’s Clean Rivers Project'><strong>Figure 18.12: </strong>The District of Columbia Water and Sewer Authority’s Clean Rivers Project<sup id='fnref:cb1e62ba-c589-4f6c-9719-844b3e063a9f'><a href='#fn:342' rel='footnote' onclick='return false;'>342</a></sup> aims to reduce combined …</div> <p class="text-center"><span class="view-figure"><a role="button" class="expand" href="#">EXPAND</a></span></p> </div> </section> <div class="offset-lg-1 col-lg-7"> <p>Combined sewer systems (where municipal wastewater and storm water use the same pipes) are particularly common in the Northeast given the older infrastructure typical of the region.<sup id="fnref:c888492b-7582-4b87-8833-f4d30052f43c"><a href="#fn:339" rel="footnote" onclick="return false;">339</a></sup> When runoff from heavy precipitation exceeds the capacity of these systems, combined sewer overflow containing untreated sewage is released into local waterways, potentially impacting the quality of water used for recreation or drinking. For example, a study in Massachusetts found an increased risk of gastrointestinal illness with heavy precipitation causing combined sewer overflows.<sup id="fnref:d746e578-c6fd-4b73-8a3c-d91365668348"><a href="#fn:322" rel="footnote" onclick="return false;">322</a></sup> Increased risk of campylobacteriosis and salmonella has been documented in Maryland with increased heavy precipitation and streamflows.<sup id="fnref:bcbd5def-bcf4-454a-b744-ff131acdbf39"><a href="#fn:340" rel="footnote" onclick="return false;">340</a></sup><sup class="cm">,</sup><sup id="fnref:2312e80f-cec5-445e-aad0-ce60c9ea29e2"><a href="#fn:341" rel="footnote" onclick="return false;">341</a></sup> Moderate flooding events are expected to become more frequent in most of the Northeast during the 21st century because of more intense precipitation related to climate change.<sup id="fnref:dc7250b8-b20f-4b9f-818e-1729746d08c2"><a href="#fn:105" rel="footnote" onclick="return false;">105</a></sup><sup class="cm">,</sup><sup id="fnref:f04a91c4-6cb2-4918-9213-b48f459bca10"><a href="#fn:142" rel="footnote" onclick="return false;">142</a></sup> This could, therefore, increase the frequency of combined sewer overflows and waterborne disease. Some cities and towns are making substantial investments to reduce or eliminate the risks of combined sewer overflows (Figure 18.12).</p> </div> <div class="offset-lg-1 col-lg-7"> <p>Storm-related power outages can also pose a risk of foodborne illness.<sup id="fnref:1ef11bf5-fb98-4f4f-905d-4990936ef52f"><a href="#fn:343" rel="footnote" onclick="return false;">343</a></sup> Increased diarrheal illnesses from consumption of spoiled food have also been documented in New York City in 2003 following a power outage that affected millions in the Northeast <em>(<a href="/chapter/17#box-17_5">Ch. 17: Complex Systems, Box 17.5</a>)</em>.<sup id="fnref:d03f5405-42ed-46bd-9f7f-23ba5f71bdf3"><a href="#fn:344" rel="footnote" onclick="return false;">344</a></sup></p> <aside id="box-18_4" class="section-box box clearfix"> <div class="figure-social-icons"> <a role="button" href="https://toolkit.climate.gov/case-studies/hospital-plans-ahead-power-serves-community-through-hurricane-sandy" aria-label="See related content from the U.S. Climate Resilience Toolkit or the USGCRP Indicator Platform" target="'' " title=" See related content from the U.S. Climate Resilience Toolkit " class="climatelink qtip-bottom"></a>&nbsp; <a role="button" href="#" aria-label="Share this content" title="Share" class="share qtip-bottom" ></a> <div class="social-icons"> <a role="button" href="#" aria-label="Share this content on Facebook" data-fb-image="https://nca2018.globalchange.gov" data-fb-title="Fourth National Climate Assessment: Box 18.4: Role of Public Health and Healthcare Sector in Resilience and Prevention" class="social-icon facebook-icon"></a> <a role="button" href="https://www.twitter.com/intent/tweet?url=https://nca2018.globalchange.gov/chapter/18%23box-18_4&amp;text=Fourth%20National%20Climate%20Assessment:%20Box%2018.4:%20Role%20of%20Public%20Health%20and%20Healthcare%20Sector%20in%20Resilience%20and%20Prevention&amp;via=usgcrp&amp;hashtags=NCA4" aria-label="Share this content on Twitter" class="social-icon twitter-icon" target="_blank"></a> <a role="button" href="#" aria-label="Share the link to this content" class="social-icon link-icon"></a> <a role="button" href="mailto:?subject=Shared%20With%20You:%20Fourth%20National%20Climate%20Assessment&amp;body=Read%20this%20content%20from%20the%20Fourth%20National%20Climate%20Assessment:%20https://nca2018.globalchange.gov/chapter/18#box-18_4" aria-label="Share this content via e-mail" class="social-icon email-icon"></a> <div class="link-content"><input aria-label="Link to content" type="text" value="https://nca2018.globalchange.gov/chapter/18#box-18_4" readonly/></div> </div> </div> <h2><span class="balance-text">Box 18.4: Role of Public Health and Healthcare Sector in Resilience and Prevention</span></h2> <div class="box-inner"> <p>There are numerous examples of how the public health and healthcare sectors are preparing for climate change and making energy saving changes, as highlighted in the U.S. Department of Health and Human Services’ report on enhancing healthcare resilience.<sup id="fnref:05ee299b-0f67-41b4-98c8-7f06718799fc"><a href="#fn:345" rel="footnote" onclick="return false;">345</a></sup> One such example occurred in Greenwich, Connecticut, where Greenwich Hospital installed a combined heat and power system that conserves energy and provided stability in the wake of Superstorm Sandy.<sup id="fnref:6a5c431f-ac93-4ae7-b09f-43a2698d095f"><a href="#fn:346" rel="footnote" onclick="return false;">346</a></sup></p> <p>In June 2016, severe flooding in West Virginia resulted from a “thousand-year storm”<sup id="fnref:3a0e2771-e568-46e1-8fe4-aa2a259033fb"><a href="#fn:347" rel="footnote" onclick="return false;">347</a></sup> and highlighted the important role of the healthcare sector in building resilience to extreme precipitation events. A recent study of the event described the role of state and federal government working in partnership with healthcare volunteer organizations to effectively mobilize a response in the setting of such a disaster.<sup id="fnref:ed191239-82da-43ee-ad4d-1ec67abe772e"><a href="#fn:348" rel="footnote" onclick="return false;">348</a></sup> It emphasized the critical importance of healthcare professionals in providing emotional and mental health support to the response volunteers and the affected communities, as well as a need to increase capacity in these areas.<sup id="fnref:ed191239-82da-43ee-ad4d-1ec67abe772e"><a href="#fn:348" rel="footnote" onclick="return false;">348</a></sup> See Key Message 5 in this chapter and <a href="/chapter/14#key-message-3">Chapter 14: Human Health, Key Message 3</a> for more information on additional adaptation efforts that protect health.</p> <section id="fig-18-13" class="offset-lg-1 col-lg-7 big-figure photo"> <h2>Impacts of Flooding in West Virginia</h2> <div class="figure-inner"> <a class="lightbox" href="/img/figure/figure18_13.jpg" data-title='Impacts of Flooding in West Virginia'> <picture> <source media="(min-width: 1200px)" data-srcset="/img/styles/figure18_13-1200.jpg, /img/styles/figure18_13-1200@2x.jpg 2x"> <source media="(min-width: 992px)" data-srcset="/img/styles/figure18_13-992.jpg, /img/styles/figure18_13-992@2x.jpg 2x"> <source media="(min-width: 768px)" data-srcset="/img/styles/figure18_13-768.jpg, /img/styles/figure18_13-768@2x.jpg 2x"> <source media="(min-width: 480px)" data-srcset="/img/styles/figure18_13-480.jpg, /img/styles/figure18_13-480@2x.jpg 2x"> <source media="(min-width: 320px)" data-srcset="/img/styles/figure18_13-320.jpg, /img/styles/figure18_13-320@2x.jpg 2x"> <img data-src="/img/figure/figure18_13.jpg" alt="Impacts of Flooding in West Virginia" class="big-img img-fluid lazyload" aria-describedby="description-18-13" /> </picture> </a> <aside id="description-18-13" class="sr-only">A photo shows a Red Cross volunteer speaking with a family from Clendenin, West Virginia, following the 2016 West Virginia floods. A mountain of debris, including damaged personal items and furniture, is piled next to them.</aside> <div class="caption" data-shortcaption="<strong>Figure 18.13:</strong> A Red Cross volunteer talks with a community resident after the 2016 West Virginia floods. …" data-href="/img/figure/figure18_13.jpg" data-title='Impacts of Flooding in West Virginia'><strong>Figure 18.13: </strong>A Red Cross volunteer talks with a community resident after the 2016 West Virginia floods. Additionally, local medical professionals mobilized to staff temporary clinical sites. Photo credit: National Guard Bureau Public Affairs.</div> <p class="text-center"><span class="view-figure"><a role="button" class="shrink" href="#">SHRINK</a></span></p> </div> </section> </div> </aside> <h3>Mental Health and Well-Being</h3> <p>In addition to the adverse impacts on people’s physical health, climate change is also associated with adverse impacts on mental health <em>(<a href="/chapter/14#key-message-1">Ch. 14: Human Health, KM 1</a>)</em>. Specifically in the Northeast region, sea level rise, storm surge, and extreme precipitation events associated with climate change will contribute to higher risk of flooding in both coastal and inland areas—particularly in urban areas with large amounts of impervious surface that increases water runoff. In addition to the risks of physical injury, waterborne disease, and healthcare service disruption caused by flooding, lasting mental health consequences, such as anxiety, depression, and post-traumatic stress disorder can impact affected communities, as was observed in the wake of Superstorm Sandy in 2012 (Box 18.4).<sup id="fnref:c7bb5988-e9ff-41a3-87fd-5d0a12f50fe7"><a href="#fn:349" rel="footnote" onclick="return false;">349</a></sup> Extreme weather events can have both immediate, short-term effects, as well as longer-term impacts on mental health and well-being that can last years after the specific event.</p> <p>Extreme heat can also affect mental health and well-being. Higher outdoor temperatures are associated with decreases in subtle aspects of well-being such as decreased joy and happiness<sup id="fnref:5258079a-4390-4825-b382-81712c1308fb"><a href="#fn:350" rel="footnote" onclick="return false;">350</a></sup> and increased aggression and violence.<sup id="fnref:9bb5fdef-86ff-4f8f-bf28-e5694c6fa104"><a href="#fn:351" rel="footnote" onclick="return false;">351</a></sup> Underlying mental health conditions and geography also affect vulnerability. For example, a study of hospitalization for heat-related illness among people with mental health disorders showed increased risk in rural versus urban areas, possibly due to lower availability of mental health services in these rural areas.<sup id="fnref:45c55d6f-71cc-4034-bb1f-c5a926eec972"><a href="#fn:352" rel="footnote" onclick="return false;">352</a></sup></p> <p>Separately, large population changes from climate-driven human migration could substantially influence both coastal and inland communities in the Northeast region (see also Key Messages 2 and 5).<sup id="fnref:2ddba35f-6036-4428-b4c7-800dd57b3313"><a href="#fn:285" rel="footnote" onclick="return false;">285</a></sup> The impacts of human migration on health and well-being depend on myriad factors, including the context of the migration.<sup id="fnref:e90d1d04-5902-438f-b416-678d86226e69"><a href="#fn:353" rel="footnote" onclick="return false;">353</a></sup></p> <h3>Regional Variation in Health Impacts and Vulnerability</h3> <p>Although climate change affects all residents of the Northeast region, risks are not experienced equally. The impact of climate change on an individual depends on the degree of exposure, the individual sensitivity to that exposure, and the individual or community-level capacity to recover <em>(<a href="/chapter/14#key-message-2">Ch. 14: Human Health, KM 2</a>)</em>.<sup id="fnref:6b118a80-8335-4c02-91cf-762c8bb14301"><a href="#fn:354" rel="footnote" onclick="return false;">354</a></sup> Thus, health impacts of climate change will vary across people and communities of the Northeast region depending on social, socioeconomic, demographic, and societal factors; community adaptation efforts; and underlying individual vulnerability (see Key Message 5) <em>(see also <a href="/chapter/28">Ch. 28: Adaptation</a>)</em>. Particularly vulnerable groups include older or socially isolated adults, children, low-income communities, and communities of color.</p> </div> </div> </section> <section id="key-message-5" class="container-fluid report-section no-spacer blackish glossary clearfix"> <div id="content-18-6"><p></div> <div class="row no-gutters"> <div class="col-lg-12"> <div class="row key-message-display"> <div class="col-sm-1"> <p class="text-center"><img class="align-self-center" src="/img/km-shape-5.png" alt="Key Message 5" /></p> </div> <div class="col-sm-7 key-message-msg"></p> <div class="figure-social-icons"> <a role="button" href="#" aria-label="Share this content" title="Share" class="share qtip-bottom" ></a> <div class="social-icons"> <a role="button" href="#" aria-label="Share this content on Facebook" data-fb-image="https://nca2018.globalchange.gov" data-fb-title="Fourth National Climate Assessment: Adaptation to Climate Change Is Underway" class="social-icon facebook-icon"></a> <a role="button" href="https://www.twitter.com/intent/tweet?url=https://nca2018.globalchange.gov/chapter/18%23key-message-5&amp;text=Fourth%20National%20Climate%20Assessment:%20Chapter%2018,%20Key%20Message%205:%20Adaptation%20to%20Climate%20Change%20Is%20Underway&amp;via=usgcrp&amp;hashtags=NCA4" aria-label="Share this content on Twitter" class="social-icon twitter-icon" target="_blank"></a> <a role="button" href="#" aria-label="Share the link to this content" class="social-icon link-icon"></a> <a role="button" href="mailto:?subject=Shared%20With%20You:%20Fourth%20National%20Climate%20Assessment&amp;body=Read%20this%20content%20from%20the%20Fourth%20National%20Climate%20Assessment:%20https://nca2018.globalchange.gov/chapter/18#key-message-5" aria-label="Share this content via e-mail" class="social-icon email-icon"></a> <div class="link-content"><input aria-label="Link to content" type="text" value="https://nca2018.globalchange.gov/chapter/18#key-message-5" readonly/></div> </div> </div> <p><h2 class="balance-text">Adaptation to Climate Change Is Underway</h2> <p><p>Communities in the Northeast are proactively planning and implementing actions to reduce risks posed by climate change. Using decision support tools to develop and apply adaptation strategies informs both the value of adopting solutions and the remaining challenges. Experience since the last assessment provides a foundation to advance future adaptation efforts.</p> </p> </div> </div> </div> </div></p> <div class="offset-lg-1 col-lg-7"> <p>Communities, towns, cities, counties, states, and tribes across the Northeast are engaged in efforts to build resilience to environmental challenges and adapt to a changing climate. Developing and implementing climate adaptation strategies in daily practice often occur in collaboration with state and federal agencies (e.g., New Jersey Climate Adaptation Alliance, New York Climate Clearinghouse, Massachusetts StormSmart Coasts and Climate Action Tool, Rhode Island StormTools, EPA, CDC).<sup id="fnref:452bb2dd-a1ab-4e9e-854e-a7f1c677c49d"><a href="#fn:30" rel="footnote" onclick="return false;">30</a></sup><sup class="cm">,</sup><sup id="fnref:4612baaf-a0ca-4a09-98ff-8936030286cb"><a href="#fn:31" rel="footnote" onclick="return false;">31</a></sup><sup class="cm">,</sup><sup id="fnref:0f0774a4-9637-44af-bcc3-096ed901d1cc"><a href="#fn:32" rel="footnote" onclick="return false;">32</a></sup><sup class="cm">,</sup><sup id="fnref:468447f6-f42b-4450-9300-cc55ad67a544"><a href="#fn:33" rel="footnote" onclick="return false;">33</a></sup><sup class="cm">,</sup><sup id="fnref:4a3e0916-7ee3-4589-8d95-9669a6310268"><a href="#fn:34" rel="footnote" onclick="return false;">34</a></sup><sup class="cm">,</sup><sup id="fnref:a645c266-3cd4-474d-b1cc-7d5c2b95bae2"><a href="#fn:355" rel="footnote" onclick="return false;">355</a></sup><sup class="cm">,</sup><sup id="fnref:fc970a52-414a-4866-8741-320a1c436a47"><a href="#fn:356" rel="footnote" onclick="return false;">356</a></sup>) Advances in rural towns, cities, and suburban areas include low-cost adjustments of existing building codes and standards. In coastal areas, partnerships among local communities and federal and state agencies leverage federal adaptation tools and decision support frameworks (the National Oceanic and Atmospheric Administration’s [NOAA] Digital Coast, the U.S. Geological Survey’s [USGS] Coastal Change Hazards Portal, New Jersey’s Getting to Resilience).</p> <p>Increasingly, cities and towns across the Northeast region are developing or implementing plans for adaptation and resilience in the face of a changing climate (e.g., EPA 2017<sup id="fnref:468447f6-f42b-4450-9300-cc55ad67a544"><a href="#fn:33" rel="footnote" onclick="return false;">33</a></sup>). These approaches are designed to maintain and enhance the everyday life of residents and promote economic development. In some cities, adaptation planning has been used to respond to present and future challenges in the built environment. Regional efforts have recommended changes in design standards when building, replacing, or retrofitting infrastructure to account for a changing climate (Box 18.5). For example, the Port Authority of New York and New Jersey provided guidelines for engineers to account for projected changes in temperature, precipitation, and sea level rise when designing infrastructure assets.<sup id="fnref:62f465d8-b42c-42f7-81ec-0f5378ba9f19"><a href="#fn:357" rel="footnote" onclick="return false;">357</a></sup> The cities of Philadelphia, Pennsylvania,<sup id="fnref:10863220-0837-453e-b732-006f0fa9a24e"><a href="#fn:296" rel="footnote" onclick="return false;">296</a></sup> Utica, New York,<sup id="fnref:c9802bde-0e9d-4a38-b79a-4ad0edfaee9a"><a href="#fn:358" rel="footnote" onclick="return false;">358</a></sup> and Boston, Massachusetts,<sup id="fnref:4d61fbc8-2282-49e8-bb8c-e7d87075f424"><a href="#fn:295" rel="footnote" onclick="return false;">295</a></sup> promote the use of green infrastructure to build resilience, particularly in response to flooding risk <em>(<a href="/chapter/8#fig-8-2">Ch. 8: Coastal, Figure 8.2</a>)</em>. In Jamaica Bay, New York, post–Superstorm Sandy efforts have fostered a set of local, regional, state, and federal actions that link resilience efforts to current climate risk, along with the potential for accelerated sea level rise and its implications for increased flood frequency <em>(<a href="/chapter/28#key-message-1">Ch. 28: Adaptation, KM 1</a>)</em>.<sup id="fnref:0dd12a00-5144-476f-8f98-37d5e4bc3b03"><a href="#fn:359" rel="footnote" onclick="return false;">359</a></sup></p> <p>The issue of water security has emerged from vulnerability assessments and cuts across urban and rural communities. One example is the Washington, DC, metropolitan area’s potential use of the Potomac and Occoquan estuaries as water supplies and of retired quarries as water storage facilities.<sup id="fnref:3258fcdc-5c7f-46a1-be18-29e440a0489a"><a href="#fn:304" rel="footnote" onclick="return false;">304</a></sup> Adaptive reservoir operations have been implemented in the Northeast and other regions of the United States to better manage plausible future climate conditions and to meet other management goals <em>(<a href="/chapter/3#key-message-3">Ch. 3: Water, KM 3</a>)</em>. Tribal nations have also focused on adaptation and the vulnerability of their water supplies, based on long-standing local values and traditional knowledge, including the use of water for drinking, habitat for fish and wildlife, agriculture, and cultural purposes.<sup id="fnref:5b754441-464c-49fd-90e8-c184fc2ba1f5"><a href="#fn:97" rel="footnote" onclick="return false;">97</a></sup><sup class="cm">,</sup><sup id="fnref:479edcdc-3e35-4859-86aa-5733316e0aa1"><a href="#fn:360" rel="footnote" onclick="return false;">360</a></sup><sup class="cm">,</sup><sup id="fnref:b4380bd0-e2e1-4a2f-bce3-1277b8c702c2"><a href="#fn:361" rel="footnote" onclick="return false;">361</a></sup></p> <p>While resilience efforts have focused on microscale adaptations to current climate risks, communities are increasingly seeing a need for larger-scale adaptation efforts. Wide disparities in adaptive capacity exist among communities in the region. Larger, often better-resourced communities have created climate offices and programs, while response has lagged in smaller or poorer communities that are often more dependent on county- or state-level programs and expertise. The move from small-scale to larger-scale and more transformative adaptation efforts involves complex policy transition planning, social and economic development, and equity considerations <em>(<a href="/chapter/28#key-message-4">Ch. 28: Adaptation, KM 4</a>)</em>.<sup id="fnref:add9e09e-08ca-466b-bc93-3459610ab1de"><a href="#fn:362" rel="footnote" onclick="return false;">362</a></sup><sup class="cm">,</sup><sup id="fnref:6b1badcf-9d18-4a98-9807-ade7ed0bc1df"><a href="#fn:363" rel="footnote" onclick="return false;">363</a></sup> This includes attention to community concerns about green gentrification—the practice of making environmental improvements in urban areas—that generally increases property values but often also drives out lower-income residents.<sup id="fnref:dcd789bb-5b14-4c0c-a2cc-6e3595176b33"><a href="#fn:364" rel="footnote" onclick="return false;">364</a></sup></p> <aside id="box-18_5" class="section-box box clearfix"> <div class="figure-social-icons"> <a role="button" href="#" aria-label="Share this content" title="Share" class="share qtip-bottom" ></a> <div class="social-icons"> <a role="button" href="#" aria-label="Share this content on Facebook" data-fb-image="https://nca2018.globalchange.gov" data-fb-title="Fourth National Climate Assessment: Box 18.5: Adapting the Northeast’s Cultural Heritage" class="social-icon facebook-icon"></a> <a role="button" href="https://www.twitter.com/intent/tweet?url=https://nca2018.globalchange.gov/chapter/18%23box-18_5&amp;text=Fourth%20National%20Climate%20Assessment:%20Box%2018.5:%20Adapting%20the%20Northeast%e2%80%99s%20Cultural%20Heritage&amp;via=usgcrp&amp;hashtags=NCA4" aria-label="Share this content on Twitter" class="social-icon twitter-icon" target="_blank"></a> <a role="button" href="#" aria-label="Share the link to this content" class="social-icon link-icon"></a> <a role="button" href="mailto:?subject=Shared%20With%20You:%20Fourth%20National%20Climate%20Assessment&amp;body=Read%20this%20content%20from%20the%20Fourth%20National%20Climate%20Assessment:%20https://nca2018.globalchange.gov/chapter/18#box-18_5" aria-label="Share this content via e-mail" class="social-icon email-icon"></a> <div class="link-content"><input aria-label="Link to content" type="text" value="https://nca2018.globalchange.gov/chapter/18#box-18_5" readonly/></div> </div> </div> <h2><span class="balance-text">Box 18.5: Adapting the Northeast’s Cultural Heritage</span></h2> <div class="box-inner"> <p>A defining characteristic of the Northeast region is its rich, dense record of cultural heritage, marked by historic structures, archaeological sites, and cultural landscapes. The ability to preserve this cultural heritage is challenged by climate change. National parks and historic sites in the Northeast are already witnessing cultural resource impacts from climate change, and more impacts are expected in the future.<sup id="fnref:e25ea9e7-07f8-4104-9ea0-b0d48ae82ee1"><a href="#fn:236" rel="footnote" onclick="return false;">236</a></sup> These cultural resources present unique adaptation challenges, and the region is moving forward with planning for future adaptation.</p> <p>Superstorm Sandy caused substantial damage to coastal New York Harbor parks, including Gateway National Recreation Area and Statue of Liberty National Monument, where buildings and the landscape surrounding the statue and on Ellis Island were impacted and the museum collections were threatened by the loss of climate control systems that were flooded.<sup id="fnref:5feb04ef-2d5b-4ca6-8c1a-02a3a095a79f"><a href="#fn:370" rel="footnote" onclick="return false;">370</a></sup><sup class="cm">,</sup><sup id="fnref:80063da9-7e5f-4a30-96db-46e4b3d5048a"><a href="#fn:371" rel="footnote" onclick="return false;">371</a></sup> Sea level rise amplifies the impacts of storm events such as Superstorm Sandy, and the parks are using recovery as an opportunity to rebuild with more resilience to future storms.<sup id="fnref:80063da9-7e5f-4a30-96db-46e4b3d5048a"><a href="#fn:371" rel="footnote" onclick="return false;">371</a></sup><sup class="cm">,</sup><sup id="fnref:abcb31cc-5258-4722-b0bf-c9b0b68047f1"><a href="#fn:372" rel="footnote" onclick="return false;">372</a></sup><sup class="cm">,</sup><sup id="fnref:34f0f4a6-6aaf-473e-baf3-9c007c0c12eb"><a href="#fn:373" rel="footnote" onclick="return false;">373</a></sup> Heating and electrical systems in historic buildings have been elevated from basement levels. Design changes, such as using non-mold-growing materials and other engineering solutions, have been made while maintaining the buildings’ historic character. Following the storm, Gateway National Recreation Area added climate change vulnerability to their planning process for prioritizing historic structures between preserve, stabilize, or ruin. The recreation area has been implementing these priorities as part of the recovery process, providing examples of climate adaptation implementation.<sup id="fnref:0dd12a00-5144-476f-8f98-37d5e4bc3b03"><a href="#fn:359" rel="footnote" onclick="return false;">359</a></sup><sup class="cm">,</sup><sup id="fnref:a2e551a3-3ba9-426e-9d1a-b77199c39c03"><a href="#fn:374" rel="footnote" onclick="return false;">374</a></sup> The human community on Rockaways peninsula also responded to Sandy by using urban forestry and agricultural practices to recover and to buffer against the impact of future storms (see Building Resiliency at the Rockaways 360 tour<sup id="fnref:602bd840-d4aa-4a20-8200-88b6ac6d1736"><a href="#fn:375" rel="footnote" onclick="return false;">375</a></sup>).</p> </div> </aside> <h3>Decision Support Tools and Adaptation Actions</h3> <p>While adaptation is progressing in a variety of forms in the Northeast region, many efforts have focused on assessing risks and developing decision support tools. Many of these assessments and tools have proven useful for specific purposes. Structured decision-making is where decision-makers engage at the outset to define a problem, objectives, alternative management actions, and the consequences and tradeoffs of such actions—before making any decisions. It is being increasingly applied to design management plans, determine research needs, and allocate resources to preserve habitat and resources throughout the region.<sup id="fnref:68fcc8c6-b20a-4739-aae6-e98b893d5163"><a href="#fn:151" rel="footnote" onclick="return false;">151</a></sup><sup class="cm">,</sup><sup id="fnref:eddcff40-a0a0-426d-880b-a73730e9497f"><a href="#fn:365" rel="footnote" onclick="return false;">365</a></sup><sup class="cm">,</sup><sup id="fnref:eac23798-e67b-430a-89da-1ea63df31c87"><a href="#fn:366" rel="footnote" onclick="return false;">366</a></sup><sup class="cm">,</sup><sup id="fnref:6c67b572-c604-4f0c-ab46-4e67f2267bcc"><a href="#fn:367" rel="footnote" onclick="return false;">367</a></sup> There has been little attention devoted to evaluating and communicating the suitability and robustness of the many tools that are now available. Efforts to evaluate decision support tools and processes in a rigorous scientific manner would help stakeholders choose the best tools to answer particular questions under specific circumstances.</p> <p>One significant advancement that communities and infrastructure managers have made in recent years has been the development of risk, impact, and adaptation indicators, as well as monitoring systems to measure and understand climate change and its impacts.<sup id="fnref:63483c02-d727-4dbc-b771-32de7345ab8a"><a href="#fn:15" rel="footnote" onclick="return false;">15</a></sup> In recognizing the economic impacts of infrastructure service loss and disruption, government agencies have begun adaptation analyses to identify those infrastructure elements most critical for regional economic resilience during climate-related disruptions, as well as to identify communities most exposed to acute and chronic climate risks.<sup id="fnref:548bc141-7fd7-45bb-9c1b-e2a25bcb4e24"><a href="#fn:45" rel="footnote" onclick="return false;">45</a></sup><sup class="cm">,</sup><sup id="fnref:641ac0a3-aad2-4422-a632-f07117fe694a"><a href="#fn:368" rel="footnote" onclick="return false;">368</a></sup><sup class="cm">,</sup><sup id="fnref:28f56eff-7871-4080-bc14-990a95fe00fc"><a href="#fn:369" rel="footnote" onclick="return false;">369</a></sup></p> <p>Resource managers, community leaders, and other stakeholders are altering the management of coastal areas and resources in the context of climate change (Boxes 18.6 and 18.7). For example, research in Delaware is exploring the use of seashore mallow as a transitional salt-tolerant crop because of gradual wetland migration onto agricultural lands as sea levels rise.<sup id="fnref:1e025527-9b18-4516-a50d-81dc838d37bc"><a href="#fn:379" rel="footnote" onclick="return false;">379</a></sup> Commercial and recreational fisheries and tourism depend upon living marine resources. Climate adaptation in ocean fisheries will entail coping and long-term planning responses at multiple levels of communities, industry, and management systems.<sup id="fnref:f3ec6301-914e-4cc4-8bb3-130c45709099"><a href="#fn:380" rel="footnote" onclick="return false;">380</a></sup> Fishers have traditionally switched species as needed based on ecosystem or market conditions; this will continue to be an important adaptation option, but it is increasingly constrained by regulatory approaches in fisheries.<sup id="fnref:1dfd2171-2be3-40b2-a8e2-c0df84ec462a"><a href="#fn:155" rel="footnote" onclick="return false;">155</a></sup><sup class="cm">,</sup><sup id="fnref:ad9cbd45-a115-4a2a-9e9f-9ed17a171a8b"><a href="#fn:178" rel="footnote" onclick="return false;">178</a></sup><sup class="cm">,</sup><sup id="fnref:82c7d687-eba6-4ec7-aff7-c8c417e2abe8"><a href="#fn:179" rel="footnote" onclick="return false;">179</a></sup><sup class="cm">,</sup><sup id="fnref:41fe71c8-2116-4e9e-b2d6-6730467eac64"><a href="#fn:202" rel="footnote" onclick="return false;">202</a></sup> Longer-term planning for climate adaptation has included state commissions to evaluate ocean acidification threats,<sup id="fnref:a3a5fe5c-f49b-4c6b-a008-5647194a88a7"><a href="#fn:381" rel="footnote" onclick="return false;">381</a></sup><sup class="cm">,</sup><sup id="fnref:6069a55f-d567-49e1-9cce-f7bf035398b4"><a href="#fn:382" rel="footnote" onclick="return false;">382</a></sup> federal efforts to articulate science strategies,<sup id="fnref:d9702d65-fced-4531-85ff-3009aec0c6cb"><a href="#fn:383" rel="footnote" onclick="return false;">383</a></sup><sup class="cm">,</sup><sup id="fnref:372d0974-9c5c-4501-be26-0a787ba59ec3"><a href="#fn:384" rel="footnote" onclick="return false;">384</a></sup><sup class="cm">,</sup><sup id="fnref:fdf7b559-3076-4924-a76a-21ff0c7d15e7"><a href="#fn:385" rel="footnote" onclick="return false;">385</a></sup> species vulnerability assessments,<sup id="fnref:7da52043-249d-4413-9e1a-40ed0659b2f8"><a href="#fn:143" rel="footnote" onclick="return false;">143</a></sup><sup class="cm">,</sup><sup id="fnref:0b185997-744b-4272-9381-d7b94a26d7e2"><a href="#fn:186" rel="footnote" onclick="return false;">186</a></sup> coupled social–ecological vulnerability assessments for fishing communities,<sup id="fnref:548bc141-7fd7-45bb-9c1b-e2a25bcb4e24"><a href="#fn:45" rel="footnote" onclick="return false;">45</a></sup> and planning for the potential inland migration of coastal populations due to sea level rise.<sup id="fnref:93b18ff8-bb25-4e88-a656-8beb00e8ce98"><a href="#fn:386" rel="footnote" onclick="return false;">386</a></sup></p> <aside id="box-18_6" class="section-box box clearfix"> <div class="figure-social-icons"> <a role="button" href="#" aria-label="Share this content" title="Share" class="share qtip-bottom" ></a> <div class="social-icons"> <a role="button" href="#" aria-label="Share this content on Facebook" data-fb-image="https://nca2018.globalchange.gov" data-fb-title="Fourth National Climate Assessment: Box 18.6: Building Resilience in the Chesapeake Bay Watershed" class="social-icon facebook-icon"></a> <a role="button" href="https://www.twitter.com/intent/tweet?url=https://nca2018.globalchange.gov/chapter/18%23box-18_6&amp;text=Fourth%20National%20Climate%20Assessment:%20Box%2018.6:%20Building%20Resilience%20in%20the%20Chesapeake%20Bay%20Watershed&amp;via=usgcrp&amp;hashtags=NCA4" aria-label="Share this content on Twitter" class="social-icon twitter-icon" target="_blank"></a> <a role="button" href="#" aria-label="Share the link to this content" class="social-icon link-icon"></a> <a role="button" href="mailto:?subject=Shared%20With%20You:%20Fourth%20National%20Climate%20Assessment&amp;body=Read%20this%20content%20from%20the%20Fourth%20National%20Climate%20Assessment:%20https://nca2018.globalchange.gov/chapter/18#box-18_6" aria-label="Share this content via e-mail" class="social-icon email-icon"></a> <div class="link-content"><input aria-label="Link to content" type="text" value="https://nca2018.globalchange.gov/chapter/18#box-18_6" readonly/></div> </div> </div> <h2><span class="balance-text">Box 18.6: Building Resilience in the Chesapeake Bay Watershed</span></h2> <div class="box-inner"> <p>The Chesapeake Bay watershed is experiencing stronger and more frequent storms, an increase in heavy precipitation events, increasing bay water temperatures, and a rise in sea level. These trends vary throughout the watershed and over time but are expected to continue over the next century under all scenarios considered. The trends are altering both the ecosystems and mainland and island communities of the Chesapeake Bay watershed. Achieving watershed goals would require changes in policies, programs, and/or projects to achieve restoration, sustainability, conservation, and protection goals for the entire system.</p> <p>To gain a better understanding of the likely impacts of climate change, as well as potential management solutions for the watershed, the 2014 Chesapeake Bay Watershed Agreement committed the NOAA Chesapeake Bay Program (CBP) Partnership to take action to “increase the resiliency of the Chesapeake Bay watershed, including its living resources, habitats, public infrastructure and communities, to withstand adverse impacts from changing environmental and climate conditions.” This new Bay Agreement goal builds on the 2010 Total Maximum Daily Load (TMDL) documentation and 2009 Presidential Executive Order 13508<sup id="fnref:e45c8eaf-931d-443b-8ca4-866c8ac47cf7"><a href="#fn:376" rel="footnote" onclick="return false;">376</a></sup><sup class="cm">,</sup><sup id="fnref:0ad43237-3036-4121-a34d-02080218cacf"><a href="#fn:377" rel="footnote" onclick="return false;">377</a></sup> that called for an assessment of the impacts of a changing climate on the Chesapeake Bay’s water quality and living resources. To achieve this goal and regulatory mandates, the CBP Partnership is undertaking efforts to monitor and assess trends and likely impacts of changing climatic and sea level conditions on the Chesapeake Bay ecosystem and to pursue, design, and construct restoration and protection projects to enhance resilience. The CBP Climate Resiliency Workgroup’s Management Strategy recognizes that it is important to build community and institutional capacity and to develop analytical capability to build cross-science disciplinary knowledge and better understanding of societal responses. A significant activity now underway is geared towards the midpoint assessment of progress towards the 2025 Chesapeake Bay TMDL goal for water quality standard attainment. As part of the TMDL midpoint assessment, the CBP Partnership has developed tools and procedures to quantify the effects of climate change on watershed flows and pollutant loads, storm intensity, increased estuarine temperatures, sea level rise, and ecosystem influences, including loss of tidal wetland attenuation with sea level rise. Current modeling efforts are underway to assess potential climate change impacts under a range of projected climate change outcomes for 2025 and 2050.<sup id="fnref:398bd28f-6c50-4650-9aa0-cc68b66815f9"><a href="#fn:378" rel="footnote" onclick="return false;">378</a></sup></p> <p>Addressing climate change within the context of established watershed planning and regulatory efforts is extremely complex and requires sound climate science, climate assessments, modeling, policy development, and stakeholder engagement <em>(<a href="/chapter/28#fig-28-1">Ch. 28: Adaptation, Figure 28.1</a>)</em>. The CBP Partnership is tackling this challenge on all of these fronts, with priority directed to understanding what is needed to achieve the 2025 nutrient reduction goals and the best management practices required to achieve climate-resilient rehabilitation goals.</p> </div> </aside> <p>The winter recreation industry has long considered snowmaking an adaptation to climate change.<sup id="fnref:9904987b-6eb2-42aa-b430-0f0dc9629477"><a href="#fn:387" rel="footnote" onclick="return false;">387</a></sup> Snowmaking improvements should assist with the viability of some Northeast ski areas,<sup id="fnref:69deec00-efdd-44f2-b2fd-2b92252d1bec"><a href="#fn:117" rel="footnote" onclick="return false;">117</a></sup> while new tourism opportunities emerge.<sup id="fnref:bc0f1c32-d531-41b8-8c67-fa3ee2339530"><a href="#fn:388" rel="footnote" onclick="return false;">388</a></sup></p> <p>In order to sustain and advance these and other planned efforts towards climate change adaptation and resilience, decision-makers in the Northeast need to be aware of existing constraints and emerging issues. Constraints from the management, economic, and social context are highly uncertain.<sup id="fnref:7e02aaef-bbc5-4d00-a53e-31ee9e8095f6"><a href="#fn:389" rel="footnote" onclick="return false;">389</a></sup> These efforts have faced a variety of barriers and limitations, including lack of funding and jurisdictional and legal constraints.<sup id="fnref:db6fe9da-6a58-4454-839e-412aff38de76"><a href="#fn:390" rel="footnote" onclick="return false;">390</a></sup><sup class="cm">,</sup><sup id="fnref:ffbe2ded-9018-4629-9865-34b2e544d337"><a href="#fn:391" rel="footnote" onclick="return false;">391</a></sup> In many cases, adaptation has been limited to coping responses that address short-term needs and are feasible within the current institutional context, whereas longer-term, more transformative efforts will likely require complex policy transition planning and frameworks that can address social and economic equality.<sup id="fnref:6b1badcf-9d18-4a98-9807-ade7ed0bc1df"><a href="#fn:363" rel="footnote" onclick="return false;">363</a></sup> The need for solutions that support industry and community flexibility in responding to climate-related changes has also been recognized.<sup id="fnref:548bc141-7fd7-45bb-9c1b-e2a25bcb4e24"><a href="#fn:45" rel="footnote" onclick="return false;">45</a></sup><sup class="cm">,</sup><sup id="fnref:ad9cbd45-a115-4a2a-9e9f-9ed17a171a8b"><a href="#fn:178" rel="footnote" onclick="return false;">178</a></sup></p> <aside id="box-18_7" class="section-box box clearfix"> <div class="figure-social-icons"> <a role="button" href="#" aria-label="Share this content" title="Share" class="share qtip-bottom" ></a> <div class="social-icons"> <a role="button" href="#" aria-label="Share this content on Facebook" data-fb-image="https://nca2018.globalchange.gov" data-fb-title="Fourth National Climate Assessment: Box 18.7: Science for Balancing Wildlife and Human Needs in the Face of Sea Level Rise" class="social-icon facebook-icon"></a> <a role="button" href="https://www.twitter.com/intent/tweet?url=https://nca2018.globalchange.gov/chapter/18%23box-18_7&amp;text=Fourth%20National%20Climate%20Assessment:%20Box%2018.7:%20Science%20for%20Balancing%20Wildlife%20and%20Human%20Needs%20in%20the%20Face%20of%20Sea%20Level%20Rise&amp;via=usgcrp&amp;hashtags=NCA4" aria-label="Share this content on Twitter" class="social-icon twitter-icon" target="_blank"></a> <a role="button" href="#" aria-label="Share the link to this content" class="social-icon link-icon"></a> <a role="button" href="mailto:?subject=Shared%20With%20You:%20Fourth%20National%20Climate%20Assessment&amp;body=Read%20this%20content%20from%20the%20Fourth%20National%20Climate%20Assessment:%20https://nca2018.globalchange.gov/chapter/18#box-18_7" aria-label="Share this content via e-mail" class="social-icon email-icon"></a> <div class="link-content"><input aria-label="Link to content" type="text" value="https://nca2018.globalchange.gov/chapter/18#box-18_7" readonly/></div> </div> </div> <h2><span class="balance-text">Box 18.7: Science for Balancing Wildlife and Human Needs in the Face of Sea Level Rise</span></h2> <div class="box-inner"> <div class="float-right col-lg-7"> <section id="fig-18-14" class="offset-lg-1 col-lg-7 big-figure photo"> <h2>Plover Case Study</h2> <div style="width: 100%;" class="figure-inner"> <a class="lightbox" href="/img/figure/figure18_14.png" data-title='Plover Case Study'> <picture> <source media="(min-width: 1200px)" data-srcset="/img/styles/figure18_14-1200.png, /img/styles/figure18_14-1200@2x.png 2x"> <source media="(min-width: 992px)" data-srcset="/img/styles/figure18_14-992.png, /img/styles/figure18_14-992@2x.png 2x"> <source media="(min-width: 768px)" data-srcset="/img/styles/figure18_14-768.png, /img/styles/figure18_14-768@2x.png 2x"> <source media="(min-width: 480px)" data-srcset="/img/styles/figure18_14-480.png, /img/styles/figure18_14-480@2x.png 2x"> <source media="(min-width: 320px)" data-srcset="/img/styles/figure18_14-320.png, /img/styles/figure18_14-320@2x.png 2x"> <img data-src="/img/figure/figure18_14.png" alt="Plover Case Study" class="big-img img-fluid lazyload" aria-describedby="description-18-14" /> </picture> </a> <aside id="description-18-14" class="sr-only">Three photos show examples of suitable Atlantic coastal habitats for the piping plover shorebird. Photo A shows a wide, flat beach lined with broken shells. Photo B shows a beach landscape of small dunes with very little vegetation. Photo C shows piping plover chicks nestled in a shallow, sandy nest at Trustom Pond National Wildlife Refuge in Rhode Island.</aside> <div class="caption" data-shortcaption="<strong>Figure 18.14:</strong> These photographs show suitable piping plover habitat for (c) rearing chicks along the U.S. Atlantic …" data-href="/img/figure/figure18_14.png" data-title='Plover Case Study'><strong>Figure 18.14: </strong>These photographs show suitable piping plover habitat for (c) rearing chicks along the U.S. Atlantic coast. Photo credits: (a, b) Sara Zeigler, U.S. Geological Survey; (c) Josh Seibel, U.S. Fish and Wildlife Service.</div> </div> </section> </div> <p>Policymakers, agencies, and natural resource managers are under increasing pressure to manage coastal areas to meet social, economic, and natural resource demands, particularly as sea levels rise. Scientific knowledge of coastal processes and habitat use can support decision-makers as they balance these often-conflicting human and ecological needs. In collaboration with a wide network of natural resource professionals from state and federal agencies (including the U.S. Fish and Wildlife Service and National Park Service) and private conservation organizations, a research team from the U.S. Geological Survey (USGS) is conducting research and developing tools to identify suitable coastal habitats for species of concern, such as the piping plover (<em>Charadrius melodus</em>)—an ecologically important species with low population numbers—under a variety of sea level rise scenarios. The multidisciplinary USGS team uses historical and current habitat availability and coastal characteristics to develop models that forecast likely future habitat from Maine to North Carolina.<sup id="fnref:33a36ad7-c40f-4267-a858-54d035a0ea04"><a href="#fn:392" rel="footnote" onclick="return false;">392</a></sup><sup class="cm">,</sup><sup id="fnref:d2f899db-5f8a-49e1-9ea8-eccbdd33cbbb"><a href="#fn:393" rel="footnote" onclick="return false;">393</a></sup> The collaborative partners, both researchers and managers, are critical to the program: they aid in data collection efforts through the “iPlover” smartphone application<sup id="fnref:08d1f5db-b8aa-4146-9dd3-39cffd1f5f58"><a href="#fn:394" rel="footnote" onclick="return false;">394</a></sup> and help scientists focus research on specific management questions. Because these shorebirds favor sandy beaches that overwash frequently during storms, the resulting habitat maps also define current and future areas of high hazard exposure for humans and infrastructure. Land-use planners can use results to determine optimal locations for constructing recreational facilities that minimize impacts on sensitive habitats and have a low probability of being overwashed. Alternatively, results can help resource managers proactively protect the highest-quality habitats to meet near- and long-term conservation goals and, in so doing, increase beach access for users by reducing human–bird conflicts and improving the certainty of beach availability for recreational use.</p> </div> </aside> <p>Earth’s changing climate is one of several stressors on human and natural systems, and it can work to exacerbate existing vulnerabilities and inequalities. Implementing resilience planning and climate change adaptation in order to preserve the cultural, economic, and natural heritage of the Northeast would require ongoing collaboration among tribal, rural, and urban communities as well as municipal, state, tribal, and federal agencies. The number and scope of existing adaptation plans in the Northeast show that many people in the region consider this heritage to be important.</p> </div> </div> </section> <section id="section-98" class="container-fluid report-section no-spacer-2 blackish glossary clearfix"> <div class="offset-lg-1 col-lg-7 node-narrative" aria-flowto="content-18-98"> </div> <div id="content-18-98"><section id="traceable-accounts" class="container-fluid"> <div class="row report-section"> <div class="col-lg-12 traceable-accounts-header"> <h2 role="button" class="btn-traceable-accounts">TRACEABLE ACCOUNTS <i class="fa fa-chevron-circle-down"></i></h2> </div> <div class="traceable-accounts"> <div class="offset-lg-1 col-lg-7"> <h3>Process Description</h3> <p>It is understood that authors for a regional assessment must have scientific and regional credibility in the topical areas. Each author must also be willing and interested in serving in this capacity. Author selection for the Northeast chapter proceeded as follows:</p> <p>First, the U.S. Global Change Research Program (USGCRP) released a Call for Public Nominations. Interested scientists were either nominated or self-nominated and their names placed into a database. The concurrent USGCRP Call for Public Nominations also solicited scientists to serve as chapter leads. Both lists were reviewed by the USGCRP with input from the coordinating lead author (CLA) and from the National Climate Assessment (NCA) Steering Committee. All regional chapter lead (CL) authors were selected by the USGCRP at the same time. The CLA and CL then convened to review the author nominations list as a “first cut” in identifying potential chapter authors for this chapter. Using their knowledge of the Northeast’s landscape and challenges, the CLA and CL used the list of national chapter topics that would be most relevant for the region. That topical list was associated with scientific expertise and a subset of the author list.</p> <p>In the second phase, the CLA and CL used both the list of nominees as well as other scientists from around the region to build an author team that was representative of the Northeast’s geography, institutional affiliation (federal agencies and academic and research institutions), depth of subject matter expertise, and knowledge of selected regional topics. Eleven authors were thus identified by December 2016, and the twelfth author was invited in April 2017 to better represent tribal knowledge in the chapter.</p> <p>Lastly, the authors were contacted by the CL to determine their level of interest and willingness to serve as experts on the region's topics of water resources, agriculture and natural resources, oceans and marine ecosystems, coastal issues, health, and the built environment and urban issues.</p> <h3>On the due diligence of determining the region’s topical areas of focus</h3> <p>The first two drafts of the Northeast chapter were structured around the themes of water resources, agriculture and natural resources, oceans and marine ecosystems, coastal issues, health, and the built environment and urban issues. During the USGCRP-sponsored Regional Engagement Workshop held in Boston on February 10, 2017, feedback was solicited from approximately 150 online participants (comprising transportation officials, coastal managers, urban planners, city managers, fisheries managers, forest managers, state officials, and others) around the Northeast and other parts of the United States, on both the content of these topical areas and important focal areas for the region. Additional inputs were solicited from other in-person meetings such as the ICNet workshop and American Association of Geographers meetings, both held in April 2017. All feedback was then compiled with the lessons learned from the USGCRP CLA-CL meeting in Washington, DC, also held in April 2017. On April 28, 2017, the author team met in Burlington, Vermont, and reworked the chapter’s structure around the risk-based framing of interest to 1) changing seasonality, 2) coastal/ocean resources, 3) rural communities and livelihoods, 4) urban interconnectedness, and 5) adaptation.</p> <hr/> <h2 class="text-center">KEY MESSAGES</h2> <nav class="nav nav-tabs justify-content-center" id="ta-tab" role="tablist"> <a class="nav-item nav-link active" id="ta-1-tab" data-toggle="tab" href="#tab-1" role="tab" aria-controls="tab-1" aria-expanded="true">1</a> <a class="nav-item nav-link" id="ta-2-tab" data-toggle="tab" href="#tab-2" role="tab" aria-controls="tab-2" aria-expanded="false">2</a> <a class="nav-item nav-link" id="ta-3-tab" data-toggle="tab" href="#tab-3" role="tab" aria-controls="tab-3" aria-expanded="false">3</a> <a class="nav-item nav-link" id="ta-4-tab" data-toggle="tab" href="#tab-4" role="tab" aria-controls="tab-4" aria-expanded="false">4</a> <a class="nav-item nav-link" id="ta-5-tab" data-toggle="tab" href="#tab-5" role="tab" aria-controls="tab-5" aria-expanded="false">5</a> </nav> <div class="tab-content" id="nav-tabContent"> <div class="tab-pane fade active show" id="tab-1" role="tabpanel" aria-labelledby="ta-1-tab" aria-expanded="true"> <h3>Key Message 1: Changing Seasons Affect Rural Ecosystems, Environments, and Economies</h3> <blockquote class="blockquote"> <p>The seasonality of the Northeast is central to the region’s sense of place and is an important driver of rural economies. Less distinct seasons with milder winter and earlier spring conditions (<em>very high confidence</em>) are already altering ecosystems and environments (<em>high confidence</em>) in ways that adversely impact tourism (<em>very high confidence</em>), farming (<em>high confidence</em>), and forestry (<em>medium confidence</em>). The region’s rural industries and livelihoods are at risk from further changes to forests, wildlife, snowpack, and streamflow (<em>likely</em>).</p> </blockquote> <h4>Description of evidence base</h4> <p>Multiple lines of evidence show that changes in seasonal temperature and precipitation cycles have been observed in the Northeast.<sup id="fnref:56148bf0-62f5-4ec7-8dbc-1e356e40bd42"><a href="#fn:3" rel="footnote" onclick="return false;">3</a></sup><sup class="cm">,</sup><sup id="fnref:4de020df-232e-45f8-8d44-f864565f0b84"><a href="#fn:4" rel="footnote" onclick="return false;">4</a></sup><sup class="cm">,</sup><sup id="fnref:73760c11-7b97-4876-a24f-8fb54b01bca9"><a href="#fn:109" rel="footnote" onclick="return false;">109</a></sup><sup class="cm">,</sup><sup id="fnref:f8ba9ecd-1983-4a78-8fd7-f59e1ab07908"><a href="#fn:110" rel="footnote" onclick="return false;">110</a></sup><sup class="cm">,</sup><sup id="fnref:29eee9a5-5945-4651-b199-764cb2400aed"><a href="#fn:124" rel="footnote" onclick="return false;">124</a></sup><sup class="cm">,</sup><sup id="fnref:55f15317-d7a2-4ae3-99f1-5e77129d2dfe"><a href="#fn:154" rel="footnote" onclick="return false;">154</a></sup><sup class="cm">,</sup><sup id="fnref:ee25e7ff-68f2-4935-81d9-b012b0aa88c5"><a href="#fn:158" rel="footnote" onclick="return false;">158</a></sup> Projected increases in winter air temperatures under lower and higher scenarios (RCP4.5 and RCP8.5)<sup id="fnref:56148bf0-62f5-4ec7-8dbc-1e356e40bd42"><a href="#fn:3" rel="footnote" onclick="return false;">3</a></sup><sup class="cm">,</sup><sup id="fnref:4de020df-232e-45f8-8d44-f864565f0b84"><a href="#fn:4" rel="footnote" onclick="return false;">4</a></sup> will result in shorter and milder cold seasons, a longer frost-free season,<sup id="fnref:56148bf0-62f5-4ec7-8dbc-1e356e40bd42"><a href="#fn:3" rel="footnote" onclick="return false;">3</a></sup> and decreased regional snow cover and earlier snowmelt.<sup id="fnref:25c6b777-dbb6-49a7-8b04-4b509b58966b"><a href="#fn:108" rel="footnote" onclick="return false;">108</a></sup><sup class="cm">,</sup><sup id="fnref:73760c11-7b97-4876-a24f-8fb54b01bca9"><a href="#fn:109" rel="footnote" onclick="return false;">109</a></sup><sup class="cm">,</sup><sup id="fnref:f8ba9ecd-1983-4a78-8fd7-f59e1ab07908"><a href="#fn:110" rel="footnote" onclick="return false;">110</a></sup><sup class="cm">,</sup><sup id="fnref:3c756995-85c6-4709-a271-a22b37d72f8e"><a href="#fn:395" rel="footnote" onclick="return false;">395</a></sup><sup class="cm">,</sup><sup id="fnref:8c1a58d2-fd51-4404-b9cf-354edf9ba859"><a href="#fn:396" rel="footnote" onclick="return false;">396</a></sup><sup class="cm">,</sup><sup id="fnref:de18eab1-afc3-4c2c-bfb9-13f9d377507c"><a href="#fn:397" rel="footnote" onclick="return false;">397</a></sup> Observed seasonal changes to streamflows in response to increased winter precipitation, changes in snow hydrology,<sup id="fnref:f9dc4907-65ae-4582-a285-29b5d4732a9f"><a href="#fn:112" rel="footnote" onclick="return false;">112</a></sup><sup class="cm">,</sup><sup id="fnref:ed73b71b-e2bd-41b4-8cf8-b6f293e951da"><a href="#fn:138" rel="footnote" onclick="return false;">138</a></sup><sup class="cm">,</sup><sup id="fnref:208a7c69-bbda-45e4-bded-c44fd8ad21e5"><a href="#fn:139" rel="footnote" onclick="return false;">139</a></sup><sup class="cm">,</sup><sup id="fnref:75c746be-4e8b-48b8-97f9-4e9d31d5df21"><a href="#fn:140" rel="footnote" onclick="return false;">140</a></sup> and an earlier but prolonged transition into spring<sup id="fnref:74f1e179-6237-49cd-ae8c-acf2980a5803"><a href="#fn:68" rel="footnote" onclick="return false;">68</a></sup> are projected to continue.<sup id="fnref:dc7250b8-b20f-4b9f-818e-1729746d08c2"><a href="#fn:105" rel="footnote" onclick="return false;">105</a></sup></p> <p>These changes are affecting a number of plant and animal species throughout the region, including earlier bloom times and leaf-out,<sup id="fnref:3307a62c-ed45-4399-bcb9-f77e71b1e626"><a href="#fn:71" rel="footnote" onclick="return false;">71</a></sup><sup class="cm">,</sup><sup id="fnref:68d9349a-ec2f-4a72-b0f7-35ebccf1d0bb"><a href="#fn:73" rel="footnote" onclick="return false;">73</a></sup><sup class="cm">,</sup><sup id="fnref:ee25e7ff-68f2-4935-81d9-b012b0aa88c5"><a href="#fn:158" rel="footnote" onclick="return false;">158</a></sup> spawning,<sup id="fnref:0ce13198-a924-4762-bd5c-00519d8ae3fc"><a href="#fn:164" rel="footnote" onclick="return false;">164</a></sup> migration,<sup id="fnref:39d1cdc8-6302-4642-a4e3-457ee307946f"><a href="#fn:84" rel="footnote" onclick="return false;">84</a></sup><sup class="cm">,</sup><sup id="fnref:18e57808-1999-4c24-911d-abce180ac68b"><a href="#fn:166" rel="footnote" onclick="return false;">166</a></sup><sup class="cm">,</sup><sup id="fnref:f86791eb-c693-466f-9fb0-ac1db4ea40bc"><a href="#fn:398" rel="footnote" onclick="return false;">398</a></sup> and insect emergence,<sup id="fnref:5d339b6f-883e-4cec-afe2-e75a0f638730"><a href="#fn:74" rel="footnote" onclick="return false;">74</a></sup> as well as longer growing seasons,<sup id="fnref:2cf345a8-4496-4f48-899f-4cbc020b8039"><a href="#fn:72" rel="footnote" onclick="return false;">72</a></sup> delayed senescence, and enhanced leaf color change.<sup id="fnref:f947ac52-b0ce-4279-9925-63584393c70b"><a href="#fn:103" rel="footnote" onclick="return false;">103</a></sup> Milder winters will likely contribute to the range expansion of wildlife and insect species,<sup id="fnref:1985bce4-5738-4ba6-ac9a-0d676d2ce4a3"><a href="#fn:399" rel="footnote" onclick="return false;">399</a></sup> increase the size of certain herbivore populations<sup id="fnref:c94e7da1-3648-49d7-8dc2-6ca97ec26738"><a href="#fn:78" rel="footnote" onclick="return false;">78</a></sup> and their exposure to parasitism,<sup id="fnref:440bd774-59c5-420f-9fa3-460ece82c2b4"><a href="#fn:81" rel="footnote" onclick="return false;">81</a></sup><sup class="cm">,</sup><sup id="fnref:2ffa1be3-d6af-4c87-a1c3-553777fb75d0"><a href="#fn:82" rel="footnote" onclick="return false;">82</a></sup> and increase the vulnerability of an array of plant and animal species to change.<sup id="fnref:0095368f-c79d-47b5-89bd-856b38752d03"><a href="#fn:66" rel="footnote" onclick="return false;">66</a></sup><sup class="cm">,</sup><sup id="fnref:f947ac52-b0ce-4279-9925-63584393c70b"><a href="#fn:103" rel="footnote" onclick="return false;">103</a></sup><sup class="cm">,</sup><sup id="fnref:7da52043-249d-4413-9e1a-40ed0659b2f8"><a href="#fn:143" rel="footnote" onclick="return false;">143</a></sup></p> <p>Warmer winters will likely contribute to declining yields for specialty crops<sup id="fnref:b6e8b67c-7042-4b85-b432-033983875e14"><a href="#fn:35" rel="footnote" onclick="return false;">35</a></sup> and fewer operational days for logging<sup id="fnref:8a427d3d-8b74-4ed8-8ec0-530b4a2fcdc1"><a href="#fn:88" rel="footnote" onclick="return false;">88</a></sup> and snow-dependent recreation.<sup id="fnref:bff3f502-9bc7-4d5f-859f-636a30c71624"><a href="#fn:115" rel="footnote" onclick="return false;">115</a></sup><sup class="cm">,</sup><sup id="fnref:abb5bf8c-998f-4fe9-b53e-bc8e5dbc6abe"><a href="#fn:116" rel="footnote" onclick="return false;">116</a></sup><sup class="cm">,</sup><sup id="fnref:80dd6dfe-4dea-4253-a65b-53f620805f9a"><a href="#fn:118" rel="footnote" onclick="return false;">118</a></sup> Excess moisture is the leading cause of crop loss in the Northeast,<sup id="fnref:b6e8b67c-7042-4b85-b432-033983875e14"><a href="#fn:35" rel="footnote" onclick="return false;">35</a></sup> and the observed increase in precipitation amount, intensity, and persistence is projected to continue under both lower and higher scenarios.<sup id="fnref:56148bf0-62f5-4ec7-8dbc-1e356e40bd42"><a href="#fn:3" rel="footnote" onclick="return false;">3</a></sup><sup class="cm">,</sup><sup id="fnref:4de020df-232e-45f8-8d44-f864565f0b84"><a href="#fn:4" rel="footnote" onclick="return false;">4</a></sup><sup class="cm">,</sup><sup id="fnref:29eee9a5-5945-4651-b199-764cb2400aed"><a href="#fn:124" rel="footnote" onclick="return false;">124</a></sup><sup class="cm">,</sup><sup id="fnref:588d6d3e-8c99-4f9c-971b-fcee898756bd"><a href="#fn:125" rel="footnote" onclick="return false;">125</a></sup></p> <h4>Major uncertainties</h4> <p>Warmer fall temperatures affect senescence, fruit ripening, migration, and hibernation, but are less well studied in the region<sup id="fnref:f773b2e9-428c-455b-82f9-a4dbf065d44b"><a href="#fn:98" rel="footnote" onclick="return false;">98</a></sup> and must be considered alongside other climatic factors such as drought. Projections for summer rainfall in the Northeast are uncertain,<sup id="fnref:4de020df-232e-45f8-8d44-f864565f0b84"><a href="#fn:4" rel="footnote" onclick="return false;">4</a></sup> but evaporative demand for surface moisture is expected to increase with projected increases in summer temperatures.<sup id="fnref:56148bf0-62f5-4ec7-8dbc-1e356e40bd42"><a href="#fn:3" rel="footnote" onclick="return false;">3</a></sup><sup class="cm">,</sup><sup id="fnref:4de020df-232e-45f8-8d44-f864565f0b84"><a href="#fn:4" rel="footnote" onclick="return false;">4</a></sup> Water use is highest during the warm season;<sup id="fnref:d4e6a0d4-8428-40e4-8dd9-34b0276d0d40"><a href="#fn:141" rel="footnote" onclick="return false;">141</a></sup><sup class="cm">,</sup><sup id="fnref:81bd7c9e-d465-4eb4-a0d9-5b3f244c839e"><a href="#fn:400" rel="footnote" onclick="return false;">400</a></sup> how much this will affect water availability for agricultural use depends on the frequency and intensity of drought during the growing season.<sup id="fnref:5e012394-93f7-431c-8e19-1022945a6506"><a href="#fn:302" rel="footnote" onclick="return false;">302</a></sup></p> <h4>Description of confidence and likelihood</h4> <p>There is <em>high confidence</em> that the combined effects of increasing winter and early-spring temperatures and increasing winter precipitation (<em>very high confidence</em>) are changing aquatic and terrestrial habitats and affecting the species adapted to them. The impact of changing seasonal temperature, moisture conditions, and habitats will vary geographically and impact interactions among species. It is <em>likely</em> that some will not adapt. There is <em>high confidence</em> that over the next century, some species will decline while other species introduced to the region thrive as conditions change. There is <em>high confidence</em> that increased precipitation in early spring will negatively impact farming, but the response of vegetation to future changes in seasonal temperature and moisture conditions depends on plant hardiness for <em>medium confidence</em> in the level of risk to specialty crops and forestry. A reduction in the length of the snow season by mid-century is <em>highly likely</em> under lower and higher scenarios, with <em>very high confidence</em> that the winter recreation industry will be negatively impacted by the end of the century under lower and higher scenarios (RCP4.5 and RCP8.5).</p> </div><!-- key message --> <div class="tab-pane fade" id="tab-2" role="tabpanel" aria-labelledby="ta-2-tab" aria-expanded="true"> <h3>Key Message 2: Changing Coastal and Ocean Habitats, Ecosystem Services, and Livelihoods</h3> <blockquote class="blockquote"> <p>The Northeast’s coast and ocean support commerce, tourism, and recreation that are important to the region’s economy and way of life. Warmer ocean temperatures, sea level rise, and ocean acidification (<em>high confidence</em>) threaten these services (<em>likely</em>)<em>.</em> The adaptive capacity of marine ecosystems and coastal communities will influence ecological and socioeconomic outcomes as climate risks increase (<em>high confidence</em>)<em>.</em></p> </blockquote> <h4>Description of evidence base</h4> <p>Warming rates on the Northeast Shelf have been higher than experienced in other ocean regions,<sup id="fnref:fb1f46cd-8b70-4a44-923a-66df61ffa0be"><a href="#fn:39" rel="footnote" onclick="return false;">39</a></sup> and climate projections indicate that warming in this region will continue to exceed rates expected in other ocean regions.<sup id="fnref:f44f9474-6d98-43a9-8d7f-ee808ecaf41e"><a href="#fn:48" rel="footnote" onclick="return false;">48</a></sup><sup class="cm">,</sup><sup id="fnref:0826d3d5-2742-415f-a9de-3621c4b79442"><a href="#fn:49" rel="footnote" onclick="return false;">49</a></sup> Multiple lines of research have shown that changes in ocean temperatures and acidification have resulted in distribution,<sup id="fnref:8b09bbe8-9f42-412e-a4d6-ef4889f56556"><a href="#fn:7" rel="footnote" onclick="return false;">7</a></sup><sup class="cm">,</sup><sup id="fnref:71910705-6b0b-4f61-8249-5a2d444ad5fb"><a href="#fn:8" rel="footnote" onclick="return false;">8</a></sup><sup class="cm">,</sup><sup id="fnref:8576d351-1b18-4e20-a651-4ab791c17b51"><a href="#fn:10" rel="footnote" onclick="return false;">10</a></sup> productivity,<sup id="fnref:fb1f46cd-8b70-4a44-923a-66df61ffa0be"><a href="#fn:39" rel="footnote" onclick="return false;">39</a></sup><sup class="cm">,</sup><sup id="fnref:e38a7ce3-351a-4c6b-8afe-b9080f69582e"><a href="#fn:173" rel="footnote" onclick="return false;">173</a></sup><sup class="cm">,</sup><sup id="fnref:867d1e64-e364-496c-9e0c-1593182bb40d"><a href="#fn:191" rel="footnote" onclick="return false;">191</a></sup><sup class="cm">,</sup><sup id="fnref:6d463f21-0ac9-48a2-a86b-41a4b46d8a95"><a href="#fn:401" rel="footnote" onclick="return false;">401</a></sup> and phenology shifts<sup id="fnref:1dfd2171-2be3-40b2-a8e2-c0df84ec462a"><a href="#fn:155" rel="footnote" onclick="return false;">155</a></sup><sup class="cm">,</sup><sup id="fnref:ee25e7ff-68f2-4935-81d9-b012b0aa88c5"><a href="#fn:158" rel="footnote" onclick="return false;">158</a></sup><sup class="cm">,</sup><sup id="fnref:321b9ab8-573b-4f45-989d-8d1c978c7626"><a href="#fn:163" rel="footnote" onclick="return false;">163</a></sup><sup class="cm">,</sup><sup id="fnref:0ce13198-a924-4762-bd5c-00519d8ae3fc"><a href="#fn:164" rel="footnote" onclick="return false;">164</a></sup><sup class="cm">,</sup><sup id="fnref:18e57808-1999-4c24-911d-abce180ac68b"><a href="#fn:166" rel="footnote" onclick="return false;">166</a></sup> in marine populations. These shifts have impacted marine fisheries and prompted industry adaptations to changes.<sup id="fnref:1dfd2171-2be3-40b2-a8e2-c0df84ec462a"><a href="#fn:155" rel="footnote" onclick="return false;">155</a></sup><sup class="cm">,</sup><sup id="fnref:f147452b-e846-4fdd-aad9-3110322e071c"><a href="#fn:176" rel="footnote" onclick="return false;">176</a></sup><sup class="cm">,</sup><sup id="fnref:e26419d1-d4f6-49ff-bf8a-352478b39cce"><a href="#fn:200" rel="footnote" onclick="return false;">200</a></sup></p> <p>Research also shows that sea level rise has been<sup id="fnref:b58704d1-b4ec-46d0-9dd5-e7573523951e"><a href="#fn:12" rel="footnote" onclick="return false;">12</a></sup><sup class="cm">,</sup><sup id="fnref:480ff362-8434-4861-a8bb-2dc6615bdcdc"><a href="#fn:46" rel="footnote" onclick="return false;">46</a></sup><sup class="cm">,</sup><sup id="fnref:70b9fb1f-c611-4bb7-ad28-ea752489a5de"><a href="#fn:205" rel="footnote" onclick="return false;">205</a></sup><sup class="cm">,</sup><sup id="fnref:df484606-34bd-40f9-b6f7-55980a18a737"><a href="#fn:206" rel="footnote" onclick="return false;">206</a></sup> and will be higher in the Northeast with respect to the rest of the United States<sup id="fnref:b58704d1-b4ec-46d0-9dd5-e7573523951e"><a href="#fn:12" rel="footnote" onclick="return false;">12</a></sup><sup class="cm">,</sup><sup id="fnref:0e116266-7679-409f-b1d6-99c31edfcd9e"><a href="#fn:249" rel="footnote" onclick="return false;">249</a></sup><sup class="cm">,</sup><sup id="fnref:9d9fd9a7-2def-4cf2-8e2e-2c23423f0a6e"><a href="#fn:250" rel="footnote" onclick="return false;">250</a></sup><sup class="cm">,</sup><sup id="fnref:38924fa0-a0dd-44c9-a2a0-366ca610b280"><a href="#fn:251" rel="footnote" onclick="return false;">251</a></sup> due largely to vertical land movement,<sup id="fnref:a26008f1-a98f-45f7-b964-9dda3dee8a0c"><a href="#fn:207" rel="footnote" onclick="return false;">207</a></sup><sup class="cm">,</sup><sup id="fnref:fe939844-ef16-412c-afe6-42017bad20d5"><a href="#fn:208" rel="footnote" onclick="return false;">208</a></sup><sup class="cm">,</sup><sup id="fnref:10fe1f35-74b2-4636-a0b0-a1f85879367e"><a href="#fn:209" rel="footnote" onclick="return false;">209</a></sup> varying atmospheric shifts and ocean dynamics,<sup id="fnref:199b0e91-24ab-429c-ab3f-1930b96c62a0"><a href="#fn:210" rel="footnote" onclick="return false;">210</a></sup><sup class="cm">,</sup><sup id="fnref:143752b0-3899-41fe-963b-5b040305a5be"><a href="#fn:211" rel="footnote" onclick="return false;">211</a></sup><sup class="cm">,</sup><sup id="fnref:1724fddf-0454-4565-a66e-bf17d47a48ce"><a href="#fn:212" rel="footnote" onclick="return false;">212</a></sup><sup class="cm">,</sup><sup id="fnref:c02e02f3-5a54-40ab-9f09-76e98edcbd48"><a href="#fn:213" rel="footnote" onclick="return false;">213</a></sup><sup class="cm">,</sup><sup id="fnref:18a2427b-fb63-48b1-8b74-fd476a4cac1f"><a href="#fn:215" rel="footnote" onclick="return false;">215</a></sup><sup class="cm">,</sup><sup id="fnref:9a5f3738-4283-4df2-adb6-8a0cac785d22"><a href="#fn:252" rel="footnote" onclick="return false;">252</a></sup> and ice mass loss from the polar regions.<sup id="fnref:4531ff9e-d432-4564-9b72-2d334532ceb8"><a href="#fn:214" rel="footnote" onclick="return false;">214</a></sup> High tide flooding has increased<sup id="fnref:91aeffdb-e82f-4645-abe9-f6ea6909e979"><a href="#fn:216" rel="footnote" onclick="return false;">216</a></sup><sup class="cm">,</sup><sup id="fnref:048006a1-a72d-44a1-bdab-fff317c842f7"><a href="#fn:402" rel="footnote" onclick="return false;">402</a></sup> and will continue to increase,<sup id="fnref:bbf3043e-9999-4f0e-8d0c-6012450d9d84"><a href="#fn:403" rel="footnote" onclick="return false;">403</a></sup> and storm surges due to stronger and more frequent hurricanes<sup id="fnref:75cf1c0b-cc62-4ca4-96a7-082afdfe2ab1"><a href="#fn:50" rel="footnote" onclick="return false;">50</a></sup><sup class="cm">,</sup><sup id="fnref:30f063e3-4595-4c30-8fc2-917b12b7dca6"><a href="#fn:254" rel="footnote" onclick="return false;">254</a></sup><sup class="cm">,</sup><sup id="fnref:52ce1b63-1b04-4728-9f1b-daee39af665e"><a href="#fn:255" rel="footnote" onclick="return false;">255</a></sup> have been and will be amplified by sea level rise.<sup id="fnref:b072d10e-db78-421e-a708-e2bdcb25de6e"><a href="#fn:217" rel="footnote" onclick="return false;">217</a></sup><sup class="cm">,</sup><sup id="fnref:be9c98a9-915f-4d78-80b9-239b70f93ae2"><a href="#fn:220" rel="footnote" onclick="return false;">220</a></sup><sup class="cm">,</sup><sup id="fnref:728f4919-d8c6-4749-968e-18a16550540b"><a href="#fn:221" rel="footnote" onclick="return false;">221</a></sup><sup class="cm">,</sup><sup id="fnref:493e26f3-3374-43b9-ad00-f6581ac6877b"><a href="#fn:289" rel="footnote" onclick="return false;">289</a></sup> Climate-related coastal impacts on the landscape include greater potential for coastal flooding, erosion, overwash, barrier island breaching and disaggregation, and marsh conversion to open water,<sup id="fnref:b58704d1-b4ec-46d0-9dd5-e7573523951e"><a href="#fn:12" rel="footnote" onclick="return false;">12</a></sup><sup class="cm">,</sup><sup id="fnref:91aeffdb-e82f-4645-abe9-f6ea6909e979"><a href="#fn:216" rel="footnote" onclick="return false;">216</a></sup><sup class="cm">,</sup><sup id="fnref:97387e44-8bfc-413a-948c-e6dc67f5e7cd"><a href="#fn:223" rel="footnote" onclick="return false;">223</a></sup><sup class="cm">,</sup><sup id="fnref:15451c8d-0add-40c7-a7e6-c286ccbf76f6"><a href="#fn:226" rel="footnote" onclick="return false;">226</a></sup><sup class="cm">,</sup><sup id="fnref:8de8f6f9-4357-4630-afd5-a6ea5c79d25a"><a href="#fn:256" rel="footnote" onclick="return false;">256</a></sup><sup class="cm">,</sup><sup id="fnref:f42ac321-5f3f-4222-a273-b2064a727ffb"><a href="#fn:257" rel="footnote" onclick="return false;">257</a></sup><sup class="cm">,</sup><sup id="fnref:1ddd36b9-851b-48ac-a9f6-b5fee00fa092"><a href="#fn:258" rel="footnote" onclick="return false;">258</a></sup><sup class="cm">,</sup><sup id="fnref:3dfa60a1-5063-41e1-80c7-c202d68fef32"><a href="#fn:259" rel="footnote" onclick="return false;">259</a></sup><sup class="cm">,</sup><sup id="fnref:1afa6fa0-959e-4b0e-a327-5feb744293a4"><a href="#fn:263" rel="footnote" onclick="return false;">263</a></sup><sup class="cm">,</sup><sup id="fnref:a2887179-dcd1-4831-b274-035f4699f859"><a href="#fn:279" rel="footnote" onclick="return false;">279</a></sup><sup class="cm">,</sup><sup id="fnref:afaa45d6-8934-47ad-b69e-e1567f1217fc"><a href="#fn:404" rel="footnote" onclick="return false;">404</a></sup> which will directly affect the ability of ecosystems to sustain many of the services they provide. Changes to salt marshes in response to sea level rise have already been observed in some coastal settings in the region, although their impacts are site specific and variable.<sup id="fnref:feb05a46-1a26-4007-85d7-d455699e651d"><a href="#fn:265" rel="footnote" onclick="return false;">265</a></sup><sup class="cm">,</sup><sup id="fnref:10d8123f-e4c0-402a-98bd-84e2a156686b"><a href="#fn:266" rel="footnote" onclick="return false;">266</a></sup><sup class="cm">,</sup><sup id="fnref:86496fac-2211-4e7b-a8a5-52d45f9b787a"><a href="#fn:267" rel="footnote" onclick="return false;">267</a></sup><sup class="cm">,</sup><sup id="fnref:cf22595d-dd65-41de-9be2-d2a7d8e32f94"><a href="#fn:268" rel="footnote" onclick="return false;">268</a></sup><sup class="cm">,</sup><sup id="fnref:e5dd9ecb-4526-4d23-b960-6b4b34ea3a38"><a href="#fn:269" rel="footnote" onclick="return false;">269</a></sup><sup class="cm">,</sup><sup id="fnref:194da562-dd7c-41d3-a540-e2e9b8a35ecb"><a href="#fn:270" rel="footnote" onclick="return false;">270</a></sup><sup class="cm">,</sup><sup id="fnref:2ffdedca-017c-4411-b7f9-7f7c3ad0baa8"><a href="#fn:271" rel="footnote" onclick="return false;">271</a></sup><sup class="cm">,</sup><sup id="fnref:e8b4d6de-985b-41cc-b1ad-5051c39f6ee9"><a href="#fn:405" rel="footnote" onclick="return false;">405</a></sup> Studies quantifying sea level rise impacts on other types of coastal settings (such as beaches) in the region are more limited; however, there is consensus on what impacts under higher rates of relative sea level rise might look like due to geologic history and modern analogs elsewhere (such as the Louisiana coast).<sup id="fnref:b58704d1-b4ec-46d0-9dd5-e7573523951e"><a href="#fn:12" rel="footnote" onclick="return false;">12</a></sup><sup class="cm">,</sup><sup id="fnref:15451c8d-0add-40c7-a7e6-c286ccbf76f6"><a href="#fn:226" rel="footnote" onclick="return false;">226</a></sup><sup class="cm">,</sup><sup id="fnref:afaa45d6-8934-47ad-b69e-e1567f1217fc"><a href="#fn:404" rel="footnote" onclick="return false;">404</a></sup> Although probabilistically low, worst-case sea level rise projections that account for ice sheet collapse<sup id="fnref:c66bf5a9-a6d7-4043-ad99-db0ae6ae562c"><a href="#fn:47" rel="footnote" onclick="return false;">47</a></sup><sup class="cm">,</sup><sup id="fnref:8e8cff98-5658-4597-8fb4-9088556acfae"><a href="#fn:406" rel="footnote" onclick="return false;">406</a></sup> would result in sea level rise rates far beyond the rates at which natural systems are likely able to adapt,<sup id="fnref:f4de2290-29cf-421e-b520-55e3e2fbde02"><a href="#fn:274" rel="footnote" onclick="return false;">274</a></sup><sup class="cm">,</sup><sup id="fnref:4071d07b-0079-4055-abaa-71db3428a613"><a href="#fn:275" rel="footnote" onclick="return false;">275</a></sup><sup class="cm">,</sup><sup id="fnref:0fe018b1-0ae5-4480-a662-0d2c1d6ee5ee"><a href="#fn:280" rel="footnote" onclick="return false;">280</a></sup> affecting not only ecosystems function and services but also likely substantially changing the coastal landscape largely through inundation.<sup id="fnref:97387e44-8bfc-413a-948c-e6dc67f5e7cd"><a href="#fn:223" rel="footnote" onclick="return false;">223</a></sup></p> <h4>Major uncertainties</h4> <p>Although work to value coastal and marine ecosystems services is still evolving,<sup id="fnref:874f9406-dd99-4e92-b64a-4542c23d0d16"><a href="#fn:6" rel="footnote" onclick="return false;">6</a></sup><sup class="cm">,</sup><sup id="fnref:8be5daa4-2526-49b8-9b71-c9434e436a87"><a href="#fn:41" rel="footnote" onclick="return false;">41</a></sup><sup class="cm">,</sup><sup id="fnref:512ea1ca-1e76-4c71-9ba7-97eac0140255"><a href="#fn:281" rel="footnote" onclick="return false;">281</a></sup> changes to coastal ecosystem services will depend largely on the adaptability of the coastal landscape, direct hits from storms, and rate of sea level rise, which have identified uncertainties. Lower sea level rise rates are more probable, though the timing of ice sheet collapse<sup id="fnref:ae82c8a3-3033-4103-91e9-926a27d1fa18"><a href="#fn:407" rel="footnote" onclick="return false;">407</a></sup> and the variability of ocean dynamics are still not well understood<sup id="fnref:199b0e91-24ab-429c-ab3f-1930b96c62a0"><a href="#fn:210" rel="footnote" onclick="return false;">210</a></sup><sup class="cm">,</sup><sup id="fnref:143752b0-3899-41fe-963b-5b040305a5be"><a href="#fn:211" rel="footnote" onclick="return false;">211</a></sup><sup class="cm">,</sup><sup id="fnref:18a2427b-fb63-48b1-8b74-fd476a4cac1f"><a href="#fn:215" rel="footnote" onclick="return false;">215</a></sup> and will dramatically affect the rate of rise.<sup id="fnref:c66bf5a9-a6d7-4043-ad99-db0ae6ae562c"><a href="#fn:47" rel="footnote" onclick="return false;">47</a></sup><sup class="cm">,</sup><sup id="fnref:8e8cff98-5658-4597-8fb4-9088556acfae"><a href="#fn:406" rel="footnote" onclick="return false;">406</a></sup> It is also difficult to anticipate how humans will contend with changes along the coast<sup id="fnref:7e02aaef-bbc5-4d00-a53e-31ee9e8095f6"><a href="#fn:389" rel="footnote" onclick="return false;">389</a></sup> and how adjacent natural settings will respond. Furthermore, specific tipping points for many coastal ecosystems are still not well resolved<sup id="fnref:4071d07b-0079-4055-abaa-71db3428a613"><a href="#fn:275" rel="footnote" onclick="return false;">275</a></sup><sup class="cm">,</sup><sup id="fnref:0702b6c9-25a7-4185-a48d-c0b5579275b6"><a href="#fn:277" rel="footnote" onclick="return false;">277</a></sup><sup class="cm">,</sup><sup id="fnref:0fe018b1-0ae5-4480-a662-0d2c1d6ee5ee"><a href="#fn:280" rel="footnote" onclick="return false;">280</a></sup> and vary due to site-specific conditions<sup id="fnref:5fde38f4-be63-40ce-88fa-392a869e7c88"><a href="#fn:224" rel="footnote" onclick="return false;">224</a></sup><sup class="cm">,</sup><sup id="fnref:f4de2290-29cf-421e-b520-55e3e2fbde02"><a href="#fn:274" rel="footnote" onclick="return false;">274</a></sup></p> <p>The Northeast Shelf is sensitive to ocean acidification, and many fisheries in the region are dependent on shell-forming organisms.<sup id="fnref:07043123-9da3-43da-a9fa-36885cd77331"><a href="#fn:181" rel="footnote" onclick="return false;">181</a></sup><sup class="cm">,</sup><sup id="fnref:713bb290-1c8c-4d9a-8b65-3941399b48b9"><a href="#fn:182" rel="footnote" onclick="return false;">182</a></sup><sup class="cm">,</sup><sup id="fnref:0b185997-744b-4272-9381-d7b94a26d7e2"><a href="#fn:186" rel="footnote" onclick="return false;">186</a></sup> However, few studies that have investigated the impacts of ocean acidification on species biology and ecology used native populations from the region<sup id="fnref:713bb290-1c8c-4d9a-8b65-3941399b48b9"><a href="#fn:182" rel="footnote" onclick="return false;">182</a></sup> or tested the effects at acidification levels expected over the next 20–40 years.<sup id="fnref:7da52043-249d-4413-9e1a-40ed0659b2f8"><a href="#fn:143" rel="footnote" onclick="return false;">143</a></sup> Moreover, there are limited studies that consider the effects of climate change in conjunction with multiple other stressors that affect marine populations.<sup id="fnref:fb1f46cd-8b70-4a44-923a-66df61ffa0be"><a href="#fn:39" rel="footnote" onclick="return false;">39</a></sup><sup class="cm">,</sup><sup id="fnref:fda5d878-d7b2-48d9-a2c4-bb0721262ce5"><a href="#fn:40" rel="footnote" onclick="return false;">40</a></sup><sup class="cm">,</sup><sup id="fnref:ad9cbd45-a115-4a2a-9e9f-9ed17a171a8b"><a href="#fn:178" rel="footnote" onclick="return false;">178</a></sup><sup class="cm">,</sup><sup id="fnref:9affa7ba-ae75-479d-9288-d3cfa29ed5f4"><a href="#fn:408" rel="footnote" onclick="return false;">408</a></sup> Limited understanding of the adaptive capacity of species to environmental changes presents major uncertainties in ecosystem responses to climate change.<sup id="fnref:7da52043-249d-4413-9e1a-40ed0659b2f8"><a href="#fn:143" rel="footnote" onclick="return false;">143</a></sup><sup class="cm">,</sup><sup id="fnref:e3806275-d9a5-4c0a-9e20-7acda7390db6"><a href="#fn:409" rel="footnote" onclick="return false;">409</a></sup> How humans will respond to changes in ecosystems is also not well known, yet these decisions will shape how marine industries and coastal communities are affected by climate change.<sup id="fnref:548bc141-7fd7-45bb-9c1b-e2a25bcb4e24"><a href="#fn:45" rel="footnote" onclick="return false;">45</a></sup></p> <h4>Description of confidence and likelihood</h4> <p>Warming ocean temperatures (<em>high confidence</em>), acidification (<em>high confidence</em>), and sea level rise (<em>very high confidence</em>) will alter coastal and ocean ecosystems (<em>likely</em>) and threaten the ecosystems services provided by the coasts and oceans (<em>likely</em>) in the Northeast. There is <em>high confidence</em> that ocean temperatures have caused shifts in the distribution, productivity, and phenology of marine species and <em>very high confidence</em> that high tide flooding and storm surge impacts are being amplified by sea level rise. Because much will depend on how humans choose to address or adapt to these problems, and as there is considerable uncertainty over the extent to which many of these coastal systems will be able to adapt, there is <em>medium confidence</em> in the level of risk to traditions and livelihoods. It is <em>likely</em> that under higher scenarios, sea level rise will significantly alter the coastal landscape, and rising temperatures and acidification will affect marine populations and fisheries.</p> </div><!-- key message --> <div class="tab-pane fade" id="tab-3" role="tabpanel" aria-labelledby="ta-3-tab" aria-expanded="true"> <h3>Key Message 3: Maintaining Urban Areas and Communities and Their Interconnectedness</h3> <blockquote class="blockquote"> <p>The Northeast’s urban centers and their interconnections are regional and national hubs for cultural and economic activity. Major negative impacts on critical infrastructure, urban economies, and nationally significant historic sites are already occurring and will become more common with a changing climate<em>.</em> (<em>High Confidence</em>)</p> </blockquote> <h4>Description of evidence base</h4> <p>The urban built environment and related supply and management systems are at increased risk of disruption from a variety of increasing climate risks. These risks emerge from accelerated sea level rise as well as increased frequency of coastal and estuarine flooding, intense precipitation events, urban heating and heat waves, and drought.</p> <p>Coastal flooding can lead to adverse health consequences, loss of life, and damaged property and infrastructure.<sup id="fnref:641ac0a3-aad2-4422-a632-f07117fe694a"><a href="#fn:368" rel="footnote" onclick="return false;">368</a></sup> Much of the region’s major industries and cities are located along the coast, with 88% of the region’s population and 68% of the regional gross domestic product.<sup id="fnref:9f559c9b-c78e-4593-bcbe-f07661d29e16"><a href="#fn:260" rel="footnote" onclick="return false;">260</a></sup> High tide flooding is also increasingly problematic and costly.<sup id="fnref:c66bf5a9-a6d7-4043-ad99-db0ae6ae562c"><a href="#fn:47" rel="footnote" onclick="return false;">47</a></sup> Rising sea level and amplified storm events can increase the magnitude and geographic size of a coastal flood event. The frequency of dangerous coastal flooding in the Northeast would more than triple with 2 feet of sea level rise.<sup id="fnref:dd5b893d-4462-4bb3-9205-67b532919566"><a href="#fn:93" rel="footnote" onclick="return false;">93</a></sup> In Boston, the areal extent of a 1% (1 in 100 chance of occurring in any given year) flood is expected to increase multifold in many coastal neighborhoods.<sup id="fnref:4d61fbc8-2282-49e8-bb8c-e7d87075f424"><a href="#fn:295" rel="footnote" onclick="return false;">295</a></sup> However, there will likely be notable variability across coastal locations. Using the 2014 U.S. National Climate Assessment’s Intermediate-High scenario for sea level rise (a global rise of 1.2 meters by 2100), the median number of flood events per year for the Northeast is projected to increase from 1 event per year experienced today to 5 events by 2030 and 25 events by 2045, with significant variation within the region.<sup id="fnref:5f4de85b-be39-4ffd-ac94-1950932c0140"><a href="#fn:410" rel="footnote" onclick="return false;">410</a></sup></p> <p>Intense precipitation events can lead to riverine and street-level flooding affecting urban environments. Over recent decades, the Northeast has experienced an increase of intense precipitation events, particularly in the spring and fall.<sup id="fnref:9131626f-95e5-4b4c-8a4e-08183ff2fe12"><a href="#fn:411" rel="footnote" onclick="return false;">411</a></sup> From 1958 to 2016, the number of heaviest 1% precipitation events (that is, an event that has a 1% chance of occurring in any given year) in the Northeast has increased by 55%.<sup id="fnref:e8089a19-413e-4bc5-8c4a-7610399e268c"><a href="#fn:58" rel="footnote" onclick="return false;">58</a></sup> A recent study suggests that this trend began rather abruptly after 1996, though uniformly across the region.<sup id="fnref:9131626f-95e5-4b4c-8a4e-08183ff2fe12"><a href="#fn:411" rel="footnote" onclick="return false;">411</a></sup></p> <p>Urban heating and heat waves threaten the health of the urban population and the integrity of the urban landscape. Due to the urban heat island effect, summer surface temperatures across Northeast cities were an average of 13°F to 16°F (7°C to 9°C) warmer than surrounding rural areas over a three-year period, 2003 to 2005.<sup id="fnref:6b78125d-611b-402d-ab56-c409b15d52aa"><a href="#fn:412" rel="footnote" onclick="return false;">412</a></sup> This is of concern, as rising temperatures increase heat- and pollution-related mortality while also stressing energy demands across the urban environment.<sup id="fnref:5d45fe96-3a2f-4f4c-b989-406af17fc9af"><a href="#fn:413" rel="footnote" onclick="return false;">413</a></sup> However, the degree of urban heat island intensity varies across cities depending on local factors such as whether the city is coastal or inland.<sup id="fnref:8d5cd278-b5eb-4a23-aba3-79fc4b0f5544"><a href="#fn:414" rel="footnote" onclick="return false;">414</a></sup> Recent analysis of mortality in major cities of the Northeast suggests that the region could experience an additional 2,300 deaths per year by 2090 from extreme heat under RCP8.5 (compared to an estimated 970 deaths per year under the lower scenario, RCP4.5) compared to 1989–2000.<sup id="fnref:0b30f1ab-e4c4-4837-aa8b-0e19faccdb94"><a href="#fn:29" rel="footnote" onclick="return false;">29</a></sup> Another study that considered 1,692 cities around the world suggested that without mitigation, total economic costs associated with climate change could be 2.6 times higher due to the warmer temperatures in urban versus extra-urban environments.<sup id="fnref:e904b5f2-2c5e-4e55-8365-2ba748291939"><a href="#fn:415" rel="footnote" onclick="return false;">415</a></sup></p> <p>Changes in temperature and precipitation can have dramatic impacts on urban water supply available for municipal and industrial uses. Under a higher scenario (RCP8.5), the Northeast is projected to experience cumulative losses of $730 million (discounted at 3% in 2015 dollars) due to water supply shortfalls for the period 2015 to 2099.<sup id="fnref:0b30f1ab-e4c4-4837-aa8b-0e19faccdb94"><a href="#fn:29" rel="footnote" onclick="return false;">29</a></sup> Under a lower scenario (RCP4.5), the Northeast is projected to sustain losses of $510 million (discounted at 3% in 2015 dollars).<sup id="fnref:0b30f1ab-e4c4-4837-aa8b-0e19faccdb94"><a href="#fn:29" rel="footnote" onclick="return false;">29</a></sup> The losses are largely projected for the more southern and coastal areas in the region.</p> <h4>Major uncertainties</h4> <p>Projecting changes in urban pollution and air quality under a changing climate is challenging given the associated complex chemistry and underlying factors that influence it. For example, fine particulates (PM<sub>2.5</sub>; that is, particles with a diameter of or less than 2.5 micrometers) are affected by cloud processes and precipitation, amongst other meteorological processes, leading to considerable uncertainty in the geographic distribution and overall trend in both modeling analysis and the literature.<sup id="fnref:0b30f1ab-e4c4-4837-aa8b-0e19faccdb94"><a href="#fn:29" rel="footnote" onclick="return false;">29</a></sup> Land use can also play an unexpected role, such as planting trees as a mitigation option that may lead to increases in volatile organic compounds (VOCs), which, in a VOC-limited environment that can exist in some urban areas such as New York City, may increase ozone concentrations (however, it is noted that most of the Northeast region is limited by the availability of nitrogen oxides).<sup id="fnref:5b52af56-61c6-4663-9d7d-302e8570800f"><a href="#fn:327" rel="footnote" onclick="return false;">327</a></sup></p> <p>Interdependencies among infrastructure sectors can lead to unexpected and amplified consequences in response to extreme weather events. However, it is unclear how society may choose to invest in the built environment, possibly strengthening urban infrastructure to plausible future conditions.</p> <h4>Description of confidence and likelihood</h4> <p>There is <em>high confidence</em> that weather-related impacts on urban centers already experienced today will become more common under a changing climate. For the Northeast, sea level rise is projected to occur at a faster rate than the global average, potentially increasing the impact of moderate and severe coastal flooding.<sup id="fnref:c66bf5a9-a6d7-4043-ad99-db0ae6ae562c"><a href="#fn:47" rel="footnote" onclick="return false;">47</a></sup></p> <p>By the end of the century and under a higher scenario (RCP8.5), Coupled Model Intercomparison Project Phase 5 (CMIP5) models suggest that annual average temperatures will increase by more than 9°F (16°C) for much of the region (2071–2100 compared to 1976–2005), while precipitation is projected to increase, particularly during winter and spring.<sup id="fnref:75cf1c0b-cc62-4ca4-96a7-082afdfe2ab1"><a href="#fn:50" rel="footnote" onclick="return false;">50</a></sup></p> <p>Extreme events that impact urban environments have been observed to increase over much of the United States and are projected to continue to intensify. There is <em>high confidence</em> that heavy precipitation events have increased in intensity and frequency since 1901, with the largest increase in the Northeast, a trend projected to continue.<sup id="fnref:75cf1c0b-cc62-4ca4-96a7-082afdfe2ab1"><a href="#fn:50" rel="footnote" onclick="return false;">50</a></sup> There is <em>very high confidence</em> that extreme heat events are increasing across most regions worldwide, a trend very likely to continue.<sup id="fnref:75cf1c0b-cc62-4ca4-96a7-082afdfe2ab1"><a href="#fn:50" rel="footnote" onclick="return false;">50</a></sup> Extreme precipitation from tropical cyclones has not demonstrated a clear observed trend but is expected to increase in the future.<sup id="fnref:75cf1c0b-cc62-4ca4-96a7-082afdfe2ab1"><a href="#fn:50" rel="footnote" onclick="return false;">50</a></sup><sup class="cm">,</sup><sup id="fnref:4f1e7aa1-0c36-4220-ac77-7d55bcb33061"><a href="#fn:253" rel="footnote" onclick="return false;">253</a></sup> Research has suggested that the number of tropical cyclones will overall increase with future warming.<sup id="fnref:4230c77b-1f8c-4452-aa52-5690aac2a72e"><a href="#fn:416" rel="footnote" onclick="return false;">416</a></sup> However, this finding is contradicted by results using a high-resolution dynamical downscaling study under a lower scenario (RCP4.5), which suggests overall reduction in frequency of tropical cyclones but an increase in the occurrence of storms of Saffir–Simpson categories 4 and 5.<sup id="fnref:75cf1c0b-cc62-4ca4-96a7-082afdfe2ab1"><a href="#fn:50" rel="footnote" onclick="return false;">50</a></sup></p> </div><!-- key message --> <div class="tab-pane fade" id="tab-4" role="tabpanel" aria-labelledby="ta-4-tab" aria-expanded="true"> <h3>Key Message 4: Threats to Human Health</h3> <blockquote class="blockquote"> <p>Changing climate threatens the health and well-being of people in the Northeast through more extreme weather, warmer temperatures, degradation of air and water quality, and sea level rise (<em>very high confidence</em>). These environmental changes are expected to lead to health-related impacts and costs, including additional deaths, emergency room visits and hospitalizations, and a lower quality of life (<em>very high confidence</em>). Health impacts are expected to vary by location, age, current health, and other characteristics of individuals and communities (<em>very high confidence</em>).</p> </blockquote> <h4>Description of evidence base</h4> <p>Extreme storms and temperatures, overall warmer temperatures, degradation of air and water quality, and sea level rise are all associated with adverse health outcomes from heat,<sup id="fnref:6b3cd0ec-1e3e-42e8-ad82-5c12ed7ab0e8"><a href="#fn:20" rel="footnote" onclick="return false;">20</a></sup><sup class="cm">,</sup><sup id="fnref:e65c896d-395c-4347-80ed-64af1333f3a7"><a href="#fn:21" rel="footnote" onclick="return false;">21</a></sup><sup class="cm">,</sup><sup id="fnref:b151fd56-2d07-47fb-88df-173212cd5059"><a href="#fn:22" rel="footnote" onclick="return false;">22</a></sup><sup class="cm">,</sup><sup id="fnref:028a4c4b-3a7f-47b3-8a78-432fd7840f21"><a href="#fn:23" rel="footnote" onclick="return false;">23</a></sup><sup class="cm">,</sup><sup id="fnref:33b39dea-d868-4ce9-9605-1fdfd3355811"><a href="#fn:305" rel="footnote" onclick="return false;">305</a></sup><sup class="cm">,</sup><sup id="fnref:aa10dde0-072c-459a-ab20-65ba830d43bd"><a href="#fn:306" rel="footnote" onclick="return false;">306</a></sup><sup class="cm">,</sup><sup id="fnref:d7ef401f-6a34-4410-ab1e-4690f3c4d161"><a href="#fn:307" rel="footnote" onclick="return false;">307</a></sup> poor air quality,<sup id="fnref:54a66159-1675-43bb-b5d3-a9b7f283e4de"><a href="#fn:324" rel="footnote" onclick="return false;">324</a></sup><sup class="cm">,</sup><sup id="fnref:70c0501a-5944-49f1-9749-2cc083802da1"><a href="#fn:325" rel="footnote" onclick="return false;">325</a></sup><sup class="cm">,</sup><sup id="fnref:59666474-282e-4dea-b833-acb24f736eaf"><a href="#fn:326" rel="footnote" onclick="return false;">326</a></sup> disease-transmitting vectors,<sup id="fnref:953d1436-e0d0-426c-8dcc-68e5c02eef30"><a href="#fn:67" rel="footnote" onclick="return false;">67</a></sup><sup class="cm">,</sup><sup id="fnref:5a091036-8e68-41b5-a63a-ff33b8fc1889"><a href="#fn:333" rel="footnote" onclick="return false;">333</a></sup><sup class="cm">,</sup><sup id="fnref:6c4943e6-2a76-4989-b80e-8b4d9bacd78a"><a href="#fn:334" rel="footnote" onclick="return false;">334</a></sup> contaminated food and water,<sup id="fnref:d746e578-c6fd-4b73-8a3c-d91365668348"><a href="#fn:322" rel="footnote" onclick="return false;">322</a></sup><sup class="cm">,</sup><sup id="fnref:bcbd5def-bcf4-454a-b744-ff131acdbf39"><a href="#fn:340" rel="footnote" onclick="return false;">340</a></sup><sup class="cm">,</sup><sup id="fnref:2312e80f-cec5-445e-aad0-ce60c9ea29e2"><a href="#fn:341" rel="footnote" onclick="return false;">341</a></sup><sup class="cm">,</sup><sup id="fnref:d03f5405-42ed-46bd-9f7f-23ba5f71bdf3"><a href="#fn:344" rel="footnote" onclick="return false;">344</a></sup> harmful algal blooms,<sup id="fnref:59d0bcfb-805b-472d-b6fe-3b70bacc3d25"><a href="#fn:335" rel="footnote" onclick="return false;">335</a></sup> and traumatic stress or health service disruption.<sup id="fnref:15df801e-f052-4327-9b08-47c13d894ea7"><a href="#fn:17" rel="footnote" onclick="return false;">17</a></sup><sup class="cm">,</sup><sup id="fnref:c7bb5988-e9ff-41a3-87fd-5d0a12f50fe7"><a href="#fn:349" rel="footnote" onclick="return false;">349</a></sup> The underlying susceptibility of populations determines whether or not there are health impacts from an exposure and the severity of such impacts.<sup id="fnref:d7ef401f-6a34-4410-ab1e-4690f3c4d161"><a href="#fn:307" rel="footnote" onclick="return false;">307</a></sup><sup class="cm">,</sup><sup id="fnref:bb6cb91e-fd58-4222-8d22-023901f265eb"><a href="#fn:308" rel="footnote" onclick="return false;">308</a></sup></p> <h4>Major uncertainties</h4> <p>Uncertainty remains in projections of the magnitude of future changes in particulate matter, humidity, and wildfires and how these changes may influence health risks. For example, health effects of future extreme heat may be exacerbated by future changes in absolute or relative humidity.</p> <p>Health impacts are ultimately determined by not just the environmental hazard but also the amount of exposure, size and underlying susceptibility of the exposed population, and other factors such as health insurance coverage and access to timely healthcare services. In projecting future health risks, researchers acknowledge these challenges and use different analytic approaches to address this uncertainty or note it as a limitation.<sup id="fnref:028a4c4b-3a7f-47b3-8a78-432fd7840f21"><a href="#fn:23" rel="footnote" onclick="return false;">23</a></sup><sup class="cm">,</sup><sup id="fnref:e805bfdc-c4c2-43a0-b2e5-5a66945c74e4"><a href="#fn:28" rel="footnote" onclick="return false;">28</a></sup><sup class="cm">,</sup><sup id="fnref:59666474-282e-4dea-b833-acb24f736eaf"><a href="#fn:326" rel="footnote" onclick="return false;">326</a></sup></p> <p>In addition, there is a paucity of literature that considers the joint or cumulative impacts on health of multiple climatic hazards. Additional areas where the literature base is limited include specific health impacts related to different types of climate-related migration, the impact of climatic factors on mental health, and the specific timing and geographic range of shifting disease-carrying vectors.</p> <h4>Description of confidence and likelihood</h4> <p>There is <em>very high confidence</em> that extreme weather, warmer temperatures, degradation of air and water quality, and sea level rise threaten the health and well-being of people in the Northeast. There is <em>very high confidence</em> that these climate-related environmental changes will lead to additional adverse health-related impacts and costs, including premature deaths, more emergency department visits and hospitalizations, and lower quality of life. There is <em>very high confidence</em> that climate-related health impacts will vary by location, age, current health, and other characteristics of individuals and communities.</p> </div><!-- key message --> <div class="tab-pane fade" id="tab-5" role="tabpanel" aria-labelledby="ta-5-tab" aria-expanded="true"> <h3>Key Message 5: Adaptation to Climate Change Is Underway</h3> <blockquote class="blockquote"> <p>Communities in the Northeast are proactively planning (<em>high confidence</em>) and implementing (<em>medium confidence</em>) actions to reduce risks posed by climate change. Using decision support tools to develop and apply adaptation strategies informs both the value of adopting solutions and the remaining challenges (<em>high confidence</em>)<em>.</em> Experience since the last assessment provides a foundation to advance future adaptation efforts (<em>high confidence</em>).</p> </blockquote> <h4>Description of evidence base</h4> <p>Reports on climate adaptation and resilience planning have been published by city, state, and tribal governments and by regional and federal agencies in the Northeast. Examples include the Interstate Commission on the Potomac River Basin (for the Washington, DC, metropolitan area),<sup id="fnref:3258fcdc-5c7f-46a1-be18-29e440a0489a"><a href="#fn:304" rel="footnote" onclick="return false;">304</a></sup> Boston,<sup id="fnref:4d61fbc8-2282-49e8-bb8c-e7d87075f424"><a href="#fn:295" rel="footnote" onclick="return false;">295</a></sup> the Port Authority of New York and New Jersey,<sup id="fnref:62f465d8-b42c-42f7-81ec-0f5378ba9f19"><a href="#fn:357" rel="footnote" onclick="return false;">357</a></sup> the St. Regis Mohawk Tribe,<sup id="fnref:479edcdc-3e35-4859-86aa-5733316e0aa1"><a href="#fn:360" rel="footnote" onclick="return false;">360</a></sup> the U.S. Army Corps of Engineers,<sup id="fnref:641ac0a3-aad2-4422-a632-f07117fe694a"><a href="#fn:368" rel="footnote" onclick="return false;">368</a></sup> the State of Maine,<sup id="fnref:a3a5fe5c-f49b-4c6b-a008-5647194a88a7"><a href="#fn:381" rel="footnote" onclick="return false;">381</a></sup> and southeastern Connecticut.<sup id="fnref:4afcd82e-a3d5-4d98-80e9-33ce546fabd9"><a href="#fn:417" rel="footnote" onclick="return false;">417</a></sup> Structured decision-making is being applied to design management plans, determine research needs, and allocate resources<sup id="fnref:eddcff40-a0a0-426d-880b-a73730e9497f"><a href="#fn:365" rel="footnote" onclick="return false;">365</a></sup> to preserve habitat and resources throughout the region.<sup id="fnref:68fcc8c6-b20a-4739-aae6-e98b893d5163"><a href="#fn:151" rel="footnote" onclick="return false;">151</a></sup><sup class="cm">,</sup><sup id="fnref:eac23798-e67b-430a-89da-1ea63df31c87"><a href="#fn:366" rel="footnote" onclick="return false;">366</a></sup><sup class="cm">,</sup><sup id="fnref:6c67b572-c604-4f0c-ab46-4e67f2267bcc"><a href="#fn:367" rel="footnote" onclick="return false;">367</a></sup></p> <h4>Major uncertainties</h4> <p>The percentage of communities in the Northeast that are planning for climate adaptation and resilience and the percentage of those using decision support tools are not known. More case studies would be needed to evaluate the effectiveness of adaptation actions.</p> <h4>Description of confidence and likelihood</h4> <p>There is <em>high confidence</em> that there are communities in the Northeast undertaking planning efforts to reduce risks posed from climate change and <em>medium confidence</em> that they are implementing climate adaptation. There is <em>high confidence</em> that decision support tools are informative and <em>medium confidence</em> that these communities are using decision support tools to find solutions for adaptation that are workable. There is <em>high confidence</em> that early adoption is occurring in some communities and that this provides a foundation for future efforts. This Key Message does not address trends into the future, and therefore likelihood is not applicable.</p> </div><!-- key message --> </div> <!-- #tab-content --> </div> </div> </section> </div> </section> <section id="section-99" class="container-fluid report-section no-spacer-2 blackish glossary clearfix"> <div class="offset-lg-1 col-lg-7 node-narrative" aria-flowto="content-18-99"> </div> <div id="content-18-99"><section id="references" class="container-fluid"> <div class="row report-section"> <div class="col-lg-12 references-header"> <h2 role="button" class="btn-footnote">REFERENCES <i class="fas fa-chevron-circle-down"></i></h2> </div> <div class="offset-lg-1 col-lg-7"> <div class='footnotes'> <ul> <li class='footnote' id='fn:304'>Ahmed, S. N., K. R. Bencala, and C. . L. Schultz, 2013: 2010 Washington Metropolitan Area Water Supply Reliability Study Part 2: Potential Impacts of Climate Change. ICPRB Report No. 13-07. Interstate Commission on the Potomac River Basin, Rockville, MD, 77 pp. <a target='_blank' href='https://www.potomacriver.org/wp-content/uploads/2014/12/ICPRB13-071.pdf'>URL</a>. <a href='#fnref:304' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:139'>Ahn, K.-H., and R. N. Palmer, 2016: Trend and variability in observed hydrological extremes in the United States. <i>Journal of Hydrologic Engineering</i>, <b>21</b> (2), 04015061. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1061/(ASCE)HE.1943-5584.0001286'>10.1061/(ASCE)HE.1943-5584.0001286</a>. <a href='#fnref:139' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:49'>Alexander, M. A., J. D. Scott, K. Friedland, K. E. Mills, J. A. Nye, A. J. Pershing, and A. C. Thomas, 2018: Projected sea surface temperatures over the 21st century: Changes in the mean, variability and extremes for large marine ecosystem regions of Northern Oceans. <i>Elementa: Science of the Anthropocene</i>, <b>6</b> (1), Art. 9. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1525/elementa.191'>10.1525/elementa.191</a>. <a href='#fnref:49' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:311'>Applebaum, K. M., J. Graham, G. M. Gray, P. LaPuma, S. A. McCormick, A. Northcross, and M. J. Perry, 2016: An overview of occupational risks from climate change. <i>Current Environmental Health Reports</i>, <b>3</b> (1), 13–22. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1007/s40572-016-0081-4'>10.1007/s40572-016-0081-4</a>. <a href='#fnref:311' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:103'>Archetti, M., A. D. Richardson, J. O'Keefe, and N. Delpierre, 2013: Predicting climate change impacts on the amount and duration of autumn colors in a New England forest. <i>PLOS ONE</i>, <b>8</b> (3), e57373. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1371/journal.pone.0057373'>10.1371/journal.pone.0057373</a>. <a href='#fnref:103' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:227'>Arkema, K. K., G. Guannel, G. Verutes, S. A. Wood, A. Guerry, M. Ruckelshaus, P. Kareiva, M. Lacayo, and J. M. Silver, 2013: Coastal habitats shield people and property from sea-level rise and storms. <i>Nature Climate Change</i>, <b>3</b> (10), 913–918. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1038/nclimate1944'>10.1038/nclimate1944</a>. <a href='#fnref:227' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:61'>Artigas, F., J. M. Loh, J. Y. Shin, J. Grzyb, and Y. Yao, 2017: Baseline and distribution of organic pollutants and heavy metals in tidal creek sediments after Hurricane Sandy in the Meadowlands of New Jersey. <i>Environmental Earth Sciences</i>, <b>76</b> (7), 293. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1007/s12665-017-6604-y'>10.1007/s12665-017-6604-y</a>. <a href='#fnref:61' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:288'>ASCE, 2014: 2014 Pennsylvania Infrastructure Report Card. American Society of Civil Engineers (ASCE), Washington, DC. <a target='_blank' href='https://www.infrastructurereportcard.org/state-item/pennsylvania/'>URL</a>. <a href='#fnref:288' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:71'>Ault, T. R., M. D. Schwartz, R. Zurita-Milla, J. F. Weltzin, and J. L. Betancourt, 2015: Trends and natural variability of spring onset in the coterminous United States as evaluated by a new gridded dataset of spring indices. <i>Journal of Climate</i>, <b>28</b> (21), 8363–8378. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1175/jcli-d-14-00736.1'>10.1175/jcli-d-14-00736.1</a>. <a href='#fnref:71' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:60'>Azevedo de Almeida, B., and A. Mostafavi, 2016: Resilience of infrastructure systems to sea-level rise in coastal areas: Impacts, adaptation measures, and implementation challenges. <i>Sustainability</i>, <b>8</b> (11), 1115. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.3390/su8111115'>10.3390/su8111115</a>. <a href='#fnref:60' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:354'>Balbus, J., A. Crimmins, J. L. Gamble, D. R. Easterling, K. E. Kunkel, S. Saha, and M. C. Sarofim, 2016: Ch. 1: Introduction: Climate change and human health. <i>The Impacts of Climate Change on Human Health in the United States: A Scientific Assessment</i>., U.S. Global Change Research Program, Washington, DC, 25–42. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.7930/J0VX0DFW'>10.7930/J0VX0DFW</a>. <a href='#fnref:354' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:150'>Balouskus, R. G., and T. E. Targett, 2012: Egg deposition by Atlantic silverside, Menidia menidia: Substrate utilization and comparison of natural and altered shoreline type. <i>Estuaries and Coasts</i>, <b>35</b> (4), 1100–1109. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1007/s12237-012-9495-x'>10.1007/s12237-012-9495-x</a>. <a href='#fnref:150' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:281'>Barbier, E. B., 2012: Progress and challenges in valuing coastal and marine ecosystem services. <i>Review of Environmental Economics and Policy</i>, <b>6</b> (1), 1–19. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1093/reep/rer017'>10.1093/reep/rer017</a>. <a href='#fnref:281' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:282'>Barbier, E. B., E. W. Koch, B. R. Silliman, S. D. Hacker, E. Wolanski, J. Primavera, E. F. Granek, S. Polasky, S. Aswani, L. A. Cramer, D. M. Stoms, C. J. Kennedy, D. Bael, C. V. Kappel, G. M. E. Perillo, and D. J. Reed, 2008: Coastal ecosystem-based management with nonlinear ecological functions and values. <i>Science</i>, <b>319</b> (5861), 321–323. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1126/science.1150349'>10.1126/science.1150349</a>. <a href='#fnref:282' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:41'>Barbier, E. B., S. D. Hacker, C. Kennedy, E. W. Koch, A. C. Stier, and B. R. Silliman, 2011: The value of estuarine and coastal ecosystem services. <i>Ecological Monographs</i>, <b>81</b> (2), 169–193. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1890/10-1510.1'>10.1890/10-1510.1</a>. <a href='#fnref:41' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:32'>Beach SAMP, 2018: STORMTOOLS [web tool]. Rhode Island Shoreline Change Special Area Management Plan (Beach SAMP), Kingston, RI. <a target='_blank' href='http://www.beachsamp.org/stormtools/'>URL</a>. <a href='#fnref:32' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:370'>Bearmore, B., B. Ozolin, and P. Sacks, 2016: Fort Tilden Historical Bulkhead Assessment. In <i>Ports 2016: Port Planning and Development</i>, June 12-15, New Orleans, LA. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1061/9780784479919.077'>10.1061/9780784479919.077</a>. <a href='#fnref:370' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:236'>Beavers, R., A. Babson, and C. Schupp, 2016: Coastal Adaptation Strategies Handbook. NPS 999/134090. U.S. Department of the Interior, National Park Service, Washinton, DC, 140 pp. <a target='_blank' href='https://www.nps.gov/subjects/climatechange/coastalhandbook.htm'>URL</a>. <a href='#fnref:236' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:38'>Beck, M. W., K. L. Heck, K. W. Able, D. L. Childers, D. B. Eggleston, B. M. Gillanders, B. Halpern, C. G. Hays, K. Hoshino, T. J. Minello, R. J. Orth, P. F. Sheridan, and M. P. Weinstein, 2001: The identification, conservation, and management of estuarine and marine nurseries for fish and invertebrates: A better understanding of the habitats that serve as nurseries for marine species and the factors that create site-specific variability in nursery quality will improve conservation and management of these areas. <i>BioScience</i>, <b>51</b> (8), 633–641. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1641/0006-3568(2001)051[0633:TICAMO]2.0.CO;2'>10.1641/0006-3568(2001)051[0633:TICAMO]2.0.CO;2</a>. <a href='#fnref:38' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:269'>Beckett, L. H., A. H. Baldwin, and M. S. Kearney, 2016: Tidal marshes across a Chesapeake Bay subestuary are not keeping up with sea-level rise. <i>PLOS ONE</i>, <b>11</b> (7), e0159753. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1371/journal.pone.0159753'>10.1371/journal.pone.0159753</a>. <a href='#fnref:269' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:409'>Beever, E. A., J. O'Leary, C. Mengelt, J. M. West, S. Julius, N. Green, D. Magness, L. Petes, B. Stein, A. B. Nicotra, J. J. Hellmann, A. L. Robertson, M. D. Staudinger, A. A. Rosenberg, E. Babij, J. Brennan, G. W. Schuurman, and G. E. Hofmann, 2016: Improving conservation outcomes with a new paradigm for understanding species' fundamental and realized adaptive capacity. <i>Conservation Letters</i>, <b>9</b> (2), 131–137. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1111/conl.12190'>10.1111/conl.12190</a>. <a href='#fnref:409' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:9'>Bell, R. J., D. E. Richardson, J. A. Hare, P. D. Lynch, and P. S. Fratantoni, 2015: Disentangling the effects of climate, abundance, and size on the distribution of marine fish: An example based on four stocks from the Northeast US shelf. <i>ICES Journal of Marine Science</i>, <b>72</b> (5), 1311–1322. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1093/icesjms/fsu217'>10.1093/icesjms/fsu217</a>. <a href='#fnref:9' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:243'>Benally, S., 2014: Tribes in New England stand their ground. <i>Cultural Survival Quarterly</i>, <b>38</b> (2), 3. <a target='_blank' href='https://issuu.com/culturalsurvival/docs/csq-382-june-2014'>URL</a>. <a href='#fnref:243' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:239'>Bennett, T. M. B., N. G. Maynard, P. Cochran, R. Gough, K. Lynn, J. Maldonado, G. Voggesser, S. Wotkyns, and K. Cozzetto, 2014: Ch. 12: Indigenous peoples, lands, and resources. <i>Climate Change Impacts in the United States: The Third National Climate Assessment</i>. Melillo, J. M., T. (T. C. . Richmond, and G. W. Yohe, Eds., U.S. Global Change Research Program, Washington, DC, 297–317. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.7930/J09G5JR1'>10.7930/J09G5JR1</a>. <a href='#fnref:239' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:244'>Berkes, F., 2009: Indigenous ways of knowing and the study of environmental change. <i>Journal of the Royal Society of New Zealand</i>, <b>39</b> (4), 151–156. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1080/03014220909510568'>10.1080/03014220909510568</a>. <a href='#fnref:244' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:320'>Berman, J. D., K. Ebisu, R. D. Peng, F. Dominici, and M. L. Bell, 2017: Drought and the risk of hospital admissions and mortality in older adults in western USA from 2000 to 2013: A retrospective study . <i>The Lancet Planetary Health</i>, <b>1</b> (1), e17–e25. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1016/S2542-5196(17)30002-5'>10.1016/S2542-5196(17)30002-5</a>. <a href='#fnref:320' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:257'>Birchler, J. J., H. F. Stockdon, K. S. Doran, and D. M. Thompson, 2014: National Assessment of Hurricane-Induced Coastal Erosion Hazards: Northeast Atlantic Coast. USGS Open-File Report 2014–1243. U.S. Geological Survey, Reston, VA, 34 pp. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.3133/ofr20141243'>10.3133/ofr20141243</a>. <a href='#fnref:257' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:256'>Birchler, J. J., P. S. Dalyander, H. F. Stockdon, and Kara S. Doran, 2015: National assessment of nor'easter-induced coastal erosion hazards: Mid- and northeast Atlantic coast. USGS Open-File Report 2015-1154. U.S. Geological Survey, Reston, VA, 34 pp. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.3133/ofr20151154'>10.3133/ofr20151154</a>. <a href='#fnref:256' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:56'>Black, R., D. Kniveton, and K. Schmidt-Verkerk, 2013: Migration and climate change: Toward an integrated assessment of sensitivity. <i>Disentangling Migration and Climate Change: Methodologies, Political Discourses and Human Rights</i>. Faist, T., and J. Schade, Eds., Springer Netherlands, Dordrecht, 29–53. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1007/978-94-007-6208-4_2'>10.1007/978-94-007-6208-4_2</a>. <a href='#fnref:56' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:128'>Bloomfield, J. P., R. J. Williams, D. C. Gooddy, J. N. Cape, and P. Guha, 2006: Impacts of climate change on the fate and behaviour of pesticides in surface and groundwater—a UK perspective. <i>Science of The Total Environment</i>, <b>369</b> (1), 163–177. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1016/j.scitotenv.2006.05.019'>10.1016/j.scitotenv.2006.05.019</a>. <a href='#fnref:128' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:323'>Bobb, J. F., K. K. L. Ho, R. W. Yeh, L. Harrington, A. Zai, K. P. Liao, and F. Dominici, 2017: Time-course of cause-specific hospital admissions during snowstorms: An analysis of electronic medical records from major hospitals in Boston, Massachusetts. <i>American Journal of Epidemiology</i>, <b>185</b> (4), 283–294. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1093/aje/kww219'>10.1093/aje/kww219</a>. <a href='#fnref:323' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:20'>Bobb, J. F., R. D. Peng, M. L. Bell, and F. Dominici, 2014: Heat-related mortality and adaptation to heat in the United States. <i>Environmental Health Perspectives</i>, <b>122</b> (8), 811–816. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1289/ehp.1307392'>10.1289/ehp.1307392</a>. <a href='#fnref:20' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:306'>Bobb, J. F., Z. Obermeyer, Y. Wang, and F. Dominici, 2014: Cause-specific risk of hospital admission related to extreme heat in older adults. <i>JAMA</i>, <b>312</b> (24), 2659–2667. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1001/jama.2014.15715'>10.1001/jama.2014.15715</a>. <a href='#fnref:306' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:205'>Boon, J. D., 2012: Evidence of sea level acceleration at U.S. and Canadian tide stations, Atlantic Coast, North America. <i>Journal of Coastal Research</i>, <b>28</b>, 1437–1445. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.2112/JCOASTRES-D-12-00102.1'>10.2112/JCOASTRES-D-12-00102.1</a>. <a href='#fnref:205' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:78'>Brandt, L. A., P. R. Butler, S. D. Handler, M. K. Janowiak, P. D. Shannon, and C. W. Swanston, 2017: Integrating science and management to assess forest ecosystem vulnerability to climate change. <i>Journal of Forestry</i>, <b>115</b> (3), 212–221. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.5849/jof.15-147'>10.5849/jof.15-147</a>. <a href='#fnref:78' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:193'>Breece, M. W., M. J. Oliver, M. A. Cimino, and D. A. Fox, 2013: Shifting distributions of adult Atlantic sturgeon amidst post-industrialization and future impacts in the Delaware River: A maximum entropy approach. <i>PLOS ONE</i>, <b>8</b> (11), e81321. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1371/journal.pone.0081321'>10.1371/journal.pone.0081321</a>. <a href='#fnref:193' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:240'>Brooks, L., 2008: The Common Pot: The Recovery of Native Space in the Northeast. University of Minnesota Press, Minneapolis, MN,. <a href='#fnref:240' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:395'>Brown, R. D., and P. W. Mote, 2009: The response of Northern Hemisphere snow cover to a changing climate. <i>Journal of Climate</i>, <b>22</b> (8), 2124–2145. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1175/2008jcli2665.1'>10.1175/2008jcli2665.1</a>. <a href='#fnref:395' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:289'>Buchanan, M. K., M. Oppenheimer, and R. E. Kopp, 2017: Amplification of flood frequencies with local sea level rise and emerging flood regimes. <i>Environmental Research Letters</i>, <b>12</b> (6), 064009. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1088/1748-9326/aa6cb3'>10.1088/1748-9326/aa6cb3</a>. <a href='#fnref:289' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:175'>Burge, C. A., C. M. Eakin, C. S. Friedman, B. Froelich, P. K. Hershberger, E. E. Hofmann, L. E. Petes, K. C. Prager, E. Weil, B. L. Willis, S. E. Ford, and C. D. Harvell, 2014: Climate change influences on marine infectious diseases: Implications for management and society. <i>Annual Review of Marine Science</i>, <b>6</b> (1), 249–277. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1146/annurev-marine-010213-135029'>10.1146/annurev-marine-010213-135029</a>. <a href='#fnref:175' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:168'>Burke, E., 2012: Massachusetts Large Whale Conservation Program: Final Report: August 1, 2011–June 31, 2012. Massachusetts Division of Marine Fisheries , New Bedford, MA, 15 pp. <a target='_blank' href='https://www.greateratlantic.fisheries.noaa.gov/protected/grantsresearchprojects/fgp/reports/na11nmf4720046_ma_large_whale_cons_final_progress_report.pdf'>URL</a>. <a href='#fnref:168' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:384'>Busch, D. S., R. Griffis, J. Link, K. Abrams, J. Baker, R. E. Brainard, M. Ford, J. A. Hare, A. Himes-Cornell, A. Hollowed, N. J. Mantua, S. McClatchie, M. McClure, M. W. Nelson, K. Osgood, J. O. Peterson, M. Rust, V. Saba, M. F. Sigler, S. Sykora-Bodie, C. Toole, E. Thunberg, R. S. Waples, and R. Merrick, 2016: Climate science strategy of the US National Marine Fisheries Service. <i>Marine Policy</i>, <b>74</b>, 58–67. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1016/j.marpol.2016.09.001'>10.1016/j.marpol.2016.09.001</a>. <a href='#fnref:384' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:275'>Cahoon, D. R., D. J. Reed, A. S. Kolker, M. M. Brinson, J. C. Stevenson, S. Riggs, R. Christian, E. Reyes, C. Voss, and D. Kunz, 2009: Coastal wetland sustainability. <i>Coastal Sensitivity to Sea-Level Rise: A Focus on the Mid-Atlantic Region</i>. G. Titus, J., Ed., U.S. Climate Change Science Program (CCSP), Washington, DC, 57–72. <a target='_blank' href='http://www.globalchange.gov/sites/globalchange/files/sap4-1-final-report-all.pdf'>URL</a>. <a href='#fnref:275' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:183'>Cai, W.-J., X. Hu, W.-J. Huang, M. C. Murrell, J. C. Lehrter, S. E. Lohrenz, W.-C. Chou, W. Zhai, J. T. Hollibaugh, Y. Wang, P. Zhao, X. Guo, K. Gundersen, M. Dai, and G.-C. Gong, 2011: Acidification of subsurface coastal waters enhanced by eutrophication. <i>Nature Geoscience</i>, <b>4</b> (11), 766–770. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1038/ngeo1297'>10.1038/ngeo1297</a>. <a href='#fnref:183' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:174'>Castro, K. M., J. S. Cobb, M. Gomez-Chiarri, and M. Tlusty, 2012: Epizootic shell disease in American lobsters Homarus americanus in southern New England: Past, present and future. <i>Diseases of Aquatic Organisms</i>, <b>100</b> (2), 149–158. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.3354/dao02507'>10.3354/dao02507</a>. <a href='#fnref:174' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:272'>CCSP, 2009: Coastal Sensitivity to Sea-Level Rise: A Focus on the Mid-Atlantic Region. A Report by the U.S. Climate Change Science Program and the Subcommittee on Global Change Research. Titus, J. G., K. E. Anderson, D. R. Cahoon, D. B. Gesch, S. K. Gill, B. T. Gutierrez, E. R. Thieler, and S. J. Williams, Eds. U.S. Environmental Protection Agency, Washington, D.C., 320 pp. <a target='_blank' href='http://downloads.globalchange.gov/sap/sap4-1/sap4-1-final-report-all.pdf'>URL</a>. <a href='#fnref:272' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:34'>CDC, 2015: CDC's Building Resilience Against Climate Effects (BRACE) Framework [web site] . Centers for Disease Control and Prevention (CDC), Atlanta, GA. <a target='_blank' href='https://www.cdc.gov/climateandhealth/BRACE.htm'>URL</a>. <a href='#fnref:34' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:156'>Chen, K., G. G. Gawarkiewicz, S. J. Lentz, and J. M. Bane, 2014: Diagnosing the warming of the northeastern U.S. coastal ocean in 2012: A linkage between the atmospheric jet stream variability and ocean response. <i>Journal of Geophysical Research Oceans</i>, <b>119</b> (1), 218–227. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1002/2013JC009393'>10.1002/2013JC009393</a>. <a href='#fnref:156' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:157'>Chen, K., G. Gawarkiewicz, Y.-O. Kwon, and W. G. Zhang, 2015: The role of atmospheric forcing versus ocean advection during the extreme warming of the Northeast U.S. continental shelf in 2012. <i>Journal of Geophysical Research Oceans</i>, <b>120</b> (6), 4324–4339. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1002/2014JC010547'>10.1002/2014JC010547</a>. <a href='#fnref:157' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:247'>Church, J. A., and N. J. White, 2011: Sea-level rise from the late 19th to the early 21st century. <i>Surveys in Geophysics</i>, <b>32</b> (4–5), 585–602. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1007/s10712-011-9119-1'>10.1007/s10712-011-9119-1</a>. <a href='#fnref:247' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:296'>City of Philadelphia, 2015: Growing stronger: Towards a climate-ready Philadelphia. Mayor's Office of Sustainability, Philadelphia, PA, various pp. <a target='_blank' href='https://beta.phila.gov/documents/growing-stronger-toward-a-climate-ready-philadelphia/'>URL</a>. <a href='#fnref:296' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:297'>City of Pittsburgh, Pittsburgh Climate Action Plan 3.0. City Council, PIttsburgh, PA, <a target='_blank' href='http://apps.pittsburghpa.gov/redtail/images/645_PCAP_3.0_Presentation.pdf'>URL</a>. <a href='#fnref:297' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:202'>Clay, P. M., and J. Olson, 2008: Defining “fishing communities”: Vulnerability and the Magnuson-Stevens Fishery Conservation and Management Act. <i>Human Ecology Review</i>, <b>15</b> (2), 143–160. <a target='_blank' href='http://www.humanecologyreview.org/pastissues/her152/clayolson.pdf'>URL</a>. <a href='#fnref:202' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:295'>Climate Ready Boston Steering Committee, 2016: Climate Ready Boston: Final Report. City of Boston, Boston, MA, 339 pp. <a target='_blank' href='https://www.boston.gov/sites/default/files/20161207_climate_ready_boston_digital2.pdf'>URL</a>. <a href='#fnref:295' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:197'>Colburn, L. L., and M. Jepson, 2012: Social indicators of gentrification pressure in fishing communities: A context for social impact assessment. <i>Coastal Management</i>, <b>40</b> (3), 289–300. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1080/08920753.2012.677635'>10.1080/08920753.2012.677635</a>. <a href='#fnref:197' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:45'>Colburn, L. L., M. Jepson, C. Weng, T. Seara, J. Weiss, and J. A. Hare, 2016: Indicators of climate change and social vulnerability in fishing dependent communities along the Eastern and Gulf Coasts of the United States. <i>Marine Policy</i>, <b>74</b>, 323–333. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1016/j.marpol.2016.04.030'>10.1016/j.marpol.2016.04.030</a>. <a href='#fnref:45' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:286'>Colgan, C. S., J. Calil, H. Kite-Powell, D. Jin, and P. Hoagland, 2018: Climate change vulnerabilities in the coastal Mid-Atlantic Region. Center for the Blue Economy of the Middlebury Institute of International Studies at Monterey and the Marine Policy Center of the Woods Hole Oceanographic Institution, Annapolis, MD, 158 pp. <a target='_blank' href='http://midatlanticocean.org/wp-content/uploads/2018/05/Climate-Change-Vulnerabilities-in-the-Coastal-Mid-Atlantic-Region.pdf'>URL</a>. <a href='#fnref:286' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:144'>Collins, S. D., and N. E. McIntyre, 2017: Extreme loss of diversity of riverine dragonflies in the northeastern US is predicted in the face of climate change . <i>Bulletin of American Odonatology</i>, <b>12</b> (2), 7–19. . <a href='#fnref:144' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:68'>Contosta, A. R., A. Adolph, D. Burchsted, E. Burakowski, M. Green, D. Guerra, M. Albert, J. Dibb, M. Martin, W. H. McDowell, M. Routhier, C. Wake, R. Whitaker, and W. Wollheim, 2017: A longer vernal window: The role of winter coldness and snowpack in driving spring transitions and lags. <i>Global Change Biology</i>, <b>23</b> (4), 1610–1625. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1111/gcb.13517'>10.1111/gcb.13517</a>. <a href='#fnref:68' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:191'>Cooley, S. R., J. E. Rheuban, D. R. Hart, V. Luu, D. M. Glover, J. A. Hare, and S. C. Doney, 2015: An integrated assessment model for helping the United States sea scallop (Placopecten magellanicus) fishery plan ahead for ocean acidification and warming. <i>PLOS ONE</i>, <b>10</b> (5), e0124145. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1371/journal.pone.0124145'>10.1371/journal.pone.0124145</a>. <a href='#fnref:191' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:410'>Dahl, K. A., M. F. Fitzpatrick, and E. Spanger-Siegfried, 2017: Sea level rise drives increased tidal flooding frequency at tide gauges along the U.S. East and Gulf Coasts: Projections for 2030 and 2045. <i>PLoS ONE</i>, <b>12</b> (2), e0170949. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1371/journal.pone.0170949'>10.1371/journal.pone.0170949</a>. <a href='#fnref:410' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:238'>Daigle, J. J., and D. Putnam, 2009: The meaning of a changed environment: Initial assessment of climate change impacts in Maine — Indigenous peoples. <i>Maine's Climate Future: An Initial Assessment</i>. Jacobson, G. L., I. J. Fernandez, P. A. Mayewski, and C. V. Schmitt, Eds., University of Maine, Orono, ME, 37–40. <a target='_blank' href='http://climatechange.umaine.edu/files/Maines_Climate_Future.pdf'>URL</a>. <a href='#fnref:238' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:214'>Davis, J. L., and N. T. Vinogradova, 2017: Causes of accelerating sea level on the East Coast of North America. <i>Geophysical Research Letters</i>, <b>44</b> (10), 5133–5141. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1002/2017GL072845'>10.1002/2017GL072845</a>. <a href='#fnref:214' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:117'>Dawson, J., and D. Scott, 2013: Managing for climate change in the alpine ski sector. <i>Tourism Management</i>, <b>35</b>, 244–254. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1016/j.tourman.2012.07.009'>10.1016/j.tourman.2012.07.009</a>. <a href='#fnref:117' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:120'>Dawson, J., D. Scott, and M. Havitz, 2013: Skier demand and behavioural adaptation to climate change in the US Northeast. <i>Leisure/Loisir</i>, <b>37</b> (2), 127–143. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1080/14927713.2013.805037'>10.1080/14927713.2013.805037</a>. <a href='#fnref:120' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:342'>DC Water, 2018: Clean Rivers Project [web site]. DC Water, Washington, DC. <a target='_blank' href='https://www.dcwater.com/clean-rivers-project'>URL</a>. <a href='#fnref:342' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:407'>DeConto, R. M., and D. Pollard, 2016: Contribution of Antarctica to past and future sea-level rise. <i>Nature</i>, <b>531</b> (7596), 591–597. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1038/nature17145'>10.1038/nature17145</a>. <a href='#fnref:407' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:54'>Deller, S. C., D. Lamie, and M. Stickel, 2017: Local foods systems and community economic development. <i>Community Development</i>, <b>48</b> (5), 612–638. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1080/15575330.2017.1373136'>10.1080/15575330.2017.1373136</a>. <a href='#fnref:54' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:105'>Demaria, E. M. C., J. K. Roundy, S. Wi, and R. N. Palmer, 2016: The effects of climate change on seasonal snowpack and the hydrology of the Northeastern and Upper Midwest United States. <i>Journal of Climate</i>, <b>29</b> (18), 6527–6541. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1175/jcli-d-15-0632.1'>10.1175/jcli-d-15-0632.1</a>. <a href='#fnref:105' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:142'>Demaria, E. M. C., R. N. Palmer, and J. K. Roundy, 2016: Regional climate change projections of streamflow characteristics in the Northeast and Midwest U.S. <i>Journal of Hydrology: Regional Studies</i>, <b>5</b>, 309–323. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1016/j.ejrh.2015.11.007'>10.1016/j.ejrh.2015.11.007</a>. <a href='#fnref:142' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:76'>DeSantis, R. D., W. K. Moser, D. D. Gormanson, M. G. Bartlett, and B. Vermunt, 2013: Effects of climate on emerald ash borer mortality and the potential for ash survival in North America. <i>Agricultural and Forest Meteorology</i>, <b>178</b>–<b>179</b>, 120–128. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1016/j.agrformet.2013.04.015'>10.1016/j.agrformet.2013.04.015</a>. <a href='#fnref:76' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:347'>Di Liberto, T., 2016: “Thousand-year” downpour led to deadly West Virginia floods. National Oceanic and Atmospheric Administration, Climate.gov, Silver Spring, MD. <a target='_blank' href='https://www.climate.gov/news-features/event-tracker/thousand-year-downpour-led-deadly-west-virginia-floods'>URL</a>. <a href='#fnref:347' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:266'>Donnelly, J. P., and M. D. Bertness, 2001: Rapid shoreward encroachment of salt marsh cordgrass in response to accelerated sea-level rise. <i>Proceedings of the National Academy of Sciences of the United States of America</i>, <b>98</b> (25), 14218–14223. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1073/pnas.251209298'>10.1073/pnas.251209298</a>. <a href='#fnref:266' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:258'>Doran, K. S., H. F. Stockdon, K. L. Sopkin, D. M. Thompson, and N. G. Plant, 2012: National Assessment of Hurricane-Induced Coastal Erosion Hazards: Mid-Atlantic Coast. USGS Open-File Report 2013–1131. U.S. Geological Survey, Reston, VA, <a target='_blank' href='https://pubs.usgs.gov/of/2013/1131/'>URL</a>. <a href='#fnref:258' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:230'>Drake, K., H. Halifax, S. C. Adamowicz, and C. Craft, 2015: Carbon sequestration in tidal salt marshes of the northeast United States. <i>Environmental Management</i>, <b>56</b> (4), 998–1008. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1007/s00267-015-0568-z'>10.1007/s00267-015-0568-z</a>. <a href='#fnref:230' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:321'>Drayna, P., S. L. McLellan, P. Simpson, S.-H. Li, and M. H. Gorelick, 2010: Association between rainfall and pediatric emergency department visits for acute gastrointestinal illness. <i>Environmental Health Perspectives</i>, <b>118</b> (10), 1439–1443. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1289/ehp.0901671'>10.1289/ehp.0901671</a>. <a href='#fnref:321' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:328'>Dreessen, J., J. Sullivan, and R. Delgado, 2016: Observations and impacts of transported Canadian wildfire smoke on ozone and aerosol air quality in the Maryland region on June 9–12, 2015. <i>Journal of the Air &#38; Waste Management Association</i>, <b>66</b> (9), 842–862. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1080/10962247.2016.1161674'>10.1080/10962247.2016.1161674</a>. <a href='#fnref:328' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:91'>Duchesne, L., and D. Houle, 2014: Interannual and spatial variability of maple syrup yield as related to climatic factors. <i>PeerJ</i>, <b>2</b>, e428. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.7717/peerj.428'>10.7717/peerj.428</a>. <a href='#fnref:91' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:112'>Dudley, R. W., G. A. Hodgkins, M. R. McHale, M. J. Kolian, and B. Renard, 2017: Trends in snowmelt-related streamflow timing in the conterminous United States. <i>Journal of Hydrology</i>, <b>547</b>, 208–221. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1016/j.jhydrol.2017.01.051'>10.1016/j.jhydrol.2017.01.051</a>. <a href='#fnref:112' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:102'>Dupigny-Giroux, L.-A., 2001: Towards characterizing and planning for drought in vermont-part I: A climatological perspective. <i>JAWRA Journal of the American Water Resources Association</i>, <b>37</b> (3), 505–525. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1111/j.1752-1688.2001.tb05489.x'>10.1111/j.1752-1688.2001.tb05489.x</a>. <a href='#fnref:102' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:58'>Easterling, D. R., J. R. Arnold, T. Knutson, K. E. Kunkel, A. N. LeGrande, L. R. Leung, R. S. Vose, D. E. Waliser, and M. F. Wehner, 2017: Precipitation Change in the United States. <i>Climate Science Special Report: Fourth National Climate Assessment, Volume I</i>. Wuebbles, D. J., D. W. Fahey, K. A. Hibbard, D. J. Dokken, B. C. Stewart, and T. K. Maycock, Eds., U.S. Global Change Research Program, Washington, DC, USA, 207–230. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.7930/J0H993CC'>10.7930/J0H993CC</a>. <a href='#fnref:58' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:261'>Eberhardt, A. L., D. M. Burdick, and M. Dionne, 2011: The effects of road culverts on nekton in New England salt marshes: Implications for tidal restoration. <i>Restoration Ecology</i>, <b>19</b> (6), 776–785. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1111/j.1526-100X.2010.00721.x'>10.1111/j.1526-100X.2010.00721.x</a>. <a href='#fnref:261' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:170'>Eckert, R., K. Whitmore, A. Richards, M. Hunter, Katie Drew, and Max Appelman, 2016: Stock Status Report for Gulf of Maine Northern Shrimp—2016 . Atlantic States Marine Fisheries Commission, Arlington, VA, 81 pp. <a target='_blank' href='http://www.asmfc.org/uploads/file/5823782c2016NorthernShrimpAssessment.pdf'>URL</a>. <a href='#fnref:170' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:291'>EIA, U.S. Energy Mapping System. U.S. Energy Information Administration (EIA), Washington, DC. <a target='_blank' href='https://www.eia.gov/state/maps.php'>URL</a>. <a href='#fnref:291' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:186'>Ekstrom, J. A., L. Suatoni, S. R. Cooley, L. H. Pendleton, G. G. Waldbusser, J. E. Cinner, J. Ritter, C. Langdon, R. van Hooidonk, D. Gledhill, K. Wellman, M. W. Beck, L. M. Brander, D. Rittschof, C. Doherty, P. E. T. Edwards, and R. Portela, 2015: Vulnerability and adaptation of US shellfisheries to ocean acidification. <i>Nature Climate Change</i>, <b>5</b> (3), 207–214. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1038/nclimate2508'>10.1038/nclimate2508</a>. <a href='#fnref:186' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:276'>Elsey-Quirk, T., D. M. Seliskar, C. K. Sommerfield, and J. L. Gallagher, 2011: Salt marsh carbon pool distribution in a mid-Atlantic lagoon, USA: Sea level rise implications. <i>Wetlands</i>, <b>31</b> (1), 87–99. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1007/s13157-010-0139-2'>10.1007/s13157-010-0139-2</a>. <a href='#fnref:276' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:416'>Emanuel, K. A., 2013: Downscaling CMIP5 climate models shows increased tropical cyclone activity over the 21st century. <i>Proceedings of the National Academy of Sciences of the United States of America</i>, <b>110</b> (30), 12219–12224. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1073/pnas.1301293110'>10.1073/pnas.1301293110</a>. <a href='#fnref:416' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:339'>EPA, 2004: Report to Congress: Impacts and Control of CSOs and SSOs. EPA 833-R-04-001. U.S. Environmental Protection Agency, Office of Water, Washington, D.C., <a target='_blank' href='http://water.epa.gov/polwaste/npdes/cso/2004-Report-to-Congress.cfm'>URL</a>. <a href='#fnref:339' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:377'>EPA, 2010: Chesapeake Bay total maximum daily load for nitrogen, phosphorus and sediment . U.S. Environmental Protection Agency, Washington, DC, various pp. <a target='_blank' href='https://www.epa.gov/sites/production/files/2014-12/documents/cbay_final_tmdl_exec_sum_section_1_through_3_final_0.pdf'>URL</a>. <a href='#fnref:377' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:140'>EPA, 2016: Climate Change Indicators in the United States, 2016. 4th edition. EPA 430-R-16-004. U.S. Environmental Protection Agency, Washington, D.C., 96 pp. <a target='_blank' href='https://www.epa.gov/sites/production/files/2016-08/documents/climate_indicators_2016.pdf'>URL</a>. <a href='#fnref:140' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:33'>EPA, 2017: Climate Change: Resilience and Adaptation in New England (RAINE). U.S. Environmental Protection Agency (EPA), Washington, DC,  accessed September 21, 2017. <a target='_blank' href='https://www.epa.gov/raine'>URL</a>. <a href='#fnref:33' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:29'>EPA, 2017: Multi-model Framework for Quantitative Sectoral Impacts Analysis: A Technical Report for the Fourth National Climate Assessment. EPA 430‐R‐17‐001. U.S. Environmental Protection Agency (EPA), Washington, DC, 271 pp. <a target='_blank' href='https://cfpub.epa.gov/si/si_public_record_Report.cfm?dirEntryId=335095'>URL</a>. <a href='#fnref:29' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:327'>EPA, 2017: Supplemental Information for Ozone Advance Areas Based On Pre-Existing National Modeling Analyses. U.S. EPA, Office of Air Quality Planning and Standards, Washington, DC, 7 pp. <a target='_blank' href='https://www.epa.gov/sites/production/files/2017-05/documents/national_modeling.advance.may_2017.pdf; '>URL</a>. <a href='#fnref:327' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:162'>ESRL, 2017: NOAA Climate Change Portal. NOAA Earth System Research Laboratory (ESRL), Boulder, CO. <a target='_blank' href='https://www.esrl.noaa.gov/psd/ipcc/'>URL</a>. <a href='#fnref:162' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:415'>Estrada, F., W. J. W. Botzen, and R. S. J. Tol, 2017: A global economic assessment of city policies to reduce climate change impacts. <i>Nature Climate Change</i>, <b>7</b> (6), 403–406. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1038/nclimate3301'>10.1038/nclimate3301</a>. <a href='#fnref:415' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:376'>Exec. Order No. 13508 of May 12 2009, 2009: Chesapeake Bay protection and restoration. <i>74 FR 23099 </i>, <a target='_blank' href='https://www.gpo.gov/fdsys/pkg/FR-2009-05-15/pdf/E9-11547.pdf'>URL</a>. <a href='#fnref:376' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:217'>Ezer, T., and L. P. Atkinson, 2014: Accelerated flooding along the U.S. East Coast: On the impact of sea-level rise, tides, storms, the Gulf Stream, and the North Atlantic Oscillations. <i>Earth's Future</i>, <b>2</b> (8), 362–382. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1002/2014EF000252'>10.1002/2014EF000252</a>. <a href='#fnref:217' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:206'>Ezer, T., and W. B. Corlett, 2012: Is sea level rise accelerating in the Chesapeake Bay? A demonstration of a novel new approach for analyzing sea level data. <i>Geophysical Research Letters</i>, <b>39</b> (19), L19605. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1029/2012GL053435'>10.1029/2012GL053435</a>. <a href='#fnref:206' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:148'>Fagherazzi, S., 2014: Coastal processes: Storm-proofing with marshes. <i>Nature Geoscience</i>, <b>7</b> (10), 701–702. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1038/ngeo2262'>10.1038/ngeo2262</a>. <a href='#fnref:148' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:324'>Fann, N., C. G. Nolte, P. Dolwick, T. L. Spero, A. Curry Brown, S. Phillips, and S. Anenberg, 2015: The geographic distribution and economic value of climate change-related ozone health impacts in the United States in 2030. <i>Journal of the Air &#38; Waste Management Association</i>, <b>65</b> (5), 570–580. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1080/10962247.2014.996270'>10.1080/10962247.2014.996270</a>. <a href='#fnref:324' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:106'>Feng, S., and Q. Hu, 2007: Changes in winter snowfall/precipitation ratio in the contiguous United States. <i>Journal of Geophysical Research: Atmospheres</i>, <b>112</b> (D15), D15109. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1029/2007JD008397'>10.1029/2007JD008397</a>. <a href='#fnref:106' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:273'>Field, C. R., C. Gjerdrum, and C. S. Elphick, 2016: Forest resistance to sea-level rise prevents landward migration of tidal marsh. <i>Biological Conservation</i>, <b>201</b>, 363–369. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1016/j.biocon.2016.07.035'>10.1016/j.biocon.2016.07.035</a>. <a href='#fnref:273' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:226'>FitzGerald, D. M., M. S. Fenster, B. A. Argow, and I. V. Buynevich, 2008: Coastal impacts due to sea-level rise. <i>Annual Review of Earth and Planetary Sciences</i>., Vol. 36 of, Annual Reviews, Palo Alto, 601–647. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1146/annurev.earth.35.031306.140139'>10.1146/annurev.earth.35.031306.140139</a>. <a href='#fnref:226' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:301'>Flint, M. M., O. Fringer, S. L. Billington, D. Freyberg, and N. S. Diffenbaugh, 2017: Historical analysis of hydraulic bridge collapses in the continental United States. <i>Journal of Infrastructure Systems</i>, <b>23</b> (3), 04017005. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1061/(ASCE)IS.1943-555X.0000354'>10.1061/(ASCE)IS.1943-555X.0000354</a>. <a href='#fnref:301' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:190'>Fogarty, M., L. Incze, K. Hayhoe, D. Mountain, and J. Manning, 2008: Potential climate change impacts on Atlantic cod (Gadus morhua) off the northeastern USA. <i>Mitigation and Adaptation Strategies for Global Change</i>, <b>13</b> (5–6), 453–466. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1007/s11027-007-9131-4'>10.1007/s11027-007-9131-4</a>. <a href='#fnref:190' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:137'>Frei, A., K. E. Kunkel, and A. Matonse, 2015: The seasonal nature of extreme hydrological events in the northeastern United States. <i>Journal of Hydrometeorology</i>, <b>16</b> (5), 2065–2085. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1175/JHM-D-14-0237.1'>10.1175/JHM-D-14-0237.1</a>. <a href='#fnref:137' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:167'>Friedland, K. D., J. P. Manning, J. S. Link, J. R. Gilbert, A. T. Gilbert, and A. F. O'Connell, 2012: Variation in wind and piscivorous predator fields affecting the survival of Atlantic salmon, Salmo salar, in the Gulf of Maine. <i>Fisheries Management and Ecology</i>, <b>19</b> (1), 22–35. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1111/j.1365-2400.2011.00814.x'>10.1111/j.1365-2400.2011.00814.x</a>. <a href='#fnref:167' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:158'>Friedland, K. D., R. T. Leaf, J. Kane, D. Tommasi, R. G. Asch, N. Rebuck, R. Ji, S. I. Large, C. Stock, and V. S. Saba, 2015: Spring bloom dynamics and zooplankton biomass response on the US Northeast Continental Shelf. <i>Continental Shelf Research</i>, <b>102</b>, 47–61. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1016/j.csr.2015.04.005'>10.1016/j.csr.2015.04.005</a>. <a href='#fnref:158' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:119'>Frumhoff, P. C., J. J. McCarthy, Jerry M. Melillo, S. C. Moser, and D. J. Wuebbles, 2007: Ch. 3: Marine impacts. <i>Confronting Climate Change in the U.S. Northeast: Science, Impacts, and Solutions. Synthesis Report of the Northeast Climate Impacts Assessment (NECIA)</i>., Union of Concerned Scientists , Cambridge, MA, 39–46. <a target='_blank' href='http://www.climatechoices.org/assets/documents/climatechoices/confronting-climate-change-in-the-u-s-northeast.pdf'>URL</a>. <a href='#fnref:119' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:408'>Fuller, E., E. Brush, and M. L. Pinsky, 2015: The persistence of populations facing climate shifts and harvest. <i>Ecosphere</i>, <b>6</b> (9), 1–16. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1890/ES14-00533.1'>10.1890/ES14-00533.1</a>. <a href='#fnref:408' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:98'>Gallinat, A. S., R. B. Primack, and D. L. Wagner, 2015: Autumn, the neglected season in climate change research. <i>Trends in Ecology &#38; Evolution</i>, <b>30</b> (3), 169–176. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1016/j.tree.2015.01.004'>10.1016/j.tree.2015.01.004</a>. <a href='#fnref:98' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:259'>Ganju, N. K., Z. Defne, M. L. Kirwan, S. Fagherazzi, A. D'Alpaos, and L. Carniello, 2017: Spatially integrative metrics reveal hidden vulnerability of microtidal salt marshes. <i>Nature Communcations</i>, <b>8</b>, 14156. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1038/ncomms14156'>10.1038/ncomms14156</a>. <a href='#fnref:259' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:319'>Garcia-Menendez, F., R. K. Saari, E. Monier, and N. E. Selin, 2015: U.S. air quality and health benefits from avoided climate change under greenhouse gas mitigation. <i>Environmental Science &#38; Technology</i>, <b>49</b> (13), 7580–7588. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1021/acs.est.5b01324'>10.1021/acs.est.5b01324</a>. <a href='#fnref:319' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:317'>Gasparrini, A., Y. Guo, M. Hashizume, E. Lavigne, A. Tobias, A. Zanobetti, J. D. Schwartz, M. Leone, P. Michelozzi, H. Kan, S. Tong, Y. Honda, H. Kim, and B. G. Armstrong, 2016: Changes in susceptibility to heat during the summer: A multicountry analysis. <i>American Journal of Epidemiology</i>, <b>183</b> (11), 1027–1036. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1093/aje/kwv260'>10.1093/aje/kwv260</a>. <a href='#fnref:317' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:315'>Gasparrini, A., Y. Guo, M. Hashizume, E. Lavigne, A. Zanobetti, J. Schwartz, A. Tobias, S. Tong, J. Rocklöv, B. Forsberg, M. Leone, M. De Sario, M. L. Bell, Y.-L. L. Guo, C. Wu, H. Kan, S.-M. Yi, M. de Sousa Zanotti Stagliorio Coelho, P. H. N. Saldiva, Y. Honda, H. Kim, and B. Armstrong, 2015: Mortality risk attributable to high and low ambient temperature: A multicountry observational study. <i>The Lancet</i>, <b>386</b> (9991), 369–375. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1016/S0140-6736(14)62114-0'>10.1016/S0140-6736(14)62114-0</a>. <a href='#fnref:315' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:229'>Gieder, K. D., S. M. Karpanty, J. D. Fraser, D. H. Catlin, B. T. Gutierrez, N. G. Plant, A. M. Turecek, and E. Robert Thieler, 2014: A Bayesian network approach to predicting nest presence of the federally-threatened piping plover (Charadrius melodus) using barrier island features. <i>Ecological Modelling</i>, <b>276</b>, 38–50. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1016/j.ecolmodel.2014.01.005'>10.1016/j.ecolmodel.2014.01.005</a>. <a href='#fnref:229' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:100'>Gill, A. L., A. S. Gallinat, R. Sanders-DeMott, A. J. Rigden, D. J. Short Gianotti, J. A. Mantooth, and P. H. Templer, 2015: Changes in autumn senescence in northern hemisphere deciduous trees: A meta-analysis of autumn phenology studies. <i>Annals of Botany</i>, <b>116</b> (6), 875–888. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1093/aob/mcv055'>10.1093/aob/mcv055</a>. <a href='#fnref:100' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:182'>Gledhill, D. K., M. M. White, J. Salisbury, H. Thomas, I. Mlsna, M. Liebman, B. Mook, J. Grear, A. C. Candelmo, R. C. Chambers, C. J. Gobler, C. W. Hunt, A. L. King, N. N. Price, S. R. Signorini, E. Stancioff, C. Stymiest, R. A. Wahle, J. D. Waller, N. D. Rebuck, Z. A. Wang, T. L. Capson, J. R. Morrison, S. R. Cooley, and S. C. Doney, 2015: Ocean and coastal acidification off New England and Nova Scotia. <i>Oceanography</i>, <b>28</b> (2), 182–197. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.5670/oceanog.2015.41'>10.5670/oceanog.2015.41</a>. <a href='#fnref:182' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:335'>Gobler, C. J., O. M. Doherty, T. K. Hattenrath-Lehmann, A. W. Griffith, Y. Kang, and R. W. Litaker, 2017: Ocean warming since 1982 has expanded the niche of toxic algal blooms in the North Atlantic and North Pacific oceans. <i>Proceedings of the National Academy of Sciences of the United States of America</i>, <b>114</b> (19), 4975–4980. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1073/pnas.1619575114'>10.1073/pnas.1619575114</a>. <a href='#fnref:335' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:215'>Goddard, P. B., J. Yin, S. M. Griffies, and S. Zhang, 2015: An extreme event of sea-level rise along the Northeast coast of North America in 2009–2010. <i>Nature Communications</i>, <b>6</b>, 6346. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1038/ncomms7346'>10.1038/ncomms7346</a>. <a href='#fnref:215' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:364'>Gould, K. A., and T. L. Lewis, 2017: Green Gentrification: Urban Sustainability and the Struggle for Environmental Justice. Routledge, London and New York,. <a href='#fnref:364' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:192'>Greene, C. H., and A. J. Pershing, 2004: Climate and the conservation biology of North Atlantic right whales: The right whale at the wrong time? <i>Frontiers in Ecology and the Environment</i>, <b>2</b> (1), 29–34. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1890/1540-9295(2004)002[0029:CATCBO]2.0.CO;2'>10.1890/1540-9295(2004)002[0029:CATCBO]2.0.CO;2</a>. <a href='#fnref:192' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:188'>Grieve, B. D., J. A. Hare, and V. S. Saba, 2017: Projecting the effects of climate change on Calanus finmarchicus distribution within the U.S. Northeast Continental Shelf. <i>Scientific Reports</i>, <b>7</b> (1), 6264. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1038/s41598-017-06524-1'>10.1038/s41598-017-06524-1</a>. <a href='#fnref:188' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:145'>Groffman, P. M., P. Kareiva, S. Carter, N. B. Grimm, J. Lawler, M. Mack, V. Matzek, and H. Tallis, 2014: Ch. 8: Ecosystems, biodiversity, and ecosystem services. <i>Climate Change Impacts in the United States: The Third National Climate Assessment</i>. Melillo, J. M., Terese (T.C.) Richmond, and G. W. Yohe, Eds., U.S. Global Change Research Program, Washington, DC, 195–219. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.7930/J0TD9V7H'>10.7930/J0TD9V7H</a>. <a href='#fnref:145' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:309'>Gronlund, C. J., A. Zanobetti, G. A. Wellenius, J. D. Schwartz, and M. S. O'Neill, 2016: Vulnerability to renal, heat and respiratory hospitalizations during extreme heat among U.S. elderly. <i>Climatic Change</i>, <b>136</b> (3), 631–645. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1007/s10584-016-1638-9'>10.1007/s10584-016-1638-9</a>. <a href='#fnref:309' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:73'>Gu, L., P. J. Hanson, W. M. Post, D. P. Kaiser, B. Yang, R. Nemani, S. G. Pallardy, and T. Meyers, 2008: The 2007 eastern US spring freeze: Increased cold damage in a warming world? <i>BioScience</i>, <b>58</b> (3), 253–262. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1641/B580311'>10.1641/B580311</a>. <a href='#fnref:73' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:345'>Guenther, R., and J. Balbus, 2014: Primary Protection: Enhancing Health Care Resilience for a Changing Climate. U.S. Department of Health and Human Services, <a target='_blank' href='https://toolkit.climate.gov/sites/default/files/SCRHCFI%20Best%20Practices%20Report%20final2%202014%20Web.pdf'>URL</a>. <a href='#fnref:345' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:125'>Guilbert, J., A. K. Betts, D. M. Rizzo, B. Beckage, and A. Bomblies, 2015: Characterization of increased persistence and intensity of precipitation in the northeastern United States. <i>Geophysical Research Letters</i>, <b>42</b> (6), 1888–1893. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1002/2015GL063124'>10.1002/2015GL063124</a>. <a href='#fnref:125' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:299'>Guilbert, J., B. Beckage, J. M. Winter, R. M. Horton, T. Perkins, and A. Bomblies, 2014: Impacts of projected climate change over the Lake Champlain basin in Vermont. <i>Journal of Applied Meteorology and Climatology</i>, <b>53</b> (8), 1861–1875. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1175/jamc-d-13-0338.1'>10.1175/jamc-d-13-0338.1</a>. <a href='#fnref:299' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:279'>Gutierrez, B. T., N. G. Plant, E. A. Pendleton, and E. R. Thieler, 2014: Using a Bayesian Network to predict shore-line change vulnerability to sea-level rise for the coasts of the United States. USGS Open-File Report 2014–1083. U.S. Geological Survey, Reston, VA, 26 pp. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.3133/ofr20141083'>10.3133/ofr20141083</a>. <a href='#fnref:279' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:392'>Gutierrez, B. T., N. G. Plant, E. R. Thieler, and A. Turecek, 2015: Using a Bayesian network to predict barrier island geomorphologic characteristics. <i>Journal of Geophysical Research Earth Surface</i>, <b>120</b> (12), 2452–2475. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1002/2015JF003671'>10.1002/2015JF003671</a>. <a href='#fnref:392' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:280'>Gutierrez, B. T., S. J. Williams, and E. R. Thieler, 2009: Ocean coasts. <i>Coastal Sensitivity to Sea-Level Rise: A Focus on the Mid-Atlantic Region</i>. G. Titus, J., Ed., U.S. Climate Change Science Program (CCSP), Washington, DC, 43–56. <a target='_blank' href='http://www.globalchange.gov/sites/globalchange/files/sap4-1-final-report-all.pdf'>URL</a>. <a href='#fnref:280' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:116'>Hagenstad, M., E. Burakowski, and R. Hill, 2018: The economic contributions of winter sports in a changing climate. Protect Our Winters and REI Co-op, Boulder, CO, 69 pp. <a target='_blank' href='https://protectourwinters.org/2018-economic-report/'>URL</a>. <a href='#fnref:116' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:201'>Hamilton, L. C., 2007: Climate, fishery and society interactions: Observations from the North Atlantic. <i>Deep Sea Research Part II: Topical Studies in Oceanography</i>, <b>54</b> (23), 2958–2969. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1016/j.dsr2.2007.08.020'>10.1016/j.dsr2.2007.08.020</a>. <a href='#fnref:201' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:121'>Hamilton, L. C., C. Brown, and B. D. Keim, 2007: Ski areas, weather and climate: Time series models for New England case studies. <i>International Journal of Climatology</i>, <b>27</b> (15), 2113–2124. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1002/joc.1502'>10.1002/joc.1502</a>. <a href='#fnref:121' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:390'>Hamin, E. M., N. Gurran, and A. M. Emlinger, 2014: Barriers to municipal climate adaptation: Examples from coastal Massachusetts' smaller cities and towns. <i>Journal of the American Planning Association</i>, <b>80</b> (2), 110–122. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1080/01944363.2014.949590'>10.1080/01944363.2014.949590</a>. <a href='#fnref:390' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:346'>Hampson, A., T. Bourgeois, G. Dillingham, and I. Panzarella, 2013: Combined heat and power: Enabling resilient energy infrastructure for critical facilities. ORNL/TM-2013/100. ICF International, Washington, DC, 41 pp. <a target='_blank' href='https://www.energy.gov/sites/prod/files/2013/11/f4/chp_critical_facilities.pdf'>URL</a>. <a href='#fnref:346' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:126'>Hamza, M. A., and W. K. Anderson, 2005: Soil compaction in cropping systems: A review of the nature, causes and possible solutions. <i>Soil and Tillage Research</i>, <b>82</b> (2), 121–145. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1016/j.still.2004.08.009'>10.1016/j.still.2004.08.009</a>. <a href='#fnref:126' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:262'>Hapke, C. J., E. A. Himmelstoss, M. G. Kratzmann, J. H. List, and E. Robert Thieler, 2011: National assessment of shoreline change: Historical shoreline change along the New England and Mid-Atlantic coasts. USGS Open-File Report 2010-1118. U.S. Geological Survey, Reston, VA, 57 pp. <a target='_blank' href='https://pubs.er.usgs.gov/publication/ofr20101118'>URL</a>. <a href='#fnref:262' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:385'>Hare, J. A., D. L. Borggaard, K. D. Friedland, J. Anderson, P. Burns, K. Chu, P. M. Clay, M. J. Collins, P. Cooper, P. S. Fratantoni, M. R. Johnson, J. P. Manderson, L. Milke, T. J. Miller, C. D. Orphanides, and V. S. Saba, 2016: Northeast Regional Action Plan: NOAA Fisheries Climate Science Strategy. NOAA Technical Memorandum NMFS-NE-239. NOAA Northeast Fisheries Science Center, Woods Hole, MA, 94 pp. <a target='_blank' href='https://www.st.nmfs.noaa.gov/ecosystems/climate/rap/northeast-regional-action-plan'>URL</a>. <a href='#fnref:385' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:401'>Hare, J. A., M. A. Alexander, M. J. Fogarty, E. H. Williams, and J. D. Scott, 2010: Forecasting the dynamics of a coastal fishery species using a coupled climate–population model. <i>Ecological Applications</i>, <b>20</b> (2), 452–464. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1890/08-1863.1'>10.1890/08-1863.1</a>. <a href='#fnref:401' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:143'>Hare, J. A., W. E. Morrison, M. W. Nelson, M. M. Stachura, E. J. Teeters, R. B. Griffis, M. A. Alexander, J. D. Scott, L. Alade, R. J. Bell, A. S. Chute, K. L. Curti, T. H. Curtis, D. Kircheis, J. F. Kocik, S. M. Lucey, C. T. McCandless, L. M. Milke, D. E. Richardson, E. Robillard, H. J. Walsh, M. C. McManus, K. E. Marancik, and C. A. Griswold, 2016: A vulnerability assessment of fish and invertebrates to climate change on the northeast U.S. continental shelf. <i>PLOS ONE</i>, <b>11</b> (2), e0146756. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1371/journal.pone.0146756'>10.1371/journal.pone.0146756</a>. <a href='#fnref:143' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:285'>Hauer, M. E., 2017: Migration induced by sea-level rise could reshape the US population landscape. <i>Nature Climate Change</i>, <b>7</b> (5), 321–325. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1038/nclimate3271'>10.1038/nclimate3271</a>. <a href='#fnref:285' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:248'>Hay, C. C., E. Morrow, R. E. Kopp, and J. X. Mitrovica, 2015: Probabilistic reanalysis of twentieth-century sea-level rise. <i>Nature</i>, <b>517</b> (7535), 481–484. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1038/nature14093'>10.1038/nature14093</a>. <a href='#fnref:248' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:114'>Hay, L. E., S. L. Markstrom, and C. Ward-Garrison, 2011: Watershed-scale response to climate change through the twenty-first century for selected basins across the United States. <i>Earth Interactions</i>, <b>15</b> (17), 1–37. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1175/2010ei370.1'>10.1175/2010ei370.1</a>. <a href='#fnref:114' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:161'>Henry, A. M., and T. R. Johnson, 2015: Understanding social resilience in the Maine lobster industry. <i>Marine and Coastal Fisheries</i>, <b>7</b> (1), 33–43. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1080/19425120.2014.984086'>10.1080/19425120.2014.984086</a>. <a href='#fnref:161' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:268'>Hill, T. D., and S. C. Anisfeld, 2015: Coastal wetland response to sea level rise in Connecticut and New York. <i>Estuarine, Coastal and Shelf Science</i>, <b>163</b> (Part B), 185–193. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1016/j.ecss.2015.06.004'>10.1016/j.ecss.2015.06.004</a>. <a href='#fnref:268' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:111'>Hodgkins, G. A., 2013: The importance of record length in estimating the magnitude of climatic changes: An example using 175 years of lake ice-out dates in New England. <i>Climatic Change</i>, <b>119</b> (3), 705–718. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1007/s10584-013-0766-8'>10.1007/s10584-013-0766-8</a>. <a href='#fnref:111' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:173'>Hoenig, J., R. Muller, and J. Tremblay, 2015: American Lobster Benchmark Stock Assessment and Peer Review Report. Atlantic States Marine Fisheries Commission, Arlington, VA, 438 pp. <a target='_blank' href='http://www.asmfc.org/uploads/file//55d61d73AmLobsterStockAssmt_PeerReviewReport_Aug2015_red2.pdf'>URL</a>. <a href='#fnref:173' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:2'>Hoerling, M., J. Eischeid, J. Perlwitz, X.-W. Quan, K. Wolter, and L. Cheng, 2016: Characterizing recent trends in U.S. heavy precipitation. <i>Journal of Climate</i>, <b>29</b> (7), 2313–2332. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1175/jcli-d-15-0441.1'>10.1175/jcli-d-15-0441.1</a>. <a href='#fnref:2' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:307'>Hondula, D. M., R. E. Davis, M. J. Leisten, M. V. Saha, L. M. Veazey, and C. R. Wegner, 2012: Fine-scale spatial variability of heat-related mortality in Philadelphia County, USA, from 1983-2008: A case-series analysis. <i>Environmental Health</i>, <b>11</b> (1), 16. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1186/1476-069x-11-16'>10.1186/1476-069x-11-16</a>. <a href='#fnref:307' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:254'>Horton, R. M., and J. Liu, 2014: Beyond Hurricane Sandy: What might the future hold for tropical cyclones in the North Atlantic? <i>Journal of Extreme Events</i>, <b>01</b> (01), 1450007. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1142/S2345737614500079'>10.1142/S2345737614500079</a>. <a href='#fnref:254' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:17'>Horton, R., C. Rosenzweig, W. Solecki, D. Bader, and L. Sohl, 2016: Climate science for decision-making in the New York metropolitan region. <i>Climate in Context: Science and Society Partnering for Adaptation</i>. S. Parris, A., G. M. Garfin, K. Dow, R. Meyer, and S. L. Close, Eds., Wiley, New York, 51–72. <a href='#fnref:17' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:260'>Houser, T., S. Hsiang, R. Kopp, K. Larsen, M. Delgado, A. Jina, M. Mastrandrea, S. Mohan, R. Muir-Wood, D. J. Rasmussen, J. Rising, and Paul Wilson, 2015: Economic Risks of Climate Change: An American Prospectus. Columbia University Press, New York,. <a href='#fnref:260' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:129'>Hristov, A. N., A. T. Degaetano, C. A. Rotz, E. Hoberg, R. H. Skinner, T. Felix, H. Li, P. H. Patterson, G. Roth, M. Hall, T. L. Ott, L. H. Baumgard, W. Staniar, R. M. Hulet, C. J. Dell, A. F. Brito, and D. Y. Hollinger, 2017: Climate change effects on livestock in the Northeast US and strategies for adaptation. <i>Climatic Change</i>, doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1007/s10584-017-2023-z'>10.1007/s10584-017-2023-z</a>. <a href='#fnref:129' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:123'>Hsiang, S., R. Kopp, A. Jina, J. Rising, M. Delgado, S. Mohan, D. J. Rasmussen, R. Muir-Wood, P. Wilson, M. Oppenheimer, K. Larsen, and T. Houser, 2017: Estimating economic damage from climate change in the United States. <i>Science</i>, <b>356</b> (6345), 1362–1369. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1126/science.aal4369'>10.1126/science.aal4369</a>. <a href='#fnref:123' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:411'>Huang, H., J. M. Winter, E. C. Osterberg, R. M. Horton, and B. Beckage, 2017: Total and extreme precipitation changes over the northeastern United States. <i>Journal of Hydrometeorology</i>, <b>18</b> (6), 1783–1798. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1175/jhm-d-16-0195.1'>10.1175/jhm-d-16-0195.1</a>. <a href='#fnref:411' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:37'>Hughes, J. E., L. A. Deegan, J. C. Wyda, M. J. Weaver, and A. Wright, 2002: The effects of eelgrass habitat loss on estuarine fish communities of southern New England. <i>Estuaries and Coasts</i>, <b>25</b> (2), 235–249. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1007/BF02691311'>10.1007/BF02691311</a>. <a href='#fnref:37' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:331'>IOM, 2011: Climate Change, the Indoor Environment, and Health. The National Academies Press, Washington, D.C., 286 pp. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.17226/13115'>10.17226/13115</a>. <a href='#fnref:331' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:330'>Ito, K., K. R. Weinberger, G. S. Robinson, P. E. Sheffield, R. Lall, R. Mathes, Z. Ross, P. L. Kinney, and T. D. Matte, 2015: The associations between daily spring pollen counts, over-the-counter allergy medication sales, and asthma syndrome emergency department visits in New York City, 2002-2012. <i>Environmental Health</i>, <b>14</b> (1), 71. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1186/s12940-015-0057-0'>10.1186/s12940-015-0057-0</a>. <a href='#fnref:330' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:136'>Ivancic, T. J., and S. B. Shaw, 2015: Examining why trends in very heavy precipitation should not be mistaken for trends in very high river discharge. <i>Climatic Change</i>, <b>133</b> (4), 681–693. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1007/s10584-015-1476-1'>10.1007/s10584-015-1476-1</a>. <a href='#fnref:136' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:44'>Jacobs, J. M., L. R. Cattaneo, W. Sweet, and T. Mansfield, 2018: Recent and future outlooks for nuisance flooding impacts on roadways on the US East Coast. <i>Transportation Research Record</i>, doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1177/0361198118756366'>10.1177/0361198118756366</a>. <a href='#fnref:44' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:322'>Jagai, J. S., Q. Li, S. Wang, K. P. Messier, T. J. Wade, and E. D. Hilborn, 2015: Extreme precipitation and emergency room visits for gastrointestinal illness in areas with and without combined sewer systems: An analysis of Massachusetts data, 2003-2007. <i>Environmental Health Perspectives</i>, <b>123</b> (9), 873–879. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1289/ehp.1408971'>10.1289/ehp.1408971</a>. <a href='#fnref:322' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:86'>Janowiak, M. K., A. W. D'Amato, C. W. Swanston, L. Iverson, F. Thompson III, W. Dijak, S. Matthews, M. Peters, A. Prasad, J. S. Fraser, L. A. Brandt, P. R. Butler, S. D. Handler, P. D. Shannon, D. Burbank, J. Campbell, C. Cogbill, M. J. Duveneck, M. Emery, N. Fisichelli, J. Foster, J. Hushaw, L. Kenefic, A. Mahaffey, T. L. Morelli, N. Reo, P. Schaberg, K. R. Simmons, A. Weiskittel, S. Wilmot, D. Hollinger, E. Lane, L. Rustad, and P. Templer, 2018: New England and New York Forest Ecosystem Vulnerability Assessment and Synthesis. Gen. Tech. Rep. NRS-173. U.S. Department of Agriculture, Forest Service, Newtown Square, PA, 234 pp. <a target='_blank' href='https://www.fs.usda.gov/treesearch/pubs/55635'>URL</a>. <a href='#fnref:86' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:87'>Janowiak, M. K., J. Nett, E. Johnson, N. Walker, S. Handler, and C. Swanston, 2018: Climate Change and Adaptation: New England and Northern New York Forests [story map]. USDA Forest Service, Newtown Square, PA. <a target='_blank' href='https://usfs.maps.arcgis.com/apps/MapSeries/index.html?appid=a4babe8e2fe849739171e6824930459e'>URL</a>. <a href='#fnref:87' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:88'>Jantarasami, L. C., J. J. Lawler, and C. W. Thomas, 2010: Institutional barriers to climate change adaptation in US national parks and forests. <i>Ecology and Society</i>, <b>15</b> (4), 33. <a target='_blank' href='http://www.ecologyandsociety.org/vol15/iss4/art33/'>URL</a>. <a href='#fnref:88' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:341'>Jiang, C., K. S. Shaw, C. R. Upperman, D. Blythe, C. Mitchell, R. Murtugudde, A. R. Sapkota, and A. Sapkota, 2015: Climate change, extreme events and increased risk of salmonellosis in Maryland, USA: Evidence for coastal vulnerability. <i>Environment International</i>, <b>83</b>, 58–62. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1016/j.envint.2015.06.006'>10.1016/j.envint.2015.06.006</a>. <a href='#fnref:341' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:334'>Johnson, B. J., and M. V. K. Sukhdeo, 2013: Drought-induced amplification of local and regional West Nile virus infection rates in New Jersey. <i>Journal of Medical Entomology</i>, <b>50</b> (1), 195–204. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1603/me12035'>10.1603/me12035</a>. <a href='#fnref:334' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:131'>Jones, R., C. Travers, C. Rodgers, B. Lazar, E. English, J. Lipton, J. Vogel, K. Strzepek, and J. Martinich, 2013: Climate change impacts on freshwater recreational fishing in the United States. <i>Mitigation and Adaptation Strategies for Global Change</i>, <b>18</b> (6), 731–758. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1007/s11027-012-9385-3'>10.1007/s11027-012-9385-3</a>. <a href='#fnref:131' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:336'>Jones, S., B. Schuster, J. Mahoney, J. Yu, C. Ellis, V. Cooper, and C. Whistler, 2011: The occurrence, abundance, phylogeny and virulence  potential  of  pathogenic Vibrio species in New Hampshire shellfish waters. In <i>103rd Annual Meeting, National Shellfisheries Association </i>, March 27–31, 2011, Baltimore, Maryland. <a href='#fnref:336' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:233'>Jordan, S. J., J. Stoffer, and J. A. Nestlerode, 2011: Wetlands as sinks for reactive nitrogen at continental and global scales: A meta-analysis. <i>Ecosystems</i>, <b>14</b> (1), 144–155. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1007/s10021-010-9400-z'>10.1007/s10021-010-9400-z</a>. <a href='#fnref:233' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:165'>Juanes, F., S. Gephard, and K. F. Beland, 2004: Long-term changes in migration timing of adult Atlantic salmon (Salmo salar) at the southern edge of the species distribution. <i>Canadian Journal of Fisheries and Aquatic Sciences</i>, <b>61</b> (12), 2392–2400. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1139/f04-207'>10.1139/f04-207</a>. <a href='#fnref:165' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:388'>Kaján, E., and J. Saarinen, 2013: Tourism, climate change and adaptation: A review. <i>Current Issues in Tourism</i>, <b>16</b> (2), 167–195. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1080/13683500.2013.774323'>10.1080/13683500.2013.774323</a>. <a href='#fnref:388' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:138'>Kam, J., and J. Sheffield, 2016: Changes in the low flow regime over the eastern United States (1962–2011): Variability, trends, and attributions. <i>Climatic Change</i>, <b>135</b> (3), 639–653. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1007/s10584-015-1574-0'>10.1007/s10584-015-1574-0</a>. <a href='#fnref:138' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:208'>Karegar, M. A., T. H. Dixon, and S. E. Engelhart, 2016: Subsidence along the Atlantic Coast of North America: Insights from GPS and late Holocene relative sea level data. <i>Geophysical Research Letters</i>, <b>43</b> (7), 3126–3133. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1002/2016GL068015'>10.1002/2016GL068015</a>. <a href='#fnref:208' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:36'>Karmalkar, A. V., and R. S. Bradley, 2017: Consequences of global warming of 1.5 °C and 2 °C for regional temperature and precipitation changes in the contiguous United States. <i>PLOS ONE</i>, <b>12</b> (1), e0168697. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1371/journal.pone.0168697'>10.1371/journal.pone.0168697</a>. <a href='#fnref:36' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:72'>Keenan, T. F., J. Gray, M. A. Friedl, M. Toomey, G. Bohrer, D. Y. Hollinger, J. W. Munger, J. O/'Keefe, H. P. Schmid, I. S. Wing, B. Yang, and A. D. Richardson, 2014: Net carbon uptake has increased through warming-induced changes in temperate forest phenology. <i>Nature Climate Change</i>, <b>4</b> (7), 598–604. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1038/nclimate2253'>10.1038/nclimate2253</a>. <a href='#fnref:72' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:245'>Keyes, B., 2017: Passamaquoddy Tribe named Project Developer of the Year. Indian Country Today, Verona, NY. <a target='_blank' href='https://indiancountrymedianetwork.com/news/environment/passamaquoddy-tribe-named-project-developer-year/'>URL</a>. <a href='#fnref:245' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:96'>Kimmerer, R., and N. Patterson, 2016: Annual Report. Center for Native Peoples and the Environment, Syracuse, NY, 22 pp. <a target='_blank' href='http://www.esf.edu/nativepeoples/documents/CNPE2016Report.pdf'>URL</a>. <a href='#fnref:96' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:26'>Kingsley, S. L., M. N. Eliot, J. Gold, R. R. Vanderslice, and G. A. Wellenius, 2016: Current and projected heat-related morbidity and mortality in Rhode Island. <i>Environmental Health Perspectives</i>, <b>124</b> (4), 460–467. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1289/ehp.1408826'>10.1289/ehp.1408826</a>. <a href='#fnref:26' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:225'>Kirwan, M. L., and J. P. Megonigal, 2013: Tidal wetland stability in the face of human impacts and sea-level rise. <i>Nature</i>, <b>504</b> (7478), 53–60. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1038/nature12856'>10.1038/nature12856</a>. <a href='#fnref:225' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:274'>Kirwan, M. L., G. R. Guntenspergen, A. D'Alpaos, J. T. Morris, S. M. Mudd, and S. Temmerman, 2010: Limits on the adaptability of coastal marshes to rising sea level. <i>Geophysical Research Letters</i>, <b>37</b> (23), L23401. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1029/2010gl045489'>10.1029/2010gl045489</a>. <a href='#fnref:274' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:277'>Kirwan, M. L., S. Temmerman, E. E. Skeehan, G. R. Guntenspergen, and S. Fagherazzi, 2016: Overestimation of marsh vulnerability to sea level rise. <i>Nature Climate Change</i>, <b>6</b> (3), 253–260. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1038/nclimate2909'>10.1038/nclimate2909</a>. <a href='#fnref:277' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:308'>Klein Rosenthal, J., P. L. Kinney, and K. B. Metzger, 2014: Intra-urban vulnerability to heat-related mortality in New York City, 1997–2006. <i>Health &#38; Place</i>, <b>30</b>, 45–60. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1016/j.healthplace.2014.07.014'>10.1016/j.healthplace.2014.07.014</a>. <a href='#fnref:308' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:10'>Kleisner, K. M., M. J. Fogarty, S. McGee, A. Barnett, P. Fratantoni, J. Greene, J. A. Hare, S. M. Lucey, C. McGuire, J. Odell, V. S. Saba, L. Smith, K. J. Weaver, and M. L. Pinsky, 2016: The effects of sub-regional climate velocity on the distribution and spatial extent of marine species assemblages. <i>PLOS ONE</i>, <b>11</b> (2), e0149220. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1371/journal.pone.0149220'>10.1371/journal.pone.0149220</a>. <a href='#fnref:10' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:189'>Kleisner, K. M., M. J. Fogarty, S. McGee, J. A. Hare, S. Moret, C. T. Perretti, and V. S. Saba, 2017: Marine species distribution shifts on the U.S. Northeast Continental Shelf under continued ocean warming. <i>Progress in Oceanography</i>, <b>153</b>, 24–36. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1016/j.pocean.2017.04.001'>10.1016/j.pocean.2017.04.001</a>. <a href='#fnref:189' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:109'>Knowles, N., M. D. Dettinger, and D. R. Cayan, 2006: Trends in snowfall versus rainfall in the western United States. <i>Journal of Climate</i>, <b>19</b> (18), 4545–4559. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1175/JCLI3850.1'>10.1175/JCLI3850.1</a>. <a href='#fnref:109' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:253'>Knutson, T. R., J. J. Sirutis, M. Zhao, R. E. Tuleya, M. Bender, G. A. Vecchi, G. Villarini, and D. Chavas, 2015: Global projections of intense tropical cyclone activity for the late twenty-first century from dynamical downscaling of CMIP5/RCP4.5 scenarios. <i>Journal of Climate</i>, <b>28</b> (18), 7203–7224. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1175/JCLI-D-15-0129.1'>10.1175/JCLI-D-15-0129.1</a>. <a href='#fnref:253' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:267'>Kolker, A. S., S. L. Goodbred, S. Hameed, and J. K. Cochran, 2009: High-resolution records of the response of coastal wetland systems to long-term and short-term sea-level variability. <i>Estuarine, Coastal and Shelf Science</i>, <b>84</b> (4), 493–508. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1016/j.ecss.2009.06.030'>10.1016/j.ecss.2009.06.030</a>. <a href='#fnref:267' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:210'>Kopp, R. E., 2013: Does the mid-Atlantic United States sea level acceleration hot spot reflect ocean dynamic variability? <i>Geophysical Research Letters</i>, <b>40</b> (15), 3981–3985. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1002/grl.50781'>10.1002/grl.50781</a>. <a href='#fnref:210' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:16'>Kopp, R. E., A. Broccoli, B. P. Horton, D. Kreeger, R. Leichenko, J. A. Miller, J. K. Miller, P. Orton, A. Parris, D. A. Robinson, C. P. Weaver, M. Campo, M. B. Kaplan, M. K. Buchanan, J. Herb, L. Auermuller, and C. J. Andrews, 2016: Assessing New Jersey's exposure to sea-level rise and coastal storms: Report of the New Jersey Climate Adaptation Alliance Science and Technical Advisory Panel. New Jersey Climate Adaptation Alliance, New Brunswick, NJ, 34 pp. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.7282/T3ZP48CF'>10.7282/T3ZP48CF</a>. <a href='#fnref:16' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:251'>Kopp, R. E., R. M. Horton, C. M. Little, J. X. Mitrovica, M. Oppenheimer, D. J. Rasmussen, B. H. Strauss, and C. Tebaldi, 2014: Probabilistic 21st and 22nd century sea-level projections at a global network of tide-gauge sites. <i>Earth's Future</i>, <b>2</b> (8), 383–406. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1002/2014EF000239'>10.1002/2014EF000239</a>. <a href='#fnref:251' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:406'>Kopp, R., R. M. DeConto, D. A. Bader, C. C. Hay, R. Horton, S. Kulp, M. Oppenheimer, D. Pollard, and B. Strauss, 2017: Implications of ice-shelf hydrofracturing and ice-cliff collapse mechanisms for sea-level projections. <i>Earth's Future</i>, <b>5</b>, 1217–1233. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1002/2017EF000663'>10.1002/2017EF000663</a>. <a href='#fnref:406' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:255'>Kossin, J. P., T. Hall, T. Knutson, K. E. Kunkel, R. J. Trapp, D. E. Waliser, and M. F. Wehner, 2017: Extreme Storms. <i>Climate Science Special Report: Fourth National Climate Assessment, Volume I</i>. Wuebbles, D. J., D. W. Fahey, K. A. Hibbard, D. J. Dokken, B. C. Stewart, and T. K. Maycock, Eds., U.S. Global Change Research Program, Washington, DC, USA, 257–276. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.7930/J07S7KXX'>10.7930/J07S7KXX</a>. <a href='#fnref:255' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:141'>Kramer, R. J., L. Bounoua, P. Zhang, R. E. Wolfe, T. G. Huntington, M. L. Imhoff, K. Thome, and G. L. Noyce, 2015: Evapotranspiration trends over the eastern United States during the 20th century. <i>Hydrology</i>, <b>2</b> (2), 93–111. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.3390/hydrology2020093'>10.3390/hydrology2020093</a>. <a href='#fnref:141' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:110'>Kunkel, K. E., D. A. Robinson, S. Champion, X. Yin, T. Estilow, and R. M. Frankson, 2016: Trends and extremes in Northern Hemisphere snow characteristics. <i>Current Climate Change Reports</i>, <b>2</b> (2), 65–73. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1007/s40641-016-0036-8'>10.1007/s40641-016-0036-8</a>. <a href='#fnref:110' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:107'>Kunkel, K. E., M. Palecki, L. Ensor, K. G. Hubbard, D. Robinson, K. Redmond, and D. Easterling, 2009: Trends in twentieth-century US snowfall using a quality-controlled dataset. <i>Journal of Atmospheric and Oceanic Technology</i>, <b>26</b>, 33–44. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1175/2008JTECHA1138.1'>10.1175/2008JTECHA1138.1</a>. <a href='#fnref:107' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:124'>Kunkel, K. E., T. R. Karl, D. R. Easterling, K. Redmond, J. Young, X. Yin, and P. Hennon, 2013: Probable maximum precipitation and climate change. <i>Geophysical Research Letters</i>, <b>40</b> (7), 1402–1408. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1002/grl.50334'>10.1002/grl.50334</a>. <a href='#fnref:124' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:146'>Lane, D., R. Jones, D. Mills, C. Wobus, R. C. Ready, R. W. Buddemeier, E. English, J. Martinich, K. Shouse, and H. Hosterman, 2015: Climate change impacts on freshwater fish, coral reefs, and related ecosystem services in the United States. <i>Climatic Change</i>, <b>131</b> (1), 143–157. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1007/s10584-014-1107-2'>10.1007/s10584-014-1107-2</a>. <a href='#fnref:146' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:40'>Le Bris, A., K. E. Mills, R. A. Wahle, Y. Chen, M. A. Alexander, A. J. Allyn, J. G. Schuetz, J. D. Scott, and A. J. Pershing, 2018: Climate vulnerability and resilience in the most valuable North American fishery. <i>Proceedings of the National Academy of Sciences of the United States of America</i>, <b>115</b> (8), 1831–1836. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1073/pnas.1711122115'>10.1073/pnas.1711122115</a>. <a href='#fnref:40' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:84'>Lehikoinen, E. S. A., T. H. Sparks, and M. Zalakevicius, 2004: Arrival and departure dates. <i>Advances in Ecological Research</i>., Vol. 35 of, Academic Press, 1–31. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1016/S0065-2504(04)35001-4'>10.1016/S0065-2504(04)35001-4</a>. <a href='#fnref:84' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:51'>Leichenko, R. M., and W. D. Solecki, 2013: Climate change in suburbs: An exploration of key impacts and vulnerabilities. <i>Urban Climate</i>, <b>6</b>, 82–97. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1016/j.uclim.2013.09.001'>10.1016/j.uclim.2013.09.001</a>. <a href='#fnref:51' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:391'>Leichenko, R., M. McDermott, and E. Bezborodko, 2015: Barriers, limits and limitations to resilience. <i>Journal of Extreme Events</i>, <b>02</b> (01), 1550002. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1142/s2345737615500025'>10.1142/s2345737615500025</a>. <a href='#fnref:391' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:13'>Lentz, E. E., E. R. Thieler, N. G. Plant, S. R. Stippa, R. M. Horton, and D. B. Gesch, 2016: Evaluation of dynamic coastal response to sea-level rise modifies inundation likelihood. <i>Nature Climate Change</i>, <b>6</b> (7), 696–700. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1038/nclimate2957'>10.1038/nclimate2957</a>. <a href='#fnref:13' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:366'>Lentz, E. E., S. R. Stippa, E. R. Thieler, N. G. Plant, D. B. Gesch, and R. M. Horton, 2015: Evaluating Coastal Landscape Response to Sea-Level Rise in the Northeastern United States—Approach and Methods. USGS Open-File Report 2014-1252. U.S. Geological Survey, Reston, VA, 27 pp. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.3133/ofr20141252'>10.3133/ofr20141252</a>. <a href='#fnref:366' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:219'>Leonardi, N., N. K. Ganju, and S. Fagherazzi, 2016: A linear relationship between wave power and erosion determines salt-marsh resilience to violent storms and hurricanes. <i>Proceedings of the National Academy of Sciences of the United States of America</i>, <b>113</b> (1), 64–68. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1073/pnas.1510095112'>10.1073/pnas.1510095112</a>. <a href='#fnref:219' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:101'>Leuzinger, S., G. Zotz, R. Asshoff, and C. Körner, 2005: Responses of deciduous forest trees to severe drought in Central Europe. <i>Tree Physiology</i>, <b>25</b> (6), 641–650. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1093/treephys/25.6.641'>10.1093/treephys/25.6.641</a>. <a href='#fnref:101' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:349'>Lieberman-Cribbin, W., B. Liu, S. Schneider, R. Schwartz, and E. Taioli, 2017: Self-reported and FEMA flood exposure assessment after Hurricane Sandy: Association with mental health outcomes. <i>PLOS ONE</i>, <b>12</b> (1), e0170965. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1371/journal.pone.0170965'>10.1371/journal.pone.0170965</a>. <a href='#fnref:349' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:287'>Lin, S., B. A. Fletcher, M. Luo, R. Chinery, and S.-. A. Hwang, 2011: Health impact in New York City during the Northeastern blackout of 2003. <i>Public Health Reports</i>, <b>126</b> (3), 384–393. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1177/003335491112600312'>10.1177/003335491112600312</a>. <a href='#fnref:287' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:383'>Link, J. S., R. Griffis, and S. Busch, Eds., 2015: <i>NOAA Fisheries Climate Science Strategy</i>. 70 pp. <a target='_blank' href='https://www.st.nmfs.noaa.gov/ecosystems/climate/national-climate-strategy'>URL</a>. <a href='#fnref:383' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:6'>Liquete, C., C. Piroddi, E. G. Drakou, L. Gurney, S. Katsanevakis, A. Charef, and B. Egoh, 2013: Current status and future prospects for the assessment of marine and coastal ecosystem services: A systematic review. <i>PLOS ONE</i>, <b>8</b> (7), e67737. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1371/journal.pone.0067737'>10.1371/journal.pone.0067737</a>. <a href='#fnref:6' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:65'>Lopez, R., N. Plesha, B. Campbell, and C. Laughton, 2015: Northeast Economic Engine: Agriculture, Forest Products and Commercial Fishing. Farm Credit East, Enfield, CT, 25 pp. <a target='_blank' href='http://www.are.uconn.edu/index_42_1981703122.pdf'>URL</a>. <a href='#fnref:65' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:209'>Love, R., G. A. Milne, L. Tarasov, S. E. Engelhart, M. P. Hijma, K. Latychev, B. P. Horton, and T. E. Törnqvist, 2016: The contribution of glacial isostatic adjustment to projections of sea-level change along the Atlantic and Gulf coasts of North America. <i>Earth's Future</i>, <b>4</b> (10), 440–464. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1002/2016EF000363'>10.1002/2016EF000363</a>. <a href='#fnref:209' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:169'>Lucey, S. M., and J. A. Nye, 2010: Shifting species assemblages in the Northeast US Continental Shelf Large Marine Ecosystem. <i>Marine Ecology Progress Series</i>, <b>415</b>, 23–33. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.3354/Meps08743'>10.3354/Meps08743</a>. <a href='#fnref:169' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:4'>Lynch, C., A. Seth, and J. Thibeault, 2016: Recent and projected annual cycles of temperature and precipitation in the northeast United States from CMIP5. <i>Journal of Climate</i>, <b>29</b> (1), 347–365. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1175/jcli-d-14-00781.1'>10.1175/jcli-d-14-00781.1</a>. <a href='#fnref:4' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:246'>Lynn, K., J. Daigle, J. Hoffman, F. Lake, N. Michelle, D. Ranco, C. Viles, G. Voggesser, and P. Williams, 2013: The impacts of climate change on tribal traditional foods. <i>Climatic Change</i>, <b>120</b> (3), 545–556. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1007/s10584-013-0736-1'>10.1007/s10584-013-0736-1</a>. <a href='#fnref:246' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:367'>Lyons, J. E., M. C. Runge, H. P. Laskowski, and W. L. Kendall, 2008: Monitoring in the context of structured decision-making and adaptive management. <i>Journal of Wildlife Management</i>, <b>72</b> (8), 1683–1692. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.2193/2008-141'>10.2193/2008-141</a>. <a href='#fnref:367' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:372'>Mahan, H., 2015: Fulfilling the promise of “Parks to People” in a changing environment: The Gateway National Recreation Area experience. <i>The George Wright Forum</i>, <b>32</b> (1), 51–58. <a target='_blank' href='http://www.jstor.org/stable/43598400'>URL</a>. <a href='#fnref:372' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:397'>Maloney, E. D., S. J. Camargo, E. Chang, B. Colle, R. Fu, K. L. Geil, Q. Hu, X. Jiang, N. Johnson, K. B. Karnauskas, J. Kinter, B. Kirtman, S. Kumar, B. Langenbrunner, K. Lombardo, L. N. Long, A. Mariotti, J. E. Meyerson, K. C. Mo, J. D. Neelin, Z. Pan, R. Seager, Y. Serra, A. Seth, J. Sheffield, J. Stroeve, J. Thibeault, S.-P. Xie, C. Wang, B. Wyman, and M. Zhao, 2014: North American climate in CMIP5 experiments: Part III: Assessment of twenty-first-century projections. <i>Journal of Climate</i>, <b>27</b> (6), 2230–2270. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1175/JCLI-D-13-00273.1'>10.1175/JCLI-D-13-00273.1</a>. <a href='#fnref:397' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:62'>Mandigo, A. C., D. J. DiScenza, A. R. Keimowitz, and N. Fitzgerald, 2016: Chemical contamination of soils in the New York City area following Hurricane Sandy. <i>Environmental Geochemistry and Health</i>, <b>38</b> (5), 1115–1124. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1007/s10653-015-9776-y'>10.1007/s10653-015-9776-y</a>. <a href='#fnref:62' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:222'>Marcy, D., W. Brooks, K. Draganov, B. Hadley, C. Haynes, N. Herold, J. McCombs, M. Pendleton, S. Ryan, K. Schmid, M. Sutherland, and K. Waters, 2011: New mapping tool and techniques for visualizing sea level rise and coastal flooding impacts. <i>Solutions to Coastal Disasters 2011</i>., 474–490. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1061/41185(417)42'>10.1061/41185(417)42</a>. <a href='#fnref:222' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:365'>Martin, J., M. C. Runge, J. D. Nichols, B. C. Lubow, and W. L. Kendall, 2009: Structured decision making as a conceptual framework to identify thresholds for conservation and management. <i>Ecological Applications</i>, <b>19</b> (5), 1079–1090. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1890/08-0255.1'>10.1890/08-0255.1</a>. <a href='#fnref:365' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:344'>Marx, M. A., C. V. Rodriguez, J. Greenko, D. Das, R. Heffernan, A. M. Karpati, F. Mostashari, S. Balter, M. Layton, and D. Weiss, 2006: Diarrheal illness detected through syndromic surveillance after a massive power outage: New York City, August 2003. <i>American Journal of Public Health</i>, <b>96</b> (3), 547–553. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.2105/ajph.2004.061358'>10.2105/ajph.2004.061358</a>. <a href='#fnref:344' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:355'>Massachusetts CZM, 2018: StormSmart Coasts Program [web site]. Massachusetts Office of Coastal Zone Management (CZM), . <a target='_blank' href='https://www.mass.gov/stormsmart-coasts-program'>URL</a>. <a href='#fnref:355' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:356'>Massachusetts Wildlife, 2017: Climate Action Tool [web site]. University of Massachusetts Amherst, . <a target='_blank' href='https://climateactiontool.org/'>URL</a>. <a href='#fnref:356' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:283'>Masterson, J. P., 2004: Simulated interaction between freshwater and saltwater and effects of ground-water pumping and sea-level change, lower Cape Cod aquifer system, Massachusetts. USGS Scientific Investigations Report 2004-5014. U.S. Geological Survey, Reston, VA, 78 pp. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.3133/sir20045014'>10.3133/sir20045014</a>. <a href='#fnref:283' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:284'>Masterson, J. P., M. N. Fienen, E. R. Thieler, D. B. Gesch, B. T. Gutierrez, and N. G. Plant, 2014: Effects of sea-level rise on barrier island groundwater system dynamics — Ecohydrological implications. <i>Ecohydrology</i>, <b>7</b> (3), 1064–1071. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1002/eco.1442'>10.1002/eco.1442</a>. <a href='#fnref:284' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:396'>Mastin, M. C., K. J. Chase, and R. W. Dudley, 2011: Changes in spring snowpack for selected basins in the United States for different climate-change scenarios. <i>Earth Interactions</i>, <b>15</b> (23), 1–18. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1175/2010ei368.1'>10.1175/2010ei368.1</a>. <a href='#fnref:396' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:303'>Matonse, A. H., D. C. Pierson, A. Frei, M. S. Zion, A. Anandhi, E. Schneiderman, and B. Wright, 2013: Investigating the impact of climate change on New York City's primary water supply. <i>Climatic Change</i>, <b>116</b> (3), 437–456. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1007/s10584-012-0515-4'>10.1007/s10584-012-0515-4</a>. <a href='#fnref:303' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:24'>Matte, T. D., K. Lane, and K. Ito, 2016: Excess mortality attributable to extreme heat in New York City, 1997-2013. <i>Health Security</i>, <b>14</b> (2), 64–70. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1089/hs.2015.0059'>10.1089/hs.2015.0059</a>. <a href='#fnref:24' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:89'>Matthews, S. N., and L. R. Iverson, 2017: Managing for delicious ecosystem service under climate change: Can United States sugar maple (Acer saccharum) syrup production be maintained in a warming climate? <i>International Journal of Biodiversity Science, Ecosystem Services &#38; Management</i>, <b>13</b> (2), 40–52. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1080/21513732.2017.1285815'>10.1080/21513732.2017.1285815</a>. <a href='#fnref:89' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:400'>Maupin, M. A., J. F. Kenny, S. S. Hutson, J. K. Lovelace, N. L. Barber, and Kristin S. Linsey, 2014: Estimated Use of Water in the United States in 2010. USGC Circular 1405. U.S. Geological Survey, Reston, VA, 56 pp. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.3133/cir1405'>10.3133/cir1405</a>. <a href='#fnref:400' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:212'>McCarthy, G. D., I. D. Haigh, J. J. M. Hirschi, J. P. Grist, and D. A. Smeed, 2015: Ocean impact on decadal Atlantic climate variability revealed by sea-level observations. <i>Nature</i>, <b>521</b>, 508–510. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1038/nature14491'>10.1038/nature14491</a>. <a href='#fnref:212' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:177'>McCay, B. J., 2012: Shifts in fishing grounds. <i>Nature Climate Change</i>, <b>2</b>, 840–841. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1038/nclimate1765'>10.1038/nclimate1765</a>. <a href='#fnref:177' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:380'>McCay, B. J., S. Brandt, and C. F. Creed, 2011: Human dimensions of climate change and fisheries in a coupled system: The Atlantic surfclam case. <i>ICES Journal of Marine Science</i>, <b>68</b> (6), 1354–1367. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1093/icesjms/fsr044'>10.1093/icesjms/fsr044</a>. <a href='#fnref:380' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:147'>Mcleod, E., G. L. Chmura, S. Bouillon, R. Salm, M. Björk, C. M. Duarte, C. E. Lovelock, W. H. Schlesinger, and B. R. Silliman, 2011: A blueprint for blue carbon: Toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. <i>Frontiers in Ecology and the Environment</i>, <b>9</b> (10), 552–560. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1890/110004'>10.1890/110004</a>. <a href='#fnref:147' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:93'>Melillo, J. M., T. (T. C. . Richmond, and G. W. Yohe, Eds., 2014: Climate Change Impacts in the United States: The Third National Climate Assessment. U.S. Global Change Research Program, Washington, DC, 841 pp. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.7930/J0Z31WJ2'>10.7930/J0Z31WJ2</a>. <a href='#fnref:93' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:74'>Menzel, A., T. H. Sparks, N. Estrella, E. Koch, A. Aasa, R. Ahas, K. Alm-Kübler, P. Bissolli, O. Braslavská, A. Briede, F. M. Chmielewski, Z. Crepinsek, Y. Curnel, Å. Dahl, C. Defila, A. Donnelly, Y. Filella, K. Jatczak, F. Måge, A. Mestre, Ø. Nordli, J. Peñuelas, P. Pirinen, V. Remišvá, H. Scheifinger, M. Striz, A. Susnik, A. J. H. Van Vliet, F.-E. Wielgolaski, S. Zach, and A. N. A. Zust, 2006: European phenological response to climate change matches the warming pattern. <i>Global Change Biology</i>, <b>12</b> (10), 1969–1976. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1111/j.1365-2486.2006.01193.x'>10.1111/j.1365-2486.2006.01193.x</a>. <a href='#fnref:74' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:152'>MERCINA Working Group, A. J. Pershing, C. H. Greene, C. Hannah, D. Sameoto, E. Head, D. G. Mountain, J. W. Jossi, M. C. Benfield, P. C. Reid, and Ted G. Durbin, 2015: Oceanographic responses to climate in the northwest Atlantic. <i>Oceanography</i>, <b>14</b> (3), 76–82. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.5670/oceanog.2001.25'>10.5670/oceanog.2001.25</a>. <a href='#fnref:152' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:316'>Metzger, K. B., K. Ito, and T. D. Matte, 2010: Summer heat and mortality in New York City: How hot is too hot? <i>Environmental Health Perspectives</i>, <b>118</b> (1), 80. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1289/ehp.0900906'>10.1289/ehp.0900906</a>. <a href='#fnref:316' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:195'>Meyer-Gutbrod, E. L., and C. H. Greene, 2018: Uncertain recovery of the North Atlantic right whale in a changing ocean. <i>Global Change Biology</i>, <b>24</b> (1), 455–464. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1111/gcb.13929'>10.1111/gcb.13929</a>. <a href='#fnref:195' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:11'>Miller, A. S., G. R. Shepherd, and P. S. Fratantoni, 2016: Offshore habitat preference of overwintering juvenile and adult black sea bass, Centropristis striata, and the relationship to year-class success. <i>PLOS ONE</i>, <b>11</b> (1), e0147627. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1371/journal.pone.0147627'>10.1371/journal.pone.0147627</a>. <a href='#fnref:11' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:12'>Miller, K. G., R. E. Kopp, B. P. Horton, J. V. Browning, and A. C. Kemp, 2013: A geological perspective on sea-level rise and its impacts along the U.S. mid-Atlantic coast. <i>Earth's Future</i>, <b>1</b> (1), 3–18. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1002/2013EF000135'>10.1002/2013EF000135</a>. <a href='#fnref:12' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:155'>Mills, K. E., A. J. Pershing, C. J. Brown, Y. Chen, F.-S. Chiang, D. S. Holland, S. Lehuta, J. A. Nye, J. C. Sun, A. C. Thomas, and R. A. Wahle, 2013: Fisheries management in a changing climate: Lessons from the 2012 ocean heat wave in the Northwest Atlantic. <i>Oceanography</i>, <b>26 (2)</b>, 191–195. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.5670/oceanog.2013.27'>10.5670/oceanog.2013.27</a>. <a href='#fnref:155' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:194'>Mills, K. E., A. J. Pershing, T. F. Sheehan, and D. Mountain, 2013: Climate and ecosystem linkages explain widespread declines in North American Atlantic salmon populations. <i>Global Change Biology</i>, <b>19</b> (10), 3046–3061. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1111/gcb.12298'>10.1111/gcb.12298</a>. <a href='#fnref:194' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:413'>Mirzaei, P. A., 2015: Recent challenges in modeling of urban heat island. <i>Sustainable Cities and Society</i>, <b>19</b>, 200–206. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1016/j.scs.2015.04.001'>10.1016/j.scs.2015.04.001</a>. <a href='#fnref:413' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:278'>Mitchell, M., J. Herman, D. M. Bilkovic, and C. Hershner, 2017: Marsh persistence under sea-level rise is controlled by multiple, geologically variable stressors. <i>Ecosystem Health and Sustainability</i>, <b>3</b> (10), 1379888. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1080/20964129.2017.1396009'>10.1080/20964129.2017.1396009</a>. <a href='#fnref:278' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:67'>Monaghan, A. J., S. M. Moore, K. M. Sampson, C. B. Beard, and R. J. Eisen, 2015: Climate change influences on the annual onset of Lyme disease in the United States. <i>Ticks and Tick-Borne Diseases</i>, <b>6</b> (5), 615–622. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1016/j.ttbdis.2015.05.005'>10.1016/j.ttbdis.2015.05.005</a>. <a href='#fnref:67' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:224'>Morris, J. T., P. V. Sundareshwar, C. T. Nietch, B. Kjerfve, and D. R. Cahoon, 2002: Responses of coastal wetlands to rising sea level. <i>Ecology</i>, <b>83</b> (10), 2869–2877. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1890/0012-9658(2002)083[2869:ROCWTR]2.0.CO;2'>10.1890/0012-9658(2002)083[2869:ROCWTR]2.0.CO;2</a>. <a href='#fnref:224' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:218'>Morton, R. A., and A. H. Sallenger Jr, 2003: Morphological impacts of extreme storms on sandy beaches and barriers. <i>Journal of Coastal Research</i>, <b>19</b> (3), 560–573. <a target='_blank' href='http://pubs.er.usgs.gov/publication/70025481'>URL</a>. <a href='#fnref:218' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:232'>Moseman-Valtierra, S., O. I. Abdul-Aziz, J. Tang, K. S. Ishtiaq, K. Morkeski, J. Mora, R. K. Quinn, R. M. Martin, K. Egan, E. Q. Brannon, J. Carey, and K. D. Kroeger, 2016: Carbon dioxide fluxes reflect plant zonation and belowground biomass in a coastal marsh. <i>Ecosphere</i>, <b>7</b> (11), e01560. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1002/ecs2.1560'>10.1002/ecs2.1560</a>. <a href='#fnref:232' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:378'>Muhling, B. A., C. F. Gaitán, C. A. Stock, V. S. Saba, D. Tommasi, and K. W. Dixon, 2017: Potential salinity and temperature futures for the Chesapeake Bay using a statistical downscaling spatial disaggregation framework. <i>Estuaries and Coasts</i>, doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1007/s12237-017-0280-8'>10.1007/s12237-017-0280-8</a>. <a href='#fnref:378' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:149'>Möller, I., M. Kudella, F. Rupprecht, T. Spencer, M. Paul, B. K. van Wesenbeeck, G. Wolters, K. Jensen, T. J. Bouma, M. Miranda-Lange, and S. Schimmels, 2014: Wave attenuation over coastal salt marshes under storm surge conditions. <i>Nature Geoscience</i>, <b>7</b> (10), 727–731. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1038/ngeo2251'>10.1038/ngeo2251</a>. <a href='#fnref:149' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:171'>Narváez, D. A., D. M. Munroe, E. E. Hofmann, J. M. Klinck, E. N. Powell, R. Mann, and E. Curchitser, 2015: Long-term dynamics in Atlantic surfclam (Spisula solidissima) populations: The role of bottom water temperature. <i>Journal of Marine Systems</i>, <b>141</b>, 136–148. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1016/j.jmarsys.2014.08.007'>10.1016/j.jmarsys.2014.08.007</a>. <a href='#fnref:171' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:5'>National Marine Fisheries Service, 2016: Fisheries of the United States 2015. Current Fishery Statistics No. 2015. National Oceanic and Atmospheric Administration, Silver Spring, MD, 135 pp. <a target='_blank' href='https://www.st.nmfs.noaa.gov/Assets/commercial/fus/fus15/documents/FUS2015.pdf'>URL</a>. <a href='#fnref:5' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:293'>National Trust for Historic Preservation, 2017: Climate and Culture. National Trust for Historic Preservation, Washington, DC. <a target='_blank' href='https://savingplaces.org/climate-and-culture'>URL</a>. <a href='#fnref:293' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:241'>NCAI, 2015: Tribal Nations and the United States: An Introduction. National Congress of American Indians (NCAI), Washington, DC, 47 pp. <a target='_blank' href='http://www.ncai.org/resources/ncai_publications/tribal-nations-and-the-united-states-an-introduction'>URL</a>. <a href='#fnref:241' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:242'>NCSL, 2016: Federal and State Recognized Tribes (Updated October 2016). National Conference of State Legislatures (NCSL), Washington, DC. <a target='_blank' href='http://www.ncsl.org/research/state-tribal-institute/list-of-federal-and-state-recognized-tribes.aspx'>URL</a>. <a href='#fnref:242' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:53'>Nelson, A. C., and R. E. Lang, 2011: Megapolitan America: A New Vision for Understanding America's Metropolitan Geography. Routledge, London and New York,. <a href='#fnref:53' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:83'>New Hampshire Fish and Game, 2017: Moose research: What's in store for New Hampshire's moose? New Hampshire Fish and Game, Concord, NH. <a target='_blank' href='http://www.wildlife.state.nh.us/wildlife/moose-study.html'>URL</a>. <a href='#fnref:83' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:30'>New Jersey Resilient Coastal Communities Initiative, 2018: Getting to resilience: A Community Planning Evaluation Tool [web tool] . <a target='_blank' href='http://www.prepareyourcommunitynj.org/'>URL</a>. <a href='#fnref:30' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:294'>New York City, 2013: Special Initiative for Rebuilding and Resiliency (SIRR) [web site]. Office of the Mayor, New York. <a target='_blank' href='https://www1.nyc.gov/site/sirr/index.page'>URL</a>. <a href='#fnref:294' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:31'>New York Climate Change Science Clearinghouse, 2018: [web site]. <a target='_blank' href='https://nyclimatescience.org/'>URL</a>. <a href='#fnref:31' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:292'>Newport Restoration Foundation, 2017: Keeping History Above Water. Newport Restoration Foundation, Newport RI. <a target='_blank' href='http://historyabovewater.org/'>URL</a>. <a href='#fnref:292' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:337'>Newton, A. E., N. Garrett, S. G. Stroika, J. L. Halpin, M. Turnsek, and R. K. Mody, 2014: Increase in Vibrio parahaemolyticus infections associated with consumption of Atlantic Coast shellfish--2013. <i>Morbidity and Mortality Weekly Report</i>, <b>63</b> (15), 335–336. <a target='_blank' href='https://www.cdc.gov/mmwr/preview/mmwrhtml/mm6315a6.htm'>URL</a>. <a href='#fnref:337' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:389'>Nicholls, R. J., and A. Cazenave, 2010: Sea-level rise and its impact on coastal zones. <i>Science</i>, <b>328</b> (5985), 1517–1520. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1126/science.1185782'>10.1126/science.1185782</a>. <a href='#fnref:389' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:108'>Ning, L., and R. S. Bradley, 2015: Snow occurrence changes over the central and eastern United States under future warming scenarios. <i>Scientific Reports</i>, <b>5</b>, 17073. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1038/srep17073'>10.1038/srep17073</a>. <a href='#fnref:108' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:350'>Noelke, C., M. McGovern, D. J. Corsi, M. P. Jimenez, A. Stern, I. S. Wing, and L. Berkman, 2016: Increasing ambient temperature reduces emotional well-being. <i>Environmental Research</i>, <b>151</b>, 124–129. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1016/j.envres.2016.06.045'>10.1016/j.envres.2016.06.045</a>. <a href='#fnref:350' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:43'>Nordstrom, K. F., 2014: Living with shore protection structures: A review. <i>Estuarine, Coastal and Shelf Science</i>, <b>150</b>, 11–23. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1016/j.ecss.2013.11.003'>10.1016/j.ecss.2013.11.003</a>. <a href='#fnref:43' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:375'>Northeast Climate Hub, 2017: Building Resiliency at the Rockaways [web site]. U.S. Department of Agriculture, . <a target='_blank' href='https://www.climatehubs.oce.usda.gov/archive/northeast/360/Rockaways.html'>URL</a>. <a href='#fnref:375' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:198'>Northeast Fisheries Science Center (NEFSC), 2013: 55th Northeast Regional Stock Assessment Workshop (55th SAW): Assessment Summary Report. NEFSC Reference Document 13-01. Woods Hole, MA, 41 pp. <a target='_blank' href='https://www.nefsc.noaa.gov/publications/crd/crd1301/crd1301.pdf'>URL</a>. <a href='#fnref:198' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:204'>Northeast Fisheries Science Center (NEFSC), 2017: 62nd Northeast Regional Stock Assessment Workshop (62nd SAW): Assessment Report. NEFSC Reference Document 17-03. NOAA's National Marine Fisheries Service, Woods Hole, MA, 822 pp. <a target='_blank' href='https://www.nefsc.noaa.gov/publications/crd/crd1703/'>URL</a>. <a href='#fnref:204' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:97'>Norton-Smith, K., K. Lynn, K. Chief, K. Cozzetto, J. Donatuto, M. H. Redsteer, L. E. Kruger, J. Maldonado, C. Viles, and K. P. Whyte, 2016: Climate Change and Indigenous Peoples: A Synthesis of Current Impacts and Experiences. Gen. Tech. Rep. PNW-GTR-944. U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station, Portland, OR, 136 pp. <a target='_blank' href='https://www.fs.usda.gov/treesearch/pubs/53156'>URL</a>. <a href='#fnref:97' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:80'>Nosakhare, O. K., I. T. Aighewi, A. Y. Chi, A. B. Ishaque, and G. Mbamalu, 2012: Land use–land cover changes in the lower eastern shore watersheds and coastal bays of Maryland: 1986–2006. <i>Journal of Coastal Research</i>, <b>28</b> (1A), 54–62. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.2112/jcoastres-d-09-00074.1'>10.2112/jcoastres-d-09-00074.1</a>. <a href='#fnref:80' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:104'>Notaro, M., D. Lorenz, C. Hoving, and M. Schummer, 2014: Twenty-first-century projections of snowfall and winter severity across central-eastern North America. <i>Journal of Climate</i>, <b>27</b> (17), 6526–6550. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1175/jcli-d-13-00520.1'>10.1175/jcli-d-13-00520.1</a>. <a href='#fnref:104' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:373'>NPS, 2016: Relocate Hurricane Sandy damaged maintenance facilities to more sustainable locations. U.S. Dept. of the Interior, National Park Service (NPS), Staten Island, NY, 96 pp. <a target='_blank' href='https://parkplanning.nps.gov/showFile.cfm?projectID=49465&#38;MIMEType=application%252Fpdf&#38;filename=Relocated%20Hurricane%20Sandy%20Damaged%20Maintenance%20Facilities%20EA%5F05%5F03%5F2016%20%282%29%2Epdf&#38;sfid=242229'>URL</a>. <a href='#fnref:373' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:7'>Nye, J. A., J. S. Link, J. A. Hare, and W. J. Overholtz, 2009: Changing spatial distribution of fish stocks in relation to climate and population size on the Northeast United States continental shelf. <i>Marine Ecology Progress Series</i>, <b>393</b>, 111–129. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.3354/meps08220'>10.3354/meps08220</a>. <a href='#fnref:7' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:92'>Oswald, E. M., J. Pontius, S. A. Rayback, P. G. Schaberg, S. H. Wilmot, and L.-A. Dupigny-Giroux, 2018: The complex relationship between climate and sugar maple health: Climate change implications in Vermont for a key northern hardwood species. <i>Forest Ecology and Management</i>, <b>422</b>, 303–312. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1016/j.foreco.2018.04.014'>10.1016/j.foreco.2018.04.014</a>. <a href='#fnref:92' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:398'>Otero, J., J. H. L'Abée-Lund, T. Castro-Santos, K. Leonardsson, G. O. Storvik, B. Jonsson, B. Dempson, I. C. Russell, A. J. Jensen, J.-L. Baglinière, M. Dionne, J. D. Armstrong, A. Romakkaniemi, B. H. Letcher, J. F. Kocik, J. Erkinaro, R. Poole, G. Rogan, H. Lundqvist, J. C. MacLean, E. Jokikokko, J. V. Arnekleiv, R. J. Kennedy, E. Niemelä, P. Caballero, P. A. Music, T. Antonsson, S. Gudjonsson, A. E. Veselov, A. Lamberg, S. Groom, B. H. Taylor, M. Taberner, M. Dillane, F. Arnason, G. Horton, N. A. Hvidsten, I. R. Jonsson, N. Jonsson, S. McKelvey, T. F. Næsje, Ø. Skaala, G. W. Smith, H. Sægrov, N. C. Stenseth, and L. A. Vøllestad, 2014: Basin-scale phenology and effects of climate variability on global timing of initial seaward migration of Atlantic salmon (Salmo salar). <i>Global Change Biology</i>, <b>20</b> (1), 61–75. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1111/gcb.12363'>10.1111/gcb.12363</a>. <a href='#fnref:398' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:64'>Outdoor Industry Association, 2017: The Outdoor recreation economy. Outdoor Industry Association, Boulder, CO, 19 pp. <a target='_blank' href='https://outdoorindustry.org/wp-content/uploads/2017/04/OIA_RecEconomy_FINAL_Single.pdf'>URL</a>. <a href='#fnref:64' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:160'>Pace, R. M., P. J. Corkeron, and S. D. Kraus, 2017: State–space mark–recapture estimates reveal a recent decline in abundance of North Atlantic right whales. <i>Ecology and Evolution</i>, <b>7</b> (21), 8730–8741. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1002/ece3.3406'>10.1002/ece3.3406</a>. <a href='#fnref:160' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:199'>Palmer, M. C., 2014: 2014 Assessment Update Report of the Gulf of Maine Atlantic Cod Stock. Northeast Fisheries Science Center Reference Document 14-14. NOAA's National Marine Fisheries Service, Woods Hole, MA, 41 pp. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.7289/V5V9862C'>10.7289/V5V9862C</a>. <a href='#fnref:199' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:75'>Paradis, A., J. Elkinton, K. Hayhoe, and J. Buonaccorsi, 2008: Role of winter temperature and climate change on the survival and future range expansion of the hemlock woolly adelgid (Adelges tsugae) in eastern North America. <i>Mitigation and Adaptation Strategies for Global Change</i>, <b>13</b> (5–6), 541–554. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1007/s11027-007-9127-0'>10.1007/s11027-007-9127-0</a>. <a href='#fnref:75' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:332'>Park, J.-H., S. J. Cho, S. K. White, and J. M. Cox-Ganser, 2018: Changes in respiratory and non-respiratory symptoms in occupants of a large office building over a period of moisture damage remediation attempts. <i>PLOS ONE</i>, <b>13</b> (1), e0191165. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1371/journal.pone.0191165'>10.1371/journal.pone.0191165</a>. <a href='#fnref:332' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:404'>Passeri, D. L., S. C. Hagen, S. C. Medeiros, M. V. Bilskie, K. Alizad, and D. Wang, 2015: The dynamic effects of sea level rise on low-gradient coastal landscapes: A review. <i>Earth's Future</i>, <b>3</b> (6), 159–181. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1002/2015EF000298'>10.1002/2015EF000298</a>. <a href='#fnref:404' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:166'>Peer, A. C., and T. J. Miller, 2014: Climate change, migration phenology, and fisheries management interact with unanticipated consequences. <i>North American Journal of Fisheries Management</i>, <b>34</b> (1), 94–110. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1080/02755947.2013.847877'>10.1080/02755947.2013.847877</a>. <a href='#fnref:166' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:361'>Penobscot Indian Nation, 2014: Penobscot Nation Water Quality Standards. Department of Natural Resources, Indian Island, ME, 49 pp. <a target='_blank' href='https://www.penobscotnation.org/departments/natural-resources/water-resources/penobscot-nation-water-quality-standards'>URL</a>. <a href='#fnref:361' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:39'>Pershing, A. J., M. A. Alexander, C. M. Hernandez, L. A. Kerr, A. Le Bris, K. E. Mills, J. A. Nye, N. R. Record, H. A. Scannell, J. D. Scott, G. D. Sherwood, and A. C. Thomas, 2015: Slow adaptation in the face of rapid warming leads to collapse of the Gulf of Maine cod fishery. <i>Science</i>, <b>350</b> (6262), 809–812. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1126/science.aac9819'>10.1126/science.aac9819</a>. <a href='#fnref:39' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:180'>Pershing, A. J., M. A. Alexander, C. M. Hernandez, L. A. Kerr, A. Le Bris, K. E. Mills, J. A. Nye, N. R. Record, H. A. Scannell, J. D. Scott, G. D. Sherwood, and A. C. Thomas, 2016: Response to Comments on “Slow adaptation in the face of rapid warming leads to collapse of the Gulf of Maine cod fishery.” <i>Science</i>, <b>352</b> (6284), 423–423. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1126/science.aae0463'>10.1126/science.aae0463</a>. <a href='#fnref:180' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:63'>Personna, Y. R., X. Geng, F. Saleh, Z. Shu, N. Jackson, M. P. Weinstein, and M. C. Boufadel, 2015: Monitoring changes in salinity and metal concentrations in New Jersey (USA) coastal ecosystems Post-Hurricane Sandy. <i>Environmental Earth Sciences</i>, <b>73</b> (3), 1169–1177. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1007/s12665-014-3539-4'>10.1007/s12665-014-3539-4</a>. <a href='#fnref:63' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:21'>Petkova, E. P., A. Gasparrini, and P. L. Kinney, 2014: Heat and mortality in New York City since the beginning of the 20th century. <i>Epidemiology</i>, <b>25</b> (4), 554–560. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1097/ede.0000000000000123'>10.1097/ede.0000000000000123</a>. <a href='#fnref:21' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:23'>Petkova, E. P., J. K. Vink, R. M. Horton, A. Gasparrini, D. A. Bader, J. D. Francis, and P. L. Kinney, 2017: Towards more comprehensive projections of urban heat-related mortality: Estimates for New York City under multiple population, adaptation, and climate scenarios. <i>Environmental Health Perspectives</i>, <b>125</b> (1), 47–55. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1289/EHP166'>10.1289/EHP166</a>. <a href='#fnref:23' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:25'>Petkova, E. P., R. M. Horton, D. A. Bader, and P. L. Kinney, 2013: Projected heat-related mortality in the U.S. urban northeast. <i>International Journal of Environmental Research and Public Health</i>, <b>10</b> (12), 6734–6747. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.3390/ijerph10126734'>10.3390/ijerph10126734</a>. <a href='#fnref:25' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:234'>Piehler, M. F., and A. R. Smyth, 2011: Habitat-specific distinctions in estuarine denitrification affect both ecosystem function and services. <i>Ecosphere</i>, <b>2</b> (1), art12. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1890/ES10-00082.1'>10.1890/ES10-00082.1</a>. <a href='#fnref:234' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:176'>Pinsky, M. L., and M. Fogarty, 2012: Lagged social-ecological responses to climate and range shifts in fisheries. <i>Climatic Change</i>, <b>115</b> (3–4), 883–891. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1007/s10584-012-0599-x'>10.1007/s10584-012-0599-x</a>. <a href='#fnref:176' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:178'>Pinsky, M. L., and N. J. Mantua, 2014: Emerging adaptation approaches for climate-ready fisheries management. <i>Oceanography</i>, <b>27</b> (4), 146–159. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.5670/oceanog.2014.93'>10.5670/oceanog.2014.93</a>. <a href='#fnref:178' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:8'>Pinsky, M. L., B. Worm, M. J. Fogarty, J. L. Sarmiento, and S. A. Levin, 2013: Marine taxa track local climate velocities. <i>Science</i>, <b>341</b> (6151), 1239–1242. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1126/science.1239352'>10.1126/science.1239352</a>. <a href='#fnref:8' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:113'>Poff, N. L. R. B., M. M. Day. J. W., 2002: Aquatic Ecosystems &#38; Global Climate Change: Potential Impacts on Inland Freshwater and Coastal Wetland Ecosystems in the United States. Pew Center on Global Climate Change , Arlington, Virginia, 56 pp. <a target='_blank' href='https://www.pewtrusts.org/-/media/legacy/uploadedfiles/wwwpewtrustsorg/reports/protecting_ocean_life/envclimateaquaticecosystemspdf.pdf'>URL</a>. <a href='#fnref:113' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:69'>Polgar, C. A., and R. B. Primack, 2011: Leaf-out phenology of temperate woody plants: From trees to ecosystems . <i>New Phytologist</i>, <b>191</b> (4), 926–941. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1111/j.1469-8137.2011.03803.x'>10.1111/j.1469-8137.2011.03803.x</a>. <a href='#fnref:69' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:357'>Port Authority of New York and New Jersey, 2015: Design Guidelines Climate Resilience. v1.1 June 2018. Port Authority of New York and New Jersey, Engineering Department, New York, NY, 10 pp. <a target='_blank' href='https://www.panynj.gov/business-opportunities/pdf/discipline-guidelines/climate-resilience.pdf'>URL</a>. <a href='#fnref:357' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:151'>Powell, E. J., M. C. Tyrrell, A. Milliken, J. M. Tirpak, and M. D. Staudinger, 2017: A synthesis of thresholds for focal species along the U.S. Atlantic and Gulf Coasts: A review of research and applications. <i>Ocean &#38; Coastal Management</i>, <b>148</b>, 75–88. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1016/j.ocecoaman.2017.07.012'>10.1016/j.ocecoaman.2017.07.012</a>. <a href='#fnref:151' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:200'>Powell, E. N., J. M. Klinck, D. M. Munroe, E. E. Hofmann, P. Moreno, and R. Mann, 2015: The value of captains' behavioral choices in the success of the surf clam (Spisula solidissima) fishery on the US Mid-Atlantic coast: A model evaluation. <i>Journal Northwest Atlantic Fisheries Science</i>, <b>47</b>, 1–27. <a target='_blank' href='http://journal.nafo.int/Volumes/Articles/ID/617/The-Value-of-Captains-Behavioral-Choices-in-the-Success-of-the-Surfclam-emSpisula-solidissimaem-Fishery-on-the-US-Mid-Atlantic-Coast-a-Model-Evaluation'>URL</a>. <a href='#fnref:200' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:371'>Psuty, N. P., K. Ames, A. Habeck, and W. Schmelz, 2018: Responding to coastal change: Creation of a regional approach to monitoring and management, northeastern region, U.S.A. <i>Ocean &#38; Coastal Management</i>, <b>156</b>, 170–182. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1016/j.ocecoaman.2017.08.004'>10.1016/j.ocecoaman.2017.08.004</a>. <a href='#fnref:371' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:386'>PVPC, 2014: Pioneer Valley climate action and clean energy plan. Pioneer Valley Planning Commission (PVPC), Springfield, MA, 200 pp. <a target='_blank' href='http://www.pvpc.org/sites/default/files/PVPC%20Climate%20Action%20Clean%20Energy%20Plan%20FINAL%2002-18-14.pdf'>URL</a>. <a href='#fnref:386' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:211'>Rahmstorf, S., J. E. Box, G. Feulner, M. E. Mann, A. Robinson, S. Rutherford, and E. J. Schaffernicht, 2015: Exceptional twentieth-century slowdown in Atlantic Ocean overturning circulation. <i>Nature Climate Change</i>, <b>5</b> (5), 475–480. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1038/nclimate2554'>10.1038/nclimate2554</a>. <a href='#fnref:211' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:85'>Ralston, J., D. I. King, W. V. DeLuca, G. J. Niemi, M. J. Glennon, J. C. Scarl, and J. D. Lambert, 2015: Analysis of combined data sets yields trend estimates for vulnerable spruce-fir birds in northern United States. <i>Biological Conservation</i>, <b>187</b>, 270–278. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1016/j.biocon.2015.04.029'>10.1016/j.biocon.2015.04.029</a>. <a href='#fnref:85' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:414'>Ramamurthy, P., and M. Sangobanwo, 2016: Inter-annual variability in urban heat island intensity over 10 major cities in the United States. <i>Sustainable Cities and Society</i>, <b>26</b>, 65–75. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1016/j.scs.2016.05.012'>10.1016/j.scs.2016.05.012</a>. <a href='#fnref:414' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:270'>Raposa, K. B., R. L. J. Weber, M. C. Ekberg, and W. Ferguson, 2017: Vegetation dynamics in Rhode Island salt marshes during a period of accelerating sea level rise and extreme sea level events. <i>Estuaries and Coasts</i>, <b>40</b> (3), 640–650. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1007/s12237-015-0018-4'>10.1007/s12237-015-0018-4</a>. <a href='#fnref:270' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:94'>Rapp, J., M. Duveneck, and Jonathan Thompson, 2016: (Re)expansion of the maple syrup industry in New England: Projecting where the taps will be in a changing environment. In <i>Harvard Forest Symposium 2016</i>, Petersham, MA. <a target='_blank' href='http://harvardforest2.fas.harvard.edu/asp/hf/php/symposium/symposium_abstract_view.php?id=3752'>URL</a>. <a href='#fnref:94' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:95'>Rapp, J., S. Ahmed, D. Lutz, R. Huish, B. Dufour, T. L. Morelli, and Kristina Stinson, 2017: Maple syrup in a changing climate. In <i>Northeast Climate Science Center's Regional Science Meeting: Incorporating Climate Science in the Management of Natural and Cultural Resources in the Midwest and Northeast</i>, Amherst, MA. <a target='_blank' href='http://necsc.umass.edu/ne-csc-regional-science-meeting-2017'>URL</a>. <a href='#fnref:95' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:14'>Reed, A. J., M. E. Mann, K. A. Emanuel, N. Lin, B. P. Horton, A. C. Kemp, and J. P. Donnelly, 2015: Increased threat of tropical cyclones and coastal flooding to New York City during the anthropogenic era. <i>Proceedings of the National Academy of Sciences of the United States of America</i>, <b>112</b> (41), 12610–12615. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1073/pnas.1513127112'>10.1073/pnas.1513127112</a>. <a href='#fnref:14' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:310'>Reid, C. E., M. S. O'Neill, C. J. Gronlund, S. J. Brines, D. G. Brown, A. V. Diez-Roux, and J. Schwartz, 2009: Mapping community determinants of heat vulnerability. <i>Environmental Health Perspectives</i>, <b>117</b> (11), 1730–1736. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1289/ehp.0900683'>10.1289/ehp.0900683</a>. <a href='#fnref:310' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:81'>Rempel, R. S., 2011: Effects of climate change on moose populations: Exploring the response horizon through biometric and systems models. <i>Ecological Modelling</i>, <b>222</b> (18), 3355–3365. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1016/j.ecolmodel.2011.07.012'>10.1016/j.ecolmodel.2011.07.012</a>. <a href='#fnref:81' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:348'>Rhodes, J., and R. Gupta, 2016: Building resilient communities: Preparedness and response for health care and public health professionals. <i>West Virginia Medical Journal</i>, <b>112</b> (5), 24–25. <a target='_blank' href='http://digital.graphcompubs.com/publication/?i=336725'>URL</a>. <a href='#fnref:348' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:163'>Richards, R. A., 2012: Phenological shifts in hatch timing of northern shrimp Pandalus borealis. <i>Marine Ecology Progress Series</i>, <b>456</b>, 149–158. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.3354/meps09717'>10.3354/meps09717</a>. <a href='#fnref:163' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:333'>Rochlin, I., D. V. Ninivaggi, M. L. Hutchinson, and A. Farajollahi, 2013: Climate change and range expansion of the Asian tiger mosquito (Aedes albopictus) in northeastern USA: Implications for public health practitioners. <i>PLoS ONE</i>, <b>8</b> (4), e60874. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1371/journal.pone.0060874'>10.1371/journal.pone.0060874</a>. <a href='#fnref:333' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:82'>Rodenhouse, N. L., L. M. Christenson, D. Parry, and L. E. Green, 2009: Climate change effects on native fauna of northeastern forests. <i>Canadian Journal of Forest Research</i>, <b>39</b> (2), 249–263. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1139/X08-160'>10.1139/X08-160</a>. <a href='#fnref:82' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:264'>Rogers, L. J., L. J. Moore, E. B. Goldstein, C. J. Hein, J. Lorenzo-Trueba, and A. D. Ashton, 2015: Anthropogenic controls on overwash deposition: Evidence and consequences. <i>Journal of Geophysical Research Earth Surface</i>, <b>120</b> (12), 2609–2624. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1002/2015JF003634'>10.1002/2015JF003634</a>. <a href='#fnref:264' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:374'>Rosenzweig, B., A. L. Gordon, J. Marra, R. Chant, C. . J. Zappa, and A. S. Parris, 2016: Resilience indicators and monitoring: An example of climate change resiliency indicators for Jamaica Bay. <i>Prospects for Resilience: Insights from New York City's Jamaica Bay</i>. Sanderson, E. W., W. D. Solecki, J. R. Waldman, and A. S. Parris, Eds., Island Press, Washington, DC, 141–166. <a href='#fnref:374' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:15'>Rosenzweig, C., and W. Solecki, 2015: New York City Panel on Climate Change 2015 Report Introduction. <i>Annals of the New York Academy of Sciences</i>, <b>1336</b> (1), 3–5. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1111/nyas.12625'>10.1111/nyas.12625</a>. <a href='#fnref:15' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:59'>Rosenzweig, C., W. D. Solecki, P. Romeo-Lankao, S. Mehrotra, S. Dhakal, and S. A. Ibrahim, Eds., 2018: Climate Change and Cities: Second Assessment Report of the Urban Climate Change Research Network. Cambridge University Press, 350 pp. <a href='#fnref:59' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:52'>Rosenzweig, C., W. Solecki, A. DeGaetano, M. O'Grady, S. Hassol, and P. Grabhorn, Eds., 2011: <i>Responding to climate change in New York state: The ClimAID integrated assessment for effective climate change adaptation. Technical report</i>. NYSERDA Report 11-18. Albany, NY, 149 pp. <a target='_blank' href='https://www.nyserda.ny.gov/climaid'>URL</a>. <a href='#fnref:52' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:159'>Runge, J. A., R. Ji, C. R. S. Thompson, N. R. Record, C. Chen, D. C. Vandemark, J. E. Salisbury, and F. Maps, 2015: Persistence of Calanus finmarchicus in the western Gulf of Maine during recent extreme warming. <i>Journal of Plankton Research</i>, <b>37</b> (1), 221–232. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1093/plankt/fbu098'>10.1093/plankt/fbu098</a>. <a href='#fnref:159' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:19'>Runkle, J., K. E. Kunkel, D. Easterling, B. C. Stewart, S. Champion, L. Stevens, R. Frankson, and W. Sweet, 2017: State Climate Summaries: Rhode Island. NOAA Technical Report NESDIS 149-RI. NOAA National Centers for Environmental Information, Asheville, NC, 4 pp. <a target='_blank' href='https://statesummaries.ncics.org/r; i'>URL</a>. <a href='#fnref:19' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:18'>Runkle, J., K. E. Kunkel, R. Frankson, and B. C. Stewart, 2017: State Climate Summaries: West Virginia. NOAA Technical Report NESDIS 149-WV. NOAA National Centers for Environmental Information, Asheville, NC, 4 pp. <a target='_blank' href='https://statesummaries.ncics.org/w; v'>URL</a>. <a href='#fnref:18' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:358'>Rust2Green, 2017: Rust to Green New York Action Research Initiative [web site]. Cornell University, R2G New York Action Research Initiative, Ithaca, NY. <a target='_blank' href='http://www.rust2green.org'>URL</a>. <a href='#fnref:358' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:1'>Rustad, L., J. Campbell, J. S. Dukes, T. Huntington, K. F. Lambert, J. Mohan, and N. Rodenhouse, 2012: Changing climate, changing forests: The impacts of climate change on forests of the northeastern United States and eastern Canada. Gen. Tech. Rep. NRS-99. USDA, Forest Service, Northern Research Station, Newtown Square, PA, 48 pp. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.2737/NRS-GTR-99'>10.2737/NRS-GTR-99</a>. <a href='#fnref:1' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:48'>Saba, V. S., S. M. Griffies, W. G. Anderson, M. Winton, M. A. Alexander, T. L. Delworth, J. A. Hare, M. J. Harrison, A. Rosati, G. A. Vecchi, and R. Zhang, 2016: Enhanced warming of the Northwest Atlantic Ocean under climate change. <i>Journal of Geophysical Research Oceans</i>, <b>121</b> (1), 118–132. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1002/2015JC011346'>10.1002/2015JC011346</a>. <a href='#fnref:48' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:184'>Salisbury, J., M. Green, C. Hunt, and J. Campbell, 2008: Coastal acidification by rivers: A threat to shellfish? <i>Eos, Transactions, American Geophysical Union</i>, <b>89</b> (50), 513–513. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1029/2008EO500001'>10.1029/2008EO500001</a>. <a href='#fnref:184' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:46'>Sallenger, A. H., K. S. Doran, and P. A. Howd, 2012: Hotspot of accelerated sea-level rise on the Atlantic coast of North America. <i>Nature Climate Change</i>, <b>2</b>, 884–888. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1038/nclimate1597'>10.1038/nclimate1597</a>. <a href='#fnref:46' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:359'>Sanderson, E. W., W. D. Solecki, J. R. Waldman, and A. S. Parris, 2016: Prospects for Resilience: Insights from New York City's Jamaica Bay. Island Press, Washington, DC,. <a href='#fnref:359' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:352'>Schmeltz, M. T., and J. L. Gamble, 2017: Risk characterization of hospitalizations for mental illness and/or behavioral disorders with concurrent heat-related illness. <i>PLOS ONE</i>, <b>12</b> (10), e0186509. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1371/journal.pone.0186509'>10.1371/journal.pone.0186509</a>. <a href='#fnref:352' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:237'>Schupp, C. A., R. L. Beavers, and M. A. Caffrey, Eds., 2015: <i>Coastal Adaptation Strategies: Case Studies</i>. Fort Collins, CO, 60 pp. <a target='_blank' href='https://www.nps.gov/subjects/climatechange/upload/2015-11-25-FINAL-CAS-Case-Studies-LoRes.pdf'>URL</a>. <a href='#fnref:237' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:28'>Schwartz, J. D., M. Lee, P. L. Kinney, S. Yang, D. Mills, M. Sarofim, R. Jones, R. Streeter, A. S. Juliana, J. Peers, and R. M. Horton, 2015: Projections of temperature-attributable premature deaths in 209 U.S. cities using a cluster-based Poisson approach. <i>Environmental Health</i>, <b>14</b> (1) doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1186/s12940-015-0071-2'>10.1186/s12940-015-0071-2</a>. <a href='#fnref:28' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:387'>Scott, D., G. McBoyle, and B. Mills, 2003: Climate change and the skiing industry in southern Ontario (Canada): Exploring the importance of snowmaking as a technical adaptation. <i>Climate Research</i>, <b>23</b> (2), 171–181. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.3354/cr023171'>10.3354/cr023171</a>. <a href='#fnref:387' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:115'>Scott, D., J. Dawson, and B. Jones, 2008: Climate change vulnerability of the US Northeast winter recreation– tourism sector. <i>Mitigation and Adaptation Strategies for Global Change</i>, <b>13</b> (5), 577–596. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1007/s11027-007-9136-z'>10.1007/s11027-007-9136-z</a>. <a href='#fnref:115' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:42'>Selden, R. L., R. D. Batt, V. S. Saba, and M. L. Pinsky, 2017: Diversity in thermal affinity among key piscivores buffers impacts of ocean warming on predator–prey interactions. <i>Global Change Biology</i>, <b>24</b> (1), 117–131. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1111/gcb.13838'>10.1111/gcb.13838</a>. <a href='#fnref:42' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:207'>Sella, G. F., S. Stein, T. H. Dixon, M. Craymer, T. S. James, S. Mazzotti, and R. K. Dokka, 2007: Observation of glacial isostatic adjustment in “stable” North America with GPS. <i>Geophysical Research Letters</i>, <b>34</b> (2), L02306. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1029/2006GL027081'>10.1029/2006GL027081</a>. <a href='#fnref:207' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:369'>Seylier, E., N. Veraart, I. Bartholomew, D. Stander, and S. Croope, 2016: Economic and financial dimensions to a climate resilient transportation infrastructure [webinar]. Transportation Research Board, Washington, DC, <a target='_blank' href='http://www.trb.org/Calendar/Blurbs/174096.aspx'>URL</a>. <a href='#fnref:369' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:153'>Shearman, R. K., and S. J. Lentz, 2010: Long-term sea surface temperature variability along the U.S. East Coast. <i>Journal of Physical Oceanography</i>, <b>40</b> (5), 1004–1017. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1175/2009jpo4300.1'>10.1175/2009jpo4300.1</a>. <a href='#fnref:153' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:90'>Skinner, C. B., A. T. DeGaetano, and B. F. Chabot, 2010: Implications of twenty-first century climate change on Northeastern United States maple syrup production: Impacts and adaptations. <i>Climatic Change</i>, <b>100</b> (3), 685–702. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1007/s10584-009-9685-0'>10.1007/s10584-009-9685-0</a>. <a href='#fnref:90' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:252'>Slangen, A. B. A., J. A. Church, X. Zhang, and D. Monselesan, 2014: Detection and attribution of global mean thermosteric sea level change. <i>Geophysical Research Letters</i>, <b>41</b> (16), 5951–5959. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1002/2014GL061356'>10.1002/2014GL061356</a>. <a href='#fnref:252' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:134'>Small, D., S. Islam, and R. M. Vogel, 2006: Trends in precipitation and streamflow in the eastern U.S.: Paradox or perception? <i>Geophysical Research Letters</i>, <b>33</b> (3), L03403. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1029/2005gl024995'>10.1029/2005gl024995</a>. <a href='#fnref:134' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:265'>Smith, S. M., 2009: Multi-decadal changes in salt marshes of Cape Cod, MA: Photographic analyses of vegetation loss, species shifts, and geomorphic change. <i>Northeastern Naturalist</i>, <b>16</b> (2), 183–208. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1656/045.016.0203'>10.1656/045.016.0203</a>. <a href='#fnref:265' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:405'>Smith, S. M., 2015: Vegetation change in salt marshes of Cape Cod National Seashore (Massachusetts, USA) between 1984 and 2013. <i>Wetlands</i>, <b>35</b> (1), 127–136. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1007/s13157-014-0601-7'>10.1007/s13157-014-0601-7</a>. <a href='#fnref:405' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:362'>Solecki, W., C. Rosenzweig, S. Dhakal, D. Roberts, A. S. Barau, S. Schultz, and D. Ürge-Vorsatz, 2018: City transformations in a 1.5 °C warmer world. <i>Nature Climate Change</i>, <b>8</b> (3), 177–181. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1038/s41558-018-0101-5'>10.1038/s41558-018-0101-5</a>. <a href='#fnref:362' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:363'>Solecki, W., M. Pelling, and M. Garschagen, 2017: Transitions between risk management regimes in cities. <i>Ecology and Society</i>, <b>22</b> (2), Art. 38. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.5751/ES-09102-220238'>10.5751/ES-09102-220238</a>. <a href='#fnref:363' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:340'>Soneja, S., C. Jiang, C. Romeo Upperman, R. Murtugudde, C. S. Mitchell, D. Blythe, A. R. Sapkota, and A. Sapkota, 2016: Extreme precipitation events and increased risk of campylobacteriosis in Maryland, U.S.A. <i>Environmental Research</i>, <b>149</b>, 216–221. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1016/j.envres.2016.05.021'>10.1016/j.envres.2016.05.021</a>. <a href='#fnref:340' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:133'>Spooner, D. E., M. A. Xenopoulos, C. Schneider, and D. A. Woolnough, 2011: Coextirpation of host-affiliate relationships in rivers: The role of climate change, water withdrawal, and host-specificity. <i>Global Change Biology</i>, <b>17</b> (4), 1720–1732. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1111/j.1365-2486.2010.02372.x'>10.1111/j.1365-2486.2010.02372.x</a>. <a href='#fnref:133' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:360'>St. Regis Mohawk Tribe, 2013: Climate Change Adaptation Plan for Akwesasne. Saint Regis Mohawk Tribe, Akwesasne, NY, 57 pp. <a target='_blank' href='https://www.srmt-nsn.gov/_uploads/site_files/ClimateChange.pdf'>URL</a>. <a href='#fnref:360' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:381'>State of Maine. 126th Legislature. Second Regular Session, 2015: Final report of the Commission to Study the Effects of Coastal and Ocean Acidification and its Existing and Potential Effects on Species That are Commercially Harvested and Grown along the Maine Coast. State of Maine Legislature, Augusta, ME, [122] pp. <a target='_blank' href='http://www.maine.gov/legis/opla/Oceanacidificationreport.pdf'>URL</a>. <a href='#fnref:381' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:79'>StateFarm, 2017: Chances of Hitting a Deer in My State [web site]. StateFarm, Bloomington, IL. <a target='_blank' href='https://newsroom.statefarm.com/deer-collision-damage-claim-costs-up/'>URL</a>. <a href='#fnref:79' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:66'>Staudinger, M. D., T. L. Morelli, and A. M. Bryan, 2015: Integrating Climate Change into Northeast and Midwest State Wildlife Action Plans. Northeast Climate Science Center, Amherst, MA, 201 pp. <a target='_blank' href='http://necsc.umass.edu/biblio/integrating-climate-change-northeast-and-midwest-state-wildlife-action-plans'>URL</a>. <a href='#fnref:66' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:196'>Steneck, R. S., T. P. Hughes, J. E. Cinner, W. N. Adger, S. N. Arnold, F. Berkes, S. A. Boudreau, K. Brown, C. Folke, L. Gunderson, P. Olsson, M. Scheffer, E. Stephenson, B. Walker, J. Wilson, and B. Worm, 2011: Creation of a gilded trap by the high economic value of the Maine lobster fishery. <i>Conservation Biology</i>, <b>25</b> (5), 904–912. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1111/j.1523-1739.2011.01717.x'>10.1111/j.1523-1739.2011.01717.x</a>. <a href='#fnref:196' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:130'>Sterk, A., J. Schijven, A. M. de Roda Husman, and T. de Nijs, 2016: Effect of climate change on runoff of Campylobacter and Cryptosporidium from land to surface water. <i>Water Research</i>, <b>95</b>, 90–102. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1016/j.watres.2016.03.005'>10.1016/j.watres.2016.03.005</a>. <a href='#fnref:130' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:179'>Stoll, J. S., C. M. Beitl, and J. A. Wilson, 2016: How access to Maine's fisheries has changed over a quarter century: The cumulative effects of licensing on resilience. <i>Global Environmental Change</i>, <b>37</b>, 79–91. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1016/j.gloenvcha.2016.01.005'>10.1016/j.gloenvcha.2016.01.005</a>. <a href='#fnref:179' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:313'>Stone, B. J., J. Vargo, P. Liu, D. Habeeb, A. DeLucia, M. Trail, Y. Hu, and A. Russell, 2014: Avoided heat-related mortality through climate adaptation strategies in three US cities. <i>PLoS ONE</i>, <b>9</b> (6), e100852. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1371/journal.pone.0100852'>10.1371/journal.pone.0100852</a>. <a href='#fnref:313' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:325'>Stowell, J. D., Y. Kim, Y. Gao, J. S. Fu, H. H. Chang, and Y. Liu, 2017: The impact of climate change and emissions control on future ozone levels: Implications for human health. <i>Environment International</i>, <b>108</b>, 41–50. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1016/j.envint.2017.08.001'>10.1016/j.envint.2017.08.001</a>. <a href='#fnref:325' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:223'>Strauss, B. H., R. Ziemlinski, J. L. Weiss, and J. T. Overpeck, 2012: Tidally adjusted estimates of topographic vulnerability to sea level rise and flooding for the contiguous United States. <i>Environmental Research Letters</i>, <b>7</b> (1), 014033. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1088/1748-9326/7/1/014033'>10.1088/1748-9326/7/1/014033</a>. <a href='#fnref:223' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:70'>Swanston, C., L. A. Brandt, M. K. Janowiak, S. D. Handler, P. Butler-Leopold, L. Iverson, F. R. Thompson III, T. A. Ontl, and P. D. Shannon, 2018: Vulnerability of forests of the Midwest and Northeast United States to climate change. <i>Climatic Change</i>, <b>146</b> (1), 103–116. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1007/s10584-017-2065-2'>10.1007/s10584-017-2065-2</a>. <a href='#fnref:70' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:402'>Sweet, W. V., and J. J. Marra, 2016: 2015 State of U.S. Nuisance Tidal Flooding. Supplement to State of the Climate: National Overview for May 2016. National Oceanic and Atmospheric Administration, National Centers for Environmental Information, 5 pp. <a target='_blank' href='http://www.ncdc.noaa.gov/monitoring-content/sotc/national/2016/may/sweet-marra-nuisance-flooding-2015.pdf'>URL</a>. <a href='#fnref:402' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:216'>Sweet, W. V., and J. Park, 2014: From the extreme to the mean: Acceleration and tipping points of coastal inundation from sea level rise. <i>Earth's Future</i>, <b>2</b> (12), 579–600. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1002/2014EF000272'>10.1002/2014EF000272</a>. <a href='#fnref:216' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:47'>Sweet, W. V., R. E. Kopp, C. P. Weaver, J. Obeysekera, R. M. Horton, E. R. Thieler, and C. Zervas, 2017: Global and Regional Sea Level Rise Scenarios for the United States. NOAA Tech. Rep. NOS CO-OPS 083. National Oceanic and Atmospheric Administration, National Ocean Service, Silver Spring, MD, 75 pp. <a target='_blank' href='https://tidesandcurrents.noaa.gov/publications/techrpt83_Global_and_Regional_SLR_Scenarios_for_the_US_final.pdf'>URL</a>. <a href='#fnref:47' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:403'>Sweet, W., J. Park, J. Marra, C. Zervas, and S. Gill, 2014: Sea Level Rise and Nuisance Flood Frequency Changes Around the United States. NOAA Technical Report NOS CO-OPS 073. U.S. Department of Commerce, National Oceanic and Atmospheric Administration, National Ocean Service, Silver Spring, MD, 58 pp. <a target='_blank' href='http://tidesandcurrents.noaa.gov/publications/NOAA_Technical_Report_NOS_COOPS_073.pdf'>URL</a>. <a href='#fnref:403' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:382'>Task Force to Study the Impact of Ocean Acidification on State Waters, 2015: Report to the Governor and the Maryland General Assembly. The Task Force, Annapolis, MD, 46 pp. <a href='#fnref:382' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:302'>Tavernia, B. G., M. D. Nelson, P. Caldwell, and G. Sun, 2013: Water stress projections for the northeastern and midwestern United States in 2060: Anthropogenic and ecological consequences. <i>JAWRA Journal of the American Water Resources Association</i>, <b>49</b> (4), 938–952. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1111/jawr.12075'>10.1111/jawr.12075</a>. <a href='#fnref:302' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:220'>Tebaldi, C., B. H. Strauss, and C. E. Zervas, 2012: Modelling sea level rise impacts on storm surges along US coasts. <i>Environmental Research Letters</i>, <b>7</b> (1), 014032. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1088/1748-9326/7/1/014032'>10.1088/1748-9326/7/1/014032</a>. <a href='#fnref:220' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:263'>Theuerkauf, E. J., A. B. Rodriguez, S. R. Fegley, and R. A. Luettich, 2014: Sea level anomalies exacerbate beach erosion. <i>Geophysical Research Letters</i>, <b>41</b> (14), 5139–5147. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1002/2014GL060544'>10.1002/2014GL060544</a>. <a href='#fnref:263' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:3'>Thibeault, J. M., and A. Seth, 2014: Changing climate extremes in the Northeast United States: Observations and projections from CMIP5. <i>Climatic Change</i>, <b>127</b> (2), 273–287. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1007/s10584-014-1257-2'>10.1007/s10584-014-1257-2</a>. <a href='#fnref:3' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:394'>Thieler, E. R., S. L. Zeigler, L. A. Winslow, M. K. Hines, J. S. Read, and J. I. Walker, 2016: Smartphone-based distributed data collection enables rapid assessment of shorebird habitat suitability. <i>PLOS ONE</i>, <b>11</b> (11), e0164979. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1371/journal.pone.0164979'>10.1371/journal.pone.0164979</a>. <a href='#fnref:394' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:154'>Thomas, A. C., A. J. Pershing, K. D. Friedland, J. A. Nye, K. E. Mills, M. A. Alexander, N. R. Record, R. Weatherbee, and M. Elisabeth Henderson, 2017: Seasonal trends and phenology shifts in sea surface temperature on the North American northeastern continental shelf. <i>Elementa: Science of the Anthropocene</i>, <b>5</b>, 48. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1525/elementa.240'>10.1525/elementa.240</a>. <a href='#fnref:154' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:203'>Thunberg, E. M., and S. J. Correia, 2015: Measures of fishing fleet diversity in the New England groundfish fishery. <i>Marine Policy</i>, <b>58</b>, 6–14. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1016/j.marpol.2015.04.005'>10.1016/j.marpol.2015.04.005</a>. <a href='#fnref:203' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:127'>Tomasek, B. J., M. M. Williams II, and A. S. Davis, 2017: Changes in field workability and drought risk from projected climate change drive spatially variable risks in Illinois cropping systems. <i>PLOS ONE</i>, <b>12</b> (2), e0172301. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1371/journal.pone.0172301'>10.1371/journal.pone.0172301</a>. <a href='#fnref:127' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:351'>Trombley, J., S. Chalupka, and L. Anderko, 2017: Climate change and mental health. <i>AJN The American Journal of Nursing</i>, <b>117</b> (4), 44–52. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1097/01.NAJ.0000515232.51795.fa'>10.1097/01.NAJ.0000515232.51795.fa</a>. <a href='#fnref:351' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:312'>Trouet, V., H. F. Diaz, E. R. Wahl, A. E. Viau, R. Graham, N. Graham, and E. R. Cook, 2013: A 1500-year reconstruction of annual mean temperature for temperate North America on decadal-to-multidecadal time scales. <i>Environmental Research Letters</i>, <b>8</b> (2), 024008. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1088/1748-9326/8/2/024008'>10.1088/1748-9326/8/2/024008</a>. <a href='#fnref:312' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:298'>Trtanj, J., L. Jantarasami, J. Brunkard, T. Collier, J. Jacobs, E. Lipp, S. McLellan, S. Moore, H. Paerl, J. Ravenscroft, M. Sengco, and J. Thurston, 2016: Ch. 6: Climate impacts on water-related illness. <i>The Impacts of Climate Change on Human Health in the United States: A Scientific Assessment</i>., U.S. Global Change Research Program, Washington, DC, 157–188. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.7930/J03F4MH4'>10.7930/J03F4MH4</a>. <a href='#fnref:298' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:57'>U.S. Census Bureau, 2018: Table A-2. Annual Inmigration, Outmigration, Net Migration and Movers from Abroad for Regions: 1981-2017. U.S. Census Bureau, Washington, DC. <a target='_blank' href='https://www.census.gov/data/tables/time-series/demo/geographic-mobility/historic.html'>URL</a>. <a href='#fnref:57' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:187'>U.S. Federal Government, 2017: U.S. Climate Resilience Toolkit: Oyster Growers Prepare for Changing Ocean Chemistry [web page]. United States Global Change Research Program, Washington, DC. <a target='_blank' href='https://toolkit.climate.gov/case-studies/oyster-growers-prepare-changing-ocean-chemistry'>URL</a>. <a href='#fnref:187' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:368'>USACE, 2015: North Atlantic coast comprehensive study: Resilient adaptation to increasing risk . U.S. Army Corps of Engineers (USACE), North Atlantic Division, Brooklyn, NY, 116 pp. <a target='_blank' href='http://www.nad.usace.army.mil/CompStudy/'>URL</a>. <a href='#fnref:368' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:122'>USDA, 2014: 2012 Census of Agriculture. U.S. Department of Agriculture, National Agricultural Statistics Service, Washington, D.C., 695 pp. <a target='_blank' href='http://www.agcensus.usda.gov/Publications/2012/#full_report'>URL</a>. <a href='#fnref:122' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:50'>USGCRP, 2017: Climate Science Special Report: Fourth National Climate Assessment, Volume I. Wuebbles, D. J., D. W. Fahey, K. A. Hibbard, D. J. Dokken, B. C. Stewart, and T. K. Maycock, Eds. U.S. Global Change Research Program, Washington, DC, USA, 470 pp. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.7930/J0J964J6'>10.7930/J0J964J6</a>. <a href='#fnref:50' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:213'>Valle-Levinson, A., A. Dutton, and J. B. Martin, 2017: Spatial and temporal variability of sea level rise hot spots over the eastern United States. <i>Geophysical Research Letters</i>, <b>44</b> (15), 7876–7882. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1002/2017GL073926'>10.1002/2017GL073926</a>. <a href='#fnref:213' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:235'>Velinsky, D. J., B. Paudel, T. Quirk, M. Piehler, and A. Smyth, 2017: Salt marsh denitrification provides a significant nitrogen sink in Barnegat Bay, New Jersey. <i>Journal of Coastal Research</i>, <b>Special Issue 78</b>, 70–78. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.2112/si78-007.1'>10.2112/si78-007.1</a>. <a href='#fnref:235' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:379'>Voutsina, N., D. M. Seliskar, and J. L. Gallagher, 2015: The facilitative role of Kosteletzkya pentacarpos in transitioning coastal agricultural land to wetland during sea level rise. <i>Estuaries and Coasts</i>, <b>38</b> (1), 35–44. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1007/s12237-014-9795-4'>10.1007/s12237-014-9795-4</a>. <a href='#fnref:379' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:185'>Wallace, R. B., H. Baumann, J. S. Grear, R. C. Aller, and C. J. Gobler, 2014: Coastal ocean acidification: The other eutrophication problem. <i>Estuarine, Coastal and Shelf Science</i>, <b>148</b>, 1–13. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1016/j.ecss.2014.05.027'>10.1016/j.ecss.2014.05.027</a>. <a href='#fnref:185' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:164'>Walsh, H. J., D. E. Richardson, K. E. Marancik, and J. A. Hare, 2015: Long-term changes in the distributions of larval and adult fish in the northeast U.S. shelf ecosystem. <i>PLOS ONE</i>, <b>10</b> (9), e0137382. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1371/journal.pone.0137382'>10.1371/journal.pone.0137382</a>. <a href='#fnref:164' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:22'>Wang, Y., J. F. Bobb, B. Papi, Y. Wang, A. Kosheleva, Q. Di, J. D. Schwartz, and F. Dominici, 2016: Heat stroke admissions during heat waves in 1,916 US counties for the period from 1999 to 2010 and their effect modifiers. <i>Environmental Health</i>, <b>15</b> (1), 83. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1186/s12940-016-0167-3'>10.1186/s12940-016-0167-3</a>. <a href='#fnref:22' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:181'>Wang, Z. A., R. Wanninkhof, W.-J. Cai, R. H. Byrne, X. Hu, T.-H. Peng, and W.-J. Huang, 2013: The marine inorganic carbon system along the Gulf of Mexico and Atlantic coasts of the United States: Insights from a transregional coastal carbon study. <i>Limnology and Oceanography</i>, <b>58</b> (1), 325–342. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.4319/lo.2013.58.1.0325'>10.4319/lo.2013.58.1.0325</a>. <a href='#fnref:181' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:271'>Watson, E. B., C. Wigand, E. W. Davey, H. M. Andrews, J. Bishop, and K. B. Raposa, 2017: Wetland loss patterns and inundation-productivity relationships prognosticate widespread salt marsh loss for southern New England. <i>Estuaries and Coasts</i>, <b>40</b> (3), 662–681. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1007/s12237-016-0069-1'>10.1007/s12237-016-0069-1</a>. <a href='#fnref:271' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:231'>Watson, E. B., K. Szura, C. Wigand, K. B. Raposa, K. Blount, and M. Cencer, 2016: Sea level rise, drought and the decline of Spartina patens in New England marshes. <i>Biological Conservation</i>, <b>196</b>, 173–181. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1016/j.biocon.2016.02.011'>10.1016/j.biocon.2016.02.011</a>. <a href='#fnref:231' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:228'>Waycott, M., C. M. Duarte, T. J. Carruthers, R. J. Orth, W. C. Dennison, S. Olyarnik, A. Calladine, J. W. Fourqurean, K. L. Heck Jr., A. R. Hughes, G. A. Kendrick, W. J. Kenworthy, F. T. Short, and S. L. Williams, 2009: Accelerating loss of seagrasses across the globe threatens coastal ecosystems. <i>Proceedings of the National Academy of Sciences of the United States of America</i>, <b>106</b> (30), 12377–12381. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1073/pnas.0905620106'>10.1073/pnas.0905620106</a>. <a href='#fnref:228' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:77'>Weed, A. S., M. P. Ayres, A. M. Liebhold, and R. F. Billings, 2017: Spatio-temporal dynamics of a tree-killing beetle and its predator. <i>Ecography</i>, <b>40</b> (1), 221–234. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1111/ecog.02046'>10.1111/ecog.02046</a>. <a href='#fnref:77' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:172'>Weinberg, J. R., 2005: Bathymetric shift in the distribution of Atlantic surfclams: Response to warmer ocean temperature. <i>ICES Journal of Marine Science</i>, <b>62</b> (7), 1444–1453. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1016/j.icesjms.2005.04.020'>10.1016/j.icesjms.2005.04.020</a>. <a href='#fnref:172' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:27'>Weinberger, K. R., L. Haykin, M. N. Eliot, J. D. Schwartz, A. Gasparrini, and G. A. Wellenius, 2017: Projected temperature-related deaths in ten large U.S. metropolitan areas under different climate change scenarios. <i>Environment International</i>, <b>107</b>, 196–204. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1016/j.envint.2017.07.006'>10.1016/j.envint.2017.07.006</a>. <a href='#fnref:27' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:305'>Wellenius, G. A., M. N. Eliot, K. F. Bush, D. Holt, R. A. Lincoln, A. E. Smith, and J. Gold, 2017: Heat-related morbidity and mortality in New England: Evidence for local policy. <i>Environmental Research</i>, <b>156</b>, 845–853. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1016/j.envres.2017.02.005'>10.1016/j.envres.2017.02.005</a>. <a href='#fnref:305' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:318'>West, J. J., S. J. Smith, R. A. Silva, V. Naik, Y. Zhang, Z. Adelman, M. M. Fry, S. Anenberg, L. W. Horowitz, and J.-F. Lamarque, 2013: Co-benefits of mitigating global greenhouse gas emissions for future air quality and human health. <i>Nature Climate Change</i>, <b>3</b> (10), 885–889. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1038/nclimate2009'>10.1038/nclimate2009</a>. <a href='#fnref:318' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:417'>White, C., and A. W. Whelche, 2017: Southeastern Connecticut Regional Resilience Guidebook. Report 17-04. The Nature Conservancy, Community Resilience Building Initiative, New Haven, CT, 43 pp. <a target='_blank' href='https://media.wix.com/ugd/29a871_649289678e664394bad4cf77b144a25b.pdf'>URL</a>. <a href='#fnref:417' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:314'>White-Newsome, J., S. McCormick, N. Sampson, M. Buxton, M. O'Neill, C. Gronlund, L. Catalano, K. Conlon, and E. Parker, 2014: Strategies to reduce the harmful effects of extreme heat events: A four-city study. <i>International Journal of Environmental Research and Public Health</i>, <b>11</b> (2), 1960–1988. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.3390/ijerph110201960'>10.3390/ijerph110201960</a>. <a href='#fnref:314' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:135'>Whitfield, P. H., 2012: Floods in future climates: A review. <i>Journal of Flood Risk Management</i>, <b>5</b> (4), 336–365. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1111/j.1753-318X.2012.01150.x'>10.1111/j.1753-318X.2012.01150.x</a>. <a href='#fnref:135' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:326'>Wilson, A., B. J. Reich, C. G. Nolte, T. L. Spero, B. Hubbell, and A. G. Rappold, 2017: Climate change impacts on projections of excess mortality at 2030 using spatially varying ozone–temperature risk surfaces. <i>Journal of Exposure Science and Environmental Epidemiology</i>, <b>27</b>, 118–124. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1038/jes.2016.14'>10.1038/jes.2016.14</a>. <a href='#fnref:326' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:118'>Wobus, C., E. E. Small, H. Hosterman, D. Mills, J. Stein, M. Rissing, R. Jones, M. Duckworth, R. Hall, M. Kolian, J. Creason, and J. Martinich, 2017: Projected climate change impacts on skiing and snowmobiling: A case study of the United States. <i>Global Environmental Change</i>, <b>45</b>, 1–14. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1016/j.gloenvcha.2017.04.006'>10.1016/j.gloenvcha.2017.04.006</a>. <a href='#fnref:118' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:35'>Wolfe, D. W., A. T. DeGaetano, G. M. Peck, M. Carey, L. H. Ziska, J. Lea-Cox, A. R. Kemanian, M. P. Hoffmann, and D. Y. Hollinger, 2018: Unique challenges and opportunities for northeastern US crop production in a changing climate. <i>Climatic Change</i>, <b>146</b> (1–2), 231–245. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1007/s10584-017-2109-7'>10.1007/s10584-017-2109-7</a>. <a href='#fnref:35' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:221'>Woodruff, J. D., J. L. Irish, and S. J. Camargo, 2013: Coastal flooding by tropical cyclones and sea-level rise. <i>Nature</i>, <b>504</b> (7478), 44–52. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1038/nature12855'>10.1038/nature12855</a>. <a href='#fnref:221' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:55'>Wu, J., B. A. Weber, and M. D. Partridge, 2017: Rural-urban interdependence: A framework integrating regional, urban, and environmental economic insights. <i>American Journal of Agricultural Economics</i>, <b>99</b> (2), 464–480. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1093/ajae/aaw093'>10.1093/ajae/aaw093</a>. <a href='#fnref:55' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:132'>Xenopoulos, M. A., and D. M. Lodge, 2006: Going with the flow: Using species–discharge relationships to forecast losses in fish biodiversity. <i>Ecology</i>, <b>87</b> (8), 1907–1914. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1890/0012-9658(2006)87[1907:GWTFUS]2.0.CO;2'>10.1890/0012-9658(2006)87[1907:GWTFUS]2.0.CO;2</a>. <a href='#fnref:132' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:338'>Xu, F., S. Ilyas, J. A. Hall, S. H. Jones, V. S. Cooper, and C. A. Whistler, 2015: Genetic characterization of clinical and environmental Vibrio parahaemolyticus from the Northeast USA reveals emerging resident and non-indigenous pathogen lineages. <i>Frontiers in Microbiology</i>, <b>6</b> (272) doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.3389/fmicb.2015.00272'>10.3389/fmicb.2015.00272</a>. <a href='#fnref:338' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:300'>Yellen, B., J. D. Woodruff, T. L. Cook, and R. M. Newton, 2016: Historically unprecedented erosion from Tropical Storm Irene due to high antecedent precipitation. <i>Earth Surface Processes and Landforms</i>, <b>41</b> (5), 677–684. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1002/esp.3896'>10.1002/esp.3896</a>. <a href='#fnref:300' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:250'>Yin, J., and P. B. Goddard, 2013: Oceanic control of sea level rise patterns along the East Coast of the United States. <i>Geophysical Research Letters</i>, <b>40</b> (20), 5514–5520. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1002/2013GL057992'>10.1002/2013GL057992</a>. <a href='#fnref:250' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:249'>Yin, J., M. E. Schlesinger, and R. J. Stouffer, 2009: Model projections of rapid sea-level rise on the northeast coast of the United States. <i>Nature Geoscience</i>, <b>2</b> (4), 262–266. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1038/ngeo462'>10.1038/ngeo462</a>. <a href='#fnref:249' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:393'>Zeigler, S. L., E. R. Thieler, B. T. Gutierrez, N. G. Plant, M. Hines, J. D. Fraser, D. H. Catlin, and S. M. Karpanty, 2017: Smartphone technologies and Bayesian networks to assess shorebird habitat selection. <i>Wildlife Society Bulletin</i>, <b>41</b> (4), 666–667. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1002/wsb.820'>10.1002/wsb.820</a>. <a href='#fnref:393' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:412'>Zhang, P., and M. Imhoff, 2010: Satellites Pinpoint Drivers of Urban Heat Islands in the Northeast. NASA, Goddard Space Flight Center, Greenbelt, MD. <a target='_blank' href='https://www.nasa.gov/topics/earth/features/heat-island-sprawl.html'>URL</a>. <a href='#fnref:412' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:353'>Zimmerman, C., L. Kiss, and M. Hossain, 2011: Migration and health: A framework for 21st century policy-making. <i>PLOS Medicine</i>, <b>8</b> (5), e1001034. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1371/journal.pmed.1001034'>10.1371/journal.pmed.1001034</a>. <a href='#fnref:353' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:290'>Zimmerman, R., C. E. Restrepo, J. Sellers, A. Amirapu, and T. R. Pearson, 2014: Promoting Transportation Flexibility in Extreme Events Through Multi-Modal Connectivity. U.S. Department of Transportation, Region 2 Urban Transportation Research Center; NYU-Wagner, New York, NY, 61 pp. <a target='_blank' href='https://wagner.nyu.edu/files/faculty/publications/Final-NYU-Extreme-Events-Research-Report.pdf'>URL</a>. <a href='#fnref:290' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:399'>Ziska, L. H., and G. B. Runion, 2007: Future weed, pest, and disease problems for plants. <i>Agroecosystems in a Changing Climate  </i>. Newton, P. C. ., R. A. Carran, G. R. Edwards, and P. A. Niklaus, Eds., CRC Press, Boca Raton, FL, 261–287. <a target='_blank' href='http://www.ars.usda.gov/SP2UserFiles/Place/60100500/csr/ResearchPubs/runion/runion_07a.pdf'>URL</a>. <a href='#fnref:399' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:343'>Ziska, L., A. Crimmins, A. Auclair, S. DeGrasse, J. F. Garofalo, A. S. Khan, I. Loladze, A. A. Pérez de León, A. Showler, J. Thurston, and I. Walls, 2016: Ch. 7: Food safety, nutrition, and distribution. <i>The Impacts of Climate Change on Human Health in the United States: A Scientific Assessment</i>., U.S. Global Change Research Program, Washington, DC, 189–216. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.7930/J0ZP4417'>10.7930/J0ZP4417</a>. <a href='#fnref:343' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:329'>Ziska, L., K. Knowlton, C. Rogers, D. Dalan, N. Tierney, M. A. Elder, W. Filley, J. Shropshire, L. B. Ford, C. Hedberg, P. Fleetwood, K. T. Hovanky, T. Kavanaugh, G. Fulford, R. F. Vrtis, J. A. Patz, J. Portnoy, F. Coates, L. Bielory, and D. Frenz, 2011: Recent warming by latitude associated with increased length of ragweed pollen season in central North America. <i>Proceedings of the National Academy of Sciences of the United States of America</i>, <b>108</b> (10), 4248–4251. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1073/pnas.1014107108'>10.1073/pnas.1014107108</a>. <a href='#fnref:329' class='reversefootnote'>↩</a></li> <li class='footnote' id='fn:99'>Zuckerberg, B., A. M. Woods, and W. F. Porter, 2009: Poleward shifts in breeding bird distributions in New York State. <i>Global Change Biology</i>, <b>15</b> (8), 1866–1883. doi:<a target='_blank' class='footnote-url' href='https://doi.org/10.1111/j.1365-2486.2009.01878.x'>10.1111/j.1365-2486.2009.01878.x</a>. <a href='#fnref:99' class='reversefootnote'>↩</a></li> </ul> </div> </div> </div> </section> </div> </section> </section> <div id="modal-lightbox" class="modal fade" tabindex="-1" role="dialog" aria-labelledby="modal-lightbox-label" aria-hidden="true"> <div class="modal-dialog modal-lg" role="document"> <div class="modal-content"> <div class="modal-header"> <h2 class="modal-title mt-0" id="modal-lightbox-label"></h2> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> <div class="modal-body"></div> </div> </div> </div> <div id="modal-external-link" class="modal fade" tabindex="-1" role="dialog" aria-labelledby="modal-external-link-label" aria-hidden="true"> <div class="modal-dialog modal-lg modal-dialog-centered" role="document"> <div class="modal-content"> <div class="modal-header"> <h2 class="modal-title mt-0" id="modal-external-link-label">External Link <img src="/icons/external-link.svg" alt="External Link" style="vertical-align: baseline;" /></h2> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> <div class="modal-body">You are leaving The Fourth National Climate Assessment and will be redirected to a new site in 5 seconds.</div> <div class="modal-footer"> <button type="button" class="btn btn-secondary btn-go" data-dismiss="modal">Leave</button> <button type="button" class="btn btn-primary btn-stay" data-dismiss="modal">Stay</button> </div> </div> </div> </div> <div class="container-fluid px-0"> <footer class="doc-footer"> <div class="logo-footer"> <p> <a href="http://globalchange.gov" style="border:none;"><img class="lazyload" data-src="/img/gc-logo.png" alt="USGCRP Globalchange.gov earth logo" /></a><br/><br/> <img class="lazyload" data-src="/img/logos-footer-1.png" alt="13 Logos #1"> <img class="lazyload" data-src="/img/logos-footer-2.png" alt="13 Logos #2"> </p> <div class="xcopyright"> <p>U.S. Global Change Research Program<br/> 1800 G Street, NW, Suite 9100, Washington, DC 20006 USA<br/> Tel: +1 202.223.6262 | Fax: +1 202.223.3065</p> <p> <a href="https://www.globalchange.gov/contact/">Contact Us</a> • <a href="/credits/">Credits</a> • <a href="https://www.globalchange.gov/privacy">Privacy Policy</a> &bull; <a href="/sitemap">Site Map</a> </p> <p> <span class="balance-text">Some figures and images are copyright protected.</span><br/> <span class="balance-text">Permission of the copyright owner must be obtained</span><br/> <span class="balance-text">before making use of copyrighted material.</span></p> </div> </div> </footer> </div> <script src="/js/jquery-3.3.1.min.js"></script> <script src="/js/popper.min.js"></script> <script src="/js/bootstrap.min.js"></script> <script defer src="/js/fontawesome-all.min.js"></script> <script src="/js/jquery.matchHeight-min.js"></script> <script src="/js/yall-2.1.0.min.js"></script> <script src="/js/balancetext.min.js"></script> <script src="/js/jquery.waypoints.min.js"></script> <script src="/js/jquery.qtip.min.js"></script> <script src="/js/slick.js"></script> <script src="/js/jquery.glossarize.js"></script> <script src='/js/jquery.rwdImageMaps.min.js'></script> <script src='/js/leaflet.js'></script> <script src='/js/esri-leaflet.js'></script> <script src='/interactives/14_3/leaflet-ajax.min.js'></script> <script src='https://api.mapbox.com/mapbox.js/plugins/leaflet-fullscreen/v1.0.1/Leaflet.fullscreen.min.js'></script> <script src='/js/leaflet.markercluster.js'></script> <script src="/js/leaflet.zoomhome.js"></script> <script data-main="https://nca2018.globalchange.gov/js/looker.js" src="/js/require.js" async></script> <script> document.addEventListener("DOMContentLoaded", function() { yall({ lazyClass: "lazyload" }); }); </script> <script src="/js/scripts.js"></script> <script> window.fbAsyncInit = function() { FB.init({ appId : "196507180878277", autoLogAppEvents : true, xfbml : true, version : 'v2.9' }); FB.AppEvents.logPageView(); }; (function(d, s, id){ var js, fjs = d.getElementsByTagName(s)[0]; if (d.getElementById(id)) {return;} js = d.createElement(s); js.id = id; js.src = "//connect.facebook.net/en_US/sdk.js"; fjs.parentNode.insertBefore(js, fjs); }(document, 'script', 'facebook-jssdk')); </script> <script> (function(t,e,s,o){var n,a,c;t.SMCX=t.SMCX||[],e.getElementById(o)||(n=e.getElementsByTagName(s),a=n[n.length-1],c=e.createElement(s),c.type="text/javascript",c.async=!0,c.id=o,c.src=["https:"===location.protocol?"https://":"http://","widget.surveymonkey.com/collect/website/js/tRaiETqnLgj758hTBazgdyWJ5rAg_2BlWg_2FfJevAllF97OoadVnYvu8YhU1Ag_2FrOeR.js"].join(""),a.parentNode.insertBefore(c,a))})(window,document,"script","smcx-sdk"); </script>

Pages: 1 2 3 4 5 6 7 8 9 10