CINXE.COM
Search results for: sediment delivery ratio
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: sediment delivery ratio</title> <meta name="description" content="Search results for: sediment delivery ratio"> <meta name="keywords" content="sediment delivery ratio"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="sediment delivery ratio" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="sediment delivery ratio"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 6798</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: sediment delivery ratio</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6798</span> Estimation of Soil Erosion and Sediment Yield for ONG River Using GIS</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sanjay%20Kumar%20Behera">Sanjay Kumar Behera</a>, <a href="https://publications.waset.org/abstracts/search?q=Kanhu%20Charan%20Patra"> Kanhu Charan Patra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A GIS-based method has been applied for the determination of soil erosion and sediment yield in a small watershed in Ong River basin, Odisha, India. The method involves spatial disintegration of the catchment into homogenous grid cells to capture the catchment heterogeneity. The gross soil erosion in each cell was calculated using Universal Soil Loss Equation (USLE) by carefully determining its various parameters. The concept of sediment delivery ratio is used to route surface erosion from each of the discretized cells to the catchment outlet. The process of sediment delivery from grid cells to the catchment outlet is represented by the topographical characteristics of the cells. The effect of DEM resolution on sediment yield is analyzed using two different resolutions of DEM. The spatial discretization of the catchment and derivation of the physical parameters related to erosion in the cell are performed through GIS techniques. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DEM" title="DEM">DEM</a>, <a href="https://publications.waset.org/abstracts/search?q=GIS" title=" GIS"> GIS</a>, <a href="https://publications.waset.org/abstracts/search?q=sediment%20delivery%20ratio" title=" sediment delivery ratio"> sediment delivery ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=sediment%20yield" title=" sediment yield"> sediment yield</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20erosion" title=" soil erosion"> soil erosion</a> </p> <a href="https://publications.waset.org/abstracts/21590/estimation-of-soil-erosion-and-sediment-yield-for-ong-river-using-gis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21590.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">449</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6797</span> The Effects of Climate Change and Upstream Dam Development on Sediment Distribution in the Vietnamese Mekong Delta</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Trieu%20Anh%20Ngoc">Trieu Anh Ngoc</a>, <a href="https://publications.waset.org/abstracts/search?q=Nguyen%20Quang%20Kim"> Nguyen Quang Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Located at the downstream of the Mekong Delta, the Vietnamese Mekong Delta is well-known as 'rice bowl' of Vietnam. The Vietnamese Mekong Delta experiences widespread flooding annually where is habitat for about 17 million people. The economy of this region mainly depends on the agricultural productivities. The suspended sediment load in the Mekong River plays an important role in carrying contaminants and nutrients to the delta and changing the geomorphology of the delta river system. In many past decades, flooding and suspended sediment were considered as indispensable factors in agricultural cultivations. Although flooding in the wet season caused serious inundation in paddy field and affected livelihoods, it is an effective facility for flushing acid and saline to this area - alluvial soil heavily contaminated with acid and salt intrusion. In addition, sediment delivery to this delta contained rich-nutrients distributed and deposited on the fields through flooding process. In recent decades, the changing of flow and sediment transport have been strongly and clearly occurring due to upstream dam development and climate change. However, effects of sediment delivery on agricultural cultivations were less attention. This study investigated the impacts of upstream flow on sediment distribution in the Vietnamese Mekong Delta. Flow fluctuation and sediment distribution were simulated by the Mike 11 model, including hydrodynamics model and advection-dispersion model. Various scenarios were simulated based on anticipated upstream discharges. Our findings indicated that sediment delivery into the Vietnamese Mekong Delta come from not only Tien River but also border of Cambodia floodplains. Sediment distribution in the Vietnamese Mekong Delta is dramatically changed by the distance from the main rivers and the secondary channels. The dam development in the upstream is one of the major factors leading a decrease in sediment discharge as well as sediment deposition. Moreover, sea level rise partially contributed to decrease in sediment transport and change of sediment distribution between upstream and downstream of the Vietnamese Mekong Delta. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sediment%20transport" title="sediment transport">sediment transport</a>, <a href="https://publications.waset.org/abstracts/search?q=sea%20level%20rise" title=" sea level rise"> sea level rise</a>, <a href="https://publications.waset.org/abstracts/search?q=climate%20change" title=" climate change"> climate change</a>, <a href="https://publications.waset.org/abstracts/search?q=Mike%20Model" title=" Mike Model"> Mike Model</a> </p> <a href="https://publications.waset.org/abstracts/87140/the-effects-of-climate-change-and-upstream-dam-development-on-sediment-distribution-in-the-vietnamese-mekong-delta" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/87140.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">276</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6796</span> Sediment Delivery from Hillslope Cultivation in Northwest Vietnam</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vu%20Dinh%20Tuan">Vu Dinh Tuan</a>, <a href="https://publications.waset.org/abstracts/search?q=Truc%20Xuyen%20Nguyen%20Phan"> Truc Xuyen Nguyen Phan</a>, <a href="https://publications.waset.org/abstracts/search?q=Nguyen%20Thi%20Truc%20Nhi"> Nguyen Thi Truc Nhi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cultivating on hillslopes in Northwest Vietnam induced soil erosion that reduce overall soil fertility, capacity of water bodies and drainage ditches or channels, and enhance the risk of flooding, even obstruct traffics and create 'mud flooding or landslide’. This study aimed at assessing the magnitude of erosion under maize monocropping and perennial teak plantation on a rainstorm basic over two years 2010-2011 using double sediment fences installed at convergent point of catchments (slope inclination of 27-74%). Mean annual soil erosion under maize cultivation was 4.39 kg.m⁻², being far greater than that under teak plantation 1.65 kg.m⁻². Intensive tillage in maize monocropping and clearance of land before sowing was most probably the causes induced such effect as no tillage was performed in teak plantation during monitored period. Larger sediment generated across two land use types in year 2010 (4.11 kg.m⁻²) compared to year 2011 (1.87 kg.m⁻²) was attributed to higher amount and intensity of precipitation in the first year (1448 mm) as compared to the latter year (1299 mm). Reducing tillage and establishing good cover for maize monocropping on steep slopes, therefore, are necessary to reduce soil erosion and control sediment delivery to downstream. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=maize%20monocropping" title="maize monocropping">maize monocropping</a>, <a href="https://publications.waset.org/abstracts/search?q=teak%20plantation" title=" teak plantation"> teak plantation</a>, <a href="https://publications.waset.org/abstracts/search?q=tillage" title=" tillage"> tillage</a>, <a href="https://publications.waset.org/abstracts/search?q=sediment%20fence" title=" sediment fence"> sediment fence</a>, <a href="https://publications.waset.org/abstracts/search?q=sediment%20delivery" title=" sediment delivery"> sediment delivery</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20erosion" title=" soil erosion"> soil erosion</a> </p> <a href="https://publications.waset.org/abstracts/76994/sediment-delivery-from-hillslope-cultivation-in-northwest-vietnam" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76994.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">215</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6795</span> Assessment of Sediment Control Characteristics of Notches in Different Sediment Transport Regimes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chih%20Ming%20Tseng">Chih Ming Tseng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Landslides during typhoons that generate substantial amounts of sediment and subsequent rainfall can trigger various types of sediment transport regimes, such as debris flows, high-concentration sediment-laden flows, and typical river sediment transport. This study aims to investigate the sediment control characteristics of natural notches within different sediment transport regimes. High-resolution digital terrain models were used to establish the relationship between slope gradients and catchment areas, which were then used to delineate distinct sediment transport regimes and analyze the sediment control characteristics of notches within these regimes. The research results indicate that the catchment areas of Aiyuzi Creek, Hossa Creek, and Chushui Creek in the study region can be clearly categorized into three sediment transport regimes based on the slope-area relationship curves: frequent collapse headwater areas, debris flow zones, and high-concentration sediment-laden flow zones. The threshold for transitioning from the collapse zone to the debris flow zone in the Aiyuzi Creek catchment is lower compared to Hossa Creek and Chushui Creek, suggesting that the active collapse processes in the upper reaches of Aiyuzi Creek continuously supply a significant sediment source, making it more susceptible to subsequent debris flow events. Moreover, the analysis of sediment trapping efficiency at notches within different sediment transport regimes reveals that as the notch constriction ratio increases, the sediment accumulation per unit area also increases. The accumulation thickness per unit area in high-concentration sediment-laden flow zones is greater than in debris flow zones, indicating differences in sediment deposition characteristics among various sediment transport regimes. Regarding sediment control rates at notches, there is a generally positive correlation with the notch constriction ratio. During the 2009 Morakot Typhoon, the substantial sediment supply from slope failures in the upstream catchment led to an oversupplied sediment transport condition in the river channel. Consequently, sediment control rates were more pronounced during medium and small sediment transport events between 2010 and 2015. However, there were no significant differences in sediment control rates among the different sediment transport regimes at notches. Overall, this research provides valuable insights into the sediment control characteristics of notches under various sediment transport conditions, which can aid in the development of improved sediment management strategies in watersheds. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=landslide" title="landslide">landslide</a>, <a href="https://publications.waset.org/abstracts/search?q=debris%20flow" title=" debris flow"> debris flow</a>, <a href="https://publications.waset.org/abstracts/search?q=notch" title=" notch"> notch</a>, <a href="https://publications.waset.org/abstracts/search?q=sediment%20control" title=" sediment control"> sediment control</a>, <a href="https://publications.waset.org/abstracts/search?q=DTM" title=" DTM"> DTM</a>, <a href="https://publications.waset.org/abstracts/search?q=slope%E2%80%93area%20relation" title=" slope–area relation"> slope–area relation</a> </p> <a href="https://publications.waset.org/abstracts/191167/assessment-of-sediment-control-characteristics-of-notches-in-different-sediment-transport-regimes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/191167.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">28</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6794</span> Determination of Acid Volatile Sulfides–Simultaneously Extracted Metal Relationship and Toxicity in Contaminated Sediment Layer in Mid-Black Sea Coasts</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arife%20Simsek">Arife Simsek</a>, <a href="https://publications.waset.org/abstracts/search?q=Gulfem%20Bakan"> Gulfem Bakan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sediment refers to the accumulation of varying amounts of sediment material in natural waters and the formation of bottom sludge. Sediments are the most important sources of pollutants as well as important future sources and carriers of pollutants. The accumulation of pollutants in sediments can cause serious environmental problems for the surrounding areas. Heavy metals (such as Cr, Cd, Al, Pb, Cu, Al, Zn) disrupt the water quality, affect the useful use of sediment, affect the ecosystem and have a toxic effect on the life of the sediment layer. This effect, which accumulates in the aquatic organisms, can enter the human body with the food chain and affect health seriously. Potential metal toxicity can be determined by comparing acid volatile sulfides (AVS) – simultaneously extracted metal (SEM) ratio in anoxic sediments to determine the effect of metals. Determination of the concentration of SEM and AVS is useful in screening sediments for potential toxicity due to the high metal concentration. In the case of SEM/AVS < 0 (anoxic sediment); in terms of AVS biomass production, its toxicity can be controlled. No toxic effects may be observed when SEM / AVS < 0. SEM / AVS > 0 (in the case of oxic sediment); metals with sensitive fraction such as Cu, As, Ag, Zn are stored. In this study, AVS and SEM measurements of sediment samples collected from five different points in the district of Tekkeköy in Samsun province were performed. The SEM - AVS ratio was greater than 0 in all samples. Therefore, it is necessary to test the toxicity against the risks that may occur in the ecosystem. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=AVS-SEM" title="AVS-SEM">AVS-SEM</a>, <a href="https://publications.waset.org/abstracts/search?q=Black%20Sea" title=" Black Sea"> Black Sea</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20metal" title=" heavy metal"> heavy metal</a>, <a href="https://publications.waset.org/abstracts/search?q=sediment" title=" sediment"> sediment</a>, <a href="https://publications.waset.org/abstracts/search?q=toxicity" title=" toxicity"> toxicity</a> </p> <a href="https://publications.waset.org/abstracts/107175/determination-of-acid-volatile-sulfides-simultaneously-extracted-metal-relationship-and-toxicity-in-contaminated-sediment-layer-in-mid-black-sea-coasts" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/107175.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">138</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6793</span> Potential Impact of Climate Change on Suspended Sediment Changes in Mekong River Basin</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zuliziana%20Suif">Zuliziana Suif</a>, <a href="https://publications.waset.org/abstracts/search?q=Nordila%20Ahmad"> Nordila Ahmad</a>, <a href="https://publications.waset.org/abstracts/search?q=Sengheng%20Hul"> Sengheng Hul</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper evaluates the impact of climate change on suspended sediment changes in the Mekong River Basin. In this study, the distributed process-based sediment transport model is used to examine the potential impact of future climate on suspended sediment dynamic changes in the Mekong River Basin. To this end, climate scenarios from two General Circulation Model (GCMs) were considered in the scenario analysis. The simulation results show that the sediment load and concentration shows 0.64% to 69% increase in the near future (2041-2050) and 2.5% to 95% in the far future (2090- 2099). As the projected climate change impact on sediment varies remarkably between the different climate models, the uncertainty should be taken into account in sediment management. Overall, the changes in sediment load and concentration can have a great implication for related sediment management. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=climate%20change" title="climate change">climate change</a>, <a href="https://publications.waset.org/abstracts/search?q=suspended%20sediment" title=" suspended sediment"> suspended sediment</a>, <a href="https://publications.waset.org/abstracts/search?q=Mekong%20River%20Basin" title=" Mekong River Basin"> Mekong River Basin</a>, <a href="https://publications.waset.org/abstracts/search?q=GCMs" title=" GCMs"> GCMs</a> </p> <a href="https://publications.waset.org/abstracts/67271/potential-impact-of-climate-change-on-suspended-sediment-changes-in-mekong-river-basin" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67271.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">443</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6792</span> Impact of Coal Mining on River Sediment Quality in the Sydney Basin, Australia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Ali">A. Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Strezov"> V. Strezov</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Davies"> P. Davies</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Wright"> I. Wright</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Kan"> T. Kan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The environmental impacts arising from mining activities affect the air, water, and soil quality. Impacts may result in unexpected and adverse environmental outcomes. This study reports on the impact of coal production on sediment in Sydney region of Australia. The sediment samples upstream and downstream from the discharge points from three mines were taken, and 80 parameters were tested. The results were assessed against sediment quality based on presence of metals. The study revealed the increment of metal content in the sediment downstream of the reference locations. In many cases, the sediment was above the Australia and New Zealand Environment Conservation Council and international sediment quality guidelines value (SQGV). The major outliers to the guidelines were nickel (Ni) and zinc (Zn). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coal%20mine" title="coal mine">coal mine</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20impact" title=" environmental impact"> environmental impact</a>, <a href="https://publications.waset.org/abstracts/search?q=produced%20water" title=" produced water"> produced water</a>, <a href="https://publications.waset.org/abstracts/search?q=sediment%20quality%20guidelines%20value%20%28SQGV%29" title=" sediment quality guidelines value (SQGV)"> sediment quality guidelines value (SQGV)</a> </p> <a href="https://publications.waset.org/abstracts/67573/impact-of-coal-mining-on-river-sediment-quality-in-the-sydney-basin-australia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67573.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">304</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6791</span> Modeling Sediment Yield of Jido River in the Rift Vally</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dawit%20%20Hailekrios%20Hailu">Dawit Hailekrios Hailu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main objective of this study is to predict the sediment yield of the Jido River Watershed. Jido River is the largest tributary and covers around 50% of the total catchment area of Lake Shala. This research is undertaken to analyze the sediment yield of the catchments, transport capacity of the streams and sediment deposition rates of Jido River, which is located in the Sub-basin of Shala Lake, Rift Valley Basin of Ethiopia. The input data were Meteorological, Hydrological, land use/land cover maps and soil maps collected from concerned government offices. The sediment yield of Jido River and sediment change of the streams discharging into the Shala Lake were modeled. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sediment%20yield" title="sediment yield">sediment yield</a>, <a href="https://publications.waset.org/abstracts/search?q=watershed" title=" watershed"> watershed</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=calibration" title=" calibration"> calibration</a> </p> <a href="https://publications.waset.org/abstracts/183200/modeling-sediment-yield-of-jido-river-in-the-rift-vally" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/183200.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">74</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6790</span> Estimation of Sediment Transport into a Reservoir Dam</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kiyoumars%20Roushangar">Kiyoumars Roushangar</a>, <a href="https://publications.waset.org/abstracts/search?q=Saeid%20Sadaghian"> Saeid Sadaghian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Although accurate sediment load prediction is very important in planning, designing, operating and maintenance of water resources structures, the transport mechanism is complex, and the deterministic transport models are based on simplifying assumptions often lead to large prediction errors. In this research, firstly, two intelligent ANN methods, Radial Basis and General Regression Neural Networks, are adopted to model of total sediment load transport into Madani Dam reservoir (north of Iran) using the measured data and then applicability of the sediment transport methods developed by Engelund and Hansen, Ackers and White, Yang, and Toffaleti for predicting of sediment load discharge are evaluated. Based on comparison of the results, it is found that the GRNN model gives better estimates than the sediment rating curve and mentioned classic methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sediment%20transport" title="sediment transport">sediment transport</a>, <a href="https://publications.waset.org/abstracts/search?q=dam%20reservoir" title=" dam reservoir"> dam reservoir</a>, <a href="https://publications.waset.org/abstracts/search?q=RBF" title=" RBF"> RBF</a>, <a href="https://publications.waset.org/abstracts/search?q=GRNN" title=" GRNN"> GRNN</a>, <a href="https://publications.waset.org/abstracts/search?q=prediction" title=" prediction"> prediction</a> </p> <a href="https://publications.waset.org/abstracts/10168/estimation-of-sediment-transport-into-a-reservoir-dam" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10168.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">496</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6789</span> Organic Carbon Pools Fractionation of Lacustrine Sediment with a Stepwise Chemical Procedure</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xiaoqing%20Liu">Xiaoqing Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Kurt%20Friese"> Kurt Friese</a>, <a href="https://publications.waset.org/abstracts/search?q=Karsten%20Rinke"> Karsten Rinke</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lacustrine sediment archives rich paleoenvironmental information in lake and surrounding environment. Additionally, modern sediment is used as an effective medium for the monitoring of lake. Organic carbon in sediment is a heterogeneous mixture with varying turnover times and qualities which result from the different biogeochemical processes in the deposition of organic material. Therefore, the isolation of different carbon pools is important for the research of lacustrine condition in the lake. However, the numeric available fractionation procedures can hardly yield homogeneous carbon pools on terms of stability and age. In this work, a multi-step fractionation protocol that treated sediment with hot water, HCl, H2O2 and Na2S2O8 in sequence was adopted, the treated sediment from each step were analyzed for the isotopic and structural compositions with Isotope Ratio Mass Spectrometer coupled with element analyzer (IRMS-EA) and Solid-state 13C Nuclear Magnetic Resonance (NMR), respectively. The sequential extractions with hot-water, HCl, and H2O2 yielded a more homogeneous and C3 plant-originating OC fraction, which was characterized with an atomic C/N ratio shift from 12.0 to 20.8, and 13C and 15N isotopic signatures were 0.9‰ and 1.9‰ more depleted than the original bulk sediment, respectively. Additionally, the H2O2- resistant residue was dominated with stable components, such as the lignins, waxes, cutans, tannins, steroids and aliphatic proteins and complex carbohydrates. 6M HCl in the acid hydrolysis step was much more effective than 1M HCl to isolate a sedimentary OC fraction with higher degree of homogeneity. Owing to the extremely high removal rate of organic matter, the step of a Na2S2O8 oxidation is only suggested if the isolation of the most refractory OC pool is mandatory. We conclude that this multi-step chemical fractionation procedure is effective to isolate more homogeneous OC pools in terms of stability and functional structure, and it can be used as a promising method for OC pools fractionation of sediment or soil in future lake research. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=13C-CPMAS-NMR" title="13C-CPMAS-NMR">13C-CPMAS-NMR</a>, <a href="https://publications.waset.org/abstracts/search?q=13C%20signature" title=" 13C signature"> 13C signature</a>, <a href="https://publications.waset.org/abstracts/search?q=lake%20sediment" title=" lake sediment"> lake sediment</a>, <a href="https://publications.waset.org/abstracts/search?q=OC%20fractionation" title=" OC fractionation"> OC fractionation</a> </p> <a href="https://publications.waset.org/abstracts/51029/organic-carbon-pools-fractionation-of-lacustrine-sediment-with-a-stepwise-chemical-procedure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51029.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">299</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6788</span> An Ecosystem Approach to Natural Resource Management: Case Study of the Topčiderska River, Serbia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Katarina%20Lazarevi%C4%87">Katarina Lazarević</a>, <a href="https://publications.waset.org/abstracts/search?q=Mirjana%20Todosijevi%C4%87"> Mirjana Todosijević</a>, <a href="https://publications.waset.org/abstracts/search?q=Tijana%20Vulevi%C4%87"> Tijana Vulević</a>, <a href="https://publications.waset.org/abstracts/search?q=Natalija%20Momirovi%C4%87"> Natalija Momirović</a>, <a href="https://publications.waset.org/abstracts/search?q=Ranka%20Eri%C4%87"> Ranka Erić</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to increasing demand, climate change, and world population growth, natural resources are getting exploit fast. One of the most important natural resources is soil, which is susceptible to degradation. Erosion as one of the forms of land degradation is also one of the most global environmental problems. Ecosystem services are often defined as benefits that nature provides to humankind. Soil, as the foundation of basic ecosystem functions, provides benefits to people, erosion control, water infiltration, food, fuel, fibers… This research is using the ecosystem approach as a strategy for natural resources management for promoting sustainability and conservation. The research was done on the Topčiderska River basin (Belgrade, Serbia). The InVEST Sediment Delivery Ratio model was used, to quantify erosion intensity with a spatial distribution output map of overland sediment generation and delivery to the stream. InVEST SDR, a spatially explicit model, is using a method based on the concept of hydrological connectivity and (R) USLE model. This, combined with socio-economic and law and policy analysis, gives a full set of information to decision-makers helping them to successfully manage and deliver sustainable ecosystems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ecosystem%20services" title="ecosystem services">ecosystem services</a>, <a href="https://publications.waset.org/abstracts/search?q=InVEST%20model" title=" InVEST model"> InVEST model</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20erosion" title=" soil erosion"> soil erosion</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability" title=" sustainability"> sustainability</a> </p> <a href="https://publications.waset.org/abstracts/131157/an-ecosystem-approach-to-natural-resource-management-case-study-of-the-topciderska-river-serbia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/131157.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">140</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6787</span> Braiding Channel Pattern Due to Variation of Discharge</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Satish%20Kumar">Satish Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Spandan%20Sahu"> Spandan Sahu</a>, <a href="https://publications.waset.org/abstracts/search?q=Sarjati%20Sahoo"> Sarjati Sahoo</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20K.%20Khatua"> K. K. Khatua</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An experimental investigation has been carried out in a tilting flume of 2 m wide, 13 m long, and 0.3 m deep to study the effect of flow on the formation of braided channel pattern. Sediment flow is recirculated through the flume, which passes from the headgate to the sediment/water collecting tank through the tailgate. Further, without altering the geometry of the sand bed channel, the discharge is varied to study the effect of the formation of the braided pattern with time. Then the flow rate is varied to study the effect of flow on the formation of the braided pattern. Sediment transport rate is highly variable and was found to be a nonlinear function of flow rate, aspect ratio, longitudinal slope, and time. Total braided intensity (BIT) for each discharge case is found to be more than the active braided intensity (BIA). Both the parameters first increase and then decrease as the time progresses following a similar pattern for all the observed discharge cases. When the flow is increased, the movement of sediment also increases since the active braided intensity is found to adjust quickly. The measurement of velocity and boundary shear helps to study the erosion and sedimentation processes in the channel and formation of small meandering channels and then the braided channel for different discharge conditions of a sediment river. Due to regime properties of rivers, both total braided Intensity and active braided intensity become stable for a given channel and flow conditions. In the present case, the trend of the ratio of BIA to BIT is found to be asymptotic against the time with a value of 0.4. After the particular time elapses off the flow, new small channels are also found to be formed with changes in the sinuosity of the active channels, thus forming the braided network. This is due to the continuous erosion and sedimentation processes occurring for the flow process for the flow and sediment conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=active%20braided%20intensity" title="active braided intensity">active braided intensity</a>, <a href="https://publications.waset.org/abstracts/search?q=bed%20load" title=" bed load"> bed load</a>, <a href="https://publications.waset.org/abstracts/search?q=sediment%20transport" title=" sediment transport"> sediment transport</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20stress" title=" shear stress"> shear stress</a>, <a href="https://publications.waset.org/abstracts/search?q=total%20braided%20intensity" title=" total braided intensity"> total braided intensity</a> </p> <a href="https://publications.waset.org/abstracts/111226/braiding-channel-pattern-due-to-variation-of-discharge" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/111226.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">131</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6786</span> Nilsson Model Performance in Estimating Bed Load Sediment, Case Study: Tale Zang Station</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nader%20Parsazadeh">Nader Parsazadeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The variety of bed sediment load relationships, insufficient information and data, and the influence of river conditions make the selection of an optimum relationship for a given river extremely difficult. Hence, in order to select the best formulae, the bed load equations should be evaluated. The affecting factors need to be scrutinized, and equations should be verified. Also, re-evaluation may be needed. In this research, sediment bed load of Dez Dam at Tal-e Zang Station has been studied. After reviewing the available references, the most common formulae were selected that included Meir-Peter and Muller, using MS Excel to compute and evaluate data. Then, 52 series of already measured data at the station were re-measured, and the sediment bed load was determined. 1. The calculated bed load obtained by different equations showed a great difference with that of measured data. 2. r difference ratio from 0.5 to 2.00 was 0% for all equations except for Nilsson and Shields equations while it was 61.5 and 59.6% for Nilsson and Shields equations, respectively. 3. By reviewing results and discarding probably erroneous measured data measurements (by human or machine), one may use Nilsson Equation due to its r value higher than 1 as an effective equation for estimating bed load at Tal-e Zang Station in order to predict activities that depend upon bed sediment load estimate to be determined. Also, since only few studies have been conducted so far, these results may be of assistance to the operators and consulting companies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bed%20load" title="bed load">bed load</a>, <a href="https://publications.waset.org/abstracts/search?q=empirical%20relation%20ship" title=" empirical relation ship"> empirical relation ship</a>, <a href="https://publications.waset.org/abstracts/search?q=sediment" title=" sediment"> sediment</a>, <a href="https://publications.waset.org/abstracts/search?q=Tale%20Zang%20Station" title=" Tale Zang Station"> Tale Zang Station</a> </p> <a href="https://publications.waset.org/abstracts/54461/nilsson-model-performance-in-estimating-bed-load-sediment-case-study-tale-zang-station" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54461.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">362</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6785</span> Experimental Study of the Modifications of the Bed of a River under Extreme Flow Conditions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Ghenaim">A. Ghenaim</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Terfous"> A. Terfous</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, degradation phenomena in fluvial beds having uniform sediments are explored experimentally under extreme flow conditions. Laboratory experiments were conducted in a rectangular cross-section channel for different flow conditions, channel characteristics, and sediment properties at the National Institute of Applied Sciences (Strasbourg, France). Tests were carried out in two conditions: (1) equilibrium condition, where, once the steady and uniform flow conditions were achieved for a given slope and discharge, the channel was fed with variable sediment discharges until the bed-load sediment transport achieved an equilibrium condition; and (2) nonequilibrium condition, where the sediment feeding was instantaneously stopped, and the bed levels were measured over time. Experimental results enabled assessing the erosion rates and determining the empirical mathematical model to predict the bed level changes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fluvial%20beds" title="fluvial beds">fluvial beds</a>, <a href="https://publications.waset.org/abstracts/search?q=sediment" title=" sediment"> sediment</a>, <a href="https://publications.waset.org/abstracts/search?q=uniform%20flow%20conditions" title=" uniform flow conditions"> uniform flow conditions</a>, <a href="https://publications.waset.org/abstracts/search?q=nonequilibrium%20condition" title=" nonequilibrium condition"> nonequilibrium condition</a>, <a href="https://publications.waset.org/abstracts/search?q=sediment%20disposition" title=" sediment disposition"> sediment disposition</a>, <a href="https://publications.waset.org/abstracts/search?q=erosion" title=" erosion"> erosion</a> </p> <a href="https://publications.waset.org/abstracts/156505/experimental-study-of-the-modifications-of-the-bed-of-a-river-under-extreme-flow-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/156505.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">94</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6784</span> Modeling Sediment Yield Using the SWAT Model: A Case Study of Upper Ankara River Basin, Turkey</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Umit%20Duru">Umit Duru</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Soil and Water Assessment Tool (SWAT) was tested for prediction of water balance and sediment yield in the Ankara gauged basin, Turkey. The overall objective of this study was to evaluate the performance and applicability of the SWAT in this region of Turkey. Thirteen years of monthly stream flow, and suspended sediment, data were used for calibration and validation. This research assessed model performance based on differences between observed and predicted suspended sediment yield during calibration (1987-1996) and validation (1982-1984) periods. Statistical comparisons of suspended sediment produced values for NSE (Nash Sutcliffe efficiency), RE (relative error), and R² (coefficient of determination), of 0.81, -1.55, and 0.93, respectively, during the calibration period, and NSE, RE (%), and R² of 0.77, -2.61, and 0.87, respectively, during the validation period. Based on the analyses, SWAT satisfactorily simulated observed hydrology and sediment yields and can be used as a tool in decision making for water resources planning and management in the basin. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=calibration" title="calibration">calibration</a>, <a href="https://publications.waset.org/abstracts/search?q=GIS" title=" GIS"> GIS</a>, <a href="https://publications.waset.org/abstracts/search?q=sediment%20yield" title=" sediment yield"> sediment yield</a>, <a href="https://publications.waset.org/abstracts/search?q=SWAT" title=" SWAT"> SWAT</a>, <a href="https://publications.waset.org/abstracts/search?q=validation" title=" validation"> validation</a> </p> <a href="https://publications.waset.org/abstracts/55249/modeling-sediment-yield-using-the-swat-model-a-case-study-of-upper-ankara-river-basin-turkey" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55249.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">282</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6783</span> Hydrological Modelling to Identify Critical Erosion Areas in Gheshlagh Dam Basin</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Golaleh%20Ghaffari">Golaleh Ghaffari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A basin sediment yield refers to the amount of sediment exported by a basin over a period of time, which will enter a reservoir located at the downstream limit of the basin. The Soil and Water Assessment Tool (SWAT, 2008) was used to hydrology and sediment transport modeling at daily and monthly time steps within the Gheshlagh dam basin in north-west of Iran. The SWAT model and Geographic Information System (GIS) techniques were applied to evaluate basin hydrology and sediment yield using historical flow and sediment data and to identify and prioritize critical sub-basins based on sediment transport. The results of this study indicated that simulated daily discharge and sediment values matched the observed values satisfactorily. The model predicted that mean annual basin precipitation for the total study period (413 mm) was partitioned in to evapotranspiration (36%), percolation/groundwater recharge (21%) and stream water (25%), yielding 18% surface runoff. Potential source areas of erosion were also identified with the model. The range of the annual contributing erosive zones varied spatially from 0.1 to 103 t/ha according to the slope and land use at the basin scale. Also the fifteen sub basins create the 60% of the total sediment yield between the all (102) sub basins. The results of the study indicated that SWAT can be a useful tool for assessing hydrology and sediment yield response of the watersheds in the region. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=erosion" title="erosion">erosion</a>, <a href="https://publications.waset.org/abstracts/search?q=Gheshlagh%20dam" title=" Gheshlagh dam"> Gheshlagh dam</a>, <a href="https://publications.waset.org/abstracts/search?q=sediment%20yield" title=" sediment yield"> sediment yield</a>, <a href="https://publications.waset.org/abstracts/search?q=SWAT" title=" SWAT "> SWAT </a> </p> <a href="https://publications.waset.org/abstracts/33372/hydrological-modelling-to-identify-critical-erosion-areas-in-gheshlagh-dam-basin" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33372.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">523</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6782</span> Preparation and Characterization of Chitosan Nanoparticles for Delivery of Oligonucleotides</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gyati%20Shilakari%20Asthana">Gyati Shilakari Asthana</a>, <a href="https://publications.waset.org/abstracts/search?q=Abhay%20Asthana"> Abhay Asthana</a>, <a href="https://publications.waset.org/abstracts/search?q=Dharm%20Veer%20Kohli"> Dharm Veer Kohli</a>, <a href="https://publications.waset.org/abstracts/search?q=Suresh%20Prasad%20Vyas"> Suresh Prasad Vyas </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Purpose: The therapeutic potential of oligonucleotide (ODN) is primarily dependent upon its safe and efficient delivery to specific cells overcoming degradation and maximizing cellular uptake in vivo. The present study is focused to design low molecular weight chitosan nanoconstructs to meet the requirements of safe and effectual delivery of ODNs. LMW-chitosan is a biodegradable, water soluble, biocompatible polymer and is useful as a non-viral vector for gene delivery due to its better stability in water. Methods: LMW chitosan ODN nanoparticles (CHODN NPs) were formulated by self-assembled method using various N/P ratios (moles ratio of amine groups of CH to phosphate moieties of ODNs; 0.5:1, 1:1, 3:1, 5:1, and 7:1) of CH to ODN. The developed CHODN NPs were evaluated with respect to gel retardation assay, particle size, zeta potential and cytotoxicity and transfection efficiency. Results: Complete complexation of CH/ODN was achieved at the charge ratio of 0.5:1 or above and CHODN NPs displayed resistance against DNase I. On increasing the N/P ratio of CH/ODN, the particle size of the NPs decreased whereas zeta potential (ZV) value increased. No significant toxicity was observed at all CH concentrations. The transfection efficiency was increased on increasing N/P ratio from 1:1 to 3:1, whereas it was decreased with further increment in N/P ratio upto 7:1. Maximum transfection of CHODN NPs with both the cell lines (Raw 267.4 cells and Hela cells) was achieved at N/P ratio of 3:1. The results suggest that transfection efficiency of CHODN NPs is dependent on N/P ratio. Conclusion: Thus the present study states that LMW chitosan nanoparticulate carriers would be acceptable choice to improve transfection efficiency in vitro as well as in vivo delivery of oligonucleotide. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=LMW-chitosan" title="LMW-chitosan">LMW-chitosan</a>, <a href="https://publications.waset.org/abstracts/search?q=chitosan%20nanoparticles" title=" chitosan nanoparticles"> chitosan nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=biocompatibility" title=" biocompatibility"> biocompatibility</a>, <a href="https://publications.waset.org/abstracts/search?q=cytotoxicity%20study" title=" cytotoxicity study"> cytotoxicity study</a>, <a href="https://publications.waset.org/abstracts/search?q=transfection%20efficiency" title=" transfection efficiency"> transfection efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=oligonucleotide" title=" oligonucleotide"> oligonucleotide</a> </p> <a href="https://publications.waset.org/abstracts/16384/preparation-and-characterization-of-chitosan-nanoparticles-for-delivery-of-oligonucleotides" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16384.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">849</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6781</span> Analysis of Sediment Distribution around Karang Sela Coral Reef Using Multibeam Backscatter</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Razak%20Zakariya">Razak Zakariya</a>, <a href="https://publications.waset.org/abstracts/search?q=Fazliana%20Mustajap"> Fazliana Mustajap</a>, <a href="https://publications.waset.org/abstracts/search?q=Lenny%20Sharinee%20Sakai"> Lenny Sharinee Sakai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A sediment map is quite important in the marine environment. The sediment itself contains thousands of information that can be used for other research. This study was conducted by using a multibeam echo sounder Reson T20 on 15 August 2020 at the Karang Sela (coral reef area) at Pulau Bidong. The study aims to identify the sediment type around the coral reef by using bathymetry and backscatter data. The sediment in the study area was collected as ground truthing data to verify the classification of the seabed. A dry sieving method was used to analyze the sediment sample by using a sieve shaker. PDS 2000 software was used for data acquisition, and Qimera QPS version 2.4.5 was used for processing the bathymetry data. Meanwhile, FMGT QPS version 7.10 processes the backscatter data. Then, backscatter data were analyzed by using the maximum likelihood classification tool in ArcGIS version 10.8 software. The result identified three types of sediments around the coral which were very coarse sand, coarse sand, and medium sand. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sediment%20type" title="sediment type">sediment type</a>, <a href="https://publications.waset.org/abstracts/search?q=MBES%20echo%20sounder" title=" MBES echo sounder"> MBES echo sounder</a>, <a href="https://publications.waset.org/abstracts/search?q=backscatter" title=" backscatter"> backscatter</a>, <a href="https://publications.waset.org/abstracts/search?q=ArcGIS" title=" ArcGIS"> ArcGIS</a> </p> <a href="https://publications.waset.org/abstracts/160228/analysis-of-sediment-distribution-around-karang-sela-coral-reef-using-multibeam-backscatter" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/160228.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">86</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6780</span> Numerical Modeling of Waves and Currents by Using a Hydro-Sedimentary Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mustapha%20Kamel%20Mihoubi">Mustapha Kamel Mihoubi</a>, <a href="https://publications.waset.org/abstracts/search?q=Hocine%20Dahmani"> Hocine Dahmani </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Over recent years much progress has been achieved in the fields of numerical modeling shoreline processes: waves, currents, waves and current. However, there are still some problems in the existing models to link the on the first, the hydrodynamics of waves and currents and secondly, the sediment transport processes and due to the variability in time, space and interaction and the simultaneous action of wave-current near the shore. This paper is the establishment of a numerical modeling to forecast the sediment transport from development scenarios of harbor structure. It is established on the basis of a numerical simulation of a water-sediment model via a 2D model using a set of codes calculation MIKE 21-DHI software. This is to examine the effect of the sediment transport drivers following the dominant incident wave in the direction to pass input harbor work under different variants planning studies to find the technical and economic limitations to the sediment transport and protection of the harbor structure optimum solution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=swell" title="swell">swell</a>, <a href="https://publications.waset.org/abstracts/search?q=current" title=" current"> current</a>, <a href="https://publications.waset.org/abstracts/search?q=radiation" title=" radiation"> radiation</a>, <a href="https://publications.waset.org/abstracts/search?q=stress" title=" stress"> stress</a>, <a href="https://publications.waset.org/abstracts/search?q=mesh" title=" mesh"> mesh</a>, <a href="https://publications.waset.org/abstracts/search?q=mike21" title=" mike21"> mike21</a>, <a href="https://publications.waset.org/abstracts/search?q=sediment" title=" sediment"> sediment</a> </p> <a href="https://publications.waset.org/abstracts/16069/numerical-modeling-of-waves-and-currents-by-using-a-hydro-sedimentary-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16069.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">469</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6779</span> Ecological Effects of Oil Spill on Water and Sediment from Two Riverine Communities in Warri</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Doris%20Fovwe%20Ogeleka">Doris Fovwe Ogeleka</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20E.%20Tudararo-Aherobo"> L. E. Tudararo-Aherobo</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20E.%20Okieimen"> F. E. Okieimen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The ecological effects of oil spill in the environment were studied in Warri riverine areas of Ubeji and Jeddo, Delta State. In the two communities, water and sediment samples were analysed for organics (polyaromatic hydrocarbon; total petroleum hydrocarbon (TPH)) and heavy metals (lead, copper, zinc, iron and chromium). The American Public Health Association (APHA) and the American Society for Testing and Materials (ASTM) methods were employed for the laboratory test. The results indicated that after a long period of oil spill (above one year), there were still significant concentrations (p<0.05) of organics indicating hydrocarbon pollution. Mean concentrations recorded for TPH in Ubeji and Jeddo waters were 23.60 ± 1.18 mg/L and 29.96 ± 0.14 mg/L respectively while total PAHs was 0.009 ± 0.002 mg/L and 0.008 ± 0.001 mg/L. Mean concentrations of TPH in the sediment was 48.83 ± 1.49 ppm and 1093 ± 74 ppm in the above order while total PAHs was 0.012 ± 0.002 ppm and 0.026 ± 0.004 ppm. Low concentrations were recorded for most of the heavy metals in the water and sediment. The observed concentrations of hydrocarbons in the study areas should provide the impetus for regulatory surveillance of oil discharged intentionally/unintentionally into the Warri riverine waters and sediment since hydrocarbon released into the environment sorb to the sediment particles where they cause harm to organisms in the sediment and overlying waters. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=crude%20oil" title="crude oil">crude oil</a>, <a href="https://publications.waset.org/abstracts/search?q=PAHs" title=" PAHs"> PAHs</a>, <a href="https://publications.waset.org/abstracts/search?q=TPH" title=" TPH"> TPH</a>, <a href="https://publications.waset.org/abstracts/search?q=oil%20spillage" title=" oil spillage"> oil spillage</a>, <a href="https://publications.waset.org/abstracts/search?q=water" title=" water"> water</a>, <a href="https://publications.waset.org/abstracts/search?q=sediment" title=" sediment"> sediment</a> </p> <a href="https://publications.waset.org/abstracts/15552/ecological-effects-of-oil-spill-on-water-and-sediment-from-two-riverine-communities-in-warri" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15552.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">287</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6778</span> Analysis of Bed Load Sediment Transport Mataram-Babarsari Irrigation Canal</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Agatha%20Padma%20Laksitaningtyas">Agatha Padma Laksitaningtyas</a>, <a href="https://publications.waset.org/abstracts/search?q=Sumiyati%20Gunawan"> Sumiyati Gunawan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mataram Irrigation Canal has 31,2 km length, is the main irrigation canal in Special Region Province of Yogyakarta, connecting Progo River on the west side and Opak River on the east side. It has an important role as the main water carrier distribution for various purposes such as agriculture, fishery, and plantation which should be free from sediment material. Bed Load Sediment is the basic sediment that will make the sediment process on the irrigation canal. Sediment process is a simultaneous event that can make deposition sediment at the base of irrigation canal and can make the height of elevation water change, it will affect the availability of water to be used for irrigation functions. To predict the amount of drowning sediments in the irrigation canal using two methods: Meyer-Peter and Muller’s Method which is an energy approach method and Einstein Method which is a probabilistic approach. Speed measurement using floating method and using current meters. The channel geometry is measured directly in the field. The basic sediment of the channel is taken in the field by taking three samples from three different points. The result of the research shows that by using the formula Meyer -Peter Muller get the result of 60,75799 kg/s, whereas with Einsten’s Method get result of 13,06461 kg/s. the results may serve as a reference for dredging the sediments on the channel so as not to disrupt the flow of water in irrigation canal. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bed%20load" title="bed load">bed load</a>, <a href="https://publications.waset.org/abstracts/search?q=sediment" title=" sediment"> sediment</a>, <a href="https://publications.waset.org/abstracts/search?q=irrigation" title=" irrigation"> irrigation</a>, <a href="https://publications.waset.org/abstracts/search?q=Mataram%20canal" title=" Mataram canal"> Mataram canal</a> </p> <a href="https://publications.waset.org/abstracts/82951/analysis-of-bed-load-sediment-transport-mataram-babarsari-irrigation-canal" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82951.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">228</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6777</span> Formulation Development and Characterization of Oligonucleotide Containing Chitosan Nanoparticles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gyati%20Shilakari%20Asthana">Gyati Shilakari Asthana</a>, <a href="https://publications.waset.org/abstracts/search?q=Abhay%20Asthana"> Abhay Asthana</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Purpose: The therapeutic potential of oligonucleotide (ODN) is primarily dependent upon its safe and efficient delivery to specific cells overcoming degradation and maximizing cellular uptake in vivo. The present study is focused to design low molecular weight chitosan nanoconstructs to meet the requirements of safe and effectual delivery of ODNs. LMW-chitosan is a biodegradable, water soluble, biocompatible polymer and is useful as a non-viral vector for gene delivery due to its better stability in water. Methods: LMW chitosan ODN nanoparticles (CHODN NPs) were formulated by self assembled method using various N/P ratios (moles ratio of amine groups of CH to phosphate moieties of ODNs; 0.5:1, 1:1, 3:1, 5:1 and 7:1) of CH to ODN. The developed CHODN NPs were evaluated with respect to gel retardation assay, particle size, zeta potential and cytotoxicity and transfection efficiency. Results: Complete complexation of CH/ODN was achieved at the charge ratio of 0.5:1 or above and CHODN NPs displayed resistance against DNase I. On increasing the N/P ratio of CH/ODN, particle size of the NPs decreased whereas zeta potential (ZV) value increased. No significant toxicity was observed at all CH concentrations. The transfection efficiency was increased on increasing N/P ratio from 1:1 to 3:1, whereas it was decreased with further increment in N/P ratio upto 7:1. Maximum transfection of CHODN NPs with both the cell lines (Raw 267.4 cells and Hela cells) was achieved at N/P ratio of 3:1. The results suggest that transfection efficiency of CHODN NPs is dependent on N/P ratio. Conclusion: Thus the present study states that LMW chitosan nanoparticulate carriers would be acceptable choice to improve transfection efficiency in vitro as well as in vivo delivery of oligonucleotide. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=LMW-chitosan" title="LMW-chitosan">LMW-chitosan</a>, <a href="https://publications.waset.org/abstracts/search?q=chitosan%20nanoparticles" title=" chitosan nanoparticles"> chitosan nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=biocompatibility" title=" biocompatibility"> biocompatibility</a>, <a href="https://publications.waset.org/abstracts/search?q=cytotoxicity%20study" title=" cytotoxicity study"> cytotoxicity study</a>, <a href="https://publications.waset.org/abstracts/search?q=transfection%20efficiency" title=" transfection efficiency"> transfection efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=oligonucleotide" title=" oligonucleotide"> oligonucleotide</a> </p> <a href="https://publications.waset.org/abstracts/32834/formulation-development-and-characterization-of-oligonucleotide-containing-chitosan-nanoparticles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32834.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">493</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6776</span> Recent Trends in Supply Chain Delivery Models</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alfred%20L.%20Guiffrida">Alfred L. Guiffrida </a> </p> <p class="card-text"><strong>Abstract:</strong></p> A review of the literature on supply chain delivery models which use delivery windows to measure delivery performance is presented. The review herein serves to meet the following objectives: (i) provide a synthesis of previously published literature on supply chain delivery performance models, (ii) provide in one paper a consolidation of research that can serve as a single source to keep researchers up to date with the research developments in supply chain delivery models, and (iii) identify gaps in the modeling of supply chain delivery performance which could stimulate new research agendas. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=delivery%20performance" title="delivery performance">delivery performance</a>, <a href="https://publications.waset.org/abstracts/search?q=delivery%20window" title=" delivery window"> delivery window</a>, <a href="https://publications.waset.org/abstracts/search?q=supply%20chain%20delivery%20models" title=" supply chain delivery models"> supply chain delivery models</a>, <a href="https://publications.waset.org/abstracts/search?q=supply%20chain%20performance" title=" supply chain performance"> supply chain performance</a> </p> <a href="https://publications.waset.org/abstracts/6540/recent-trends-in-supply-chain-delivery-models" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6540.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">421</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6775</span> Investigating Reservior Sedimentation Control in the Conservation of Water </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mosupi%20Ratshaa">Mosupi Ratshaa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Despite years of diligent study, sedimentation is still undoubtedly the most severe technical problem faced by the dam industry. The problem of sedimentation build-up and its removal should be the focus as an approach to remedy this. The world's reservoirs lose about 1% of their storage capacity yearly to sedimentation, what this means is that 1% of water that could be stored is lost the world-over. The increase in population means that the need for water also increases and, therefore, the loss due to sedimentation is of great concern especially to the conservation of water. When it comes to reservoir sedimentation, the thought of water conservation comes with soil conservation since this increasing sediment that takes the volume meant for water is being lost from dry land. For this reason, reservoir sediment control is focused on reducing sediment entering the reservoir and reducing sediment within the reservoir. There are many problems with sediment control such as the difficulty to predict settling patterns, inability to greatly reduce the sediment volume entering the river flow which increases the reservoirs trap efficiency just to mention a few. Notably reservoirs are habitats for flora and fauna, the process of removing sediment from these reservoirs damages this ecosystem so there is an ethical point to be considered in this section. This paper looks at the methods used to control the sedimentation of reservoirs and their effects to the ecosystem in the aim of reducing water losses due to sedimentation. Various control measures which reduce sediment entering the reservoir such as Sabo dams or Check dams along with measures which emphasize the reduction in built-up settled sediment such as flushing will be reviewed all with the prospect of conservation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sedimentation" title="sedimentation">sedimentation</a>, <a href="https://publications.waset.org/abstracts/search?q=conservation" title=" conservation"> conservation</a>, <a href="https://publications.waset.org/abstracts/search?q=ecosystem" title=" ecosystem"> ecosystem</a>, <a href="https://publications.waset.org/abstracts/search?q=flushing" title=" flushing "> flushing </a> </p> <a href="https://publications.waset.org/abstracts/35796/investigating-reservior-sedimentation-control-in-the-conservation-of-water" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35796.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">336</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6774</span> Heavy Metal Concentration in Orchard Area, Amphawa District, Samut Songkram Province, Thailand</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sisuwan%20Kaseamsawat">Sisuwan Kaseamsawat</a>, <a href="https://publications.waset.org/abstracts/search?q=Sivapan%20Choo-In"> Sivapan Choo-In</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A study was conducted in May to July 2013 with the aim of determination of heavy metal concentration in orchard area. 60 samples were collected and analyzed for Cadmium (Cd), Copper (Cu), Lead (Pb), and Zinc (Zn) by Atomic Absorption Spectrophotometer (AAS). The heavy metal concentrations in sediment of orchards, that use chemical for Cd (1.13 ± 0.26 mg/l), Cu (8.00 ± 1.05 mg/l), Pb (13.16 ± 2.01) and Zn (37.41 ± 3.20 mg/l). The heavy metal concentrations in sediment of the orchards, that do not use chemical for Cd (1.28 ± 0.50 mg/l), Cu (7.60 ± 1.20 mg/l), Pb (29.87 ± 4.88) and Zn (21.79 ± 2.98 mg/l). Statistical analysis between heavy metal in sediment from the orchard, that use chemical and the orchard, that not use chemical were difference statistic significant of 0.5 level of significant for Cd and Pb while no statistically difference for Cu and Zn. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heavy%20metal" title="heavy metal">heavy metal</a>, <a href="https://publications.waset.org/abstracts/search?q=orchard" title=" orchard"> orchard</a>, <a href="https://publications.waset.org/abstracts/search?q=pollution%20and%20monitoring" title=" pollution and monitoring"> pollution and monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=sediment" title=" sediment"> sediment</a> </p> <a href="https://publications.waset.org/abstracts/8591/heavy-metal-concentration-in-orchard-area-amphawa-district-samut-songkram-province-thailand" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8591.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">385</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6773</span> Durability of a Cementitious Matrix Based on Treated Sediments</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahfoud%20Benzerzour">Mahfoud Benzerzour</a>, <a href="https://publications.waset.org/abstracts/search?q=Mouhamadou%20Amar"> Mouhamadou Amar</a>, <a href="https://publications.waset.org/abstracts/search?q=Amine%20Safhi"> Amine Safhi</a>, <a href="https://publications.waset.org/abstracts/search?q=Nor-Edine%20Abriak"> Nor-Edine Abriak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Significant volumes of sediment are annually dredged in France and all over the world. These materials may, in fact, be used beneficially as supplementary cementitious material. This paper studies the durability of a new cement matrix based on marine dredged sediment of Dunkirk-Harbor (north of France). Several techniques are used to characterize the raw sediment such as physical properties, chemical analyses, and mineralogy. The XRD analysis revealed quartz, calcite, kaolinite as main mineral phases. In order to eliminate organic matter and activate some of those minerals, the sediment is calcined at a temperature of 850°C for 1h. Moreover, four blended mortars were formulated by mixing a portland cement (CEM I 52,5 N) and the calcined sediment as partial cement substitute (0%, 10%, 20% and 30%). Reference mortars, based on the blended cement, were then prepared. This re-use cannot be substantiating and efficient without a durability study. In this purpose, the following tests, mercury porosity, accessible water porosity, chloride permeability, freezing and thawing, external sulfate attack, alkali aggregates reaction, compressive and bending strength tests were conducted on those mortars. The results of most of those tests evidenced the fact that the mortar that contains 10% of the treated sediment is efficient and durable as the reference mortar itself. That would infer that the presence of these calcined sediment improves mortar general behavior. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sediment" title="sediment">sediment</a>, <a href="https://publications.waset.org/abstracts/search?q=characterization" title=" characterization"> characterization</a>, <a href="https://publications.waset.org/abstracts/search?q=calcination" title=" calcination"> calcination</a>, <a href="https://publications.waset.org/abstracts/search?q=substitution" title=" substitution"> substitution</a>, <a href="https://publications.waset.org/abstracts/search?q=durability" title=" durability"> durability</a> </p> <a href="https://publications.waset.org/abstracts/62380/durability-of-a-cementitious-matrix-based-on-treated-sediments" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62380.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">257</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6772</span> Formulation of Aggregates Based on Dredged Sand and Sediments</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nor-Edine%20Abriak">Nor-Edine Abriak</a>, <a href="https://publications.waset.org/abstracts/search?q=Ilyas%20Ennahal"> Ilyas Ennahal</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdeljalil%20Zri"> Abdeljalil Zri</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahfoud%20Benzerzour"> Mahfoud Benzerzour</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nord Pas de Calais is one of the French regions that records a large volume of dredged sediment in harbors and waterways. To ensure navigation within ports and waterways, harbor and river managers are forced to find solutions to remove sediment that contamination levels exceed levels established by regulations. Therefore, this non- submersible sediment must be managed on land and will be subject to the waste regulation. In this paper, some examples of concrete achievements and experiments of reusing dredged sediment in civil engineering and sector will be illustrated. These achievements are alternative solutions to sediment landfilling and guarantee the reuse of this material in a logic of circular economy and ecological transition. It permits to preserve the natural resources increasingly scarce and resolve issues related to the accumulation of sediments in the harbor basins, rivers, dams, and lakes, etc. Examples of beneficial use of dredged material illustrated in this paper are the result of different projects reusing harbor and waterways sediments in several applications. These projects were funded under the national SEDIMATERIAUX approach. Thus the technical and environmental feasibility of the reuse of dredged sediment is demonstrated and verified; the dredged sediment reusing would meet multiple challenges of sustainable development in relation to environmental, economic, social and societal. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=circular%20economy" title="circular economy">circular economy</a>, <a href="https://publications.waset.org/abstracts/search?q=sediment" title=" sediment"> sediment</a>, <a href="https://publications.waset.org/abstracts/search?q=SEDIMATERIAUX" title=" SEDIMATERIAUX"> SEDIMATERIAUX</a>, <a href="https://publications.waset.org/abstracts/search?q=waterways" title=" waterways"> waterways</a> </p> <a href="https://publications.waset.org/abstracts/77256/formulation-of-aggregates-based-on-dredged-sand-and-sediments" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77256.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">156</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6771</span> Application of ANN and Fuzzy Logic Algorithms for Runoff and Sediment Yield Modelling of Kal River, India</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahesh%20Kothari">Mahesh Kothari</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20D.%20Gharde"> K. D. Gharde</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The ANN and fuzzy logic (FL) models were developed to predict the runoff and sediment yield for catchment of Kal river, India using 21 years (1991 to 2011) rainfall and other hydrological data (evaporation, temperature and streamflow lag by one and two day) and 7 years data for sediment yield modelling. The ANN model performance improved with increasing the input vectors. The fuzzy logic model was performing with R value more than 0.95 during developmental stage and validation stage. The comparatively FL model found to be performing well to ANN in prediction of runoff and sediment yield for Kal river. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=transferred%20function" title="transferred function">transferred function</a>, <a href="https://publications.waset.org/abstracts/search?q=sigmoid" title=" sigmoid"> sigmoid</a>, <a href="https://publications.waset.org/abstracts/search?q=backpropagation" title=" backpropagation"> backpropagation</a>, <a href="https://publications.waset.org/abstracts/search?q=membership%20function" title=" membership function"> membership function</a>, <a href="https://publications.waset.org/abstracts/search?q=defuzzification" title=" defuzzification "> defuzzification </a> </p> <a href="https://publications.waset.org/abstracts/33110/application-of-ann-and-fuzzy-logic-algorithms-for-runoff-and-sediment-yield-modelling-of-kal-river-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33110.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">569</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6770</span> Residue and Ecological Risk Assessment of Polybrominated Diphenyl Ethers (PBDEs) in Sediment from CauBay River, Vietnam</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Toan%20Vu%20Duc">Toan Vu Duc</a>, <a href="https://publications.waset.org/abstracts/search?q=Son%20Ha%20Viet"> Son Ha Viet</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research presents the first comprehensive survey of congener profiles (7 indicator congeners) of polybrominated diphenyl ethers (PBDEs) in sediment samples covering ten sites in CauBay River, Vietnam. Chemical analyses were carried out in gas chromatography–mass spectrometry (GC–MS) for tri- to hepta- brominated congeners. Results pointed out a non-homogenous contamination of the sediment with ∑7 PBDE values ranging from 8.93 to 25.64ng g−1, reflecting moderate to low contamination closely in conformity to other Asian aquatic environments. The general order of decreasing congener contribution to the total load was: BDE 47 > 99 > 100 > 154, similar to the distribution pattern worldwide. PBDEs had rare risks in the sediment of studied area. However, due to the propensity of PBDEs to accumulate in various compartments of wildlife and human food webs, evaluation of biological tissues should be undertaken as a high priority. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=residue" title="residue">residue</a>, <a href="https://publications.waset.org/abstracts/search?q=risk%20assessment" title=" risk assessment"> risk assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=PBDEs" title=" PBDEs"> PBDEs</a>, <a href="https://publications.waset.org/abstracts/search?q=sediment" title=" sediment"> sediment</a> </p> <a href="https://publications.waset.org/abstracts/10215/residue-and-ecological-risk-assessment-of-polybrominated-diphenyl-ethers-pbdes-in-sediment-from-caubay-river-vietnam" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10215.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">298</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6769</span> Estimation of Ribb Dam Catchment Sediment Yield and Reservoir Effective Life Using Soil and Water Assessment Tool Model and Empirical Methods</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Getalem%20E.%20Haylia">Getalem E. Haylia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Ribb dam is one of the irrigation projects in the Upper Blue Nile basin, Ethiopia, to irrigate the Fogera plain. Reservoir sedimentation is a major problem because it reduces the useful reservoir capacity by the accumulation of sediments coming from the watersheds. Estimates of sediment yield are needed for studies of reservoir sedimentation and planning of soil and water conservation measures. The objective of this study was to simulate the Ribb dam catchment sediment yield using SWAT model and to estimate Ribb reservoir effective life according to trap efficiency methods. The Ribb dam catchment is found in North Western part of Ethiopia highlands, and it belongs to the upper Blue Nile and Lake Tana basins. Soil and Water Assessment Tool (SWAT) was selected to simulate flow and sediment yield in the Ribb dam catchment. The model sensitivity, calibration, and validation analysis at Ambo Bahir site were performed with Sequential Uncertainty Fitting (SUFI-2). The flow data at this site was obtained by transforming the Lower Ribb gauge station (2002-2013) flow data using Area Ratio Method. The sediment load was derived based on the sediment concentration yield curve of Ambo site. Stream flow results showed that the Nash-Sutcliffe efficiency coefficient (NSE) was 0.81 and the coefficient of determination (R²) was 0.86 in calibration period (2004-2010) and, 0.74 and 0.77 in validation period (2011-2013), respectively. Using the same periods, the NS and R² for the sediment load calibration were 0.85 and 0.79 and, for the validation, it became 0.83 and 0.78, respectively. The simulated average daily flow rate and sediment yield generated from Ribb dam watershed were 3.38 m³/s and 1772.96 tons/km²/yr, respectively. The effective life of Ribb reservoir was estimated using the developed empirical methods of the Brune (1953), Churchill (1948) and Brown (1958) methods and found to be 30, 38 and 29 years respectively. To conclude, massive sediment comes from the steep slope agricultural areas, and approximately 98-100% of this incoming annual sediment loads have been trapped by the Ribb reservoir. In Ribb catchment, as well as reservoir systematic and thorough consideration of technical, social, environmental, and catchment managements and practices should be made to lengthen the useful life of Ribb reservoir. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=catchment" title="catchment">catchment</a>, <a href="https://publications.waset.org/abstracts/search?q=reservoir%20effective%20life" title=" reservoir effective life"> reservoir effective life</a>, <a href="https://publications.waset.org/abstracts/search?q=reservoir%20sedimentation" title=" reservoir sedimentation"> reservoir sedimentation</a>, <a href="https://publications.waset.org/abstracts/search?q=Ribb" title=" Ribb"> Ribb</a>, <a href="https://publications.waset.org/abstracts/search?q=sediment%20yield" title=" sediment yield"> sediment yield</a>, <a href="https://publications.waset.org/abstracts/search?q=SWAT%20model" title=" SWAT model"> SWAT model</a> </p> <a href="https://publications.waset.org/abstracts/111572/estimation-of-ribb-dam-catchment-sediment-yield-and-reservoir-effective-life-using-soil-and-water-assessment-tool-model-and-empirical-methods" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/111572.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">187</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=sediment%20delivery%20ratio&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=sediment%20delivery%20ratio&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=sediment%20delivery%20ratio&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=sediment%20delivery%20ratio&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=sediment%20delivery%20ratio&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=sediment%20delivery%20ratio&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=sediment%20delivery%20ratio&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=sediment%20delivery%20ratio&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=sediment%20delivery%20ratio&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=sediment%20delivery%20ratio&page=226">226</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=sediment%20delivery%20ratio&page=227">227</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=sediment%20delivery%20ratio&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>