CINXE.COM
Search results for: M. Anitha
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: M. Anitha</title> <meta name="description" content="Search results for: M. Anitha"> <meta name="keywords" content="M. Anitha"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="M. Anitha" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="M. Anitha"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 16</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: M. Anitha</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16</span> Active Learning Techniques in Engineering Education</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20M.%20Anitha">H. M. Anitha</a>, <a href="https://publications.waset.org/abstracts/search?q=Anusha%20N.%20Rao"> Anusha N. Rao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The current developments in technology and ideas have given entirely new dimensions to the field of research and education. New delivery methods are proposed which is an added feature to the engineering education. Particularly, more importance is given to new teaching practices such as Information and Communication Technologies (ICT). It is vital to adopt the new ICT methods which lead to the emergence of novel structure and mode of education. The flipped classroom, think pair share and peer instruction are the latest pedagogical methods which give students to learn the course. This involves students to watch video lectures outside the classroom and solve the problems at home. Students are engaged in group discussions in the classroom. These are the active learning methods wherein the students are involved diversely to learn the course. This paper gives a comprehensive study of past and present research which is going on with flipped classroom, thinks pair share activity and peer instruction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flipped%20classroom" title="flipped classroom">flipped classroom</a>, <a href="https://publications.waset.org/abstracts/search?q=think%20pair%20share" title=" think pair share"> think pair share</a>, <a href="https://publications.waset.org/abstracts/search?q=peer%20instruction" title=" peer instruction"> peer instruction</a>, <a href="https://publications.waset.org/abstracts/search?q=active%20learning" title=" active learning"> active learning</a> </p> <a href="https://publications.waset.org/abstracts/19317/active-learning-techniques-in-engineering-education" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19317.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">386</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15</span> Energy Efficient Routing Protocol with Ad Hoc On-Demand Distance Vector for MANET</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Thamizhmaran">K. Thamizhmaran</a>, <a href="https://publications.waset.org/abstracts/search?q=Akshaya%20Devi%20Arivazhagan"> Akshaya Devi Arivazhagan</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Anitha"> M. Anitha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> On the case of most important systematic issue that must need to be solved in means of implementing a data transmission algorithm on the source of Mobile adhoc networks (MANETs). That is, how to save mobile nodes energy on meeting the requirements of applications or users as the mobile nodes are with battery limited. On while satisfying the energy saving requirement, hence it is also necessary of need to achieve the quality of service. In case of emergency work, it is necessary to deliver the data on mean time. Achieving quality of service in MANETs is also important on while. In order to achieve this requirement, Hence, we further implement the Energy-Aware routing protocol for system of Mobile adhoc networks were it being proposed, that on which saves the energy as on every node by means of efficiently selecting the mode of energy efficient path in the routing process by means of Enhanced AODV routing protocol. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ad-Hoc%20networks" title="Ad-Hoc networks">Ad-Hoc networks</a>, <a href="https://publications.waset.org/abstracts/search?q=MANET" title=" MANET"> MANET</a>, <a href="https://publications.waset.org/abstracts/search?q=routing" title=" routing"> routing</a>, <a href="https://publications.waset.org/abstracts/search?q=AODV" title=" AODV"> AODV</a>, <a href="https://publications.waset.org/abstracts/search?q=EAODV" title=" EAODV"> EAODV</a> </p> <a href="https://publications.waset.org/abstracts/22293/energy-efficient-routing-protocol-with-ad-hoc-on-demand-distance-vector-for-manet" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22293.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">370</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14</span> Pudhaiyal: A Maze-Based Treasure Hunt Game for Tamil Words</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aarthy%20Anandan">Aarthy Anandan</a>, <a href="https://publications.waset.org/abstracts/search?q=Anitha%20Narasimhan"> Anitha Narasimhan</a>, <a href="https://publications.waset.org/abstracts/search?q=Madhan%20Karky"> Madhan Karky</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Word-based games are popular in helping people to improve their vocabulary skills. Games like ‘word search’ and crosswords provide a smart way of increasing vocabulary skills. Word search games are fun to play, but also educational which actually helps to learn a language. Finding the words from word search puzzle helps the player to remember words in an easier way, and it also helps to learn the spellings of words. In this paper, we present a tile distribution algorithm for a Maze-Based Treasure Hunt Game 'Pudhaiyal’ for Tamil words, which describes how words can be distributed horizontally, vertically or diagonally in a 10 x 10 grid. Along with the tile distribution algorithm, we also present an algorithm for the scoring model of the game. The proposed game has been tested with 20,000 Tamil words. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pudhaiyal" title="Pudhaiyal">Pudhaiyal</a>, <a href="https://publications.waset.org/abstracts/search?q=Tamil%20word%20game" title=" Tamil word game"> Tamil word game</a>, <a href="https://publications.waset.org/abstracts/search?q=word%20search" title=" word search"> word search</a>, <a href="https://publications.waset.org/abstracts/search?q=scoring" title=" scoring"> scoring</a>, <a href="https://publications.waset.org/abstracts/search?q=maze" title=" maze"> maze</a>, <a href="https://publications.waset.org/abstracts/search?q=algorithm" title=" algorithm"> algorithm</a> </p> <a href="https://publications.waset.org/abstracts/81334/pudhaiyal-a-maze-based-treasure-hunt-game-for-tamil-words" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81334.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">441</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13</span> Design Of High Sensitivity Transceiver for WSN</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Anitha">A. Anitha</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Aishwariya"> M. Aishwariya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The realization of truly ubiquitous wireless sensor networks (WSN) demands Ultra-low power wireless communication capability. Because the radio transceiver in a wireless sensor node consumes more power when compared to the computation part it is necessary to reduce the power consumption. Hence, a low power transceiver is designed and implemented in a 120 nm CMOS technology for wireless sensor nodes. The power consumption of the transceiver is reduced still by maintaining the sensitivity. The transceiver designed combines the blocks including differential oscillator, mixer, envelope detector, power amplifiers, and LNA. RF signal modulation and demodulation is carried by On-Off keying method at 2.4 GHz which is said as ISM band. The transmitter demonstrates an output power of 2.075 mW while consuming a supply voltage of range 1.2 V-5.0 V. Here the comparison of LNA and power amplifier is done to obtain an amplifier which produces a high gain of 1.608 dB at receiver which is suitable to produce a desired sensitivity. The multistage RF amplifier is used to improve the gain at the receiver side. The power dissipation of the circuit is in the range of 0.183-0.323 mW. The receiver achieves a sensitivity of about -95 dBm with data rate of 1 Mbps. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CMOS" title="CMOS">CMOS</a>, <a href="https://publications.waset.org/abstracts/search?q=envelope%20detector" title=" envelope detector"> envelope detector</a>, <a href="https://publications.waset.org/abstracts/search?q=ISM%20band" title=" ISM band"> ISM band</a>, <a href="https://publications.waset.org/abstracts/search?q=LNA" title=" LNA"> LNA</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20power%20electronics" title=" low power electronics"> low power electronics</a>, <a href="https://publications.waset.org/abstracts/search?q=PA" title=" PA"> PA</a>, <a href="https://publications.waset.org/abstracts/search?q=wireless%20transceiver" title=" wireless transceiver"> wireless transceiver</a> </p> <a href="https://publications.waset.org/abstracts/29995/design-of-high-sensitivity-transceiver-for-wsn" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29995.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">519</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12</span> Prevalence of Depression among Post Stroke Survivors in South Asian Region: A Systematic Review and Meta-Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Roseminu%20Varghese">Roseminu Varghese</a>, <a href="https://publications.waset.org/abstracts/search?q=Laveena%20Anitha%20Barboza"> Laveena Anitha Barboza</a>, <a href="https://publications.waset.org/abstracts/search?q=Jyothi%20Chakrabarty"> Jyothi Chakrabarty</a>, <a href="https://publications.waset.org/abstracts/search?q=Ravishankar"> Ravishankar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Depression among post-stroke survivors is prevalent, but it is unidentified. The purpose of this review was to determine the pooled prevalence of depression among post-stroke survivors in the South Asian region from all published health sciences research articles. The review also aimed to analyze the disparities in the prevalence of depression among the post-stroke survivors from different study locations. Data search to identify the relevant research articles published from 2005 to 2016 was done by using mesh terms and keywords in Web of Science, PubMed Medline, CINAHL, Scopus, J gate, IndMED databases. The final analysis comprised of 9 studies, including a population of 1,520 men and women. Meta-analysis was performed in STATA version 13.0. The overall pooled post-stroke depression prevalence was 0.46, 95% (CI), (0.3- 0.62). The prevalence rate in this systematic review is evident of depression among post-stroke survivors in the South Asian Region. Identifying the prevalence of post-stroke depression at an early stage is important to improve outcomes of the rehabilitative process of stroke survivors and for its early intervention. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=depression" title="depression">depression</a>, <a href="https://publications.waset.org/abstracts/search?q=post%20stroke%20survivors" title=" post stroke survivors"> post stroke survivors</a>, <a href="https://publications.waset.org/abstracts/search?q=prevalence" title=" prevalence"> prevalence</a>, <a href="https://publications.waset.org/abstracts/search?q=systematic%20review" title=" systematic review"> systematic review</a> </p> <a href="https://publications.waset.org/abstracts/118544/prevalence-of-depression-among-post-stroke-survivors-in-south-asian-region-a-systematic-review-and-meta-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/118544.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">158</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11</span> Aerodynamic Analysis of Dimple Effect on Aircraft Wing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=E.%20Livya">E. Livya</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Anitha"> G. Anitha</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Valli"> P. Valli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main objective of aircraft aerodynamics is to enhance the aerodynamic characteristics and maneuverability of the aircraft. This enhancement includes the reduction in drag and stall phenomenon. The airfoil which contains dimples will have comparatively less drag than the plain airfoil. Introducing dimples on the aircraft wing will create turbulence by creating vortices which delays the boundary layer separation resulting in decrease of pressure drag and also increase in the angle of stall. In addition, wake reduction leads to reduction in acoustic emission. The overall objective of this paper is to improve the aircraft maneuverability by delaying the flow separation point at stall and thereby reducing the drag by applying the dimple effect over the aircraft wing. This project includes both computational and experimental analysis of dimple effect on aircraft wing, using NACA 0018 airfoil. Dimple shapes of Semi-sphere, hexagon, cylinder, square are selected for the analysis; airfoil is tested under the inlet velocity of 30m/s at different angle of attack (5˚, 10˚, 15˚, 20˚, and 25˚). This analysis favours the dimple effect by increasing L/D ratio and thereby providing the maximum aerodynamic efficiency, which provides the enhanced performance for the aircraft. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=airfoil" title="airfoil">airfoil</a>, <a href="https://publications.waset.org/abstracts/search?q=dimple%20effect" title=" dimple effect"> dimple effect</a>, <a href="https://publications.waset.org/abstracts/search?q=turbulence" title=" turbulence"> turbulence</a>, <a href="https://publications.waset.org/abstracts/search?q=boundary%20layer%20separation" title=" boundary layer separation"> boundary layer separation</a> </p> <a href="https://publications.waset.org/abstracts/24631/aerodynamic-analysis-of-dimple-effect-on-aircraft-wing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24631.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">533</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10</span> Porul: Option Generation and Selection and Scoring Algorithms for a Tamil Flash Card Game</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anitha%20Narasimhan">Anitha Narasimhan</a>, <a href="https://publications.waset.org/abstracts/search?q=Aarthy%20Anandan"> Aarthy Anandan</a>, <a href="https://publications.waset.org/abstracts/search?q=Madhan%20Karky"> Madhan Karky</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20N.%20Subalalitha"> C. N. Subalalitha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Games can be the excellent tools for teaching a language. There are few e-learning games in Indian languages like word scrabble, cross word, quiz games etc., which were developed mainly for educational purposes. This paper proposes a Tamil word game called, “Porul”, which focuses on education as well as on players’ thinking and decision-making skills. Porul is a multiple choice based quiz game, in which the players attempt to answer questions correctly from the given multiple options that are generated using a unique algorithm called the Option Selection algorithm which explores the semantics of the question in various dimensions namely, synonym, rhyme and Universal Networking Language semantic category. This kind of semantic exploration of the question not only increases the complexity of the game but also makes it more interesting. The paper also proposes a Scoring Algorithm which allots a score based on the popularity score of the question word. The proposed game has been tested using 20,000 Tamil words. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Porul%20game" title="Porul game">Porul game</a>, <a href="https://publications.waset.org/abstracts/search?q=Tamil%20word%20game" title=" Tamil word game"> Tamil word game</a>, <a href="https://publications.waset.org/abstracts/search?q=option%20selection" title=" option selection"> option selection</a>, <a href="https://publications.waset.org/abstracts/search?q=flash%20card" title=" flash card"> flash card</a>, <a href="https://publications.waset.org/abstracts/search?q=scoring" title=" scoring"> scoring</a>, <a href="https://publications.waset.org/abstracts/search?q=algorithm" title=" algorithm"> algorithm</a> </p> <a href="https://publications.waset.org/abstracts/81359/porul-option-generation-and-selection-and-scoring-algorithms-for-a-tamil-flash-card-game" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81359.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">404</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> Imprecise Vowel Articulation in Down Syndrome: An Acoustic Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anitha%20Naittee%20Abraham">Anitha Naittee Abraham</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Sreedevi"> N. Sreedevi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Individuals with Down syndrome (DS) have relatively better expressive language compared to other individuals with intellectual disabilities. Reduced speech intelligibility is one of the major concerns of this group of individuals due to their anatomical and physiological differences. The study investigated the vowel articulation of Malayalam speaking children with DS in the age range of 5-10 years. The vowel production of 10 children with DS was compared with typically developing children in the same age range. Vowels were extracted from 3 words with the corner vowels /a/, /i/ and /u/ in the word-initial position, using Praat (version 5.3.23) software. Acoustic analysis was based on vowel space area (VSA), Formant centralization ration (FCR) and F2i/F2u. The findings revealed increased formant values for the control group except for F2a and F2u. Also, the experimental group had higher FCR, lower VSA, and F2i/F2u values suggestive of imprecise vowel articulation due to restricted tongue movements. The results of the independent t-test revealed a significant difference in F1a, F2i, F2u, VSA, FCR and F2i/F2u values between the experimental and control group. These findings support the fact that children with DS have imprecise vowel articulation that interferes with the overall speech intelligibility. Hence it is essential to target the oromotor skills to enhance the speech intelligibility which in turn benefit in the social and vocational domains of these individuals. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Down%20syndrome" title="Down syndrome">Down syndrome</a>, <a href="https://publications.waset.org/abstracts/search?q=FCR" title=" FCR"> FCR</a>, <a href="https://publications.waset.org/abstracts/search?q=vowel%20articulation" title=" vowel articulation"> vowel articulation</a>, <a href="https://publications.waset.org/abstracts/search?q=vowel%20space" title=" vowel space"> vowel space</a> </p> <a href="https://publications.waset.org/abstracts/99225/imprecise-vowel-articulation-in-down-syndrome-an-acoustic-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99225.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">186</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> Low Temperature PVP Capping Agent Synthesis of ZnO Nanoparticles by a Simple Chemical Precipitation Method and Their Properties</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=V.%20P.%20Muhamed%20Shajudheen">V. P. Muhamed Shajudheen</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Viswanathan"> K. Viswanathan</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Anitha%20Rani"> K. Anitha Rani</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Uma%20Maheswari"> A. Uma Maheswari</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Saravana%20Kumar"> S. Saravana Kumar </a> </p> <p class="card-text"><strong>Abstract:</strong></p> We are reporting a simple and low-cost chemical precipitation method adopted to prepare zinc oxide nanoparticles (ZnO) using polyvinyl pyrrolidone (PVP) as a capping agent. The Differential Scanning Calorimetry (DSC) and Thermo Gravimetric Analysis (TGA) was applied on the dried gel sample to record the phase transformation temperature of zinc hydroxide Zn(OH)2 to zinc oxide (ZnO) to obtain the annealing temperature of 800C. The thermal, structure, morphology and optical properties have been employed by different techniques such as DSC-TGA, X-Ray Diffraction (XRD), Fourier Transform Infra-Red spectroscopy (FTIR), Micro Raman spectroscopy, UV-Visible absorption spectroscopy (UV-Vis), Photoluminescence spectroscopy (PL) and Field Effect Scanning Electron Microscopy (FESEM). X-ray diffraction results confirmed the wurtzite hexagonal structure of ZnO nanoparticles. The two intensive peaks at 160 and 432 cm-1 in the Raman Spectrum are mainly attributed to the first order modes of the wurtzite ZnO nanoparticles. The energy band gap obtained from the UV-Vis absorption spectra, shows a blue shift, which is attributed to increase in carrier concentration (Burstein Moss Effect). Photoluminescence studies of the single crystalline ZnO nanoparticles, show a strong peak centered at 385 nm, corresponding to the near band edge emission in ultraviolet range. The mixed shape of grapes, sphere, hexagonal and rock like structure has been noticed in FESEM. The results showed that PVP is a suitable capping agent for the preparation of ZnO nanoparticles by simple chemical precipitation method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ZnO%20nanoparticles" title="ZnO nanoparticles">ZnO nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=simple%20chemical%20precipitation%20route" title=" simple chemical precipitation route"> simple chemical precipitation route</a>, <a href="https://publications.waset.org/abstracts/search?q=mixed%20shape%20morphology" title=" mixed shape morphology"> mixed shape morphology</a>, <a href="https://publications.waset.org/abstracts/search?q=UV-visible%20absorption" title=" UV-visible absorption"> UV-visible absorption</a>, <a href="https://publications.waset.org/abstracts/search?q=photoluminescence" title=" photoluminescence"> photoluminescence</a>, <a href="https://publications.waset.org/abstracts/search?q=Fourier%20transform%20infra-Red%20spectroscopy" title=" Fourier transform infra-Red spectroscopy "> Fourier transform infra-Red spectroscopy </a> </p> <a href="https://publications.waset.org/abstracts/47639/low-temperature-pvp-capping-agent-synthesis-of-zno-nanoparticles-by-a-simple-chemical-precipitation-method-and-their-properties" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47639.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">443</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> Fusion of Finger Inner Knuckle Print and Hand Geometry Features to Enhance the Performance of Biometric Verification System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20L.%20Anitha">M. L. Anitha</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20A.%20Radhakrishna%20Rao"> K. A. Radhakrishna Rao </a> </p> <p class="card-text"><strong>Abstract:</strong></p> With the advent of modern computing technology, there is an increased demand for developing recognition systems that have the capability of verifying the identity of individuals. Recognition systems are required by several civilian and commercial applications for providing access to secured resources. Traditional recognition systems which are based on physical identities are not sufficiently reliable to satisfy the security requirements due to the use of several advances of forgery and identity impersonation methods. Recognizing individuals based on his/her unique physiological characteristics known as biometric traits is a reliable technique, since these traits are not transferable and they cannot be stolen or lost. Since the performance of biometric based recognition system depends on the particular trait that is utilized, the present work proposes a fusion approach which combines Inner knuckle print (IKP) trait of the middle, ring and index fingers with the geometrical features of hand. The hand image captured from a digital camera is preprocessed to find finger IKP as region of interest (ROI) and hand geometry features. Geometrical features are represented as the distances between different key points and IKP features are extracted by applying local binary pattern descriptor on the IKP ROI. The decision level AND fusion was adopted, which has shown improvement in performance of the combined scheme. The proposed approach is tested on the database collected at our institute. Proposed approach is of significance since both hand geometry and IKP features can be extracted from the palm region of the hand. The fusion of these features yields a false acceptance rate of 0.75%, false rejection rate of 0.86% for verification tests conducted, which is less when compared to the results obtained using individual traits. The results obtained confirm the usefulness of proposed approach and suitability of the selected features for developing biometric based recognition system based on features from palmar region of hand. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biometrics" title="biometrics">biometrics</a>, <a href="https://publications.waset.org/abstracts/search?q=hand%20geometry%20features" title=" hand geometry features"> hand geometry features</a>, <a href="https://publications.waset.org/abstracts/search?q=inner%20knuckle%20print" title=" inner knuckle print"> inner knuckle print</a>, <a href="https://publications.waset.org/abstracts/search?q=recognition" title=" recognition"> recognition</a> </p> <a href="https://publications.waset.org/abstracts/55988/fusion-of-finger-inner-knuckle-print-and-hand-geometry-features-to-enhance-the-performance-of-biometric-verification-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55988.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">220</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> A Simple Chemical Precipitation Method of Titanium Dioxide Nanoparticles Using Polyvinyl Pyrrolidone as a Capping Agent and Their Characterization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=V.%20P.%20Muhamed%20Shajudheen">V. P. Muhamed Shajudheen</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Viswanathan"> K. Viswanathan</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Anitha%20Rani"> K. Anitha Rani</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Uma%20Maheswari"> A. Uma Maheswari</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Saravana%20Kumar"> S. Saravana Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a simple chemical precipitation route for the preparation of titanium dioxide nanoparticles, synthesized by using titanium tetra isopropoxide as a precursor and polyvinyl pyrrolidone (PVP) as a capping agent, is reported. The Differential Scanning Calorimetry (DSC) and Thermo Gravimetric Analysis (TGA) of the samples were recorded and the phase transformation temperature of titanium hydroxide, Ti(OH)<sub>4</sub> to titanium oxide, TiO<sub>2</sub> was investigated. The as-prepared Ti(OH)<sub>4</sub> precipitate was annealed at 800°C to obtain TiO<sub>2</sub> nanoparticles. The thermal, structural, morphological and textural characterizations of the TiO<sub>2</sub> nanoparticle samples were carried out by different techniques such as DSC-TGA, X-Ray Diffraction (XRD), Fourier Transform Infra-Red spectroscopy (FTIR), Micro Raman spectroscopy, UV-Visible absorption spectroscopy (UV-Vis), Photoluminescence spectroscopy (PL) and Field Effect Scanning Electron Microscopy (FESEM) techniques. The as-prepared precipitate was characterized using DSC-TGA and confirmed the mass loss of around 30%. XRD results exhibited no diffraction peaks attributable to anatase phase, for the reaction products, after the solvent removal. The results indicate that the product is purely rutile. The vibrational frequencies of two main absorption bands of prepared samples are discussed from the results of the FTIR analysis. The formation of nanosphere of diameter of the order of 10 nm, has been confirmed by FESEM. The optical band gap was found by using UV-Visible spectrum. From photoluminescence spectra, a strong emission was observed. The obtained results suggest that this method provides a simple, efficient and versatile technique for preparing TiO<sub>2</sub> nanoparticles and it has the potential to be applied to other systems for photocatalytic activity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=TiO2%20nanoparticles" title="TiO2 nanoparticles">TiO2 nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=chemical%20precipitation%20route" title=" chemical precipitation route"> chemical precipitation route</a>, <a href="https://publications.waset.org/abstracts/search?q=phase%20transition" title=" phase transition"> phase transition</a>, <a href="https://publications.waset.org/abstracts/search?q=Fourier%20Transform%20Infra-Red%20spectroscopy%20%28FTIR%29" title=" Fourier Transform Infra-Red spectroscopy (FTIR)"> Fourier Transform Infra-Red spectroscopy (FTIR)</a>, <a href="https://publications.waset.org/abstracts/search?q=micro-Raman%20spectroscopy" title=" micro-Raman spectroscopy"> micro-Raman spectroscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=UV-Visible%20absorption%20spectroscopy%20%28UV-Vis%29" title=" UV-Visible absorption spectroscopy (UV-Vis)"> UV-Visible absorption spectroscopy (UV-Vis)</a>, <a href="https://publications.waset.org/abstracts/search?q=Photoluminescence%20Spectroscopy%20%28PL%29%20and%20Field%20Effect%20Scanning%20electron%20microscopy%20%28FESEM%29" title=" Photoluminescence Spectroscopy (PL) and Field Effect Scanning electron microscopy (FESEM)"> Photoluminescence Spectroscopy (PL) and Field Effect Scanning electron microscopy (FESEM)</a> </p> <a href="https://publications.waset.org/abstracts/47692/a-simple-chemical-precipitation-method-of-titanium-dioxide-nanoparticles-using-polyvinyl-pyrrolidone-as-a-capping-agent-and-their-characterization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47692.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">322</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> Optical Characterization of Transition Metal Ion Doped ZnO Microspheres Synthesized via Laser Ablation in Air</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Parvathy%20Anitha">Parvathy Anitha</a>, <a href="https://publications.waset.org/abstracts/search?q=Nilesh%20J.%20Vasa"> Nilesh J. Vasa</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20S.%20Ramachandra%20Rao"> M. S. Ramachandra Rao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> ZnO is a semiconducting material with a direct wide band gap of 3.37 eV and a large exciton binding energy of 60 meV at room temperature. Microspheres with high sphericity and symmetry exhibit unique functionalities which makes them excellent omnidirectional optical resonators. Hence there is an advent interest in fabrication of single crystalline semiconductor microspheres especially magnetic ZnO microspheres, as ZnO is a promising material for semiconductor device applications. Also, ZnO is non-toxic and biocompatible, implying it is a potential material for biomedical applications. Room temperature Photoluminescence (PL) spectra of the fabricated ZnO microspheres were measured, at an excitation wavelength of 325 nm. The ultraviolet (UV) luminescence observed is attributed to the room-temperature free exciton related near-band-edge (NBE) emission in ZnO. Besides the NBE luminescence, weak and broad visible luminescence (~560nm) was also observed. This broad emission band in the visible range is associated with oxygen vacancies related to structural defects. In transition metal (TM) ion-doped ZnO, 3d levels emissions of TM ions will modify the inherent characteristic emissions of ZnO. A micron-sized ZnO crystal has generally a wurtzite structure with a natural hexagonal cross section, which will serve as a WGM (whispering gallery mode) lasing micro cavity due to its high refractive index (~2.2). But hexagonal cavities suffers more optical loss at their corners in comparison to spherical structures; hence spheres may be a better candidate to achieve effective light confinement. In our study, highly smooth spherical shaped micro particles with different diameters ranging from ~4 to 6 μm were grown on different substrates. SEM (Scanning Electron Microscopy) and AFM (Atomic Force Microscopy) images show the presence of uniform smooth surfaced spheres. Raman scattering measurements from the fabricated samples at 488 nm light excitation provide convincing supports for the wurtzite structure of the prepared ZnO microspheres. WGM lasing studies from TM-doped ZnO microparticles are in progress. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=laser%20ablation" title="laser ablation">laser ablation</a>, <a href="https://publications.waset.org/abstracts/search?q=microcavity" title=" microcavity"> microcavity</a>, <a href="https://publications.waset.org/abstracts/search?q=photoluminescence" title=" photoluminescence"> photoluminescence</a>, <a href="https://publications.waset.org/abstracts/search?q=ZnO%20microsphere" title=" ZnO microsphere"> ZnO microsphere</a> </p> <a href="https://publications.waset.org/abstracts/52451/optical-characterization-of-transition-metal-ion-doped-zno-microspheres-synthesized-via-laser-ablation-in-air" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52451.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">217</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> Phytochemical Composition, Antimicrobial Potential and Antioxidant Activity of Peganum harmala L. Extracts</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Narayana%20Bhat">Narayana Bhat</a>, <a href="https://publications.waset.org/abstracts/search?q=Majda%20Khalil"> Majda Khalil</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamad%20Al-Mansour"> Hamad Al-Mansour</a>, <a href="https://publications.waset.org/abstracts/search?q=Anitha%20Manuvel"> Anitha Manuvel</a>, <a href="https://publications.waset.org/abstracts/search?q=Vimla%20Yeddu"> Vimla Yeddu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this study was to assess the antimicrobial and antioxidant potential and phytochemical composition of Peganum harmala L. For this purpose, powdered shoot, root, and seed samples were extracted in an accelerated solvent extractor (ASE) with methanol, ethanol, acetone, and dichloromethane. The residues were reconstituted in the above solvents and 10% dimethyl sulphoxide (DMSO). The antimicrobial activity of these extracts was tested against two bacterial (Escherichia coli E49 and Staphylococcus aureus CCUG 43507) and two fungi Candida albicans ATCC 24433, Candida glabrata ATCC 15545) strains using the well-diffusion method. The minimum inhibitory concentration (MIC) and growth pattern of these test strains were determined using microbroth dilution method, and the phospholipase assay was performed to detect tissue damage in the host cells. Results revealed that ethanolic, methanolic, and dichloromethane extracts of seeds exhibited significant antimicrobial activities against all tested strains, whereas the acetone extract of seeds was effective against E. coli only. Similarly, ethanolic and methanolic extracts of roots were effective against two bacterial strains only. One sixth of percent (0.6%) yield of methanol extract of seeds was found to be the MIC for Escherichia coli E49, Staphylococcus aureus CCUG 43507, and Candida glabrata ATCC 15545. Overall, seed extracts had greater antimicrobial activities compared to roots and shoot extracts. The original plant extract and MIC dilutions prevented phospholipase secretion in Staphylococcus aureus CCUG 43507 and Candida albicans ATCC 24433. The 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging assay revealed radical scavenging activities ranging from 71.80 ± 4.36% to 87.75 ± 1.70%. The main compound present in the root extract was 1-methyl-7-methoxy-beta-carboline (RT: 44.171), followed by norlapachol (3.62%), benzopyrazine (2.20%), palmitic acid (2.12%) and vasicinone (1.96%). In contrast, phenol,4-ethenyl-2-methoxy was in abundance in the methonolic extract of the shoot, whereas 1-methyl-7-methoxy-beta-carboline (79.59%), linoleic acid (9.05%), delta-tocopherol (5.02%), 9,12-octadecadienoic acid, methyl ester (2.65%), benzene, 1,1-1,2 ethanediyl bis 3,4dimethyl (1.15%), anthraquinone (0.58%), hexadecanoic acid, methyl ester (0.54%), palmitic acid (0.35%) and methyl stearate (0.18%) were present in the methanol extract of seeds. Major findings of this study, along with their relevance to developing effective, safe drugs, will be discussed in this presentation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=medicinal%20plants" title="medicinal plants">medicinal plants</a>, <a href="https://publications.waset.org/abstracts/search?q=secondary%20metabolites" title=" secondary metabolites"> secondary metabolites</a>, <a href="https://publications.waset.org/abstracts/search?q=phytochemical%20screening" title=" phytochemical screening"> phytochemical screening</a>, <a href="https://publications.waset.org/abstracts/search?q=bioprospecting" title=" bioprospecting"> bioprospecting</a>, <a href="https://publications.waset.org/abstracts/search?q=radical%20scavenging" title=" radical scavenging"> radical scavenging</a> </p> <a href="https://publications.waset.org/abstracts/111955/phytochemical-composition-antimicrobial-potential-and-antioxidant-activity-of-peganum-harmala-l-extracts" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/111955.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">177</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> Safety Considerations of Furanics for Sustainable Applications in Advanced Biorefineries</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anitha%20Muralidhara">Anitha Muralidhara</a>, <a href="https://publications.waset.org/abstracts/search?q=Victor%20Engelen"> Victor Engelen</a>, <a href="https://publications.waset.org/abstracts/search?q=Christophe%20Len"> Christophe Len</a>, <a href="https://publications.waset.org/abstracts/search?q=Pascal%20Pandard"> Pascal Pandard</a>, <a href="https://publications.waset.org/abstracts/search?q=Guy%20Marlair"> Guy Marlair </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Production of bio-based chemicals and materials from lignocellulosic biomass is gaining tremendous importance in advanced bio-refineries while aiming towards progressive replacement of petroleum based chemicals in transportation fuels and commodity polymers. One such attempt has resulted in the production of key furan derivatives (FD) such as furfural, HMF, MMF etc., via acid catalyzed dehydration (ACD) of C6 and C5 sugars, which are further converted into key chemicals or intermediates (such as Furandicarboxylic acid, Furfuryl alcohol etc.,). In subsequent processes, many high potential FD are produced, that can be converted into high added value polymers or high energy density biofuels. During ACD, an unavoidable polyfuranic byproduct is generated which is called humins. The family of FD is very large with varying chemical structures and diverse physicochemical properties. Accordingly, the associated risk profiles may largely vary. Hazardous Material (Haz-mat) classification systems such as GHS (CLP in the EU) and the UN TDG Model Regulations for transport of dangerous goods are one of the preliminary requirements for all chemicals for their appropriate classification, labelling, packaging, safe storage, and transportation. Considering the growing application routes of FD, it becomes important to notice the limited access to safety related information (safety data sheets available only for famous compounds such as HMF, furfural etc.,) in these internationally recognized haz-mat classification systems. However, these classifications do not necessarily provide information about the extent of risk involved when the chemical is used in any specific application. Factors such as thermal stability, speed of combustion, chemical incompatibilities, etc., can equally influence the safety profile of a compound, that are clearly out of the scope of any haz-mat classification system. Irrespective of the bio-based origin, FD has so far received inconsistent remarks concerning their toxicity profiles. With such inconsistencies, there is a fear that, a large family of FD may also follow extreme judgmental scenarios like ionic liquids, by ranking some compounds as extremely thermally stable, non-flammable, etc., Unless clarified, these messages could lead to misleading judgements while ranking the chemical based on its hazard rating. Safety is a key aspect in any sustainable biorefinery operation/facility, which is often underscored or neglected. To fill up these existing data gaps and to address ambiguities and discrepancies, the current study focuses on giving preliminary insights on safety assessment of FD and their potential targeted by-products. With the available information in the literature and obtained experimental results, physicochemical safety, environmental safety as well as (a scenario based) fire safety profiles of key FD, as well as side streams such as humins and levulinic acid, will be considered. With this, the study focuses on defining patterns and trends that gives coherent safety related information for existing and newly synthesized FD in the market for better functionality and sustainable applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=furanics" title="furanics">furanics</a>, <a href="https://publications.waset.org/abstracts/search?q=humins" title=" humins"> humins</a>, <a href="https://publications.waset.org/abstracts/search?q=safety" title=" safety"> safety</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20and%20fire%20hazard" title=" thermal and fire hazard"> thermal and fire hazard</a>, <a href="https://publications.waset.org/abstracts/search?q=toxicity" title=" toxicity"> toxicity</a> </p> <a href="https://publications.waset.org/abstracts/78781/safety-considerations-of-furanics-for-sustainable-applications-in-advanced-biorefineries" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78781.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">166</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> Synthesis, Growth, Characterization and Quantum Chemical Investigations of an Organic Single Crystal: 2-Amino- 4-Methylpyridinium Quinoline- 2-Carboxylate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anitha%20Kandasamy">Anitha Kandasamy</a>, <a href="https://publications.waset.org/abstracts/search?q=Thirumurugan%20Ramaiah"> Thirumurugan Ramaiah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Interestingly, organic materials exhibit large optical nonlinearity with quick responses and having the flexibility of molecular tailoring using computational modelling and favourable synthetic methodologies. Pyridine based organic compounds and carboxylic acid contained aromatic compounds play a crucial role in crystal engineering of NCS complexes that displays admirable optical nonlinearity with fast response and favourable physicochemical properties such as low dielectric constant, wide optical transparency and large laser damage threshold value requires for optoelectronics device applications. Based on these facts, it was projected to form an acentric molecule of π-conjugated system interaction with appropriately replaced electron donor and acceptor groups for achieving higher SHG activity in which quinoline-2-carboyxlic acid is chosen as an electron acceptor and capable of acting as an acid as well as a base molecule, while 2-amino-4-methylpyridine is used as an electron donor and previously employed in numerous proton transfer complexes for synthesis of NLO materials for optoelectronic applications. 2-amino-4-mehtylpyridinium quinoline-2-carboxylate molecular complex (2AQ) is having π-donor-acceptor groups in which 2-amino-4-methylpyridine donates one of its electron to quinoline -2-carboxylic acid thereby forming a protonated 2-amino-4-methyl pyridinium moiety and mono ionized quinoline-2-carboxylate moiety which are connected via N-H…O intermolecular interactions with non-centrosymmetric crystal packing arrangement at microscopic scale is accountable to the enhancement of macroscopic second order NLO activity. The 2AQ crystal was successfully grown by a slow evaporation solution growth technique and its structure was determined in orthorhombic crystal system with acentric, P212121, space group. Hirshfeld surface analysis reveals that O…H intermolecular interactions primarily contributed with 31.0 % to the structural stabilization of 2AQ. The molecular structure of title compound has been confirmed by 1H and 13C NMR spectral studies. The vibrational modes of functional groups present in 2AQ have been assigned by using FTIR and FT-Raman spectroscopy. The grown 2AQ crystal exhibits high optical transparency with lower cut-off wavelength (275 nm) within the region of 275-1500 nm. The laser study confirmed that 2AQ exhibits high SHG efficiency of 12.6 times greater than that of KDP. TGA-DTA analysis revealed that 2AQ crystal had a thermal stability of 223 °C. The low dielectric constant and low dielectric loss at higher frequencies confirmed good crystalline nature with fewer defects of grown 2AQ crystal. The grown crystal exhibits soft material and positive photoconduction behaviour. Mulliken atomic distribution and FMOs analysis suggested that the strong intermolecular hydrogen bonding which lead to the enhancement of NLO activity. These properties suggest that 2AQ crystal is a suitable material for optoelectronic and laser frequency conversion applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=crystal%20growth" title="crystal growth">crystal growth</a>, <a href="https://publications.waset.org/abstracts/search?q=NLO%20activity" title=" NLO activity"> NLO activity</a>, <a href="https://publications.waset.org/abstracts/search?q=proton%20transfer%20complex" title=" proton transfer complex"> proton transfer complex</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20chemical%20investigation" title=" quantum chemical investigation"> quantum chemical investigation</a> </p> <a href="https://publications.waset.org/abstracts/119837/synthesis-growth-characterization-and-quantum-chemical-investigations-of-an-organic-single-crystal-2-amino-4-methylpyridinium-quinoline-2-carboxylate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/119837.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">122</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1</span> Smart Laboratory for Clean Rivers in India - An Indo-Danish Collaboration</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nikhilesh%20Singh">Nikhilesh Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Shishir%20Gaur"> Shishir Gaur</a>, <a href="https://publications.waset.org/abstracts/search?q=Anitha%20K.%20Sharma"> Anitha K. Sharma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Climate change and anthropogenic stress have severely affected ecosystems all over the globe. Indian rivers are under immense pressure, facing challenges like pollution, encroachment, extreme fluctuation in the flow regime, local ignorance and lack of coordination between stakeholders. To counter all these issues a holistic river rejuvenation plan is needed that tests, innovates and implements sustainable solutions in the river space for sustainable river management. Smart Laboratory for Clean Rivers (SLCR) an Indo-Danish collaboration project, provides a living lab setup that brings all the stakeholders (government agencies, academic and industrial partners and locals) together to engage, learn, co-creating and experiment for a clean and sustainable river that last for ages. Just like every mega project requires piloting, SLCR has opted for a small catchment of the Varuna River, located in the Middle Ganga Basin in India. Considering the integrated approach of river rejuvenation, SLCR embraces various techniques and upgrades for rejuvenation. Likely, maintaining flow in the channel in the lean period, Managed Aquifer Recharge (MAR) is a proven technology. In SLCR, Floa-TEM high-resolution lithological data is used in MAR models to have better decision-making for MAR structures nearby of the river to enhance the river aquifer exchanges. Furthermore, the concerns of quality in the river are a big issue. A city like Varanasi which is located in the last stretch of the river, generates almost 260 MLD of domestic waste in the catchment. The existing STP system is working at full efficiency. Instead of installing a new STP for the future, SLCR is upgrading those STPs with an IoT-based system that optimizes according to the nutrient load and energy consumption. SLCR also advocate nature-based solutions like a reed bed for the drains having less flow. In search of micropollutants, SLCR uses fingerprint analysis involves employing advanced techniques like chromatography and mass spectrometry to create unique chemical profiles. However, rejuvenation attempts cannot be possible without involving the entire catchment. A holistic water management plan that includes storm management, water harvesting structure to efficiently manage the flow of water in the catchment and installation of several buffer zones to restrict pollutants entering into the river. Similarly, carbon (emission and sequestration) is also an important parameter for the catchment. By adopting eco-friendly practices, a ripple effect positively influences the catchment's water dynamics and aids in the revival of river systems. SLCR has adopted 4 villages to make them carbon-neutral and water-positive. Moreover, for the 24×7 monitoring of the river and the catchment, robust IoT devices are going to be installed to observe, river and groundwater quality, groundwater level, river discharge and carbon emission in the catchment and ultimately provide fuel for the data analytics. In its completion, SLCR will provide a river restoration manual, which will strategise the detailed plan and way of implementation for stakeholders. Lastly, the entire process is planned in such a way that will be managed by local administrations and stakeholders equipped with capacity-building activity. This holistic approach makes SLCR unique in the field of river rejuvenation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sustainable%20management" title="sustainable management">sustainable management</a>, <a href="https://publications.waset.org/abstracts/search?q=holistic%20approach" title=" holistic approach"> holistic approach</a>, <a href="https://publications.waset.org/abstracts/search?q=living%20lab" title=" living lab"> living lab</a>, <a href="https://publications.waset.org/abstracts/search?q=integrated%20river%20management" title=" integrated river management"> integrated river management</a> </p> <a href="https://publications.waset.org/abstracts/182283/smart-laboratory-for-clean-rivers-in-india-an-indo-danish-collaboration" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/182283.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">60</span> </span> </div> </div> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>