CINXE.COM
Review of Synthetic and Hybrid Scaffolds in Cartilage Tissue Engineering
<!DOCTYPE html> <html lang="en" xmlns:og="http://ogp.me/ns#" xmlns:fb="https://www.facebook.com/2008/fbml"> <head> <meta charset="utf-8"> <meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1"> <meta content="mdpi" name="sso-service" /> <meta content="width=device-width, initial-scale=1.0" name="viewport" /> <title>Review of Synthetic and Hybrid Scaffolds in Cartilage Tissue Engineering</title><link rel="stylesheet" href="https://pub.mdpi-res.com/assets/css/font-awesome.min.css?eb190a3a77e5e1ee?1732615622"> <link rel="stylesheet" href="https://pub.mdpi-res.com/assets/css/jquery.multiselect.css?f56c135cbf4d1483?1732615622"> <link rel="stylesheet" href="https://pub.mdpi-res.com/assets/css/chosen.min.css?d7ca5ca9441ef9e1?1732615622"> <link rel="stylesheet" href="https://pub.mdpi-res.com/assets/css/main2.css?69b39374e6b554b7?1732615622"> <link rel="mask-icon" href="https://pub.mdpi-res.com/img/mask-icon-128.svg?c1c7eca266cd7013?1732615622" color="#4f5671"> <link rel="apple-touch-icon" sizes="180x180" href="https://pub.mdpi-res.com/icon/apple-touch-icon-180x180.png?1732615622"> <link rel="apple-touch-icon" sizes="152x152" href="https://pub.mdpi-res.com/icon/apple-touch-icon-152x152.png?1732615622"> <link rel="apple-touch-icon" sizes="144x144" href="https://pub.mdpi-res.com/icon/apple-touch-icon-144x144.png?1732615622"> <link rel="apple-touch-icon" sizes="120x120" href="https://pub.mdpi-res.com/icon/apple-touch-icon-120x120.png?1732615622"> <link rel="apple-touch-icon" sizes="114x114" href="https://pub.mdpi-res.com/icon/apple-touch-icon-114x114.png?1732615622"> <link rel="apple-touch-icon" sizes="76x76" href="https://pub.mdpi-res.com/icon/apple-touch-icon-76x76.png?1732615622"> <link rel="apple-touch-icon" sizes="72x72" href="https://pub.mdpi-res.com/icon/apple-touch-icon-72x72.png?1732615622"> <link rel="apple-touch-icon" sizes="57x57" href="https://pub.mdpi-res.com/icon/apple-touch-icon-57x57.png?1732615622"> <link rel="apple-touch-icon" href="https://pub.mdpi-res.com/icon/apple-touch-icon-57x57.png?1732615622"> <link rel="apple-touch-icon-precomposed" href="https://pub.mdpi-res.com/icon/apple-touch-icon-57x57.png?1732615622"> <link rel="manifest" href="/manifest.json"> <meta name="theme-color" content="#ffffff"> <meta name="application-name" content=" "/> <link rel="apple-touch-startup-image" href="https://pub.mdpi-res.com/img/journals/membranes-logo-sq.png?8600e93ff98dbf14"> <link rel="apple-touch-icon" href="https://pub.mdpi-res.com/img/journals/membranes-logo-sq.png?8600e93ff98dbf14"> <meta name="msapplication-TileImage" content="https://pub.mdpi-res.com/img/journals/membranes-logo-sq.png?8600e93ff98dbf14"> <link rel="stylesheet" href="https://pub.mdpi-res.com/assets/css/jquery-ui-1.10.4.custom.min.css?80647d88647bf347?1732615622"> <link rel="stylesheet" href="https://pub.mdpi-res.com/assets/css/magnific-popup.min.css?04d343e036f8eecd?1732615622"> <link rel="stylesheet" href="https://pub.mdpi-res.com/assets/css/xml2html/article-html.css?230b005b39af4260?1732615622"> <style> h2, #abstract .related_suggestion_title { } .batch_articles a { color: #000; } a, .batch_articles .authors a, a:focus, a:hover, a:active, .batch_articles a:focus, .batch_articles a:hover, li.side-menu-li a { } span.label a { color: #fff; } #main-content a.title-link:hover, #main-content a.title-link:focus, #main-content div.generic-item a.title-link:hover, #main-content div.generic-item a.title-link:focus { } #main-content #middle-column .generic-item.article-item a.title-link:hover, #main-content #middle-column .generic-item.article-item a.title-link:focus { } .art-authors a.toEncode { color: #333; font-weight: 700; } #main-content #middle-column ul li::before { } .accordion-navigation.active a.accordion__title, .accordion-navigation.active a.accordion__title::after { } .accordion-navigation li:hover::before, .accordion-navigation li:hover a, .accordion-navigation li:focus a { } .relative-size-container .relative-size-image .relative-size { } .middle-column__help__fixed a:hover i, } input[type="checkbox"]:checked:after { } input[type="checkbox"]:not(:disabled):hover:before { } #main-content .bolded-text { } #main-content .hypothesis-count-container { } #main-content .hypothesis-count-container:before { } .full-size-menu ul li.menu-item .dropdown-wrapper { } .full-size-menu ul li.menu-item > a.open::after { } #title-story .title-story-orbit .orbit-caption { #background: url('/img/design/000000_background.png') !important; background: url('/img/design/ffffff_background.png') !important; color: rgb(51, 51, 51) !important; } #main-content .content__container__orbit { background-color: #000 !important; } #main-content .content__container__journal { color: #fff; } .html-article-menu .row span { } .html-article-menu .row span.active { } .accordion-navigation__journal .side-menu-li.active::before, .accordion-navigation__journal .side-menu-li.active a { color: rgba(127,50,7,0.75) !important; font-weight: 700; } .accordion-navigation__journal .side-menu-li:hover::before , .accordion-navigation__journal .side-menu-li:hover a { color: rgba(127,50,7,0.75) !important; } .side-menu-ul li.active a, .side-menu-ul li.active, .side-menu-ul li.active::before { color: rgba(127,50,7,0.75) !important; } .side-menu-ul li.active a { } .result-selected, .active-result.highlighted, .active-result:hover, .result-selected, .active-result.highlighted, .active-result:focus { } .search-container.search-container__default-scheme { } nav.tab-bar .open-small-search.active:after { } .search-container.search-container__default-scheme .custom-accordion-for-small-screen-link::after { color: #fff; } @media only screen and (max-width: 50em) { #main-content .content__container.journal-info { color: #fff; } #main-content .content__container.journal-info a { color: #fff; } } .button.button--color { } .button.button--color:hover, .button.button--color:focus { } .button.button--color-journal { position: relative; background-color: rgba(127,50,7,0.75); border-color: #fff; color: #fff !important; } .button.button--color-journal:hover::before { content: ''; position: absolute; top: 0; left: 0; height: 100%; width: 100%; background-color: #ffffff; opacity: 0.2; } .button.button--color-journal:visited, .button.button--color-journal:hover, .button.button--color-journal:focus { background-color: rgba(127,50,7,0.75); border-color: #fff; color: #fff !important; } .button.button--color path { } .button.button--color:hover path { fill: #fff; } #main-content #search-refinements .ui-slider-horizontal .ui-slider-range { } .breadcrumb__element:last-of-type a { } #main-header { } #full-size-menu .top-bar, #full-size-menu li.menu-item span.user-email { } .top-bar-section li:not(.has-form) a:not(.button) { } #full-size-menu li.menu-item .dropdown-wrapper li a:hover { } #full-size-menu li.menu-item a:hover, #full-size-menu li.menu.item a:focus, nav.tab-bar a:hover { } #full-size-menu li.menu.item a:active, #full-size-menu li.menu.item a.active { } #full-size-menu li.menu-item a.open-mega-menu.active, #full-size-menu li.menu-item div.mega-menu, a.open-mega-menu.active { } #full-size-menu li.menu-item div.mega-menu li, #full-size-menu li.menu-item div.mega-menu a { border-color: #9a9a9a; } div.type-section h2 { font-size: 20px; line-height: 26px; font-weight: 300; } div.type-section h3 { margin-left: 15px; margin-bottom: 0px; font-weight: 300; } .journal-tabs .tab-title.active a { } </style> <link rel="stylesheet" href="https://pub.mdpi-res.com/assets/css/slick.css?f38b2db10e01b157?1732615622"> <meta name="title" content="Review of Synthetic and Hybrid Scaffolds in Cartilage Tissue Engineering"> <meta name="description" content="Cartilage tissue is under extensive investigation in tissue engineering and regenerative medicine studies because of its limited regenerative potential. Currently, many scaffolds are undergoing scientific and clinical research. A key for appropriate scaffolding is the assurance of a temporary cellular environment that allows the cells to function as in native tissue. These scaffolds should meet the relevant requirements, including appropriate architecture and physicochemical and biological properties. This is necessary for proper cell growth, which is associated with the adequate regeneration of cartilage. This paper presents a review of the development of scaffolds from synthetic polymers and hybrid materials employed for the engineering of cartilage tissue and regenerative medicine. Initially, general information on articular cartilage and an overview of the clinical strategies for the treatment of cartilage defects are presented. Then, the requirements for scaffolds in regenerative medicine, materials intended for membranes, and methods for obtaining them are briefly described. We also describe the hybrid materials that combine the advantages of both synthetic and natural polymers, which provide better properties for the scaffold. The last part of the article is focused on scaffolds in cartilage tissue engineering that have been confirmed by undergoing preclinical and clinical tests." > <link rel="image_src" href="https://pub.mdpi-res.com/img/journals/membranes-logo.png?8600e93ff98dbf14" > <meta name="dc.title" content="Review of Synthetic and Hybrid Scaffolds in Cartilage Tissue Engineering"> <meta name="dc.creator" content="Monika Wasyłeczko"> <meta name="dc.creator" content="Wioleta Sikorska"> <meta name="dc.creator" content="Andrzej Chwojnowski"> <meta name="dc.type" content="Review"> <meta name="dc.source" content="Membranes 2020, Vol. 10, Page 348"> <meta name="dc.date" content="2020-11-17"> <meta name ="dc.identifier" content="10.3390/membranes10110348"> <meta name="dc.publisher" content="Multidisciplinary Digital Publishing Institute"> <meta name="dc.rights" content="http://creativecommons.org/licenses/by/3.0/"> <meta name="dc.format" content="application/pdf" > <meta name="dc.language" content="en" > <meta name="dc.description" content="Cartilage tissue is under extensive investigation in tissue engineering and regenerative medicine studies because of its limited regenerative potential. Currently, many scaffolds are undergoing scientific and clinical research. A key for appropriate scaffolding is the assurance of a temporary cellular environment that allows the cells to function as in native tissue. These scaffolds should meet the relevant requirements, including appropriate architecture and physicochemical and biological properties. This is necessary for proper cell growth, which is associated with the adequate regeneration of cartilage. This paper presents a review of the development of scaffolds from synthetic polymers and hybrid materials employed for the engineering of cartilage tissue and regenerative medicine. Initially, general information on articular cartilage and an overview of the clinical strategies for the treatment of cartilage defects are presented. Then, the requirements for scaffolds in regenerative medicine, materials intended for membranes, and methods for obtaining them are briefly described. We also describe the hybrid materials that combine the advantages of both synthetic and natural polymers, which provide better properties for the scaffold. The last part of the article is focused on scaffolds in cartilage tissue engineering that have been confirmed by undergoing preclinical and clinical tests." > <meta name="dc.subject" content="cartilage tissue engineering" > <meta name="dc.subject" content="articular cartilage" > <meta name="dc.subject" content="scaffolds" > <meta name="dc.subject" content="scaffold obtaining methods" > <meta name="dc.subject" content="materials for scaffolds" > <meta name="dc.subject" content="scaffold requirements" > <meta name="dc.subject" content="synthetic and hybrid scaffolds" > <meta name="dc.subject" content="chondrocytes" > <meta name="dc.subject" content="mesenchymal stem cells" > <meta name="dc.subject" content="tissue engineering" > <meta name="dc.subject" content="regenerative medicine" > <meta name ="prism.issn" content="2077-0375"> <meta name ="prism.publicationName" content="Membranes"> <meta name ="prism.publicationDate" content="2020-11-17"> <meta name ="prism.volume" content="10"> <meta name ="prism.number" content="11"> <meta name ="prism.section" content="Review" > <meta name ="prism.startingPage" content="348" > <meta name="citation_issn" content="2077-0375"> <meta name="citation_journal_title" content="Membranes"> <meta name="citation_publisher" content="Multidisciplinary Digital Publishing Institute"> <meta name="citation_title" content="Review of Synthetic and Hybrid Scaffolds in Cartilage Tissue Engineering"> <meta name="citation_publication_date" content="2020/11"> <meta name="citation_online_date" content="2020/11/17"> <meta name="citation_volume" content="10"> <meta name="citation_issue" content="11"> <meta name="citation_firstpage" content="348"> <meta name="citation_author" content="Wasyłeczko, Monika"> <meta name="citation_author" content="Sikorska, Wioleta"> <meta name="citation_author" content="Chwojnowski, Andrzej"> <meta name="citation_doi" content="10.3390/membranes10110348"> <meta name="citation_id" content="mdpi-membranes10110348"> <meta name="citation_abstract_html_url" content="https://www.mdpi.com/2077-0375/10/11/348"> <meta name="citation_pdf_url" content="https://www.mdpi.com/2077-0375/10/11/348/pdf?version=1605697637"> <link rel="alternate" type="application/pdf" title="PDF Full-Text" href="https://www.mdpi.com/2077-0375/10/11/348/pdf?version=1605697637"> <meta name="fulltext_pdf" content="https://www.mdpi.com/2077-0375/10/11/348/pdf?version=1605697637"> <meta name="citation_fulltext_html_url" content="https://www.mdpi.com/2077-0375/10/11/348/htm"> <link rel="alternate" type="text/html" title="HTML Full-Text" href="https://www.mdpi.com/2077-0375/10/11/348/htm"> <meta name="fulltext_html" content="https://www.mdpi.com/2077-0375/10/11/348/htm"> <link rel="alternate" type="text/xml" title="XML Full-Text" href="https://www.mdpi.com/2077-0375/10/11/348/xml"> <meta name="fulltext_xml" content="https://www.mdpi.com/2077-0375/10/11/348/xml"> <meta name="citation_xml_url" content="https://www.mdpi.com/2077-0375/10/11/348/xml"> <meta name="twitter:card" content="summary" /> <meta name="twitter:site" content="@MDPIOpenAccess" /> <meta name="twitter:image" content="https://pub.mdpi-res.com/img/journals/membranes-logo-social.png?8600e93ff98dbf14" /> <meta property="fb:app_id" content="131189377574"/> <meta property="og:site_name" content="MDPI"/> <meta property="og:type" content="article"/> <meta property="og:url" content="https://www.mdpi.com/2077-0375/10/11/348" /> <meta property="og:title" content="Review of Synthetic and Hybrid Scaffolds in Cartilage Tissue Engineering" /> <meta property="og:description" content="Cartilage tissue is under extensive investigation in tissue engineering and regenerative medicine studies because of its limited regenerative potential. Currently, many scaffolds are undergoing scientific and clinical research. A key for appropriate scaffolding is the assurance of a temporary cellular environment that allows the cells to function as in native tissue. These scaffolds should meet the relevant requirements, including appropriate architecture and physicochemical and biological properties. This is necessary for proper cell growth, which is associated with the adequate regeneration of cartilage. This paper presents a review of the development of scaffolds from synthetic polymers and hybrid materials employed for the engineering of cartilage tissue and regenerative medicine. Initially, general information on articular cartilage and an overview of the clinical strategies for the treatment of cartilage defects are presented. Then, the requirements for scaffolds in regenerative medicine, materials intended for membranes, and methods for obtaining them are briefly described. We also describe the hybrid materials that combine the advantages of both synthetic and natural polymers, which provide better properties for the scaffold. The last part of the article is focused on scaffolds in cartilage tissue engineering that have been confirmed by undergoing preclinical and clinical tests." /> <meta property="og:image" content="https://pub.mdpi-res.com/membranes/membranes-10-00348/article_deploy/html/images/membranes-10-00348-ag-550.jpg?1607090314" /> <link rel="alternate" type="application/rss+xml" title="MDPI Publishing - Latest articles" href="https://www.mdpi.com/rss"> <meta name="google-site-verification" content="PxTlsg7z2S00aHroktQd57fxygEjMiNHydKn3txhvwY"> <meta name="facebook-domain-verification" content="mcoq8dtq6sb2hf7z29j8w515jjoof7" /> <script id="Cookiebot" data-cfasync="false" src="https://consent.cookiebot.com/uc.js" data-cbid="51491ddd-fe7a-4425-ab39-69c78c55829f" type="text/javascript" async></script> <!--[if lt IE 9]> <script>var browserIe8 = true;</script> <link rel="stylesheet" href="https://pub.mdpi-res.com/assets/css/ie8foundationfix.css?50273beac949cbf0?1732615622"> <script src="//html5shiv.googlecode.com/svn/trunk/html5.js"></script> <script src="//cdnjs.cloudflare.com/ajax/libs/html5shiv/3.6.2/html5shiv.js"></script> <script src="//s3.amazonaws.com/nwapi/nwmatcher/nwmatcher-1.2.5-min.js"></script> <script src="//html5base.googlecode.com/svn-history/r38/trunk/js/selectivizr-1.0.3b.js"></script> <script src="//cdnjs.cloudflare.com/ajax/libs/respond.js/1.1.0/respond.min.js"></script> <script src="https://pub.mdpi-res.com/assets/js/ie8/ie8patch.js?9e1d3c689a0471df?1732615622"></script> <script src="https://pub.mdpi-res.com/assets/js/ie8/rem.min.js?94b62787dcd6d2f2?1732615622"></script> <![endif]--> <script type="text/plain" data-cookieconsent="statistics"> (function(w,d,s,l,i){w[l]=w[l]||[];w[l].push({'gtm.start': new Date().getTime(),event:'gtm.js'});var f=d.getElementsByTagName(s)[0], j=d.createElement(s),dl=l!='dataLayer'?'&l='+l:'';j.async=true;j.src= 'https://www.googletagmanager.com/gtm.js?id='+i+dl;f.parentNode.insertBefore(j,f); })(window,document,'script','dataLayer','GTM-WPK7SW5'); </script> <script type="text/plain" data-cookieconsent="statistics"> _linkedin_partner_id = "2846186"; window._linkedin_data_partner_ids = window._linkedin_data_partner_ids || []; window._linkedin_data_partner_ids.push(_linkedin_partner_id); </script><script type="text/javascript"> (function(){var s = document.getElementsByTagName("script")[0]; var b = document.createElement("script"); b.type = "text/javascript";b.async = true; b.src = "https://snap.licdn.com/li.lms-analytics/insight.min.js"; s.parentNode.insertBefore(b, s);})(); </script> <script type="text/plain" data-cookieconsent="statistics" data-cfasync="false" src="//script.crazyegg.com/pages/scripts/0116/4951.js" async="async" ></script> </head> <body> <div class="direction direction_right" id="small_right" style="border-right-width: 0px; padding:0;"> <i class="fa fa-caret-right fa-2x"></i> </div> <div class="big_direction direction_right" id="big_right" style="border-right-width: 0px;"> <div style="text-align: right;"> Next Article in Journal<br> <div><a href="/2077-0375/10/11/349">Application of Crosslinked Polybenzimidazole-Poly(Vinyl Benzyl Chloride) Anion Exchange Membranes in Direct Ethanol Fuel Cells</a></div> Next Article in Special Issue<br> <div><a href="/2077-0375/11/2/112">PLGA Multiplex Membrane Platform for Disease Modelling and Testing of Therapeutic Compounds</a></div> </div> </div> <div class="direction" id="small_left" style="border-left-width: 0px"> <i class="fa fa-caret-left fa-2x"></i> </div> <div class="big_direction" id="big_left" style="border-left-width: 0px;"> <div> Previous Article in Journal<br> <div><a href="/2077-0375/10/11/347">Desalination Performance Assessment of Scalable, Multi-Stack Ready Shock Electrodialysis Unit Utilizing Anion-Exchange Membranes</a></div> Previous Article in Special Issue<br> <div><a href="/2077-0375/10/11/330">Development of Porous and Flexible PTMC Membranes for In Vitro Organ Models Fabricated by Evaporation-Induced Phase Separation</a></div> </div> </div> <div style="clear: both;"></div> <div id="menuModal" class="reveal-modal reveal-modal-new reveal-modal-menu" aria-hidden="true" data-reveal role="dialog"> <div class="menu-container"> <div class="UI_NavMenu"> <div class="content__container " > <div class="custom-accordion-for-small-screen-link " > <h2>Journals</h2> </div> <div class="target-item custom-accordion-for-small-screen-content show-for-medium-up"> <div class="menu-container__links"> <div style="width: 100%; float: left;"> <a href="/about/journals">Active Journals</a> <a href="/about/journalfinder">Find a Journal</a> <a href="/about/journals/proposal">Journal Proposal</a> <a href="/about/proceedings">Proceedings Series</a> </div> </div> </div> </div> <a href="/topics"> <h2>Topics</h2> </a> <div class="content__container " > <div class="custom-accordion-for-small-screen-link " > <h2>Information</h2> </div> <div class="target-item custom-accordion-for-small-screen-content show-for-medium-up"> <div class="menu-container__links"> <div style="width: 100%; max-width: 200px; float: left;"> <a href="/authors">For Authors</a> <a href="/reviewers">For Reviewers</a> <a href="/editors">For Editors</a> <a href="/librarians">For Librarians</a> <a href="/publishing_services">For Publishers</a> <a href="/societies">For Societies</a> <a href="/conference_organizers">For Conference Organizers</a> </div> <div style="width: 100%; max-width: 250px; float: left;"> <a href="/openaccess">Open Access Policy</a> <a href="/ioap">Institutional Open Access Program</a> <a href="/special_issues_guidelines">Special Issues Guidelines</a> <a href="/editorial_process">Editorial Process</a> <a href="/ethics">Research and Publication Ethics</a> <a href="/apc">Article Processing Charges</a> <a href="/awards">Awards</a> <a href="/testimonials">Testimonials</a> </div> </div> </div> </div> <a href="/authors/english"> <h2>Editing Services</h2> </a> <div class="content__container " > <div class="custom-accordion-for-small-screen-link " > <h2>Initiatives</h2> </div> <div class="target-item custom-accordion-for-small-screen-content show-for-medium-up"> <div class="menu-container__links"> <div style="width: 100%; float: left;"> <a href="https://sciforum.net" target="_blank" rel="noopener noreferrer">Sciforum</a> <a href="https://www.mdpi.com/books" target="_blank" rel="noopener noreferrer">MDPI Books</a> <a href="https://www.preprints.org" target="_blank" rel="noopener noreferrer">Preprints.org</a> <a href="https://www.scilit.net" target="_blank" rel="noopener noreferrer">Scilit</a> <a href="https://sciprofiles.com" target="_blank" rel="noopener noreferrer">SciProfiles</a> <a href="https://encyclopedia.pub" target="_blank" rel="noopener noreferrer">Encyclopedia</a> <a href="https://jams.pub" target="_blank" rel="noopener noreferrer">JAMS</a> <a href="/about/proceedings">Proceedings Series</a> </div> </div> </div> </div> <div class="content__container " > <div class="custom-accordion-for-small-screen-link " > <h2>About</h2> </div> <div class="target-item custom-accordion-for-small-screen-content show-for-medium-up"> <div class="menu-container__links"> <div style="width: 100%; float: left;"> <a href="/about">Overview</a> <a href="/about/contact">Contact</a> <a href="https://careers.mdpi.com" target="_blank" rel="noopener noreferrer">Careers</a> <a href="/about/announcements">News</a> <a href="/about/press">Press</a> <a href="http://blog.mdpi.com/" target="_blank" rel="noopener noreferrer">Blog</a> </div> </div> </div> </div> </div> <div class="menu-container__buttons"> <a class="button UA_SignInUpButton" href="/user/login">Sign In / Sign Up</a> </div> </div> </div> <div id="captchaModal" class="reveal-modal reveal-modal-new reveal-modal-new--small" data-reveal aria-label="Captcha" aria-hidden="true" role="dialog"></div> <div id="actionDisabledModal" class="reveal-modal" data-reveal aria-labelledby="actionDisableModalTitle" aria-hidden="true" role="dialog" style="width: 300px;"> <h2 id="actionDisableModalTitle">Notice</h2> <form action="/email/captcha" method="post" id="emailCaptchaForm"> <div class="row"> <div id="js-action-disabled-modal-text" class="small-12 columns"> </div> <div id="js-action-disabled-modal-submit" class="small-12 columns" style="margin-top: 10px; display: none;"> You can make submissions to other journals <a href="https://susy.mdpi.com/user/manuscripts/upload">here</a>. </div> </div> </form> <a class="close-reveal-modal" aria-label="Close"> <i class="material-icons">clear</i> </a> </div> <div id="rssNotificationModal" class="reveal-modal reveal-modal-new" data-reveal aria-labelledby="rssNotificationModalTitle" aria-hidden="true" role="dialog"> <div class="row"> <div class="small-12 columns"> <h2 id="rssNotificationModalTitle">Notice</h2> <p> You are accessing a machine-readable page. In order to be human-readable, please install an RSS reader. </p> </div> </div> <div class="row"> <div class="small-12 columns"> <a class="button button--color js-rss-notification-confirm">Continue</a> <a class="button button--grey" onclick="$(this).closest('.reveal-modal').find('.close-reveal-modal').click(); return false;">Cancel</a> </div> </div> <a class="close-reveal-modal" aria-label="Close"> <i class="material-icons">clear</i> </a> </div> <div id="drop-article-label-openaccess" class="f-dropdown medium" data-dropdown-content aria-hidden="true" tabindex="-1"> <p> All articles published by MDPI are made immediately available worldwide under an open access license. No special permission is required to reuse all or part of the article published by MDPI, including figures and tables. For articles published under an open access Creative Common CC BY license, any part of the article may be reused without permission provided that the original article is clearly cited. For more information, please refer to <a href="https://www.mdpi.com/openaccess">https://www.mdpi.com/openaccess</a>. </p> </div> <div id="drop-article-label-feature" class="f-dropdown medium" data-dropdown-content aria-hidden="true" tabindex="-1"> <p> Feature papers represent the most advanced research with significant potential for high impact in the field. A Feature Paper should be a substantial original Article that involves several techniques or approaches, provides an outlook for future research directions and describes possible research applications. </p> <p> Feature papers are submitted upon individual invitation or recommendation by the scientific editors and must receive positive feedback from the reviewers. </p> </div> <div id="drop-article-label-choice" class="f-dropdown medium" data-dropdown-content aria-hidden="true" tabindex="-1"> <p> Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal. <div style="margin-top: -10px;"> <div id="drop-article-label-choice-journal-link" style="display: none; margin-top: -10px; padding-top: 10px;"> </div> </div> </p> </div> <div id="drop-article-label-resubmission" class="f-dropdown medium" data-dropdown-content aria-hidden="true" tabindex="-1"> <p> Original Submission Date Received: <span id="drop-article-label-resubmission-date"></span>. </p> </div> <div id="container"> <noscript> <div id="no-javascript"> You seem to have javascript disabled. Please note that many of the page functionalities won't work as expected without javascript enabled. </div> </noscript> <div class="fixed"> <nav class="tab-bar show-for-medium-down"> <div class="row full-width collapse"> <div class="medium-3 small-4 columns"> <a href="/"> <img class="full-size-menu__mdpi-logo" src="https://pub.mdpi-res.com/img/design/mdpi-pub-logo-black-small1.svg?da3a8dcae975a41c?1732615622" style="width: 64px;" title="MDPI Open Access Journals"> </a> </div> <div class="medium-3 small-4 columns right-aligned"> <div class="show-for-medium-down"> <a href="#" style="display: none;"> <i class="material-icons" onclick="$('#menuModal').foundation('reveal', 'close'); return false;">clear</i> </a> <a class="js-toggle-desktop-layout-link" title="Toggle desktop layout" style="display: none;" href="/toggle_desktop_layout_cookie"> <i class="material-icons">zoom_out_map</i> </a> <a href="#" class="js-open-small-search open-small-search"> <i class="material-icons show-for-small only">search</i> </a> <a title="MDPI main page" class="js-open-menu" data-reveal-id="menuModal" href="#"> <i class="material-icons">menu</i> </a> </div> </div> </div> </nav> </div> <section class="main-section"> <header> <div class="full-size-menu show-for-large-up"> <div class="row full-width"> <div class="large-1 columns"> <a href="/"> <img class="full-size-menu__mdpi-logo" src="https://pub.mdpi-res.com/img/design/mdpi-pub-logo-black-small1.svg?da3a8dcae975a41c?1732615622" title="MDPI Open Access Journals"> </a> </div> <div class="large-8 columns text-right UI_NavMenu"> <ul> <li class="menu-item"> <a href="/about/journals" data-dropdown="journals-dropdown" aria-controls="journals-dropdown" aria-expanded="false" data-options="is_hover: true; hover_timeout: 200">Journals</a> <ul id="journals-dropdown" class="f-dropdown dropdown-wrapper dropdown-wrapper__small" data-dropdown-content aria-hidden="true" tabindex="-1"> <li> <div class="row"> <div class="small-12 columns"> <ul> <li> <a href="/about/journals"> Active Journals </a> </li> <li> <a href="/about/journalfinder"> Find a Journal </a> </li> <li> <a href="/about/journals/proposal"> Journal Proposal </a> </li> <li> <a href="/about/proceedings"> Proceedings Series </a> </li> </ul> </div> </div> </li> </ul> </li> <li class="menu-item"> <a href="/topics">Topics</a> </li> <li class="menu-item"> <a href="/authors" data-dropdown="information-dropdown" aria-controls="information-dropdown" aria-expanded="false" data-options="is_hover:true; hover_timeout:200">Information</a> <ul id="information-dropdown" class="f-dropdown dropdown-wrapper" data-dropdown-content aria-hidden="true" tabindex="-1"> <li> <div class="row"> <div class="small-5 columns right-border"> <ul> <li> <a href="/authors">For Authors</a> </li> <li> <a href="/reviewers">For Reviewers</a> </li> <li> <a href="/editors">For Editors</a> </li> <li> <a href="/librarians">For Librarians</a> </li> <li> <a href="/publishing_services">For Publishers</a> </li> <li> <a href="/societies">For Societies</a> </li> <li> <a href="/conference_organizers">For Conference Organizers</a> </li> </ul> </div> <div class="small-7 columns"> <ul> <li> <a href="/openaccess">Open Access Policy</a> </li> <li> <a href="/ioap">Institutional Open Access Program</a> </li> <li> <a href="/special_issues_guidelines">Special Issues Guidelines</a> </li> <li> <a href="/editorial_process">Editorial Process</a> </li> <li> <a href="/ethics">Research and Publication Ethics</a> </li> <li> <a href="/apc">Article Processing Charges</a> </li> <li> <a href="/awards">Awards</a> </li> <li> <a href="/testimonials">Testimonials</a> </li> </ul> </div> </div> </li> </ul> </li> <li class="menu-item"> <a href="/authors/english">Editing Services</a> </li> <li class="menu-item"> <a href="/about/initiatives" data-dropdown="initiatives-dropdown" aria-controls="initiatives-dropdown" aria-expanded="false" data-options="is_hover: true; hover_timeout: 200">Initiatives</a> <ul id="initiatives-dropdown" class="f-dropdown dropdown-wrapper dropdown-wrapper__small" data-dropdown-content aria-hidden="true" tabindex="-1"> <li> <div class="row"> <div class="small-12 columns"> <ul> <li> <a href="https://sciforum.net" target="_blank" rel="noopener noreferrer"> Sciforum </a> </li> <li> <a href="https://www.mdpi.com/books" target="_blank" rel="noopener noreferrer"> MDPI Books </a> </li> <li> <a href="https://www.preprints.org" target="_blank" rel="noopener noreferrer"> Preprints.org </a> </li> <li> <a href="https://www.scilit.net" target="_blank" rel="noopener noreferrer"> Scilit </a> </li> <li> <a href="https://sciprofiles.com" target="_blank" rel="noopener noreferrer"> SciProfiles </a> </li> <li> <a href="https://encyclopedia.pub" target="_blank" rel="noopener noreferrer"> Encyclopedia </a> </li> <li> <a href="https://jams.pub" target="_blank" rel="noopener noreferrer"> JAMS </a> </li> <li> <a href="/about/proceedings"> Proceedings Series </a> </li> </ul> </div> </div> </li> </ul> </li> <li class="menu-item"> <a href="/about" data-dropdown="about-dropdown" aria-controls="about-dropdown" aria-expanded="false" data-options="is_hover: true; hover_timeout: 200">About</a> <ul id="about-dropdown" class="f-dropdown dropdown-wrapper dropdown-wrapper__small" data-dropdown-content aria-hidden="true" tabindex="-1"> <li> <div class="row"> <div class="small-12 columns"> <ul> <li> <a href="/about"> Overview </a> </li> <li> <a href="/about/contact"> Contact </a> </li> <li> <a href="https://careers.mdpi.com" target="_blank" rel="noopener noreferrer"> Careers </a> </li> <li> <a href="/about/announcements"> News </a> </li> <li> <a href="/about/press"> Press </a> </li> <li> <a href="http://blog.mdpi.com/" target="_blank" rel="noopener noreferrer"> Blog </a> </li> </ul> </div> </div> </li> </ul> </li> </ul> </div> <div class="large-3 columns text-right full-size-menu__buttons"> <div> <a class="button button--default-inversed UA_SignInUpButton" href="/user/login">Sign In / Sign Up</a> <a class="button button--default js-journal-active-only-link js-journal-active-only-submit-link UC_NavSubmitButton" href=" https://susy.mdpi.com/user/manuscripts/upload?journal=membranes " data-disabledmessage="new submissions are not possible.">Submit</a> </div> </div> </div> </div> <div class="header-divider"> </div> <div class="search-container hide-for-small-down row search-container__homepage-scheme"> <form id="basic_search" style="background-color: inherit !important;" class="large-12 medium-12 columns " action="/search" method="get"> <div class="row search-container__main-elements"> <div class="large-2 medium-2 small-12 columns text-right1 small-only-text-left"> <div class="show-for-medium-up"> <div class="search-input-label"> </div> </div> <span class="search-container__title">Search<span class="hide-for-medium"> for Articles</span><span class="hide-for-small">:</span></span> </div> <div class="custom-accordion-for-small-screen-content"> <div class="large-2 medium-2 small-6 columns "> <div class=""> <div class="search-input-label">Title / Keyword</div> </div> <input type="text" placeholder="Title / Keyword" id="q" tabindex="1" name="q" value="" /> </div> <div class="large-2 medium-2 small-6 columns "> <div class=""> <div class="search-input-label">Author / Affiliation / Email</div> </div> <input type="text" id="authors" placeholder="Author / Affiliation / Email" tabindex="2" name="authors" value="" /> </div> <div class="large-2 medium-2 small-6 columns "> <div class=""> <div class="search-input-label">Journal</div> </div> <select id="journal" tabindex="3" name="journal" class="chosen-select"> <option value="">All Journals</option> <option value="acoustics" > Acoustics </option> <option value="amh" > Acta Microbiologica Hellenica (AMH) </option> <option value="actuators" > Actuators </option> <option value="admsci" > Administrative Sciences </option> <option value="adolescents" > Adolescents </option> <option value="arm" > Advances in Respiratory Medicine (ARM) </option> <option value="aerobiology" > Aerobiology </option> <option value="aerospace" > Aerospace </option> <option value="agriculture" > Agriculture </option> <option value="agriengineering" > AgriEngineering </option> <option value="agrochemicals" > Agrochemicals </option> <option value="agronomy" > Agronomy </option> <option value="ai" > AI </option> <option value="air" > Air </option> <option value="algorithms" > Algorithms </option> <option value="allergies" > Allergies </option> <option value="alloys" > Alloys </option> <option value="analytica" > Analytica </option> <option value="analytics" > Analytics </option> <option value="anatomia" > Anatomia </option> <option value="anesthres" > Anesthesia Research </option> <option value="animals" > Animals </option> <option value="antibiotics" > Antibiotics </option> <option value="antibodies" > Antibodies </option> <option value="antioxidants" > Antioxidants </option> <option value="applbiosci" > Applied Biosciences </option> <option value="applmech" > Applied Mechanics </option> <option value="applmicrobiol" > Applied Microbiology </option> <option value="applnano" > Applied Nano </option> <option value="applsci" > Applied Sciences </option> <option value="asi" > Applied System Innovation (ASI) </option> <option value="appliedchem" > AppliedChem </option> <option value="appliedmath" > AppliedMath </option> <option value="aquacj" > Aquaculture Journal </option> <option value="architecture" > Architecture </option> <option value="arthropoda" > Arthropoda </option> <option value="arts" > Arts </option> <option value="astronomy" > Astronomy </option> <option value="atmosphere" > Atmosphere </option> <option value="atoms" > Atoms </option> <option value="audiolres" > Audiology Research </option> <option value="automation" > Automation </option> <option value="axioms" > Axioms </option> <option value="bacteria" > Bacteria </option> <option value="batteries" > Batteries </option> <option value="behavsci" > Behavioral Sciences </option> <option value="beverages" > Beverages </option> <option value="BDCC" > Big Data and Cognitive Computing (BDCC) </option> <option value="biochem" > BioChem </option> <option value="bioengineering" > Bioengineering </option> <option value="biologics" > Biologics </option> <option value="biology" > Biology </option> <option value="blsf" > Biology and Life Sciences Forum </option> <option value="biomass" > Biomass </option> <option value="biomechanics" > Biomechanics </option> <option value="biomed" > BioMed </option> <option value="biomedicines" > Biomedicines </option> <option value="biomedinformatics" > BioMedInformatics </option> <option value="biomimetics" > Biomimetics </option> <option value="biomolecules" > Biomolecules </option> <option value="biophysica" > Biophysica </option> <option value="biosensors" > Biosensors </option> <option value="biotech" > BioTech </option> <option value="birds" > Birds </option> <option value="blockchains" > Blockchains </option> <option value="brainsci" > Brain Sciences </option> <option value="buildings" > Buildings </option> <option value="businesses" > Businesses </option> <option value="carbon" > C </option> <option value="cancers" > Cancers </option> <option value="cardiogenetics" > Cardiogenetics </option> <option value="catalysts" > Catalysts </option> <option value="cells" > Cells </option> <option value="ceramics" > Ceramics </option> <option value="challenges" > Challenges </option> <option value="ChemEngineering" > ChemEngineering </option> <option value="chemistry" > Chemistry </option> <option value="chemproc" > Chemistry Proceedings </option> <option value="chemosensors" > Chemosensors </option> <option value="children" > Children </option> <option value="chips" > Chips </option> <option value="civileng" > CivilEng </option> <option value="cleantechnol" > Clean Technologies (Clean Technol.) </option> <option value="climate" > Climate </option> <option value="ctn" > Clinical and Translational Neuroscience (CTN) </option> <option value="clinbioenerg" > Clinical Bioenergetics </option> <option value="clinpract" > Clinics and Practice </option> <option value="clockssleep" > Clocks & Sleep </option> <option value="coasts" > Coasts </option> <option value="coatings" > Coatings </option> <option value="colloids" > Colloids and Interfaces </option> <option value="colorants" > Colorants </option> <option value="commodities" > Commodities </option> <option value="complications" > Complications </option> <option value="compounds" > Compounds </option> <option value="computation" > Computation </option> <option value="csmf" > Computer Sciences & Mathematics Forum </option> <option value="computers" > Computers </option> <option value="condensedmatter" > Condensed Matter </option> <option value="conservation" > Conservation </option> <option value="constrmater" > Construction Materials </option> <option value="cmd" > Corrosion and Materials Degradation (CMD) </option> <option value="cosmetics" > Cosmetics </option> <option value="covid" > COVID </option> <option value="crops" > Crops </option> <option value="cryo" > Cryo </option> <option value="cryptography" > Cryptography </option> <option value="crystals" > Crystals </option> <option value="cimb" > Current Issues in Molecular Biology (CIMB) </option> <option value="curroncol" > Current Oncology </option> <option value="dairy" > Dairy </option> <option value="data" > Data </option> <option value="dentistry" > Dentistry Journal </option> <option value="dermato" > Dermato </option> <option value="dermatopathology" > Dermatopathology </option> <option value="designs" > Designs </option> <option value="diabetology" > Diabetology </option> <option value="diagnostics" > Diagnostics </option> <option value="dietetics" > Dietetics </option> <option value="digital" > Digital </option> <option value="disabilities" > Disabilities </option> <option value="diseases" > Diseases </option> <option value="diversity" > Diversity </option> <option value="dna" > DNA </option> <option value="drones" > Drones </option> <option value="ddc" > Drugs and Drug Candidates (DDC) </option> <option value="dynamics" > Dynamics </option> <option value="earth" > Earth </option> <option value="ecologies" > Ecologies </option> <option value="econometrics" > Econometrics </option> <option value="economies" > Economies </option> <option value="education" > Education Sciences </option> <option value="electricity" > Electricity </option> <option value="electrochem" > Electrochem </option> <option value="electronicmat" > Electronic Materials </option> <option value="electronics" > Electronics </option> <option value="ecm" > Emergency Care and Medicine </option> <option value="encyclopedia" > Encyclopedia </option> <option value="endocrines" > Endocrines </option> <option value="energies" > Energies </option> <option value="esa" > Energy Storage and Applications (ESA) </option> <option value="eng" > Eng </option> <option value="engproc" > Engineering Proceedings </option> <option value="entropy" > Entropy </option> <option value="environsciproc" > Environmental Sciences Proceedings </option> <option value="environments" > Environments </option> <option value="epidemiologia" > Epidemiologia </option> <option value="epigenomes" > Epigenomes </option> <option value="ebj" > European Burn Journal (EBJ) </option> <option value="ejihpe" > European Journal of Investigation in Health, Psychology and Education (EJIHPE) </option> <option value="fermentation" > Fermentation </option> <option value="fibers" > Fibers </option> <option value="fintech" > FinTech </option> <option value="fire" > Fire </option> <option value="fishes" > Fishes </option> <option value="fluids" > Fluids </option> <option value="foods" > Foods </option> <option value="forecasting" > Forecasting </option> <option value="forensicsci" > Forensic Sciences </option> <option value="forests" > Forests </option> <option value="fossstud" > Fossil Studies </option> <option value="foundations" > Foundations </option> <option value="fractalfract" > Fractal and Fractional (Fractal Fract) </option> <option value="fuels" > Fuels </option> <option value="future" > Future </option> <option value="futureinternet" > Future Internet </option> <option value="futurepharmacol" > Future Pharmacology </option> <option value="futuretransp" > Future Transportation </option> <option value="galaxies" > Galaxies </option> <option value="games" > Games </option> <option value="gases" > Gases </option> <option value="gastroent" > Gastroenterology Insights </option> <option value="gastrointestdisord" > Gastrointestinal Disorders </option> <option value="gastronomy" > Gastronomy </option> <option value="gels" > Gels </option> <option value="genealogy" > Genealogy </option> <option value="genes" > Genes </option> <option value="geographies" > Geographies </option> <option value="geohazards" > GeoHazards </option> <option value="geomatics" > Geomatics </option> <option value="geometry" > Geometry </option> <option value="geosciences" > Geosciences </option> <option value="geotechnics" > Geotechnics </option> <option value="geriatrics" > Geriatrics </option> <option value="glacies" > Glacies </option> <option value="gucdd" > Gout, Urate, and Crystal Deposition Disease (GUCDD) </option> <option value="grasses" > Grasses </option> <option value="hardware" > Hardware </option> <option value="healthcare" > Healthcare </option> <option value="hearts" > Hearts </option> <option value="hemato" > Hemato </option> <option value="hematolrep" > Hematology Reports </option> <option value="heritage" > Heritage </option> <option value="histories" > Histories </option> <option value="horticulturae" > Horticulturae </option> <option value="hospitals" > Hospitals </option> <option value="humanities" > Humanities </option> <option value="humans" > Humans </option> <option value="hydrobiology" > Hydrobiology </option> <option value="hydrogen" > Hydrogen </option> <option value="hydrology" > Hydrology </option> <option value="hygiene" > Hygiene </option> <option value="immuno" > Immuno </option> <option value="idr" > Infectious Disease Reports </option> <option value="informatics" > Informatics </option> <option value="information" > Information </option> <option value="infrastructures" > Infrastructures </option> <option value="inorganics" > Inorganics </option> <option value="insects" > Insects </option> <option value="instruments" > Instruments </option> <option value="iic" > Intelligent Infrastructure and Construction </option> <option value="ijerph" > International Journal of Environmental Research and Public Health (IJERPH) </option> <option value="ijfs" > International Journal of Financial Studies (IJFS) </option> <option value="ijms" > International Journal of Molecular Sciences (IJMS) </option> <option value="IJNS" > International Journal of Neonatal Screening (IJNS) </option> <option value="ijpb" > International Journal of Plant Biology (IJPB) </option> <option value="ijt" > International Journal of Topology </option> <option value="ijtm" > International Journal of Translational Medicine (IJTM) </option> <option value="ijtpp" > International Journal of Turbomachinery, Propulsion and Power (IJTPP) </option> <option value="ime" > International Medical Education (IME) </option> <option value="inventions" > Inventions </option> <option value="IoT" > IoT </option> <option value="ijgi" > ISPRS International Journal of Geo-Information (IJGI) </option> <option value="J" > J </option> <option value="jal" > Journal of Ageing and Longevity (JAL) </option> <option value="jcdd" > Journal of Cardiovascular Development and Disease (JCDD) </option> <option value="jcto" > Journal of Clinical & Translational Ophthalmology (JCTO) </option> <option value="jcm" > Journal of Clinical Medicine (JCM) </option> <option value="jcs" > Journal of Composites Science (J. Compos. Sci.) </option> <option value="jcp" > Journal of Cybersecurity and Privacy (JCP) </option> <option value="jdad" > Journal of Dementia and Alzheimer's Disease (JDAD) </option> <option value="jdb" > Journal of Developmental Biology (JDB) </option> <option value="jeta" > Journal of Experimental and Theoretical Analyses (JETA) </option> <option value="jfb" > Journal of Functional Biomaterials (JFB) </option> <option value="jfmk" > Journal of Functional Morphology and Kinesiology (JFMK) </option> <option value="jof" > Journal of Fungi (JoF) </option> <option value="jimaging" > Journal of Imaging (J. Imaging) </option> <option value="jintelligence" > Journal of Intelligence (J. Intell.) </option> <option value="jlpea" > Journal of Low Power Electronics and Applications (JLPEA) </option> <option value="jmmp" > Journal of Manufacturing and Materials Processing (JMMP) </option> <option value="jmse" > Journal of Marine Science and Engineering (JMSE) </option> <option value="jmahp" > Journal of Market Access & Health Policy (JMAHP) </option> <option value="jmp" > Journal of Molecular Pathology (JMP) </option> <option value="jnt" > Journal of Nanotheranostics (JNT) </option> <option value="jne" > Journal of Nuclear Engineering (JNE) </option> <option value="ohbm" > Journal of Otorhinolaryngology, Hearing and Balance Medicine (JOHBM) </option> <option value="jop" > Journal of Parks </option> <option value="jpm" > Journal of Personalized Medicine (JPM) </option> <option value="jpbi" > Journal of Pharmaceutical and BioTech Industry (JPBI) </option> <option value="jor" > Journal of Respiration (JoR) </option> <option value="jrfm" > Journal of Risk and Financial Management (JRFM) </option> <option value="jsan" > Journal of Sensor and Actuator Networks (JSAN) </option> <option value="joma" > Journal of the Oman Medical Association (JOMA) </option> <option value="jtaer" > Journal of Theoretical and Applied Electronic Commerce Research (JTAER) </option> <option value="jvd" > Journal of Vascular Diseases (JVD) </option> <option value="jox" > Journal of Xenobiotics (JoX) </option> <option value="jzbg" > Journal of Zoological and Botanical Gardens (JZBG) </option> <option value="journalmedia" > Journalism and Media </option> <option value="kidneydial" > Kidney and Dialysis </option> <option value="kinasesphosphatases" > Kinases and Phosphatases </option> <option value="knowledge" > Knowledge </option> <option value="labmed" > LabMed </option> <option value="laboratories" > Laboratories </option> <option value="land" > Land </option> <option value="languages" > Languages </option> <option value="laws" > Laws </option> <option value="life" > Life </option> <option value="limnolrev" > Limnological Review </option> <option value="lipidology" > Lipidology </option> <option value="liquids" > Liquids </option> <option value="literature" > Literature </option> <option value="livers" > Livers </option> <option value="logics" > Logics </option> <option value="logistics" > Logistics </option> <option value="lubricants" > Lubricants </option> <option value="lymphatics" > Lymphatics </option> <option value="make" > Machine Learning and Knowledge Extraction (MAKE) </option> <option value="machines" > Machines </option> <option value="macromol" > Macromol </option> <option value="magnetism" > Magnetism </option> <option value="magnetochemistry" > Magnetochemistry </option> <option value="marinedrugs" > Marine Drugs </option> <option value="materials" > Materials </option> <option value="materproc" > Materials Proceedings </option> <option value="mca" > Mathematical and Computational Applications (MCA) </option> <option value="mathematics" > Mathematics </option> <option value="medsci" > Medical Sciences </option> <option value="msf" > Medical Sciences Forum </option> <option value="medicina" > Medicina </option> <option value="medicines" > Medicines </option> <option value="membranes" selected='selected'> Membranes </option> <option value="merits" > Merits </option> <option value="metabolites" > Metabolites </option> <option value="metals" > Metals </option> <option value="meteorology" > Meteorology </option> <option value="methane" > Methane </option> <option value="mps" > Methods and Protocols (MPs) </option> <option value="metrics" > Metrics </option> <option value="metrology" > Metrology </option> <option value="micro" > Micro </option> <option value="microbiolres" > Microbiology Research </option> <option value="micromachines" > Micromachines </option> <option value="microorganisms" > Microorganisms </option> <option value="microplastics" > Microplastics </option> <option value="minerals" > Minerals </option> <option value="mining" > Mining </option> <option value="modelling" > Modelling </option> <option value="mmphys" > Modern Mathematical Physics </option> <option value="molbank" > Molbank </option> <option value="molecules" > Molecules </option> <option value="mti" > Multimodal Technologies and Interaction (MTI) </option> <option value="muscles" > Muscles </option> <option value="nanoenergyadv" > Nanoenergy Advances </option> <option value="nanomanufacturing" > Nanomanufacturing </option> <option value="nanomaterials" > Nanomaterials </option> <option value="ndt" > NDT </option> <option value="network" > Network </option> <option value="neuroglia" > Neuroglia </option> <option value="neurolint" > Neurology International </option> <option value="neurosci" > NeuroSci </option> <option value="nitrogen" > Nitrogen </option> <option value="ncrna" > Non-Coding RNA (ncRNA) </option> <option value="nursrep" > Nursing Reports </option> <option value="nutraceuticals" > Nutraceuticals </option> <option value="nutrients" > Nutrients </option> <option value="obesities" > Obesities </option> <option value="oceans" > Oceans </option> <option value="onco" > Onco </option> <option value="optics" > Optics </option> <option value="oral" > Oral </option> <option value="organics" > Organics </option> <option value="organoids" > Organoids </option> <option value="osteology" > Osteology </option> <option value="oxygen" > Oxygen </option> <option value="parasitologia" > Parasitologia </option> <option value="particles" > Particles </option> <option value="pathogens" > Pathogens </option> <option value="pathophysiology" > Pathophysiology </option> <option value="pediatrrep" > Pediatric Reports </option> <option value="pets" > Pets </option> <option value="pharmaceuticals" > Pharmaceuticals </option> <option value="pharmaceutics" > Pharmaceutics </option> <option value="pharmacoepidemiology" > Pharmacoepidemiology </option> <option value="pharmacy" > Pharmacy </option> <option value="philosophies" > Philosophies </option> <option value="photochem" > Photochem </option> <option value="photonics" > Photonics </option> <option value="phycology" > Phycology </option> <option value="physchem" > Physchem </option> <option value="psf" > Physical Sciences Forum </option> <option value="physics" > Physics </option> <option value="physiologia" > Physiologia </option> <option value="plants" > Plants </option> <option value="plasma" > Plasma </option> <option value="platforms" > Platforms </option> <option value="pollutants" > Pollutants </option> <option value="polymers" > Polymers </option> <option value="polysaccharides" > Polysaccharides </option> <option value="populations" > Populations </option> <option value="poultry" > Poultry </option> <option value="powders" > Powders </option> <option value="proceedings" > Proceedings </option> <option value="processes" > Processes </option> <option value="prosthesis" > Prosthesis </option> <option value="proteomes" > Proteomes </option> <option value="psychiatryint" > Psychiatry International </option> <option value="psychoactives" > Psychoactives </option> <option value="psycholint" > Psychology International </option> <option value="publications" > Publications </option> <option value="qubs" > Quantum Beam Science (QuBS) </option> <option value="quantumrep" > Quantum Reports </option> <option value="quaternary" > Quaternary </option> <option value="radiation" > Radiation </option> <option value="reactions" > Reactions </option> <option value="realestate" > Real Estate </option> <option value="receptors" > Receptors </option> <option value="recycling" > Recycling </option> <option value="rsee" > Regional Science and Environmental Economics (RSEE) </option> <option value="religions" > Religions </option> <option value="remotesensing" > Remote Sensing </option> <option value="reports" > Reports </option> <option value="reprodmed" > Reproductive Medicine (Reprod. Med.) </option> <option value="resources" > Resources </option> <option value="rheumato" > Rheumato </option> <option value="risks" > Risks </option> <option value="robotics" > Robotics </option> <option value="ruminants" > Ruminants </option> <option value="safety" > Safety </option> <option value="sci" > Sci </option> <option value="scipharm" > Scientia Pharmaceutica (Sci. Pharm.) </option> <option value="sclerosis" > Sclerosis </option> <option value="seeds" > Seeds </option> <option value="sensors" > Sensors </option> <option value="separations" > Separations </option> <option value="sexes" > Sexes </option> <option value="signals" > Signals </option> <option value="sinusitis" > Sinusitis </option> <option value="smartcities" > Smart Cities </option> <option value="socsci" > Social Sciences </option> <option value="siuj" > Société Internationale d’Urologie Journal (SIUJ) </option> <option value="societies" > Societies </option> <option value="software" > Software </option> <option value="soilsystems" > Soil Systems </option> <option value="solar" > Solar </option> <option value="solids" > Solids </option> <option value="spectroscj" > Spectroscopy Journal </option> <option value="sports" > Sports </option> <option value="standards" > Standards </option> <option value="stats" > Stats </option> <option value="stresses" > Stresses </option> <option value="surfaces" > Surfaces </option> <option value="surgeries" > Surgeries </option> <option value="std" > Surgical Techniques Development </option> <option value="sustainability" > Sustainability </option> <option value="suschem" > Sustainable Chemistry </option> <option value="symmetry" > Symmetry </option> <option value="synbio" > SynBio </option> <option value="systems" > Systems </option> <option value="targets" > Targets </option> <option value="taxonomy" > Taxonomy </option> <option value="technologies" > Technologies </option> <option value="telecom" > Telecom </option> <option value="textiles" > Textiles </option> <option value="thalassrep" > Thalassemia Reports </option> <option value="therapeutics" > Therapeutics </option> <option value="thermo" > Thermo </option> <option value="timespace" > Time and Space </option> <option value="tomography" > Tomography </option> <option value="tourismhosp" > Tourism and Hospitality </option> <option value="toxics" > Toxics </option> <option value="toxins" > Toxins </option> <option value="transplantology" > Transplantology </option> <option value="traumacare" > Trauma Care </option> <option value="higheredu" > Trends in Higher Education </option> <option value="tropicalmed" > Tropical Medicine and Infectious Disease (TropicalMed) </option> <option value="universe" > Universe </option> <option value="urbansci" > Urban Science </option> <option value="uro" > Uro </option> <option value="vaccines" > Vaccines </option> <option value="vehicles" > Vehicles </option> <option value="venereology" > Venereology </option> <option value="vetsci" > Veterinary Sciences </option> <option value="vibration" > Vibration </option> <option value="virtualworlds" > Virtual Worlds </option> <option value="viruses" > Viruses </option> <option value="vision" > Vision </option> <option value="waste" > Waste </option> <option value="water" > Water </option> <option value="wild" > Wild </option> <option value="wind" > Wind </option> <option value="women" > Women </option> <option value="world" > World </option> <option value="wevj" > World Electric Vehicle Journal (WEVJ) </option> <option value="youth" > Youth </option> <option value="zoonoticdis" > Zoonotic Diseases </option> </select> </div> <div class="large-2 medium-2 small-6 columns "> <div class=""> <div class="search-input-label">Article Type</div> </div> <select id="article_type" tabindex="4" name="article_type" class="chosen-select"> <option value="">All Article Types</option> <option value="research-article">Article</option> <option value="review-article">Review</option> <option value="rapid-communication">Communication</option> <option value="editorial">Editorial</option> <option value="abstract">Abstract</option> <option value="book-review">Book Review</option> <option value="brief-communication">Brief Communication</option> <option value="brief-report">Brief Report</option> <option value="case-report">Case Report</option> <option value="clinicopathological-challenge">Clinicopathological Challenge</option> <option value="article-commentary">Comment</option> <option value="commentary">Commentary</option> <option value="concept-paper">Concept Paper</option> <option value="conference-report">Conference Report</option> <option value="correction">Correction</option> <option value="creative">Creative</option> <option value="data-descriptor">Data Descriptor</option> <option value="discussion">Discussion</option> <option value="Entry">Entry</option> <option value="essay">Essay</option> <option value="expression-of-concern">Expression of Concern</option> <option value="extended-abstract">Extended Abstract</option> <option value="field-guide">Field Guide</option> <option value="guidelines">Guidelines</option> <option value="hypothesis">Hypothesis</option> <option value="interesting-image">Interesting Images</option> <option value="letter">Letter</option> <option value="books-received">New Book Received</option> <option value="obituary">Obituary</option> <option value="opinion">Opinion</option> <option value="perspective">Perspective</option> <option value="proceedings">Proceeding Paper</option> <option value="project-report">Project Report</option> <option value="protocol">Protocol</option> <option value="registered-report">Registered Report</option> <option value="reply">Reply</option> <option value="retraction">Retraction</option> <option value="note">Short Note</option> <option value="study-protocol">Study Protocol</option> <option value="systematic_review">Systematic Review</option> <option value="technical-note">Technical Note</option> <option value="tutorial">Tutorial</option> <option value="viewpoint">Viewpoint</option> </select> </div> <div class="large-1 medium-1 small-6 end columns small-push-6 medium-reset-order large-reset-order js-search-collapsed-button-container"> <div class="search-input-label"> </div> <input type="submit" id="search" value="Search" class="button button--dark button--full-width searchButton1 US_SearchButton" tabindex="12"> </div> <div class="large-1 medium-1 small-6 end columns large-text-left small-only-text-center small-pull-6 medium-reset-order large-reset-order js-search-collapsed-link-container"> <div class="search-input-label"> </div> <a class="main-search-clear search-container__link" href="#" onclick="openAdvanced(''); return false;">Advanced<span class="show-for-small-only"> Search</span></a> </div> </div> </div> <div class="search-container__advanced" style="margin-top: 0; padding-top: 0px; background-color: inherit; color: inherit;"> <div class="row"> <div class="large-2 medium-2 columns show-for-medium-up"> </div> <div class="large-2 medium-2 small-6 columns "> <div class=""> <div class="search-input-label">Section</div> </div> <select id="section" tabindex="5" name="section" class="chosen-select"> <option value=""></option> </select> </div> <div class="large-2 medium-2 small-6 columns "> <div class=""> <div class="search-input-label">Special Issue</div> </div> <select id="special_issue" tabindex="6" name="special_issue" class="chosen-select"> <option value=""></option> </select> </div> <div class="large-1 medium-1 small-6 end columns "> <div class="search-input-label">Volume</div> <input type="text" id="volume" tabindex="7" name="volume" placeholder="..." value="10" /> </div> <div class="large-1 medium-1 small-6 end columns "> <div class="search-input-label">Issue</div> <input type="text" id="issue" tabindex="8" name="issue" placeholder="..." value="11" /> </div> <div class="large-1 medium-1 small-6 end columns "> <div class="search-input-label">Number</div> <input type="text" id="number" tabindex="9" name="number" placeholder="..." value="" /> </div> <div class="large-1 medium-1 small-6 end columns "> <div class="search-input-label">Page</div> <input type="text" id="page" tabindex="10" name="page" placeholder="..." value="" /> </div> <div class="large-1 medium-1 small-6 columns small-push-6 medium-reset order large-reset-order medium-reset-order js-search-expanded-button-container"></div> <div class="large-1 medium-1 small-6 columns large-text-left small-only-text-center small-pull-6 medium-reset-order large-reset-order js-search-expanded-link-container"></div> </div> </div> </form> <form id="advanced-search" class="large-12 medium-12 columns"> <div class="search-container__advanced"> <div id="advanced-search-template" class="row advanced-search-row"> <div class="large-2 medium-2 small-12 columns show-for-medium-up"> </div> <div class="large-2 medium-2 small-3 columns connector-div"> <div class="search-input-label"><span class="show-for-medium-up">Logical Operator</span><span class="show-for-small">Operator</span></div> <select class="connector"> <option value="and">AND</option> <option value="or">OR</option> </select> </div> <div class="large-3 medium-3 small-6 columns search-text-div"> <div class="search-input-label">Search Text</div> <input type="text" class="search-text" placeholder="Search text"> </div> <div class="large-2 medium-2 small-6 large-offset-0 medium-offset-0 small-offset-3 columns search-field-div"> <div class="search-input-label">Search Type</div> <select class="search-field"> <option value="all">All fields</option> <option value="title">Title</option> <option value="abstract">Abstract</option> <option value="keywords">Keywords</option> <option value="authors">Authors</option> <option value="affiliations">Affiliations</option> <option value="doi">Doi</option> <option value="full_text">Full Text</option> <option value="references">References</option> </select> </div> <div class="large-1 medium-1 small-3 columns"> <div class="search-input-label"> </div> <div class="search-action-div"> <div class="search-plus"> <i class="material-icons">add_circle_outline</i> </div> </div> <div class="search-action-div"> <div class="search-minus"> <i class="material-icons">remove_circle_outline</i> </div> </div> </div> <div class="large-1 medium-1 small-6 large-offset-0 medium-offset-0 small-offset-3 end columns"> <div class="search-input-label"> </div> <input class="advanced-search-button button button--dark search-submit" type="submit" value="Search"> </div> <div class="large-1 medium-1 small-6 end columns show-for-medium-up"></div> </div> </div> </form> </div> <div class="header-divider"> </div> <div class="breadcrumb row full-row"> <div class="breadcrumb__element"> <a href="/about/journals">Journals</a> </div> <div class="breadcrumb__element"> <a href="/journal/membranes">Membranes</a> </div> <div class="breadcrumb__element"> <a href="/2077-0375/10">Volume 10</a> </div> <div class="breadcrumb__element"> <a href="/2077-0375/10/11">Issue 11</a> </div> <div class="breadcrumb__element"> <a href="#">10.3390/membranes10110348</a> </div> </div> </header> <div id="main-content" class=""> <div class="row full-width row-fixed-left-column"> <div id="left-column" class="content__column large-3 medium-3 small-12 columns"> <div class="content__container"> <a href="/journal/membranes"> <img src="https://pub.mdpi-res.com/img/journals/membranes-logo.png?8600e93ff98dbf14" alt="membranes-logo" title="Membranes" style="max-height: 60px; margin: 0 0 0 0;"> </a> <div class="generic-item no-border"> <a class="button button--color button--full-width js-journal-active-only-link js-journal-active-only-submit-link UC_ArticleSubmitButton" href="https://susy.mdpi.com/user/manuscripts/upload?form%5Bjournal_id%5D%3D92" data-disabledmessage="creating new submissions is not possible."> Submit to this Journal </a> <a class="button button--color button--full-width js-journal-active-only-link UC_ArticleReviewButton" href="https://susy.mdpi.com/volunteer/journals/review" data-disabledmessage="volunteering as journal reviewer is not possible."> Review for this Journal </a> <a class="button button--color-inversed button--color-journal button--full-width js-journal-active-only-link UC_ArticleEditIssueButton" href="/journalproposal/sendproposalspecialissue/membranes" data-path="/2077-0375/10/11/348" data-disabledmessage="proposing new special issue is not possible."> Propose a Special Issue </a> </div> <div class="generic-item link-article-menu show-for-small"> <a href="#" class="link-article-menu show-for-small"> <span class="closed">►</span> <span class="open" style="display: none;">▼</span> Article Menu </a> </div> <div class="hide-small-down-initially UI_ArticleMenu"> <div class="generic-item"> <h2>Article Menu</h2> </div> <ul class="accordion accordion__menu" data-accordion data-options="multi_expand:true;toggleable: true"> <li class="accordion-direct-link"> <a href="/2077-0375/10/11/348/scifeed_display" data-reveal-id="scifeed-modal" data-reveal-ajax="true">Subscribe SciFeed</a> </li> <li class="accordion-direct-link js-article-similarity-container" style="display: none"> <a href="#" class="js-similarity-related-articles">Recommended Articles</a> </li> <li class="accordion-navigation"> <a href="#related" class="accordion__title">Related Info Links</a> <div id="related" class="content UI_ArticleMenu_RelatedLinks"> <ul> <li class="li-link"> <a href="http://www.ncbi.nlm.nih.gov/sites/entrez/33212901" target="_blank" rel="noopener noreferrer">PubMed/Medline</a> </li> <li class="li-link"> <a href="https://scholar.google.com/scholar?q=Review%20of%20Synthetic%20and%20Hybrid%20Scaffolds%20in%20Cartilage%20Tissue%20Engineering" target="_blank" rel="noopener noreferrer">Google Scholar</a> </li> </ul> </div> </li> <li class="accordion-navigation"> <a href="#authors" class="accordion__title">More by Authors Links</a> <div id="authors" class="content UI_ArticleMenu_AuthorsLinks"> <ul class="side-menu-ul"> <li> <a class="expand" onclick='$(this).closest("li").next("div").toggle(); return false;'>on DOAJ</a> </li> <div id="AuthorDOAJExpand" style="display:none;"> <ul class="submenu"> <li class="li-link"> <a href='http://doaj.org/search/articles?source=%7B%22query%22%3A%7B%22query_string%22%3A%7B%22query%22%3A%22%5C%22Monika%20Wasy%C5%82eczko%5C%22%22%2C%22default_operator%22%3A%22AND%22%2C%22default_field%22%3A%22bibjson.author.name%22%7D%7D%7D' target="_blank" rel="noopener noreferrer">Wasyłeczko, M.</a> <li> </li> <li class="li-link"> <a href='http://doaj.org/search/articles?source=%7B%22query%22%3A%7B%22query_string%22%3A%7B%22query%22%3A%22%5C%22Wioleta%20Sikorska%5C%22%22%2C%22default_operator%22%3A%22AND%22%2C%22default_field%22%3A%22bibjson.author.name%22%7D%7D%7D' target="_blank" rel="noopener noreferrer">Sikorska, W.</a> <li> </li> <li class="li-link"> <a href='http://doaj.org/search/articles?source=%7B%22query%22%3A%7B%22query_string%22%3A%7B%22query%22%3A%22%5C%22Andrzej%20Chwojnowski%5C%22%22%2C%22default_operator%22%3A%22AND%22%2C%22default_field%22%3A%22bibjson.author.name%22%7D%7D%7D' target="_blank" rel="noopener noreferrer">Chwojnowski, A.</a> <li> </li> </ul> </div> <li> <a class="expand" onclick='$(this).closest("li").next("div").toggle(); return false;'>on Google Scholar</a> </li> <div id="AuthorGoogleExpand" style="display:none;"> <ul class="submenu"> <li class="li-link"> <a href="https://scholar.google.com/scholar?q=Monika%20Wasy%C5%82eczko" target="_blank" rel="noopener noreferrer">Wasyłeczko, M.</a> <li> </li> <li class="li-link"> <a href="https://scholar.google.com/scholar?q=Wioleta%20Sikorska" target="_blank" rel="noopener noreferrer">Sikorska, W.</a> <li> </li> <li class="li-link"> <a href="https://scholar.google.com/scholar?q=Andrzej%20Chwojnowski" target="_blank" rel="noopener noreferrer">Chwojnowski, A.</a> <li> </li> </ul> </div> <li> <a class="expand" onclick='$(this).closest("li").next("div").toggle(); return false;'>on PubMed</a> </li> <div id="AuthorPubMedExpand" style="display:none;"> <ul class="submenu"> <li class="li-link"> <a href="http://www.pubmed.gov/?cmd=Search&term=Monika%20Wasy%C5%82eczko" target="_blank" rel="noopener noreferrer">Wasyłeczko, M.</a> <li> </li> <li class="li-link"> <a href="http://www.pubmed.gov/?cmd=Search&term=Wioleta%20Sikorska" target="_blank" rel="noopener noreferrer">Sikorska, W.</a> <li> </li> <li class="li-link"> <a href="http://www.pubmed.gov/?cmd=Search&term=Andrzej%20Chwojnowski" target="_blank" rel="noopener noreferrer">Chwojnowski, A.</a> <li> </li> </ul> </div> </ul> </div> </li> </ul> <span style="display:none" id="scifeed_hidden_flag"></span> <span style="display:none" id="scifeed_subscribe_url">/ajax/scifeed/subscribe</span> </div> </div> <div class="content__container responsive-moving-container large medium active hidden" data-id="article-counters"> <div id="counts-wrapper" class="row generic-item no-border" data-equalizer> <div id="js-counts-wrapper__views" class="small-12 hide columns count-div-container"> <a href="#metrics" > <div class="count-div" data-equalizer-watch> <span class="name">Article Views</span> <span class="count view-number"></span> </div> </a> </div> <div id="js-counts-wrapper__citations" class="small-12 columns hide count-div-container"> <a href="#metrics" > <div class="count-div" data-equalizer-watch> <span class="name">Citations</span> <span class="count citations-number Var_ArticleMaxCitations">-</span> </div> </a> </div> </div> </div> <div class="content__container"> <div class="hide-small-down-initially"> <ul class="accordion accordion__menu" data-accordion data-options="multi_expand:true;toggleable: true"> <li class="accordion-navigation"> <a href="#table_of_contents" class="accordion__title">Table of Contents</a> <div id="table_of_contents" class="content active"> <div class="menu-caption" id="html-quick-links-title"></div> </div> </li> </ul> </div> </div> <!-- PubGrade code --> <div id="pbgrd-sky"></div> <script src="https://cdn.pbgrd.com/core-mdpi.js"></script> <style>.content__container { min-width: 300px; }</style> <!-- PubGrade code --> </div> <div id="middle-column" class="content__column large-9 medium-9 small-12 columns end middle-bordered"> <div class="middle-column__help"> <div class="middle-column__help__fixed show-for-medium-up"> <span id="js-altmetrics-donut" href="#" target="_blank" rel="noopener noreferrer" style="display: none;"> <span data-badge-type='donut' class='altmetric-embed' data-doi='10.3390/membranes10110348'></span> <span>Altmetric</span> </span> <a href="#" class="UA_ShareButton" data-reveal-id="main-share-modal" title="Share"> <i class="material-icons">share</i> <span>Share</span> </a> <a href="#" data-reveal-id="main-help-modal" title="Help"> <i class="material-icons">announcement</i> <span>Help</span> </a> <a href="javascript:void(0);" data-reveal-id="cite-modal" data-counterslink = "https://www.mdpi.com/2077-0375/10/11/348/cite" > <i class="material-icons">format_quote</i> <span>Cite</span> </a> <a href="https://sciprofiles.com/discussion-groups/public/10.3390/membranes10110348?utm_source=mpdi.com&utm_medium=publication&utm_campaign=discuss_in_sciprofiles" target="_blank" rel="noopener noreferrer" title="Discuss in Sciprofiles"> <i class="material-icons">question_answer</i> <span>Discuss in SciProfiles</span> </a> <a href="#" class="" data-hypothesis-trigger-endorses-tab title="Endorse"> <i data-hypothesis-endorse-trigger class="material-icons" >thumb_up</i> <div data-hypothesis-endorsement-count data-hypothesis-trigger-endorses-tab class="hypothesis-count-container"> ... </div> <span>Endorse</span> </a> <a href="#" data-hypothesis-trigger class="js-hypothesis-open UI_ArticleAnnotationsButton" title="Comment"> <i class="material-icons">textsms</i> <div data-hypothesis-annotation-count class="hypothesis-count-container"> ... </div> <span>Comment</span> </a> </div> <div id="main-help-modal" class="reveal-modal reveal-modal-new" data-reveal aria-labelledby="modalTitle" aria-hidden="true" role="dialog"> <div class="row"> <div class="small-12 columns"> <h2 style="margin: 0;">Need Help?</h2> </div> <div class="small-6 columns"> <h3>Support</h3> <p> Find support for a specific problem in the support section of our website. </p> <a target="_blank" href="/about/contactform" class="button button--color button--full-width"> Get Support </a> </div> <div class="small-6 columns"> <h3>Feedback</h3> <p> Please let us know what you think of our products and services. </p> <a target="_blank" href="/feedback/send" class="button button--color button--full-width"> Give Feedback </a> </div> <div class="small-6 columns end"> <h3>Information</h3> <p> Visit our dedicated information section to learn more about MDPI. </p> <a target="_blank" href="/authors" class="button button--color button--full-width"> Get Information </a> </div> </div> <a class="close-reveal-modal" aria-label="Close"> <i class="material-icons">clear</i> </a> </div> </div> <div class="middle-column__main "> <div class="page-highlight"> <style type="text/css"> img.review-status { width: 30px; } </style> <div id="jmolModal" class="reveal-modal" data-reveal aria-labelledby="Captcha" aria-hidden="true" role="dialog"> <h2>JSmol Viewer</h2> <div class="row"> <div class="small-12 columns text-center"> <iframe style="width: 520px; height: 520px;" frameborder="0" id="jsmol-content"></iframe> <div class="content"></div> </div> </div> <a class="close-reveal-modal" aria-label="Close"> <i class="material-icons">clear</i> </a> </div> <div itemscope itemtype="http://schema.org/ScholarlyArticle" id="abstract" class="abstract_div"> <div class="js-check-update-container"></div> <div class="html-content__container content__container content__container__combined-for-large__first" style="overflow: auto; position: inherit;"> <div class='html-profile-nav'> <div class='top-bar'> <div class='nav-sidebar-btn show-for-large-up' data-status='opened' > <i class='material-icons'>first_page</i> </div> <a id="js-button-download" class="button button--color-inversed" style="display: none;" href="/2077-0375/10/11/348/pdf?version=1605697637" data-name="Review of Synthetic and Hybrid Scaffolds in Cartilage Tissue Engineering" data-journal="membranes"> <i class="material-icons custom-download"></i> Download PDF </a> <div class='nav-btn'> <i class='material-icons'>settings</i> </div> <a href="/2077-0375/10/11/348/reprints" id="js-button-reprints" class="button button--color-inversed"> Order Article Reprints </a> </div> <div class='html-article-menu'> <div class='html-first-step row'> <div class='html-font-family large-6 medium-6 small-12 columns'> <div class='row'> <div class='html-font-label large-4 medium-4 small-12 columns'> Font Type: </div> <div class='large-8 medium-8 small-12 columns'> <span class="html-article-menu-option"><i style='font-family:Arial, Arial, Helvetica, sans-serif;' data-fontfamily='Arial, Arial, Helvetica, sans-serif'>Arial</i></span> <span class="html-article-menu-option"><i style='font-family:Georgia1, Georgia, serif;' data-fontfamily='Georgia1, Georgia, serif'>Georgia</i></span> <span class="html-article-menu-option"><i style='font-family:Verdana, Verdana, Geneva, sans-serif;' data-fontfamily='Verdana, Verdana, Geneva, sans-serif' >Verdana</i></span> </div> </div> </div> <div class='html-font-resize large-6 medium-6 small-12 columns'> <div class='row'> <div class='html-font-label large-4 medium-4 small-12 columns'>Font Size:</div> <div class='large-8 medium-8 small-12 columns'> <span class="html-article-menu-option a1" data-percent="100">Aa</span> <span class="html-article-menu-option a2" data-percent="120">Aa</span> <span class="html-article-menu-option a3" data-percent="160">Aa</span> </div> </div> </div> </div> <div class='row'> <div class='html-line-space large-6 medium-6 small-12 columns'> <div class='row'> <div class='html-font-label large-4 medium-4 small-12 columns' >Line Spacing:</div> <div class='large-8 medium-8 small-12 columns'> <span class="html-article-menu-option a1" data-line-height="1.5em"> <i class="fa"></i> </span> <span class="html-article-menu-option a2" data-line-height="1.8em"> <i class="fa"></i> </span> <span class="html-article-menu-option a3" data-line-height="2.1em"> <i class="fa"></i> </span> </div> </div> </div> <div class='html-column-width large-6 medium-6 small-12 columns'> <div class='row'> <div class='html-font-label large-4 medium-4 small-12 columns' >Column Width:</div> <div class='large-8 medium-8 small-12 columns'> <span class="html-article-menu-option a1" data-column-width="20%"> <i class="fa"></i> </span> <span class="html-article-menu-option a2" data-column-width="10%"> <i class="fa"></i> </span> <span class="html-article-menu-option a3" data-column-width="0%"> <i class="fa"></i> </span> </div> </div> </div> </div> <div class='row'> <div class='html-font-bg large-6 medium-6 small-12 columns end'> <div class='row'> <div class='html-font-label large-4 medium-4 small-12 columns'>Background:</div> <div class='large-8 medium-8 small-12 columns'> <div class="html-article-menu-option html-nav-bg html-nav-bright" data-bg="bright"> <i class="fa fa-file-text"></i> </div> <div class="html-article-menu-option html-nav-bg html-nav-dark" data-bg="dark"> <i class="fa fa-file-text-o"></i> </div> <div class="html-article-menu-option html-nav-bg html-nav-creme" data-bg="creme"> <i class="fa fa-file-text"></i> </div> </div> </div> </div> </div> </div> </div> <article ><div class='html-article-content'> <span itemprop="publisher" content="Multidisciplinary Digital Publishing Institute"></span><span itemprop="url" content="https://www.mdpi.com/2077-0375/10/11/348"></span> <div class="article-icons"><span class="label openaccess" data-dropdown="drop-article-label-openaccess" aria-expanded="false">Open Access</span><span class="label articletype">Review</span></div> <h1 class="title hypothesis_container" itemprop="name"> Review of Synthetic and Hybrid Scaffolds in Cartilage Tissue Engineering </h1> <div class="art-authors hypothesis_container"> by <span class="inlineblock "><div class='profile-card-drop' data-dropdown='profile-card-drop3716141' data-options='is_hover:true, hover_timeout:5000'> Monika Wasyłeczko</div><div id="profile-card-drop3716141" data-dropdown-content class="f-dropdown content profile-card-content" aria-hidden="true" tabindex="-1"><div class="profile-card__title"><div class="sciprofiles-link" style="display: inline-block"><div class="sciprofiles-link__link"><img class="sciprofiles-link__image" src="/profiles/1272209/thumb/Monika_Wasyłeczko.jpg" style="width: auto; height: 16px; border-radius: 50%;"><span class="sciprofiles-link__name">Monika Wasyłeczko</span></div></div></div><div class="profile-card__buttons" style="margin-bottom: 10px;"><a href="https://sciprofiles.com/profile/1272209?utm_source=mdpi.com&utm_medium=website&utm_campaign=avatar_name" class="button button--color-inversed" target="_blank"> SciProfiles </a><a href="https://scilit.net/scholars?q=Monika%20Wasy%C5%82eczko" class="button button--color-inversed" target="_blank"> Scilit </a><a href="https://www.preprints.org/search?search1=Monika%20Wasy%C5%82eczko&field1=authors" class="button button--color-inversed" target="_blank"> Preprints.org </a><a href="https://scholar.google.com/scholar?q=Monika%20Wasy%C5%82eczko" class="button button--color-inversed" target="_blank" rels="noopener noreferrer"> Google Scholar </a></div></div><sup> *</sup><span style="display: inline; margin-left: 5px;"></span><a class="toEncode emailCaptcha visibility-hidden" data-author-id="3716141" href="/cdn-cgi/l/email-protection#ba95d9d4de97d9ddd395d695dfd7dbd3d697cac8d5cedfd9ced3d5d4998a8a8bdb8cde8ad98bdf8b8e8a8b8a828adf8b8d8a8c8a8888de8a8e8adc8a8e8adc8e898bdb8ad98bdb8e898bde8a8b"><sup><i class="fa fa-envelope-o"></i></sup></a><a href="https://orcid.org/0000-0002-8925-292X" target="_blank" rel="noopener noreferrer"><img src="https://pub.mdpi-res.com/img/design/orcid.png?0465bc3812adeb52?1732615622" title="ORCID" style="position: relative; width: 13px; margin-left: 3px; max-width: 13px !important; height: auto; top: -5px;"></a>, </span><span class="inlineblock "><div class='profile-card-drop' data-dropdown='profile-card-drop3716142' data-options='is_hover:true, hover_timeout:5000'> Wioleta Sikorska</div><div id="profile-card-drop3716142" data-dropdown-content class="f-dropdown content profile-card-content" aria-hidden="true" tabindex="-1"><div class="profile-card__title"><div class="sciprofiles-link" style="display: inline-block"><div class="sciprofiles-link__link"><img class="sciprofiles-link__image" src="/bundles/mdpisciprofileslink/img/unknown-user.png" style="width: auto; height: 16px; border-radius: 50%;"><span class="sciprofiles-link__name">Wioleta Sikorska</span></div></div></div><div class="profile-card__buttons" style="margin-bottom: 10px;"><a href="https://sciprofiles.com/profile/1317454?utm_source=mdpi.com&utm_medium=website&utm_campaign=avatar_name" class="button button--color-inversed" target="_blank"> SciProfiles </a><a href="https://scilit.net/scholars?q=Wioleta%20Sikorska" class="button button--color-inversed" target="_blank"> Scilit </a><a href="https://www.preprints.org/search?search1=Wioleta%20Sikorska&field1=authors" class="button button--color-inversed" target="_blank"> Preprints.org </a><a href="https://scholar.google.com/scholar?q=Wioleta%20Sikorska" class="button button--color-inversed" target="_blank" rels="noopener noreferrer"> Google Scholar </a></div></div><sup></sup><span style="display: inline; margin-left: 5px;"></span><a class="toEncode emailCaptcha visibility-hidden" data-author-id="3716142" href="/cdn-cgi/l/email-protection#b897dbd6dc95dbdfd197d497ddd5d9d1d495c8cad7ccdddbccd1d7d69b8888888c8f8f89dd89db8980888d888c89db898e8b8f89dd898d89dd898d8d818888898e88888d81888f89da"><sup><i class="fa fa-envelope-o"></i></sup></a><a href="https://orcid.org/0000-0002-2732-0798" target="_blank" rel="noopener noreferrer"><img src="https://pub.mdpi-res.com/img/design/orcid.png?0465bc3812adeb52?1732615622" title="ORCID" style="position: relative; width: 13px; margin-left: 3px; max-width: 13px !important; height: auto; top: -5px;"></a> and </span><span class="inlineblock "><div class='profile-card-drop' data-dropdown='profile-card-drop3716143' data-options='is_hover:true, hover_timeout:5000'> Andrzej Chwojnowski</div><div id="profile-card-drop3716143" data-dropdown-content class="f-dropdown content profile-card-content" aria-hidden="true" tabindex="-1"><div class="profile-card__title"><div class="sciprofiles-link" style="display: inline-block"><div class="sciprofiles-link__link"><img class="sciprofiles-link__image" src="/bundles/mdpisciprofileslink/img/unknown-user.png" style="width: auto; height: 16px; border-radius: 50%;"><span class="sciprofiles-link__name">Andrzej Chwojnowski</span></div></div></div><div class="profile-card__buttons" style="margin-bottom: 10px;"><a href="https://sciprofiles.com/profile/3476738?utm_source=mdpi.com&utm_medium=website&utm_campaign=avatar_name" class="button button--color-inversed" target="_blank"> SciProfiles </a><a href="https://scilit.net/scholars?q=Andrzej%20Chwojnowski" class="button button--color-inversed" target="_blank"> Scilit </a><a href="https://www.preprints.org/search?search1=Andrzej%20Chwojnowski&field1=authors" class="button button--color-inversed" target="_blank"> Preprints.org </a><a href="https://scholar.google.com/scholar?q=Andrzej%20Chwojnowski" class="button button--color-inversed" target="_blank" rels="noopener noreferrer"> Google Scholar </a></div></div><sup></sup><span style="display: inline; margin-left: 5px;"></span><a class="toEncode emailCaptcha visibility-hidden" data-author-id="3716143" href="/cdn-cgi/l/email-protection#2f004c414b024c48460043004a424e4643025f5d405b4a4c5b4640410c1f1f1f1d191e1f161e191f4a1f4d1d1e1f171f1c1f171f1c1b491e191f1f1e191b491e1e1f4b"><sup><i class="fa fa-envelope-o"></i></sup></a></span> </div> <div class="nrm"></div> <span style="display:block; height:6px;"></span> <div></div> <div style="margin: 5px 0 15px 0;" class="hypothesis_container"> <div class="art-affiliations"> <div class="affiliation "> <div class="affiliation-name ">Nałęcz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Trojdena 4 str., 02-109 Warsaw, Poland</div> </div> <div class="affiliation"> <div class="affiliation-item"><sup>*</sup></div> <div class="affiliation-name ">Author to whom correspondence should be addressed. </div> </div> </div> </div> <div class="bib-identity" style="margin-bottom: 10px;"> <em>Membranes</em> <b>2020</b>, <em>10</em>(11), 348; <a href="https://doi.org/10.3390/membranes10110348">https://doi.org/10.3390/membranes10110348</a> </div> <div class="pubhistory" style="font-weight: bold; padding-bottom: 10px;"> <span style="display: inline-block">Submission received: 28 September 2020</span> / <span style="display: inline-block">Revised: 9 November 2020</span> / <span style="display: inline-block">Accepted: 11 November 2020</span> / <span style="display: inline-block">Published: 17 November 2020</span> </div> <div class="belongsTo" style="margin-bottom: 10px;"> (This article belongs to the Special Issue <a href=" /journal/membranes/special_issues/tissue_eng_membr ">Membrane Systems for Tissue Engineering 2020</a>)<br/> </div> <div class="highlight-box1"> <div class="download"> <a class="button button--color-inversed button--drop-down" data-dropdown="drop-download-446317" aria-controls="drop-supplementary-446317" aria-expanded="false"> Download <i class="material-icons">keyboard_arrow_down</i> </a> <div id="drop-download-446317" class="f-dropdown label__btn__dropdown label__btn__dropdown--button" data-dropdown-content aria-hidden="true" tabindex="-1"> <a class="UD_ArticlePDF" href="/2077-0375/10/11/348/pdf?version=1605697637" data-name="Review of Synthetic and Hybrid Scaffolds in Cartilage Tissue Engineering" data-journal="membranes">Download PDF</a> <br/> <a id="js-pdf-with-cover-access-captcha" href="#" data-target="/2077-0375/10/11/348/pdf-with-cover" class="accessCaptcha">Download PDF with Cover</a> <br/> <a id="js-xml-access-captcha" href="#" data-target="/2077-0375/10/11/348/xml" class="accessCaptcha">Download XML</a> <br/> <a href="/2077-0375/10/11/348/epub" id="epub_link">Download Epub</a> <br/> </div> <div class="js-browse-figures" style="display: inline-block;"> <a href="#" class="button button--color-inversed margin-bottom-10 openpopupgallery UI_BrowseArticleFigures" data-target='article-popup' data-counterslink = "https://www.mdpi.com/2077-0375/10/11/348/browse" >Browse Figures</a> </div> <div id="article-popup" class="popupgallery" style="display: inline; line-height: 200%"> <a href="https://pub.mdpi-res.com/membranes/membranes-10-00348/article_deploy/html/images/membranes-10-00348-ag.png?1607090314" title=" <strong>Graphical abstract</strong><br/> "> </a> <a href="https://pub.mdpi-res.com/membranes/membranes-10-00348/article_deploy/html/images/membranes-10-00348-g001.png?1607090314" title=" <strong>Figure 1</strong><br/> <p>General schema of the autologous chondrocyte implantation (ACI) method with a 3D scaffold. This schema was modified according to a previous article [<a href="#B44-membranes-10-00348" class="html-bibr">44</a>].</p> "> </a> <a href="https://pub.mdpi-res.com/membranes/membranes-10-00348/article_deploy/html/images/membranes-10-00348-g002.png?1607090314" title=" <strong>Figure 2</strong><br/> <p>Cartilage repair methods via mesenchymal stem cell (MSC)-based therapies: (<b>a</b>) full-thickness cartilage injury; (<b>b</b>–<b>d</b>) therapies using MSCs and appropriate additives. The schema was modified from a previous article [<a href="#B53-membranes-10-00348" class="html-bibr">53</a>].</p> "> </a> <a href="https://pub.mdpi-res.com/membranes/membranes-10-00348/article_deploy/html/images/membranes-10-00348-g003.png?1607090314" title=" <strong>Figure 3</strong><br/> <p>General schematic demonstration of the scaffold properties for the appropriate growth of articular chondrocytes (ACs) and mesenchymal stem cells (MSCs).</p> "> </a> <a href="https://pub.mdpi-res.com/membranes/membranes-10-00348/article_deploy/html/images/membranes-10-00348-g004.png?1607090314" title=" <strong>Figure 4</strong><br/> <p>Schematic illustration of the main forms of scaffolds for cartilage tissue engineering: (<b>A</b>,<b>B</b>) hydrogels; (<b>C</b>,<b>D</b>) sponges; (<b>E</b>,<b>F</b>) nonwoven (nanofibers). Scale bars: D—300 µm; E—1000 nm; F—300 µm.</p> "> </a> </div> <a class="button button--color-inversed" href="/2077-0375/10/11/348/notes">Versions Notes</a> </div> </div> <div class="responsive-moving-container small hidden" data-id="article-counters" style="margin-top: 15px;"></div> <div class="html-dynamic"> <section> <div class="art-abstract art-abstract-new in-tab hypothesis_container"> <p> <div><section class="html-abstract" id="html-abstract"> <h2 id="html-abstract-title">Abstract</h2><b>:</b> <div class="html-p">Cartilage tissue is under extensive investigation in tissue engineering and regenerative medicine studies because of its limited regenerative potential. Currently, many scaffolds are undergoing scientific and clinical research. A key for appropriate scaffolding is the assurance of a temporary cellular environment that allows the cells to function as in native tissue. These scaffolds should meet the relevant requirements, including appropriate architecture and physicochemical and biological properties. This is necessary for proper cell growth, which is associated with the adequate regeneration of cartilage. This paper presents a review of the development of scaffolds from synthetic polymers and hybrid materials employed for the engineering of cartilage tissue and regenerative medicine. Initially, general information on articular cartilage and an overview of the clinical strategies for the treatment of cartilage defects are presented. Then, the requirements for scaffolds in regenerative medicine, materials intended for membranes, and methods for obtaining them are briefly described. We also describe the hybrid materials that combine the advantages of both synthetic and natural polymers, which provide better properties for the scaffold. The last part of the article is focused on scaffolds in cartilage tissue engineering that have been confirmed by undergoing preclinical and clinical tests.</div> </section> <div id="html-keywords"> <div class="html-gwd-group"><div id="html-keywords-title">Keywords: </div><a href="/search?q=cartilage+tissue+engineering">cartilage tissue engineering</a>; <a href="/search?q=articular+cartilage">articular cartilage</a>; <a href="/search?q=scaffolds">scaffolds</a>; <a href="/search?q=scaffold+obtaining+methods">scaffold obtaining methods</a>; <a href="/search?q=materials+for+scaffolds">materials for scaffolds</a>; <a href="/search?q=scaffold+requirements">scaffold requirements</a>; <a href="/search?q=synthetic+and+hybrid+scaffolds">synthetic and hybrid scaffolds</a>; <a href="/search?q=chondrocytes">chondrocytes</a>; <a href="/search?q=mesenchymal+stem+cells">mesenchymal stem cells</a>; <a href="/search?q=tissue+engineering">tissue engineering</a>; <a href="/search?q=regenerative+medicine">regenerative medicine</a></div> <div> </div> </div> </div> </p> </div> <div class="row"> <div class="columns large-12 text-center"> <div class="abstract-image-preview open js-browse-figures"> <a href="#" class="openpopupgallery" data-target='article-popup-ga'> <img src="https://pub.mdpi-res.com/membranes/membranes-10-00348/article_deploy/html/images/membranes-10-00348-ag-550.jpg?1607090314" style="max-width: 100%; max-height: 280px; padding: 10px;"> </a> <div id="article-popup-ga" class="popupgallery" style="display: inline; line-height: 200%"> <a href="https://pub.mdpi-res.com/membranes/membranes-10-00348/article_deploy/html/images/membranes-10-00348-ag.png?1607090314" title="<strong>Graphical Abstract</strong>"></a> </div> <p>Graphical Abstract</p> </div> </div> </div> </section> </div> <div class="hypothesis_container"> <ul class="menu html-nav" data-prev-node="#html-quick-links-title"> </ul> <div class="html-body"> <section id='sec1-membranes-10-00348' type='intro'><h2 data-nested='1'> 1. Introduction</h2><div class='html-p'>Most human tissues and organs have a limited capacity to properly self-regenerate. Moreover, they are often exposed to damage as a result of injuries, accidents, and various diseases involving tissue dysfunction or devastating deficits [<a href="#B1-membranes-10-00348" class="html-bibr">1</a>,<a href="#B2-membranes-10-00348" class="html-bibr">2</a>]. Many surgical strategies have been developed to ameliorate these problems, including the transplantation of artificial substitutes, such as joint prostheses, heart valves, kidneys, or even tissues and organs [<a href="#B3-membranes-10-00348" class="html-bibr">3</a>,<a href="#B4-membranes-10-00348" class="html-bibr">4</a>,<a href="#B5-membranes-10-00348" class="html-bibr">5</a>]. Unfortunately, the main obstacles for organ transplantation are the deficit of donor organs and the necessity of lifelong immunosuppression. Nonbiological components can cause particular problems, such as a lack of biocompatibility, the development of serious infections, and limited durability [<a href="#B6-membranes-10-00348" class="html-bibr">6</a>,<a href="#B7-membranes-10-00348" class="html-bibr">7</a>]. Therefore, regenerative medicine including tissue engineering (TE) is a promising domain of research that can offer not only tissues and organs for transplantation but can also provide new perspectives for the treatment of many diseases [<a href="#B8-membranes-10-00348" class="html-bibr">8</a>]. This is due to the combination of biological sciences and material engineering methods enabling the development and acquisition of biological substitutes [<a href="#B2-membranes-10-00348" class="html-bibr">2</a>,<a href="#B9-membranes-10-00348" class="html-bibr">9</a>]. At present, regenerative medicine offers methods for treating various tissues, including the skin, musculoskeletal tissue, the liver, gastrointestinal tissue, nervous system tissue, and cardiovascular tissue [<a href="#B9-membranes-10-00348" class="html-bibr">9</a>,<a href="#B10-membranes-10-00348" class="html-bibr">10</a>,<a href="#B11-membranes-10-00348" class="html-bibr">11</a>,<a href="#B12-membranes-10-00348" class="html-bibr">12</a>] and can even treat diseases such as diabetes [<a href="#B13-membranes-10-00348" class="html-bibr">13</a>,<a href="#B14-membranes-10-00348" class="html-bibr">14</a>]. Currently, scaffolds are increasingly popular substitutes in TE. Scaffolds can be used for in vitro cultures of appropriate cells, which can be implanted into the body as a bio-implant after a suitable amount of time and can also be transplanted directly into the organism as a medium for the colonization of host stem cells [<a href="#B15-membranes-10-00348" class="html-bibr">15</a>,<a href="#B16-membranes-10-00348" class="html-bibr">16</a>,<a href="#B17-membranes-10-00348" class="html-bibr">17</a>,<a href="#B18-membranes-10-00348" class="html-bibr">18</a>]. Scaffolds should be three-dimensional with a network of an interconnected pore structure and tunable sizes that depend on the kinds of cells. A scaffold needs to be biocompatible and provide appropriate mechanical stability and shape properties to resist stresses during cultivation and after being implanted into the body [<a href="#B19-membranes-10-00348" class="html-bibr">19</a>,<a href="#B20-membranes-10-00348" class="html-bibr">20</a>,<a href="#B21-membranes-10-00348" class="html-bibr">21</a>].</div><div class='html-p'>An example of a tissue with limited regenerative capacity is cartilage, due to its lack of vascularization and innervations [<a href="#B22-membranes-10-00348" class="html-bibr">22</a>]. Scientists and doctors are still looking for an effective method to regenerate cartilage, and the most promising method is to use scaffolds [<a href="#B22-membranes-10-00348" class="html-bibr">22</a>,<a href="#B23-membranes-10-00348" class="html-bibr">23</a>,<a href="#B24-membranes-10-00348" class="html-bibr">24</a>,<a href="#B25-membranes-10-00348" class="html-bibr">25</a>].</div><div class='html-p'>This review article presents a general description of articular cartilage, the problems faced by this organ, and the current methods for its treatment. Next, the requirements and materials for scaffolds in cartilage engineering are presented, along with general methods for their preparation. In this section, the requirements for scaffolds using chondrocytes and stem cells are also highlighted. The last section of the article presents scaffolds made of synthetic polymers and their combinations with natural materials (hybrid scaffolds). This work focuses on research fromthe last decade, taking into consideration scaffolds that are currently under development as well as those that have undergone or are undergoing clinical research.</div></section><section id='sec2-membranes-10-00348' type=''><h2 data-nested='1'> 2. Articular Cartilage and Clinical Strategies for Treatment</h2><div class='html-p'>Cartilage is a skeletal connective tissue classified into three types, for which hyaline is necessary to enable proper movement [<a href="#B23-membranes-10-00348" class="html-bibr">23</a>,<a href="#B26-membranes-10-00348" class="html-bibr">26</a>]. Cartilage is still a still problem for regenerative medicine because there is no effective treatment for its reconstruction. Currently, supportive treatment methods are used. Articular cartilage and its general treatment methods are briefly discussed in this section.</div><section id='sec2dot1-membranes-10-00348' type=''><h4 class='html-italic' data-nested='2'> 2.1. Articular Cartilage: Characteristics, Roles, Joint Diseases, and Traumatic Lesions</h4><div class='html-p'>Articular cartilage (AC) is a type of hyaline cartilage. It is a hard and elastic tissue located between the bones. AC is composed of spheroid cells called chondrocytes and is 10 to 13 μm in diameter [<a href="#B23-membranes-10-00348" class="html-bibr">23</a>]. These cells constitute about 2% of the total volume of AC and produce an extracellular matrix (ECM) that is rich, among others, in collagen type II and proteoglycans. As a solid phase, AC is porous and permeable. The main component of the fluid phase of AC is water with inorganic ions such as sodium, chloride, and potassium. Cells are protected by the surrounding ECM from damaging forces. Cartilage is an avascular and aneural tissue, so it has no ability to transfer nutrients to cells (ECM helps transfer nutrients to chondrocytes via diffusion from the synovial fluid). This means that cartilage does not have a self-repair ability, which is why the role of doctors and scientists in cartilage tissue engineering/regenerative medicine is important. The principle functions of AC are, among others, to protect the ends of the bones from damage caused by movement (acting as a shock absorber). AC provides the mechanical ability to withstand loads and impacts and also provides a low-friction gliding surface. Trauma, an unhealthy lifestyle, traffic accidents, or various diseases (e.g., gene mutations and autoimmune disorders) can damage the cartilage, causing pain, movement limitations, stiffness, swelling, and even disability [<a href="#B23-membranes-10-00348" class="html-bibr">23</a>,<a href="#B26-membranes-10-00348" class="html-bibr">26</a>,<a href="#B27-membranes-10-00348" class="html-bibr">27</a>,<a href="#B28-membranes-10-00348" class="html-bibr">28</a>,<a href="#B29-membranes-10-00348" class="html-bibr">29</a>]. Examples of joint-damaging diseases include obesity and osteoporosis. This leads to an abrasion of the cartilage, which loses its elasticity and resistance to friction. Initially, this process is painless due to the lack of innervation and blood supply in the cartilage (it cannot be regenerated). Cartilage wear involves slow joint death, which is a consequence of aging and the accumulation of injuries from youth. Many people with knee ligament or meniscus damage have damaged cartilage after a few years [<a href="#B28-membranes-10-00348" class="html-bibr">28</a>,<a href="#B30-membranes-10-00348" class="html-bibr">30</a>]. Another type of cartilage damage occurs due to the disease osteochondritis dissecans, in which the bone dies and is secreted into the joint with the cartilage covering it. This bone and cartilage can then fracture and become loose [<a href="#B31-membranes-10-00348" class="html-bibr">31</a>]. Next, juvenile idiopathic arthritis (JIA) is the most common type of childhood arthritis. This autoimmune disease is a chronic inflammatory process that damages the articular cartilage, induces bone epiphysis, and is responsible for extra-articular symptoms and systemic complications. This disease can occur at any stage of developmental age and its very wide symptomatology creates diagnostic problems, especially in the initial stages of the disease development [<a href="#B29-membranes-10-00348" class="html-bibr">29</a>,<a href="#B32-membranes-10-00348" class="html-bibr">32</a>]. The most common disease connected with articular cartilage defects is osteoarthritis (OA). This is the most common musculoskeletal disorder resulting from the degradation of cartilage and leads to a poor quality of life and disability. It can affect any joints in the body, including those in the knees, hips, spine, or fingers. Factors that can affect the development of this disease include genetic factors, obesity, inflammation, trauma, occupational factors, or metabolic syndrome. Moreover, OA progresses with age and mainly affects women. Without treatment, no recovery can be achieved [<a href="#B30-membranes-10-00348" class="html-bibr">30</a>,<a href="#B33-membranes-10-00348" class="html-bibr">33</a>,<a href="#B34-membranes-10-00348" class="html-bibr">34</a>,<a href="#B35-membranes-10-00348" class="html-bibr">35</a>,<a href="#B36-membranes-10-00348" class="html-bibr">36</a>].</div></section><section id='sec2dot2-membranes-10-00348' type=''><h4 class='html-italic' data-nested='2'> 2.2. Treatment Methods for Cartilage Regeneration</h4><div class='html-p'>Despite much research on the matter, there are no effective treatments for OA. Current clinical methods focus mostly on pain treatment and are not satisfactory [<a href="#B37-membranes-10-00348" class="html-bibr">37</a>]. Many clinical techniques to repair/regenerate cartilage are known. Which method will be used depends on factors such as the area of damage, the depth, location, associated damage, chronicity, and age, as well as the physical activity of the patient. The depth or degree of cartilage damage is a key factor that determines the choice of treatment method. In classifying the degree of damage, many divisions are used to describe both the depth and the area of damage. The most widely used system is the Outerbridge classification, which takes into account size and depth (<a href="#membranes-10-00348-t001" class="html-table">Table 1</a>) [<a href="#B38-membranes-10-00348" class="html-bibr">38</a>,<a href="#B39-membranes-10-00348" class="html-bibr">39</a>].</div><div class='html-p'>In grades I and II, conservative treatments, such as patient education, reduction of BMI, rehabilitation, or the application of pharmacological treatment and dieting, usually give good results. Surgical interventions are recommended for grades III or IV. The most commonly used surgical methods are the microfracture (MF) method, chondroplasty surgery, osteochondral transplantation, and mosaicplasty, as well as cell-based approaches, such as autologous chondrocyte implantation (ACI). The microfracture technique is used much more frequently than other techniques but is not satisfactory. In recent years, the progress of cartilage tissue engineering has provided great hope for the regeneration of damaged cartilage. In every case, the doctor must decide which method is appropriate to choose. Each method has its own indicators and limitations, as well as advantages and disadvantages. The most appropriate management should be implemented at every stage of cartilage damage. The more extensive and serious the damage is, the more difficult and complicated the therapy will be, and the lower the chance of a full recovery [<a href="#B22-membranes-10-00348" class="html-bibr">22</a>,<a href="#B24-membranes-10-00348" class="html-bibr">24</a>,<a href="#B25-membranes-10-00348" class="html-bibr">25</a>,<a href="#B40-membranes-10-00348" class="html-bibr">40</a>].</div><div class='html-p'>MF is a safe, minimally invasive, and cheap method for cartilage repair. MF is a subchondral bone marrow stimulation method where a blood clot fills the defect. This provides a suitable environment for tissue regeneration. Unfortunately, the MF technique promotes regeneration to fibrocartilage tissue with inferior biomechanical properties compared to hyaline cartilage [<a href="#B37-membranes-10-00348" class="html-bibr">37</a>,<a href="#B41-membranes-10-00348" class="html-bibr">41</a>].</div><div class='html-p'>More promising methods for the treatment of chondral lesion are cell-based approaches. These techniques enable the implantation of articular chondrocytes (ACs) from the patient in place of the defect. ACI with or without a scaffold is used in routine clinical practice. Three-dimensionalscaffolds serve as a temporary matrix for chondrocytes isolated from a healthy non-load-bearing area of the patient’s cartilage. Generally, the therapeutic cells are cultured in vitro on scaffolds. Then, a bio-implant is transplanted into the tissue defect. The scaffold is gradually degraded along with cartilage formation (<a href="#membranes-10-00348-f001" class="html-fig">Figure 1</a>) [<a href="#B22-membranes-10-00348" class="html-bibr">22</a>,<a href="#B25-membranes-10-00348" class="html-bibr">25</a>,<a href="#B40-membranes-10-00348" class="html-bibr">40</a>,<a href="#B42-membranes-10-00348" class="html-bibr">42</a>,<a href="#B43-membranes-10-00348" class="html-bibr">43</a>]. The schema in <a href="#membranes-10-00348-f002" class="html-fig">Figure 2</a> presents the ACI method with a scaffold, showing a version where ACs can be passaged to multiply them or placed directly in the scaffold for an in vitro culture.</div><div class='html-p'>Compared to MF, ACI allows the repair of larger cartilage defects. Moreover, studies indicate better results for ACI compared to MF [<a href="#B40-membranes-10-00348" class="html-bibr">40</a>,<a href="#B45-membranes-10-00348" class="html-bibr">45</a>]. Unfortunately, no current treatment for articular cartilage repair has recreated native hyaline cartilage. Current approaches reconstruct fibrocartilage, which is susceptible to further damage. However, combining different approaches, including advanced scaffolds, growth factors, or alternative cell types, such as mesenchymal stem cells (MSCs), provides an alternative for obtaining an effective cartilage treatment method. MSCs can be obtained from different sources, such as adipose tissue and bone marrow with the potential to differentiate into ACs. In addition, this approach can avoid the invasion of the joint for the initial harvesting of ACs [<a href="#B22-membranes-10-00348" class="html-bibr">22</a>,<a href="#B25-membranes-10-00348" class="html-bibr">25</a>,<a href="#B40-membranes-10-00348" class="html-bibr">40</a>,<a href="#B43-membranes-10-00348" class="html-bibr">43</a>,<a href="#B46-membranes-10-00348" class="html-bibr">46</a>,<a href="#B47-membranes-10-00348" class="html-bibr">47</a>,<a href="#B48-membranes-10-00348" class="html-bibr">48</a>,<a href="#B49-membranes-10-00348" class="html-bibr">49</a>,<a href="#B50-membranes-10-00348" class="html-bibr">50</a>,<a href="#B51-membranes-10-00348" class="html-bibr">51</a>].</div><div class='html-p'>Scaffolds can also serve as carriers of chondrogenic cells, MSCs, and the bioactive factors influencing chondrocyte growth and differentiation (growth factors) or their combinations. Recent treatments have indicated possibilities to regenerate articular cartilage using the surgical implantation of MSCs into articular cartilage lesions (<a href="#membranes-10-00348-f002" class="html-fig">Figure 2</a>). Scaffolds for MSCs should meet the appropriate parameters described in <a href="#sec3dot1-membranes-10-00348" class="html-sec">Section 3.1</a>.</div><div class='html-p'>Thanks to advances in medicine, it is now possible to collect stem cells not only from umbilical cord blood, endometrium, or bone marrow [<a href="#B46-membranes-10-00348" class="html-bibr">46</a>,<a href="#B47-membranes-10-00348" class="html-bibr">47</a>,<a href="#B49-membranes-10-00348" class="html-bibr">49</a>] but also from the adult tissues of each organism, especially from adipose tissue (AT) [<a href="#B47-membranes-10-00348" class="html-bibr">47</a>,<a href="#B52-membranes-10-00348" class="html-bibr">52</a>,<a href="#B53-membranes-10-00348" class="html-bibr">53</a>]. The main advantage of AT is its availability and abundance. Studies show that there are many times more stem cells in AT than in bone marrow. MSCs obtained from their own AT have a significant advantage over bone marrow cells due to their availability and large number. The collection procedure itself is also less painful and invasive for the patient [<a href="#B47-membranes-10-00348" class="html-bibr">47</a>,<a href="#B52-membranes-10-00348" class="html-bibr">52</a>,<a href="#B54-membranes-10-00348" class="html-bibr">54</a>,<a href="#B55-membranes-10-00348" class="html-bibr">55</a>].</div><div class='html-p'>In clinical methods, growth factors for ACs and MSCs are helpful. Studies have shown the effects of growth factors on chondrogenesis and the maintenance of the correct phenotypes of cells. These growth factors can be added to the medium or scaffold during cultivation. Polypeptide mediators, such as transforming growth factor β (TGF-β), insulin-like growth factor (IGF), and fibroblast growth factor (FGF), stimulate the proliferation of cartilage cells and stabilize their phenotypic expression and chondrogenesis. It has been shown that the therapeutic potential of growth factors in the process of cartilage regeneration is significant. Under the influence of these factors, tissue is formed, the histological structure and biochemical properties of which are similar to hyaline cartilage. Moreover, they hasten the healing of the defect and increase the content of type II collagen compared to I [<a href="#B46-membranes-10-00348" class="html-bibr">46</a>,<a href="#B53-membranes-10-00348" class="html-bibr">53</a>,<a href="#B56-membranes-10-00348" class="html-bibr">56</a>].</div></section></section><section id='sec3-membranes-10-00348' type=''><h2 data-nested='1'> 3. Scaffold for Articular Cartilage Repair: Requirements, Materials, and Method for Obtaining</h2><div class='html-p'>The role of scaffolds in cartilage tissue engineering is to provide a suitable environment for cells and guarantee success in the tissue regeneration process; this is possible by providing an environment similar to native articular cartilage. Therefore, scaffolds must possess adequate parameters, such as correct architecture, biocompatibility, degradability, or specific chemical and physical properties. This can be achieved through the choice of appropriate materials, additives, such as pore precursors, and manufacturing methods [<a href="#B17-membranes-10-00348" class="html-bibr">17</a>,<a href="#B57-membranes-10-00348" class="html-bibr">57</a>].</div><div class='html-p'>This section presents the requirements for scaffolds in tissue cartilage engineering, the available materials, and techniques for obtaining said scaffolds.</div><section id='sec3dot1-membranes-10-00348' type=''><h4 class='html-italic' data-nested='2'> 3.1. Requirements for Scaffolds</h4><div class='html-p'>Scaffolds for cartilage tissue engineering should provide an appropriate environment and enable cell adhesion, migration, and development by having an appropriate architecture, controlled degradability, adequate mechanical parameters, and good biocompatibility. Many structural features, including porosity, pore size, interconnectivity, and permeability, play a meaningful role in AC development and cartilage regeneration [<a href="#B15-membranes-10-00348" class="html-bibr">15</a>,<a href="#B17-membranes-10-00348" class="html-bibr">17</a>,<a href="#B51-membranes-10-00348" class="html-bibr">51</a>,<a href="#B57-membranes-10-00348" class="html-bibr">57</a>]. A three-dimensional design for scaffolds is necessary to prevent the dedifferentiation of chondrocytes into fibroblast-like cells or the chondrogenesis of MSCs [<a href="#B50-membranes-10-00348" class="html-bibr">50</a>,<a href="#B58-membranes-10-00348" class="html-bibr">58</a>,<a href="#B59-membranes-10-00348" class="html-bibr">59</a>,<a href="#B60-membranes-10-00348" class="html-bibr">60</a>]. Chondrocytes cultivated on flat surfaces lose their ability to produce particular proteins that are necessary to the formation of hyaline cartilage [<a href="#B61-membranes-10-00348" class="html-bibr">61</a>,<a href="#B62-membranes-10-00348" class="html-bibr">62</a>]. A highly porous membrane with an interconnected macro-pore network can improve cell seeding, cell migration, cell development, and tissue ingrowth [<a href="#B19-membranes-10-00348" class="html-bibr">19</a>,<a href="#B50-membranes-10-00348" class="html-bibr">50</a>]. Moreover, the membrane’s structure should be micro-porous to ensure the diffusion of oxygen, nutrients, and metabolism products. Regulated and controlled biodegradation are relevant to the formation of newly regenerating tissue cartilage and mainly depend on the materials used. The products released during degradation should be non-toxic to the body and easily removable. Scaffolds should maintain appropriate parameters in their stiffness, strength, and flexibility, conducive to integration and further tissue development. These parameters are important during cultivation and especially after implantation into the body due to the conditions in the knee [<a href="#B15-membranes-10-00348" class="html-bibr">15</a>,<a href="#B19-membranes-10-00348" class="html-bibr">19</a>,<a href="#B44-membranes-10-00348" class="html-bibr">44</a>,<a href="#B50-membranes-10-00348" class="html-bibr">50</a>,<a href="#B51-membranes-10-00348" class="html-bibr">51</a>,<a href="#B57-membranes-10-00348" class="html-bibr">57</a>,<a href="#B58-membranes-10-00348" class="html-bibr">58</a>,<a href="#B59-membranes-10-00348" class="html-bibr">59</a>,<a href="#B63-membranes-10-00348" class="html-bibr">63</a>,<a href="#B64-membranes-10-00348" class="html-bibr">64</a>,<a href="#B65-membranes-10-00348" class="html-bibr">65</a>]. Moreover, the parameters of scaffolds should be adapted to the types of cells. The sizes of the macro-pores must also be properly adjusted to the types of cells [<a href="#B15-membranes-10-00348" class="html-bibr">15</a>,<a href="#B17-membranes-10-00348" class="html-bibr">17</a>,<a href="#B19-membranes-10-00348" class="html-bibr">19</a>,<a href="#B64-membranes-10-00348" class="html-bibr">64</a>]. Pore sizes of about 150–250 µm are desirable for ACs, whereas large pore sizes of more than 300 µm are adequate for MSCs. Using the right pore sizes will support cell proliferation, the preservation of an appropriate phenotype, and chondrogenic differentiation (<a href="#membranes-10-00348-f003" class="html-fig">Figure 3</a>) [<a href="#B17-membranes-10-00348" class="html-bibr">17</a>,<a href="#B20-membranes-10-00348" class="html-bibr">20</a>,<a href="#B64-membranes-10-00348" class="html-bibr">64</a>,<a href="#B66-membranes-10-00348" class="html-bibr">66</a>,<a href="#B67-membranes-10-00348" class="html-bibr">67</a>,<a href="#B68-membranes-10-00348" class="html-bibr">68</a>,<a href="#B69-membranes-10-00348" class="html-bibr">69</a>,<a href="#B70-membranes-10-00348" class="html-bibr">70</a>].</div><div class='html-p'>To obtain an appropriate scaffold structure depends on the relevant methods, materials, and pore precursors. One way to obtain suitable pores is the use of nonwovens produced by the electrospinning method. Depending on the nonwoven used, pores of 150 µm or greater can be produced [<a href="#B71-membranes-10-00348" class="html-bibr">71</a>,<a href="#B72-membranes-10-00348" class="html-bibr">72</a>]. To obtain information on the sizes of the pores in scaffolds, specialized programs can be used. One such program is MeMoExplorer™, an advanced membrane morphology software that analyzes SEM images. This software enables the contouring of pores and the measurement of their surfaces. These pores are partitioned into various size-classes, and measurements of the total areas (porosity coefficients) are provided [<a href="#B73-membranes-10-00348" class="html-bibr">73</a>,<a href="#B74-membranes-10-00348" class="html-bibr">74</a>]. Moreover, using pore precursors such aspoly(vinyl pyrrolidone) or poly(ethylene glycol) can improve the hydrophilicity and mechanical properties of membranes. This is important due to the hydrophobic nature of most synthetic polymers used for scaffold manufacturing [<a href="#B67-membranes-10-00348" class="html-bibr">67</a>,<a href="#B75-membranes-10-00348" class="html-bibr">75</a>]</div><div class='html-p'>Thus, physical parameters such as stiffness, the structures of scaffolds (e.g., pore size, interconnection, and porosity), and culture conditions are important for the fate of the cells. The different conditions for ACs and MSCs are presented above.</div></section><section id='sec3dot2-membranes-10-00348' type=''><h4 class='html-italic' data-nested='2'> 3.2. Materials Intended for Scaffolds</h4><div class='html-p'>Materials for scaffolds should be biocompatible, exhibit adequate mechanical parameters, and be biodegradable into non-toxic and non-inflammatory components in the host organism. These materials should also be resistant to the conditions in the body, such as pH and body temperature. Therefore, appropriate materials for the production of scaffolds should be selected. Such materials can be made of synthetic or natural polymers or a combination of both (i.e., hybrid materials (hybrid)) [<a href="#B17-membranes-10-00348" class="html-bibr">17</a>,<a href="#B25-membranes-10-00348" class="html-bibr">25</a>,<a href="#B51-membranes-10-00348" class="html-bibr">51</a>,<a href="#B57-membranes-10-00348" class="html-bibr">57</a>,<a href="#B64-membranes-10-00348" class="html-bibr">64</a>,<a href="#B76-membranes-10-00348" class="html-bibr">76</a>]. Natural materials such as collagen [<a href="#B64-membranes-10-00348" class="html-bibr">64</a>,<a href="#B69-membranes-10-00348" class="html-bibr">69</a>,<a href="#B77-membranes-10-00348" class="html-bibr">77</a>], hyaluronic acid (HA) [<a href="#B78-membranes-10-00348" class="html-bibr">78</a>,<a href="#B79-membranes-10-00348" class="html-bibr">79</a>], chitosan (CH) [<a href="#B80-membranes-10-00348" class="html-bibr">80</a>,<a href="#B81-membranes-10-00348" class="html-bibr">81</a>], chondroitin sulfate (CS) [<a href="#B82-membranes-10-00348" class="html-bibr">82</a>,<a href="#B83-membranes-10-00348" class="html-bibr">83</a>], and fibrin [<a href="#B25-membranes-10-00348" class="html-bibr">25</a>,<a href="#B84-membranes-10-00348" class="html-bibr">84</a>,<a href="#B85-membranes-10-00348" class="html-bibr">85</a>] are widely used in the production of scaffolds for cartilage regeneration. These materials are characterized by their high biocompatibility and bioactivity. Due to their origins, these materials have properties similar to those of native tissues, and most of such materials naturally occur in the human body. These materials support cell attachment and stimulate the production of the ECM. Unfortunately, natural materials have disadvantages. Because of their rapid hydrolysis, natural materials quickly lose their properties suitable for the scaffold structure. Their low mechanical stability is also not adequate to support cells, and their products are thus insufficient for the regeneration of tissue. Moreover, the methods for obtaining such materials are limited due to the low resistance of natural polymers to changes in process parameters, such as high temperatures [<a href="#B25-membranes-10-00348" class="html-bibr">25</a>,<a href="#B50-membranes-10-00348" class="html-bibr">50</a>,<a href="#B51-membranes-10-00348" class="html-bibr">51</a>,<a href="#B57-membranes-10-00348" class="html-bibr">57</a>,<a href="#B59-membranes-10-00348" class="html-bibr">59</a>,<a href="#B64-membranes-10-00348" class="html-bibr">64</a>,<a href="#B76-membranes-10-00348" class="html-bibr">76</a>,<a href="#B86-membranes-10-00348" class="html-bibr">86</a>].Synthetic polymers, such as poly(ethylene glycol) (PEG) [<a href="#B87-membranes-10-00348" class="html-bibr">87</a>,<a href="#B88-membranes-10-00348" class="html-bibr">88</a>], polycaprolactone (PCL) [<a href="#B89-membranes-10-00348" class="html-bibr">89</a>,<a href="#B90-membranes-10-00348" class="html-bibr">90</a>], polylactic acid (PLA) [<a href="#B87-membranes-10-00348" class="html-bibr">87</a>,<a href="#B91-membranes-10-00348" class="html-bibr">91</a>,<a href="#B92-membranes-10-00348" class="html-bibr">92</a>], polyurethane [<a href="#B93-membranes-10-00348" class="html-bibr">93</a>,<a href="#B94-membranes-10-00348" class="html-bibr">94</a>], poly(glycolic acid) (PGA) [<a href="#B87-membranes-10-00348" class="html-bibr">87</a>,<a href="#B95-membranes-10-00348" class="html-bibr">95</a>], polyethersulfone (PES) [<a href="#B96-membranes-10-00348" class="html-bibr">96</a>,<a href="#B97-membranes-10-00348" class="html-bibr">97</a>,<a href="#B98-membranes-10-00348" class="html-bibr">98</a>,<a href="#B99-membranes-10-00348" class="html-bibr">99</a>], and polysulfone [<a href="#B100-membranes-10-00348" class="html-bibr">100</a>,<a href="#B101-membranes-10-00348" class="html-bibr">101</a>], are more diverse and promising. Some of these materials have been approved by the FDA for clinical human use [<a href="#B49-membranes-10-00348" class="html-bibr">49</a>,<a href="#B51-membranes-10-00348" class="html-bibr">51</a>,<a href="#B57-membranes-10-00348" class="html-bibr">57</a>,<a href="#B102-membranes-10-00348" class="html-bibr">102</a>,<a href="#B103-membranes-10-00348" class="html-bibr">103</a>,<a href="#B104-membranes-10-00348" class="html-bibr">104</a>,<a href="#B105-membranes-10-00348" class="html-bibr">105</a>]. Unfortunately, decisions of the FDA may be overturned. This change is associated with a new validation request, which is a long and difficult process. Unlike natural materials, synthetic polymers can be used to produce various shapes of membranes via many techniques and provide cell attachment, as well as good mechanical, physical, and chemical properties that can be modified to improve the parameters of the material. Most of these polymers degrade into components that are metabolized in the body. Moreover, the mechanical properties and degradation time can be controlled by combining these polymers (as copolymers or blends) [<a href="#B20-membranes-10-00348" class="html-bibr">20</a>,<a href="#B59-membranes-10-00348" class="html-bibr">59</a>,<a href="#B64-membranes-10-00348" class="html-bibr">64</a>,<a href="#B74-membranes-10-00348" class="html-bibr">74</a>,<a href="#B76-membranes-10-00348" class="html-bibr">76</a>,<a href="#B86-membranes-10-00348" class="html-bibr">86</a>,<a href="#B102-membranes-10-00348" class="html-bibr">102</a>,<a href="#B106-membranes-10-00348" class="html-bibr">106</a>,<a href="#B107-membranes-10-00348" class="html-bibr">107</a>,<a href="#B108-membranes-10-00348" class="html-bibr">108</a>,<a href="#B109-membranes-10-00348" class="html-bibr">109</a>,<a href="#B110-membranes-10-00348" class="html-bibr">110</a>,<a href="#B111-membranes-10-00348" class="html-bibr">111</a>,<a href="#B112-membranes-10-00348" class="html-bibr">112</a>,<a href="#B113-membranes-10-00348" class="html-bibr">113</a>].</div><div class='html-p'>Synthetic materials, like natural materials, have some disadvantages. One of them is an unexpected degradation time, which can cause brittleness of the scaffolds, even during culturing [<a href="#B59-membranes-10-00348" class="html-bibr">59</a>]. One example is PLA, which can be influenced by the use of a PLA copolymer with PCL or PEG and will affect the quality of the material [<a href="#B107-membranes-10-00348" class="html-bibr">107</a>,<a href="#B110-membranes-10-00348" class="html-bibr">110</a>,<a href="#B114-membranes-10-00348" class="html-bibr">114</a>]. Synthetic materials also lack desirable biological properties [<a href="#B115-membranes-10-00348" class="html-bibr">115</a>]. Moreover, the degradation products can result in side-effects for the host organism. These side-effects mostly involve acids that can be toxic to cells during cultivation or even elicit an inflammatory response in the host organism [<a href="#B59-membranes-10-00348" class="html-bibr">59</a>,<a href="#B86-membranes-10-00348" class="html-bibr">86</a>,<a href="#B103-membranes-10-00348" class="html-bibr">103</a>,<a href="#B116-membranes-10-00348" class="html-bibr">116</a>].</div><div class='html-p'>To date, studies have been conducted to obtain hybrid materials. Hybrid scaffolds combine the advantages of both synthetic and natural materials, allowing one to obtain membranes with defined mechanical properties featuring the retained bio-functionality and tunable degradation necessary for the regeneration of cartilage [<a href="#B51-membranes-10-00348" class="html-bibr">51</a>,<a href="#B57-membranes-10-00348" class="html-bibr">57</a>,<a href="#B58-membranes-10-00348" class="html-bibr">58</a>,<a href="#B115-membranes-10-00348" class="html-bibr">115</a>].</div></section><section id='sec3dot3-membranes-10-00348' type=''><h4 class='html-italic' data-nested='2'> 3.3. Methods for Obtaining Scaffolds</h4><div class='html-p'>The desired architecture, mechanical parameters, and forms of a scaffold can be obtained by selecting appropriate scaffold production methods. Scaffolds can be formed into 3D membranes (sponges), hydrogels, nonwovens (nanofibers) (<a href="#membranes-10-00348-f004" class="html-fig">Figure 4</a>), or combinations thereof.</div><div class='html-p'>The literature describes many methods for producing a network of connected pores offering control over the mechanical properties and the time of scaffold degradation. This section will present the most popular techniques for obtaining synthetic and hybrid scaffolds for cartilage tissue engineering [<a href="#B17-membranes-10-00348" class="html-bibr">17</a>,<a href="#B19-membranes-10-00348" class="html-bibr">19</a>,<a href="#B21-membranes-10-00348" class="html-bibr">21</a>,<a href="#B40-membranes-10-00348" class="html-bibr">40</a>,<a href="#B59-membranes-10-00348" class="html-bibr">59</a>,<a href="#B86-membranes-10-00348" class="html-bibr">86</a>,<a href="#B117-membranes-10-00348" class="html-bibr">117</a>,<a href="#B118-membranes-10-00348" class="html-bibr">118</a>].</div><div class='html-p'>One of the most frequently used methods is phase inversion. Depending on the factor that induces the phase separation of the polymer solution, phase inversion can be carried out in two ways. One such method involves the temperature. This method is called thermal-induced phase separation (TIPS) and can be performed in liquid–liquid and liquid–solid systems, where the temperature of the process is appropriately selected. This method can obtain large and small pores with different membrane porosities [<a href="#B59-membranes-10-00348" class="html-bibr">59</a>,<a href="#B66-membranes-10-00348" class="html-bibr">66</a>,<a href="#B119-membranes-10-00348" class="html-bibr">119</a>,<a href="#B120-membranes-10-00348" class="html-bibr">120</a>,<a href="#B121-membranes-10-00348" class="html-bibr">121</a>]. In the second case, the phase inversion factor is non-solvent. This is the so-called non-solvent induced phase separation (NIPS) method. Here, the properly formed polymer solution is immersed into a non-solvent of the polymer. The phase inversion then produces a membrane. In these cases, like with the TIPS method, membranes with different porosities and pore sizes can be obtained [<a href="#B122-membranes-10-00348" class="html-bibr">122</a>,<a href="#B123-membranes-10-00348" class="html-bibr">123</a>,<a href="#B124-membranes-10-00348" class="html-bibr">124</a>]. A variant of this method involves adding a pore precursor to a previously prepared polymer solution or during the formation of a membrane. This approach promotes the formation of larger pore sizes and higher porosity. Pore precursors are ultimately removed from the scaffold by an appropriate solvent (porogen-leaching) [<a href="#B71-membranes-10-00348" class="html-bibr">71</a>,<a href="#B97-membranes-10-00348" class="html-bibr">97</a>,<a href="#B117-membranes-10-00348" class="html-bibr">117</a>,<a href="#B118-membranes-10-00348" class="html-bibr">118</a>,<a href="#B125-membranes-10-00348" class="html-bibr">125</a>,<a href="#B126-membranes-10-00348" class="html-bibr">126</a>,<a href="#B127-membranes-10-00348" class="html-bibr">127</a>]. Another similar method is solvent-casting particulate leaching (SCPL). This method involves dispersing salt particles in a biocompatible polymer solution. The solvent used to dissolve the polymer is then evaporated to obtain a polymer/salt composite membrane. Then, the salt is leached out by dipping the membrane into water or other salt solvents (not polymer solvents). The obtained membrane is dried to produce a porous compatible membrane. The most commonly used pore precursors are sodium bicarbonate, sodium chloride, and a sodium acetate preparation of polycaprolactone [<a href="#B128-membranes-10-00348" class="html-bibr">128</a>].</div><div class='html-p'>The freeze-drying technique is a method that uses the sublimation process. In the first step, the polymer is dissolved in a suitable solvent, and then the polymer solution is cooled to its freezing point. In this way, by means of sublimation, the solid solvent is evaporated to obtain a scaffold with multiple pores. With this technique, the dissolved substances can be separated in the ice phase and a small porous structure can be obtained. The final scaffolds are then formed after the final drying. The advantage of this method is its application in biomedical contexts due to the use of water and ice crystals instead of organic solvents in the preparation of the scaffolds. One is also able to control the sizes of the pores by changing the freezing method. The disadvantages of this method are its high energy consumption and a long preparation process [<a href="#B21-membranes-10-00348" class="html-bibr">21</a>,<a href="#B59-membranes-10-00348" class="html-bibr">59</a>,<a href="#B117-membranes-10-00348" class="html-bibr">117</a>,<a href="#B118-membranes-10-00348" class="html-bibr">118</a>].</div><div class='html-p'>Another common method used to obtain scaffolds is electrospinning. This is a simple and effective technique that can obtain nonwovens from both natural and synthetic polymers. In this method, electrostatic forces are used to produce fibers or spheres with different morphologies and sizes at the micrometer and nanometer scales. Electrospun scaffolds can be characterized by their high porosity, good mechanical properties, and flexibility [<a href="#B117-membranes-10-00348" class="html-bibr">117</a>,<a href="#B129-membranes-10-00348" class="html-bibr">129</a>,<a href="#B130-membranes-10-00348" class="html-bibr">130</a>,<a href="#B131-membranes-10-00348" class="html-bibr">131</a>,<a href="#B132-membranes-10-00348" class="html-bibr">132</a>]. Moreover, the fibers can be modified using this method, e.g., by functionalizing the fiber surface via enzyme immobilization [<a href="#B133-membranes-10-00348" class="html-bibr">133</a>,<a href="#B134-membranes-10-00348" class="html-bibr">134</a>]. Therefore, the fibers obtained by the electrospinning technique have wide biomedical applications in addition to their use as scaffolds in tissue engineering [<a href="#B129-membranes-10-00348" class="html-bibr">129</a>,<a href="#B130-membranes-10-00348" class="html-bibr">130</a>,<a href="#B131-membranes-10-00348" class="html-bibr">131</a>,<a href="#B135-membranes-10-00348" class="html-bibr">135</a>]. </div><div class='html-p'>The aforementioned methods are considered conventional. A group of more advanced methods, known as rapid prototyping (RP) techniques, enable the production of three-dimensional objects with precise spatial control over the polymer structure. In this way, scaffolds can be obtained gradually, layer by layer, according to computerized data, such as computer-aided design (CAD) or computed tomography (CT) data [<a href="#B5-membranes-10-00348" class="html-bibr">5</a>,<a href="#B59-membranes-10-00348" class="html-bibr">59</a>,<a href="#B136-membranes-10-00348" class="html-bibr">136</a>]. The most common and popular RP techniques involve 3D printing (3DP). As mentioned above, 3DP consists of creating tools and prototype functions directly from computer models. This technique is carried out by applying powdered material in layers and selectively fusing the powder through “inkjet printing” the adhesive. Then, after the layers are deposited, the unbound powder is removed and a 3D object is obtained. Three-dimensional printing can be used to precisely control the structures of the scaffolds at the micron level; however, it requires close monitoring of the tissue structure and the mechanical properties of the scaffold. The 3DP technique also includes bioprinting [<a href="#B5-membranes-10-00348" class="html-bibr">5</a>,<a href="#B137-membranes-10-00348" class="html-bibr">137</a>,<a href="#B138-membranes-10-00348" class="html-bibr">138</a>,<a href="#B139-membranes-10-00348" class="html-bibr">139</a>,<a href="#B140-membranes-10-00348" class="html-bibr">140</a>]. Another RP method is selective laser sintering (SLS), where a laser is the power source used to sinter the powdered material. The advantage of this technique is the excellent control it offers over the microstructures of the obtained scaffolds by adjusting the process parameters, e.g., the percentage composition of the mixed polymer/composite powder blend. Moreover, this method can use ultra-high molecular weights of polyethylene. Unfortunately, in this process, an additional procedure is required to remove the injected powder, which, in addition to its high operating temperature, is the main disadvantage of SLS [<a href="#B5-membranes-10-00348" class="html-bibr">5</a>,<a href="#B141-membranes-10-00348" class="html-bibr">141</a>]. In addition to RP, relevant methods include stereolithography (SLA) [<a href="#B142-membranes-10-00348" class="html-bibr">142</a>,<a href="#B143-membranes-10-00348" class="html-bibr">143</a>,<a href="#B144-membranes-10-00348" class="html-bibr">144</a>] and fused deposition modeling (FDM) for creating an object through the controlled deposition of molten material [<a href="#B5-membranes-10-00348" class="html-bibr">5</a>,<a href="#B145-membranes-10-00348" class="html-bibr">145</a>,<a href="#B146-membranes-10-00348" class="html-bibr">146</a>].</div><div class='html-p'>The scaffold material, biological factors, and even cells can be used in RP methods. These elements make it possible to obtain a construct with a precise, controllable, and complex internal structure featuring appropriate mechanical properties [<a href="#B59-membranes-10-00348" class="html-bibr">59</a>,<a href="#B118-membranes-10-00348" class="html-bibr">118</a>,<a href="#B136-membranes-10-00348" class="html-bibr">136</a>,<a href="#B137-membranes-10-00348" class="html-bibr">137</a>,<a href="#B147-membranes-10-00348" class="html-bibr">147</a>,<a href="#B148-membranes-10-00348" class="html-bibr">148</a>]. A combination of the above methods can obtain hybrid membranes, which are important due to the sensitivity of some materials to technological conditions, such as temperature. This approach can obtain scaffolds with appropriate mechanical properties as well as appropriate biological parameters. For example, it is possible to combine electrospinning techniques with 3D printing [<a href="#B118-membranes-10-00348" class="html-bibr">118</a>,<a href="#B149-membranes-10-00348" class="html-bibr">149</a>,<a href="#B150-membranes-10-00348" class="html-bibr">150</a>,<a href="#B151-membranes-10-00348" class="html-bibr">151</a>].</div><div class='html-p'>Cross-linking should also be mentioned as a common method used for the preparation of hybrid scaffolds. Cross-linking can be done in essentially two ways: (1) the formation of a multi-functional molecule with a low molecular weight, resulting in higher molecular weight branched structures and, ultimately, continuous cross-linked structures, and (2) obtaining a networked structure by bonding long linear polymer molecules. Cross-linked polymers have properties that give them numerous applications, including their (1) resistance to solvents, (2) common high softening and heat-distortion temperatures, and (3) excellent dimensional stability. In freeze-drying and cross-linking techniques, it is possible to cross-link polymers during freeze-drying fabrication. [<a href="#B152-membranes-10-00348" class="html-bibr">152</a>,<a href="#B153-membranes-10-00348" class="html-bibr">153</a>,<a href="#B154-membranes-10-00348" class="html-bibr">154</a>]. Cross-linking polymerization is commonly used to produce hydrogels using hydrophilic monomers with cross-linkers. The components can be of both natural and synthetic origin [<a href="#B155-membranes-10-00348" class="html-bibr">155</a>]. <a href="#membranes-10-00348-t002" class="html-table">Table 2</a> presents the advantages and disadvantages of the methods for obtaining scaffolds.</div></section></section><section id='sec4-membranes-10-00348' type=''><h2 data-nested='1'> 4. Scaffolds for Cartilage Treatment</h2><div class='html-p'>Scaffolds for cartilage regeneration can be made of synthetic or natural polymers or acombination of both (a hybrid scaffold). Commercial scaffolds for regenerative cartilage are mainly made of natural materials, such as collagen or hyaluronic acid [<a href="#B40-membranes-10-00348" class="html-bibr">40</a>,<a href="#B44-membranes-10-00348" class="html-bibr">44</a>,<a href="#B156-membranes-10-00348" class="html-bibr">156</a>]. Due to the disadvantages of natural materials, research is underway to obtain scaffolds from synthetic and hybrid materials with the addition of biological components—membranes where the advantages of both synthetic and natural materials are taken into account [<a href="#B40-membranes-10-00348" class="html-bibr">40</a>,<a href="#B51-membranes-10-00348" class="html-bibr">51</a>,<a href="#B64-membranes-10-00348" class="html-bibr">64</a>]. This section presents scaffolds made of natural, synthetic, and hybrid materials, along with a short description of them (<a href="#membranes-10-00348-t003" class="html-table">Table 3</a>). </div><section id='sec4dot1-membranes-10-00348' type=''><h4 class='html-italic' data-nested='2'> 4.1. Natural Scaffolds</h4><div class='html-p'>Natural scaffolds are characterized by high bioactivity, biocompatibility, and biodegradability to non-toxic components. Due to their composition of natural materials, these scaffolds are similar to native tissue, which means that their presence creates an ideal environment for cells. Thus, the main advantage of natural polymers is their similarity to cartilage’s ECM components. Their presence appropriately stimulates chondrogenesis and the maintenance of the cellular phenotypes of chondrocytes. These scaffolds affect the adhesion and proliferation of the cell and cell proliferation. Therefore, products used in cartilage regenerative medicine are mainly made of natural materials. <a href="#membranes-10-00348-t004" class="html-table">Table 4</a> shows examples of commercial scaffolds, including their materials and basic characteristics. Scaffolds are mostly made of collagen, the main component of cartilage ECM. Unfortunately, these scaffolds often do not meet the necessary requirements, as they quickly lose their structure (sensitivity to an aquatic environment) and transform into a gel-like form. They are also not mechanically strong enough to support the cells and regenerated tissue. Thus, this kind of membrane does not have suitable properties to create hyaline cartilage. As a result of regeneration, non-valuable fibrous cartilage is obtained, which is susceptible to future damage [<a href="#B40-membranes-10-00348" class="html-bibr">40</a>,<a href="#B50-membranes-10-00348" class="html-bibr">50</a>,<a href="#B51-membranes-10-00348" class="html-bibr">51</a>,<a href="#B57-membranes-10-00348" class="html-bibr">57</a>,<a href="#B76-membranes-10-00348" class="html-bibr">76</a>,<a href="#B111-membranes-10-00348" class="html-bibr">111</a>,<a href="#B156-membranes-10-00348" class="html-bibr">156</a>,<a href="#B173-membranes-10-00348" class="html-bibr">173</a>].</div><div class='html-p'>Because natural materials usually have poor mechanical properties, they are often insufficient to regenerate a given tissue. An additional disadvantage is their limited processing methods resulting from the low resistance of the materials to changes in process parameters (e.g., pH, high-temperature, and pressure). For this reason, natural scaffolds do not have the desired parameters. Additionally, the regenerated cartilage is not hyaline cartilage but fibrocartilage with inferior properties.</div></section><section id='sec4dot2-membranes-10-00348' type=''><h4 class='html-italic' data-nested='2'> 4.2. Hydrogel Scaffolds</h4><div class='html-p'>Scaffolds of a hydrogel formare of great interest in cartilage regenerative engineering. These scaffolds are formed as a result of the cross-linking of natural and synthetic (or both) polymers and are characterized by their ability to absorb water or biological fluids. All these features make such scaffolds very similar to natural cartilage ECM [<a href="#B155-membranes-10-00348" class="html-bibr">155</a>,<a href="#B178-membranes-10-00348" class="html-bibr">178</a>,<a href="#B179-membranes-10-00348" class="html-bibr">179</a>].</div><div class='html-p'>Unfortunately, like natural scaffolds, hydrogel scaffolds have one major disadvantage. Due to their solubility in aquatic conditions, these scaffolds have low mechanical strength, which makes them difficult to handle [<a href="#B105-membranes-10-00348" class="html-bibr">105</a>,<a href="#B178-membranes-10-00348" class="html-bibr">178</a>]. Intensive studies are currently underway on the development of hydrogels from synthetic and hybrid materials [<a href="#B49-membranes-10-00348" class="html-bibr">49</a>,<a href="#B53-membranes-10-00348" class="html-bibr">53</a>,<a href="#B176-membranes-10-00348" class="html-bibr">176</a>,<a href="#B177-membranes-10-00348" class="html-bibr">177</a>,<a href="#B180-membranes-10-00348" class="html-bibr">180</a>]. Yang etal. obtained a synthetic hydrogel scaffold with the strength and modulus of native cartilage. This scaffold was composed of a bacterial cellulose (BC) nanofiber network with a PVA–poly(2-acrylamido-2-methyl-1-propanesulfonic acid sodium salt) (PAMPS) double-network hydrogel. BC was chosen as the nanofiber network due to its high tensile strength, biocompatibility, and lack of the enzymes necessary to degrade cellulose in the human body. Moreover, BC mimics collagen. The second layer of the PVA hydrogel provides elasticity, viscoelastic energy dissipation, and tensile resistance by allowing the BC fibers to share the load in the composite framework. This is an example of a scaffold with promising performance for further research in cartilage tissue engineering [<a href="#B180-membranes-10-00348" class="html-bibr">180</a>].An example of a hybrid hydrogel scaffold is gelatin/polycaprolactone–polyethylene glycol (Gel/PCEC-TGFβ1) (<a href="#membranes-10-00348-t003" class="html-table">Table 3</a>).This scaffold uses both natural and synthetic polymers and growth factors. It was prepared and evaluated for human mesenchymal stem cells derived from adipose tissue (h-AD-MSCs). During the study, the tests indicated the expression of cartilage-specific genes, such as collagen type II and aggrecan, showing promising results and potential for further research on cartilage regeneration [<a href="#B165-membranes-10-00348" class="html-bibr">165</a>]. </div><div class='html-p'>So-called injectable hydrogels have gained interest in medicine for local deformation in cartilage. In this process, a mixture of the patient’s expanded cells with the hydrogel is injected into the cartilage-damaged area. In the body, cells gradually multiply and the hydrogel is degraded. The advantage of this method is its low invasiveness and the possibility of its precise adjustment to the defect [<a href="#B49-membranes-10-00348" class="html-bibr">49</a>,<a href="#B53-membranes-10-00348" class="html-bibr">53</a>,<a href="#B179-membranes-10-00348" class="html-bibr">179</a>]. There are numerous ongoing/recruiting clinical trials using sealant gel-based MSC constructs for cartilage regeneration [<a href="#B49-membranes-10-00348" class="html-bibr">49</a>,<a href="#B176-membranes-10-00348" class="html-bibr">176</a>]. Some of them (CARTISTEM<sup>®</sup>, CaReS<sup>®</sup>, and Cartipatch<sup>®</sup>)were approved for clinical usage (<a href="#membranes-10-00348-t004" class="html-table">Table 4</a>) [<a href="#B49-membranes-10-00348" class="html-bibr">49</a>,<a href="#B176-membranes-10-00348" class="html-bibr">176</a>,<a href="#B177-membranes-10-00348" class="html-bibr">177</a>].</div></section><section id='sec4dot3-membranes-10-00348' type=''><h4 class='html-italic' data-nested='2'> 4.3. Synthetic Scaffolds </h4><div class='html-p'>Research on using synthetic scaffolds for the regeneration of cartilage has been described in numerous studies. These scaffolds are characterized by their biocompatibility, biodegradability, and good mechanical properties and can be obtained by various methods due to their better resistance to physicochemical properties compared to natural membranes. Currently, few synthetic scaffolds are being tested in clinical trials for their use in cartilage regeneration [<a href="#B51-membranes-10-00348" class="html-bibr">51</a>].</div><div class='html-p'>An example of a commercial scaffold made from synthetic materials is the BioSeed<sup>®</sup>-C (Biotissue) membrane. This membrane is composed of PGA/PLA and PDS materials and is characterized by bioresorbability, elasticity, and the ability to be cut without fraying. This membrane’s adequate 3D structure and the stability of the environment during culturing stimulate the patient’s cells to differentiate [<a href="#B156-membranes-10-00348" class="html-bibr">156</a>]. The clinical outcomes at 4 years after implantation showed promising curativeresults for cartilage defects of the knee [<a href="#B157-membranes-10-00348" class="html-bibr">157</a>].</div><div class='html-p'>The most commonly used synthetic materials for the production of scaffolds for cartilage repair are PLA [<a href="#B66-membranes-10-00348" class="html-bibr">66</a>,<a href="#B181-membranes-10-00348" class="html-bibr">181</a>,<a href="#B182-membranes-10-00348" class="html-bibr">182</a>], PCL [<a href="#B91-membranes-10-00348" class="html-bibr">91</a>,<a href="#B159-membranes-10-00348" class="html-bibr">159</a>,<a href="#B160-membranes-10-00348" class="html-bibr">160</a>,<a href="#B183-membranes-10-00348" class="html-bibr">183</a>,<a href="#B184-membranes-10-00348" class="html-bibr">184</a>], and copolymers such as PLGA [<a href="#B185-membranes-10-00348" class="html-bibr">185</a>,<a href="#B186-membranes-10-00348" class="html-bibr">186</a>,<a href="#B187-membranes-10-00348" class="html-bibr">187</a>,<a href="#B188-membranes-10-00348" class="html-bibr">188</a>] and PLCA [<a href="#B154-membranes-10-00348" class="html-bibr">154</a>,<a href="#B163-membranes-10-00348" class="html-bibr">163</a>,<a href="#B189-membranes-10-00348" class="html-bibr">189</a>]. Christensen et al. used a nanostructured porous polycaprolactone (NSP-PCL) scaffold [<a href="#B159-membranes-10-00348" class="html-bibr">159</a>] and compared its in vivo and in vitro outcomes in a rabbit model with a commercial Chondro-Gide<sup>®</sup> scaffold. The observation time was 13 weeks, and the results were better for the synthetic scaffolds than the commercial ones. This scaffold had higher chondrogenic markers during the in vitro study and better in vivo histological scores. Thus, NSP-PCL seems to be an adequate scaffold for cartilage repair [<a href="#B159-membranes-10-00348" class="html-bibr">159</a>]. Research was also conducted with other synthetic materials, such as a spongy PU scaffold [<a href="#B160-membranes-10-00348" class="html-bibr">160</a>]. Scaffolds made from PU material had good hydrophilicity and porosity with interconnected pores and adequate mechanical strength. In a previous study, a PU scaffold was compared with a conventional PLA scaffold. The suitability of the scaffold for cartilage regeneration was evaluated during culturing with chondrocytes and human mesenchymal stem cells (MSCs). The chondrocytes grew better and secreted more glycosaminoglycan in the PU scaffolds than in the PLA scaffolds. Moreover, the human MSCs showed greater chondrogenesis in the PU scaffolds than in the PLA membranes. Degradable PU scaffolds thus have potential in cartilage tissue engineering applications [<a href="#B158-membranes-10-00348" class="html-bibr">158</a>]. Another example is PES materials. Polysulphonic membranes are an example of scaffolds that offer promising results for the regeneration of cartilage, as these membranes have an interconnected pore network, good elasticity, and excellent mechanical properties [<a href="#B97-membranes-10-00348" class="html-bibr">97</a>,<a href="#B98-membranes-10-00348" class="html-bibr">98</a>,<a href="#B161-membranes-10-00348" class="html-bibr">161</a>,<a href="#B162-membranes-10-00348" class="html-bibr">162</a>]. A study with a rabbit model showed that this membrane was better than a commercial Chondro-Gide<sup>®</sup> scaffold [<a href="#B162-membranes-10-00348" class="html-bibr">162</a>]. Unfortunately, the main disadvantage of synthetic polymers is their degradation, which leads to the release of acids. This can cause inflammation in the body. Additionally, in some cases, the degradation is too fast, causing the membranes to break or even crumble; moreover, the membranes do not have adequate biological properties. Therefore, research is being done to obtain scaffolds with a combination of synthetic and natural materials [<a href="#B59-membranes-10-00348" class="html-bibr">59</a>,<a href="#B86-membranes-10-00348" class="html-bibr">86</a>,<a href="#B103-membranes-10-00348" class="html-bibr">103</a>,<a href="#B111-membranes-10-00348" class="html-bibr">111</a>,<a href="#B115-membranes-10-00348" class="html-bibr">115</a>,<a href="#B116-membranes-10-00348" class="html-bibr">116</a>].</div></section><section id='sec4dot4-membranes-10-00348' type=''><h4 class='html-italic' data-nested='2'> 4.4. Hybrid Scaffolds</h4><div class='html-p'>Considering the advantages of synthetic and natural materials, scaffolds with good mechanical and biological properties can be obtained. Currently, hybrid scaffolds are one direction of research in pursuit of a suitable implant for articular cartilage regeneration. The membranes of such scaffolds can be improved by inserting other biologically active additives, such as growth factors, and through a selection of appropriate kinds of cells [<a href="#B25-membranes-10-00348" class="html-bibr">25</a>,<a href="#B40-membranes-10-00348" class="html-bibr">40</a>,<a href="#B49-membranes-10-00348" class="html-bibr">49</a>,<a href="#B50-membranes-10-00348" class="html-bibr">50</a>,<a href="#B51-membranes-10-00348" class="html-bibr">51</a>,<a href="#B64-membranes-10-00348" class="html-bibr">64</a>,<a href="#B115-membranes-10-00348" class="html-bibr">115</a>,<a href="#B190-membranes-10-00348" class="html-bibr">190</a>]. This section presentsand discusses scaffolds made of hybrid materials. Some of these scaffolds are outlined in <a href="#membranes-10-00348-t003" class="html-table">Table 3</a> and <a href="#membranes-10-00348-t004" class="html-table">Table 4</a>.</div><div class='html-p'>Currently, few hybrid scaffolds have undergone clinical trials. One of them is Chondrotissue<sup>®</sup> (Biotissue) [<a href="#B158-membranes-10-00348" class="html-bibr">158</a>,<a href="#B166-membranes-10-00348" class="html-bibr">166</a>]. This resorbable membrane is composed of PGA and HA and is used in clinical contexts through a one-step treatment method. This membrane’s elasticity is due to the addition of autologous platelet-rich plasma (PRP) or serum enriched with platelets. This method relieves pain, improves mobility, and supports cartilage regeneration. Five years of clinical trials confirmed the good outcomes of this one-step procedure with Chondrotissue<sup>®</sup>, which provides stable results with future potential in hyaline cartilage regeneration.</div><div class='html-p'>Rofiqoh et al. developed an IC hybrid scaffold composed of PLGA and collagen. This scaffold features a high porosity membrane with an interconnected pore network and good mechanical properties. The studies were carried out with the use of bovine articular chondrocytes and invivo implantation into mice. The results showed the regeneration of cartilage-like tissue with high potential for further work [<a href="#B153-membranes-10-00348" class="html-bibr">153</a>]. Another example of a hybrid scaffold is PLCL-COLI. In a previous study, a PLCL membrane was printed, treated with alkali, and coated with collagen type I (COLI). The obtained scaffold had high porosity with a controlled structure. This scaffold provided good biocompatibility and elastic and mechanical properties. The compressive modulus of the membrane was, moreover, 0.21 MPa (similar to human cartilage). This scaffold provides good outcomes and has promise as an implant in cartilage repair [<a href="#B166-membranes-10-00348" class="html-bibr">166</a>]. Next, a C2C1H scaffold was obtained and characterized by Haaparanta et al. This scaffold was composed of collagen, chitosan, and PLA. A synthetic polymer used as a 3D mesh gave the scaffold good mechanical strength, and the natural components mimicked an appropriate environment for chondrocytes. The researchers studied eight scaffolds, determining C2C1H to be the best. This scaffold had a highly porous structure with interconnected pores and good mechanical strength with appropriate stiffness. A culture with isolated bovine chondrocytes showed promising results, with promise for further work towards cartilage regeneration [<a href="#B167-membranes-10-00348" class="html-bibr">167</a>]. Another example is the ECM-coated polylactic-co-glycolic acid (ECM-PLGA) scaffold designed by Nogami et al. In this scaffold, a synthetic polymer established the appropriate mechanical properties, while the use of ECM provided an appropriate environment for the cells. This scaffold’s structure achieved the relevant properties for cartilage regeneration. The in vitro study showed attachment, growth, and differentiation of the MSCs. In the invivo study, cell-free scaffolds were implanted into the osteochondral defects of rat knees. Research workers demonstrated that the scaffolds promoted the regeneration of hyaline-like cartilage, which was better than the cartilage in the empty control group. An ECM-PLGA implant may be a good component for use in a one-step method for cartilage regeneration, but more research is required [<a href="#B168-membranes-10-00348" class="html-bibr">168</a>,<a href="#B169-membranes-10-00348" class="html-bibr">169</a>].</div><div class='html-p'>In the literature, there are many examples of hybrid scaffolds used for cartilage tissue engineering, where a biodegradable synthetic polymer provides the housing framework. Mainly, these scaffolds use porous membranes to provide the necessary mechanical properties to support tissue growth, while the additives include natural composites (bioactive fillers). These fillers produce bioactive signals that supply the required information for chondrogenesis and maintain the proper phenotypes of the chondrocytes [<a href="#B25-membranes-10-00348" class="html-bibr">25</a>,<a href="#B49-membranes-10-00348" class="html-bibr">49</a>,<a href="#B51-membranes-10-00348" class="html-bibr">51</a>,<a href="#B110-membranes-10-00348" class="html-bibr">110</a>,<a href="#B115-membranes-10-00348" class="html-bibr">115</a>,<a href="#B190-membranes-10-00348" class="html-bibr">190</a>,<a href="#B191-membranes-10-00348" class="html-bibr">191</a>,<a href="#B192-membranes-10-00348" class="html-bibr">192</a>]. These are mostly components that naturally occur in the cartilage, such as HA [<a href="#B156-membranes-10-00348" class="html-bibr">156</a>,<a href="#B164-membranes-10-00348" class="html-bibr">164</a>,<a href="#B193-membranes-10-00348" class="html-bibr">193</a>,<a href="#B194-membranes-10-00348" class="html-bibr">194</a>], CS [<a href="#B172-membranes-10-00348" class="html-bibr">172</a>], COL [<a href="#B64-membranes-10-00348" class="html-bibr">64</a>,<a href="#B151-membranes-10-00348" class="html-bibr">151</a>,<a href="#B153-membranes-10-00348" class="html-bibr">153</a>,<a href="#B167-membranes-10-00348" class="html-bibr">167</a>,<a href="#B170-membranes-10-00348" class="html-bibr">170</a>,<a href="#B195-membranes-10-00348" class="html-bibr">195</a>,<a href="#B196-membranes-10-00348" class="html-bibr">196</a>], and ECM [<a href="#B168-membranes-10-00348" class="html-bibr">168</a>,<a href="#B197-membranes-10-00348" class="html-bibr">197</a>].</div></section></section><section id='sec5-membranes-10-00348' type='conclusions'><h2 data-nested='1'> 5. Conclusions</h2><div class='html-p'>Currently, the most promising method for cartilage regeneration is the transplantation of implants with or without cells in the area with the damage. Therefore, research is underway to obtain an appropriate scaffold. There are many commercial scaffolds used in orthopedics, which, unfortunately, do not completely fulfill their proper roles in the regeneration of hyaline cartilage. New solutions are constantly being sought, including new scaffolds, growth factors, and sources of cells, as well as methods for delivering the implants to damaged areas. Currently, according to the literature, hybrid scaffolds provided the most promising results in research on articular cartilage regeneration. A combination of synthetic materials to ensure adequate mechanical strength and natural components to ensure proper chondrogenesis and preserve the phenotype has the greatest probability of obtaining hyaline cartilage in a damaged area. In addition, the literature provides information on the search for an appropriate method/improvement of current methods for scaffolding production. Boosters that can be added to the scaffolds or the medium (e.g., growth factors) are also being sought. The selection of appropriate types of cells is also under investigation, mainly focusing on MSCs and human autologous chondrocytes. Proper selection of all the above-mentioned factors could ensure that the appropriate articular cartilage regeneration is obtained. The problems to be solved are significant due to the number of people with cartilage problems, such as osteoarthritis. There are several scaffolds designed for orthopedics, but no one solution can guarantee the reconstruction of hyaline cartilage, as most interventions yield fibrocartilage, which is susceptible to further damage. Thus, patients eventually return to the starting point. Consequently, it is important to obtain an appropriate scaffold and method for the regeneration of hyaline cartilage.</div><div class='html-p'>Ultimately, two important conclusions can be highlighted. Thus far, no scaffolds have been obtained that achieve the optimal conditions for the regeneration of articular cartilage. The obtained results suggest that due to our poor ability to modify natural materials, hybrid scaffolds and composite ones combining the properties and advantages of several natural and synthetic materials are the most promising options.</div></section> </div> <div class="html-back"> <section class='html-notes'><h2 >Funding</h2><div class='html-p'>This work did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.</div></section><section class='html-notes'><h2 >Conflicts of Interest</h2><div class='html-p'>The authors declare no conflict of interest in relation to the writing of this article.</div></section><section id='html-references_list'><h2>References</h2><ol class='html-xxx'><li id='B1-membranes-10-00348' class='html-x' data-content='1.'>Gurtner, G.C.; Werner, S.; Barrandon, Y.; Longaker, M.T. Wound repair and regeneration. <span class='html-italic'>Nature</span> <b>2008</b>, <span class='html-italic'>453</span>, 314–321. [<a href="https://scholar.google.com/scholar_lookup?title=Wound+repair+and+regeneration&author=Gurtner,+G.C.&author=Werner,+S.&author=Barrandon,+Y.&author=Longaker,+M.T.&publication_year=2008&journal=Nature&volume=453&pages=314%E2%80%93321&doi=10.1038/nature07039&pmid=18480812" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1038/nature07039" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="http://www.ncbi.nlm.nih.gov/pubmed/18480812" class='cross-ref' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>]</li><li id='B2-membranes-10-00348' class='html-x' data-content='2.'>Dzobo, K.; Thomford, N.E.; Senthebane, D.A.; Shipanga, H.; Rowe, A.; Dandara, C.; Pillay, M.; Motaung, K.S.C.M. Advances in regenerative medicine and tissue engineering: Innovation and transformation of medicine. <span class='html-italic'>Stem Cells Int.</span> <b>2018</b>, <span class='html-italic'>2018</span>. [<a href="https://scholar.google.com/scholar_lookup?title=Advances+in+regenerative+medicine+and+tissue+engineering:+Innovation+and+transformation+of+medicine&author=Dzobo,+K.&author=Thomford,+N.E.&author=Senthebane,+D.A.&author=Shipanga,+H.&author=Rowe,+A.&author=Dandara,+C.&author=Pillay,+M.&author=Motaung,+K.S.C.M.&publication_year=2018&journal=Stem+Cells+Int.&volume=2018&doi=10.1155/2018/2495848&pmid=30154861" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1155/2018/2495848" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="http://www.ncbi.nlm.nih.gov/pubmed/30154861" class='cross-ref' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>] [<a href="http://downloads.hindawi.com/journals/sci/2018/2495848.pdf" target='_blank' rel="noopener noreferrer">Green Version</a>]</li><li id='B3-membranes-10-00348' class='html-x' data-content='3.'>Duan, B. State-of-the-Art Review of 3D Bioprinting for Cardiovascular Tissue Engineering. <span class='html-italic'>Ann. Biomed. Eng.</span> <b>2017</b>, <span class='html-italic'>45</span>, 195–209. [<a href="https://scholar.google.com/scholar_lookup?title=State-of-the-Art+Review+of+3D+Bioprinting+for+Cardiovascular+Tissue+Engineering&author=Duan,+B.&publication_year=2017&journal=Ann.+Biomed.+Eng.&volume=45&pages=195%E2%80%93209&doi=10.1007/s10439-016-1607-5&pmid=27066785" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1007/s10439-016-1607-5" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="http://www.ncbi.nlm.nih.gov/pubmed/27066785" class='cross-ref' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>]</li><li id='B4-membranes-10-00348' class='html-x' data-content='4.'>Scarritt, M.E.; Pashos, N.C.; Bunnell, B.A. A review of cellularization strategies for tissue engineering of whole organs. <span class='html-italic'>Front. Bioeng. Biotechnol.</span> <b>2015</b>, <span class='html-italic'>3</span>, 43. [<a href="https://scholar.google.com/scholar_lookup?title=A+review+of+cellularization+strategies+for+tissue+engineering+of+whole+organs&author=Scarritt,+M.E.&author=Pashos,+N.C.&author=Bunnell,+B.A.&publication_year=2015&journal=Front.+Bioeng.+Biotechnol.&volume=3&pages=43&doi=10.3389/fbioe.2015.00043" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.3389/fbioe.2015.00043" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="https://www.frontiersin.org/articles/10.3389/fbioe.2015.00043/pdf" target='_blank' rel="noopener noreferrer">Green Version</a>]</li><li id='B5-membranes-10-00348' class='html-x' data-content='5.'>Yan, Q.; Dong, H.; Su, J.; Han, J.; Song, B.; Wei, Q.; Shi, Y. A Review of 3D Printing Technology for Medical Applications. <span class='html-italic'>Engineering</span> <b>2018</b>, <span class='html-italic'>4</span>, 729–742. [<a href="https://scholar.google.com/scholar_lookup?title=A+Review+of+3D+Printing+Technology+for+Medical+Applications&author=Yan,+Q.&author=Dong,+H.&author=Su,+J.&author=Han,+J.&author=Song,+B.&author=Wei,+Q.&author=Shi,+Y.&publication_year=2018&journal=Engineering&volume=4&pages=729%E2%80%93742&doi=10.1016/j.eng.2018.07.021" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.eng.2018.07.021" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B6-membranes-10-00348' class='html-x' data-content='6.'>Giwa, S.; Lewis, J.K.; Alvarez, L.; Langer, R.; Roth, A.E.; Church, G.M.; Markmann, J.F.; Sachs, D.H.; Chandraker, A.; Wertheim, J.A.; et al. The promise of organ and tissue preservation to transform medicine. <span class='html-italic'>Nat. Biotechnol.</span> <b>2017</b>, <span class='html-italic'>35</span>, 530–542. [<a href="https://scholar.google.com/scholar_lookup?title=The+promise+of+organ+and+tissue+preservation+to+transform+medicine&author=Giwa,+S.&author=Lewis,+J.K.&author=Alvarez,+L.&author=Langer,+R.&author=Roth,+A.E.&author=Church,+G.M.&author=Markmann,+J.F.&author=Sachs,+D.H.&author=Chandraker,+A.&author=Wertheim,+J.A.&publication_year=2017&journal=Nat.+Biotechnol.&volume=35&pages=530%E2%80%93542&doi=10.1038/nbt.3889" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1038/nbt.3889" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B7-membranes-10-00348' class='html-x' data-content='7.'>Popoola, J.; Greene, H.; Kyegombe, M.; MacPhee, I.A. Patient involvement in selection of immunosuppressive regimen following transplantation. <span class='html-italic'>Patient Prefer. Adherence</span> <b>2014</b>, <span class='html-italic'>8</span>, 1705–1712. [<a href="https://scholar.google.com/scholar_lookup?title=Patient+involvement+in+selection+of+immunosuppressive+regimen+following+transplantation&author=Popoola,+J.&author=Greene,+H.&author=Kyegombe,+M.&author=MacPhee,+I.A.&publication_year=2014&journal=Patient+Prefer.+Adherence&volume=8&pages=1705%E2%80%931712&doi=10.2147/PPA.S38987" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.2147/PPA.S38987" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="https://www.dovepress.com/getfile.php?fileID=22801" target='_blank' rel="noopener noreferrer">Green Version</a>]</li><li id='B8-membranes-10-00348' class='html-x' data-content='8.'>Feinberg, A.W. Engineered tissue grafts: Opportunities and challenges in regenerative medicine. <span class='html-italic'>Wiley Interdiscip. Rev. Syst. Biol. Med.</span> <b>2012</b>, <span class='html-italic'>4</span>, 207–220. [<a href="https://scholar.google.com/scholar_lookup?title=Engineered+tissue+grafts:+Opportunities+and+challenges+in+regenerative+medicine&author=Feinberg,+A.W.&publication_year=2012&journal=Wiley+Interdiscip.+Rev.+Syst.+Biol.+Med.&volume=4&pages=207%E2%80%93220&doi=10.1002/wsbm.164" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1002/wsbm.164" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B9-membranes-10-00348' class='html-x' data-content='9.'>Park, K.M.; Shin, Y.M.; Kim, K.; Shin, H. Tissue Engineering and Regenerative Medicine 2017: A Year in Review. <span class='html-italic'>Tissue Eng. Part B Rev.</span> <b>2018</b>, <span class='html-italic'>24</span>, 327–344. [<a href="https://scholar.google.com/scholar_lookup?title=Tissue+Engineering+and+Regenerative+Medicine+2017:+A+Year+in+Review&author=Park,+K.M.&author=Shin,+Y.M.&author=Kim,+K.&author=Shin,+H.&publication_year=2018&journal=Tissue+Eng.+Part+B+Rev.&volume=24&pages=327%E2%80%93344&doi=10.1089/ten.teb.2018.0027" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1089/ten.teb.2018.0027" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B10-membranes-10-00348' class='html-xx' data-content='10.'>Murphy, S.V.; Atala, A. Organ engineering—Combining stem cells, biomaterials, and bioreactors to produce bioengineered organs for transplantation. <span class='html-italic'>BioEssays</span> <b>2013</b>, <span class='html-italic'>35</span>, 163–172. [<a href="https://scholar.google.com/scholar_lookup?title=Organ+engineering%E2%80%94Combining+stem+cells,+biomaterials,+and+bioreactors+to+produce+bioengineered+organs+for+transplantation&author=Murphy,+S.V.&author=Atala,+A.&publication_year=2013&journal=BioEssays&volume=35&pages=163%E2%80%93172&doi=10.1002/bies.201200062" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1002/bies.201200062" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B11-membranes-10-00348' class='html-xx' data-content='11.'>Mazza, G.; Al-Akkad, W.; Rombouts, K.; Pinzani, M. Liver tissue engineering: From implantable tissue to whole organ engineering. <span class='html-italic'>Hepatol. Commun.</span> <b>2018</b>, <span class='html-italic'>2</span>, 131–141. [<a href="https://scholar.google.com/scholar_lookup?title=Liver+tissue+engineering:+From+implantable+tissue+to+whole+organ+engineering&author=Mazza,+G.&author=Al-Akkad,+W.&author=Rombouts,+K.&author=Pinzani,+M.&publication_year=2018&journal=Hepatol.+Commun.&volume=2&pages=131%E2%80%93141&doi=10.1002/hep4.1136&pmid=29404520" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1002/hep4.1136" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="http://www.ncbi.nlm.nih.gov/pubmed/29404520" class='cross-ref' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>] [<a href="https://aasldpubs.onlinelibrary.wiley.com/doi/pdfdirect/10.1002/hep4.1136" target='_blank' rel="noopener noreferrer">Green Version</a>]</li><li id='B12-membranes-10-00348' class='html-xx' data-content='12.'>Tarassoli, S.P.; Jessop, Z.M.; Al-Sabah, A.; Gao, N.; Whitaker, S.; Doak, S.; Whitaker, I.S. Skin tissue engineering using 3D bioprinting: An evolving research field. <span class='html-italic'>J. Plast. Reconstr. Aesthetic Surg.</span> <b>2018</b>, <span class='html-italic'>71</span>, 615–623. [<a href="https://scholar.google.com/scholar_lookup?title=Skin+tissue+engineering+using+3D+bioprinting:+An+evolving+research+field&author=Tarassoli,+S.P.&author=Jessop,+Z.M.&author=Al-Sabah,+A.&author=Gao,+N.&author=Whitaker,+S.&author=Doak,+S.&author=Whitaker,+I.S.&publication_year=2018&journal=J.+Plast.+Reconstr.+Aesthetic+Surg.&volume=71&pages=615%E2%80%93623&doi=10.1016/j.bjps.2017.12.006&pmid=29306639" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.bjps.2017.12.006" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="http://www.ncbi.nlm.nih.gov/pubmed/29306639" class='cross-ref' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>]</li><li id='B13-membranes-10-00348' class='html-xx' data-content='13.'>Farina, M.; Alexander, J.F.; Thekkedath, U.; Ferrari, M.; Grattoni, A. Cell encapsulation: Overcoming barriers in cell transplantation in diabetes and beyond. <span class='html-italic'>Adv. Drug Deliv. Rev.</span> <b>2019</b>, <span class='html-italic'>139</span>, 92–115. [<a href="https://scholar.google.com/scholar_lookup?title=Cell+encapsulation:+Overcoming+barriers+in+cell+transplantation+in+diabetes+and+beyond&author=Farina,+M.&author=Alexander,+J.F.&author=Thekkedath,+U.&author=Ferrari,+M.&author=Grattoni,+A.&publication_year=2019&journal=Adv.+Drug+Deliv.+Rev.&volume=139&pages=92%E2%80%93115&doi=10.1016/j.addr.2018.04.018&pmid=29719210" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.addr.2018.04.018" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="http://www.ncbi.nlm.nih.gov/pubmed/29719210" class='cross-ref' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>]</li><li id='B14-membranes-10-00348' class='html-xx' data-content='14.'>Liu, Y.; Luo, J.; Chen, X.; Liu, W.; Chen, T. <span class='html-italic'>Cell Membrane Coating Technology: A Promising Strategy for Biomedical Applications</span>; Springer: Singapore, 2019; Volume 11, ISBN 0123456789. [<a href="https://scholar.google.com/scholar_lookup?title=Cell+Membrane+Coating+Technology:+A+Promising+Strategy+for+Biomedical+Applications&author=Liu,+Y.&author=Luo,+J.&author=Chen,+X.&author=Liu,+W.&author=Chen,+T.&publication_year=2019" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>]</li><li id='B15-membranes-10-00348' class='html-xx' data-content='15.'>Hollister, S.J. Porous scaffold design for tissue engineering. <span class='html-italic'>Nat. Mater.</span> <b>2005</b>, <span class='html-italic'>4</span>, 518–524. [<a href="https://scholar.google.com/scholar_lookup?title=Porous+scaffold+design+for+tissue+engineering&author=Hollister,+S.J.&publication_year=2005&journal=Nat.+Mater.&volume=4&pages=518%E2%80%93524&doi=10.1038/nmat1421&pmid=16003400" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1038/nmat1421" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="http://www.ncbi.nlm.nih.gov/pubmed/16003400" class='cross-ref' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>]</li><li id='B16-membranes-10-00348' class='html-xx' data-content='16.'>O’Brien, F.J. Biomaterials & scaffolds for tissue engineering. <span class='html-italic'>Mater. Today</span> <b>2011</b>, <span class='html-italic'>14</span>, 88–95. [<a href="https://scholar.google.com/scholar_lookup?title=Biomaterials+%2526+scaffolds+for+tissue+engineering&author=O%E2%80%99Brien,+F.J.&publication_year=2011&journal=Mater.+Today&volume=14&pages=88%E2%80%9395&doi=10.1016/S1369-7021(11)70058-X" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/S1369-7021(11)70058-X" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B17-membranes-10-00348' class='html-xx' data-content='17.'>Bružauskaitė, I.; Bironaitė, D.; Bagdonas, E.; Bernotienė, E. Scaffolds and cells for tissue regeneration: Different scaffold pore sizes—Different cell effects. <span class='html-italic'>Cytotechnology</span> <b>2016</b>, <span class='html-italic'>68</span>, 355–369. [<a href="https://scholar.google.com/scholar_lookup?title=Scaffolds+and+cells+for+tissue+regeneration:+Different+scaffold+pore+sizes%E2%80%94Different+cell+effects&author=Bru%C5%BEauskait%C4%97,+I.&author=Bironait%C4%97,+D.&author=Bagdonas,+E.&author=Bernotien%C4%97,+E.&publication_year=2016&journal=Cytotechnology&volume=68&pages=355%E2%80%93369&doi=10.1007/s10616-015-9895-4" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1007/s10616-015-9895-4" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="http://europepmc.org/articles/pmc4846637?pdf=render" target='_blank' rel="noopener noreferrer">Green Version</a>]</li><li id='B18-membranes-10-00348' class='html-xx' data-content='18.'>Dhandayuthapani, B.; Yoshida, Y.; Maekawa, T.; Kumar, D.S. Polymeric scaffolds in tissue engineering application: A review. <span class='html-italic'>Int. J. Polym. Sci.</span> <b>2011</b>, <span class='html-italic'>2011</span>. [<a href="https://scholar.google.com/scholar_lookup?title=Polymeric+scaffolds+in+tissue+engineering+application:+A+review&author=Dhandayuthapani,+B.&author=Yoshida,+Y.&author=Maekawa,+T.&author=Kumar,+D.S.&publication_year=2011&journal=Int.+J.+Polym.+Sci.&volume=2011&doi=10.1155/2011/290602" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1155/2011/290602" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B19-membranes-10-00348' class='html-xx' data-content='19.'>Loh, Q.L.; Choong, C. Three-dimensional scaffolds for tissue engineering applications: Role of porosity and pore size. <span class='html-italic'>Tissue Eng. Part B Rev.</span> <b>2013</b>, <span class='html-italic'>19</span>, 485–502. [<a href="https://scholar.google.com/scholar_lookup?title=Three-dimensional+scaffolds+for+tissue+engineering+applications:+Role+of+porosity+and+pore+size&author=Loh,+Q.L.&author=Choong,+C.&publication_year=2013&journal=Tissue+Eng.+Part+B+Rev.&volume=19&pages=485%E2%80%93502&doi=10.1089/ten.teb.2012.0437" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1089/ten.teb.2012.0437" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="http://europepmc.org/articles/pmc3826579?pdf=render" target='_blank' rel="noopener noreferrer">Green Version</a>]</li><li id='B20-membranes-10-00348' class='html-xx' data-content='20.'>Jafari, M.; Paknejad, Z.; Rad, M.R.; Motamedian, S.R.; Eghbal, M.J.; Nadjmi, N.; Khojasteh, A. Polymeric scaffolds in tissue engineering: A literature review. <span class='html-italic'>J. Biomed. Mater. Res. Part B Appl. Biomater.</span> <b>2017</b>, <span class='html-italic'>105</span>, 431–459. [<a href="https://scholar.google.com/scholar_lookup?title=Polymeric+scaffolds+in+tissue+engineering:+A+literature+review&author=Jafari,+M.&author=Paknejad,+Z.&author=Rad,+M.R.&author=Motamedian,+S.R.&author=Eghbal,+M.J.&author=Nadjmi,+N.&author=Khojasteh,+A.&publication_year=2017&journal=J.+Biomed.+Mater.+Res.+Part+B+Appl.+Biomater.&volume=105&pages=431%E2%80%93459&doi=10.1002/jbm.b.33547" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1002/jbm.b.33547" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B21-membranes-10-00348' class='html-xx' data-content='21.'>Zhao, P.; Gu, H.; Mi, H.; Rao, C.; Fu, J.; Turng, L. Fabrication of scaffolds in tissue engineering: A review. <span class='html-italic'>Front. Mech. Eng.</span> <b>2018</b>, <span class='html-italic'>13</span>, 107–119. [<a href="https://scholar.google.com/scholar_lookup?title=Fabrication+of+scaffolds+in+tissue+engineering:+A+review&author=Zhao,+P.&author=Gu,+H.&author=Mi,+H.&author=Rao,+C.&author=Fu,+J.&author=Turng,+L.&publication_year=2018&journal=Front.+Mech.+Eng.&volume=13&pages=107%E2%80%93119&doi=10.1007/s11465-018-0496-8" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1007/s11465-018-0496-8" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B22-membranes-10-00348' class='html-xx' data-content='22.'>Walter, S.G.; Ossendorff, R.; Schildberg, F.A. Articular cartilage regeneration and tissue engineering models: A systematic review. <span class='html-italic'>Arch. Orthop. Trauma Surg.</span> <b>2019</b>, <span class='html-italic'>139</span>, 305–316. [<a href="https://scholar.google.com/scholar_lookup?title=Articular+cartilage+regeneration+and+tissue+engineering+models:+A+systematic+review&author=Walter,+S.G.&author=Ossendorff,+R.&author=Schildberg,+F.A.&publication_year=2019&journal=Arch.+Orthop.+Trauma+Surg.&volume=139&pages=305%E2%80%93316&doi=10.1007/s00402-018-3057-z&pmid=30382366" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1007/s00402-018-3057-z" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="http://www.ncbi.nlm.nih.gov/pubmed/30382366" class='cross-ref' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>]</li><li id='B23-membranes-10-00348' class='html-xx' data-content='23.'>Zhang, L.; Hu, J.; Athanasiou, K.A. The role of tissue engineering in articular cartilage repair and regeneration. <span class='html-italic'>Crit. Rev. Biomed. Eng.</span> <b>2009</b>, <span class='html-italic'>37</span>, 1–57. [<a href="https://scholar.google.com/scholar_lookup?title=The+role+of+tissue+engineering+in+articular+cartilage+repair+and+regeneration&author=Zhang,+L.&author=Hu,+J.&author=Athanasiou,+K.A.&publication_year=2009&journal=Crit.+Rev.+Biomed.+Eng.&volume=37&pages=1%E2%80%9357&doi=10.1615/CritRevBiomedEng.v37.i1-2.10&pmid=20201770" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1615/CritRevBiomedEng.v37.i1-2.10" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="http://www.ncbi.nlm.nih.gov/pubmed/20201770" class='cross-ref' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>]</li><li id='B24-membranes-10-00348' class='html-xx' data-content='24.'>Kwon, H.; Brown, W.E.; Lee, C.A.; Wang, D.; Paschos, N.; Hu, J.C.; Athanasiou, K.A. Surgical and tissue engineering strategies for articular cartilage and meniscus repair. <span class='html-italic'>Nat. Rev. Rheumatol.</span> <b>2019</b>, <span class='html-italic'>15</span>, 550–570. [<a href="https://scholar.google.com/scholar_lookup?title=Surgical+and+tissue+engineering+strategies+for+articular+cartilage+and+meniscus+repair&author=Kwon,+H.&author=Brown,+W.E.&author=Lee,+C.A.&author=Wang,+D.&author=Paschos,+N.&author=Hu,+J.C.&author=Athanasiou,+K.A.&publication_year=2019&journal=Nat.+Rev.+Rheumatol.&volume=15&pages=550%E2%80%93570&doi=10.1038/s41584-019-0255-1&pmid=31296933" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1038/s41584-019-0255-1" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="http://www.ncbi.nlm.nih.gov/pubmed/31296933" class='cross-ref' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>]</li><li id='B25-membranes-10-00348' class='html-xx' data-content='25.'>Zhao, Z.; Fan, C.; Chen, F.; Sun, Y.; Xia, Y.; Ji, A.; Wang, D.A. Progress in Articular Cartilage Tissue Engineering: A Review on Therapeutic Cells and Macromolecular Scaffolds. <span class='html-italic'>Macromol. Biosci.</span> <b>2020</b>, <span class='html-italic'>20</span>, 1900278. [<a href="https://scholar.google.com/scholar_lookup?title=Progress+in+Articular+Cartilage+Tissue+Engineering:+A+Review+on+Therapeutic+Cells+and+Macromolecular+Scaffolds&author=Zhao,+Z.&author=Fan,+C.&author=Chen,+F.&author=Sun,+Y.&author=Xia,+Y.&author=Ji,+A.&author=Wang,+D.A.&publication_year=2020&journal=Macromol.+Biosci.&volume=20&pages=1900278&doi=10.1002/mabi.201900278" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1002/mabi.201900278" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B26-membranes-10-00348' class='html-xx' data-content='26.'>Sophia Fox, A.J.; Bedi, A.; Rodeo, S.A. The basic science of articular cartilage: Structure, composition, and function. <span class='html-italic'>Sports Health</span> <b>2009</b>, <span class='html-italic'>1</span>, 461–468. [<a href="https://scholar.google.com/scholar_lookup?title=The+basic+science+of+articular+cartilage:+Structure,+composition,+and+function&author=Sophia+Fox,+A.J.&author=Bedi,+A.&author=Rodeo,+S.A.&publication_year=2009&journal=Sports+Health&volume=1&pages=461%E2%80%93468&doi=10.1177/1941738109350438" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1177/1941738109350438" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B27-membranes-10-00348' class='html-xx' data-content='27.'>Bhosale, A.M.; Richardson, J.B. Articular cartilage: Structure, injuries and review of management. <span class='html-italic'>Br. Med Bull.</span> <b>2008</b>, <span class='html-italic'>87</span>, 77–95. [<a href="https://scholar.google.com/scholar_lookup?title=Articular+cartilage:+Structure,+injuries+and+review+of+management&author=Bhosale,+A.M.&author=Richardson,+J.B.&publication_year=2008&journal=Br.+Med+Bull.&volume=87&pages=77%E2%80%9395&doi=10.1093/bmb/ldn025" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1093/bmb/ldn025" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B28-membranes-10-00348' class='html-xx' data-content='28.'>Collins, K.H.; Herzog, W.; Macdonald, G.Z.; Reimer, R.A. Obesity, Metabolic Syndrome, and Musculoskeletal Disease: Common Inflammatory Pathways Suggest a Central Role for Loss of Muscle Integrity. <span class='html-italic'>Front. Physiol.</span> <b>2018</b>, <span class='html-italic'>9</span>. [<a href="https://scholar.google.com/scholar_lookup?title=Obesity,+Metabolic+Syndrome,+and+Musculoskeletal+Disease:+Common+Inflammatory+Pathways+Suggest+a+Central+Role+for+Loss+of+Muscle+Integrity&author=Collins,+K.H.&author=Herzog,+W.&author=Macdonald,+G.Z.&author=Reimer,+R.A.&publication_year=2018&journal=Front.+Physiol.&volume=9&doi=10.3389/fphys.2018.00112" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.3389/fphys.2018.00112" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B29-membranes-10-00348' class='html-xx' data-content='29.'>Krishnan, Y.; Grodzinsky, A.J. Cartilage diseases. <span class='html-italic'>Matrix Biol.</span> <b>2018</b>, <span class='html-italic'>71–72</span>, 51–69. [<a href="https://scholar.google.com/scholar_lookup?title=Cartilage+diseases&author=Krishnan,+Y.&author=Grodzinsky,+A.J.&publication_year=2018&journal=Matrix+Biol.&volume=71%E2%80%9372&pages=51%E2%80%9369&doi=10.1016/j.matbio.2018.05.005" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.matbio.2018.05.005" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B30-membranes-10-00348' class='html-xx' data-content='30.'>Oliveira, M.C.; Ph, D.; Vullings, J.; van de Loo, F.A.J.; Ph, D. Osteoporosis and osteoarthritis are two sides of the same coin paid for obesity. <span class='html-italic'>Nutrition</span> <b>2020</b>, <span class='html-italic'>70</span>, 110486. [<a href="https://scholar.google.com/scholar_lookup?title=Osteoporosis+and+osteoarthritis+are+two+sides+of+the+same+coin+paid+for+obesity&author=Oliveira,+M.C.&author=Ph,+D.&author=Vullings,+J.&author=van+de+Loo,+F.A.J.&author=Ph,+D.&publication_year=2020&journal=Nutrition&volume=70&pages=110486&doi=10.1016/j.nut.2019.04.001" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.nut.2019.04.001" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B31-membranes-10-00348' class='html-xx' data-content='31.'>Accadbled, F.; Vial, J.; Gauzy, J.S. De Osteochondritis dissecans of the knee. <span class='html-italic'>Orthop. Traumatol. Surg. Res.</span> <b>2018</b>, <span class='html-italic'>104</span>, S97–S105. [<a href="https://scholar.google.com/scholar_lookup?title=De+Osteochondritis+dissecans+of+the+knee&author=Accadbled,+F.&author=Vial,+J.&author=Gauzy,+J.S.&publication_year=2018&journal=Orthop.+Traumatol.+Surg.+Res.&volume=104&pages=S97%E2%80%93S105&doi=10.1016/j.otsr.2017.02.016" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.otsr.2017.02.016" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B32-membranes-10-00348' class='html-xx' data-content='32.'>Barendregt, A.M.; Mazzoli, V.; Van Den Berg, J.M.; Kuijpers, T.W.; Maas, M. T 1 ρ-mapping for assessing knee joint cartilage in children with juvenile idiopathic arthritis—Feasibility and repeatability. <span class='html-italic'>Pediatric Radiol.</span> <b>2020</b>, <span class='html-italic'>50</span>, 371–379. [<a href="https://scholar.google.com/scholar_lookup?title=T+1+%CF%81-mapping+for+assessing+knee+joint+cartilage+in+children+with+juvenile+idiopathic+arthritis%E2%80%94Feasibility+and+repeatability&author=Barendregt,+A.M.&author=Mazzoli,+V.&author=Van+Den+Berg,+J.M.&author=Kuijpers,+T.W.&author=Maas,+M.&publication_year=2020&journal=Pediatric+Radiol.&volume=50&pages=371%E2%80%93379&doi=10.1007/s00247-019-04557-4&pmid=31707445" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1007/s00247-019-04557-4" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="http://www.ncbi.nlm.nih.gov/pubmed/31707445" class='cross-ref' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>] [<a href="https://link.springer.com/content/pdf/10.1007/s00247-019-04557-4.pdf" target='_blank' rel="noopener noreferrer">Green Version</a>]</li><li id='B33-membranes-10-00348' class='html-xx' data-content='33.'>Brody, L.T. Knee osteoarthritis: Clinical connections to articular cartilage structure and function. <span class='html-italic'>Phys. Ther. Sport</span> <b>2015</b>, <span class='html-italic'>16</span>, 301–316. [<a href="https://scholar.google.com/scholar_lookup?title=Knee+osteoarthritis:+Clinical+connections+to+articular+cartilage+structure+and+function&author=Brody,+L.T.&publication_year=2015&journal=Phys.+Ther.+Sport&volume=16&pages=301%E2%80%93316&doi=10.1016/j.ptsp.2014.12.001&pmid=25783021" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.ptsp.2014.12.001" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="http://www.ncbi.nlm.nih.gov/pubmed/25783021" class='cross-ref' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>]</li><li id='B34-membranes-10-00348' class='html-xx' data-content='34.'>Silverwood, V.; Blagojevic-Bucknall, M.; Jinks, C.; Jordan, J.L.; Protheroe, J.; Jordan, K.P. Current evidence on risk factors for knee osteoarthritis in older adults: A systematic review and meta-analysis. <span class='html-italic'>Osteoarthr. Cartil.</span> <b>2015</b>, <span class='html-italic'>23</span>, 507–515. [<a href="https://scholar.google.com/scholar_lookup?title=Current+evidence+on+risk+factors+for+knee+osteoarthritis+in+older+adults:+A+systematic+review+and+meta-analysis&author=Silverwood,+V.&author=Blagojevic-Bucknall,+M.&author=Jinks,+C.&author=Jordan,+J.L.&author=Protheroe,+J.&author=Jordan,+K.P.&publication_year=2015&journal=Osteoarthr.+Cartil.&volume=23&pages=507%E2%80%93515&doi=10.1016/j.joca.2014.11.019&pmid=25447976" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.joca.2014.11.019" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="http://www.ncbi.nlm.nih.gov/pubmed/25447976" class='cross-ref' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>] [<a href="http://www.oarsijournal.com/article/S1063458414013429/pdf" target='_blank' rel="noopener noreferrer">Green Version</a>]</li><li id='B35-membranes-10-00348' class='html-xx' data-content='35.'>Johnson, C.I.; Argyle, D.J.; Clements, D.N. In vitro models for the study of osteoarthritis. <span class='html-italic'>Vet. J.</span> <b>2016</b>, <span class='html-italic'>209</span>, 40–49. [<a href="https://scholar.google.com/scholar_lookup?title=In+vitro+models+for+the+study+of+osteoarthritis&author=Johnson,+C.I.&author=Argyle,+D.J.&author=Clements,+D.N.&publication_year=2016&journal=Vet.+J.&volume=209&pages=40%E2%80%9349&doi=10.1016/j.tvjl.2015.07.011" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.tvjl.2015.07.011" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="" target='_blank' rel="noopener noreferrer">Green Version</a>]</li><li id='B36-membranes-10-00348' class='html-xx' data-content='36.'>Appleton, C.T. Osteoarthritis year in review 2017: Biology. <span class='html-italic'>Osteoarthr. Cartil.</span> <b>2018</b>, <span class='html-italic'>26</span>, 296–303. [<a href="https://scholar.google.com/scholar_lookup?title=Osteoarthritis+year+in+review+2017:+Biology&author=Appleton,+C.T.&publication_year=2018&journal=Osteoarthr.+Cartil.&volume=26&pages=296%E2%80%93303&doi=10.1016/j.joca.2017.10.008" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.joca.2017.10.008" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="http://www.oarsijournal.com/article/S1063458417312566/pdf" target='_blank' rel="noopener noreferrer">Green Version</a>]</li><li id='B37-membranes-10-00348' class='html-xx' data-content='37.'>Armiento, A.R.; Alini, M.; Stoddart, M.J. Articular fibrocartilage—Why does hyaline cartilage fail to repair? <span class='html-italic'>Adv. Drug Deliv. Rev.</span> <b>2019</b>, <span class='html-italic'>146</span>, 289–305. [<a href="https://scholar.google.com/scholar_lookup?title=Articular+fibrocartilage%E2%80%94Why+does+hyaline+cartilage+fail+to+repair?&author=Armiento,+A.R.&author=Alini,+M.&author=Stoddart,+M.J.&publication_year=2019&journal=Adv.+Drug+Deliv.+Rev.&volume=146&pages=289%E2%80%93305&doi=10.1016/j.addr.2018.12.015" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.addr.2018.12.015" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B38-membranes-10-00348' class='html-xx' data-content='38.'>Bs, C.S.; Kweon, C.Y. Classifications in Brief: Outerbridge Classification of Chondral Lesions. <span class='html-italic'>Clin. Orthop. Relat. Res.</span> <b>2018</b>, 2101–2104. [<a href="https://scholar.google.com/scholar_lookup?title=Classifications+in+Brief:+Outerbridge+Classification+of+Chondral+Lesions&author=Bs,+C.S.&author=Kweon,+C.Y.&publication_year=2018&journal=Clin.+Orthop.+Relat.+Res.&pages=2101%E2%80%932104&doi=10.1007/s11999.0000000000000255" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1007/s11999.0000000000000255" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B39-membranes-10-00348' class='html-xx' data-content='39.'>Posadzy, M.; Desimpel, J.; Vanhoenacker, F. Staging of Osteochondral Lesions of the Talus: MRI and Cone Beam CT. <span class='html-italic'>J. Belg. Soc. Radiol.</span> <b>2017</b>. [<a href="https://scholar.google.com/scholar_lookup?title=Staging+of+Osteochondral+Lesions+of+the+Talus:+MRI+and+Cone+Beam+CT&author=Posadzy,+M.&author=Desimpel,+J.&author=Vanhoenacker,+F.&publication_year=2017&journal=J.+Belg.+Soc.+Radiol.&doi=10.5334/jbr-btr.1377" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.5334/jbr-btr.1377" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="http://www.jbsr.be/articles/10.5334/jbr-btr.1377/galley/1317/download/" target='_blank' rel="noopener noreferrer">Green Version</a>]</li><li id='B40-membranes-10-00348' class='html-xx' data-content='40.'>Medvedeva, E.V.; Grebenik, E.A.; Gornostaeva, S.N.; Telpuhov, V.I.; Lychagin, A.V.; Timashev, P.S.; Chagin, A.S. Repair of damaged articular cartilage: Current approaches and future directions. <span class='html-italic'>Int. J. Mol. Sci.</span> <b>2018</b>, <span class='html-italic'>19</span>, 2366. [<a href="https://scholar.google.com/scholar_lookup?title=Repair+of+damaged+articular+cartilage:+Current+approaches+and+future+directions&author=Medvedeva,+E.V.&author=Grebenik,+E.A.&author=Gornostaeva,+S.N.&author=Telpuhov,+V.I.&author=Lychagin,+A.V.&author=Timashev,+P.S.&author=Chagin,+A.S.&publication_year=2018&journal=Int.+J.+Mol.+Sci.&volume=19&pages=2366&doi=10.3390/ijms19082366" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.3390/ijms19082366" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="https://www.mdpi.com/1422-0067/19/8/2366/pdf" target='_blank' rel="noopener noreferrer">Green Version</a>]</li><li id='B41-membranes-10-00348' class='html-xx' data-content='41.'>Mirza, U.; Shubeena, S.; Shah, M.S.; Zaffer, B. Microfracture: A technique for repair of chondral defects. <span class='html-italic'>J. Entomol. Zool. Stud.</span> <b>2018</b>, <span class='html-italic'>6</span>, 1092–1097. [<a href="https://scholar.google.com/scholar_lookup?title=Microfracture:+A+technique+for+repair+of+chondral+defects&author=Mirza,+U.&author=Shubeena,+S.&author=Shah,+M.S.&author=Zaffer,+B.&publication_year=2018&journal=J.+Entomol.+Zool.+Stud.&volume=6&pages=1092%E2%80%931097" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>]</li><li id='B42-membranes-10-00348' class='html-xx' data-content='42.'>Dunkin, B.S.; Lattermann, C. New and emerging techniques in cartilage repair: Matrix-induced autologous chondrocyte implantation. <span class='html-italic'>Oper. Tech. Sports Med.</span> <b>2013</b>, <span class='html-italic'>21</span>, 100–107. [<a href="https://scholar.google.com/scholar_lookup?title=New+and+emerging+techniques+in+cartilage+repair:+Matrix-induced+autologous+chondrocyte+implantation&author=Dunkin,+B.S.&author=Lattermann,+C.&publication_year=2013&journal=Oper.+Tech.+Sports+Med.&volume=21&pages=100%E2%80%93107&doi=10.1053/j.otsm.2013.03.003&pmid=24072960" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1053/j.otsm.2013.03.003" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="http://www.ncbi.nlm.nih.gov/pubmed/24072960" class='cross-ref' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>] [<a href="http://europepmc.org/articles/pmc3780415?pdf=render" target='_blank' rel="noopener noreferrer">Green Version</a>]</li><li id='B43-membranes-10-00348' class='html-xx' data-content='43.'>Brittberg, M. Symposium Scaffold based Autologous Chondrocyte Implantation: The Surgical Technique. <span class='html-italic'>Asian J. Arthrosc.</span> <b>2019</b>, <span class='html-italic'>4</span>, 23–26. [<a href="https://scholar.google.com/scholar_lookup?title=Symposium+Scaffold+based+Autologous+Chondrocyte+Implantation:+The+Surgical+Technique&author=Brittberg,+M.&publication_year=2019&journal=Asian+J.+Arthrosc.&volume=4&pages=23%E2%80%9326&doi=10.13107/aja.2456-1169.v04i01.006" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.13107/aja.2456-1169.v04i01.006" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B44-membranes-10-00348' class='html-xx' data-content='44.'>Huang, B.J.; Hu, J.C.; Athanasiou, K.A. Cell-based tissue engineering strategies used in the clinical repair of articular cartilage. <span class='html-italic'>Biomaterials</span> <b>2016</b>, <span class='html-italic'>98</span>, 1–22. [<a href="https://scholar.google.com/scholar_lookup?title=Cell-based+tissue+engineering+strategies+used+in+the+clinical+repair+of+articular+cartilage&author=Huang,+B.J.&author=Hu,+J.C.&author=Athanasiou,+K.A.&publication_year=2016&journal=Biomaterials&volume=98&pages=1%E2%80%9322&doi=10.1016/j.biomaterials.2016.04.018&pmid=27177218" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.biomaterials.2016.04.018" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="http://www.ncbi.nlm.nih.gov/pubmed/27177218" class='cross-ref' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>] [<a href="https://escholarship.org/content/qt5188s9nk/qt5188s9nk.pdf?t=oe5v3o" target='_blank' rel="noopener noreferrer">Green Version</a>]</li><li id='B45-membranes-10-00348' class='html-xx' data-content='45.'>Brittberg, M.; Recker, D.; Ilgenfritz, J.; Saris, D.B.F. Matrix-Applied Characterized Autologous Cultured Chondrocytes Versus Microfracture: Five-Year Follow-up of a Prospective Randomized Trial. <span class='html-italic'>Am. J. Sports Med.</span> <b>2018</b>, <span class='html-italic'>46</span>, 1343–1351. [<a href="https://scholar.google.com/scholar_lookup?title=Matrix-Applied+Characterized+Autologous+Cultured+Chondrocytes+Versus+Microfracture:+Five-Year+Follow-up+of+a+Prospective+Randomized+Trial&author=Brittberg,+M.&author=Recker,+D.&author=Ilgenfritz,+J.&author=Saris,+D.B.F.&publication_year=2018&journal=Am.+J.+Sports+Med.&volume=46&pages=1343%E2%80%931351&doi=10.1177/0363546518756976" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1177/0363546518756976" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B46-membranes-10-00348' class='html-xx' data-content='46.'>Fahy, N.; Alini, M.; Stoddart, M.J. Mechanical stimulation of mesenchymal stem cells: Implications for cartilage tissue engineering. <span class='html-italic'>J. Orthop. Res.</span> <b>2018</b>, <span class='html-italic'>36</span>, 52–63. [<a href="https://scholar.google.com/scholar_lookup?title=Mechanical+stimulation+of+mesenchymal+stem+cells:+Implications+for+cartilage+tissue+engineering&author=Fahy,+N.&author=Alini,+M.&author=Stoddart,+M.J.&publication_year=2018&journal=J.+Orthop.+Res.&volume=36&pages=52%E2%80%9363&doi=10.1002/jor.23670" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1002/jor.23670" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/jor.23670" target='_blank' rel="noopener noreferrer">Green Version</a>]</li><li id='B47-membranes-10-00348' class='html-xx' data-content='47.'>Mastrolia, I.; Foppiani, E.M.; Murgia, A.; Candini, O.; Samarelli, A.V.; Grisendi, G.; Veronesi, E.; Horwitz, E.M.; Dominici, M. Challenges in Clinical Development of Mesenchymal Stromal/Stem Cells: Concise Review. <span class='html-italic'>Stem Cells Transl. Med.</span> <b>2019</b>, <span class='html-italic'>8</span>, 1135–1148. [<a href="https://scholar.google.com/scholar_lookup?title=Challenges+in+Clinical+Development+of+Mesenchymal+Stromal/Stem+Cells:+Concise+Review&author=Mastrolia,+I.&author=Foppiani,+E.M.&author=Murgia,+A.&author=Candini,+O.&author=Samarelli,+A.V.&author=Grisendi,+G.&author=Veronesi,+E.&author=Horwitz,+E.M.&author=Dominici,+M.&publication_year=2019&journal=Stem+Cells+Transl.+Med.&volume=8&pages=1135%E2%80%931148&doi=10.1002/sctm.19-0044" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1002/sctm.19-0044" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="https://stemcellsjournals.onlinelibrary.wiley.com/doi/pdfdirect/10.1002/sctm.19-0044" target='_blank' rel="noopener noreferrer">Green Version</a>]</li><li id='B48-membranes-10-00348' class='html-xx' data-content='48.'>Charlier, E.; Deroyer, C.; Ciregia, F.; Malaise, O.; Neuville, S.; Plener, Z.; Malaise, M.; de Seny, D. Chondrocyte dedifferentiation and osteoarthritis (OA). <span class='html-italic'>Biochem. Pharmacol.</span> <b>2019</b>, <span class='html-italic'>165</span>, 49–65. [<a href="https://scholar.google.com/scholar_lookup?title=Chondrocyte+dedifferentiation+and+osteoarthritis+(OA)&author=Charlier,+E.&author=Deroyer,+C.&author=Ciregia,+F.&author=Malaise,+O.&author=Neuville,+S.&author=Plener,+Z.&author=Malaise,+M.&author=de+Seny,+D.&publication_year=2019&journal=Biochem.+Pharmacol.&volume=165&pages=49%E2%80%9365&doi=10.1016/j.bcp.2019.02.036" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.bcp.2019.02.036" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B49-membranes-10-00348' class='html-xx' data-content='49.'>Lam, A.T.L.; Reuveny, S.; Oh, S.K.W. Human mesenchymal stem cell therapy for cartilage repair: Review on isolation, expansion, and constructs. <span class='html-italic'>Stem Cell Res.</span> <b>2020</b>, <span class='html-italic'>44</span>, 101738. [<a href="https://scholar.google.com/scholar_lookup?title=Human+mesenchymal+stem+cell+therapy+for+cartilage+repair:+Review+on+isolation,+expansion,+and+constructs&author=Lam,+A.T.L.&author=Reuveny,+S.&author=Oh,+S.K.W.&publication_year=2020&journal=Stem+Cell+Res.&volume=44&pages=101738&doi=10.1016/j.scr.2020.101738" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.scr.2020.101738" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B50-membranes-10-00348' class='html-xx' data-content='50.'>Demoor, M.; Ollitrault, D.; Gomez-Leduc, T.; Bouyoucef, M.; Hervieu, M.; Fabre, H.; Lafont, J.; Denoix, J.M.; Audigié, F.; Mallein-Gerin, F.; et al. Cartilage tissue engineering: Molecular control of chondrocyte differentiation for proper cartilage matrix reconstruction. <span class='html-italic'>Biochim. Et Biophys. Acta Gen. Subj.</span> <b>2014</b>, <span class='html-italic'>1840</span>, 2414–2440. [<a href="https://scholar.google.com/scholar_lookup?title=Cartilage+tissue+engineering:+Molecular+control+of+chondrocyte+differentiation+for+proper+cartilage+matrix+reconstruction&author=Demoor,+M.&author=Ollitrault,+D.&author=Gomez-Leduc,+T.&author=Bouyoucef,+M.&author=Hervieu,+M.&author=Fabre,+H.&author=Lafont,+J.&author=Denoix,+J.M.&author=Audigi%C3%A9,+F.&author=Mallein-Gerin,+F.&publication_year=2014&journal=Biochim.+Et+Biophys.+Acta+Gen.+Subj.&volume=1840&pages=2414%E2%80%932440&doi=10.1016/j.bbagen.2014.02.030" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.bbagen.2014.02.030" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B51-membranes-10-00348' class='html-xx' data-content='51.'>Ahmadi, F.; Giti, R.; Mohammadi-Samani, S.; Mohammadi, F. Biodegradable Scaffolds for Cartilage Tissue Engineering. <span class='html-italic'>Galen Med. J.</span> <b>2017</b>, <span class='html-italic'>6</span>, 70–80. [<a href="https://scholar.google.com/scholar_lookup?title=Biodegradable+Scaffolds+for+Cartilage+Tissue+Engineering&author=Ahmadi,+F.&author=Giti,+R.&author=Mohammadi-Samani,+S.&author=Mohammadi,+F.&publication_year=2017&journal=Galen+Med.+J.&volume=6&pages=70%E2%80%9380&doi=10.22086/GMJ.V6I2.696" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.22086/GMJ.V6I2.696" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B52-membranes-10-00348' class='html-xx' data-content='52.'>Zhang, R.; Ma, J.; Han, J.; Zhang, W.; Ma, J. Mesenchymal stem cell related therapies for cartilage lesions and osteoarthritis. <span class='html-italic'>Am. J. Transl. Res.</span> <b>2019</b>, <span class='html-italic'>11</span>, 6275–6289. [<a href="https://scholar.google.com/scholar_lookup?title=Mesenchymal+stem+cell+related+therapies+for+cartilage+lesions+and+osteoarthritis&author=Zhang,+R.&author=Ma,+J.&author=Han,+J.&author=Zhang,+W.&author=Ma,+J.&publication_year=2019&journal=Am.+J.+Transl.+Res.&volume=11&pages=6275%E2%80%936289&pmid=31737182" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="http://www.ncbi.nlm.nih.gov/pubmed/31737182" class='cross-ref' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>]</li><li id='B53-membranes-10-00348' class='html-xx' data-content='53.'>Le, H.; Xu, W.; Zhuang, X.; Chang, F.; Wang, Y.; Ding, J. Mesenchymal stem cells for cartilage regeneration. <span class='html-italic'>J. Tissue Eng.</span> <b>2020</b>, <span class='html-italic'>1</span>, 1–22. [<a href="https://scholar.google.com/scholar_lookup?title=Mesenchymal+stem+cells+for+cartilage+regeneration&author=Le,+H.&author=Xu,+W.&author=Zhuang,+X.&author=Chang,+F.&author=Wang,+Y.&author=Ding,+J.&publication_year=2020&journal=J.+Tissue+Eng.&volume=1&pages=1%E2%80%9322&doi=10.1177/2041731420943839&pmid=32922718" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1177/2041731420943839" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="http://www.ncbi.nlm.nih.gov/pubmed/32922718" class='cross-ref' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>]</li><li id='B54-membranes-10-00348' class='html-xx' data-content='54.'>Koh, Y.G.; Choi, Y.J.; Kwon, O.R. Second-Look Arthroscopic Evaluation of Cartilage Lesions after Mesenchymal Stem Cell Implantation in Osteoarthritic Knees. <span class='html-italic'>Am. J. Sports Med.</span> <b>2014</b>, <span class='html-italic'>42</span>, 1628–1637. [<a href="https://scholar.google.com/scholar_lookup?title=Second-Look+Arthroscopic+Evaluation+of+Cartilage+Lesions+after+Mesenchymal+Stem+Cell+Implantation+in+Osteoarthritic+Knees&author=Koh,+Y.G.&author=Choi,+Y.J.&author=Kwon,+O.R.&publication_year=2014&journal=Am.+J.+Sports+Med.&volume=42&pages=1628%E2%80%931637&doi=10.1177/0363546514529641&pmid=24743139" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1177/0363546514529641" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="http://www.ncbi.nlm.nih.gov/pubmed/24743139" class='cross-ref' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>]</li><li id='B55-membranes-10-00348' class='html-xx' data-content='55.'>Francis, S.L.; Duchi, S.; Onofrillo, C.; Bella, C.D.; Choong, P.F.M. Adipose-Derived Mesenchymal Stem Cells in the Use of Cartilage Tissue Engineering: The Need for a Rapid Isolation Procedure. <span class='html-italic'>Stem Cells Int.</span> <b>2018</b>, <span class='html-italic'>2018</span>, 13–16. [<a href="https://scholar.google.com/scholar_lookup?title=Adipose-Derived+Mesenchymal+Stem+Cells+in+the+Use+of+Cartilage+Tissue+Engineering:+The+Need+for+a+Rapid+Isolation+Procedure&author=Francis,+S.L.&author=Duchi,+S.&author=Onofrillo,+C.&author=Bella,+C.D.&author=Choong,+P.F.M.&publication_year=2018&journal=Stem+Cells+Int.&volume=2018&pages=13%E2%80%9316&doi=10.1155/2018/8947548" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1155/2018/8947548" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="http://downloads.hindawi.com/journals/sci/2018/8947548.pdf" target='_blank' rel="noopener noreferrer">Green Version</a>]</li><li id='B56-membranes-10-00348' class='html-xx' data-content='56.'>Augustyniak, E.; Trzeciak, T. The role of growth factors in stem cell-directed chondrogenesis: A real hope for damaged cartilage regeneration. <span class='html-italic'>Int. Orthop.</span> <b>2015</b>, <span class='html-italic'>39</span>, 995–1003. [<a href="https://scholar.google.com/scholar_lookup?title=The+role+of+growth+factors+in+stem+cell-directed+chondrogenesis:+A+real+hope+for+damaged+cartilage+regeneration&author=Augustyniak,+E.&author=Trzeciak,+T.&publication_year=2015&journal=Int.+Orthop.&volume=39&pages=995%E2%80%931003&doi=10.1007/s00264-014-2619-0" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1007/s00264-014-2619-0" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="https://link.springer.com/content/pdf/10.1007/s00264-014-2619-0.pdf" target='_blank' rel="noopener noreferrer">Green Version</a>]</li><li id='B57-membranes-10-00348' class='html-xx' data-content='57.'>Kalkan, R.; Nwekwo, C.W.; Adali, T. The Use of Scaffolds in Cartilage Regeneration. <span class='html-italic'>Eukaryot. Gene Expr.</span> <b>2018</b>, <span class='html-italic'>28</span>, 343–348. [<a href="https://scholar.google.com/scholar_lookup?title=The+Use+of+Scaffolds+in+Cartilage+Regeneration&author=Kalkan,+R.&author=Nwekwo,+C.W.&author=Adali,+T.&publication_year=2018&journal=Eukaryot.+Gene+Expr.&volume=28&pages=343%E2%80%93348&doi=10.1615/CritRevEukaryotGeneExpr.2018024574" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1615/CritRevEukaryotGeneExpr.2018024574" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B58-membranes-10-00348' class='html-xx' data-content='58.'>Panadero, J.A.; Lanceros-Mendez, S.; Ribelles, J.L.G. Differentiation of mesenchymal stem cells for cartilage tissue engineering: Individual and synergetic effects of three-dimensional environment and mechanical loading. <span class='html-italic'>Acta Biomater.</span> <b>2016</b>, <span class='html-italic'>33</span>, 1–12. [<a href="https://scholar.google.com/scholar_lookup?title=Differentiation+of+mesenchymal+stem+cells+for+cartilage+tissue+engineering:+Individual+and+synergetic+effects+of+three-dimensional+environment+and+mechanical+loading&author=Panadero,+J.A.&author=Lanceros-Mendez,+S.&author=Ribelles,+J.L.G.&publication_year=2016&journal=Acta+Biomater.&volume=33&pages=1%E2%80%9312&doi=10.1016/j.actbio.2016.01.037" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.actbio.2016.01.037" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B59-membranes-10-00348' class='html-xx' data-content='59.'>Eltom, A.; Zhong, G.; Muhammad, A. Scaffold Techniques and Designs in Tissue Engineering Functions and Purposes: A Review. <span class='html-italic'>Adv. Mater. Sci. Eng.</span> <b>2019</b>, <span class='html-italic'>2019</span>. [<a href="https://scholar.google.com/scholar_lookup?title=Scaffold+Techniques+and+Designs+in+Tissue+Engineering+Functions+and+Purposes:+A+Review&author=Eltom,+A.&author=Zhong,+G.&author=Muhammad,+A.&publication_year=2019&journal=Adv.+Mater.+Sci.+Eng.&volume=2019&doi=10.1155/2019/3429527" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1155/2019/3429527" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="http://downloads.hindawi.com/journals/amse/2019/3429527.pdf" target='_blank' rel="noopener noreferrer">Green Version</a>]</li><li id='B60-membranes-10-00348' class='html-xx' data-content='60.'>Okubo, R.; Asawa, Y.; Watanabe, M.; Nagata, S.; Nio, M. Proliferation medium in three-dimensional culture of auricular chondrocytes promotes effective cartilage regeneration in vivo. <span class='html-italic'>Regen. Ther.</span> <b>2019</b>, <span class='html-italic'>11</span>, 306–315. [<a href="https://scholar.google.com/scholar_lookup?title=Proliferation+medium+in+three-dimensional+culture+of+auricular+chondrocytes+promotes+effective+cartilage+regeneration+in+vivo&author=Okubo,+R.&author=Asawa,+Y.&author=Watanabe,+M.&author=Nagata,+S.&author=Nio,+M.&publication_year=2019&journal=Regen.+Ther.&volume=11&pages=306%E2%80%93315&doi=10.1016/j.reth.2019.10.002" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.reth.2019.10.002" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B61-membranes-10-00348' class='html-xx' data-content='61.'>Takahashi, T.; Ogasawara, T.; Asawa, Y.; Mori, Y.; Uchinuma, E.; Takato, T.; Hoshi, K. Three-Dimensional Microenvironments Retain Chondrocyte Phenotypes During Proliferation Culture. <span class='html-italic'>Tissue Eng.</span> <b>2007</b>, <span class='html-italic'>13</span>, 1583–1592. [<a href="https://scholar.google.com/scholar_lookup?title=Three-Dimensional+Microenvironments+Retain+Chondrocyte+Phenotypes+During+Proliferation+Culture&author=Takahashi,+T.&author=Ogasawara,+T.&author=Asawa,+Y.&author=Mori,+Y.&author=Uchinuma,+E.&author=Takato,+T.&author=Hoshi,+K.&publication_year=2007&journal=Tissue+Eng.&volume=13&pages=1583%E2%80%931592&doi=10.1089/ten.2006.0322" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1089/ten.2006.0322" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B62-membranes-10-00348' class='html-xx' data-content='62.'>Schulze-Tanzil, G.; De Souza, P.; Villegas Castrejon, H.; John, T.; Merker, H.J.; Scheid, A.; Shakibaei, M. Redifferentiation of dedifferentiated human chondrocytes in high-density cultures. <span class='html-italic'>Cell Tissue Res.</span> <b>2002</b>, <span class='html-italic'>308</span>, 371–379. [<a href="https://scholar.google.com/scholar_lookup?title=Redifferentiation+of+dedifferentiated+human+chondrocytes+in+high-density+cultures&author=Schulze-Tanzil,+G.&author=De+Souza,+P.&author=Villegas+Castrejon,+H.&author=John,+T.&author=Merker,+H.J.&author=Scheid,+A.&author=Shakibaei,+M.&publication_year=2002&journal=Cell+Tissue+Res.&volume=308&pages=371%E2%80%93379&doi=10.1007/s00441-002-0562-7&pmid=12107430" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1007/s00441-002-0562-7" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="http://www.ncbi.nlm.nih.gov/pubmed/12107430" class='cross-ref' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>]</li><li id='B63-membranes-10-00348' class='html-xx' data-content='63.'>Koh, Y.G.; Lee, J.A.; Kim, Y.S.; Lee, H.Y.; Kim, H.J.; Kang, K.T. Optimal mechanical properties of a scaffold for cartilage regeneration using finite element analysis. <span class='html-italic'>J. Tissue Eng.</span> <b>2019</b>, 10. [<a href="https://scholar.google.com/scholar_lookup?title=Optimal+mechanical+properties+of+a+scaffold+for+cartilage+regeneration+using+finite+element+analysis&author=Koh,+Y.G.&author=Lee,+J.A.&author=Kim,+Y.S.&author=Lee,+H.Y.&author=Kim,+H.J.&author=Kang,+K.T.&publication_year=2019&journal=J.+Tissue+Eng.&pages=10&doi=10.1177/2041731419832133&pmid=30834102" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1177/2041731419832133" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="http://www.ncbi.nlm.nih.gov/pubmed/30834102" class='cross-ref' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>] [<a href="https://journals.sagepub.com/doi/pdf/10.1177/2041731419832133" target='_blank' rel="noopener noreferrer">Green Version</a>]</li><li id='B64-membranes-10-00348' class='html-xx' data-content='64.'>Irawan, V.; Sung, T.C.; Higuchi, A.; Ikoma, T. Collagen Scaffolds in Cartilage Tissue Engineering and Relevant Approaches for Future Development. <span class='html-italic'>Tissue Eng. Regen. Med.</span> <b>2018</b>, <span class='html-italic'>15</span>, 673–697. [<a href="https://scholar.google.com/scholar_lookup?title=Collagen+Scaffolds+in+Cartilage+Tissue+Engineering+and+Relevant+Approaches+for+Future+Development&author=Irawan,+V.&author=Sung,+T.C.&author=Higuchi,+A.&author=Ikoma,+T.&publication_year=2018&journal=Tissue+Eng.+Regen.+Med.&volume=15&pages=673%E2%80%93697&doi=10.1007/s13770-018-0135-9&pmid=30603588" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1007/s13770-018-0135-9" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="http://www.ncbi.nlm.nih.gov/pubmed/30603588" class='cross-ref' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>]</li><li id='B65-membranes-10-00348' class='html-xx' data-content='65.'>Lai, Y.S.; Chen, W.C.; Huang, C.H.; Cheng, C.K.; Chan, K.K.; Chang, T.K. The effect of graft strength on knee laxity and graft in-situ forces after posterior cruciate ligament reconstruction. <span class='html-italic'>PLoS ONE</span> <b>2015</b>, 10. [<a href="https://scholar.google.com/scholar_lookup?title=The+effect+of+graft+strength+on+knee+laxity+and+graft+in-situ+forces+after+posterior+cruciate+ligament+reconstruction&author=Lai,+Y.S.&author=Chen,+W.C.&author=Huang,+C.H.&author=Cheng,+C.K.&author=Chan,+K.K.&author=Chang,+T.K.&publication_year=2015&journal=PLoS+ONE&pages=10&doi=10.1371/journal.pone.0127293" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1371/journal.pone.0127293" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0127293&type=printable" target='_blank' rel="noopener noreferrer">Green Version</a>]</li><li id='B66-membranes-10-00348' class='html-xx' data-content='66.'>Conoscenti, G.; Schneider, T.; Stoelzel, K.; Carfì Pavia, F.; Brucato, V.; Goegele, C.; La Carrubba, V.; Schulze-Tanzil, G. PLLA scaffolds produced by thermally induced phase separation (TIPS) allow human chondrocyte growth and extracellular matrix formation dependent on pore size. <span class='html-italic'>Mater. Sci. Eng. C</span> <b>2017</b>, <span class='html-italic'>80</span>, 449–459. [<a href="https://scholar.google.com/scholar_lookup?title=PLLA+scaffolds+produced+by+thermally+induced+phase+separation+(TIPS)+allow+human+chondrocyte+growth+and+extracellular+matrix+formation+dependent+on+pore+size&author=Conoscenti,+G.&author=Schneider,+T.&author=Stoelzel,+K.&author=Carf%C3%AC+Pavia,+F.&author=Brucato,+V.&author=Goegele,+C.&author=La+Carrubba,+V.&author=Schulze-Tanzil,+G.&publication_year=2017&journal=Mater.+Sci.+Eng.+C&volume=80&pages=449%E2%80%93459&doi=10.1016/j.msec.2017.06.011" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.msec.2017.06.011" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B67-membranes-10-00348' class='html-xx' data-content='67.'>Zhao, Y.; Tan, K.; Zhou, Y.; Ye, Z.; Tan, W.S. A combinatorial variation in surface chemistry and pore size of three-dimensional porous poly(ε-caprolactone) scaffolds modulates the behaviors of mesenchymal stem cells. <span class='html-italic'>Mater. Sci. Eng. C</span> <b>2016</b>, <span class='html-italic'>59</span>, 193–202. [<a href="https://scholar.google.com/scholar_lookup?title=A+combinatorial+variation+in+surface+chemistry+and+pore+size+of+three-dimensional+porous+poly(%CE%B5-caprolactone)+scaffolds+modulates+the+behaviors+of+mesenchymal+stem+cells&author=Zhao,+Y.&author=Tan,+K.&author=Zhou,+Y.&author=Ye,+Z.&author=Tan,+W.S.&publication_year=2016&journal=Mater.+Sci.+Eng.+C&volume=59&pages=193%E2%80%93202&doi=10.1016/j.msec.2015.10.017" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.msec.2015.10.017" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B68-membranes-10-00348' class='html-xx' data-content='68.'>Nava, M.M.; Draghi, L.; Giordano, C.; Pietrabissa, R. The effect of scaffold pore size in cartilage tissue engineering. <span class='html-italic'>J. Appl. Biomater. Funct. Mater.</span> <b>2016</b>, <span class='html-italic'>14</span>, e223–e229. [<a href="https://scholar.google.com/scholar_lookup?title=The+effect+of+scaffold+pore+size+in+cartilage+tissue+engineering&author=Nava,+M.M.&author=Draghi,+L.&author=Giordano,+C.&author=Pietrabissa,+R.&publication_year=2016&journal=J.+Appl.+Biomater.+Funct.+Mater.&volume=14&pages=e223%E2%80%93e229&doi=10.5301/jabfm.5000302" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.5301/jabfm.5000302" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="https://journals.sagepub.com/doi/pdf/10.5301/jabfm.5000302" target='_blank' rel="noopener noreferrer">Green Version</a>]</li><li id='B69-membranes-10-00348' class='html-xx' data-content='69.'>Zhang, Q.; Lu, H.; Kawazoe, N.; Chen, G. Pore size effect of collagen scaffolds on cartilage regeneration. <span class='html-italic'>Acta Biomater.</span> <b>2014</b>, <span class='html-italic'>10</span>, 2005–2013. [<a href="https://scholar.google.com/scholar_lookup?title=Pore+size+effect+of+collagen+scaffolds+on+cartilage+regeneration&author=Zhang,+Q.&author=Lu,+H.&author=Kawazoe,+N.&author=Chen,+G.&publication_year=2014&journal=Acta+Biomater.&volume=10&pages=2005%E2%80%932013&doi=10.1016/j.actbio.2013.12.042" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.actbio.2013.12.042" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B70-membranes-10-00348' class='html-xx' data-content='70.'>Matsiko, A.; Gleeson, J.P.; O’Brien, F.J. Scaffold mean pore size influences mesenchymal stem cell chondrogenic differentiation and matrix deposition. <span class='html-italic'>Tissue Eng. Part A</span> <b>2015</b>, <span class='html-italic'>21</span>, 486–497. [<a href="https://scholar.google.com/scholar_lookup?title=Scaffold+mean+pore+size+influences+mesenchymal+stem+cell+chondrogenic+differentiation+and+matrix+deposition&author=Matsiko,+A.&author=Gleeson,+J.P.&author=O%E2%80%99Brien,+F.J.&publication_year=2015&journal=Tissue+Eng.+Part+A&volume=21&pages=486%E2%80%93497&doi=10.1089/ten.tea.2013.0545" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1089/ten.tea.2013.0545" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B71-membranes-10-00348' class='html-xx' data-content='71.'>Chwojnowski, A.; Kruk, A.; Wojciechowski, C.; Łukowska, E.; Dulnik, J.; Sajkiewicz, P. The dependence of the membrane structure on the non-woven forming the macropores in the 3D scaffolds preparation. <span class='html-italic'>Desalin. Water Treat.</span> <b>2017</b>, <span class='html-italic'>64</span>, 324–331. [<a href="https://scholar.google.com/scholar_lookup?title=The+dependence+of+the+membrane+structure+on+the+non-woven+forming+the+macropores+in+the+3D+scaffolds+preparation&author=Chwojnowski,+A.&author=Kruk,+A.&author=Wojciechowski,+C.&author=%C5%81ukowska,+E.&author=Dulnik,+J.&author=Sajkiewicz,+P.&publication_year=2017&journal=Desalin.+Water+Treat.&volume=64&pages=324%E2%80%93331&doi=10.5004/dwt.2017.11394" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.5004/dwt.2017.11394" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B72-membranes-10-00348' class='html-xx' data-content='72.'>Kruk, A.; Gadomska-Gajadhur, A.; Ruśkowski, P.; Chwojnowski, A.; Dulnik, J.; Synoradzki, L. Preparation of biodegradable semi-permeable membranes as 3D scaffolds for cell cultures. <span class='html-italic'>Desalin. Water Treat.</span> <b>2017</b>, <span class='html-italic'>64</span>, 317–323. [<a href="https://scholar.google.com/scholar_lookup?title=Preparation+of+biodegradable+semi-permeable+membranes+as+3D+scaffolds+for+cell+cultures&author=Kruk,+A.&author=Gadomska-Gajadhur,+A.&author=Ru%C5%9Bkowski,+P.&author=Chwojnowski,+A.&author=Dulnik,+J.&author=Synoradzki,+L.&publication_year=2017&journal=Desalin.+Water+Treat.&volume=64&pages=317%E2%80%93323&doi=10.5004/dwt.2017.11415" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.5004/dwt.2017.11415" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B73-membranes-10-00348' class='html-xx' data-content='73.'>Przytulska, M.; Kulikowski, J.L.; Wasyłeczko, M.; Chwojnowski, A.; Piętka, D. The evaluation of 3D morphological structure of porous membranes based on a computer-aided analysis of their 2D images. <span class='html-italic'>Desalin. Water Treat.</span> <b>2018</b>, 128. [<a href="https://scholar.google.com/scholar_lookup?title=The+evaluation+of+3D+morphological+structure+of+porous+membranes+based+on+a+computer-aided+analysis+of+their+2D+images&author=Przytulska,+M.&author=Kulikowski,+J.L.&author=Wasy%C5%82eczko,+M.&author=Chwojnowski,+A.&author=Pi%C4%99tka,+D.&publication_year=2018&journal=Desalin.+Water+Treat.&pages=128&doi=10.5004/dwt.2018.22569" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.5004/dwt.2018.22569" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B74-membranes-10-00348' class='html-xx' data-content='74.'>Sikorska, W.; Wojciechowski, C.; Przytulska, M.; Rokicki, G.; Wasyłeczko, M.; Kulikowski, J.L.; Chwojnowski, A. Polysulfone–polyurethane (PSf-PUR) blend partly degradable hollow fiber membranes: Preparation, characterization, and computer image analysis. <span class='html-italic'>Desalin. Water Treat.</span> <b>2018</b>, 128. [<a href="https://scholar.google.com/scholar_lookup?title=Polysulfone%E2%80%93polyurethane+(PSf-PUR)+blend+partly+degradable+hollow+fiber+membranes:+Preparation,+characterization,+and+computer+image+analysis&author=Sikorska,+W.&author=Wojciechowski,+C.&author=Przytulska,+M.&author=Rokicki,+G.&author=Wasy%C5%82eczko,+M.&author=Kulikowski,+J.L.&author=Chwojnowski,+A.&publication_year=2018&journal=Desalin.+Water+Treat.&pages=128&doi=10.5004/dwt.2018.23101" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.5004/dwt.2018.23101" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B75-membranes-10-00348' class='html-xx' data-content='75.'>Malik, T.; Razzaq, H.; Razzaque, S.; Nawaz, H.; Siddiqa, A.; Siddiq, M.; Qaisar, S. Design and synthesis of polymeric membranes using water-soluble pore formers: An overview. <span class='html-italic'>Polym. Bull.</span> <b>2019</b>, <span class='html-italic'>76</span>, 4879–4901. [<a href="https://scholar.google.com/scholar_lookup?title=Design+and+synthesis+of+polymeric+membranes+using+water-soluble+pore+formers:+An+overview&author=Malik,+T.&author=Razzaq,+H.&author=Razzaque,+S.&author=Nawaz,+H.&author=Siddiqa,+A.&author=Siddiq,+M.&author=Qaisar,+S.&publication_year=2019&journal=Polym.+Bull.&volume=76&pages=4879%E2%80%934901&doi=10.1007/s00289-018-2616-3" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1007/s00289-018-2616-3" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B76-membranes-10-00348' class='html-xx' data-content='76.'>Armiento, A.R.; Stoddart, M.J.; Alini, M.; Eglin, D. Biomaterials for articular cartilage tissue engineering: Learning from biology. <span class='html-italic'>Acta Biomater.</span> <b>2018</b>, <span class='html-italic'>65</span>, 1–20. [<a href="https://scholar.google.com/scholar_lookup?title=Biomaterials+for+articular+cartilage+tissue+engineering:+Learning+from+biology&author=Armiento,+A.R.&author=Stoddart,+M.J.&author=Alini,+M.&author=Eglin,+D.&publication_year=2018&journal=Acta+Biomater.&volume=65&pages=1%E2%80%9320&doi=10.1016/j.actbio.2017.11.021" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.actbio.2017.11.021" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B77-membranes-10-00348' class='html-xx' data-content='77.'>Rares, H.; Benea, C.; Earar, K.; Lattanzi, W.; Quercia, V.; Berce, C.; Mohan, A. Collagen Scaffold and Lipoaspirate Fluid—Derived Stem Cells for the Treatment of Cartilage Defects in a Rabbit Model. <span class='html-italic'>Rev. Chim.</span> <b>2015</b>, <span class='html-italic'>69</span>, 515–520. [<a href="https://scholar.google.com/scholar_lookup?title=Collagen+Scaffold+and+Lipoaspirate+Fluid%E2%80%94Derived+Stem+Cells+for+the+Treatment+of+Cartilage+Defects+in+a+Rabbit+Model&author=Rares,+H.&author=Benea,+C.&author=Earar,+K.&author=Lattanzi,+W.&author=Quercia,+V.&author=Berce,+C.&author=Mohan,+A.&publication_year=2015&journal=Rev.+Chim.&volume=69&pages=515%E2%80%93520" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>]</li><li id='B78-membranes-10-00348' class='html-xx' data-content='78.'>Gobbi, A.; Whyte, G.P. Long-term Clinical Outcomes of One-Stage Cartilage Repair in the Knee With Hyaluronic Acid—Based Scaffold Embedded With Mesenchymal Stem Cells Sourced From Bone Marrow Aspirate Concentrate. <span class='html-italic'>Am. J. Sports Med.</span> <b>2019</b>, <span class='html-italic'>47</span>, 1621–1628. [<a href="https://scholar.google.com/scholar_lookup?title=Long-term+Clinical+Outcomes+of+One-Stage+Cartilage+Repair+in+the+Knee+With+Hyaluronic+Acid%E2%80%94Based+Scaffold+Embedded+With+Mesenchymal+Stem+Cells+Sourced+From+Bone+Marrow+Aspirate+Concentrate&author=Gobbi,+A.&author=Whyte,+G.P.&publication_year=2019&journal=Am.+J.+Sports+Med.&volume=47&pages=1621%E2%80%931628&doi=10.1177/0363546519845362" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1177/0363546519845362" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B79-membranes-10-00348' class='html-xx' data-content='79.'>Lin, H.; Beck, A.M.; Fritch, M.R.; Tuan, R.S.; Deng, Y.; Kilroy, E.J.; Tang, Y.; Alexander, P.G. Optimization of photocrosslinked gelatin/hyaluronic acid hybrid scaffold for the repair of cartilage defect. <span class='html-italic'>J. Tissue Eng. Regen. Med.</span> <b>2019</b>, <span class='html-italic'>13</span>, 1418–1429. [<a href="https://scholar.google.com/scholar_lookup?title=Optimization+of+photocrosslinked+gelatin/hyaluronic+acid+hybrid+scaffold+for+the+repair+of+cartilage+defect&author=Lin,+H.&author=Beck,+A.M.&author=Fritch,+M.R.&author=Tuan,+R.S.&author=Deng,+Y.&author=Kilroy,+E.J.&author=Tang,+Y.&author=Alexander,+P.G.&publication_year=2019&journal=J.+Tissue+Eng.+Regen.+Med.&volume=13&pages=1418%E2%80%931429&doi=10.1002/term.2883" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1002/term.2883" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B80-membranes-10-00348' class='html-xx' data-content='80.'>Wen, S.; Hung, K.; Hsieh, K.; Chen, C.; Tsai, C.; Hsu, S. In vitro and in vivo evaluation of chitosan—Gelatin scaffolds for cartilage tissue engineering. <span class='html-italic'>Mater. Sci. Eng. C</span> <b>2013</b>, <span class='html-italic'>33</span>, 2855–2863. [<a href="https://scholar.google.com/scholar_lookup?title=In+vitro+and+in+vivo+evaluation+of+chitosan%E2%80%94Gelatin+scaffolds+for+cartilage+tissue+engineering&author=Wen,+S.&author=Hung,+K.&author=Hsieh,+K.&author=Chen,+C.&author=Tsai,+C.&author=Hsu,+S.&publication_year=2013&journal=Mater.+Sci.+Eng.+C&volume=33&pages=2855%E2%80%932863&doi=10.1016/j.msec.2013.03.003" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.msec.2013.03.003" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B81-membranes-10-00348' class='html-xx' data-content='81.'>Mittal, H.; Sinha, S.; Singh, B.; Kaur, J.; Sharma, J.; Alhassan, S.M. Recent progress in the structural modification of chitosan for applications in diversified biomedical fields. <span class='html-italic'>Eur. Polym. J.</span> <b>2018</b>, <span class='html-italic'>109</span>, 402–434. [<a href="https://scholar.google.com/scholar_lookup?title=Recent+progress+in+the+structural+modification+of+chitosan+for+applications+in+diversified+biomedical+fields&author=Mittal,+H.&author=Sinha,+S.&author=Singh,+B.&author=Kaur,+J.&author=Sharma,+J.&author=Alhassan,+S.M.&publication_year=2018&journal=Eur.+Polym.+J.&volume=109&pages=402%E2%80%93434&doi=10.1016/j.eurpolymj.2018.10.013" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.eurpolymj.2018.10.013" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B82-membranes-10-00348' class='html-xx' data-content='82.'>Chen, S.; Chen, W.; Chen, Y.; Mo, X.; Fan, C. Chondroitin sulfate modified 3D porous electrospun nano fi ber scaffolds promote cartilage regeneration. <span class='html-italic'>Mater. Sci. Eng. C</span> <b>2020</b>, <span class='html-italic'>118</span>, 1–12. [<a href="https://scholar.google.com/scholar_lookup?title=Chondroitin+sulfate+modified+3D+porous+electrospun+nano+fi+ber+scaffolds+promote+cartilage+regeneration&author=Chen,+S.&author=Chen,+W.&author=Chen,+Y.&author=Mo,+X.&author=Fan,+C.&publication_year=2020&journal=Mater.+Sci.+Eng.+C&volume=118&pages=1%E2%80%9312&doi=10.1016/j.msec.2020.111312" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.msec.2020.111312" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B83-membranes-10-00348' class='html-xx' data-content='83.'>Zhou, F.; Zhang, X.; Cai, D.; Li, J.; Mu, Q.; Zhang, W.; Zhu, S. Silk fibroin-chondroitin sulfate scaffold with immuno-inhibition property for articular cartilage repair. <span class='html-italic'>Acta Biomater.</span> <b>2017</b>, <span class='html-italic'>63</span>, 64–75. [<a href="https://scholar.google.com/scholar_lookup?title=Silk+fibroin-chondroitin+sulfate+scaffold+with+immuno-inhibition+property+for+articular+cartilage+repair&author=Zhou,+F.&author=Zhang,+X.&author=Cai,+D.&author=Li,+J.&author=Mu,+Q.&author=Zhang,+W.&author=Zhu,+S.&publication_year=2017&journal=Acta+Biomater.&volume=63&pages=64%E2%80%9375&doi=10.1016/j.actbio.2017.09.005&pmid=28890259" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.actbio.2017.09.005" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="http://www.ncbi.nlm.nih.gov/pubmed/28890259" class='cross-ref' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>]</li><li id='B84-membranes-10-00348' class='html-xx' data-content='84.'>Filardo, G.; Drobnic, M.; Perdisa, F.; Kon, E.; Hribernik, M.; Marcacci, M. Fibrin glue improves osteochondral scaffold fi xation: Study on the human cadaveric knee exposed to continuous passive motion. <span class='html-italic'>Osteoarthr. Cartil.</span> <b>2014</b>, <span class='html-italic'>22</span>, 557–565. [<a href="https://scholar.google.com/scholar_lookup?title=Fibrin+glue+improves+osteochondral+scaffold+fi+xation:+Study+on+the+human+cadaveric+knee+exposed+to+continuous+passive+motion&author=Filardo,+G.&author=Drobnic,+M.&author=Perdisa,+F.&author=Kon,+E.&author=Hribernik,+M.&author=Marcacci,+M.&publication_year=2014&journal=Osteoarthr.+Cartil.&volume=22&pages=557%E2%80%93565&doi=10.1016/j.joca.2014.01.004&pmid=24487043" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.joca.2014.01.004" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="http://www.ncbi.nlm.nih.gov/pubmed/24487043" class='cross-ref' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>] [<a href="http://www.oarsijournal.com/article/S106345841400017X/pdf" target='_blank' rel="noopener noreferrer">Green Version</a>]</li><li id='B85-membranes-10-00348' class='html-xx' data-content='85.'>Kim, J.; Hyung, T.; Lim, D.; Yeon, S.; Lee, Y.; Koh, Y.I. Biochemical and Biophysical Research Communications Chondrogenic differentiation of human ASCs by stiffness control in 3D fi brin hydrogel. <span class='html-italic'>Biochem. Biophys. Res. Commun.</span> <b>2020</b>, <span class='html-italic'>522</span>, 213–219. [<a href="https://scholar.google.com/scholar_lookup?title=Biochemical+and+Biophysical+Research+Communications+Chondrogenic+differentiation+of+human+ASCs+by+stiffness+control+in+3D+fi+brin+hydrogel&author=Kim,+J.&author=Hyung,+T.&author=Lim,+D.&author=Yeon,+S.&author=Lee,+Y.&author=Koh,+Y.I.&publication_year=2020&journal=Biochem.+Biophys.+Res.+Commun.&volume=522&pages=213%E2%80%93219&doi=10.1016/j.bbrc.2019.11.049" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.bbrc.2019.11.049" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B86-membranes-10-00348' class='html-xx' data-content='86.'>Chung, C.; Burdick, J.A. Engineering cartilage tissue. <span class='html-italic'>Adv. Drug Deliv. Rev.</span> <b>2008</b>, <span class='html-italic'>60</span>, 243–262. [<a href="https://scholar.google.com/scholar_lookup?title=Engineering+cartilage+tissue&author=Chung,+C.&author=Burdick,+J.A.&publication_year=2008&journal=Adv.+Drug+Deliv.+Rev.&volume=60&pages=243%E2%80%93262&doi=10.1016/j.addr.2007.08.027" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.addr.2007.08.027" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="http://europepmc.org/articles/pmc2230638?pdf=render" target='_blank' rel="noopener noreferrer">Green Version</a>]</li><li id='B87-membranes-10-00348' class='html-xx' data-content='87.'>Asghari, F.; Samiei, M.; Adibkia, K.; Akbarzadeh, A.; Davaran, S. Biodegradable and biocompatible polymers for tissue engineering application: A review. <span class='html-italic'>Artif. Cells Nanomed. Biotechnol.</span> <b>2017</b>, <span class='html-italic'>45</span>, 185–192. [<a href="https://scholar.google.com/scholar_lookup?title=Biodegradable+and+biocompatible+polymers+for+tissue+engineering+application:+A+review&author=Asghari,+F.&author=Samiei,+M.&author=Adibkia,+K.&author=Akbarzadeh,+A.&author=Davaran,+S.&publication_year=2017&journal=Artif.+Cells+Nanomed.+Biotechnol.&volume=45&pages=185%E2%80%93192&doi=10.3109/21691401.2016.1146731" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.3109/21691401.2016.1146731" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B88-membranes-10-00348' class='html-xx' data-content='88.'>Fan, C.; Wang, D. A biodegradable PEG-based micro-cavitary hydrogel as scaffold for cartilage tissue engineering. <span class='html-italic'>Eur. Polym. J.</span> <b>2015</b>, <span class='html-italic'>72</span>, 651–660. [<a href="https://scholar.google.com/scholar_lookup?title=A+biodegradable+PEG-based+micro-cavitary+hydrogel+as+scaffold+for+cartilage+tissue+engineering&author=Fan,+C.&author=Wang,+D.&publication_year=2015&journal=Eur.+Polym.+J.&volume=72&pages=651%E2%80%93660&doi=10.1016/j.eurpolymj.2015.02.038" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.eurpolymj.2015.02.038" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B89-membranes-10-00348' class='html-xx' data-content='89.'>Janmohammadi, M.; Nourbakhsh, M.S. International Journal of Polymeric Materials and Electrospun polycaprolactone scaffolds for tissue engineering: A review. <span class='html-italic'>Int. J. Polym. Mater. Polym. Biomater.</span> <b>2018</b>, 1–13. [<a href="https://scholar.google.com/scholar_lookup?title=International+Journal+of+Polymeric+Materials+and+Electrospun+polycaprolactone+scaffolds+for+tissue+engineering:+A+review&author=Janmohammadi,+M.&author=Nourbakhsh,+M.S.&publication_year=2018&journal=Int.+J.+Polym.+Mater.+Polym.+Biomater.&pages=1%E2%80%9313&doi=10.1080/00914037.2018.1466139" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1080/00914037.2018.1466139" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B90-membranes-10-00348' class='html-xx' data-content='90.'>Dao, T.T.; Vu, N.B.; Pham, L.H.; Bui, T.; Le, P.T.; Van Pham, P. In Vitro Production of Cartilage Tissue from Rabbit Bone Marrow-Derived Mesenchymal Stem Cells and Polycaprolactone Scaffold. <span class='html-italic'>Adv. Exp. Med. Biol.</span> <b>2017</b>, <span class='html-italic'>1804</span>, 45–60. [<a href="https://scholar.google.com/scholar_lookup?title=In+Vitro+Production+of+Cartilage+Tissue+from+Rabbit+Bone+Marrow-Derived+Mesenchymal+Stem+Cells+and+Polycaprolactone+Scaffold&author=Dao,+T.T.&author=Vu,+N.B.&author=Pham,+L.H.&author=Bui,+T.&author=Le,+P.T.&author=Van+Pham,+P.&publication_year=2017&journal=Adv.+Exp.+Med.+Biol.&volume=1804&pages=45%E2%80%9360&doi=10.1007/5584" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1007/5584" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B91-membranes-10-00348' class='html-xx' data-content='91.'>Singhvi, M.S. Polylactic acid: Synthesis and biomedical applications. <span class='html-italic'>J. Appl. Microbiol.</span> <b>2012</b>, <span class='html-italic'>127</span>, 1612–1626. [<a href="https://scholar.google.com/scholar_lookup?title=Polylactic+acid:+Synthesis+and+biomedical+applications&author=Singhvi,+M.S.&publication_year=2012&journal=J.+Appl.+Microbiol.&volume=127&pages=1612%E2%80%931626&doi=10.1111/jam.14290" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1111/jam.14290" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="https://sfamjournals.onlinelibrary.wiley.com/doi/pdfdirect/10.1111/jam.14290" target='_blank' rel="noopener noreferrer">Green Version</a>]</li><li id='B92-membranes-10-00348' class='html-xx' data-content='92.'>Silva, D.; Kaduri, M.; Poley, M.; Adir, O.; Krinsky, N.; Shainsky-roitman, J.; Schroeder, A. Mini Review Biocompatibility, biodegradation and excretion of polylactic acid (PLA) in medical implants and theranostic systems. <span class='html-italic'>Chem. Eng. J.</span> <b>2018</b>. [<a href="https://scholar.google.com/scholar_lookup?title=Mini+Review+Biocompatibility,+biodegradation+and+excretion+of+polylactic+acid+(PLA)+in+medical+implants+and+theranostic+systems&author=Silva,+D.&author=Kaduri,+M.&author=Poley,+M.&author=Adir,+O.&author=Krinsky,+N.&author=Shainsky-roitman,+J.&author=Schroeder,+A.&publication_year=2018&journal=Chem.+Eng.+J.&doi=10.1016/j.cej.2018.01.010" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.cej.2018.01.010" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B93-membranes-10-00348' class='html-xx' data-content='93.'>Wen, Y.; Dai, N.; Hsu, S. Acta Biomaterialia Biodegradable water-based polyurethane scaffolds with a sequential release function for cell-free cartilage tissue engineering. <span class='html-italic'>Acta Biomater.</span> <b>2019</b>, <span class='html-italic'>88</span>, 301–313. [<a href="https://scholar.google.com/scholar_lookup?title=Acta+Biomaterialia+Biodegradable+water-based+polyurethane+scaffolds+with+a+sequential+release+function+for+cell-free+cartilage+tissue+engineering&author=Wen,+Y.&author=Dai,+N.&author=Hsu,+S.&publication_year=2019&journal=Acta+Biomater.&volume=88&pages=301%E2%80%93313&doi=10.1016/j.actbio.2019.02.044&pmid=30825604" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.actbio.2019.02.044" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="http://www.ncbi.nlm.nih.gov/pubmed/30825604" class='cross-ref' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>]</li><li id='B94-membranes-10-00348' class='html-xx' data-content='94.'>Hung, K.; Tseng, C.; Hsu, S. Synthesis and 3D Printing of Biodegradable Polyurethane Elastomer by a Water-Based Process for Cartilage Tissue Engineering Applications. <span class='html-italic'>Adv. Healthc. Mater.</span> <b>2014</b>, 1578–1587. [<a href="https://scholar.google.com/scholar_lookup?title=Synthesis+and+3D+Printing+of+Biodegradable+Polyurethane+Elastomer+by+a+Water-Based+Process+for+Cartilage+Tissue+Engineering+Applications&author=Hung,+K.&author=Tseng,+C.&author=Hsu,+S.&publication_year=2014&journal=Adv.+Healthc.+Mater.&pages=1578%E2%80%931587&doi=10.1002/adhm.201400018&pmid=24729580" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1002/adhm.201400018" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="http://www.ncbi.nlm.nih.gov/pubmed/24729580" class='cross-ref' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>]</li><li id='B95-membranes-10-00348' class='html-xx' data-content='95.'>Budak, K.; Sogut, O.; Sezer, U.A. A review on synthesis and biomedical applications of polyglycolic acid. <span class='html-italic'>J. Polym. Res.</span> <b>2020</b>, <span class='html-italic'>27</span>, 1–19. [<a href="https://scholar.google.com/scholar_lookup?title=A+review+on+synthesis+and+biomedical+applications+of+polyglycolic+acid&author=Budak,+K.&author=Sogut,+O.&author=Sezer,+U.A.&publication_year=2020&journal=J.+Polym.+Res.&volume=27&pages=1%E2%80%9319&doi=10.1007/s10965-020-02187-1" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1007/s10965-020-02187-1" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B96-membranes-10-00348' class='html-xx' data-content='96.'>Mahboudi, H.; Soleimani, M.; Enderami, S.E.; Kehtari, M.; Hanaee-Ahvaz, H.; Ghanbarian, H.; Bandehpour, M.; Nojehdehi, S.; Mirzaei, S.; Kazemi, B. The effect of nanofibre-based polyethersulfone (PES) scaffold on the chondrogenesis of human induced pluripotent stem cells. <span class='html-italic'>Artif. Cells Nanomed. Biotechnol.</span> <b>2018</b>, <span class='html-italic'>46</span>, 1948–1956. [<a href="https://scholar.google.com/scholar_lookup?title=The+effect+of+nanofibre-based+polyethersulfone+(PES)+scaffold+on+the+chondrogenesis+of+human+induced+pluripotent+stem+cells&author=Mahboudi,+H.&author=Soleimani,+M.&author=Enderami,+S.E.&author=Kehtari,+M.&author=Hanaee-Ahvaz,+H.&author=Ghanbarian,+H.&author=Bandehpour,+M.&author=Nojehdehi,+S.&author=Mirzaei,+S.&author=Kazemi,+B.&publication_year=2018&journal=Artif.+Cells+Nanomed.+Biotechnol.&volume=46&pages=1948%E2%80%931956&doi=10.1080/21691401.2017.1396998" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1080/21691401.2017.1396998" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="https://www.tandfonline.com/doi/pdf/10.1080/21691401.2017.1396998?needAccess=true" target='_blank' rel="noopener noreferrer">Green Version</a>]</li><li id='B97-membranes-10-00348' class='html-xx' data-content='97.'>Dudziński, K.; Chwojnowski, A.; Gutowska, M.; Płończak, M.; Czubak, J.; Łukowska, E.; Wojciechowski, C. Three dimensional polyethersulphone scaffold for chondrocytes cultivation—The future supportive material for articular cartilage regeneration. <span class='html-italic'>Biocybern. Biomed. Eng.</span> <b>2010</b>, <span class='html-italic'>30</span>, 65–76. [<a href="https://scholar.google.com/scholar_lookup?title=Three+dimensional+polyethersulphone+scaffold+for+chondrocytes+cultivation%E2%80%94The+future+supportive+material+for+articular+cartilage+regeneration&author=Dudzi%C5%84ski,+K.&author=Chwojnowski,+A.&author=Gutowska,+M.&author=P%C5%82o%C5%84czak,+M.&author=Czubak,+J.&author=%C5%81ukowska,+E.&author=Wojciechowski,+C.&publication_year=2010&journal=Biocybern.+Biomed.+Eng.&volume=30&pages=65%E2%80%9376" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>]</li><li id='B98-membranes-10-00348' class='html-xx' data-content='98.'>Plończak, M.; Czubak, J.; Hoser, G.; Chwojnowskl, A.; Kawiak, J.; Dudzińskp, K.; Czumińska, K. Repair of articular cartilage full thickness defects with cultured chondrocytes placed on polysulphonic membrane—Experimental studies in rabbits. <span class='html-italic'>Biocybern. Biomed. Eng.</span> <b>2008</b>, <span class='html-italic'>28</span>, 87–93. [<a href="https://scholar.google.com/scholar_lookup?title=Repair+of+articular+cartilage+full+thickness+defects+with+cultured+chondrocytes+placed+on+polysulphonic+membrane%E2%80%94Experimental+studies+in+rabbits&author=Plo%C5%84czak,+M.&author=Czubak,+J.&author=Hoser,+G.&author=Chwojnowskl,+A.&author=Kawiak,+J.&author=Dudzi%C5%84skp,+K.&author=Czumi%C5%84ska,+K.&publication_year=2008&journal=Biocybern.+Biomed.+Eng.&volume=28&pages=87%E2%80%9393" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>]</li><li id='B99-membranes-10-00348' class='html-xx' data-content='99.'>Irfan, M.; Idris, A. Overview of PES biocompatible/hemodialysis membranes: PES-blood interactions and modification techniques. <span class='html-italic'>Mater. Sci. Eng. C</span> <b>2015</b>, <span class='html-italic'>56</span>, 574–592. [<a href="https://scholar.google.com/scholar_lookup?title=Overview+of+PES+biocompatible/hemodialysis+membranes:+PES-blood+interactions+and+modification+techniques&author=Irfan,+M.&author=Idris,+A.&publication_year=2015&journal=Mater.+Sci.+Eng.+C&volume=56&pages=574%E2%80%93592&doi=10.1016/j.msec.2015.06.035" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.msec.2015.06.035" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B100-membranes-10-00348' class='html-xxx' data-content='100.'>Filimon, A.; Olaru, N.; Doroftei, F.; Logigan, C.; Dunca, S. Design of Biologically Active Surfaces Based on Functionalized Polysulfones by Electrospinning. <span class='html-italic'>Proceedings</span> <b>2019</b>, <span class='html-italic'>41</span>, 35. [<a href="https://scholar.google.com/scholar_lookup?title=Design+of+Biologically+Active+Surfaces+Based+on+Functionalized+Polysulfones+by+Electrospinning&author=Filimon,+A.&author=Olaru,+N.&author=Doroftei,+F.&author=Logigan,+C.&author=Dunca,+S.&publication_year=2019&journal=Proceedings&volume=41&pages=35&doi=10.3390/ecsoc-23-06495" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.3390/ecsoc-23-06495" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="https://www.mdpi.com/2504-3900/41/1/35/pdf" target='_blank' rel="noopener noreferrer">Green Version</a>]</li><li id='B101-membranes-10-00348' class='html-xxx' data-content='101.'>Filimon, A.; Avram, E.; Dunca, S. Surface and Interface Properties of Functionalized Polysulfones: Cell-Material Interaction and Antimicrobial Activity. <span class='html-italic'>Polym. Eng. Sci.</span> <b>2015</b>, <span class='html-italic'>55</span>, 2184–2894. [<a href="https://scholar.google.com/scholar_lookup?title=Surface+and+Interface+Properties+of+Functionalized+Polysulfones:+Cell-Material+Interaction+and+Antimicrobial+Activity&author=Filimon,+A.&author=Avram,+E.&author=Dunca,+S.&publication_year=2015&journal=Polym.+Eng.+Sci.&volume=55&pages=2184%E2%80%932894&doi=10.1002/pen.24103" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1002/pen.24103" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B102-membranes-10-00348' class='html-xxx' data-content='102.'>Ye, H.; Zhang, K.; Kai, D.; Li, Z.; Loh, X.J. Polyester elastomers for soft tissue engineering. <span class='html-italic'>Chem. Soc. Rev.</span> <b>2018</b>, <span class='html-italic'>47</span>, 4545–4580. [<a href="https://scholar.google.com/scholar_lookup?title=Polyester+elastomers+for+soft+tissue+engineering&author=Ye,+H.&author=Zhang,+K.&author=Kai,+D.&author=Li,+Z.&author=Loh,+X.J.&publication_year=2018&journal=Chem.+Soc.+Rev.&volume=47&pages=4545%E2%80%934580&doi=10.1039/C8CS00161H&pmid=29722412" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1039/C8CS00161H" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="http://www.ncbi.nlm.nih.gov/pubmed/29722412" class='cross-ref' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>]</li><li id='B103-membranes-10-00348' class='html-xxx' data-content='103.'>Puppi, D.; Chiellini, F.; Piras, A.M.; Chiellini, E. Progress in Polymer Science Polymeric materials for bone and cartilage repair. <span class='html-italic'>Prog. Polym. Sci.</span> <b>2010</b>, <span class='html-italic'>35</span>, 403–440. [<a href="https://scholar.google.com/scholar_lookup?title=Progress+in+Polymer+Science+Polymeric+materials+for+bone+and+cartilage+repair&author=Puppi,+D.&author=Chiellini,+F.&author=Piras,+A.M.&author=Chiellini,+E.&publication_year=2010&journal=Prog.+Polym.+Sci.&volume=35&pages=403%E2%80%93440&doi=10.1016/j.progpolymsci.2010.01.006" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.progpolymsci.2010.01.006" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B104-membranes-10-00348' class='html-xxx' data-content='104.'>Chen, F.M.; Liu, X. Advancing biomaterials of human origin for tissue engineering. <span class='html-italic'>Prog. Polym. Sci.</span> <b>2016</b>, <span class='html-italic'>53</span>, 86–168. [<a href="https://scholar.google.com/scholar_lookup?title=Advancing+biomaterials+of+human+origin+for+tissue+engineering&author=Chen,+F.M.&author=Liu,+X.&publication_year=2016&journal=Prog.+Polym.+Sci.&volume=53&pages=86%E2%80%93168&doi=10.1016/j.progpolymsci.2015.02.004&pmid=27022202" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.progpolymsci.2015.02.004" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="http://www.ncbi.nlm.nih.gov/pubmed/27022202" class='cross-ref' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>] [<a href="http://europepmc.org/articles/pmc4808059?pdf=render" target='_blank' rel="noopener noreferrer">Green Version</a>]</li><li id='B105-membranes-10-00348' class='html-xxx' data-content='105.'>Janoušková, O. Synthetic Polymer Scaffolds for Soft Tissue Engineering. <span class='html-italic'>Physiol. Res.</span> <b>2018</b>, <span class='html-italic'>67</span>, S335–S348. [<a href="https://scholar.google.com/scholar_lookup?title=Synthetic+Polymer+Scaffolds+for+Soft+Tissue+Engineering&author=Janou%C5%A1kov%C3%A1,+O.&publication_year=2018&journal=Physiol.+Res.&volume=67&pages=S335%E2%80%93S348&doi=10.33549/physiolres.933983" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.33549/physiolres.933983" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B106-membranes-10-00348' class='html-xxx' data-content='106.'>He, Y.; Wang, W.R.; Ding, J.D. Effects of L-lactic acid and D,L-lactic acid on viability and osteogenic differentiation of mesenchymal stem cells. <span class='html-italic'>Chin. Sci. Bull.</span> <b>2013</b>, <span class='html-italic'>58</span>, 2404–2411. [<a href="https://scholar.google.com/scholar_lookup?title=Effects+of+L-lactic+acid+and+D,L-lactic+acid+on+viability+and+osteogenic+differentiation+of+mesenchymal+stem+cells&author=He,+Y.&author=Wang,+W.R.&author=Ding,+J.D.&publication_year=2013&journal=Chin.+Sci.+Bull.&volume=58&pages=2404%E2%80%932411&doi=10.1007/s11434-013-5798-y" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1007/s11434-013-5798-y" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="https://link.springer.com/content/pdf/10.1007/s11434-013-5798-y.pdf" target='_blank' rel="noopener noreferrer">Green Version</a>]</li><li id='B107-membranes-10-00348' class='html-xxx' data-content='107.'>Xu, Y.; Kim, C.; Saylor, D.M.; Koo, D. Polymer degradation and drug delivery in PLGA-based drug—Polymer applications: A review of experiments and theories. <span class='html-italic'>J. Biomed. Mater. Res. Part B Appl. Biomater.</span> <b>2016</b>, <span class='html-italic'>105</span>, 1692–1716. [<a href="https://scholar.google.com/scholar_lookup?title=Polymer+degradation+and+drug+delivery+in+PLGA-based+drug%E2%80%94Polymer+applications:+A+review+of+experiments+and+theories&author=Xu,+Y.&author=Kim,+C.&author=Saylor,+D.M.&author=Koo,+D.&publication_year=2016&journal=J.+Biomed.+Mater.+Res.+Part+B+Appl.+Biomater.&volume=105&pages=1692%E2%80%931716&doi=10.1002/jbm.b.33648" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1002/jbm.b.33648" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B108-membranes-10-00348' class='html-xxx' data-content='108.'>Jiang, L.; Xu, L.; Ma, B.; Ding, H.; Tang, C. Effect of component and surface structure on poly (L-lactide-co-ε-caprolactone) (PLCA)-based composite membrane. <span class='html-italic'>Compos. Part B</span> <b>2019</b>, <span class='html-italic'>174</span>, 107031. [<a href="https://scholar.google.com/scholar_lookup?title=Effect+of+component+and+surface+structure+on+poly+(L-lactide-co-%CE%B5-caprolactone)+(PLCA)-based+composite+membrane&author=Jiang,+L.&author=Xu,+L.&author=Ma,+B.&author=Ding,+H.&author=Tang,+C.&publication_year=2019&journal=Compos.+Part+B&volume=174&pages=107031&doi=10.1016/j.compositesb.2019.107031" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.compositesb.2019.107031" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B109-membranes-10-00348' class='html-xxx' data-content='109.'>Prasanna, S.; Narayan, B.; Rastogi, A.; Srivastava, P. Design and evaluation of chitosan/poly (L-lactide)/pectin based composite scaffolds for cartilage tissue regeneration. <span class='html-italic'>Int. J. Biol. Macromol.</span> <b>2018</b>, <span class='html-italic'>112</span>, 909–920. [<a href="https://scholar.google.com/scholar_lookup?title=Design+and+evaluation+of+chitosan/poly+(L-lactide)/pectin+based+composite+scaffolds+for+cartilage+tissue+regeneration&author=Prasanna,+S.&author=Narayan,+B.&author=Rastogi,+A.&author=Srivastava,+P.&publication_year=2018&journal=Int.+J.+Biol.+Macromol.&volume=112&pages=909%E2%80%93920&doi=10.1016/j.ijbiomac.2018.02.049" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.ijbiomac.2018.02.049" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B110-membranes-10-00348' class='html-xxx' data-content='110.'>Nofar, M.; Sacligil, D.; Carreau, P.J.; Kamal, M.R.; Heuzey, M.C. Poly (lactic acid) blends: Processing, properties and applications. <span class='html-italic'>Int. J. Biol. Macromol.</span> <b>2019</b>, <span class='html-italic'>125</span>, 307–360. [<a href="https://scholar.google.com/scholar_lookup?title=Poly+(lactic+acid)+blends:+Processing,+properties+and+applications&author=Nofar,+M.&author=Sacligil,+D.&author=Carreau,+P.J.&author=Kamal,+M.R.&author=Heuzey,+M.C.&publication_year=2019&journal=Int.+J.+Biol.+Macromol.&volume=125&pages=307%E2%80%93360&doi=10.1016/j.ijbiomac.2018.12.002" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.ijbiomac.2018.12.002" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B111-membranes-10-00348' class='html-xxx' data-content='111.'>Jeuken, R.M.; Roth, A.K.; Peters, R.J.R.W.; van Donkelaar, C.C.; Thies, J.C.; van Rhijn, L.W.; Emans, P.J. Polymers in cartilage defect repair of the knee: Current status and future prospects. <span class='html-italic'>Polymers</span> <b>2016</b>, <span class='html-italic'>8</span>, 219. [<a href="https://scholar.google.com/scholar_lookup?title=Polymers+in+cartilage+defect+repair+of+the+knee:+Current+status+and+future+prospects&author=Jeuken,+R.M.&author=Roth,+A.K.&author=Peters,+R.J.R.W.&author=van+Donkelaar,+C.C.&author=Thies,+J.C.&author=van+Rhijn,+L.W.&author=Emans,+P.J.&publication_year=2016&journal=Polymers&volume=8&pages=219&doi=10.3390/polym8060219" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.3390/polym8060219" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B112-membranes-10-00348' class='html-xxx' data-content='112.'>Daranarong, D.; Techaikool, P.; Intatue, W.; Daengngern, R.; Thomson, K.A.; Molloy, R.; Kungwan, N.; Foster, L.J.R.; Boonyawan, D.; Punyodom, W. Effect of surface modification of poly(L-lactide-co-ε-caprolactone) membranes by low-pressure plasma on support cell biocompatibility. <span class='html-italic'>Surf. Coat. Technol.</span> <b>2016</b>, <span class='html-italic'>306</span>, 328–335. [<a href="https://scholar.google.com/scholar_lookup?title=Effect+of+surface+modification+of+poly(L-lactide-co-%CE%B5-caprolactone)+membranes+by+low-pressure+plasma+on+support+cell+biocompatibility&author=Daranarong,+D.&author=Techaikool,+P.&author=Intatue,+W.&author=Daengngern,+R.&author=Thomson,+K.A.&author=Molloy,+R.&author=Kungwan,+N.&author=Foster,+L.J.R.&author=Boonyawan,+D.&author=Punyodom,+W.&publication_year=2016&journal=Surf.+Coat.+Technol.&volume=306&pages=328%E2%80%93335&doi=10.1016/j.surfcoat.2016.07.058" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.surfcoat.2016.07.058" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B113-membranes-10-00348' class='html-xxx' data-content='113.'>Guo, C.; Cai, N.; Dong, Y. Duplex surface modification of porous poly (lactic acid) scaffold. <span class='html-italic'>Mater. Lett.</span> <b>2013</b>, <span class='html-italic'>94</span>, 11–14. [<a href="https://scholar.google.com/scholar_lookup?title=Duplex+surface+modification+of+porous+poly+(lactic+acid)+scaffold&author=Guo,+C.&author=Cai,+N.&author=Dong,+Y.&publication_year=2013&journal=Mater.+Lett.&volume=94&pages=11%E2%80%9314&doi=10.1016/j.matlet.2012.11.092" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.matlet.2012.11.092" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B114-membranes-10-00348' class='html-xxx' data-content='114.'>Tsurumi, T.; Fuse, M. Enhancement of apatite precipitation on an alkaline hydrolyzed poly (lactic acid-ε-Caprolactone) film in simulated body fluid. <span class='html-italic'>J. Hard Tissue Biol.</span> <b>2014</b>, <span class='html-italic'>23</span>, 15–19. [<a href="https://scholar.google.com/scholar_lookup?title=Enhancement+of+apatite+precipitation+on+an+alkaline+hydrolyzed+poly+(lactic+acid-%CE%B5-Caprolactone)+film+in+simulated+body+fluid&author=Tsurumi,+T.&author=Fuse,+M.&publication_year=2014&journal=J.+Hard+Tissue+Biol.&volume=23&pages=15%E2%80%9319&doi=10.2485/jhtb.23.15" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.2485/jhtb.23.15" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="https://www.jstage.jst.go.jp/article/jhtb/23/1/23_15/_pdf" target='_blank' rel="noopener noreferrer">Green Version</a>]</li><li id='B115-membranes-10-00348' class='html-xxx' data-content='115.'>Setayeshmehr, M.; Esfandiari, E.; Rafieinia, M.; Hashemibeni, B.; Taheri-kafrani, A.; Samadikuchaksaraei, A. Hybrid and Composite Scaffolds Based on Extracellular. <span class='html-italic'>Tissue Eng. Part B Rev.</span> <b>2019</b>, <span class='html-italic'>25</span>, 202–224. [<a href="https://scholar.google.com/scholar_lookup?title=Hybrid+and+Composite+Scaffolds+Based+on+Extracellular&author=Setayeshmehr,+M.&author=Esfandiari,+E.&author=Rafieinia,+M.&author=Hashemibeni,+B.&author=Taheri-kafrani,+A.&author=Samadikuchaksaraei,+A.&publication_year=2019&journal=Tissue+Eng.+Part+B+Rev.&volume=25&pages=202%E2%80%93224&doi=10.1089/ten.teb.2018.0245" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1089/ten.teb.2018.0245" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B116-membranes-10-00348' class='html-xxx' data-content='116.'>Zhang, X.; Wu, Y.; Pan, Z.; Sun, H.; Wang, J.; Yu, D.; Zhu, S.; Dai, J.; Chen, Y.; Tian, N.; et al. The effects of lactate and acid on articular chondrocytes function: Implications for polymeric cartilage scaffold design. <span class='html-italic'>Acta Biomater.</span> <b>2016</b>, <span class='html-italic'>42</span>, 329–340. [<a href="https://scholar.google.com/scholar_lookup?title=The+effects+of+lactate+and+acid+on+articular+chondrocytes+function:+Implications+for+polymeric+cartilage+scaffold+design&author=Zhang,+X.&author=Wu,+Y.&author=Pan,+Z.&author=Sun,+H.&author=Wang,+J.&author=Yu,+D.&author=Zhu,+S.&author=Dai,+J.&author=Chen,+Y.&author=Tian,+N.&publication_year=2016&journal=Acta+Biomater.&volume=42&pages=329%E2%80%93340&doi=10.1016/j.actbio.2016.06.029" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.actbio.2016.06.029" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B117-membranes-10-00348' class='html-xxx' data-content='117.'>Lu, T.; Li, Y.; Chen, T. Techniques of fabrication and construction three-dimensional scaffold. <span class='html-italic'>Int. J. Nanomed.</span> <b>2013</b>, <span class='html-italic'>8</span>, 337–350. [<a href="https://scholar.google.com/scholar_lookup?title=Techniques+of+fabrication+and+construction+three-dimensional+scaffold&author=Lu,+T.&author=Li,+Y.&author=Chen,+T.&publication_year=2013&journal=Int.+J.+Nanomed.&volume=8&pages=337%E2%80%93350&doi=10.2147/IJN.S38635" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.2147/IJN.S38635" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="https://www.dovepress.com/getfile.php?fileID=14974" target='_blank' rel="noopener noreferrer">Green Version</a>]</li><li id='B118-membranes-10-00348' class='html-xxx' data-content='118.'>Dutta, R.C.; Dey, M.; Dutta, A.K.; Basu, B. Competent processing techniques for scaffolds in tissue engineering. <span class='html-italic'>Biotechnol. Adv.</span> <b>2017</b>, <span class='html-italic'>35</span>, 240–250. [<a href="https://scholar.google.com/scholar_lookup?title=Competent+processing+techniques+for+scaffolds+in+tissue+engineering&author=Dutta,+R.C.&author=Dey,+M.&author=Dutta,+A.K.&author=Basu,+B.&publication_year=2017&journal=Biotechnol.+Adv.&volume=35&pages=240%E2%80%93250&doi=10.1016/j.biotechadv.2017.01.001" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.biotechadv.2017.01.001" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B119-membranes-10-00348' class='html-xxx' data-content='119.'>Mannella, G.A.; Conoscenti, G.; Pavia, F.C.; Carrubba, V.L.; Brucato, V. Preparation of polymeric foams with a pore size gradient via Thermally Induced Phase Separation (TIPS). <span class='html-italic'>Mater. Lett.</span> <b>2015</b>, <span class='html-italic'>160</span>, 31–33. [<a href="https://scholar.google.com/scholar_lookup?title=Preparation+of+polymeric+foams+with+a+pore+size+gradient+via+Thermally+Induced+Phase+Separation+(TIPS)&author=Mannella,+G.A.&author=Conoscenti,+G.&author=Pavia,+F.C.&author=Carrubba,+V.L.&author=Brucato,+V.&publication_year=2015&journal=Mater.+Lett.&volume=160&pages=31%E2%80%9333&doi=10.1016/j.matlet.2015.07.055" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.matlet.2015.07.055" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B120-membranes-10-00348' class='html-xxx' data-content='120.'>Buzarovska, A.; Gualandi, C.; Parrilli, A.; Scandola, M. Effect of TiO<sub>2</sub> nanoparticle loading on Poly(L-lactic acid) porous scaffolds fabricated by TIPS. <span class='html-italic'>Compos. Part B</span> <b>2015</b>. [<a href="https://scholar.google.com/scholar_lookup?title=Effect+of+TiO2+nanoparticle+loading+on+Poly(L-lactic+acid)+porous+scaffolds+fabricated+by+TIPS&author=Buzarovska,+A.&author=Gualandi,+C.&author=Parrilli,+A.&author=Scandola,+M.&publication_year=2015&journal=Compos.+Part+B&doi=10.1016/j.compositesb.2015.07.016" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.compositesb.2015.07.016" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B121-membranes-10-00348' class='html-xxx' data-content='121.'>Sultana, N.; Hassana, M.I.; Ridzuana, N.; Ibrahima, Z.; Soonc, C.F. Fabrication of Gelatin Scaffolds using Thermally Induced Phase Separation Technique. <span class='html-italic'>Int. J. Eng.</span> <b>2018</b>, <span class='html-italic'>31</span>, 1302–1307. [<a href="https://scholar.google.com/scholar_lookup?title=Fabrication+of+Gelatin+Scaffolds+using+Thermally+Induced+Phase+Separation+Technique&author=Sultana,+N.&author=Hassana,+M.I.&author=Ridzuana,+N.&author=Ibrahima,+Z.&author=Soonc,+C.F.&publication_year=2018&journal=Int.+J.+Eng.&volume=31&pages=1302%E2%80%931307&doi=10.5829/ije.2018.31.08b.19" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.5829/ije.2018.31.08b.19" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B122-membranes-10-00348' class='html-xxx' data-content='122.'>Structure, M.M.; Mechanical, H.; Kim, J.; Shin, K.; Koh, Y.; Hah, M.J.; Moon, J.; Kim, H. Production of Poly(ε-Caprolactone)/Hydroxyapatite Composite Scaffolds with a Tailored Macro/Micro-Porous Structure, High Mechanical Properties, and Excellent Bioactivity. <span class='html-italic'>Materials</span> <b>2017</b>, <span class='html-italic'>10</span>, 1123. [<a href="https://scholar.google.com/scholar_lookup?title=Production+of+Poly(%CE%B5-Caprolactone)/Hydroxyapatite+Composite+Scaffolds+with+a+Tailored+Macro/Micro-Porous+Structure,+High+Mechanical+Properties,+and+Excellent+Bioactivity&author=Structure,+M.M.&author=Mechanical,+H.&author=Kim,+J.&author=Shin,+K.&author=Koh,+Y.&author=Hah,+M.J.&author=Moon,+J.&author=Kim,+H.&publication_year=2017&journal=Materials&volume=10&pages=1123&doi=10.3390/ma10101123" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.3390/ma10101123" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="https://www.mdpi.com/1996-1944/10/10/1123/pdf" target='_blank' rel="noopener noreferrer">Green Version</a>]</li><li id='B123-membranes-10-00348' class='html-xxx' data-content='123.'>Georgiadou, S.; Katsogiannis, K.A.G.; Vladisavljevic, G.T. Porous electrospun polycaprolactone (PCL) fibres by phase separation. <span class='html-italic'>Eur. Polym. J.</span> <b>2015</b>, <span class='html-italic'>69</span>, 284–295. [<a href="https://scholar.google.com/scholar_lookup?title=Porous+electrospun+polycaprolactone+(PCL)+fibres+by+phase+separation&author=Georgiadou,+S.&author=Katsogiannis,+K.A.G.&author=Vladisavljevic,+G.T.&publication_year=2015&journal=Eur.+Polym.+J.&volume=69&pages=284%E2%80%93295&doi=10.1016/j.eurpolymj.2015.01.028" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.eurpolymj.2015.01.028" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="" target='_blank' rel="noopener noreferrer">Green Version</a>]</li><li id='B124-membranes-10-00348' class='html-xxx' data-content='124.'>Huang, C.; Thomas, N.L. Fabricating Porous Poly(lactic acid) Fibres via Electrospinning. <span class='html-italic'>Eur. Polym. J.</span> <b>2017</b>. [<a href="https://scholar.google.com/scholar_lookup?title=Fabricating+Porous+Poly(lactic+acid)+Fibres+via+Electrospinning&author=Huang,+C.&author=Thomas,+N.L.&publication_year=2017&journal=Eur.+Polym.+J.&doi=10.1016/j.eurpolymj.2017.12.025" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.eurpolymj.2017.12.025" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="https://repository.lboro.ac.uk/articles/Fabricating_porous_poly_lactic_acid_fibres_via_electrospinning/9236009/files/16817546.pdf" target='_blank' rel="noopener noreferrer">Green Version</a>]</li><li id='B125-membranes-10-00348' class='html-xxx' data-content='125.'>Prasad, A.; Sankar, M.R.; Katiyar, V. ScienceDirect State of Art on Solvent Casting Particulate Leaching Method for Orthopedic Scaffolds Fabrication. <span class='html-italic'>Mater. Today Proc.</span> <b>2017</b>, <span class='html-italic'>4</span>, 898–907. [<a href="https://scholar.google.com/scholar_lookup?title=ScienceDirect+State+of+Art+on+Solvent+Casting+Particulate+Leaching+Method+for+Orthopedic+Scaffolds+Fabrication&author=Prasad,+A.&author=Sankar,+M.R.&author=Katiyar,+V.&publication_year=2017&journal=Mater.+Today+Proc.&volume=4&pages=898%E2%80%93907&doi=10.1016/j.matpr.2017.01.101" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.matpr.2017.01.101" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B126-membranes-10-00348' class='html-xxx' data-content='126.'>Plisko, T.V.; Penkova, A.V.; Burts, K.S.; Bildyukevich, A.V.; Dmitrenko, M.E.; Melnikova, G.B.; Atta, R.R.; Mazur, A.S.; Zolotarev, A.A.; Missyul, A.B. Effect of Pluronic F127 on porous and dense membrane structure formation via non-solvent induced and evaporation induced phase separation. <span class='html-italic'>J. Membr. Sci.</span> <b>2019</b>, <span class='html-italic'>580</span>, 336–349. [<a href="https://scholar.google.com/scholar_lookup?title=Effect+of+Pluronic+F127+on+porous+and+dense+membrane+structure+formation+via+non-solvent+induced+and+evaporation+induced+phase+separation&author=Plisko,+T.V.&author=Penkova,+A.V.&author=Burts,+K.S.&author=Bildyukevich,+A.V.&author=Dmitrenko,+M.E.&author=Melnikova,+G.B.&author=Atta,+R.R.&author=Mazur,+A.S.&author=Zolotarev,+A.A.&author=Missyul,+A.B.&publication_year=2019&journal=J.+Membr.+Sci.&volume=580&pages=336%E2%80%93349&doi=10.1016/j.memsci.2019.03.028" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.memsci.2019.03.028" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B127-membranes-10-00348' class='html-xxx' data-content='127.'>Gadomska-Gajadhur, A.; Kruk, A.; Ruśkowski, P.; Sajkiewicz, P.; Dulnik, J.; Chwojnowski, A. Original method of imprinting pores in scaffolds for tissue engineering. <span class='html-italic'>Polym. Adv. Technol.</span> <b>2020</b>, 1–13. [<a href="https://scholar.google.com/scholar_lookup?title=Original+method+of+imprinting+pores+in+scaffolds+for+tissue+engineering&author=Gadomska-Gajadhur,+A.&author=Kruk,+A.&author=Ru%C5%9Bkowski,+P.&author=Sajkiewicz,+P.&author=Dulnik,+J.&author=Chwojnowski,+A.&publication_year=2020&journal=Polym.+Adv.+Technol.&pages=1%E2%80%9313&doi=10.1002/pat.5091" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1002/pat.5091" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B128-membranes-10-00348' class='html-xxx' data-content='128.'>Taylor, P.; Yang, Q.; Chen, L.; Shen, X.; Tan, Z. Preparation of Polycaprolactone Tissue Engineering Scaffolds by Improved Solvent Casting/Particulate Leaching Method Preparation of Polycaprolactone Tissue Engineering Scaffolds by Improved Solvent Casting/Particulate Leachin. <span class='html-italic'>J. Macromol. Sci. Part B Phys.</span> <b>2006</b>, <span class='html-italic'>45</span>, 1171–1181. [<a href="https://scholar.google.com/scholar_lookup?title=Preparation+of+Polycaprolactone+Tissue+Engineering+Scaffolds+by+Improved+Solvent+Casting/Particulate+Leaching+Method+Preparation+of+Polycaprolactone+Tissue+Engineering+Scaffolds+by+Improved+Solvent+Casting/Particulate+Leachin&author=Taylor,+P.&author=Yang,+Q.&author=Chen,+L.&author=Shen,+X.&author=Tan,+Z.&publication_year=2006&journal=J.+Macromol.+Sci.+Part+B+Phys.&volume=45&pages=1171%E2%80%931181&doi=10.1080/00222340600976783" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1080/00222340600976783" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B129-membranes-10-00348' class='html-xxx' data-content='129.'>Sharifi, F.; Irani, S.; Azadegan, G.; Pezeshki-Modaress, M. Bioactive Carbohydrates and Dietary Fibre Co-electrospun gelatin-chondroitin sulfate/polycaprolactone nanofibrous scaffolds for cartilage tissue engineering. <span class='html-italic'>Bioact. Carbohydr. Diet. Fibre</span> <b>2020</b>, <span class='html-italic'>22</span>, 100215. [<a href="https://scholar.google.com/scholar_lookup?title=Bioactive+Carbohydrates+and+Dietary+Fibre+Co-electrospun+gelatin-chondroitin+sulfate/polycaprolactone+nanofibrous+scaffolds+for+cartilage+tissue+engineering&author=Sharifi,+F.&author=Irani,+S.&author=Azadegan,+G.&author=Pezeshki-Modaress,+M.&publication_year=2020&journal=Bioact.+Carbohydr.+Diet.+Fibre&volume=22&pages=100215&doi=10.1016/j.bcdf.2020.100215" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.bcdf.2020.100215" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B130-membranes-10-00348' class='html-xxx' data-content='130.'>Zhou, Y.; Chyu, J.; Zumwalt, M. Recent Progress of Fabrication of Cell Scaffold by Electrospinning Technique for Articular Cartilage Tissue Engineering. <span class='html-italic'>Int. J. Biomater.</span> <b>2018</b>, <span class='html-italic'>2018</span>. [<a href="https://scholar.google.com/scholar_lookup?title=Recent+Progress+of+Fabrication+of+Cell+Scaffold+by+Electrospinning+Technique+for+Articular+Cartilage+Tissue+Engineering&author=Zhou,+Y.&author=Chyu,+J.&author=Zumwalt,+M.&publication_year=2018&journal=Int.+J.+Biomater.&volume=2018&doi=10.1155/2018/1953636" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1155/2018/1953636" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="http://downloads.hindawi.com/journals/ijbm/2018/1953636.pdf" target='_blank' rel="noopener noreferrer">Green Version</a>]</li><li id='B131-membranes-10-00348' class='html-xxx' data-content='131.'>Girão, A.F.; Semitela, Â.; Ramalho, G.; Completo, A.; Marques, P.A.A.P. Mimicking nature- Fabrication of 3D anisotropic electrospun polycaprolactone scaffolds for cartilage tissue engineering applications. <span class='html-italic'>Compos. Part B</span> <b>2018</b>. [<a href="https://scholar.google.com/scholar_lookup?title=Mimicking+nature-+Fabrication+of+3D+anisotropic+electrospun+polycaprolactone+scaffolds+for+cartilage+tissue+engineering+applications&author=Gir%C3%A3o,+A.F.&author=Semitela,+%C3%82.&author=Ramalho,+G.&author=Completo,+A.&author=Marques,+P.A.A.P.&publication_year=2018&journal=Compos.+Part+B&doi=10.1016/j.compositesb.2018.08.001" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.compositesb.2018.08.001" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B132-membranes-10-00348' class='html-xxx' data-content='132.'>Bdikin, I.; Marques, P.A.A.P. Electrospinning of bioactive polycaprolactone-gelatin nanofibres with increased pore size for cartilage tissue engineering applications. <span class='html-italic'>J. Biomater. Appl.</span> <b>2020</b>, <span class='html-italic'>35</span>, 459–470. [<a href="https://scholar.google.com/scholar_lookup?title=Electrospinning+of+bioactive+polycaprolactone-gelatin+nanofibres+with+increased+pore+size+for+cartilage+tissue+engineering+applications&author=Bdikin,+I.&author=Marques,+P.A.A.P.&publication_year=2020&journal=J.+Biomater.+Appl.&volume=35&pages=459%E2%80%93470&doi=10.1177/0885328220940194" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1177/0885328220940194" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B133-membranes-10-00348' class='html-xxx' data-content='133.'>Wang, Z.; Wan, L.; Liu, Z.; Huang, X.; Xu, Z. Enzymatic Enzyme immobilization on electrospun polymer nanofibers: An overview. <span class='html-italic'>J. Mol. Catal. B</span> <b>2009</b>, <span class='html-italic'>56</span>, 189–195. [<a href="https://scholar.google.com/scholar_lookup?title=Enzymatic+Enzyme+immobilization+on+electrospun+polymer+nanofibers:+An+overview&author=Wang,+Z.&author=Wan,+L.&author=Liu,+Z.&author=Huang,+X.&author=Xu,+Z.&publication_year=2009&journal=J.+Mol.+Catal.+B&volume=56&pages=189%E2%80%93195&doi=10.1016/j.molcatb.2008.05.005" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.molcatb.2008.05.005" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B134-membranes-10-00348' class='html-xxx' data-content='134.'>Yang, Z.; Si, J.; Cui, Z.; Ye, J.; Wang, X.; Wang, Q.; Peng, K.; Chen, W.; Chen, S. Biomimetic composite scaffolds based on surface modification of polydopamine on electrospun poly (lactic acid)/cellulose nanofibrils. <span class='html-italic'>Carbohydr. Polym.</span> <b>2017</b>, <span class='html-italic'>174</span>, 750–759. [<a href="https://scholar.google.com/scholar_lookup?title=Biomimetic+composite+scaffolds+based+on+surface+modification+of+polydopamine+on+electrospun+poly+(lactic+acid)/cellulose+nanofibrils&author=Yang,+Z.&author=Si,+J.&author=Cui,+Z.&author=Ye,+J.&author=Wang,+X.&author=Wang,+Q.&author=Peng,+K.&author=Chen,+W.&author=Chen,+S.&publication_year=2017&journal=Carbohydr.+Polym.&volume=174&pages=750%E2%80%93759&doi=10.1016/j.carbpol.2017.07.010&pmid=28821128" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.carbpol.2017.07.010" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="http://www.ncbi.nlm.nih.gov/pubmed/28821128" class='cross-ref' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>]</li><li id='B135-membranes-10-00348' class='html-xxx' data-content='135.'>Canton, T.T.; Kunert, L.R.; Suellen, B.; Ana, I.; Serafini, P. Nonwoven membranes for tissue engineering: An overview of cartilage, Nonwoven membranes for tissue engineering: An overview of cartilage, epithelium, and bone regeneration. <span class='html-italic'>J. Biomater. Sci. Polym. Ed.</span> <b>2019</b>, <span class='html-italic'>30</span>, 1026–1049. [<a href="https://scholar.google.com/scholar_lookup?title=Nonwoven+membranes+for+tissue+engineering:+An+overview+of+cartilage,+Nonwoven+membranes+for+tissue+engineering:+An+overview+of+cartilage,+epithelium,+and+bone+regeneration&author=Canton,+T.T.&author=Kunert,+L.R.&author=Suellen,+B.&author=Ana,+I.&author=Serafini,+P.&publication_year=2019&journal=J.+Biomater.+Sci.+Polym.+Ed.&volume=30&pages=1026%E2%80%931049&doi=10.1080/09205063.2019.1620592" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1080/09205063.2019.1620592" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B136-membranes-10-00348' class='html-xxx' data-content='136.'>Abdelaal, O.A.M.; Darwish, S.M.H. Review of Rapid Prototyping Techniques for Tissue Engineering Scaffolds Fabrication. In <span class='html-italic'>Characterization and Development of Biosystems and Biomaterials</span>; Springer: Berlin/Heidelberg, Germany, 2013; Volume 29, pp. 33–54. [<a href="https://scholar.google.com/scholar_lookup?title=Review+of+Rapid+Prototyping+Techniques+for+Tissue+Engineering+Scaffolds+Fabrication&author=Abdelaal,+O.A.M.&author=Darwish,+S.M.H.&publication_year=2013&pages=33%E2%80%9354" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1007/978-3-642-31470-4" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B137-membranes-10-00348' class='html-xxx' data-content='137.'>Li, K.; Wang, D.; Zhao, K.; Song, K.; Liang, J. Electrohydrodynamic jet 3D printing of PCL/PVP composite scaffold for cell culture. <span class='html-italic'>Talanta</span> <b>2020</b>, 120750. [<a href="https://scholar.google.com/scholar_lookup?title=Electrohydrodynamic+jet+3D+printing+of+PCL/PVP+composite+scaffold+for+cell+culture&author=Li,+K.&author=Wang,+D.&author=Zhao,+K.&author=Song,+K.&author=Liang,+J.&publication_year=2020&journal=Talanta&pages=120750&doi=10.1016/j.talanta.2020.120750" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.talanta.2020.120750" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B138-membranes-10-00348' class='html-xxx' data-content='138.'>Daly, A.C.; Freeman, F.E.; Gonzalez-Fernandez, T.; Critchley, S.E.; Nulty, J.; Kelly, D.J. 3D Bioprinting for Cartilage and Osteochondral Tissue Engineering. <span class='html-italic'>Adv. Healthc. Mater.</span> <b>2017</b>, <span class='html-italic'>6</span>, 1700298. [<a href="https://scholar.google.com/scholar_lookup?title=3D+Bioprinting+for+Cartilage+and+Osteochondral+Tissue+Engineering&author=Daly,+A.C.&author=Freeman,+F.E.&author=Gonzalez-Fernandez,+T.&author=Critchley,+S.E.&author=Nulty,+J.&author=Kelly,+D.J.&publication_year=2017&journal=Adv.+Healthc.+Mater.&volume=6&pages=1700298&doi=10.1002/adhm.201700298" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1002/adhm.201700298" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B139-membranes-10-00348' class='html-xxx' data-content='139.'>Seung, J.; Sang, H.; Jung, H.; Lee, H.; Hong, H.; Jin, Y.; Ji, Y.; Joo, O.; Hee, S.; Hum, C. 3D-printable photocurable bioink for cartilage regeneration of tonsil-derived mesenchymal stem cells. <span class='html-italic'>Addit. Manuf.</span> <b>2020</b>, <span class='html-italic'>33</span>, 101136. [<a href="https://scholar.google.com/scholar_lookup?title=3D-printable+photocurable+bioink+for+cartilage+regeneration+of+tonsil-derived+mesenchymal+stem+cells&author=Seung,+J.&author=Sang,+H.&author=Jung,+H.&author=Lee,+H.&author=Hong,+H.&author=Jin,+Y.&author=Ji,+Y.&author=Joo,+O.&author=Hee,+S.&author=Hum,+C.&publication_year=2020&journal=Addit.+Manuf.&volume=33&pages=101136&doi=10.1016/j.addma.2020.101136" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.addma.2020.101136" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B140-membranes-10-00348' class='html-xxx' data-content='140.'>Marycz, K.; Smieszek, A.; Targonska, S.; Walsh, A.; Szustakiewicz, K.; Wiglusz, R.J. Three dimensional (3D) printed PLA with nano-hydroxyapatite doped with europium(III) ions (nHAp-PLLA@Eu3+) composite for osteochondral defect regeneration and theranostics. <span class='html-italic'>Mater. Sci. Eng. C</span> <b>2020</b>, 110634. [<a href="https://scholar.google.com/scholar_lookup?title=Three+dimensional+(3D)+printed+PLA+with+nano-hydroxyapatite+doped+with+europium(III)+ions+(nHAp-PLLA@Eu3+)+composite+for+osteochondral+defect+regeneration+and+theranostics&author=Marycz,+K.&author=Smieszek,+A.&author=Targonska,+S.&author=Walsh,+A.&author=Szustakiewicz,+K.&author=Wiglusz,+R.J.&publication_year=2020&journal=Mater.+Sci.+Eng.+C&pages=110634&doi=10.1016/j.msec.2020.110634" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.msec.2020.110634" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B141-membranes-10-00348' class='html-xxx' data-content='141.'>Wu, J.; Yang, R.; Zheng, J.; Pan, L.; Liu, X. Fabrication and improvement of PCL/alginate/PAAm scaffold via selective laser sintering for tissue engineering. <span class='html-italic'>Micro Nano Lett.</span> <b>2019</b>, <span class='html-italic'>14</span>, 852–855. [<a href="https://scholar.google.com/scholar_lookup?title=Fabrication+and+improvement+of+PCL/alginate/PAAm+scaffold+via+selective+laser+sintering+for+tissue+engineering&author=Wu,+J.&author=Yang,+R.&author=Zheng,+J.&author=Pan,+L.&author=Liu,+X.&publication_year=2019&journal=Micro+Nano+Lett.&volume=14&pages=852%E2%80%93855&doi=10.1049/mnl.2018.5806" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1049/mnl.2018.5806" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B142-membranes-10-00348' class='html-xxx' data-content='142.'>Aisenbrey, E.A.; Tomaschke, A.; Kleinjan, E.; Muralidharan, A.; Pascual-Garrido, C.; Mcleod, R.R.; Ferguson, V.L.; Bryant, S.J. A Stereolithography-Based 3D Printed Hybrid Scaffold for In Situ Cartilage Defect Repair. <span class='html-italic'>Macromol. Biosci.</span> <b>2017</b>, <span class='html-italic'>18</span>, 1–8. [<a href="https://scholar.google.com/scholar_lookup?title=A+Stereolithography-Based+3D+Printed+Hybrid+Scaffold+for+In+Situ+Cartilage+Defect+Repair&author=Aisenbrey,+E.A.&author=Tomaschke,+A.&author=Kleinjan,+E.&author=Muralidharan,+A.&author=Pascual-Garrido,+C.&author=Mcleod,+R.R.&author=Ferguson,+V.L.&author=Bryant,+S.J.&publication_year=2017&journal=Macromol.+Biosci.&volume=18&pages=1%E2%80%938&doi=10.1002/mabi.201700267" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1002/mabi.201700267" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B143-membranes-10-00348' class='html-xxx' data-content='143.'>Gauvin, R.; Chen, Y.; Woo, J.; Soman, P.; Zorlutuna, P.; Nichol, J.W.; Bae, H.; Chen, S.; Khademhosseini, A. Biomaterials Microfabrication of complex porous tissue engineering scaffolds using 3D projection stereolithography. <span class='html-italic'>Biomaterials</span> <b>2012</b>, <span class='html-italic'>33</span>, 3824–3834. [<a href="https://scholar.google.com/scholar_lookup?title=Biomaterials+Microfabrication+of+complex+porous+tissue+engineering+scaffolds+using+3D+projection+stereolithography&author=Gauvin,+R.&author=Chen,+Y.&author=Woo,+J.&author=Soman,+P.&author=Zorlutuna,+P.&author=Nichol,+J.W.&author=Bae,+H.&author=Chen,+S.&author=Khademhosseini,+A.&publication_year=2012&journal=Biomaterials&volume=33&pages=3824%E2%80%933834&doi=10.1016/j.biomaterials.2012.01.048&pmid=22365811" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.biomaterials.2012.01.048" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="http://www.ncbi.nlm.nih.gov/pubmed/22365811" class='cross-ref' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>] [<a href="http://europepmc.org/articles/pmc3766354?pdf=render" target='_blank' rel="noopener noreferrer">Green Version</a>]</li><li id='B144-membranes-10-00348' class='html-xxx' data-content='144.'>Chartrain, N.A.; Williams, C.B.; Whittington, A.R. A review on fabricating tissue scaffolds using vat photopolymerization. <span class='html-italic'>Acta Biomater.</span> <b>2018</b>, <span class='html-italic'>74</span>, 90–111. [<a href="https://scholar.google.com/scholar_lookup?title=A+review+on+fabricating+tissue+scaffolds+using+vat+photopolymerization&author=Chartrain,+N.A.&author=Williams,+C.B.&author=Whittington,+A.R.&publication_year=2018&journal=Acta+Biomater.&volume=74&pages=90%E2%80%93111&doi=10.1016/j.actbio.2018.05.010&pmid=29753139" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.actbio.2018.05.010" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="http://www.ncbi.nlm.nih.gov/pubmed/29753139" class='cross-ref' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>]</li><li id='B145-membranes-10-00348' class='html-xxx' data-content='145.'>Longley, R.; Ferreira, A.M.; Gentile, P. Recent Approaches to the Manufacturing of Biomimetic Multi-Phasic Scaffolds for Osteochondral Regeneration. <span class='html-italic'>Int. J. Mol. Sci.</span> <b>2018</b>, <span class='html-italic'>19</span>, 1755. [<a href="https://scholar.google.com/scholar_lookup?title=Recent+Approaches+to+the+Manufacturing+of+Biomimetic+Multi-Phasic+Scaffolds+for+Osteochondral+Regeneration&author=Longley,+R.&author=Ferreira,+A.M.&author=Gentile,+P.&publication_year=2018&journal=Int.+J.+Mol.+Sci.&volume=19&pages=1755&doi=10.3390/ijms19061755&pmid=29899285" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.3390/ijms19061755" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="http://www.ncbi.nlm.nih.gov/pubmed/29899285" class='cross-ref' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>] [<a href="https://www.mdpi.com/1422-0067/19/6/1755/pdf" target='_blank' rel="noopener noreferrer">Green Version</a>]</li><li id='B146-membranes-10-00348' class='html-xxx' data-content='146.'>Mohanty, A.K. Improving the Impact Strength and Heat Resistance of 3D Printed Models: Structure, Property, and Processing Correlationships during Fused Deposition Modeling (FDM) of Poly(Lactic Acid). <span class='html-italic'>ACS Omega</span> <b>2018</b>. [<a href="https://scholar.google.com/scholar_lookup?title=Improving+the+Impact+Strength+and+Heat+Resistance+of+3D+Printed+Models:+Structure,+Property,+and+Processing+Correlationships+during+Fused+Deposition+Modeling+(FDM)+of+Poly(Lactic+Acid)&author=Mohanty,+A.K.&publication_year=2018&journal=ACS+Omega&doi=10.1021/acsomega.8b00129" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1021/acsomega.8b00129" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B147-membranes-10-00348' class='html-xxx' data-content='147.'>Murphy, S.V.; Atala, A. 3D bioprinting of tissues and organs. <span class='html-italic'>Nat. Biotechnol.</span> <b>2014</b>, <span class='html-italic'>32</span>, 773–785. [<a href="https://scholar.google.com/scholar_lookup?title=3D+bioprinting+of+tissues+and+organs&author=Murphy,+S.V.&author=Atala,+A.&publication_year=2014&journal=Nat.+Biotechnol.&volume=32&pages=773%E2%80%93785&doi=10.1038/nbt.2958" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1038/nbt.2958" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B148-membranes-10-00348' class='html-xxx' data-content='148.'>Cheng, A.; Schwartz, Z.; Kahn, A.; Li, X.; Shao, Z.; Sun, M.; Ao, Y.; Boyan, B.D.; Chen, H.; Antonio, S.; et al. Advances in Porous Scaffold Design for Bone and Cartilage Tissue Engineering and Regeneration. <span class='html-italic'>Tissue Eng. Part B Rev.</span> <b>2018</b>, <span class='html-italic'>25</span>, 14–29. [<a href="https://scholar.google.com/scholar_lookup?title=Advances+in+Porous+Scaffold+Design+for+Bone+and+Cartilage+Tissue+Engineering+and+Regeneration&author=Cheng,+A.&author=Schwartz,+Z.&author=Kahn,+A.&author=Li,+X.&author=Shao,+Z.&author=Sun,+M.&author=Ao,+Y.&author=Boyan,+B.D.&author=Chen,+H.&author=Antonio,+S.&publication_year=2018&journal=Tissue+Eng.+Part+B+Rev.&volume=25&pages=14%E2%80%9329&doi=10.1089/ten.teb.2018.0119" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1089/ten.teb.2018.0119" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B149-membranes-10-00348' class='html-xxx' data-content='149.'>Chen, W.; Xu, Y.; Liu, Y.; Wang, Z.; Li, Y.; Jiang, G.; Mo, X.; Zhou, G. Three-dimensional printed electrospun fi ber-based scaffold for cartilage regeneration. <span class='html-italic'>Mater. Des.</span> <b>2019</b>, <span class='html-italic'>179</span>, 107886. [<a href="https://scholar.google.com/scholar_lookup?title=Three-dimensional+printed+electrospun+fi+ber-based+scaffold+for+cartilage+regeneration&author=Chen,+W.&author=Xu,+Y.&author=Liu,+Y.&author=Wang,+Z.&author=Li,+Y.&author=Jiang,+G.&author=Mo,+X.&author=Zhou,+G.&publication_year=2019&journal=Mater.+Des.&volume=179&pages=107886&doi=10.1016/j.matdes.2019.107886" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.matdes.2019.107886" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B150-membranes-10-00348' class='html-xxx' data-content='150.'>Garrigues, N.W.; Little, D.; Sanchez-Adams, J.; Ruch, D.S.; Guilak, F. Electrospun cartilage-derived matrix scaffolds for cartilage tissue engineering. <span class='html-italic'>J. Biomed. Mater. Res. Part A</span> <b>2014</b>, <span class='html-italic'>59784</span>, 28–30. [<a href="https://scholar.google.com/scholar_lookup?title=Electrospun+cartilage-derived+matrix+scaffolds+for+cartilage+tissue+engineering&author=Garrigues,+N.W.&author=Little,+D.&author=Sanchez-Adams,+J.&author=Ruch,+D.S.&author=Guilak,+F.&publication_year=2014&journal=J.+Biomed.+Mater.+Res.+Part+A&volume=59784&pages=28%E2%80%9330&doi=10.1002/jbm.a.35068" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1002/jbm.a.35068" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B151-membranes-10-00348' class='html-xxx' data-content='151.'>Xu, T.; Binder, K.W.; Albanna, M.Z.; Dice, D.; Zhao, W.; Yoo, J.J.; Atala, A. Hybrid printing of mechanically and biologically improved constructs for cartilage tissue engineering applications. <span class='html-italic'>Biofabrication</span> <b>2013</b>, <span class='html-italic'>5</span>, 1–11. [<a href="https://scholar.google.com/scholar_lookup?title=Hybrid+printing+of+mechanically+and+biologically+improved+constructs+for+cartilage+tissue+engineering+applications&author=Xu,+T.&author=Binder,+K.W.&author=Albanna,+M.Z.&author=Dice,+D.&author=Zhao,+W.&author=Yoo,+J.J.&author=Atala,+A.&publication_year=2013&journal=Biofabrication&volume=5&pages=1%E2%80%9311&doi=10.1088/1758-5082/5/1/015001" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1088/1758-5082/5/1/015001" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B152-membranes-10-00348' class='html-xxx' data-content='152.'>Nielsen, L.E. Polymer Reviews Cross-Linking—Effect on Physical Properties of Polymers. <span class='html-italic'>J. Macromol. Sci. Part C</span> <b>2008</b>, <span class='html-italic'>3</span>, 69–103. [<a href="https://scholar.google.com/scholar_lookup?title=Polymer+Reviews+Cross-Linking%E2%80%94Effect+on+Physical+Properties+of+Polymers&author=Nielsen,+L.E.&publication_year=2008&journal=J.+Macromol.+Sci.+Part+C&volume=3&pages=69%E2%80%93103&doi=10.1080/15583726908545897" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1080/15583726908545897" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B153-membranes-10-00348' class='html-xxx' data-content='153.'>Rofiqoh, N.; Putri, E.; Wang, X.; Chen, Y.; Li, X.; Kawazoe, N.; Chen, G. Preparation of PLGA-collagen hybrid scaffolds with controlled pore structures for cartilage tissue engineering. <span class='html-italic'>Prog. Nat. Sci. Mater. Int.</span> <b>2020</b>. [<a href="https://scholar.google.com/scholar_lookup?title=Preparation+of+PLGA-collagen+hybrid+scaffolds+with+controlled+pore+structures+for+cartilage+tissue+engineering&author=Rofiqoh,+N.&author=Putri,+E.&author=Wang,+X.&author=Chen,+Y.&author=Li,+X.&author=Kawazoe,+N.&author=Chen,+G.&publication_year=2020&journal=Prog.+Nat.+Sci.+Mater.+Int.&doi=10.1016/j.pnsc.2020.07.003" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.pnsc.2020.07.003" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B154-membranes-10-00348' class='html-xxx' data-content='154.'>Laurent, P. Suitability of a PLCL fibrous scaffold for soft tissue engineering applications: A combined biological and mechanical characterisation. <span class='html-italic'>J. Biomater. Appl.</span> <b>2018</b>, <span class='html-italic'>32</span>, 1–13. [<a href="https://scholar.google.com/scholar_lookup?title=Suitability+of+a+PLCL+fibrous+scaffold+for+soft+tissue+engineering+applications:+A+combined+biological+and+mechanical+characterisation&author=Laurent,+P.&publication_year=2018&journal=J.+Biomater.+Appl.&volume=32&pages=1%E2%80%9313&doi=10.1177/0885328218757064&pmid=29409376" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1177/0885328218757064" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="http://www.ncbi.nlm.nih.gov/pubmed/29409376" class='cross-ref' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>]</li><li id='B155-membranes-10-00348' class='html-xxx' data-content='155.'>Ahmed, E.M. Hydrogel: Preparation, characterization, and applications: A review. <span class='html-italic'>J. Adv. Res.</span> <b>2015</b>, <span class='html-italic'>6</span>, 105–121. [<a href="https://scholar.google.com/scholar_lookup?title=Hydrogel:+Preparation,+characterization,+and+applications:+A+review&author=Ahmed,+E.M.&publication_year=2015&journal=J.+Adv.+Res.&volume=6&pages=105%E2%80%93121&doi=10.1016/j.jare.2013.07.006&pmid=25750745" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.jare.2013.07.006" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="http://www.ncbi.nlm.nih.gov/pubmed/25750745" class='cross-ref' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>] [<a href="" target='_blank' rel="noopener noreferrer">Green Version</a>]</li><li id='B156-membranes-10-00348' class='html-xxx' data-content='156.'>Bistolfi, A.; Ferracini, R.; Galletta, C.; Tosto, F.; Sgarminato, V.; Digo, E.; Vernè, E.; Massè, A. Regeneration of articular cartilage: Scaffold used in orthopedic surgery. A short handbook of available products for regenerative joints surgery. <span class='html-italic'>Clin. Sci. Res. Rep.</span> <b>2017</b>, <span class='html-italic'>1</span>, 1–7. [<a href="https://scholar.google.com/scholar_lookup?title=Regeneration+of+articular+cartilage:+Scaffold+used+in+orthopedic+surgery.+A+short+handbook+of+available+products+for+regenerative+joints+surgery&author=Bistolfi,+A.&author=Ferracini,+R.&author=Galletta,+C.&author=Tosto,+F.&author=Sgarminato,+V.&author=Digo,+E.&author=Vern%C3%A8,+E.&author=Mass%C3%A8,+A.&publication_year=2017&journal=Clin.+Sci.+Res.+Rep.&volume=1&pages=1%E2%80%937&doi=10.15761/CSRR.1000101" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.15761/CSRR.1000101" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="https://www.oatext.com/pdf/CSRR-1-101.pdf" target='_blank' rel="noopener noreferrer">Green Version</a>]</li><li id='B157-membranes-10-00348' class='html-xxx' data-content='157.'>Müller, S. Repair of Focal Cartilage Defects With Scaffold-Assisted Autologous Chondrocyte Grafts. <span class='html-italic'>Am. J. Sports Med.</span> <b>2011</b>, <span class='html-italic'>39</span>, 1697–1705. [<a href="https://scholar.google.com/scholar_lookup?title=Repair+of+Focal+Cartilage+Defects+With+Scaffold-Assisted+Autologous+Chondrocyte+Grafts&author=M%C3%BCller,+S.&publication_year=2011&journal=Am.+J.+Sports+Med.&volume=39&pages=1697%E2%80%931705&doi=10.1177/0363546511403279" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1177/0363546511403279" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B158-membranes-10-00348' class='html-xxx' data-content='158.'>Tsai, M.; Hung, K.; Hung, S.; Hsu, S. Evaluation of biodegradable elastic scaffolds made of anionic polyurethane for cartilage tissue engineering. <span class='html-italic'>Colloids Surf. B Biointerfaces</span> <b>2015</b>, <span class='html-italic'>125</span>, 34–44. [<a href="https://scholar.google.com/scholar_lookup?title=Evaluation+of+biodegradable+elastic+scaffolds+made+of+anionic+polyurethane+for+cartilage+tissue+engineering&author=Tsai,+M.&author=Hung,+K.&author=Hung,+S.&author=Hsu,+S.&publication_year=2015&journal=Colloids+Surf.+B+Biointerfaces&volume=125&pages=34%E2%80%9344&doi=10.1016/j.colsurfb.2014.11.003" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.colsurfb.2014.11.003" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B159-membranes-10-00348' class='html-xxx' data-content='159.'>Borsøe, B.; Casper, C.; Foldager, B.; Møller, O.; Lind, M. A novel nano-structured porous polycaprolactone scaffold improves hyaline cartilage repair in a rabbit model compared to a collagen type I/III scaffold: In vitro and in vivo studies. <span class='html-italic'>Knee Surg. Sports Traumatol. Arthrosc.</span> <b>2012</b>, <span class='html-italic'>20</span>, 1192–1204. [<a href="https://scholar.google.com/scholar_lookup?title=A+novel+nano-structured+porous+polycaprolactone+scaffold+improves+hyaline+cartilage+repair+in+a+rabbit+model+compared+to+a+collagen+type+I/III+scaffold:+In+vitro+and+in+vivo+studies&author=Bors%C3%B8e,+B.&author=Casper,+C.&author=Foldager,+B.&author=M%C3%B8ller,+O.&author=Lind,+M.&publication_year=2012&journal=Knee+Surg.+Sports+Traumatol.+Arthrosc.&volume=20&pages=1192%E2%80%931204&doi=10.1007/s00167-011-1692-9" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1007/s00167-011-1692-9" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B160-membranes-10-00348' class='html-xxx' data-content='160.'>Theodoridis, K.; Aggelidou, E.; Vavilis, T.; Manthou, M.E.; Tsimponis, A.; Demiri, E.C.; Boukla, A.; Salpistis, C. Hyaline cartilage next generation implants from adipose—Tissue—Derived mesenchymal stem cells: Comparative study on 3D—Printed polycaprolactone scaffold patterns. <span class='html-italic'>J. Tissue Eng. Regen. Med.</span> <b>2019</b>, 342–355. [<a href="https://scholar.google.com/scholar_lookup?title=Hyaline+cartilage+next+generation+implants+from+adipose%E2%80%94Tissue%E2%80%94Derived+mesenchymal+stem+cells:+Comparative+study+on+3D%E2%80%94Printed+polycaprolactone+scaffold+patterns&author=Theodoridis,+K.&author=Aggelidou,+E.&author=Vavilis,+T.&author=Manthou,+M.E.&author=Tsimponis,+A.&author=Demiri,+E.C.&author=Boukla,+A.&author=Salpistis,+C.&publication_year=2019&journal=J.+Tissue+Eng.+Regen.+Med.&pages=342%E2%80%93355&doi=10.1002/term.2798" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1002/term.2798" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B161-membranes-10-00348' class='html-xxx' data-content='161.'>Płończak, M.; Czubak, J. Culture of Human Autologous Chondrocytes on Polysulphonic Membrane—Preliminary Studies. <span class='html-italic'>Biocybern. Biomed. Eng.</span> <b>2012</b>, <span class='html-italic'>32</span>, 63–67. [<a href="https://scholar.google.com/scholar_lookup?title=Culture+of+Human+Autologous+Chondrocytes+on+Polysulphonic+Membrane%E2%80%94Preliminary+Studies&author=P%C5%82o%C5%84czak,+M.&author=Czubak,+J.&publication_year=2012&journal=Biocybern.+Biomed.+Eng.&volume=32&pages=63%E2%80%9367&doi=10.1016/S0208-5216(12)70042-6" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/S0208-5216(12)70042-6" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B162-membranes-10-00348' class='html-xxx' data-content='162.'>Płończak, M. The Value of Autogenous Cartilage Cell Transplants in the Experimental Treatment of Articular Cartilage Defects in Rabbits. Ph.D. Thesis, Medical Centre of Postgraduate Education in Warsaw, Warsaw, Poland, 28 May 2008. [<a href="https://scholar.google.com/scholar_lookup?title=The+Value+of+Autogenous+Cartilage+Cell+Transplants+in+the+Experimental+Treatment+of+Articular+Cartilage+Defects+in+Rabbits&author=P%C5%82o%C5%84czak,+M.&publication_year=2008" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>]</li><li id='B163-membranes-10-00348' class='html-xxx' data-content='163.'>Taylor, P.; Jung, Y.; Kim, S.H.; You, H.J. Application of an elastic biodegradable poly (L-lactide-co-ε-caprolactone) scaffold for cartilage tissue regeneration. <span class='html-italic'>J. Biomater. Sci. Polym. Ed.</span> <b>2012</b>, 1073–1085. [<a href="https://scholar.google.com/scholar_lookup?title=Application+of+an+elastic+biodegradable+poly+(L-lactide-co-%CE%B5-caprolactone)+scaffold+for+cartilage+tissue+regeneration&author=Taylor,+P.&author=Jung,+Y.&author=Kim,+S.H.&author=You,+H.J.&publication_year=2012&journal=J.+Biomater.+Sci.+Polym.+Ed.&pages=1073%E2%80%931085&doi=10.1163/156856208784909336" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1163/156856208784909336" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B164-membranes-10-00348' class='html-xxx' data-content='164.'>Siclari, A.; Mascaro, G.; Kaps, C.; Boux, E. A 5-Year Follow-Up After Cartilage Repair in the Knee Using a Platelet—Rich Plasma-Immersed Polymer-Based Implant. <span class='html-italic'>Open Orthop. J.</span> <b>2014</b>, <span class='html-italic'>8</span>, 346–354. [<a href="https://scholar.google.com/scholar_lookup?title=A+5-Year+Follow-Up+After+Cartilage+Repair+in+the+Knee+Using+a+Platelet%E2%80%94Rich+Plasma-Immersed+Polymer-Based+Implant&author=Siclari,+A.&author=Mascaro,+G.&author=Kaps,+C.&author=Boux,+E.&publication_year=2014&journal=Open+Orthop.+J.&volume=8&pages=346%E2%80%93354&doi=10.2174/1874325001408010346&pmid=25352927" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.2174/1874325001408010346" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="http://www.ncbi.nlm.nih.gov/pubmed/25352927" class='cross-ref' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>] [<a href="https://openorthopaedicsjournal.com/VOLUME/8/PAGE/346/PDF/" target='_blank' rel="noopener noreferrer">Green Version</a>]</li><li id='B165-membranes-10-00348' class='html-xxx' data-content='165.'>Asadi, N.; Alizadeh, E.; Rahmani, A.; Bakhshayesh, D.; Mostafavi, E.; Akbarzadeh, A.; Davaran, S. Fabrication and in Vitro Evaluation of Nanocomposite Hydrogel Sca ff olds Based on Gelatin/PCL—PEG—PCL for Cartilage Tissue Engineering. <span class='html-italic'>ACS Omega</span> <b>2019</b>, <span class='html-italic'>4</span>, 449–457. [<a href="https://scholar.google.com/scholar_lookup?title=Fabrication+and+in+Vitro+Evaluation+of+Nanocomposite+Hydrogel+Sca+ff+olds+Based+on+Gelatin/PCL%E2%80%94PEG%E2%80%94PCL+for+Cartilage+Tissue+Engineering&author=Asadi,+N.&author=Alizadeh,+E.&author=Rahmani,+A.&author=Bakhshayesh,+D.&author=Mostafavi,+E.&author=Akbarzadeh,+A.&author=Davaran,+S.&publication_year=2019&journal=ACS+Omega&volume=4&pages=449%E2%80%93457&doi=10.1021/acsomega.8b02593" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1021/acsomega.8b02593" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B166-membranes-10-00348' class='html-xxx' data-content='166.'>He, Y.; Liu, W.; Guan, L.; Chen, J.; Duan, L.; Jia, Z.; Huang, J.; Li, W.; Liu, J.; Xiong, J.; et al. A 3D-Printed PLCL Scaffold Coated with Collagen Type I and Its Biocompatibility. <span class='html-italic'>Biomed Res. Int.</span> <b>2018</b>, <span class='html-italic'>2018</span>, 1–10. [<a href="https://scholar.google.com/scholar_lookup?title=A+3D-Printed+PLCL+Scaffold+Coated+with+Collagen+Type+I+and+Its+Biocompatibility&author=He,+Y.&author=Liu,+W.&author=Guan,+L.&author=Chen,+J.&author=Duan,+L.&author=Jia,+Z.&author=Huang,+J.&author=Li,+W.&author=Liu,+J.&author=Xiong,+J.&publication_year=2018&journal=Biomed+Res.+Int.&volume=2018&pages=1%E2%80%9310&doi=10.1155/2018/5147156&pmid=29850530" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1155/2018/5147156" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="http://www.ncbi.nlm.nih.gov/pubmed/29850530" class='cross-ref' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>]</li><li id='B167-membranes-10-00348' class='html-xxx' data-content='167.'>Haaparanta, A.; Ja, E.; Fatih, I.; Ville, C.; Kiviranta, I.; Kelloma, M. Preparation and characterization of collagen/PLA, chitosan/PLA, and collagen/chitosan/PLA hybrid scaffolds for cartilage tissue engineering. <span class='html-italic'>J. Mater. Sci. Mater. Med.</span> <b>2014</b>, <span class='html-italic'>25</span>, 1129–1136. [<a href="https://scholar.google.com/scholar_lookup?title=Preparation+and+characterization+of+collagen/PLA,+chitosan/PLA,+and+collagen/chitosan/PLA+hybrid+scaffolds+for+cartilage+tissue+engineering&author=Haaparanta,+A.&author=Ja,+E.&author=Fatih,+I.&author=Ville,+C.&author=Kiviranta,+I.&author=Kelloma,+M.&publication_year=2014&journal=J.+Mater.+Sci.+Mater.+Med.&volume=25&pages=1129%E2%80%931136&doi=10.1007/s10856-013-5129-5&pmid=24375147" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1007/s10856-013-5129-5" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="http://www.ncbi.nlm.nih.gov/pubmed/24375147" class='cross-ref' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>]</li><li id='B168-membranes-10-00348' class='html-xxx' data-content='168.'>Nogami, M.; Kimura, T.; Seki, S.; Matsui, Y.; Yoshida, T.; Koike-Soko, C.; Okabe, M.; Motomura, H.; Gejo, R.; Nikaido, T. A human amnion derived extracellular matrix coated cell free scaffold for cartilage repair: In vitro and in vivo studies. <span class='html-italic'>Tissue Eng. Part A</span> <b>2016</b>, <span class='html-italic'>22</span>, 680–688. [<a href="https://scholar.google.com/scholar_lookup?title=A+human+amnion+derived+extracellular+matrix+coated+cell+free+scaffold+for+cartilage+repair:+In+vitro+and+in+vivo+studies&author=Nogami,+M.&author=Kimura,+T.&author=Seki,+S.&author=Matsui,+Y.&author=Yoshida,+T.&author=Koike-Soko,+C.&author=Okabe,+M.&author=Motomura,+H.&author=Gejo,+R.&author=Nikaido,+T.&publication_year=2016&journal=Tissue+Eng.+Part+A&volume=22&pages=680%E2%80%93688&doi=10.1089/ten.tea.2015.0285&pmid=27019057" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1089/ten.tea.2015.0285" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="http://www.ncbi.nlm.nih.gov/pubmed/27019057" class='cross-ref' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>]</li><li id='B169-membranes-10-00348' class='html-xxx' data-content='169.'>Yamanaka, K.; Yamamoto, K.; Sakai, Y.; Suda, Y.; Shigemitsu, Y. Seeding of mesenchymal stem cells into inner part of interconnected porous biodegradable scaffold by a new method with a filter paper. <span class='html-italic'>Dent. Mater. J.</span> <b>2015</b>, <span class='html-italic'>34</span>, 78–85. [<a href="https://scholar.google.com/scholar_lookup?title=Seeding+of+mesenchymal+stem+cells+into+inner+part+of+interconnected+porous+biodegradable+scaffold+by+a+new+method+with+a+filter+paper&author=Yamanaka,+K.&author=Yamamoto,+K.&author=Sakai,+Y.&author=Suda,+Y.&author=Shigemitsu,+Y.&publication_year=2015&journal=Dent.+Mater.+J.&volume=34&pages=78%E2%80%9385&doi=10.4012/dmj.2013-330&pmid=25748462" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.4012/dmj.2013-330" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="http://www.ncbi.nlm.nih.gov/pubmed/25748462" class='cross-ref' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>] [<a href="https://www.jstage.jst.go.jp/article/dmj/34/1/34_2013-330/_pdf" target='_blank' rel="noopener noreferrer">Green Version</a>]</li><li id='B170-membranes-10-00348' class='html-xxx' data-content='170.'>Chen, C.; Shyu, V.B.; Chen, J.; Lee, M. Selective laser sintered poly-ε-caprolactone scaffold hybridized with collagen hydrogel for cartilage tissue engineering. <span class='html-italic'>Biofabrication</span> <b>2014</b>, 015004. [<a href="https://scholar.google.com/scholar_lookup?title=Selective+laser+sintered+poly-%CE%B5-caprolactone+scaffold+hybridized+with+collagen+hydrogel+for+cartilage+tissue+engineering&author=Chen,+C.&author=Shyu,+V.B.&author=Chen,+J.&author=Lee,+M.&publication_year=2014&journal=Biofabrication&pages=015004&doi=10.1088/1758-5082/6/1/015004" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1088/1758-5082/6/1/015004" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B171-membranes-10-00348' class='html-xxx' data-content='171.'>Taylor, P.; Li, C.; Wang, L.; Yang, Z.; Kim, G. A Viscoelastic Chitosan-Modified Three-Dimensional Porous Poly (L-Scaffold for Cartilage Tissue Engineering. <span class='html-italic'>Biomater. Sci.</span> <b>2012</b>, 405–424. [<a href="https://scholar.google.com/scholar_lookup?title=A+Viscoelastic+Chitosan-Modified+Three-Dimensional+Porous+Poly+(L-Scaffold+for+Cartilage+Tissue+Engineering&author=Taylor,+P.&author=Li,+C.&author=Wang,+L.&author=Yang,+Z.&author=Kim,+G.&publication_year=2012&journal=Biomater.+Sci.&pages=405%E2%80%93424&doi=10.1163/092050610X551970" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1163/092050610X551970" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="http://pdfs.semanticscholar.org/2650/4529e6ea86ce03b9522ae846b3a04d5be932.pdf" target='_blank' rel="noopener noreferrer">Green Version</a>]</li><li id='B172-membranes-10-00348' class='html-xxx' data-content='172.'>Liao, J.; Qu, Y.; Chu, B.; Zhang, X.; Qian, Z. Biodegradable CSMA/PECA/Graphene Porous Hybrid Scaffold for Cartilage Tissue Engineering. <span class='html-italic'>Sci. Rep.</span> <b>2015</b>, <span class='html-italic'>5</span>, 9879. [<a href="https://scholar.google.com/scholar_lookup?title=Biodegradable+CSMA/PECA/Graphene+Porous+Hybrid+Scaffold+for+Cartilage+Tissue+Engineering&author=Liao,+J.&author=Qu,+Y.&author=Chu,+B.&author=Zhang,+X.&author=Qian,+Z.&publication_year=2015&journal=Sci.+Rep.&volume=5&pages=9879&doi=10.1038/srep09879" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1038/srep09879" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B173-membranes-10-00348' class='html-xxx' data-content='173.'>Urbanek, O.; Kołbuk, D.; Wróbel, M. International Journal of Polymeric Materials and Articular cartilage: New directions and barriers of scaffolds development—Review. <span class='html-italic'>Int. J. Polym. Mater. Polym. Biomater.</span> <b>2018</b>, 1–15. [<a href="https://scholar.google.com/scholar_lookup?title=International+Journal+of+Polymeric+Materials+and+Articular+cartilage:+New+directions+and+barriers+of+scaffolds+development%E2%80%94Review&author=Urbanek,+O.&author=Ko%C5%82buk,+D.&author=Wr%C3%B3bel,+M.&publication_year=2018&journal=Int.+J.+Polym.+Mater.+Polym.+Biomater.&pages=1%E2%80%9315&doi=10.1080/00914037.2018.1452224" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1080/00914037.2018.1452224" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B174-membranes-10-00348' class='html-xxx' data-content='174.'>Tan, S.I.; Jun, S.; Tho, W.; Tho, K.S. Biological resurfacing of grade IV articular cartilage ulcers in knee joint with Hyalofast. <span class='html-italic'>J. Orthop. Surg.</span> <b>2020</b>, <span class='html-italic'>28</span>, 1–7. [<a href="https://scholar.google.com/scholar_lookup?title=Biological+resurfacing+of+grade+IV+articular+cartilage+ulcers+in+knee+joint+with+Hyalofast&author=Tan,+S.I.&author=Jun,+S.&author=Tho,+W.&author=Tho,+K.S.&publication_year=2020&journal=J.+Orthop.+Surg.&volume=28&pages=1%E2%80%937&doi=10.1177/2309499020905158&pmid=32106760" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1177/2309499020905158" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="http://www.ncbi.nlm.nih.gov/pubmed/32106760" class='cross-ref' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>] [<a href="https://journals.sagepub.com/doi/pdf/10.1177/2309499020905158" target='_blank' rel="noopener noreferrer">Green Version</a>]</li><li id='B175-membranes-10-00348' class='html-xxx' data-content='175.'>Sofu, H.; Camurcu, Y.; Ucpunar, H.; Ozcan, S.; Yurten, H.; Sahin, V. Clinical and radiographic outcomes of chitosan-glycerol phosphate / blood implant are similar with hyaluronic acid-based cell-free scaffold in the treatment of focal osteochondral lesions of the knee joint. <span class='html-italic'>Knee Surg. Sports Traumatol. Arthrosc.</span> <b>2019</b>, <span class='html-italic'>27</span>, 773–781. [<a href="https://scholar.google.com/scholar_lookup?title=Clinical+and+radiographic+outcomes+of+chitosan-glycerol+phosphate+/+blood+implant+are+similar+with+hyaluronic+acid-based+cell-free+scaffold+in+the+treatment+of+focal+osteochondral+lesions+of+the+knee+joint&author=Sofu,+H.&author=Camurcu,+Y.&author=Ucpunar,+H.&author=Ozcan,+S.&author=Yurten,+H.&author=Sahin,+V.&publication_year=2019&journal=Knee+Surg.+Sports+Traumatol.+Arthrosc.&volume=27&pages=773%E2%80%93781&doi=10.1007/s00167-018-5079-z&pmid=30069652" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1007/s00167-018-5079-z" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="http://www.ncbi.nlm.nih.gov/pubmed/30069652" class='cross-ref' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>]</li><li id='B176-membranes-10-00348' class='html-xxx' data-content='176.'>Park, Y.B.; Ha, C.W.; Lee, C.H.; Yoon, Y.C.; Park, Y.G. Cartilage Regeneration in Osteoarthritic Patients by a Composite of Allogeneic Umbilical Cord Blood-Derived Mesenchymal Stem Cells and Hyaluronate Hydrogel: Results from Trial for Safety and Results From a a Clinical Clinical Trial for Safety and Concept. <span class='html-italic'>Stem Cells Transl. Med.</span> <b>2017</b>, <span class='html-italic'>6</span>, 613–621. [<a href="https://scholar.google.com/scholar_lookup?title=Cartilage+Regeneration+in+Osteoarthritic+Patients+by+a+Composite+of+Allogeneic+Umbilical+Cord+Blood-Derived+Mesenchymal+Stem+Cells+and+Hyaluronate+Hydrogel:+Results+from+Trial+for+Safety+and+Results+From+a+a+Clinical+Clinical+Trial+for+Safety+and+Concept&author=Park,+Y.B.&author=Ha,+C.W.&author=Lee,+C.H.&author=Yoon,+Y.C.&author=Park,+Y.G.&publication_year=2017&journal=Stem+Cells+Transl.+Med.&volume=6&pages=613%E2%80%93621" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>]</li><li id='B177-membranes-10-00348' class='html-xxx' data-content='177.'>Negoro, T.; Takagaki, Y.; Okura, H.; Matsuyama, A. Trends in clinical trials for articular cartilage repair by cell therapy. <span class='html-italic'>NPJ Regen. Med.</span> <b>2018</b>. [<a href="https://scholar.google.com/scholar_lookup?title=Trends+in+clinical+trials+for+articular+cartilage+repair+by+cell+therapy&author=Negoro,+T.&author=Takagaki,+Y.&author=Okura,+H.&author=Matsuyama,+A.&publication_year=2018&journal=NPJ+Regen.+Med.&doi=10.1038/s41536-018-0055-2" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1038/s41536-018-0055-2" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="https://www.nature.com/articles/s41536-018-0055-2.pdf" target='_blank' rel="noopener noreferrer">Green Version</a>]</li><li id='B178-membranes-10-00348' class='html-xxx' data-content='178.'>Hoffman, A.S. Hydrogels for biomedical applications. <span class='html-italic'>Adv. Drug Deliv. Rev.</span> <b>2012</b>, <span class='html-italic'>64</span>, 18–23. [<a href="https://scholar.google.com/scholar_lookup?title=Hydrogels+for+biomedical+applications&author=Hoffman,+A.S.&publication_year=2012&journal=Adv.+Drug+Deliv.+Rev.&volume=64&pages=18%E2%80%9323&doi=10.1016/j.addr.2012.09.010" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.addr.2012.09.010" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B179-membranes-10-00348' class='html-xxx' data-content='179.'>Ren, K.; He, C.; Xiao, C.; Li, G.; Chen, X. Injectable glycopolypeptide hydrogels as biomimetic scaffolds for cartilage tissue engineering. <span class='html-italic'>Biomaterials</span> <b>2015</b>, <span class='html-italic'>51</span>, 238–249. [<a href="https://scholar.google.com/scholar_lookup?title=Injectable+glycopolypeptide+hydrogels+as+biomimetic+scaffolds+for+cartilage+tissue+engineering&author=Ren,+K.&author=He,+C.&author=Xiao,+C.&author=Li,+G.&author=Chen,+X.&publication_year=2015&journal=Biomaterials&volume=51&pages=238%E2%80%93249&doi=10.1016/j.biomaterials.2015.02.026" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.biomaterials.2015.02.026" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B180-membranes-10-00348' class='html-xxx' data-content='180.'>Yang, F.; Zhao, J.; Koshut, W.J.; Watt, J.; Riboh, J.C.; Gall, K.; Wiley, B.J. A Synthetic Hydrogel Composite with the Mechanical Behavior and Durability of Cartilage. <span class='html-italic'>Adv. Funct. Mater.</span> <b>2020</b>, <span class='html-italic'>30</span>, 1–8. [<a href="https://scholar.google.com/scholar_lookup?title=A+Synthetic+Hydrogel+Composite+with+the+Mechanical+Behavior+and+Durability+of+Cartilage&author=Yang,+F.&author=Zhao,+J.&author=Koshut,+W.J.&author=Watt,+J.&author=Riboh,+J.C.&author=Gall,+K.&author=Wiley,+B.J.&publication_year=2020&journal=Adv.+Funct.+Mater.&volume=30&pages=1%E2%80%938&doi=10.1002/adfm.202003451" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1002/adfm.202003451" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B181-membranes-10-00348' class='html-xxx' data-content='181.'>Rosenzweig, D.H.; Carelli, E.; Steffen, T.; Jarzem, P.; Haglund, L. 3D-printed ABS and PLA scaffolds for cartilage and nucleus pulposustissue regeneration. <span class='html-italic'>Int. J. Mol. Sci.</span> <b>2015</b>, <span class='html-italic'>16</span>, 15118–15135. [<a href="https://scholar.google.com/scholar_lookup?title=3D-printed+ABS+and+PLA+scaffolds+for+cartilage+and+nucleus+pulposustissue+regeneration&author=Rosenzweig,+D.H.&author=Carelli,+E.&author=Steffen,+T.&author=Jarzem,+P.&author=Haglund,+L.&publication_year=2015&journal=Int.+J.+Mol.+Sci.&volume=16&pages=15118%E2%80%9315135&doi=10.3390/ijms160715118" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.3390/ijms160715118" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="https://www.mdpi.com/1422-0067/16/7/15118/pdf" target='_blank' rel="noopener noreferrer">Green Version</a>]</li><li id='B182-membranes-10-00348' class='html-xxx' data-content='182.'>Cristian, M.; Conde, M.; Demarco, F.F.; Alcazar, J.C.; Nör, J.E.; Beatriz, S. Influence of Poly-L-Lactic Acid Scaffold ’ s Pore Size on the Proliferation and Differentiation of Dental Pulp Stem Cells. <span class='html-italic'>Braz. Dent. J.</span> <b>2015</b>, <span class='html-italic'>26</span>, 93–98. [<a href="https://scholar.google.com/scholar_lookup?title=Influence+of+Poly-L-Lactic+Acid+Scaffold+%E2%80%99+s+Pore+Size+on+the+Proliferation+and+Differentiation+of+Dental+Pulp+Stem+Cells&author=Cristian,+M.&author=Conde,+M.&author=Demarco,+F.F.&author=Alcazar,+J.C.&author=N%C3%B6r,+J.E.&author=Beatriz,+S.&publication_year=2015&journal=Braz.+Dent.+J.&volume=26&pages=93%E2%80%9398" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>]</li><li id='B183-membranes-10-00348' class='html-xxx' data-content='183.'>Oh, S.H.; Kim, T.H.; Im, G.I.; Lee, J.H. Investigation of pore size effect on chondrogenic differentiation of adipose stem cells using a pore size gradient scaffold. <span class='html-italic'>Biomacromolecules</span> <b>2010</b>, <span class='html-italic'>11</span>, 1948–1955. [<a href="https://scholar.google.com/scholar_lookup?title=Investigation+of+pore+size+effect+on+chondrogenic+differentiation+of+adipose+stem+cells+using+a+pore+size+gradient+scaffold&author=Oh,+S.H.&author=Kim,+T.H.&author=Im,+G.I.&author=Lee,+J.H.&publication_year=2010&journal=Biomacromolecules&volume=11&pages=1948%E2%80%931955&doi=10.1021/bm100199m" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1021/bm100199m" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B184-membranes-10-00348' class='html-xxx' data-content='184.'>Moura, C.S.; Silva, J.C.; Fernandes, P.R.; Lobato, C.; Manuel, J.; Cabral, S.; Linhardt, R.; Bártolo, P.J.; Ferreira, F.C. Chondrogenic differentiation of mesenchymal stem/stromal cells on 3D porous poly (ε-caprolactone) scaffolds: Effects of material alkaline treatment and chondroitin sulfate supplementation. <span class='html-italic'>J. Biosci. Bioeng.</span> <b>2020</b>, <span class='html-italic'>129</span>, 756–764. [<a href="https://scholar.google.com/scholar_lookup?title=Chondrogenic+differentiation+of+mesenchymal+stem/stromal+cells+on+3D+porous+poly+(%CE%B5-caprolactone)+scaffolds:+Effects+of+material+alkaline+treatment+and+chondroitin+sulfate+supplementation&author=Moura,+C.S.&author=Silva,+J.C.&author=Fernandes,+P.R.&author=Lobato,+C.&author=Manuel,+J.&author=Cabral,+S.&author=Linhardt,+R.&author=B%C3%A1rtolo,+P.J.&author=Ferreira,+F.C.&publication_year=2020&journal=J.+Biosci.+Bioeng.&volume=129&pages=756%E2%80%93764&doi=10.1016/j.jbiosc.2020.01.004&pmid=32107152" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.jbiosc.2020.01.004" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="http://www.ncbi.nlm.nih.gov/pubmed/32107152" class='cross-ref' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>]</li><li id='B185-membranes-10-00348' class='html-xxx' data-content='185.'>Sonomoto, K.; Yamaoka, K.; Kaneko, H.; Yamagata, K. Spontaneous Differentiation of Human Mesenchymal Stem Cells on Poly-Lactic-Co-Glycolic Acid Nano-Fiber Scaffold. <span class='html-italic'>PLoS ONE</span> <b>2016</b>, <span class='html-italic'>11</span>, e0153231. [<a href="https://scholar.google.com/scholar_lookup?title=Spontaneous+Differentiation+of+Human+Mesenchymal+Stem+Cells+on+Poly-Lactic-Co-Glycolic+Acid+Nano-Fiber+Scaffold&author=Sonomoto,+K.&author=Yamaoka,+K.&author=Kaneko,+H.&author=Yamagata,+K.&publication_year=2016&journal=PLoS+ONE&volume=11&pages=e0153231&doi=10.1371/journal.pone.0153231&pmid=27055270" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1371/journal.pone.0153231" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="http://www.ncbi.nlm.nih.gov/pubmed/27055270" class='cross-ref' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>] [<a href="https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0153231&type=printable" target='_blank' rel="noopener noreferrer">Green Version</a>]</li><li id='B186-membranes-10-00348' class='html-xxx' data-content='186.'>He, A.; Liu, L.; Luo, X.; Liu, Y.; Liu, Y.; Liu, F.; Wang, X. Repair of osteochondral defects with in vitro engineered cartilage based on autologous bone marrow stromal cells in a swine model. <span class='html-italic'>Sci. Rep.</span> <b>2017</b>, 1–12. [<a href="https://scholar.google.com/scholar_lookup?title=Repair+of+osteochondral+defects+with+in+vitro+engineered+cartilage+based+on+autologous+bone+marrow+stromal+cells+in+a+swine+model&author=He,+A.&author=Liu,+L.&author=Luo,+X.&author=Liu,+Y.&author=Liu,+Y.&author=Liu,+F.&author=Wang,+X.&publication_year=2017&journal=Sci.+Rep.&pages=1%E2%80%9312&doi=10.1038/srep40489" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1038/srep40489" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="https://www.nature.com/articles/srep40489.pdf" target='_blank' rel="noopener noreferrer">Green Version</a>]</li><li id='B187-membranes-10-00348' class='html-xxx' data-content='187.'>Zhang, Y.; Yang, F.; Liu, K.; Shen, H.; Zhu, Y.; Zhang, W.; Liu, W.; Wang, S.; Cao, Y.; Zhou, G. The impact of PLGA scaffold orientation on in vitro cartilage regeneration. <span class='html-italic'>Biomaterials</span> <b>2012</b>, <span class='html-italic'>33</span>, 2926–2935. [<a href="https://scholar.google.com/scholar_lookup?title=The+impact+of+PLGA+scaffold+orientation+on+in+vitro+cartilage+regeneration&author=Zhang,+Y.&author=Yang,+F.&author=Liu,+K.&author=Shen,+H.&author=Zhu,+Y.&author=Zhang,+W.&author=Liu,+W.&author=Wang,+S.&author=Cao,+Y.&author=Zhou,+G.&publication_year=2012&journal=Biomaterials&volume=33&pages=2926%E2%80%932935&doi=10.1016/j.biomaterials.2012.01.006&pmid=22257722" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.biomaterials.2012.01.006" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="http://www.ncbi.nlm.nih.gov/pubmed/22257722" class='cross-ref' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>]</li><li id='B188-membranes-10-00348' class='html-xxx' data-content='188.'>Duan, P.; Pan, Z.; Cao, L.; He, Y.; Wang, H.; Qu, Z.; Dong, J. The effects of pore size in bilayered poly (lactide- co -glycolide) scaffolds on restoring osteochondral defects in rabbits. <span class='html-italic'>J. Biomed. Mater. Res. Part A Off. J. Soc. Biomater. Jpn. Soc. Biomater. Aust. Soc. Biomater. Korean Soc. Biomater.</span> <b>2013</b>, <span class='html-italic'>102</span>, 180–192. [<a href="https://scholar.google.com/scholar_lookup?title=The+effects+of+pore+size+in+bilayered+poly+(lactide-+co+-glycolide)+scaffolds+on+restoring+osteochondral+defects+in+rabbits&author=Duan,+P.&author=Pan,+Z.&author=Cao,+L.&author=He,+Y.&author=Wang,+H.&author=Qu,+Z.&author=Dong,+J.&publication_year=2013&journal=J.+Biomed.+Mater.+Res.+Part+A+Off.+J.+Soc.+Biomater.+Jpn.+Soc.+Biomater.+Aust.+Soc.+Biomater.+Korean+Soc.+Biomater.&volume=102&pages=180%E2%80%93192&doi=10.1002/jbm.a.34683&pmid=23637068" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1002/jbm.a.34683" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="http://www.ncbi.nlm.nih.gov/pubmed/23637068" class='cross-ref' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>]</li><li id='B189-membranes-10-00348' class='html-xxx' data-content='189.'>Jonnalagadda, J.B.; Rivero, I.V.; Dertien, J.S. In vitro chondrocyte behavior on porous biodegradable poly (e-caprolactone)/polyglycolic acid scaffolds for articular chondrocyte adhesion and proliferation. <span class='html-italic'>J. Biomater. Sci.</span> <b>2015</b>, 37–41. [<a href="https://scholar.google.com/scholar_lookup?title=In+vitro+chondrocyte+behavior+on+porous+biodegradable+poly+(e-caprolactone)/polyglycolic+acid+scaffolds+for+articular+chondrocyte+adhesion+and+proliferation&author=Jonnalagadda,+J.B.&author=Rivero,+I.V.&author=Dertien,+J.S.&publication_year=2015&journal=J.+Biomater.+Sci.&pages=37%E2%80%9341&doi=10.1080/09205063.2015.1015864" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1080/09205063.2015.1015864" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B190-membranes-10-00348' class='html-xxx' data-content='190.'>Safinsha, S.; Ali, M.M. Composite scaffolds in tissue engineering. <span class='html-italic'>Mater. Today Proc.</span> <b>2020</b>, <span class='html-italic'>24</span>, 2318–2329. [<a href="https://scholar.google.com/scholar_lookup?title=Composite+scaffolds+in+tissue+engineering&author=Safinsha,+S.&author=Ali,+M.M.&publication_year=2020&journal=Mater.+Today+Proc.&volume=24&pages=2318%E2%80%932329&doi=10.1016/j.matpr.2020.03.761" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.matpr.2020.03.761" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B191-membranes-10-00348' class='html-xxx' data-content='191.'>Li, L.; Li, J.; Guo, J.; Zhang, H.; Zhang, X.; Yin, C. 3D Molecularly Functionalized Cell-Free Biomimetic Scaffolds for Osteochondral Regeneration. <span class='html-italic'>Adv. Funct. Mater.</span> <b>2019</b>, <span class='html-italic'>29</span>, 1807356. [<a href="https://scholar.google.com/scholar_lookup?title=3D+Molecularly+Functionalized+Cell-Free+Biomimetic+Scaffolds+for+Osteochondral+Regeneration&author=Li,+L.&author=Li,+J.&author=Guo,+J.&author=Zhang,+H.&author=Zhang,+X.&author=Yin,+C.&publication_year=2019&journal=Adv.+Funct.+Mater.&volume=29&pages=1807356&doi=10.1002/adfm.201807356" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1002/adfm.201807356" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B192-membranes-10-00348' class='html-xxx' data-content='192.'>Setayeshmehr, M.; Esfandiari, E.; Hashemibeni, B.; Hossein, A. Chondrogenesis of human adipose-derived mesenchymal stromal cells on the [devitalized costal cartilage matrix/poly (vinyl alcohol)/fi brin] hybrid scaffolds. <span class='html-italic'>Eur. Polym. J.</span> <b>2019</b>, <span class='html-italic'>118</span>, 528–541. [<a href="https://scholar.google.com/scholar_lookup?title=Chondrogenesis+of+human+adipose-derived+mesenchymal+stromal+cells+on+the+[devitalized+costal+cartilage+matrix/poly+(vinyl+alcohol)/fi+brin]+hybrid+scaffolds&author=Setayeshmehr,+M.&author=Esfandiari,+E.&author=Hashemibeni,+B.&author=Hossein,+A.&publication_year=2019&journal=Eur.+Polym.+J.&volume=118&pages=528%E2%80%93541&doi=10.1016/j.eurpolymj.2019.04.044" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.eurpolymj.2019.04.044" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B193-membranes-10-00348' class='html-xxx' data-content='193.'>Tavakoli, E.; Mehdikhani-Nahrkhalaji, M.; Hashemi-Beni, B.; Zargar-Kharazi, A. Preparation, Characterization and Mechanical Assessment of Poly (Lactide-Co-Glycolide)/Hyaluronic Acid/Fibrin/Bioactive Glass Nano-Composite Scaffolds for Cartilage Tissue Engineering Applications. <span class='html-italic'>Procedia Mater. Sci.</span> <b>2015</b>, <span class='html-italic'>11</span>, 124–130. [<a href="https://scholar.google.com/scholar_lookup?title=Preparation,+Characterization+and+Mechanical+Assessment+of+Poly+(Lactide-Co-Glycolide)/Hyaluronic+Acid/Fibrin/Bioactive+Glass+Nano-Composite+Scaffolds+for+Cartilage+Tissue+Engineering+Applications&author=Tavakoli,+E.&author=Mehdikhani-Nahrkhalaji,+M.&author=Hashemi-Beni,+B.&author=Zargar-Kharazi,+A.&publication_year=2015&journal=Procedia+Mater.+Sci.&volume=11&pages=124%E2%80%93130&doi=10.1016/j.mspro.2015.11.126" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.mspro.2015.11.126" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="" target='_blank' rel="noopener noreferrer">Green Version</a>]</li><li id='B194-membranes-10-00348' class='html-xxx' data-content='194.'>Mintz, B.R.; Cooper, A.C., Jr. Hybrid hyaluronic acid hydrogel/poly (e-caprolactone) scaffold provides mechanically favorable platform for cartilage tissue engineering studies. <span class='html-italic'>J. Biomed. Mater. Res. Part A</span> <b>2013</b>, <span class='html-italic'>102</span>, 2918–2926. [<a href="https://scholar.google.com/scholar_lookup?title=Hybrid+hyaluronic+acid+hydrogel/poly+(e-caprolactone)+scaffold+provides+mechanically+favorable+platform+for+cartilage+tissue+engineering+studies&author=Mintz,+B.R.&author=Cooper,+A.C.,+Jr.&publication_year=2013&journal=J.+Biomed.+Mater.+Res.+Part+A&volume=102&pages=2918%E2%80%932926&doi=10.1002/jbm.a.34957&pmid=24115629" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1002/jbm.a.34957" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="http://www.ncbi.nlm.nih.gov/pubmed/24115629" class='cross-ref' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>]</li><li id='B195-membranes-10-00348' class='html-xxx' data-content='195.'>He, X.; Fu, W.; Feng, B.; Wang, H.; Liu, Z.; Yin, M.; Wang, W. Electrospun collagen—poly (l-lactic acid-co-e-caprolactone) membranes for cartilage tissue engineering. <span class='html-italic'>Regen. Med.</span> <b>2013</b>, <span class='html-italic'>8</span>, 425–436. [<a href="https://scholar.google.com/scholar_lookup?title=Electrospun+collagen%E2%80%94poly+(l-lactic+acid-co-e-caprolactone)+membranes+for+cartilage+tissue+engineering&author=He,+X.&author=Fu,+W.&author=Feng,+B.&author=Wang,+H.&author=Liu,+Z.&author=Yin,+M.&author=Wang,+W.&publication_year=2013&journal=Regen.+Med.&volume=8&pages=425%E2%80%93436&doi=10.2217/rme.13.29&pmid=23826697" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.2217/rme.13.29" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="http://www.ncbi.nlm.nih.gov/pubmed/23826697" class='cross-ref' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>]</li><li id='B196-membranes-10-00348' class='html-xxx' data-content='196.'>Paatela, T.; Meller, A.; Muhonen, V.; Salonius, E.; Haaparanta, A.; Elina, J. Articular Cartilage Repair With Recombinant Human Type II Collagen/Polylactide Scaffold in a Preliminary Porcine Study. <span class='html-italic'>J. Orthop. Res.</span> <b>2016</b>, <span class='html-italic'>34</span>, 745–753. [<a href="https://scholar.google.com/scholar_lookup?title=Articular+Cartilage+Repair+With+Recombinant+Human+Type+II+Collagen/Polylactide+Scaffold+in+a+Preliminary+Porcine+Study&author=Paatela,+T.&author=Meller,+A.&author=Muhonen,+V.&author=Salonius,+E.&author=Haaparanta,+A.&author=Elina,+J.&publication_year=2016&journal=J.+Orthop.+Res.&volume=34&pages=745%E2%80%93753&doi=10.1002/jor.23099" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1002/jor.23099" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="http://onlinelibrary.wiley.com/doi/10.1002/jor.23099/pdf" target='_blank' rel="noopener noreferrer">Green Version</a>]</li><li id='B197-membranes-10-00348' class='html-xxx' data-content='197.'>Levorson, E.J.; Hu, O.; Mountziaris, P.M.; Kasper, F.K.; Mikos, A.G. Cell Derived Polymer / Extracellular Matrix Composite Scaffolds for Cartilage Regeneration, Part 2: Construct Devitalization and Determination of Chondroinductive Capacity. <span class='html-italic'>Tissue Eng. Part C Methods</span> <b>2014</b>, <span class='html-italic'>20</span>, 358–372. [<a href="https://scholar.google.com/scholar_lookup?title=Cell+Derived+Polymer+/+Extracellular+Matrix+Composite+Scaffolds+for+Cartilage+Regeneration,+Part+2:+Construct+Devitalization+and+Determination+of+Chondroinductive+Capacity&author=Levorson,+E.J.&author=Hu,+O.&author=Mountziaris,+P.M.&author=Kasper,+F.K.&author=Mikos,+A.G.&publication_year=2014&journal=Tissue+Eng.+Part+C+Methods&volume=20&pages=358%E2%80%93372&doi=10.1089/ten.tec.2013.0288&pmid=24117143" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1089/ten.tec.2013.0288" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="http://www.ncbi.nlm.nih.gov/pubmed/24117143" class='cross-ref' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>] [<a href="http://europepmc.org/articles/pmc3968877?pdf=render" target='_blank' rel="noopener noreferrer">Green Version</a>]</li></ol></section><section id='FiguresandTables' type='display-objects'><div class="html-fig-wrap" id="membranes-10-00348-f001"> <div class='html-fig_img'> <div class="html-figpopup html-figpopup-link" data-counterslinkmanual = "https://www.mdpi.com/2077-0375/10/11/348/display" href="#fig_body_display_membranes-10-00348-f001"> <img alt="Membranes 10 00348 g001 550" data-large="/membranes/membranes-10-00348/article_deploy/html/images/membranes-10-00348-g001.png" data-original="/membranes/membranes-10-00348/article_deploy/html/images/membranes-10-00348-g001.png" data-lsrc="/membranes/membranes-10-00348/article_deploy/html/images/membranes-10-00348-g001-550.jpg" /> <a class="html-expand html-figpopup" data-counterslinkmanual = "https://www.mdpi.com/2077-0375/10/11/348/display" href="#fig_body_display_membranes-10-00348-f001"></a> </div> </div> <div class="html-fig_description"> <b>Figure 1.</b> General schema of the autologous chondrocyte implantation (ACI) method with a 3D scaffold. This schema was modified according to a previous article [<a href="#B44-membranes-10-00348" class="html-bibr">44</a>]. <!-- <p><a class="html-figpopup" href="#fig_body_display_membranes-10-00348-f001"> Click here to enlarge figure </a></p> --> </div> </div> <div class="html-fig_show mfp-hide" id ="fig_body_display_membranes-10-00348-f001" > <div class="html-caption" > <b>Figure 1.</b> General schema of the autologous chondrocyte implantation (ACI) method with a 3D scaffold. This schema was modified according to a previous article [<a href="#B44-membranes-10-00348" class="html-bibr">44</a>].</div> <div class="html-img"><img alt="Membranes 10 00348 g001" data-large="/membranes/membranes-10-00348/article_deploy/html/images/membranes-10-00348-g001.png" data-original="/membranes/membranes-10-00348/article_deploy/html/images/membranes-10-00348-g001.png" data-lsrc="/membranes/membranes-10-00348/article_deploy/html/images/membranes-10-00348-g001.png" /></div> </div><div class="html-fig-wrap" id="membranes-10-00348-f002"> <div class='html-fig_img'> <div class="html-figpopup html-figpopup-link" data-counterslinkmanual = "https://www.mdpi.com/2077-0375/10/11/348/display" href="#fig_body_display_membranes-10-00348-f002"> <img alt="Membranes 10 00348 g002 550" data-large="/membranes/membranes-10-00348/article_deploy/html/images/membranes-10-00348-g002.png" data-original="/membranes/membranes-10-00348/article_deploy/html/images/membranes-10-00348-g002.png" data-lsrc="/membranes/membranes-10-00348/article_deploy/html/images/membranes-10-00348-g002-550.jpg" /> <a class="html-expand html-figpopup" data-counterslinkmanual = "https://www.mdpi.com/2077-0375/10/11/348/display" href="#fig_body_display_membranes-10-00348-f002"></a> </div> </div> <div class="html-fig_description"> <b>Figure 2.</b> Cartilage repair methods via mesenchymal stem cell (MSC)-based therapies: (<b>a</b>) full-thickness cartilage injury; (<b>b</b>–<b>d</b>) therapies using MSCs and appropriate additives. The schema was modified from a previous article [<a href="#B53-membranes-10-00348" class="html-bibr">53</a>]. <!-- <p><a class="html-figpopup" href="#fig_body_display_membranes-10-00348-f002"> Click here to enlarge figure </a></p> --> </div> </div> <div class="html-fig_show mfp-hide" id ="fig_body_display_membranes-10-00348-f002" > <div class="html-caption" > <b>Figure 2.</b> Cartilage repair methods via mesenchymal stem cell (MSC)-based therapies: (<b>a</b>) full-thickness cartilage injury; (<b>b</b>–<b>d</b>) therapies using MSCs and appropriate additives. The schema was modified from a previous article [<a href="#B53-membranes-10-00348" class="html-bibr">53</a>].</div> <div class="html-img"><img alt="Membranes 10 00348 g002" data-large="/membranes/membranes-10-00348/article_deploy/html/images/membranes-10-00348-g002.png" data-original="/membranes/membranes-10-00348/article_deploy/html/images/membranes-10-00348-g002.png" data-lsrc="/membranes/membranes-10-00348/article_deploy/html/images/membranes-10-00348-g002.png" /></div> </div><div class="html-fig-wrap" id="membranes-10-00348-f003"> <div class='html-fig_img'> <div class="html-figpopup html-figpopup-link" data-counterslinkmanual = "https://www.mdpi.com/2077-0375/10/11/348/display" href="#fig_body_display_membranes-10-00348-f003"> <img alt="Membranes 10 00348 g003 550" data-large="/membranes/membranes-10-00348/article_deploy/html/images/membranes-10-00348-g003.png" data-original="/membranes/membranes-10-00348/article_deploy/html/images/membranes-10-00348-g003.png" data-lsrc="/membranes/membranes-10-00348/article_deploy/html/images/membranes-10-00348-g003-550.jpg" /> <a class="html-expand html-figpopup" data-counterslinkmanual = "https://www.mdpi.com/2077-0375/10/11/348/display" href="#fig_body_display_membranes-10-00348-f003"></a> </div> </div> <div class="html-fig_description"> <b>Figure 3.</b> General schematic demonstration of the scaffold properties for the appropriate growth of articular chondrocytes (ACs) and mesenchymal stem cells (MSCs). <!-- <p><a class="html-figpopup" href="#fig_body_display_membranes-10-00348-f003"> Click here to enlarge figure </a></p> --> </div> </div> <div class="html-fig_show mfp-hide" id ="fig_body_display_membranes-10-00348-f003" > <div class="html-caption" > <b>Figure 3.</b> General schematic demonstration of the scaffold properties for the appropriate growth of articular chondrocytes (ACs) and mesenchymal stem cells (MSCs).</div> <div class="html-img"><img alt="Membranes 10 00348 g003" data-large="/membranes/membranes-10-00348/article_deploy/html/images/membranes-10-00348-g003.png" data-original="/membranes/membranes-10-00348/article_deploy/html/images/membranes-10-00348-g003.png" data-lsrc="/membranes/membranes-10-00348/article_deploy/html/images/membranes-10-00348-g003.png" /></div> </div><div class="html-fig-wrap" id="membranes-10-00348-f004"> <div class='html-fig_img'> <div class="html-figpopup html-figpopup-link" data-counterslinkmanual = "https://www.mdpi.com/2077-0375/10/11/348/display" href="#fig_body_display_membranes-10-00348-f004"> <img alt="Membranes 10 00348 g004 550" data-large="/membranes/membranes-10-00348/article_deploy/html/images/membranes-10-00348-g004.png" data-original="/membranes/membranes-10-00348/article_deploy/html/images/membranes-10-00348-g004.png" data-lsrc="/membranes/membranes-10-00348/article_deploy/html/images/membranes-10-00348-g004-550.jpg" /> <a class="html-expand html-figpopup" data-counterslinkmanual = "https://www.mdpi.com/2077-0375/10/11/348/display" href="#fig_body_display_membranes-10-00348-f004"></a> </div> </div> <div class="html-fig_description"> <b>Figure 4.</b> Schematic illustration of the main forms of scaffolds for cartilage tissue engineering: (<b>A</b>,<b>B</b>) hydrogels; (<b>C</b>,<b>D</b>) sponges; (<b>E</b>,<b>F</b>) nonwoven (nanofibers). Scale bars: D—300 µm; E—1000 nm; F—300 µm. <!-- <p><a class="html-figpopup" href="#fig_body_display_membranes-10-00348-f004"> Click here to enlarge figure </a></p> --> </div> </div> <div class="html-fig_show mfp-hide" id ="fig_body_display_membranes-10-00348-f004" > <div class="html-caption" > <b>Figure 4.</b> Schematic illustration of the main forms of scaffolds for cartilage tissue engineering: (<b>A</b>,<b>B</b>) hydrogels; (<b>C</b>,<b>D</b>) sponges; (<b>E</b>,<b>F</b>) nonwoven (nanofibers). Scale bars: D—300 µm; E—1000 nm; F—300 µm.</div> <div class="html-img"><img alt="Membranes 10 00348 g004" data-large="/membranes/membranes-10-00348/article_deploy/html/images/membranes-10-00348-g004.png" data-original="/membranes/membranes-10-00348/article_deploy/html/images/membranes-10-00348-g004.png" data-lsrc="/membranes/membranes-10-00348/article_deploy/html/images/membranes-10-00348-g004.png" /></div> </div><div class="html-table-wrap" id="membranes-10-00348-t001"> <div class="html-table_wrap_td" > <div class="html-tablepopup html-tablepopup-link" data-counterslinkmanual = "https://www.mdpi.com/2077-0375/10/11/348/display" href='#table_body_display_membranes-10-00348-t001'> <img alt="Table" data-lsrc="https://www.mdpi.com/img/table.png" /> <a class="html-expand html-tablepopup" data-counterslinkmanual = "https://www.mdpi.com/2077-0375/10/11/348/display" href="#table_body_display_membranes-10-00348-t001"></a> </div> </div> <div class="html-table_wrap_discription"> <b>Table 1.</b> Outerbridge classification of articular cartilage lesions. </div> </div> <div class="html-table_show mfp-hide " id ="table_body_display_membranes-10-00348-t001" > <div class="html-caption" ><b>Table 1.</b> Outerbridge classification of articular cartilage lesions.</div> <table > <thead ><tr ><th align='center' valign='middle' style='border-top:solid thin;border-bottom:solid thin' class='html-align-center' >Grade of Damage</th><th align='center' valign='middle' style='border-top:solid thin;border-bottom:solid thin' class='html-align-center' >Description</th></tr></thead><tbody ><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' ><b>Grade 0</b></td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Normal AC with a smooth surface</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' ><b>Grade I</b></td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Soft and swollen cartilage with a reduced amount of proteoglycans and increased water content.</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' ><b>Grade II</b></td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >The surface is cracked up to half the thickness of the cartilage, a so-called “Blemish” of cartilage. Swelling or fraying is visible via Magnetic Resonance Imaging (MRI) imaging. The area of the damage does not exceed 1.25 cm<sup>2</sup> (less than 50%) of the surface. This corresponds to damage of an intermediate thickness.</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' ><b>Grade III</b></td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >The damage exceeds half the thickness of the cartilage and may reveal the subchondral bone; the surface of the damage exceeds 1.25 cm<sup>2</sup>. The deep defect comprises more than 50%.</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' ><b>Grade IV</b></td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Full thickness defect(s). Destruction with complete exposure of the subchondral bone.</td></tr></tbody> </table> </div><div class="html-table-wrap" id="membranes-10-00348-t002"> <div class="html-table_wrap_td" > <div class="html-tablepopup html-tablepopup-link" data-counterslinkmanual = "https://www.mdpi.com/2077-0375/10/11/348/display" href='#table_body_display_membranes-10-00348-t002'> <img alt="Table" data-lsrc="https://www.mdpi.com/img/table.png" /> <a class="html-expand html-tablepopup" data-counterslinkmanual = "https://www.mdpi.com/2077-0375/10/11/348/display" href="#table_body_display_membranes-10-00348-t002"></a> </div> </div> <div class="html-table_wrap_discription"> <b>Table 2.</b> Rapid prototyping (RP) and conventional methods for obtaining scaffolds for tissue engineering cartilage. </div> </div> <div class="html-table_show mfp-hide " id ="table_body_display_membranes-10-00348-t002" > <div class="html-caption" ><b>Table 2.</b> Rapid prototyping (RP) and conventional methods for obtaining scaffolds for tissue engineering cartilage.</div> <table > <thead ><tr ><th align='center' valign='middle' style='border-top:solid thin;border-bottom:solid thin' class='html-align-center' >Technique</th><th align='center' valign='middle' style='border-top:solid thin;border-bottom:solid thin' class='html-align-center' >Advantages</th><th align='center' valign='middle' style='border-top:solid thin;border-bottom:solid thin' class='html-align-center' >Disadvantages</th></tr></thead><tbody ><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >3D printing (3DP)</td><td align='left' valign='middle' style='border-bottom:solid thin' class='html-align-left' ><ul class='html-bullet'><li><div class='html-p'>Possibility of using hydrogels and cells</div></li></ul></td><td align='left' valign='middle' style='border-bottom:solid thin' class='html-align-left' ><ul class='html-bullet'><li><div class='html-p'>Low precision</div></li><li><div class='html-p'>Long-standing process</div></li><li><div class='html-p'>Poor mechanical properties</div></li></ul></td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Selective laser sintering (SLS)</td><td align='left' valign='middle' style='border-bottom:solid thin' class='html-align-left' ><ul class='html-bullet'><li><div class='html-p'>Smart process</div></li><li><div class='html-p'>High precision</div></li><li><div class='html-p'>No need for support</div></li><li><div class='html-p'>Construction</div></li></ul></td><td align='left' valign='middle' style='border-bottom:solid thin' class='html-align-left' ><ul class='html-bullet'><li><div class='html-p'>High temperature</div></li><li><div class='html-p'>Rough surface</div></li></ul></td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Stereolithography (SLA)</td><td align='left' valign='middle' style='border-bottom:solid thin' class='html-align-left' ><ul class='html-bullet'><li><div class='html-p'>High precision</div></li><li><div class='html-p'>Smart process</div></li><li><div class='html-p'>Soft surface</div></li></ul></td><td align='left' valign='middle' style='border-bottom:solid thin' class='html-align-left' ><ul class='html-bullet'><li><div class='html-p'>Risk of high process temperature</div></li><li><div class='html-p'>Untreated</div></li><li><div class='html-p'>Material may be cytotoxic</div></li><li><div class='html-p'>high costs</div></li></ul></td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Fused deposition modeling (FDM)</td><td align='left' valign='middle' style='border-bottom:solid thin' class='html-align-left' ><ul class='html-bullet'><li><div class='html-p'>Good mechanical properties</div></li></ul></td><td align='left' valign='middle' style='border-bottom:solid thin' class='html-align-left' ><ul class='html-bullet'><li><div class='html-p'>Poor precision</div></li><li><div class='html-p'>High temperature</div></li><li><div class='html-p'>Narrow range of parameters</div></li><li><div class='html-p'>Limits in application to biodegradable polymers</div></li></ul></td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Bioprinting</td><td align='left' valign='middle' style='border-bottom:solid thin' class='html-align-left' ><ul class='html-bullet'><li><div class='html-p'>High precision</div></li><li><div class='html-p'>Low costs</div></li><li><div class='html-p'>High speed of printing</div></li><li><div class='html-p'>Possibility of supporting high cell viability</div></li></ul></td><td align='left' valign='middle' style='border-bottom:solid thin' class='html-align-left' ><ul class='html-bullet'><li><div class='html-p'>Depends on the cell’s existence</div></li></ul></td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Electrospinning</td><td align='left' valign='middle' style='border-bottom:solid thin' class='html-align-left' ><ul class='html-bullet'><li><div class='html-p'>Standard technique for obtaining nanofibrous scaffolds</div></li></ul></td><td align='left' valign='middle' style='border-bottom:solid thin' class='html-align-left' ><ul class='html-bullet'><li><div class='html-p'>Toxicity of using solvents</div></li><li><div class='html-p'>Depends on many factors</div></li><li><div class='html-p'>Obtaining 3D structure or/and adequate pore sizes for biomedical applications can be problematic</div></li></ul></td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Freeze-drying</td><td align='left' valign='middle' style='border-bottom:solid thin' class='html-align-left' ><ul class='html-bullet'><li><div class='html-p'>Capability of controlling the pore size</div></li><li><div class='html-p'>Possibility of obtaining high temperatures</div></li><li><div class='html-p'>Used for multiple purposes</div></li></ul></td><td align='left' valign='middle' style='border-bottom:solid thin' class='html-align-left' ><ul class='html-bullet'><li><div class='html-p'>Toxicity when using solvents</div></li><li><div class='html-p'>High energy consumption</div></li><li><div class='html-p'>Irregular obtained size pores</div></li></ul></td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Thermal-induced phase separation (TIPS)</td><td align='left' valign='middle' style='border-bottom:solid thin' class='html-align-left' ><ul class='html-bullet'><li><div class='html-p'>Possibility of using a low temperature</div></li><li><div class='html-p'>Very high porosity surface-to-volume ratio</div></li><li><div class='html-p'>Scaffolds obtained from a thermoplastic crystalline polymer</div></li></ul></td><td align='left' valign='middle' style='border-bottom:solid thin' class='html-align-left' ><ul class='html-bullet'><li><div class='html-p'>Used only for thermoplastics</div></li></ul></td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Solvent-casting particulate leaching (SCPL)</td><td align='left' valign='middle' style='border-bottom:solid thin' class='html-align-left' ><ul class='html-bullet'><li><div class='html-p'>High porosity</div></li><li><div class='html-p'>Low costs</div></li><li><div class='html-p'>Can be used for fabricating thin membranes of thin-wall 3D specimens</div></li></ul></td><td align='left' valign='middle' style='border-bottom:solid thin' class='html-align-left' ><ul class='html-bullet'><li><div class='html-p'>High toxicity when using solvents</div></li><li><div class='html-p'>Time consuming for thin membranes</div></li></ul></td></tr></tbody> </table> </div><div class="html-table-wrap" id="membranes-10-00348-t003"> <div class="html-table_wrap_td" > <div class="html-tablepopup html-tablepopup-link" data-counterslinkmanual = "https://www.mdpi.com/2077-0375/10/11/348/display" href='#table_body_display_membranes-10-00348-t003'> <img alt="Table" data-lsrc="https://www.mdpi.com/img/table.png" /> <a class="html-expand html-tablepopup" data-counterslinkmanual = "https://www.mdpi.com/2077-0375/10/11/348/display" href="#table_body_display_membranes-10-00348-t003"></a> </div> </div> <div class="html-table_wrap_discription"> <b>Table 3.</b> Synthetic and hybrid scaffolds for cartilage regeneration. </div> </div> <div class="html-table_show mfp-hide " id ="table_body_display_membranes-10-00348-t003" > <div class="html-caption" ><b>Table 3.</b> Synthetic and hybrid scaffolds for cartilage regeneration.</div> <table > <thead ><tr ><th align='center' valign='middle' style='border-top:solid thin;border-bottom:solid thin' class='html-align-center' >Scaffold Name [Ref.]</th><th align='center' valign='middle' style='border-top:solid thin;border-bottom:solid thin' class='html-align-center' >Component</th><th align='center' valign='middle' style='border-top:solid thin;border-bottom:solid thin' class='html-align-center' >Method</th><th align='center' valign='middle' style='border-top:solid thin;border-bottom:solid thin' class='html-align-center' >Properties (Porosity (%), Pore Size (µm), Mechanical Properties)</th><th align='center' valign='middle' style='border-top:solid thin;border-bottom:solid thin' class='html-align-center' >Cell Source/Animal Model</th><th align='center' valign='middle' style='border-top:solid thin;border-bottom:solid thin' class='html-align-center' >Results</th></tr><tr ><th colspan='6' align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Synthetic scaffolds</th></tr></thead><tbody ><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >BioSeed<sup>®</sup>-C (Biotissue) [<a href="#B156-membranes-10-00348" class="html-bibr">156</a>,<a href="#B157-membranes-10-00348" class="html-bibr">157</a>]</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >PGA/PLA, PDS</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Thermoplastic process</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Good mechanical properties and adequate structure for cells</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Human articular chondrocytes</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Assessed in clinical trials. In the results, the scaffolds featured significantly improved final postoperative values. This highlights their effectiveness in cartilage regeneration.</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Spongy PU scaffold [<a href="#B158-membranes-10-00348" class="html-bibr">158</a>]</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >PU</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Freeze-drying</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >96.9%<br>126–186 µm<br>Storage modulus: ~60.36 kPa</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Chondrocytes, human MSCs</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Biodegradable PU scaffold had better outcomes than PLA 3D membranes during culturing.</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >NSP-PCL scaffold [<a href="#B159-membranes-10-00348" class="html-bibr">159</a>]</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >PCL</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Freeze-drying</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >The porosity of the scaffold was designed to promote cartilage ingrowth</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Rabbit articular chondrocytes</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >The NSP-PCL scaffold indicated better results during in vitro and in vivo studies compared to the Chondro-Gide<sup>®</sup> scaffold.</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >RO45<br>3DHC [<a href="#B160-membranes-10-00348" class="html-bibr">160</a>]</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >PCL</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >3D printing</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' ><b>RO45:</b><br>84.6%<br>135–285 µm<br>Compressive modulus: 25.6 MPa<br><b>3DHC</b><br>83.8%<br>150–700 µm<br>Compressive modulus: 3 MPa</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Human adipose-derived MSCs</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >The RO45 scaffold was preferable for chondrogenic differentiation compared to 3DHC, which indicated better cell proliferation, scaffold penetration, and more favorable mechanical properties in the final construct.</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Polysulphonic scaffold [<a href="#B97-membranes-10-00348" class="html-bibr">97</a>,<a href="#B98-membranes-10-00348" class="html-bibr">98</a>,<a href="#B161-membranes-10-00348" class="html-bibr">161</a>,<a href="#B162-membranes-10-00348" class="html-bibr">162</a>]</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >PES</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Non-solvent induced phase separation and porogen- leaching</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >98.5%<br>60–300 µm</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Rabbit model and human articular chondrocytes</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >A study with a rabbit model suggested that the scaffold is effective in repairing articular cartilage defects. In vitro study with human cells gave promise results.</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >PLLA-100 scaffolds [<a href="#B66-membranes-10-00348" class="html-bibr">66</a>]</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >PLLA</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Thermally induced phase separation</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >93%<br>100 ± 20 μm</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Human articular chondrocytes</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >The scaffold promoted the secretion of chondrogenic genes. It was better than the PLLA scaffold with larger pores (~200 μm).</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >PLCL-2 scaffold [<a href="#B163-membranes-10-00348" class="html-bibr">163</a>]</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >PLCL</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Gel-pressing</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >80%<br>300–500 µm<br>Young’s modulus: ~0.7 MPa</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Rabbit articular chondrocytes and mice model</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >The adequate structure of the scaffold showed that chondrocytes did not change their phenotypes during the in vitro study. The in vivo study indicated that the scaffold would maintain mechanical integrity and guide cartilaginous tissue formation.</td></tr><tr ><td colspan='6' align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' ><b>Hybrid scaffold</b></td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Chondrotissue<sup>®</sup> (Biotissue) [<a href="#B156-membranes-10-00348" class="html-bibr">156</a>,<a href="#B164-membranes-10-00348" class="html-bibr">164</a>]</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >PGA, HA</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Freeze-drying</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' > </td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Platelet-rich plasma and bone marrow concentrate</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >The one-step cartilage repair method is available for clinical use. Treatment results follow up to 5 years of good outcomes with the potential for future benefits.</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >IC scaffold [<a href="#B153-membranes-10-00348" class="html-bibr">153</a>]</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >PLGA, COL</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Freeze-drying and cross-linking</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >99.1%<br>50–400 µm<br>Young’s modulus: ~9 kPa</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Bovine articular chondrocytes (BACs) and mice model</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >IC scaffold promoted cartilaginous gene expression, chondrocyte proliferation, and the regeneration of cartilage tissue with high mechanical properties. It seems to be promising for cartilage tissue applications.</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Gel/PCEC-TGFβ1 hydrogel scaffold [<a href="#B165-membranes-10-00348" class="html-bibr">165</a>]</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Gelatin, PCEC, TGFβ1</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Cross-linking, freeze-drying</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >~150 μm<br>Young’s modulus: ~0.65 MPa</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Human adipose tissue (AD)-MSCs</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >The study showed the potential for the growth and differentiation of h-AD-MSCs and could be a promising scaffold for cartilage tissue engineering.</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >PLCL-COLI [<a href="#B166-membranes-10-00348" class="html-bibr">166</a>]</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >PLCL, COL</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >3D printing</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >~85%<br>~10 μm; ~450 μm<br>Young’s modulus: ~0.21 MPa</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Rabbit articular chondrocytes</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Scaffold with a controlled structure, good biocompatibility, elasticity, and mechanical properties, as well as potential in cartilage regeneration.</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >C2C1H scaffold [<a href="#B167-membranes-10-00348" class="html-bibr">167</a>]</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >PLA, COL, CH</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Freeze-drying and melt-spun</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >>85%<br>Young’s modulus: 52.3 kPa</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Bovine articular cartilage chondrocytes</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >A hybrid scaffold with high porosity, good mechanical strength, and interconnected pore network. It has potential as a scaffold for cartilage tissue engineering.</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >ECM-PLGA scaffold [<a href="#B168-membranes-10-00348" class="html-bibr">168</a>,<a href="#B169-membranes-10-00348" class="html-bibr">169</a>]</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >PLGA, ECM</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >SCPL</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >90%</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Rat mesenchymal stem cells (MSCs) and rat model</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >The in vitro study showed good properties of attachment, proliferation, and differentiation of the MSCs. Involved the implantation of a cell with MSCs and type II collagen mRNA expression. The in vivo study indicated the regeneration of tissue to hyaline cartilage. The scaffold could be promising for cartilage regeneration therapy.</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >PCL/COL1 [<a href="#B170-membranes-10-00348" class="html-bibr">170</a>]</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >PCL, COL</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Selective laser sintering</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >82.98%<br>Young’s modulus: 3.75 MPa</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Pig articular chondrocytes and nude mice model</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Scaffold with high porosity and repetitive pore structure. In vitro and in vivo study showed good outcomes compared to the PCL membrane. The addition of collagen ensured the proper development of chondrocytes.</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >CH/PLLA/PC scaffold [<a href="#B110-membranes-10-00348" class="html-bibr">110</a>]</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >PLLA, CH, PC</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Freeze-drying and cross-linking</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >79–84%<br>49–170 μm</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Rabbit articular chondrocytes</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Outcomes from the in vivo study showed the suitability of the scaffold for cartilage tissue regeneration.</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Chitosan-modified PLCL scaffold [<a href="#B171-membranes-10-00348" class="html-bibr">171</a>]</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >PLCL, CH</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Porogen-leaching, lyophilization, and cross-linking</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >~85%<br>200–500 µm<br>Young’s modulus: 0.04 MPa</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Pig articular chondrocytes</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Biodegradable scaffolds with high porosity, good mechanical strength, and interconnected pore structure. Supplied a good environment for chondrocyte adhesion, proliferation, differentiation, and ECM secretion. The results were good but still require further research.</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >CSMA/PECA/GO (S2) scaffold [<a href="#B172-membranes-10-00348" class="html-bibr">172</a>]</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >CSMA, MPEG-PCL-AC (PECA), GO</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' > </td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >~70%<br>Mean 175.2 μm<br>Compressive modulus: 0.48 MPa</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Rabbit articular chondrocytes</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Scaffold with an appropriate structure with biological components; provided an adequate environment for cells. The in vivo results were promising with great potential for the future.</td></tr></tbody> </table> <div class='html-table_foot html-p'><div class='html-p' style='text-indent:0em;'><span class='html-fn-content'>CH—chitosan; COL—collagen, PU—polyurethane; PC—pectin based; PDS—poly-p-dioxanone; CS—chondroitin sulfate; CSMA—methacrylated chondroitin sulfate; HA—hyaluronic acid; PEG—poly(ethylene glycol); PCL—polycaprolactone; PLA—polylactic acid; PLLA—poly(l-lactide); PGA—poly(glycolic acid); PES—polyethersulfone; PLGA—polylactic-co-glycolic acid; PCEC—polycaprolactone-polyethylene glycol; ECM—extracellular matrix; PLCL—poly(l-lactide-co-ε-caprolactone); SCPL—solvent casting and particulate leaching method; AC—acryloyl chloride; GO—graphene oxide; PECA—poly(ethylene glycol) methyl ether-ε-caprolactone-acryloyl chloride.</span></div><div style='clear:both;'></div></div> </div><div class="html-table-wrap" id="membranes-10-00348-t004"> <div class="html-table_wrap_td" > <div class="html-tablepopup html-tablepopup-link" data-counterslinkmanual = "https://www.mdpi.com/2077-0375/10/11/348/display" href='#table_body_display_membranes-10-00348-t004'> <img alt="Table" data-lsrc="https://www.mdpi.com/img/table.png" /> <a class="html-expand html-tablepopup" data-counterslinkmanual = "https://www.mdpi.com/2077-0375/10/11/348/display" href="#table_body_display_membranes-10-00348-t004"></a> </div> </div> <div class="html-table_wrap_discription"> <b>Table 4.</b> Natural scaffolds approved for medical use for cartilage tissue engineering. </div> </div> <div class="html-table_show mfp-hide " id ="table_body_display_membranes-10-00348-t004" > <div class="html-caption" ><b>Table 4.</b> Natural scaffolds approved for medical use for cartilage tissue engineering.</div> <table > <thead ><tr ><th align='center' valign='middle' style='border-top:solid thin;border-bottom:solid thin' class='html-align-center' >Product (Company)</th><th align='center' valign='middle' style='border-top:solid thin;border-bottom:solid thin' class='html-align-center' >Materials</th><th align='center' valign='middle' style='border-top:solid thin;border-bottom:solid thin' class='html-align-center' >Characteristic</th></tr></thead><tbody ><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Hyalofast<sup>®</sup>(Anika) [<a href="#B110-membranes-10-00348" class="html-bibr">110</a>,<a href="#B154-membranes-10-00348" class="html-bibr">154</a>,<a href="#B174-membranes-10-00348" class="html-bibr">174</a>,<a href="#B175-membranes-10-00348" class="html-bibr">175</a>]</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Benzyl ester of hyaluronic acid</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >A bioresorbable3D scaffold used through a one-step procedure aftera microfracture. It can be used even for deep cartilage lesions. The scaffold’s non-woven structure allows it to be cut and adaptively matched into uneven lesions.</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >NeoCart<sup>®</sup>(Histogenics) [<a href="#B44-membranes-10-00348" class="html-bibr">44</a>,<a href="#B110-membranes-10-00348" class="html-bibr">110</a>,<a href="#B154-membranes-10-00348" class="html-bibr">154</a>]</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Bovine type I collagen</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Bioresorbableelectrospun scaffold used in MACI, a two-step procedure. The patient’s chondrocytes are expanded into scaffolds. Then, they are incubated in the Tissue Engineering Processor (TEP), which simulates the variation of mechanical forces and reduces oxygen pressure, allowing the maintenance of the chondrocyte phenotype forming the appropriate proteins of the ECM.</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >ChondroGide(Geistlich) [<a href="#B110-membranes-10-00348" class="html-bibr">110</a>,<a href="#B154-membranes-10-00348" class="html-bibr">154</a>]</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Type I/III collagen</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >The first described matrix for the ACI method. It is used in a one-step procedure. ChondroGide’s role is to support and promote the chondrogenic differentiation of MSCs released after the microfracture method.</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >ACI-Maix<sup>TM</sup> (MACI) [<a href="#B44-membranes-10-00348" class="html-bibr">44</a>,<a href="#B45-membranes-10-00348" class="html-bibr">45</a>]</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Type I/III collagen</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >The procedure is a two-step process. Expanded autologous chondrocytes (2 or 3 passage) are cultured into the scaffold for 3 or 4 days before implantation into the patient.</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Cartipatch<sup>®</sup>(Xizia Biotech) [<a href="#B44-membranes-10-00348" class="html-bibr">44</a>,<a href="#B156-membranes-10-00348" class="html-bibr">156</a>,<a href="#B173-membranes-10-00348" class="html-bibr">173</a>]</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Agarose and alginate</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >The cylindrical scaffold of a single layer of hydrogel with expanded cartilage cells. The clinical procedure is the same as that for the two-step method. The alginate polymer provides elasticity to the matrix, which facilitates handling during the surgical procedure.</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >NOVOCART<sup>®</sup> 3D—AesculapOrthopaedics (BBraun) [<a href="#B44-membranes-10-00348" class="html-bibr">44</a>,<a href="#B64-membranes-10-00348" class="html-bibr">64</a>,<a href="#B111-membranes-10-00348" class="html-bibr">111</a>,<a href="#B156-membranes-10-00348" class="html-bibr">156</a>]</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Type I collagen, chondroitin sulfate</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >A sponge scaffold with a bilayer structure and interconnected pores, used in a two-step procedure. This scaffold is desirable in young patients,<16 years old, to avoid eventual secondary injuries, such as early osteoarthritis.</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >CaReS<sup>®</sup>(Arthrokinetics) [<a href="#B44-membranes-10-00348" class="html-bibr">44</a>,<a href="#B64-membranes-10-00348" class="html-bibr">64</a>,<a href="#B111-membranes-10-00348" class="html-bibr">111</a>,<a href="#B156-membranes-10-00348" class="html-bibr">156</a>]</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Type I collagen gel</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >The scaffold is used in a two-step clinical procedure. Isolated autologous chondrocytes are mixed with a fluid matrix. Then, after 14 days, it is set in the lesion using fibrin glue. The height, thickness, and size of the hydrogel can be easily adjusted to the lesion.</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >CARTISTEM<sup>®</sup> (Medipost) [<a href="#B49-membranes-10-00348" class="html-bibr">49</a>,<a href="#B176-membranes-10-00348" class="html-bibr">176</a>,<a href="#B177-membranes-10-00348" class="html-bibr">177</a>]</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Hyaluronic acid</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Allogeneic human umbilical cord blood (hUCB)-derived MSCs and HA hydrogel products for cartilage regeneration for repeated traumas or degenerative osteoarthritis. A 7-year follow-up study of 104 patients showed promising efficacy in terms of durable cartilage regeneration with no significant adverse effects.</td></tr></tbody> </table> </div></section><section class='html-fn_group'><table><tr id=''><td></td><td><div class='html-p'><b>Publisher’s Note:</b> MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.</div></td></tr></table></section> <section id="html-copyright"><br>© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (<a href='http://creativecommons.org/licenses/by/4.0/' target='_blank' rel="noopener noreferrer" >http://creativecommons.org/licenses/by/4.0/</a>).</section> </div> </div> <div class="additional-content"> <h2><a name="cite"></a>Share and Cite</h2> <div class="social-media-links" style="text-align: left;"> <a href="/cdn-cgi/l/email-protection#ab948dcac6db90d8dec9c1cec8df96edd9c4c68e999be6effbe28e98ea8e999b8e9999f9ceddc2cedc8e999bc4cd8e999bf8d2c5dfc3cedfc2c88e999bcac5cf8e999be3d2c9d9c2cf8e999bf8c8cacdcdc4c7cfd88e999bc2c58e999be8cad9dfc2c7caccce8e999bffc2d8d8dece8e999beec5ccc2c5ceced9c2c5cc8ddadec4df908dcac6db90c9c4cfd296c3dfdfdbd8918484dcdcdc85c6cfdbc285c8c4c6849392999d989f8e98ea8e9bea8e9beaf9ceddc2cedc8e999bc4cd8e999bf8d2c5dfc3cedfc2c88e999bcac5cf8e999be3d2c9d9c2cf8e999bf8c8cacdcdc4c7cfd88e999bc2c58e999be8cad9dfc2c7caccce8e999bffc2d8d8dece8e999beec5ccc2c5ceced9c2c5cc8e9bea8e9beaeac9d8dfd9cac8df8e98ea8e999be8cad9dfc2c7caccce8e999bdfc2d8d8dece8e999bc2d88e999bdec5cfced98e999bced3dfcec5d8c2ddce8e999bc2c5ddced8dfc2cccadfc2c4c58e999bc2c58e999bdfc2d8d8dece8e999bcec5ccc2c5ceced9c2c5cc8e999bcac5cf8e999bd9cecccec5ced9cadfc2ddce8e999bc6cecfc2c8c2c5ce8e999bd8dfdecfc2ced88e999bc9cec8caded8ce8e999bc4cd8e999bc2dfd88e999bc7c2c6c2dfcecf8e999bd9cecccec5ced9cadfc2ddce8e999bdbc4dfcec5dfc2cac7858e999be8ded9d9cec5dfc7d28e99e88e999bc6cac5d28e999bd8c8cacdcdc4c7cfd88e999bcad9ce8e999bdec5cfced9ccc4c2c5cc8e999bd8c8c2cec5dfc2cdc2c88e999bcac5cf8e999bc8c7c2c5c2c8cac78e999bd9ced8cecad9c8c3858e999bea8e999bc0ced28e999bcdc4d98e999bcadbdbd9c4dbd9c2cadfce8e999bd8c8cacdcdc4c7cfc2c5cc8e999bc2d88e999bdfc3ce8e999bcad8d8ded9cac5c8ce8e999bc4cd8e999bca8e999bdfcec6dbc4d9cad9d28e999bc8cec7c7dec7cad98e999bcec5ddc2d9c4c5c6cec5df8e999bdfc3cadf8e999bcac7c7c4dcd88e999bdfc3ce8e999bc8cec7c7d88e999bdfc48e999bcddec5c8dfc2c4c58e999bcad88e999bc2c58e999bc5cadfc2ddce8e999bdfc2d8d8dece858e999bffc3ced8ce8e999bd8c8cacdcdc4c7cfd88e999bd8c3c4dec7cf8e999bc6cecedf8e999bdfc3ce8e999bd9cec7ceddcac5df8e999bd9cedadec2d9cec6cec5dfd88e99e88e999bc2c5c8c7decfc2c5cc8e999bcadbdbd9c4dbd9c2cadfce8e999bcad9c8c3c2dfcec8dfded9ce8e999bcac5cf8e999bdbc3d2d8c2c8c4c8c3cec6c2c8cac78e999bcac5cf8e999bc9c2c4c7c4ccc2c8cac78e999bdbd9c4dbced9dfc2ced8858e999bffc3c2d88e999bc2d88e999bc5cec8ced8d8cad9d28e999bcdc4d98e999bdbd9c4dbced98e999bc8cec7c78e999bccd9c4dcdfc38e99e88e999bdcc3c2c8c38e999bc2d88e999bcad8d8c4c8c2cadfcecf8e999bdcc2dfc38e999bdfc3ce8e999bcacfcedadecadfce8e999bd9cecccec5ced9cadfc2c4c58e999bc4cd8e999bc8cad9dfc2c7caccce858e999bffc3c2d88e999bdbcadbced98e999bdbd9ced8cec5dfd88e999bca8e999bd9ceddc2cedc8e999bc4cd8e999bdfc3ce8e999bcfceddcec7c4dbc6cec5df8e999bc4cd8e999bd8c8cacdcdc4c7cfd88e999bcdd9c4c68e999bd8d2c5dfc3cedfc2c88e999bdbc4c7d2c6ced9d88e999bcac5cf8e999bc3d2c9d9c2cf8e999bc6cadfced9c2cac7d88e999bcec6dbc7c4d2cecf8e999bcdc4d98e999bdfc3ce8e999bcec5ccc2c5ceced9c2c5cc8e999bc4cd8e999bc8cad9dfc2c7caccce8e999bdfc2d8d8dece8e999bcac5cf8e999bd9cecccec5ced9cadfc2ddce8e999bc6cecfc2c8c2c5ce858e999be2c5c2dfc2cac7c7d28e99e88e999bcccec5ced9cac78e999bc2c5cdc4d9c6cadfc2c4c58e999bc4c58e999bcad9dfc2c8dec7cad98e999bc8cad9dfc2c7caccce8e999bcac5cf8e999bcac58e999bc4ddced9ddc2cedc8e999bc4cd8e999bdfc3ce8e999bc8c7c2c5c2c8cac78e999bd8dfd9cadfceccc2ced88e999bcdc4d98e999bdfc3ce8e999bdfd9cecadfc6cec5df8e999bc4cd8e999bc8cad9dfc2c7caccce8e999bcfcecdcec8dfd88e999bcad9ce8e999bdbd9ced8cec5dfcecf858e999bffc3cec58e99e88e999bdfc3ce8e999bd9cedadec2d9cec6cec5dfd88e999bcdc4d98e999bd8c8cacdcdc4c7cfd88e999bc2c58e999bd9cecccec5ced9cadfc2ddce8e999bc6cecfc2c8c2c5ce8e99e88e999bc6cadfced9c2cac7d88e999bc2c5dfcec5cfcecf8e999bcdc4d98e999bc6cec6c9d9cac5ced88e99e88e999bcac5cf8e999bc6cedfc3c4cfd88e999bcdc4d98e999bc4c9dfcac2c5c2c5cc8e999bdfc3cec68e999bcad9ce8e999bc9d9c2cecdc7d28e999bcfced8c8d9c2c9cecf858e999bfcce8e999bcac7d8c48e999bcfced8c8d9c2c9ce8e999bdfc3ce8e999bc3d2c9d9c2cf8e999bc6cadfced9c2cac7d88e999bdfc3cadf8e999bc8c4c6c9c2c5ce8e999bdfc3ce8e999bcacfddcac5dfcaccced88e999bc4cd8e999bc9c4dfc38e999bd8d2c5dfc3cedfc2c88e999bcac5cf8e999bc5cadfded9cac78e999bdbc4c7d2c6ced9d88e99e88e999bdcc3c2c8c38e999bdbd9c4ddc2cfce8e999bc9cedfdfced98e999bdbd9c4dbced9dfc2ced88e999bcdc4d98e999bdfc3ce8e999bd8c8cacdcdc4c7cf858e999bffc3ce8e999bc7cad8df8e999bdbcad9df8e999bc4cd8e999bdfc3ce8e999bcad9dfc2c8c7ce8e999bc2d8f0858585f6" title="Email"> <i class="fa fa-envelope-square" style="font-size: 30px;"></i> </a> <a href="https://twitter.com/intent/tweet?text=Review+of+Synthetic+and+Hybrid+Scaffolds+in+Cartilage+Tissue+Engineering&hashtags=mdpimembranes&url=https%3A%2F%2Fwww.mdpi.com%2F892634&via=Membranes_MDPI" onclick="windowOpen(this.href,600,800); return false" target="_blank" rel="noopener noreferrer"> <i class="fa fa-twitter-x-square" style="font-size: 30px;"></i> </a> <a href=" http://www.linkedin.com/shareArticle?mini=true&url=https%3A%2F%2Fwww.mdpi.com%2F892634&title=Review%20of%20Synthetic%20and%20Hybrid%20Scaffolds%20in%20Cartilage%20Tissue%20Engineering%26source%3Dhttps%3A%2F%2Fwww.mdpi.com%26summary%3DCartilage%20tissue%20is%20under%20extensive%20investigation%20in%20tissue%20engineering%20and%20regenerative%20medicine%20studies%20because%20of%20its%20limited%20regenerative%20potential.%20Currently%2C%20many%20scaffolds%20are%20undergoing%20scientific%20and%20clinical%20research.%20A%20key%20for%20appropriate%20%5B...%5D" onclick="windowOpen(this.href,600,800); return false" title="LinkedIn" target="_blank" rel="noopener noreferrer"> <i class="fa fa-linkedin-square" style="font-size: 30px;"></i> </a> <a href="https://www.facebook.com/sharer.php?u=https://www.mdpi.com/892634" title="facebook" target="_blank" rel="noopener noreferrer"> <i class="fa fa-facebook-square" style="font-size: 30px;"></i> </a> <a href="javascript:void(0);" title="Wechat" data-reveal-id="weixin-share-modal"> <i class="fa fa-weixin-square" style="font-size: 26px;"></i> </a> <a href="http://www.reddit.com/submit?url=https://www.mdpi.com/892634" title="Reddit" target="_blank" rel="noopener noreferrer"> <i class="fa fa-reddit-square" style="font-size: 30px;"></i> </a> <a href="http://www.mendeley.com/import/?url=https://www.mdpi.com/892634" title="Mendeley" target="_blank" rel="noopener noreferrer"> <i class="fa fa-mendeley-square" style="font-size: 30px;"></i> </a> </div> <div class="in-tab" style="padding-top: 0px!important; margin-top: 15px;"> <div><b>MDPI and ACS Style</b></div> <p> Wasyłeczko, M.; Sikorska, W.; Chwojnowski, A. Review of Synthetic and Hybrid Scaffolds in Cartilage Tissue Engineering. <em>Membranes</em> <b>2020</b>, <em>10</em>, 348. https://doi.org/10.3390/membranes10110348 </p> <div style="display: block"> <b>AMA Style</b><br> <p> Wasyłeczko M, Sikorska W, Chwojnowski A. Review of Synthetic and Hybrid Scaffolds in Cartilage Tissue Engineering. <em>Membranes</em>. 2020; 10(11):348. https://doi.org/10.3390/membranes10110348 </p> <b>Chicago/Turabian Style</b><br> <p> Wasyłeczko, Monika, Wioleta Sikorska, and Andrzej Chwojnowski. 2020. "Review of Synthetic and Hybrid Scaffolds in Cartilage Tissue Engineering" <em>Membranes</em> 10, no. 11: 348. https://doi.org/10.3390/membranes10110348 </p> <b>APA Style</b><br> <p> Wasyłeczko, M., Sikorska, W., & Chwojnowski, A. (2020). Review of Synthetic and Hybrid Scaffolds in Cartilage Tissue Engineering. <em>Membranes</em>, <em>10</em>(11), 348. https://doi.org/10.3390/membranes10110348 </p> </div> </div> <div class="info-box no-margin"> Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details <a target="_blank" href="https://www.mdpi.com/about/announcements/784">here</a>. </div> <h2><a name="metrics"></a>Article Metrics</h2> <div class="row"> <div class="small-12 columns"> <div id="loaded_cite_count" style="display:none">No</div> <div id="framed_div_cited_count" class="in-tab" style="display: none; overflow: auto;"></div> <div id="loaded" style="display:none">No</div> <div id="framed_div" class="in-tab" style="display: none; margin-top: 10px;"></div> </div> <div class="small-12 columns"> <div id="article_stats_div" style="display: none; margin-bottom: 1em;"> <h3>Article Access Statistics</h3> <div id="article_stats_swf" ></div> For more information on the journal statistics, click <a href="/journal/membranes/stats">here</a>. <div class="info-box"> Multiple requests from the same IP address are counted as one view. </div> </div> </div> </div> </div> </div> </article> </div> </div></div> <div class="webpymol-controls webpymol-controls-template" style="margin-top: 10px; display: none;"> <a class="bzoom">Zoom</a> <span style="display: inline-block; margin-left: 5px; margin-right: 5px;">|</span> <a class="borient"> Orient </a> <span style="display: inline-block; margin-left: 5px; margin-right: 5px;">|</span> <a class="blines"> As Lines </a> <span style="display: inline-block; margin-left: 5px; margin-right: 5px;">|</span> <a class="bsticks"> As Sticks </a> <span style="display: inline-block; margin-left: 5px; margin-right: 5px;">|</span> <a class="bcartoon"> As Cartoon </a> <span style="display: inline-block; margin-left: 5px; margin-right: 5px;">|</span> <a class="bsurface"> As Surface </a> <span style="display: inline-block; margin-left: 5px; margin-right: 5px;">|</span> <a class="bprevscene">Previous Scene</a> <span style="display: inline-block; margin-left: 5px; margin-right: 5px;">|</span> <a class="bnextscene">Next Scene</a> </div> <div id="scifeed-modal" class="reveal-modal reveal-modal-new" data-reveal aria-labelledby="modalTitle" aria-hidden="true" role="dialog"> </div> <div id="recommended-articles-modal" class="reveal-modal reveal-modal-new" data-reveal aria-labelledby="modalTitle" aria-hidden="true" role="dialog"> </div> <div id="author-biographies-modal" class="reveal-modal reveal-modal-new" data-reveal aria-labelledby="modalTitle" aria-hidden="true" role="dialog"> </div> <div id="cite-modal" class="reveal-modal reveal-modal-new" data-reveal aria-labelledby="Captcha" aria-hidden="true" role="dialog"> <div class="row"> <div class="small-12 columns"> <h2 style="margin: 0;">Cite</h2> </div> <div class="small-12 columns"> <!-- BibTeX --> <form style="margin:0; padding:0; display:inline;" name="export-bibtex" method="POST" action="/export"> <input type="hidden" name="articles_ids[]" value="446317"> <input type="hidden" name="export_format_top" value="bibtex"> <input type="hidden" name="export_submit_top" value=""> </form> <!-- EndNote --> <form style="margin:0; padding:0; display:inline;" name="export-endnote" method="POST" action="/export"> <input type="hidden" name="articles_ids[]" value="446317"> <input type="hidden" name="export_format_top" value="endnote_no_abstract"> <input type="hidden" name="export_submit_top" value=""> </form> <!-- RIS --> <form style="margin:0; padding:0; display:inline;" name="export-ris" method="POST" action="/export"> <input type="hidden" name="articles_ids[]" value="446317"> <input type="hidden" name="export_format_top" value="ris"> <input type="hidden" name="export_submit_top" value=""> </form> <div> Export citation file: <a href="javascript:window.document.forms['export-bibtex'].submit()">BibTeX</a> | <a href="javascript:window.document.forms['export-endnote'].submit()">EndNote</a> | <a href="javascript:window.document.forms['export-ris'].submit()">RIS</a> </div> </div> <div class="small-12 columns"> <div class="in-tab"> <div><b>MDPI and ACS Style</b></div> <p> Wasyłeczko, M.; Sikorska, W.; Chwojnowski, A. Review of Synthetic and Hybrid Scaffolds in Cartilage Tissue Engineering. <em>Membranes</em> <b>2020</b>, <em>10</em>, 348. https://doi.org/10.3390/membranes10110348 </p> <div style="display: block"> <b>AMA Style</b><br> <p> Wasyłeczko M, Sikorska W, Chwojnowski A. Review of Synthetic and Hybrid Scaffolds in Cartilage Tissue Engineering. <em>Membranes</em>. 2020; 10(11):348. https://doi.org/10.3390/membranes10110348 </p> <b>Chicago/Turabian Style</b><br> <p> Wasyłeczko, Monika, Wioleta Sikorska, and Andrzej Chwojnowski. 2020. "Review of Synthetic and Hybrid Scaffolds in Cartilage Tissue Engineering" <em>Membranes</em> 10, no. 11: 348. https://doi.org/10.3390/membranes10110348 </p> <b>APA Style</b><br> <p> Wasyłeczko, M., Sikorska, W., & Chwojnowski, A. (2020). Review of Synthetic and Hybrid Scaffolds in Cartilage Tissue Engineering. <em>Membranes</em>, <em>10</em>(11), 348. https://doi.org/10.3390/membranes10110348 </p> </div> </div> <div class="info-box no-margin"> Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details <a target="_blank" href="https://www.mdpi.com/about/announcements/784">here</a>. </div> </div> </div> <a class="close-reveal-modal" aria-label="Close"> <i class="material-icons">clear</i> </a> </div> </div> </div> </div> </div> </section> <div id="footer"> <div class="journal-info"> <span> <em><a class="Var_JournalInfo" href="/journal/membranes">Membranes</a></em>, EISSN 2077-0375, Published by MDPI </span> <div class="large-right"> <span> <a href="/rss/journal/membranes" class="rss-link">RSS</a> </span> <span> <a href="/journal/membranes/toc-alert">Content Alert</a> </span> </div> </div> <div class="row full-width footer-links" data-equalizer="footer" data-equalizer-mq="small"> <div class="large-2 large-push-4 medium-3 small-6 columns" data-equalizer-watch="footer"> <h3> Further Information </h3> <a href="/apc"> Article Processing Charges </a> <a href="/about/payment"> Pay an Invoice </a> <a href="/openaccess"> Open Access Policy </a> <a href="/about/contact"> Contact MDPI </a> <a href="https://careers.mdpi.com" target="_blank" rel="noopener noreferrer"> Jobs at MDPI </a> </div> <div class="large-2 large-push-4 medium-3 small-6 columns" data-equalizer-watch="footer"> <h3> Guidelines </h3> <a href="/authors"> For Authors </a> <a href="/reviewers"> For Reviewers </a> <a href="/editors"> For Editors </a> <a href="/librarians"> For Librarians </a> <a href="/publishing_services"> For Publishers </a> <a href="/societies"> For Societies </a> <a href="/conference_organizers"> For Conference Organizers </a> </div> <div class="large-2 large-push-4 medium-3 small-6 columns"> <h3> MDPI Initiatives </h3> <a href="https://sciforum.net" target="_blank" rel="noopener noreferrer"> Sciforum </a> <a href="https://www.mdpi.com/books" target="_blank" rel="noopener noreferrer"> MDPI Books </a> <a href="https://www.preprints.org" target="_blank" rel="noopener noreferrer"> Preprints.org </a> <a href="https://www.scilit.net" target="_blank" rel="noopener noreferrer"> Scilit </a> <a href="https://sciprofiles.com?utm_source=mpdi.com&utm_medium=bottom_menu&utm_campaign=initiative" target="_blank" rel="noopener noreferrer"> SciProfiles </a> <a href="https://encyclopedia.pub" target="_blank" rel="noopener noreferrer"> Encyclopedia </a> <a href="https://jams.pub" target="_blank" rel="noopener noreferrer"> JAMS </a> <a href="/about/proceedings"> Proceedings Series </a> </div> <div class="large-2 large-push-4 medium-3 small-6 right-border-large-without columns UA_FooterFollowMDPI"> <h3> Follow MDPI </h3> <a href="https://www.linkedin.com/company/mdpi" target="_blank" rel="noopener noreferrer"> LinkedIn </a> <a href="https://www.facebook.com/MDPIOpenAccessPublishing" target="_blank" rel="noopener noreferrer"> Facebook </a> <a href="https://twitter.com/MDPIOpenAccess" target="_blank" rel="noopener noreferrer"> Twitter </a> </div> <div id="footer-subscribe" class="large-4 large-pull-8 medium-12 small-12 left-border-large columns"> <div class="footer-subscribe__container"> <img class="show-for-large-up" src="https://pub.mdpi-res.com/img/design/mdpi-pub-logo-white-small.png?71d18e5f805839ab?1732615622" alt="MDPI" title="MDPI Open Access Journals" style="height: 50px; margin-bottom: 10px;"> <form id="newsletter" method="POST" action="/subscribe"> <p> Subscribe to receive issue release notifications and newsletters from MDPI journals </p> <select multiple id="newsletter-journal" class="foundation-select" name="journals[]"> <option value="acoustics">Acoustics</option> <option value="amh">Acta Microbiologica Hellenica</option> <option value="actuators">Actuators</option> <option value="admsci">Administrative Sciences</option> <option value="adolescents">Adolescents</option> <option value="arm">Advances in Respiratory Medicine</option> <option value="aerobiology">Aerobiology</option> <option value="aerospace">Aerospace</option> <option value="agriculture">Agriculture</option> <option value="agriengineering">AgriEngineering</option> <option value="agrochemicals">Agrochemicals</option> <option value="agronomy">Agronomy</option> <option value="ai">AI</option> <option value="air">Air</option> <option value="algorithms">Algorithms</option> <option value="allergies">Allergies</option> <option value="alloys">Alloys</option> <option value="analytica">Analytica</option> <option value="analytics">Analytics</option> <option value="anatomia">Anatomia</option> <option value="anesthres">Anesthesia Research</option> <option value="animals">Animals</option> <option value="antibiotics">Antibiotics</option> <option value="antibodies">Antibodies</option> <option value="antioxidants">Antioxidants</option> <option value="applbiosci">Applied Biosciences</option> <option value="applmech">Applied Mechanics</option> <option value="applmicrobiol">Applied Microbiology</option> <option value="applnano">Applied Nano</option> <option value="applsci">Applied Sciences</option> <option value="asi">Applied System Innovation</option> <option value="appliedchem">AppliedChem</option> <option value="appliedmath">AppliedMath</option> <option value="aquacj">Aquaculture Journal</option> <option value="architecture">Architecture</option> <option value="arthropoda">Arthropoda</option> <option value="arts">Arts</option> <option value="astronomy">Astronomy</option> <option value="atmosphere">Atmosphere</option> <option value="atoms">Atoms</option> <option value="audiolres">Audiology Research</option> <option value="automation">Automation</option> <option value="axioms">Axioms</option> <option value="bacteria">Bacteria</option> <option value="batteries">Batteries</option> <option value="behavsci">Behavioral Sciences</option> <option value="beverages">Beverages</option> <option value="BDCC">Big Data and Cognitive Computing</option> <option value="biochem">BioChem</option> <option value="bioengineering">Bioengineering</option> <option value="biologics">Biologics</option> <option value="biology">Biology</option> <option value="blsf">Biology and Life Sciences Forum</option> <option value="biomass">Biomass</option> <option value="biomechanics">Biomechanics</option> <option value="biomed">BioMed</option> <option value="biomedicines">Biomedicines</option> <option value="biomedinformatics">BioMedInformatics</option> <option value="biomimetics">Biomimetics</option> <option value="biomolecules">Biomolecules</option> <option value="biophysica">Biophysica</option> <option value="biosensors">Biosensors</option> <option value="biotech">BioTech</option> <option value="birds">Birds</option> <option value="blockchains">Blockchains</option> <option value="brainsci">Brain Sciences</option> <option value="buildings">Buildings</option> <option value="businesses">Businesses</option> <option value="carbon">C</option> <option value="cancers">Cancers</option> <option value="cardiogenetics">Cardiogenetics</option> <option value="catalysts">Catalysts</option> <option value="cells">Cells</option> <option value="ceramics">Ceramics</option> <option value="challenges">Challenges</option> <option value="ChemEngineering">ChemEngineering</option> <option value="chemistry">Chemistry</option> <option value="chemproc">Chemistry Proceedings</option> <option value="chemosensors">Chemosensors</option> <option value="children">Children</option> <option value="chips">Chips</option> <option value="civileng">CivilEng</option> <option value="cleantechnol">Clean Technologies</option> <option value="climate">Climate</option> <option value="ctn">Clinical and Translational Neuroscience</option> <option value="clinbioenerg">Clinical Bioenergetics</option> <option value="clinpract">Clinics and Practice</option> <option value="clockssleep">Clocks & Sleep</option> <option value="coasts">Coasts</option> <option value="coatings">Coatings</option> <option value="colloids">Colloids and Interfaces</option> <option value="colorants">Colorants</option> <option value="commodities">Commodities</option> <option value="complications">Complications</option> <option value="compounds">Compounds</option> <option value="computation">Computation</option> <option value="csmf">Computer Sciences & Mathematics Forum</option> <option value="computers">Computers</option> <option value="condensedmatter">Condensed Matter</option> <option value="conservation">Conservation</option> <option value="constrmater">Construction Materials</option> <option value="cmd">Corrosion and Materials Degradation</option> <option value="cosmetics">Cosmetics</option> <option value="covid">COVID</option> <option value="crops">Crops</option> <option value="cryo">Cryo</option> <option value="cryptography">Cryptography</option> <option value="crystals">Crystals</option> <option value="cimb">Current Issues in Molecular Biology</option> <option value="curroncol">Current Oncology</option> <option value="dairy">Dairy</option> <option value="data">Data</option> <option value="dentistry">Dentistry Journal</option> <option value="dermato">Dermato</option> <option value="dermatopathology">Dermatopathology</option> <option value="designs">Designs</option> <option value="diabetology">Diabetology</option> <option value="diagnostics">Diagnostics</option> <option value="dietetics">Dietetics</option> <option value="digital">Digital</option> <option value="disabilities">Disabilities</option> <option value="diseases">Diseases</option> <option value="diversity">Diversity</option> <option value="dna">DNA</option> <option value="drones">Drones</option> <option value="ddc">Drugs and Drug Candidates</option> <option value="dynamics">Dynamics</option> <option value="earth">Earth</option> <option value="ecologies">Ecologies</option> <option value="econometrics">Econometrics</option> <option value="economies">Economies</option> <option value="education">Education Sciences</option> <option value="electricity">Electricity</option> <option value="electrochem">Electrochem</option> <option value="electronicmat">Electronic Materials</option> <option value="electronics">Electronics</option> <option value="ecm">Emergency Care and Medicine</option> <option value="encyclopedia">Encyclopedia</option> <option value="endocrines">Endocrines</option> <option value="energies">Energies</option> <option value="esa">Energy Storage and Applications</option> <option value="eng">Eng</option> <option value="engproc">Engineering Proceedings</option> <option value="entropy">Entropy</option> <option value="environsciproc">Environmental Sciences Proceedings</option> <option value="environments">Environments</option> <option value="epidemiologia">Epidemiologia</option> <option value="epigenomes">Epigenomes</option> <option value="ebj">European Burn Journal</option> <option value="ejihpe">European Journal of Investigation in Health, Psychology and Education</option> <option value="fermentation">Fermentation</option> <option value="fibers">Fibers</option> <option value="fintech">FinTech</option> <option value="fire">Fire</option> <option value="fishes">Fishes</option> <option value="fluids">Fluids</option> <option value="foods">Foods</option> <option value="forecasting">Forecasting</option> <option value="forensicsci">Forensic Sciences</option> <option value="forests">Forests</option> <option value="fossstud">Fossil Studies</option> <option value="foundations">Foundations</option> <option value="fractalfract">Fractal and Fractional</option> <option value="fuels">Fuels</option> <option value="future">Future</option> <option value="futureinternet">Future Internet</option> <option value="futurepharmacol">Future Pharmacology</option> <option value="futuretransp">Future Transportation</option> <option value="galaxies">Galaxies</option> <option value="games">Games</option> <option value="gases">Gases</option> <option value="gastroent">Gastroenterology Insights</option> <option value="gastrointestdisord">Gastrointestinal Disorders</option> <option value="gastronomy">Gastronomy</option> <option value="gels">Gels</option> <option value="genealogy">Genealogy</option> <option value="genes">Genes</option> <option value="geographies">Geographies</option> <option value="geohazards">GeoHazards</option> <option value="geomatics">Geomatics</option> <option value="geometry">Geometry</option> <option value="geosciences">Geosciences</option> <option value="geotechnics">Geotechnics</option> <option value="geriatrics">Geriatrics</option> <option value="glacies">Glacies</option> <option value="gucdd">Gout, Urate, and Crystal Deposition Disease</option> <option value="grasses">Grasses</option> <option value="hardware">Hardware</option> <option value="healthcare">Healthcare</option> <option value="hearts">Hearts</option> <option value="hemato">Hemato</option> <option value="hematolrep">Hematology Reports</option> <option value="heritage">Heritage</option> <option value="histories">Histories</option> <option value="horticulturae">Horticulturae</option> <option value="hospitals">Hospitals</option> <option value="humanities">Humanities</option> <option value="humans">Humans</option> <option value="hydrobiology">Hydrobiology</option> <option value="hydrogen">Hydrogen</option> <option value="hydrology">Hydrology</option> <option value="hygiene">Hygiene</option> <option value="immuno">Immuno</option> <option value="idr">Infectious Disease Reports</option> <option value="informatics">Informatics</option> <option value="information">Information</option> <option value="infrastructures">Infrastructures</option> <option value="inorganics">Inorganics</option> <option value="insects">Insects</option> <option value="instruments">Instruments</option> <option value="iic">Intelligent Infrastructure and Construction</option> <option value="ijerph">International Journal of Environmental Research and Public Health</option> <option value="ijfs">International Journal of Financial Studies</option> <option value="ijms">International Journal of Molecular Sciences</option> <option value="IJNS">International Journal of Neonatal Screening</option> <option value="ijpb">International Journal of Plant Biology</option> <option value="ijt">International Journal of Topology</option> <option value="ijtm">International Journal of Translational Medicine</option> <option value="ijtpp">International Journal of Turbomachinery, Propulsion and Power</option> <option value="ime">International Medical Education</option> <option value="inventions">Inventions</option> <option value="IoT">IoT</option> <option value="ijgi">ISPRS International Journal of Geo-Information</option> <option value="J">J</option> <option value="jal">Journal of Ageing and Longevity</option> <option value="jcdd">Journal of Cardiovascular Development and Disease</option> <option value="jcto">Journal of Clinical & Translational Ophthalmology</option> <option value="jcm">Journal of Clinical Medicine</option> <option value="jcs">Journal of Composites Science</option> <option value="jcp">Journal of Cybersecurity and Privacy</option> <option value="jdad">Journal of Dementia and Alzheimer's Disease</option> <option value="jdb">Journal of Developmental Biology</option> <option value="jeta">Journal of Experimental and Theoretical Analyses</option> <option value="jfb">Journal of Functional Biomaterials</option> <option value="jfmk">Journal of Functional Morphology and Kinesiology</option> <option value="jof">Journal of Fungi</option> <option value="jimaging">Journal of Imaging</option> <option value="jintelligence">Journal of Intelligence</option> <option value="jlpea">Journal of Low Power Electronics and Applications</option> <option value="jmmp">Journal of Manufacturing and Materials Processing</option> <option value="jmse">Journal of Marine Science and Engineering</option> <option value="jmahp">Journal of Market Access & Health Policy</option> <option value="jmp">Journal of Molecular Pathology</option> <option value="jnt">Journal of Nanotheranostics</option> <option value="jne">Journal of Nuclear Engineering</option> <option value="ohbm">Journal of Otorhinolaryngology, Hearing and Balance Medicine</option> <option value="jop">Journal of Parks</option> <option value="jpm">Journal of Personalized Medicine</option> <option value="jpbi">Journal of Pharmaceutical and BioTech Industry</option> <option value="jor">Journal of Respiration</option> <option value="jrfm">Journal of Risk and Financial Management</option> <option value="jsan">Journal of Sensor and Actuator Networks</option> <option value="joma">Journal of the Oman Medical Association</option> <option value="jtaer">Journal of Theoretical and Applied Electronic Commerce Research</option> <option value="jvd">Journal of Vascular Diseases</option> <option value="jox">Journal of Xenobiotics</option> <option value="jzbg">Journal of Zoological and Botanical Gardens</option> <option value="journalmedia">Journalism and Media</option> <option value="kidneydial">Kidney and Dialysis</option> <option value="kinasesphosphatases">Kinases and Phosphatases</option> <option value="knowledge">Knowledge</option> <option value="labmed">LabMed</option> <option value="laboratories">Laboratories</option> <option value="land">Land</option> <option value="languages">Languages</option> <option value="laws">Laws</option> <option value="life">Life</option> <option value="limnolrev">Limnological Review</option> <option value="lipidology">Lipidology</option> <option value="liquids">Liquids</option> <option value="literature">Literature</option> <option value="livers">Livers</option> <option value="logics">Logics</option> <option value="logistics">Logistics</option> <option value="lubricants">Lubricants</option> <option value="lymphatics">Lymphatics</option> <option value="make">Machine Learning and Knowledge Extraction</option> <option value="machines">Machines</option> <option value="macromol">Macromol</option> <option value="magnetism">Magnetism</option> <option value="magnetochemistry">Magnetochemistry</option> <option value="marinedrugs">Marine Drugs</option> <option value="materials">Materials</option> <option value="materproc">Materials Proceedings</option> <option value="mca">Mathematical and Computational Applications</option> <option value="mathematics">Mathematics</option> <option value="medsci">Medical Sciences</option> <option value="msf">Medical Sciences Forum</option> <option value="medicina">Medicina</option> <option value="medicines">Medicines</option> <option value="membranes">Membranes</option> <option value="merits">Merits</option> <option value="metabolites">Metabolites</option> <option value="metals">Metals</option> <option value="meteorology">Meteorology</option> <option value="methane">Methane</option> <option value="mps">Methods and Protocols</option> <option value="metrics">Metrics</option> <option value="metrology">Metrology</option> <option value="micro">Micro</option> <option value="microbiolres">Microbiology Research</option> <option value="micromachines">Micromachines</option> <option value="microorganisms">Microorganisms</option> <option value="microplastics">Microplastics</option> <option value="minerals">Minerals</option> <option value="mining">Mining</option> <option value="modelling">Modelling</option> <option value="mmphys">Modern Mathematical Physics</option> <option value="molbank">Molbank</option> <option value="molecules">Molecules</option> <option value="mti">Multimodal Technologies and Interaction</option> <option value="muscles">Muscles</option> <option value="nanoenergyadv">Nanoenergy Advances</option> <option value="nanomanufacturing">Nanomanufacturing</option> <option value="nanomaterials">Nanomaterials</option> <option value="ndt">NDT</option> <option value="network">Network</option> <option value="neuroglia">Neuroglia</option> <option value="neurolint">Neurology International</option> <option value="neurosci">NeuroSci</option> <option value="nitrogen">Nitrogen</option> <option value="ncrna">Non-Coding RNA</option> <option value="nursrep">Nursing Reports</option> <option value="nutraceuticals">Nutraceuticals</option> <option value="nutrients">Nutrients</option> <option value="obesities">Obesities</option> <option value="oceans">Oceans</option> <option value="onco">Onco</option> <option value="optics">Optics</option> <option value="oral">Oral</option> <option value="organics">Organics</option> <option value="organoids">Organoids</option> <option value="osteology">Osteology</option> <option value="oxygen">Oxygen</option> <option value="parasitologia">Parasitologia</option> <option value="particles">Particles</option> <option value="pathogens">Pathogens</option> <option value="pathophysiology">Pathophysiology</option> <option value="pediatrrep">Pediatric Reports</option> <option value="pets">Pets</option> <option value="pharmaceuticals">Pharmaceuticals</option> <option value="pharmaceutics">Pharmaceutics</option> <option value="pharmacoepidemiology">Pharmacoepidemiology</option> <option value="pharmacy">Pharmacy</option> <option value="philosophies">Philosophies</option> <option value="photochem">Photochem</option> <option value="photonics">Photonics</option> <option value="phycology">Phycology</option> <option value="physchem">Physchem</option> <option value="psf">Physical Sciences Forum</option> <option value="physics">Physics</option> <option value="physiologia">Physiologia</option> <option value="plants">Plants</option> <option value="plasma">Plasma</option> <option value="platforms">Platforms</option> <option value="pollutants">Pollutants</option> <option value="polymers">Polymers</option> <option value="polysaccharides">Polysaccharides</option> <option value="populations">Populations</option> <option value="poultry">Poultry</option> <option value="powders">Powders</option> <option value="proceedings">Proceedings</option> <option value="processes">Processes</option> <option value="prosthesis">Prosthesis</option> <option value="proteomes">Proteomes</option> <option value="psychiatryint">Psychiatry International</option> <option value="psychoactives">Psychoactives</option> <option value="psycholint">Psychology International</option> <option value="publications">Publications</option> <option value="qubs">Quantum Beam Science</option> <option value="quantumrep">Quantum Reports</option> <option value="quaternary">Quaternary</option> <option value="radiation">Radiation</option> <option value="reactions">Reactions</option> <option value="realestate">Real Estate</option> <option value="receptors">Receptors</option> <option value="recycling">Recycling</option> <option value="rsee">Regional Science and Environmental Economics</option> <option value="religions">Religions</option> <option value="remotesensing">Remote Sensing</option> <option value="reports">Reports</option> <option value="reprodmed">Reproductive Medicine</option> <option value="resources">Resources</option> <option value="rheumato">Rheumato</option> <option value="risks">Risks</option> <option value="robotics">Robotics</option> <option value="ruminants">Ruminants</option> <option value="safety">Safety</option> <option value="sci">Sci</option> <option value="scipharm">Scientia Pharmaceutica</option> <option value="sclerosis">Sclerosis</option> <option value="seeds">Seeds</option> <option value="sensors">Sensors</option> <option value="separations">Separations</option> <option value="sexes">Sexes</option> <option value="signals">Signals</option> <option value="sinusitis">Sinusitis</option> <option value="smartcities">Smart Cities</option> <option value="socsci">Social Sciences</option> <option value="siuj">Société Internationale d’Urologie Journal</option> <option value="societies">Societies</option> <option value="software">Software</option> <option value="soilsystems">Soil Systems</option> <option value="solar">Solar</option> <option value="solids">Solids</option> <option value="spectroscj">Spectroscopy Journal</option> <option value="sports">Sports</option> <option value="standards">Standards</option> <option value="stats">Stats</option> <option value="stresses">Stresses</option> <option value="surfaces">Surfaces</option> <option value="surgeries">Surgeries</option> <option value="std">Surgical Techniques Development</option> <option value="sustainability">Sustainability</option> <option value="suschem">Sustainable Chemistry</option> <option value="symmetry">Symmetry</option> <option value="synbio">SynBio</option> <option value="systems">Systems</option> <option value="targets">Targets</option> <option value="taxonomy">Taxonomy</option> <option value="technologies">Technologies</option> <option value="telecom">Telecom</option> <option value="textiles">Textiles</option> <option value="thalassrep">Thalassemia Reports</option> <option value="therapeutics">Therapeutics</option> <option value="thermo">Thermo</option> <option value="timespace">Time and Space</option> <option value="tomography">Tomography</option> <option value="tourismhosp">Tourism and Hospitality</option> <option value="toxics">Toxics</option> <option value="toxins">Toxins</option> <option value="transplantology">Transplantology</option> <option value="traumacare">Trauma Care</option> <option value="higheredu">Trends in Higher Education</option> <option value="tropicalmed">Tropical Medicine and Infectious Disease</option> <option value="universe">Universe</option> <option value="urbansci">Urban Science</option> <option value="uro">Uro</option> <option value="vaccines">Vaccines</option> <option value="vehicles">Vehicles</option> <option value="venereology">Venereology</option> <option value="vetsci">Veterinary Sciences</option> <option value="vibration">Vibration</option> <option value="virtualworlds">Virtual Worlds</option> <option value="viruses">Viruses</option> <option value="vision">Vision</option> <option value="waste">Waste</option> <option value="water">Water</option> <option value="wild">Wild</option> <option value="wind">Wind</option> <option value="women">Women</option> <option value="world">World</option> <option value="wevj">World Electric Vehicle Journal</option> <option value="youth">Youth</option> <option value="zoonoticdis">Zoonotic Diseases</option> </select> <input name="email" type="email" placeholder="Enter your email address..." required="required" /> <button class="genericCaptcha button button--dark UA_FooterNewsletterSubscribeButton" type="submit">Subscribe</button> </form> </div> </div> </div> <div id="footer-copyright"> <div class="row"> <div class="columns large-6 medium-6 small-12 text-left"> © 1996-2024 MDPI (Basel, Switzerland) unless otherwise stated </div> <div class="columns large-6 medium-6 small-12 small-text-left medium-text-right large-text-right"> <a data-dropdown="drop-view-disclaimer" aria-controls="drop-view-disclaimer" aria-expanded="false" data-options="align:top; is_hover:true; hover_timeout:2000;"> Disclaimer </a> <div id="drop-view-disclaimer" class="f-dropdown label__btn__dropdown label__btn__dropdown--wide text-left" data-dropdown-content aria-hidden="true" tabindex="-1"> Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. </div> <a href="/about/terms-and-conditions"> Terms and Conditions </a> <a href="/about/privacy"> Privacy Policy </a> </div> </div> </div> </div> <div id="cookie-notification" class="js-allow-cookies" style="display: none;"> <div class="columns large-10 medium-10 small-12"> We use cookies on our website to ensure you get the best experience.<br class="show-for-medium-up"/> Read more about our cookies <a href="/about/privacy">here</a>. </div> <div class="columns large-2 medium-2 small-12 small-only-text-left text-right"> <a class="button button--default" href="/accept_cookies">Accept</a> </div> </div> </div> <div id="main-share-modal" class="reveal-modal reveal-modal-new reveal-modal-new--small" data-reveal aria-labelledby="modalTitle" aria-hidden="true" role="dialog"> <div class="row"> <div class="small-12 columns"> <h2 style="margin: 0;">Share Link</h2> </div> <div class="small-12 columns"> <div class="social-media-links UA_ShareModalLinks" style="text-align: left;"> <a href="/cdn-cgi/l/email-protection#f9c6df989489c28a8c9b939c9a8dc4bf8b9694dccbc9b4bda9b0dccab8dccbc9dccbcbab9c8f909c8edccbc9969fdccbc9aa80978d919c8d909adccbc998979ddccbc9b1809b8b909ddccbc9aa9a989f9f96959d8adccbc99097dccbc9ba988b8d9095989e9cdccbc9ad908a8a8c9cdccbc9bc979e90979c9c8b90979edf888c968dc2df989489c29b969d80c4918d8d898ac3d6d68e8e8ed7949d8990d79a9694d6c1c0cbcfcacddccab8dcc9b8dcc9b8ab9c8f909c8edccbc9969fdccbc9aa80978d919c8d909adccbc998979ddccbc9b1809b8b909ddccbc9aa9a989f9f96959d8adccbc99097dccbc9ba988b8d9095989e9cdccbc9ad908a8a8c9cdccbc9bc979e90979c9c8b90979ef3f3ba988b8d9095989e9cdccbc98d908a8a8c9cdccbc9908adccbc98c979d9c8bdccbc99c818d9c978a908f9cdccbc990978f9c8a8d909e988d909697dccbc99097dccbc98d908a8a8c9cdccbc99c979e90979c9c8b90979edccbc998979ddccbc98b9c9e9c979c8b988d908f9cdccbc9949c9d909a90979cdccbc98a8d8c9d909c8adccbc99b9c9a988c8a9cdccbc9969fdccbc9908d8adccbc9959094908d9c9ddccbc98b9c9e9c979c8b988d908f9cdccbc989968d9c978d909895d7dccbc9ba8c8b8b9c978d9580dccbbadccbc994989780dccbc98a9a989f9f96959d8adccbc9988b9cdccbc98c979d9c8b9e9690979edccbc98a9a909c978d909f909adccbc998979ddccbc99a959097909a9895dccbc98b9c8a9c988b9a91d7dccbc9b8dccbc9929c80dccbc99f968bdccbc99889898b96898b90988d9cdccbc98a9a989f9f96959d90979edccbc9908adccbc98d919cdccbc9988a8a8c8b98979a9cdccbc9969fdccbc998dccbc98d9c9489968b988b80dccbc99a9c95958c95988bdccbc99c978f908b9697949c978ddccbc98d91988ddccbc9989595968e8adccbc98d919cdccbc99a9c95958adccbc98d96dccbc99f8c979a8d909697dccbc9988adccbc99097dccbc997988d908f9cdccbc98d908a8a8c9cd7dccbc9ad919c8a9cdccbc98a9a989f9f96959d8adccbc98a91968c959ddccbc9949c9c8ddccbc98d919cdccbc98b9c959c8f98978ddccbc98b9c888c908b9c949c978d8adccbbadccbc990979a958c9d90979edccbc99889898b96898b90988d9cdccbc9988b9a91908d9c9a8d8c8b9cdccbc998979ddccbc98991808a909a969a919c94909a9895dccbc998979ddccbc99b909695969e909a9895dccbc9898b96899c8b8d909c8ad7dccbc9ad91908adccbc9908adccbc9979c9a9c8a8a988b80dccbc99f968bdccbc9898b96899c8bdccbc99a9c9595dccbc99e8b968e8d91dccbbadccbc98e91909a91dccbc9908adccbc9988a8a969a90988d9c9ddccbc98e908d91dccbc98d919cdccbc9989d9c888c988d9cdccbc98b9c9e9c979c8b988d909697dccbc9969fdccbc99a988b8d9095989e9cd7dccbc9ad91908adccbc98998899c8bdccbc9898b9c8a9c978d8adccbc998dccbc98b9c8f909c8edccbc9969fdccbc98d919cdccbc99d9c8f9c959689949c978ddccbc9969fdccbc98a9a989f9f96959d8adccbc99f8b9694dccbc98a80978d919c8d909adccbc989969580949c8b8adccbc998979ddccbc991809b8b909ddccbc994988d9c8b9098958adccbc99c94899596809c9ddccbc99f968bdccbc98d919cdccbc99c979e90979c9c8b90979edccbc9969fdccbc99a988b8d9095989e9cdccbc98d908a8a8c9cdccbc998979ddccbc98b9c9e9c979c8b988d908f9cdccbc9949c9d909a90979cd7dccbc9b097908d9098959580dccbbadccbc99e9c979c8b9895dccbc990979f968b94988d909697dccbc99697dccbc9988b8d909a8c95988bdccbc99a988b8d9095989e9cdccbc998979ddccbc99897dccbc9968f9c8b8f909c8edccbc9969fdccbc98d919cdccbc99a959097909a9895dccbc98a8d8b988d9c9e909c8adccbc99f968bdccbc98d919cdccbc98d8b9c988d949c978ddccbc9969fdccbc99a988b8d9095989e9cdccbc99d9c9f9c9a8d8adccbc9988b9cdccbc9898b9c8a9c978d9c9dd7dccbc9ad919c97dccbbadccbc98d919cdccbc98b9c888c908b9c949c978d8adccbc99f968bdccbc98a9a989f9f96959d8adccbc99097dccbc98b9c9e9c979c8b988d908f9cdccbc9949c9d909a90979cdccbbadccbc994988d9c8b9098958adccbc990978d9c979d9c9ddccbc99f968bdccbc9949c949b8b98979c8adccbbadccbc998979ddccbc9949c8d91969d8adccbc99f968bdccbc9969b8d98909790979edccbc98d919c94dccbc9988b9cdccbc99b8b909c9f9580dccbc99d9c8a9a8b909b9c9dd7dccbc9ae9cdccbc998958a96dccbc99d9c8a9a8b909b9cdccbc98d919cdccbc991809b8b909ddccbc994988d9c8b9098958adccbc98d91988ddccbc99a96949b90979cdccbc98d919cdccbc9989d8f98978d989e9c8adccbc9969fdccbc99b968d91dccbc98a80978d919c8d909adccbc998979ddccbc997988d8c8b9895dccbc989969580949c8b8adccbbadccbc98e91909a91dccbc9898b968f909d9cdccbc99b9c8d8d9c8bdccbc9898b96899c8b8d909c8adccbc99f968bdccbc98d919cdccbc98a9a989f9f96959dd7dccbc9ad919cdccbc995988a8ddccbc989988b8ddccbc9969fdccbc98d919cdccbc9988b8d909a959cdccbc9908adccbc99f969a8c8a9c9ddccbc99697a2d7d7d7a4" title="Email"> <i class="fa fa-envelope-square" style="font-size: 30px;"></i> </a> <a href="https://twitter.com/intent/tweet?text=Review+of+Synthetic+and+Hybrid+Scaffolds+in+Cartilage+Tissue+Engineering&hashtags=mdpimembranes&url=https%3A%2F%2Fwww.mdpi.com%2F892634&via=Membranes_MDPI" onclick="windowOpen(this.href,600,800); return false" title="Twitter" target="_blank" rel="noopener noreferrer"> <i class="fa fa-twitter-x-square" style="font-size: 30px;"></i> </a> <a href=" http://www.linkedin.com/shareArticle?mini=true&url=https%3A%2F%2Fwww.mdpi.com%2F892634&title=Review%20of%20Synthetic%20and%20Hybrid%20Scaffolds%20in%20Cartilage%20Tissue%20Engineering%26source%3Dhttps%3A%2F%2Fwww.mdpi.com%26summary%3DCartilage%20tissue%20is%20under%20extensive%20investigation%20in%20tissue%20engineering%20and%20regenerative%20medicine%20studies%20because%20of%20its%20limited%20regenerative%20potential.%20Currently%2C%20many%20scaffolds%20are%20undergoing%20scientific%20and%20clinical%20research.%20A%20key%20for%20appropriate%20%5B...%5D" onclick="windowOpen(this.href,600,800); return false" title="LinkedIn" target="_blank" rel="noopener noreferrer"> <i class="fa fa-linkedin-square" style="font-size: 30px;"></i> </a> <a href="https://www.facebook.com/sharer.php?u=https://www.mdpi.com/892634" title="facebook" target="_blank" rel="noopener noreferrer"> <i class="fa fa-facebook-square" style="font-size: 30px;"></i> </a> <a href="javascript:void(0);" title="Wechat" data-reveal-id="weixin-share-modal"> <i class="fa fa-weixin-square" style="font-size: 26px;"></i> </a> <a href="http://www.reddit.com/submit?url=https://www.mdpi.com/892634" title="Reddit" target="_blank" rel="noopener noreferrer"> <i class="fa fa-reddit-square" style="font-size: 30px;"></i> </a> <a href="http://www.mendeley.com/import/?url=https://www.mdpi.com/892634" title="Mendeley" target="_blank" rel="noopener noreferrer"> <i class="fa fa-mendeley-square" style="font-size: 30px;"></i> </a> <a href="http://www.citeulike.org/posturl?url=https://www.mdpi.com/892634" title="CiteULike" target="_blank" rel="noopener noreferrer"> <i class="fa fa-citeulike-square" style="font-size: 30px;"></i> </a> </div> </div> <div class="small-9 columns"> <input id="js-clipboard-text" type="text" readonly value="https://www.mdpi.com/892634" /> </div> <div class="small-3 columns text-left"> <a class="button button--color js-clipboard-copy" data-clipboard-target="#js-clipboard-text">Copy</a> </div> </div> <a class="close-reveal-modal" aria-label="Close"> <i class="material-icons">clear</i> </a> </div> <div id="weixin-share-modal" class="reveal-modal reveal-modal-new" data-reveal aria-labelledby="weixin-share-modal-title" aria-hidden="true" role="dialog"> <div class="row"> <div class="small-12 columns"> <h2 id="weixin-share-modal-title" style="margin: 0;">Share</h2> </div> <div class="small-12 columns"> <div class="weixin-qr-code-section"> <?xml version="1.0" standalone="no"?> <!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN" "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd"> <svg width="300" height="300" version="1.1" xmlns="http://www.w3.org/2000/svg"> <desc>https://www.mdpi.com/892634</desc> <g id="elements" fill="black" stroke="none"> <rect x="0" y="0" width="12" height="12" /> <rect x="12" y="0" width="12" height="12" /> <rect x="24" y="0" width="12" height="12" /> <rect x="36" y="0" width="12" height="12" /> <rect x="48" y="0" width="12" height="12" /> <rect x="60" y="0" width="12" height="12" /> <rect x="72" y="0" width="12" height="12" /> <rect x="132" y="0" width="12" height="12" /> <rect x="144" y="0" width="12" height="12" /> <rect x="156" y="0" width="12" height="12" /> <rect x="168" y="0" width="12" height="12" /> <rect x="216" y="0" width="12" height="12" /> <rect x="228" y="0" width="12" height="12" /> <rect x="240" y="0" width="12" height="12" /> <rect x="252" y="0" width="12" height="12" /> <rect x="264" y="0" width="12" height="12" /> <rect x="276" y="0" width="12" height="12" /> <rect x="288" y="0" width="12" height="12" /> <rect x="0" y="12" width="12" height="12" /> <rect x="72" y="12" width="12" height="12" /> <rect x="108" y="12" width="12" height="12" /> <rect x="120" y="12" width="12" height="12" /> <rect x="156" y="12" width="12" height="12" /> <rect x="216" y="12" width="12" height="12" /> <rect x="288" y="12" width="12" height="12" /> <rect x="0" y="24" width="12" height="12" /> <rect x="24" y="24" width="12" height="12" /> <rect x="36" y="24" width="12" height="12" /> <rect x="48" y="24" width="12" height="12" /> <rect x="72" y="24" width="12" height="12" /> <rect x="144" y="24" width="12" height="12" /> <rect x="168" y="24" width="12" height="12" /> <rect x="192" y="24" width="12" height="12" /> <rect x="216" y="24" width="12" height="12" /> <rect x="240" y="24" width="12" height="12" /> <rect x="252" y="24" width="12" height="12" /> <rect x="264" y="24" width="12" height="12" /> <rect x="288" y="24" width="12" height="12" /> <rect x="0" y="36" width="12" height="12" /> <rect x="24" y="36" width="12" height="12" /> <rect x="36" y="36" width="12" height="12" /> <rect x="48" y="36" width="12" height="12" /> <rect x="72" y="36" width="12" height="12" /> <rect x="96" y="36" width="12" height="12" /> <rect x="144" y="36" width="12" height="12" /> <rect x="156" y="36" width="12" height="12" /> <rect x="180" y="36" width="12" height="12" /> <rect x="192" y="36" width="12" height="12" /> <rect x="216" y="36" width="12" height="12" /> <rect x="240" y="36" width="12" height="12" /> <rect x="252" y="36" width="12" height="12" /> <rect x="264" y="36" width="12" height="12" /> <rect x="288" y="36" width="12" height="12" /> <rect x="0" y="48" width="12" height="12" /> <rect x="24" y="48" width="12" height="12" /> <rect x="36" y="48" width="12" height="12" /> <rect x="48" y="48" width="12" height="12" /> <rect x="72" y="48" width="12" height="12" /> <rect x="96" y="48" width="12" height="12" /> <rect x="108" y="48" width="12" height="12" /> <rect x="156" y="48" width="12" height="12" /> <rect x="216" y="48" width="12" height="12" /> <rect x="240" y="48" width="12" height="12" /> <rect x="252" y="48" width="12" height="12" /> <rect x="264" y="48" width="12" height="12" /> <rect x="288" y="48" width="12" height="12" /> <rect x="0" y="60" width="12" height="12" /> <rect x="72" y="60" width="12" height="12" /> <rect x="132" y="60" width="12" height="12" /> <rect x="144" y="60" width="12" height="12" /> <rect x="156" y="60" width="12" height="12" /> <rect x="168" y="60" width="12" height="12" /> <rect x="192" y="60" width="12" height="12" /> <rect x="216" y="60" width="12" height="12" /> <rect x="288" y="60" width="12" height="12" /> <rect x="0" y="72" width="12" height="12" /> <rect x="12" y="72" width="12" height="12" /> <rect x="24" y="72" width="12" height="12" /> <rect x="36" y="72" width="12" height="12" /> <rect x="48" y="72" width="12" height="12" /> <rect x="60" y="72" width="12" height="12" /> <rect x="72" y="72" width="12" height="12" /> <rect x="96" y="72" width="12" height="12" /> <rect x="120" y="72" width="12" height="12" /> <rect x="144" y="72" width="12" height="12" /> <rect x="168" y="72" width="12" height="12" /> <rect x="192" y="72" width="12" height="12" /> <rect x="216" y="72" width="12" height="12" /> <rect x="228" y="72" width="12" height="12" /> <rect x="240" y="72" width="12" height="12" /> <rect x="252" y="72" width="12" height="12" /> <rect x="264" y="72" width="12" height="12" /> <rect x="276" y="72" width="12" height="12" /> <rect x="288" y="72" width="12" height="12" /> <rect x="120" y="84" width="12" height="12" /> <rect x="132" y="84" width="12" height="12" /> <rect x="168" y="84" width="12" height="12" /> <rect x="0" y="96" width="12" height="12" /> <rect x="12" y="96" width="12" height="12" /> <rect x="60" y="96" width="12" height="12" /> <rect x="72" y="96" width="12" height="12" /> <rect x="84" y="96" width="12" height="12" /> <rect x="108" y="96" width="12" height="12" /> <rect x="132" y="96" width="12" height="12" /> <rect x="144" y="96" width="12" height="12" /> <rect x="156" y="96" width="12" height="12" /> <rect x="168" y="96" width="12" height="12" /> <rect x="240" y="96" width="12" height="12" /> <rect x="252" y="96" width="12" height="12" /> <rect x="0" y="108" width="12" height="12" /> <rect x="12" y="108" width="12" height="12" /> <rect x="24" y="108" width="12" height="12" /> <rect x="48" y="108" width="12" height="12" /> <rect x="60" y="108" width="12" height="12" /> <rect x="84" y="108" width="12" height="12" /> <rect x="96" y="108" width="12" height="12" /> <rect x="108" y="108" width="12" height="12" /> <rect x="144" y="108" width="12" height="12" /> <rect x="156" y="108" width="12" height="12" /> <rect x="168" y="108" width="12" height="12" /> <rect x="180" y="108" width="12" height="12" /> <rect x="204" y="108" width="12" height="12" /> <rect x="228" y="108" width="12" height="12" /> <rect x="240" y="108" width="12" height="12" /> <rect x="252" y="108" width="12" height="12" /> <rect x="264" y="108" width="12" height="12" /> <rect x="276" y="108" width="12" height="12" /> <rect x="24" y="120" width="12" height="12" /> <rect x="48" y="120" width="12" height="12" /> <rect x="72" y="120" width="12" height="12" /> <rect x="84" y="120" width="12" height="12" /> <rect x="120" y="120" width="12" height="12" /> <rect x="144" y="120" width="12" height="12" /> <rect x="168" y="120" width="12" height="12" /> <rect x="180" y="120" width="12" height="12" /> <rect x="204" y="120" width="12" height="12" /> <rect x="216" y="120" width="12" height="12" /> <rect x="228" y="120" width="12" height="12" /> <rect x="240" y="120" width="12" height="12" /> <rect x="252" y="120" width="12" height="12" /> <rect x="276" y="120" width="12" height="12" /> <rect x="288" y="120" width="12" height="12" /> <rect x="0" y="132" width="12" height="12" /> <rect x="12" y="132" width="12" height="12" /> <rect x="24" y="132" width="12" height="12" /> <rect x="60" y="132" width="12" height="12" /> <rect x="84" y="132" width="12" height="12" /> <rect x="96" y="132" width="12" height="12" /> <rect x="108" y="132" width="12" height="12" /> <rect x="168" y="132" width="12" height="12" /> <rect x="204" y="132" width="12" height="12" /> <rect x="228" y="132" width="12" height="12" /> <rect x="252" y="132" width="12" height="12" /> <rect x="288" y="132" width="12" height="12" /> <rect x="24" y="144" width="12" height="12" /> <rect x="36" y="144" width="12" height="12" /> <rect x="72" y="144" width="12" height="12" /> <rect x="84" y="144" width="12" height="12" /> <rect x="108" y="144" width="12" height="12" /> <rect x="132" y="144" width="12" height="12" /> <rect x="168" y="144" width="12" height="12" /> <rect x="180" y="144" width="12" height="12" /> <rect x="216" y="144" width="12" height="12" /> <rect x="288" y="144" width="12" height="12" /> <rect x="0" y="156" width="12" height="12" /> <rect x="12" y="156" width="12" height="12" /> <rect x="24" y="156" width="12" height="12" /> <rect x="36" y="156" width="12" height="12" /> <rect x="48" y="156" width="12" height="12" /> <rect x="60" y="156" width="12" height="12" /> <rect x="84" y="156" width="12" height="12" /> <rect x="132" y="156" width="12" height="12" /> <rect x="144" y="156" width="12" height="12" /> <rect x="156" y="156" width="12" height="12" /> <rect x="180" y="156" width="12" height="12" /> <rect x="192" y="156" width="12" height="12" /> <rect x="204" y="156" width="12" height="12" /> <rect x="228" y="156" width="12" height="12" /> <rect x="276" y="156" width="12" height="12" /> <rect x="0" y="168" width="12" height="12" /> <rect x="24" y="168" width="12" height="12" /> <rect x="60" y="168" width="12" height="12" /> <rect x="72" y="168" width="12" height="12" /> <rect x="96" y="168" width="12" height="12" /> <rect x="108" y="168" width="12" height="12" /> <rect x="120" y="168" width="12" height="12" /> <rect x="156" y="168" width="12" height="12" /> <rect x="168" y="168" width="12" height="12" /> <rect x="180" y="168" width="12" height="12" /> <rect x="204" y="168" width="12" height="12" /> <rect x="216" y="168" width="12" height="12" /> <rect x="228" y="168" width="12" height="12" /> <rect x="240" y="168" width="12" height="12" /> <rect x="252" y="168" width="12" height="12" /> <rect x="276" y="168" width="12" height="12" /> <rect x="288" y="168" width="12" height="12" /> <rect x="0" y="180" width="12" height="12" /> <rect x="36" y="180" width="12" height="12" /> <rect x="108" y="180" width="12" height="12" /> <rect x="120" y="180" width="12" height="12" /> <rect x="132" y="180" width="12" height="12" /> <rect x="144" y="180" width="12" height="12" /> <rect x="204" y="180" width="12" height="12" /> <rect x="228" y="180" width="12" height="12" /> <rect x="252" y="180" width="12" height="12" /> <rect x="264" y="180" width="12" height="12" /> <rect x="288" y="180" width="12" height="12" /> <rect x="0" y="192" width="12" height="12" /> <rect x="24" y="192" width="12" height="12" /> <rect x="36" y="192" width="12" height="12" /> <rect x="48" y="192" width="12" height="12" /> <rect x="60" y="192" width="12" height="12" /> <rect x="72" y="192" width="12" height="12" /> <rect x="96" y="192" width="12" height="12" /> <rect x="108" y="192" width="12" height="12" /> <rect x="120" y="192" width="12" height="12" /> <rect x="156" y="192" width="12" height="12" /> <rect x="180" y="192" width="12" height="12" /> <rect x="192" y="192" width="12" height="12" /> <rect x="204" y="192" width="12" height="12" /> <rect x="216" y="192" width="12" height="12" /> <rect x="228" y="192" width="12" height="12" /> <rect x="240" y="192" width="12" height="12" /> <rect x="264" y="192" width="12" height="12" /> <rect x="96" y="204" width="12" height="12" /> <rect x="108" y="204" width="12" height="12" /> <rect x="132" y="204" width="12" height="12" /> <rect x="144" y="204" width="12" height="12" /> <rect x="156" y="204" width="12" height="12" /> <rect x="168" y="204" width="12" height="12" /> <rect x="192" y="204" width="12" height="12" /> <rect x="240" y="204" width="12" height="12" /> <rect x="0" y="216" width="12" height="12" /> <rect x="12" y="216" width="12" height="12" /> <rect x="24" y="216" width="12" height="12" /> <rect x="36" y="216" width="12" height="12" /> <rect x="48" y="216" width="12" height="12" /> <rect x="60" y="216" width="12" height="12" /> <rect x="72" y="216" width="12" height="12" /> <rect x="96" y="216" width="12" height="12" /> <rect x="132" y="216" width="12" height="12" /> <rect x="144" y="216" width="12" height="12" /> <rect x="156" y="216" width="12" height="12" /> <rect x="168" y="216" width="12" height="12" /> <rect x="192" y="216" width="12" height="12" /> <rect x="216" y="216" width="12" height="12" /> <rect x="240" y="216" width="12" height="12" /> <rect x="288" y="216" width="12" height="12" /> <rect x="0" y="228" width="12" height="12" /> <rect x="72" y="228" width="12" height="12" /> <rect x="96" y="228" width="12" height="12" /> <rect x="120" y="228" width="12" height="12" /> <rect x="132" y="228" width="12" height="12" /> <rect x="180" y="228" width="12" height="12" /> <rect x="192" y="228" width="12" height="12" /> <rect x="240" y="228" width="12" height="12" /> <rect x="276" y="228" width="12" height="12" /> <rect x="0" y="240" width="12" height="12" /> <rect x="24" y="240" width="12" height="12" /> <rect x="36" y="240" width="12" height="12" /> <rect x="48" y="240" width="12" height="12" /> <rect x="72" y="240" width="12" height="12" /> <rect x="108" y="240" width="12" height="12" /> <rect x="120" y="240" width="12" height="12" /> <rect x="156" y="240" width="12" height="12" /> <rect x="180" y="240" width="12" height="12" /> <rect x="192" y="240" width="12" height="12" /> <rect x="204" y="240" width="12" height="12" /> <rect x="216" y="240" width="12" height="12" /> <rect x="228" y="240" width="12" height="12" /> <rect x="240" y="240" width="12" height="12" /> <rect x="264" y="240" width="12" height="12" /> <rect x="0" y="252" width="12" height="12" /> <rect x="24" y="252" width="12" height="12" /> <rect x="36" y="252" width="12" height="12" /> <rect x="48" y="252" width="12" height="12" /> <rect x="72" y="252" width="12" height="12" /> <rect x="120" y="252" width="12" height="12" /> <rect x="132" y="252" width="12" height="12" /> <rect x="144" y="252" width="12" height="12" /> <rect x="156" y="252" width="12" height="12" /> <rect x="180" y="252" width="12" height="12" /> <rect x="192" y="252" width="12" height="12" /> <rect x="216" y="252" width="12" height="12" /> <rect x="276" y="252" width="12" height="12" /> <rect x="288" y="252" width="12" height="12" /> <rect x="0" y="264" width="12" height="12" /> <rect x="24" y="264" width="12" height="12" /> <rect x="36" y="264" width="12" height="12" /> <rect x="48" y="264" width="12" height="12" /> <rect x="72" y="264" width="12" height="12" /> <rect x="144" y="264" width="12" height="12" /> <rect x="192" y="264" width="12" height="12" /> <rect x="252" y="264" width="12" height="12" /> <rect x="264" y="264" width="12" height="12" /> <rect x="288" y="264" width="12" height="12" /> <rect x="0" y="276" width="12" height="12" /> <rect x="72" y="276" width="12" height="12" /> <rect x="96" y="276" width="12" height="12" /> <rect x="120" y="276" width="12" height="12" /> <rect x="132" y="276" width="12" height="12" /> <rect x="144" y="276" width="12" height="12" /> <rect x="168" y="276" width="12" height="12" /> <rect x="192" y="276" width="12" height="12" /> <rect x="204" y="276" width="12" height="12" /> <rect x="228" y="276" width="12" height="12" /> <rect x="240" y="276" width="12" height="12" /> <rect x="288" y="276" width="12" height="12" /> <rect x="0" y="288" width="12" height="12" /> <rect x="12" y="288" width="12" height="12" /> <rect x="24" y="288" width="12" height="12" /> <rect x="36" y="288" width="12" height="12" /> <rect x="48" y="288" width="12" height="12" /> <rect x="60" y="288" width="12" height="12" /> <rect x="72" y="288" width="12" height="12" /> <rect x="96" y="288" width="12" height="12" /> <rect x="120" y="288" width="12" height="12" /> <rect x="132" y="288" width="12" height="12" /> <rect x="168" y="288" width="12" height="12" /> <rect x="192" y="288" width="12" height="12" /> <rect x="204" y="288" width="12" height="12" /> <rect x="252" y="288" width="12" height="12" /> <rect x="288" y="288" width="12" height="12" /> </g> </svg> </div> </div> </div> <a class="close-reveal-modal" aria-label="Close"> <i class="material-icons">clear</i> </a> </div> <a href="#" class="back-to-top"><span class="show-for-medium-up">Back to Top</span><span class="show-for-small">Top</span></a> <script data-cfasync="false" src="/cdn-cgi/scripts/5c5dd728/cloudflare-static/email-decode.min.js"></script><script src="https://pub.mdpi-res.com/assets/js/modernizr-2.8.3.min.js?5227e0738f7f421d?1732615622"></script> <script src="https://pub.mdpi-res.com/assets/js/jquery-1.12.4.min.js?4f252523d4af0b47?1732615622"></script> <script src="https://pub.mdpi-res.com/assets/js/foundation-5.5.3.min.js?6b2ec41c18b29054?1732615622"></script> <script src="https://pub.mdpi-res.com/assets/js/foundation-5.5.3.equalizer.min.js?0f6c549b75ec554c?1732615622"></script> <script src="https://pub.mdpi-res.com/assets/js/jquery.multiselect.js?0edd3998731d1091?1732615622"></script> <script src="https://pub.mdpi-res.com/assets/js/jquery.cycle2.min.js?63413052928f97ee?1732615622"></script> <script> // old browser fix - this way the console log rows won't throw (silent) errors in browsers not supporting console log if (!window.console) window.console = {}; if (!window.console.log) window.console.log = function () { }; var currentJournalNameSystem = "membranes"; $(document).ready(function() { $('select.foundation-select').multiselect({ search: true, minHeight: 130, maxHeight: 130, }); $(document).foundation({ orbit: { timer_speed: 4000, }, reveal: { animation: 'fadeAndPop', animation_speed: 100, } }); $(".chosen-select").each(function(element) { var maxSelected = (undefined !== $(this).data('maxselectedoptions') ? $(this).data('maxselectedoptions') : 100); $(this).on('chosen:ready', function(event, data) { var select = $(data.chosen.form_field); if (select.attr('id') === 'journal-browser-volume') { $(data.chosen.dropdown).addClass('UI_JournalBrowser_Volume_Options'); } if (select.attr('id') === 'journal-browser-issue') { $(data.chosen.dropdown).addClass('UI_JournalBrowser_Issue_Options'); } }).chosen({ display_disabled_options: false, disable_search_threshold: 7, max_selected_options: maxSelected, width: "100%" }); }); $(".toEncode").each(function(e) { var oldHref = $(this).attr("href"); var newHref = oldHref.replace('.botdefense.please.enable.javascript.','@'); $(this).attr("href", newHref); if (!$(this).hasClass("emailCaptcha")) { $(this).html(newHref.replace('mailto:', '')); } $(this).removeClass("visibility-hidden"); }); $(document).on('opened.fndtn.reveal', '[data-reveal]', function() { $(document).foundation('equalizer', 'reflow'); }); // fix the images that have tag height / width defined // otherwise the default foundation styles overwrite the tag definitions $("img").each(function() { if ($(this).attr('width') != undefined || $(this).attr('height') != undefined) { $(this).addClass("img-fixed"); } }); $("#basic_search, #advanced_search").submit(function(e) { var searchArguments = false; $(this).find("input,select").not("#search,.search-button").each(function() { if (undefined === $(this).val() || "" === $(this).val()) { $(this).attr('name', null); } else { $(this).attr('name'); searchArguments = true; } }); if (!searchArguments) { window.location = $(this).attr('action'); return false; } }); $(".hide-show-desktop-option").click(function(e) { e.preventDefault(); var parentDiv = $(this).closest("div"); $.ajax({ url: $(this).attr('href'), success: function(msg) { parentDiv.removeClass().hide(); } }); }); $(".generic-toggleable-header").click(function(e) { $(this).toggleClass("active"); $(this).next(".generic-toggleable-content").toggleClass("active"); }); /* * handle whole row as a link if the row contains only one visible link */ $("table.new tr").hover(function() { if ($(this).find("td:visible a").length == 1) { $(this).addClass("single-link"); } }, function() { $(this).removeClass("single-link"); }); $("table.new:not(.table-of-tables)").on("click", "tr.single-link", function(e) { var target = $(e.target); if (!e.ctrlKey && !target.is("a")) { $(this).find("td:visible a")[0].click(); } }); $(document).on("click", ".custom-accordion-for-small-screen-link", function(e) { if ($(this).closest("#basic_search").length > 0) { if ($(".search-container__advanced").first().is(":visible")) { openAdvanced() } } if (Foundation.utils.is_small_only()) { if ($(this).hasClass("active")) { $(this).removeClass("active"); $(this).next(".custom-accordion-for-small-screen-content").addClass("show-for-medium-up"); } else { $(this).addClass("active"); $(this).next(".custom-accordion-for-small-screen-content").removeClass("show-for-medium-up"); $(document).foundation('orbit', 'reflow'); } } if (undefined !== $(this).data("callback")) { var customCallback = $(this).data("callback"); func = window[customCallback]; func(); } }); $(document).on("click", ".js-open-small-search", function(e) { e.preventDefault(); $(this).toggleClass("active").closest(".tab-bar").toggleClass("active"); $(".search-container").toggleClass("hide-for-small-down"); }); $(document).on("click", ".js-open-menu", function(e) { $(".search-container").addClass("hide-for-small-down"); }); $(window).on('resize', function() { recalculate_main_browser_position(); recalculate_responsive_moving_containers(); }); updateSearchLabelVisibilities(); recalculate_main_browser_position(); recalculate_responsive_moving_containers(); if (window.document.documentMode == 11) { $("<link/>", { rel: "stylesheet", type: "text/css", href: "https://fonts.googleapis.com/icon?family=Material+Icons"}).appendTo("head"); } }); function recalculate_main_browser_position() { if (Foundation.utils.is_small_only()) { if ($("#js-main-top-container").parent("#js-large-main-top-container").length > 0) { $("#js-main-top-container").appendTo($("#js-small-main-top-container")); } } else { if ($("#js-main-top-container").parent("#js-small-main-top-container").length > 0) { $("#js-main-top-container").appendTo($("#js-large-main-top-container")); } } } function recalculate_responsive_moving_containers() { $(".responsive-moving-container.large").each(function() { var previousParent = $(".responsive-moving-container.active[data-id='"+$(this).data("id")+"']"); var movingContent = previousParent.html(); if (Foundation.utils.is_small_only()) { var currentParent = $(".responsive-moving-container.small[data-id='"+$(this).data("id")+"']"); } else if (Foundation.utils.is_medium_only()) { var currentParent = $(".responsive-moving-container.medium[data-id='"+$(this).data("id")+"']"); } else { var currentParent = $(".responsive-moving-container.large[data-id='"+$(this).data("id")+"']"); } if (previousParent.attr("class") !== currentParent.attr("class")) { currentParent.html(movingContent); previousParent.html(); currentParent.addClass("active"); previousParent.removeClass("active"); } }); } // cookies allowed is checked from a) local storage and b) from server separately so that the footer bar doesn't // get included in the custom page caches function checkCookiesAllowed() { var cookiesEnabled = localStorage.getItem("mdpi_cookies_enabled"); if (null === cookiesEnabled) { $.ajax({ url: "/ajax_cookie_value/mdpi_cookies_accepted", success: function(data) { if (data.value) { localStorage.setItem("mdpi_cookies_enabled", true); checkDisplaySurvey(); } else { $(".js-allow-cookies").show(); } } }); } else { checkDisplaySurvey(); } } function checkDisplaySurvey() { } window.addEventListener('CookiebotOnAccept', function (e) { var CookieDate = new Date; if (Cookiebot.consent.preferences) { CookieDate.setFullYear(CookieDate.getFullYear() + 1); document.cookie = "mdpi_layout_type_v2=mobile; path=/; expires=" + CookieDate.toUTCString() + ";"; $(".js-toggle-desktop-layout-link").css("display", "inline-block"); } }, false); window.addEventListener('CookiebotOnDecline', function (e) { if (!Cookiebot.consent.preferences) { $(".js-toggle-desktop-layout-link").hide(); if ("" === "desktop") { window.location = "/toggle_desktop_layout_cookie"; } } }, false); var hash = $(location).attr('hash'); if ("#share" === hash) { if (1 === $("#main-share-modal").length) { $('#main-share-modal').foundation('reveal', 'open'); } } </script> <script src="https://pub.mdpi-res.com/assets/js/lib.js?f8d3d71b3a772f9d?1732615622"></script> <script src="https://pub.mdpi-res.com/assets/js/mdpi.js?c267ce58392b15da?1732615622"></script> <script>var banners_url = 'https://serve.mdpi.com';</script> <script type='text/javascript' src='https://pub.mdpi-res.com/assets/js/ifvisible.min.js?c621d19ecb761212?1732615622'></script> <script src="https://pub.mdpi-res.com/assets/js/xmltohtml/affix.js?ac4ea55275297c15?1732615622"></script> <script src="https://pub.mdpi-res.com/assets/js/clipboard.min.js?3f3688138a1b9fc4?1732615622"></script> <script type="text/javascript"> $(document).ready(function() { var helpFunctions = $(".middle-column__help__fixed"); var leftColumnAffix = $(".left-column__fixed"); var middleColumn = $("#middle-column"); var clone = null; helpFunctions.affix({ offset: { top: function() { return middleColumn.offset().top - 8 - (Foundation.utils.is_medium_only() ? 30 : 0); }, bottom: function() { return $("#footer").innerHeight() + 74 + (Foundation.utils.is_medium_only() ? 0 : 0); } } }); if (leftColumnAffix.length > 0) { clone = leftColumnAffix.clone(); clone.addClass("left-column__fixed__affix"); clone.insertBefore(leftColumnAffix); clone.css('width', leftColumnAffix.outerWidth() + 50); clone.affix({ offset: { top: function() { return leftColumnAffix.offset().top - 30 - (Foundation.utils.is_medium_only() ? 50 : 0); }, bottom: function() { return $("#footer").innerHeight() + 92 + (Foundation.utils.is_medium_only() ? 0 : 0); } } }); } $(window).on("resize", function() { if (clone !== null) { clone.css('width', leftColumnAffix.outerWidth() + 50); } }); new ClipboardJS('.js-clipboard-copy'); }); </script> <script src="https://pub.mdpi-res.com/assets/js/jquery-ui-1.13.2.min.js?1e2047978946a1d2?1732615622"></script> <script src="https://pub.mdpi-res.com/assets/js/slick.min.js?d5a61c749e44e471?1732615622"></script> <script> $(document).ready(function() { $(".link-article-menu").click(function(e) { e.preventDefault(); $(this).find('span').toggle(); $(this).next("div").toggleClass("active"); }); $(".js-similarity-related-articles").click(function(e) { e.preventDefault(); if ('' !== $('#recommended-articles-modal').attr('data-url')) { $('#recommended-articles-modal').foundation('reveal', 'open', $('#recommended-articles-modal').attr('data-url')); } }); $.ajax({ url: "/article/446317/similarity-related/show-link", success: function(result) { if (result.show) { $('#recommended-articles-modal').attr('data-url', result.link); $('.js-article-similarity-container').show(); } } }); $(document).on('opened.fndtn.reveal', '[data-reveal]', function() { var modal = $(this); if (modal.attr('id') === "author-biographies-modal") { modal.find('.multiple-items').slick({ slidesToShow: 1, nextArrow: '<a class="slick-next" href="#"><i class="material-icons">chevron_right</i></a>', prevArrow: '<a class="slick-prev" href="#"><i class="material-icons">chevron_left</i></a>', slidesToScroll: 1, draggable: false, }); modal.find('.multiple-items').slick('refresh'); } }); }); </script> <script> $(document).ready(function() { $(document).on('keyup', function (e) { if (e.keyCode == 27) { var hElem = $(this).find(".annotator-adder"); if (hElem.length){ hElem.css({'visibility':'hidden'}); } else { document.querySelector("hypothesis-adder").shadowRoot.querySelector(".annotator-adder").style.visibility = "hidden"; } } }); }); </script> <script> window.hypothesisConfig = function () { return { sidebarAppUrl: 'https://commenting.mdpi.com/app.html', showHighlights: 'whenSidebarOpen' , openSidebar: false , assetRoot: 'https://commentingres.mdpi.com/hypothesis', services: [{ apiUrl: 'https://commenting.mdpi.com/api/', authority: 'mdpi', grantToken: '', doi: '10.3390/membranes10110348' }], }; }; </script> <script async id="hypothesis_frame"></script> <script type="text/javascript"> if (-1 !== window.location.href.indexOf("?src=")) { window.history.replaceState({}, '', `${location.pathname}`); } $(document).ready(function() { var scifeedCounter = 0; var search = window.location.search; var mathjaxReady = false; // late image file loading $("img[data-lsrc]").each(function() { $(this).attr("src", $(this).data("lsrc")); }); // late mathjax initialization var head = document.getElementsByTagName("head")[0]; var script = document.createElement("script"); script.type = "text/x-mathjax-config"; script[(window.opera ? "innerHTML" : "text")] = "MathJax.Hub.processSectionDelay = 0;\n" + "MathJax.Hub.Config({\n" + " \"menuSettings\": {\n" + " CHTMLpreview: false\n" + " },\n" + " \"CHTML-preview\":{\n" + " disabled: true\n" + " },\n" + " \"HTML-CSS\": {\n" + " scale: 90,\n" + " availableFonts: [],\n" + " preferredFont: null,\n" + " preferredFonts: null,\n" + " webFont:\"Gyre-Pagella\",\n" + " imageFont:'TeX',\n" + " undefinedFamily:\"'Arial Unicode MS',serif\",\n" + " linebreaks: { automatic: false }\n" + " },\n" + " \"TeX\": {\n" + " extensions: ['noErrors.js'],\n" + " noErrors: {\n" + " inlineDelimiters: [\"\",\"\"],\n" + " multiLine: true,\n" + " style: {\n" + " 'font-size': '90%',\n" + " 'text-align': 'left',\n" + " 'color': 'black',\n" + " 'padding': '1px 3px',\n" + " 'border': '1px solid'\n" + " }\n" + " }\n" + " }\n" + "});\n" + "MathJax.Hub.Register.StartupHook('End', function() {\n" + " refreshMathjaxWidths();\n" + " mathjaxReady = true;\n" + "});\n" + "MathJax.Hub.Startup.signal.Interest(function (message) {\n" + " if (message == 'End') {\n" + " var hypoLink = document.getElementById('hypothesis_frame');\n" + " if (null !== hypoLink) {\n" + " hypoLink.setAttribute('src', 'https://commenting.mdpi.com/embed.js');\n" + " }\n" + " }\n" + "});"; head.appendChild(script); script = document.createElement("script"); script.type = "text/javascript"; script.src = "https://pub.mdpi-res.com/bundles/mathjax/MathJax.js?config=TeX-AMS-MML_HTMLorMML"; head.appendChild(script); // article version checker if (0 === search.indexOf('?type=check_update&version=')) { $.ajax({ url: "/2077-0375/10/11/348" + "/versioncheck" + search, success: function(result) { $(".js-check-update-container").html(result); } }); } $('#feed_option').click(function() { // tracker if ($('#scifeed_clicked').length<1) { $(this).append('<span style="display:none" id="scifeed_clicked">done</span>'); } $('#feed_data').toggle('slide', { direction: 'up'}, '1000'); // slideToggle(700); OR toggle(700) $("#scifeed_error_msg").html('').hide(); $("#scifeed_notice_msg").html('').hide(); }); $('#feed_option').click(function(event) { setTimeout(function(){ var captchaSection = $("#captchaSection"); captchaSection.removeClass('ui-helper-hidden').find('input').prop('disabled', false); // var img = captchaSection.find('img'); // img.attr('src', img.data('url') + "?" + (new Date()).getTime()); // $(".captcha_reload").trigger("click"); var img = document.getElementById('gregwar_captcha_scifeed'); img.src = '/generate-captcha/gcb_captcha?n=' + (new Date()).getTime(); },800); }); $(document).on('click', '.split_feeds', function() { var name = $( this ).attr('name'); var flag = 1 - ($(this).is(":checked")*1); $('.split_feeds').each(function (index) { if ($( this ).attr('name') !== name) { $(this)[0].checked = flag; } }); }); $(document).on('click', '#scifeed_submit, #scifeed_submit1', function(event) { event.preventDefault(); $(".captcha_reload").trigger("click"); $("#scifeed_error_msg").html(""); $("#scifeed_error_msg").hide(); }); $(document).on('click', '.subscription_toggle', function(event) { if ($(this).val() === 'Create SciFeed' && $('#scifeed_hidden_flag').length>0) { event.preventDefault(); // alert('Here there would be a captcha because user is not logged in'); var captchaSection = $("#captchaSection"); if (captchaSection.hasClass('ui-helper-hidden')) { captchaSection.removeClass('ui-helper-hidden').find('input').prop('disabled', false); var img = captchaSection.find('img'); img.attr('src', img.data('url') + "?" + (new Date()).getTime()); $("#reloadCaptcha").trigger("click"); } } }); $(document).on('click', '.scifeed_msg', function(){ $(this).hide(); }); $(document).on('click', '.article-scilit-search', function(e) { e.preventDefault(); var data = $(".article-scilit-search-data").val(); var dataArray = data.split(';').map(function(keyword) { return "(\"" + keyword.trim() + "\")"; }); var searchQuery = dataArray.join(" OR "); var searchUrl = encodeURI("https://www.scilit.net/articles/search?q="+ searchQuery + "&advanced=1&highlight=1"); var win = window.open(searchUrl, '_blank'); if (win) { win.focus(); } else { window.location(searchUrl); } }); display_stats(); citedCount(); follow_goto(); // Select the node that will be observed for mutations const targetNodes = document.getElementsByClassName('hypothesis-count-container'); // Options for the observer (which mutations to observe) const config = { attributes: false, childList: true, subtree: false }; // Callback function to execute when mutations are observed const callback = function(mutationList, observer) { for(const mutation of mutationList) { if (mutation.type === 'childList') { let node = $(mutation.target); if (parseInt(node.html()) > 0) { node.show(); } } } }; // Create an observer instance linked to the callback function const observer = new MutationObserver(callback); // Start observing the target node for configured mutations for(const targetNode of targetNodes) { observer.observe(targetNode, config); } // Select the node that will be observed for mutations const mathjaxTargetNode = document.getElementById('middle-column'); // Callback function to execute when mutations are observed const mathjaxCallback = function(mutationList, observer) { if (mathjaxReady && typeof(MathJax) !== 'undefined') { refreshMathjaxWidths(); } }; // Create an observer instance linked to the callback function const mathjaxObserver = new ResizeObserver(mathjaxCallback); // Start observing the target node for configured mutations mathjaxObserver.observe(mathjaxTargetNode); }); /* END $(document).ready */ function refreshMathjaxWidths() { let width = ($('.html-body').width()*0.9) + "px"; $('.MathJax_Display').css('max-width', width); $('.MJXc-display').css('max-width', width); } function sendScifeedFrom(form) { if (!$('#scifeed_email').val().trim()) { // empty email alert('Please, provide an email for subscribe to this scifeed'); return false; } else if (!$('#captchaSection').hasClass('ui-helper-hidden') && !$('#captchaSection').find('input').val().trim()) { // empty captcha alert('Please, fill the captcha field.'); return false; } else if( ((($('#scifeed_form').find('input:checkbox:checked').length)-($('#split_feeds:checked').length))<1) || ($('#scifeed_kwd_txt').length < 0 && !$('#scifeed_kwd_txt').val().trim()) || ($('#scifeed_author_txt').length<0 &&!$('#scifeed_author_txt').val().trim()) ) { alert('You did not select anything to subscribe'); return false; } else if(($('#scifeed_form').find('input:checkbox:checked').length)-($('#split_feeds2:checked').length)<1){ alert("You did not select anything to subscribe"); return false; } else { var url = $('#scifeed_subscribe_url').html(); var formData = $(form).serializeArray(); $.post(url, formData).done(function (data) { if (JSON.parse(data)) { $('.scifeed_msg').hide(); var res = JSON.parse(data); var successFeeds = 0; var errorFeeds = 0; if (res) { $('.scifeed_msg').html(''); $.each(res, function (index, val) { if (val) { if (val.error) { errorFeeds++; $("#scifeed_error_msg").append(index+' - '+val.error+'<br>'); } if (val.notice) // for successful feed creation { successFeeds++; // $("#scifeed_notice_msg").append(index+' - '+val.notice+'<br>'); $("#scifeed_notice_msg").append('<li>'+index+'</li>'); } } }); if (successFeeds>0) { text = $('#scifeed_notice_msg').html(); text = 'The following feed'+(successFeeds>1?'s have':' has')+ ' been sucessfully created:<br><ul>'+ text + '</ul>' +($('#scifeed_hidden_flag').length>0 ? 'You are not logged in, so you probably need to validate '+ (successFeeds>1?'them':' it')+'.<br>' :'' ) +'Please check your email'+(successFeeds>1?'s':'')+' for more details.'; //(successFeeds>1?' for each of them':'')+'.<br>'; $("#scifeed_notice_msg").html(text); $("#scifeed_notice_msg").show(); } if (errorFeeds>0) { $("#scifeed_error_msg").show();; } } $("#feed_data").hide(); } }); } } function follow_goto() { var hashStr = location.hash.replace("#",""); if(typeof hashStr !== 'undefined') { if( hashStr == 'supplementary') { document.getElementById('suppl_id').scrollIntoView(); } if( hashStr == 'citedby') { document.getElementById('cited_id').scrollIntoView(); } } } function cited() { $("#framed_div").toggle('fast', function(){ if ($(this).css('display') != 'none') { var loaded = document.getElementById("loaded"); if(loaded.innerHTML == "No") { // Load Xref result var container = document.getElementById("framed_div"); // This replace the content container.innerHTML = "<img src=\"https://pub.mdpi-res.com/img/loading_circle.gif?9a82694213036313?1732615622\" height=\"20\" width=\"20\" alt=\"Processing...\" style=\"vertical-align:middle; margin-right:0.6em;\">"; var url = "/citedby/10.3390%252Fmembranes10110348/92"; $.post(url, function(result) { if (result.success) { container.innerHTML = result.view; } loaded.innerHTML = "Yes"; }); } } return true; // for not going at the beginning of the page... }) return true; // for not going at the beginning of the page... } function detect_device() { // Added by Bastien (18/08/2014): based on the http://detectmobilebrowsers.com/ detector var check = false; (function(a){if(/(android|bb\d+|meego).+mobile|avantgo|bada\/|blackberry|blazer|compal|elaine|fennec|hiptop|iemobile|ip(hone|od)|iris|kindle|lge |maemo|midp|mmp|mobile.+firefox|netfront|opera m(ob|in)i|palm( os)?|phone|p(ixi|re)\/|plucker|pocket|psp|series(4|6)0|symbian|treo|up\.(browser|link)|vodafone|wap|windows (ce|phone)|xda|xiino/i.test(a)||/1207|6310|6590|3gso|4thp|50[1-6]i|770s|802s|a wa|abac|ac(er|oo|s\-)|ai(ko|rn)|al(av|ca|co)|amoi|an(ex|ny|yw)|aptu|ar(ch|go)|as(te|us)|attw|au(di|\-m|r |s )|avan|be(ck|ll|nq)|bi(lb|rd)|bl(ac|az)|br(e|v)w|bumb|bw\-(n|u)|c55\/|capi|ccwa|cdm\-|cell|chtm|cldc|cmd\-|co(mp|nd)|craw|da(it|ll|ng)|dbte|dc\-s|devi|dica|dmob|do(c|p)o|ds(12|\-d)|el(49|ai)|em(l2|ul)|er(ic|k0)|esl8|ez([4-7]0|os|wa|ze)|fetc|fly(\-|_)|g1 u|g560|gene|gf\-5|g\-mo|go(\.w|od)|gr(ad|un)|haie|hcit|hd\-(m|p|t)|hei\-|hi(pt|ta)|hp( i|ip)|hs\-c|ht(c(\-| |_|a|g|p|s|t)|tp)|hu(aw|tc)|i\-(20|go|ma)|i230|iac( |\-|\/)|ibro|idea|ig01|ikom|im1k|inno|ipaq|iris|ja(t|v)a|jbro|jemu|jigs|kddi|keji|kgt( |\/)|klon|kpt |kwc\-|kyo(c|k)|le(no|xi)|lg( g|\/(k|l|u)|50|54|\-[a-w])|libw|lynx|m1\-w|m3ga|m50\/|ma(te|ui|xo)|mc(01|21|ca)|m\-cr|me(rc|ri)|mi(o8|oa|ts)|mmef|mo(01|02|bi|de|do|t(\-| |o|v)|zz)|mt(50|p1|v )|mwbp|mywa|n10[0-2]|n20[2-3]|n30(0|2)|n50(0|2|5)|n7(0(0|1)|10)|ne((c|m)\-|on|tf|wf|wg|wt)|nok(6|i)|nzph|o2im|op(ti|wv)|oran|owg1|p800|pan(a|d|t)|pdxg|pg(13|\-([1-8]|c))|phil|pire|pl(ay|uc)|pn\-2|po(ck|rt|se)|prox|psio|pt\-g|qa\-a|qc(07|12|21|32|60|\-[2-7]|i\-)|qtek|r380|r600|raks|rim9|ro(ve|zo)|s55\/|sa(ge|ma|mm|ms|ny|va)|sc(01|h\-|oo|p\-)|sdk\/|se(c(\-|0|1)|47|mc|nd|ri)|sgh\-|shar|sie(\-|m)|sk\-0|sl(45|id)|sm(al|ar|b3|it|t5)|so(ft|ny)|sp(01|h\-|v\-|v )|sy(01|mb)|t2(18|50)|t6(00|10|18)|ta(gt|lk)|tcl\-|tdg\-|tel(i|m)|tim\-|t\-mo|to(pl|sh)|ts(70|m\-|m3|m5)|tx\-9|up(\.b|g1|si)|utst|v400|v750|veri|vi(rg|te)|vk(40|5[0-3]|\-v)|vm40|voda|vulc|vx(52|53|60|61|70|80|81|83|85|98)|w3c(\-| )|webc|whit|wi(g |nc|nw)|wmlb|wonu|x700|yas\-|your|zeto|zte\-/i.test(a.substr(0,4)))check = true})(navigator.userAgent||navigator.vendor||window.opera); return check; } function display_stats(){ $("#article_stats_div").toggle(); return false; } /* * Cited By Scopus */ function citedCount(){ $("#framed_div_cited_count").toggle('fast', function(){ if ($(this).css('display') != 'none') { var loaded = document.getElementById("loaded_cite_count"); // to load only once the result! if(loaded.innerHTML == "No") { // Load Xref result var d = document.getElementById("framed_div_cited_count"); // This replace the content d.innerHTML = "<img src=\"https://pub.mdpi-res.com/img/loading_circle.gif?9a82694213036313?1732615622\" height=\"20\" width=\"20\" alt=\"Processing...\" style=\"vertical-align:middle; margin-right:0.6em;\">"; $.ajax({ method : "POST", url : "/cite-count/10.3390%252Fmembranes10110348", success : function(data) { if (data.succ) { d.innerHTML = data.view; loaded.innerHTML = "Yes"; follow_goto(); } } }); } } // end else return true; // for not going at the beginning of the page... }) return true; // for not going at the beginning of the page... } </script><script type="text/javascript" src="https://pub.mdpi-res.com/assets/js/third-party/highcharts/highcharts.js?bdd06f45e34c33df?1732615622"></script><script type="text/javascript" src="https://pub.mdpi-res.com/assets/js/third-party/highcharts/modules/exporting.js?944dc938d06de3a8?1732615622"></script><script type="text/javascript" defer="defer"> var advancedStatsData; var selectedStatsType = "abstract"; $(function(){ var countWrapper = $('#counts-wrapper'); $('#author_stats_id #type_links a').on('click', function(e) { e.preventDefault(); selectedStatsType = $(this).data('type'); $('#article_advanced_stats').vectorMap('set', 'values', advancedStatsData[selectedStatsType]); $('#advanced_stats_max').html(advancedStatsData[selectedStatsType].max); $('#type_links a').removeClass('active'); $(this).addClass('active'); }); $.get('/2077-0375/10/11/348/stats', function (result) { if (!result.success) { return; } // process article metrics part in left column var viewNumber = countWrapper.find(".view-number"); viewNumber.html(result.metrics.views); viewNumber.parent().toggleClass("count-div--grey", result.metrics.views == 0); var downloadNumber = countWrapper.find(".download-number"); downloadNumber.html(result.metrics.downloads); downloadNumber.parent().toggleClass("count-div--grey", result.metrics.downloads == 0); var citationsNumber = countWrapper.find(".citations-number"); citationsNumber.html(result.metrics.citations); citationsNumber.parent().toggleClass("count-div--grey", result.metrics.citations == 0); if (result.metrics.views > 0 || result.metrics.downloads > 0 || result.metrics.citations > 0) { countWrapper.find("#js-counts-wrapper__views, #js-counts-wrapper__downloads").addClass("visible").show(); if (result.metrics.citations > 0) { countWrapper.find('.citations-number').html(result.metrics.citations).show(); countWrapper.find("#js-counts-wrapper__citations").addClass("visible").show(); } else { countWrapper.find("#js-counts-wrapper__citations").remove(); } $("[data-id='article-counters']").removeClass("hidden"); } if (result.metrics.altmetrics_score > 0) { $("#js-altmetrics-donut").show(); } // process view chart in main column var jsondata = result.chart; var series = new Array(); $.each(jsondata.elements, function(i, element) { var dataValues = new Array(); $.each(element.values, function(i, value) { dataValues.push(new Array(value.tip, value.value)); }); series[i] = {name: element.text, data:dataValues}; }); Highcharts.setOptions({ chart: { style: { fontFamily: 'Arial,sans-serif' } } }); $('#article_stats_swf').highcharts({ chart: { type: 'line', width: $("#tabs").width() //* 0.91 }, credits: { enabled: false }, exporting: { enabled: true }, title: { text: jsondata.title.text, x: -20 //center }, xAxis: { categories: jsondata.x_axis.labels.labels, offset: jsondata.x_axis.offset, labels:{ step: jsondata.x_axis.labels.steps, rotation: 30 } }, yAxis: { max: jsondata.y_axis.max, min: jsondata.y_axis.min, offset: jsondata.y_axis.offset, labels: { steps: jsondata.y_axis.steps }, title: { enabled: false } }, tooltip: { formatter: function (){ return this.key.replace("#val#", this.y); } }, legend: { align: 'top', itemDistance: 50 }, series: series }); }); $('#supplement_link').click(function() { document.getElementById('suppl_id').scrollIntoView(); }); $('#stats_link').click(function() { document.getElementById('stats_id').scrollIntoView(); }); // open mol viewer for molbank special supplementary files $('.showJmol').click(function(e) { e.preventDefault(); var jmolModal = $("#jmolModal"); var url = "/article/446317/jsmol_viewer/__supplementary_id__"; url = url.replace(/__supplementary_id__/g, $(this).data('index')); $('#jsmol-content').attr('src', url); jmolModal.find(".content").html($(this).data('description')); jmolModal.foundation("reveal", "open"); }); }); !function() { "use strict"; function e(e) { try { if ("undefined" == typeof console) return; "error"in console ? console.error(e) : console.log(e) } catch (e) {} } function t(e) { return d.innerHTML = '<a href="' + e.replace(/"/g, """) + '"></a>', d.childNodes[0].getAttribute("href") || "" } function n(n, c) { var o = ""; var k = parseInt(n.substr(c + 4, 2), 16); for (var i = c; i < n.length; i += 2) { if (i != c + 4) { var s = parseInt(n.substr(i, 2), 16) ^ k; o += String.fromCharCode(s); } } try { o = decodeURIComponent(escape(o)); } catch (error) { console.error(error); } return t(o); } function c(t) { for (var r = t.querySelectorAll("a"), c = 0; c < r.length; c++) try { var o = r[c] , a = o.href.indexOf(l); a > -1 && (o.href = "mailto:" + n(o.href, a + l.length)) } catch (i) { e(i) } } function o(t) { for (var r = t.querySelectorAll(u), c = 0; c < r.length; c++) try { var o = r[c] , a = o.parentNode , i = o.getAttribute(f); if (i) { var l = n(i, 0) , d = document.createTextNode(l); a.replaceChild(d, o) } } catch (h) { e(h) } } function a(t) { for (var r = t.querySelectorAll("template"), n = 0; n < r.length; n++) try { i(r[n].content) } catch (c) { e(c) } } function i(t) { try { c(t), o(t), a(t) } catch (r) { e(r) } } var l = "/cnd-cgi/l/email-protection#" , u = ".__cf_email__" , f = "data-cfemail" , d = document.createElement("div"); i(document), function() { var e = document.currentScript || document.scripts[document.scripts.length - 1]; e.parentNode.removeChild(e) }() }(); </script><script type="text/javascript"> function setCookie(cname, cvalue, ctime) { ctime = (typeof ctime === 'undefined') ? 10*365*24*60*60*1000 : ctime; // default => 10 years var d = new Date(); d.setTime(d.getTime() + ctime); // ==> 1 hour = 60*60*1000 var expires = "expires="+d.toUTCString(); document.cookie = cname + "=" + cvalue + "; " + expires +"; path=/"; } function getCookie(cname) { var name = cname + "="; var ca = document.cookie.split(';'); for(var i=0; i<ca.length; i++) { var c = ca[i]; while (c.charAt(0)==' ') c = c.substring(1); if (c.indexOf(name) == 0) return c.substring(name.length, c.length); } return ""; } </script><script type="text/javascript" src="https://d1bxh8uas1mnw7.cloudfront.net/assets/embed.js"></script><script> $(document).ready(function() { if ($("#js-similarity-related-data").length > 0) { $.ajax({ url: '/article/446317/similarity-related', success: function(response) { $("#js-similarity-related-data").html(response); $("#js-related-articles-menu").show(); $(document).foundation('tab', 'reflow'); MathJax.Hub.Queue(["Typeset", MathJax.Hub]); } }); } }); </script><link rel="stylesheet" href="https://pub.mdpi-res.com/assets/css/jquery-ui-1.10.4.custom.min.css?80647d88647bf347?1732615622"><link rel="stylesheet" href="https://pub.mdpi-res.com/assets/css/magnific-popup.min.css?04d343e036f8eecd?1732615622"><script type="text/javascript" src="https://pub.mdpi-res.com/assets/js/magnific-popup.min.js?2be3d9e7dc569146?1732615622"></script><script> $(function() { $(".js-show-more-academic-editors").on("click", function(e) { e.preventDefault(); $(this).hide(); $(".academic-editor-container").removeClass("hidden"); }); }); </script> <link rel="stylesheet" href="https://pub.mdpi-res.com/assets/css/vmap/jqvmap.min.css?126a06688aa11c13?1732615622"> <script src="https://pub.mdpi-res.com/assets/js/vmap/jquery.vmap.min.js?935f68d33bdd88a1?1732615622"></script> <script src="https://pub.mdpi-res.com/assets/js/vmap/jquery.vmap.world.js?16677403c0e1bef1?1732615622"></script> <script> function updateSlick() { $('.multiple-items').slick('setPosition'); } $(document).ready(function() { $('.multiple-items').slick({ slidesToShow: 1, nextArrow: '<a class="slick-next" href="#"><i class="material-icons">chevron_right</i></a>', prevArrow: '<a class="slick-prev" href="#"><i class="material-icons">chevron_left</i></a>', slidesToScroll: 1, responsive: [ { breakpoint: 1024, settings: { slidesToShow: 1, slidesToScroll: 1, } }, { breakpoint: 600, settings: { slidesToShow: 1, slidesToScroll: 1, } }, { breakpoint: 480, settings: { slidesToShow: 1, slidesToScroll: 1, } } ] }); $('.multiple-items').show(); $(document).on('click', '.reviewReportSelector', function(e) { let path = $(this).attr('data-path'); handleReviews(path, $(this)); }); $(document).on('click', '.viewReviewReports', function(e) { let versionOne = $('#versionTab_1'); if (!versionOne.hasClass('activeTab')) { let path = $(this).attr('data-path'); handleReviews(path, versionOne); } location.href = "#reviewReports"; }); $(document).on('click', '.reviewersResponse, .authorResponse', function(e) { let version = $(this).attr('data-version'); let targetVersion = $('#versionTab_' + version); if (!targetVersion.hasClass('activeTab')) { let path = targetVersion.attr('data-path'); handleReviews(path, targetVersion); } location.href = $(this).attr('data-link'); }); $(document).on('click', '.tab', function (e) { e.preventDefault(); $('.tab').removeClass('activeTab'); $(this).addClass('activeTab') $('.tab').each(function() { $(this).closest('.tab-title').removeClass('active'); }); $(this).closest('.tab-title').addClass('active') }); }); function handleReviews(path, target) { $.ajax({ url: path, context: this, success: function (data) { $('.activeTab').removeClass('activeTab'); target.addClass('activeTab'); $('#reviewSection').html(data.view); }, error: function (xhr, ajaxOptions, thrownError) { console.log(xhr.status); console.log(thrownError); } }); } </script> <script src="https://pub.mdpi-res.com/assets/js/xmltohtml/affix.js?v1?1732615622"></script> <script src="https://pub.mdpi-res.com/assets/js/xmltohtml/storage.js?e9b262d3a3476d25?1732615622"></script> <script src="https://pub.mdpi-res.com/assets/js/xmltohtml/jquery-scrollspy.js?09cbaec0dbb35a67?1732615622"></script> <script src="https://pub.mdpi-res.com/assets/js/xmltohtml/magnific-popup.js?4a09c18460afb26c?1732615622"></script> <script src="https://pub.mdpi-res.com/assets/js/xmltohtml/underscore.js?f893e294cde60c24?1732615622"></script> <script type="text/javascript"> $('document').ready(function(){ $("#left-column").addClass("show-for-large-up"); $("#middle-column").removeClass("medium-9").removeClass("left-bordered").addClass("medium-12"); $(window).on('resize scroll', function() { /* if ($('.button--drop-down').isInViewport($(".top-bar").outerHeight())) { */ if ($('.button--drop-down').isInViewport()) { $("#js-button-download").hide(); } else { $("#js-button-download").show(); } }); }); $(document).on('DOMNodeInserted', function(e) { var element = $(e.target); if (element.hasClass('menu') && element.hasClass('html-nav') ) { element.addClass("side-menu-ul"); } }); </script> <script src="https://pub.mdpi-res.com/assets/js/xmltohtml/articles.js?5118449d9ad8913a?1732615622"></script> <script> repositionOpenSideBar = function() { $('#left-column').addClass("show-for-large-up show-for-medium-up").show(); $('#middle-column').removeClass('large-12').removeClass('medium-12'); $('#middle-column').addClass('large-9'); } repositionCloseSideBar = function() { $('#left-column').removeClass("show-for-large-up show-for-medium-up").hide(); $('#middle-column').removeClass('large-9'); $('#middle-column').addClass('large-12').addClass('medium-12'); } </script> <!--[if lt IE 9]> <script src="https://pub.mdpi-res.com/assets/js/ie8/ie8.js?6eef8fcbc831f5bd?1732615622"></script> <script src="https://pub.mdpi-res.com/assets/js/ie8/jquery.xdomainrequest.min.js?a945caca315782b0?1732615622"></script> <![endif]--> <!-- Twitter universal website tag code --> <script type="text/plain" data-cookieconsent="marketing"> !function(e,t,n,s,u,a){e.twq||(s=e.twq=function(){s.exe?s.exe.apply(s,arguments):s.queue.push(arguments); },s.version='1.1',s.queue=[],u=t.createElement(n),u.async=!0,u.src='//static.ads-twitter.com/uwt.js', a=t.getElementsByTagName(n)[0],a.parentNode.insertBefore(u,a))}(window,document,'script'); // Insert Twitter Pixel ID and Standard Event data below twq('init','o2pip'); twq('track','PageView'); </script> <!-- End Twitter universal website tag code --> <script>(function(){function c(){var b=a.contentDocument||a.contentWindow.document;if(b){var d=b.createElement('script');d.innerHTML="window.__CF$cv$params={r:'8e8dcf4ebb563f81',t:'MTczMjY2NTMzMS4wMDAwMDA='};var a=document.createElement('script');a.nonce='';a.src='/cdn-cgi/challenge-platform/scripts/jsd/main.js';document.getElementsByTagName('head')[0].appendChild(a);";b.getElementsByTagName('head')[0].appendChild(d)}}if(document.body){var a=document.createElement('iframe');a.height=1;a.width=1;a.style.position='absolute';a.style.top=0;a.style.left=0;a.style.border='none';a.style.visibility='hidden';document.body.appendChild(a);if('loading'!==document.readyState)c();else if(window.addEventListener)document.addEventListener('DOMContentLoaded',c);else{var e=document.onreadystatechange||function(){};document.onreadystatechange=function(b){e(b);'loading'!==document.readyState&&(document.onreadystatechange=e,c())}}}})();</script></body> </html>