CINXE.COM
Search results for: arc furnaces
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: arc furnaces</title> <meta name="description" content="Search results for: arc furnaces"> <meta name="keywords" content="arc furnaces"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="arc furnaces" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="arc furnaces"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 47</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: arc furnaces</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">47</span> Extension of D Blast Furnace Campaign Life at Tata Steel Ltd</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Biswajit%20Seal">Biswajit Seal</a>, <a href="https://publications.waset.org/abstracts/search?q=Dushyant%20Kumar"> Dushyant Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Shambhu%20Nath"> Shambhu Nath</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20B.%20Raju"> A. B. Raju</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Extension of blast furnace campaign life is highly desired for blast furnace operators mainly because of reduction of operating cost and to avoid capital expenditure cost. Tata Steel Ltd, Jamshedpur plant operates seven blast furnaces with combination of old and new technologies. The focus of Tata Steel Ltd is to push for increasing productivity with good quality product and increasing campaign life. This has been challenging for older furnaces because older furnaces are generally equipped with less automation, old design and old equipment. Good operational practices, appropriate remedial measures, and regular planned maintenance helps to achieve long campaign life of old furnaces. Good operating practices like stable and consistent productivity, control of burden distribution, remedial measures like stack gunning and shotcreting for protection of stack wall, enhanced cooling system, and intermediate stack repair helps to achieve long campaign life of old blast furnaces. This paper describes experiences with the current old equipment and design of Tata Steel’s D Blast Furnace for campaign life extension. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=blast%20furnace" title="blast furnace">blast furnace</a>, <a href="https://publications.waset.org/abstracts/search?q=burden%20distribution" title=" burden distribution"> burden distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=campaign%20life" title=" campaign life"> campaign life</a>, <a href="https://publications.waset.org/abstracts/search?q=productivity" title=" productivity"> productivity</a> </p> <a href="https://publications.waset.org/abstracts/75455/extension-of-d-blast-furnace-campaign-life-at-tata-steel-ltd" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75455.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">261</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">46</span> The Influence of Disturbances Generated by Arc Furnaces on the Power Quality</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Z.%20Olczykowski">Z. Olczykowski</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper presents the impact of work on the electric arc furnace. Arc equipment is one of the largest receivers powered by the power system. Electric arc disturbances arising during melting process occurring in these furnaces are the cause of an abrupt change of the passive power of furnaces. Currents drawn by these devices undergo an abrupt change, which in turn cause voltage fluctuations and light flicker. The quantitative evaluation of the voltage fluctuations is now the basic criterion of assessment of an influence of unquiet receiver on the supplying net. The paper presents the method of determination of range of voltage fluctuations and light flicker at parallel operation of arc devices. The results of measurements of voltage fluctuations and light flicker indicators recorded in power supply networks of steelworks were presented, with different number of parallel arc devices. Measurements of energy quality parameters were aimed at verifying the proposed method in practice. It was also analyzed changes in other parameters of electricity: the content of higher harmonics, asymmetry, voltage dips. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=power%20quality" title="power quality">power quality</a>, <a href="https://publications.waset.org/abstracts/search?q=arc%20furnaces" title=" arc furnaces"> arc furnaces</a>, <a href="https://publications.waset.org/abstracts/search?q=propagation%20of%20voltage%20fluctuations" title=" propagation of voltage fluctuations"> propagation of voltage fluctuations</a>, <a href="https://publications.waset.org/abstracts/search?q=disturbances" title=" disturbances"> disturbances</a> </p> <a href="https://publications.waset.org/abstracts/84707/the-influence-of-disturbances-generated-by-arc-furnaces-on-the-power-quality" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84707.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">138</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">45</span> Over Cracking in Furnace and Corrective Action by Computational Fluid Dynamics (CFD) Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mokhtari%20Karchegani%20Amir">Mokhtari Karchegani Amir</a>, <a href="https://publications.waset.org/abstracts/search?q=Maboudi%20Samad"> Maboudi Samad</a>, <a href="https://publications.waset.org/abstracts/search?q=Azadi%20Reza"> Azadi Reza</a>, <a href="https://publications.waset.org/abstracts/search?q=Dastanian%20Raoof"> Dastanian Raoof</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Marun's petrochemical cracking furnaces have a very comprehensive operating control system for combustion and related equipment, utilizing advanced instrument circuits. However, after several years of operation, numerous problems arose in the pyrolysis furnaces. A team of experts conducted an audit, revealing that the furnaces were over-designed, leading to excessive consumption of air and fuel. This issue was related to the burners' shutter settings, which had not been configured properly. The operations department had responded by increasing the induced draft fan speed and forcing the instrument switches to counteract the wind effect in the combustion chamber. Using Fluent and Gambit software, the furnaces were analyzed. The findings indicated that this situation elevated the convection part's temperature, causing uneven heat distribution inside the furnace. Consequently, this led to overheating in the convection section and excessive cracking within the coils in the radiation section. The increased convection temperature damaged convection parts and resulted in equipment blockages downstream of the furnaces due to the production of more coke and tar in the process. To address these issues, corrective actions were implemented. The excess air for burners and combustion chambers was properly set, resulting in improved efficiency, reduced emissions of environmentally harmful gases, prevention of creep in coils, decreased fuel consumption, and lower maintenance costs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=furnace" title="furnace">furnace</a>, <a href="https://publications.waset.org/abstracts/search?q=coke" title=" coke"> coke</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD%20analysis" title=" CFD analysis"> CFD analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=over%20cracking" title=" over cracking"> over cracking</a> </p> <a href="https://publications.waset.org/abstracts/177816/over-cracking-in-furnace-and-corrective-action-by-computational-fluid-dynamics-cfd-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/177816.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">77</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">44</span> Electric Arc Furnaces as a Source of Voltage Fluctuations in the Power System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zbigniew%20Olczykowski">Zbigniew Olczykowski</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper presents the impact of work on the electric arc furnace power grid. The arc furnace operating will be modeled at different power conditions of steelworks. The paper will describe how to determine the increase in voltage fluctuations caused by working in parallel arc furnaces. The analysis of indicators characterizing the quality of electricity recorded during several cycles of measurement made at the same time at three points grid, with different power and different short-circuit rated voltage, will be carried out. The measurements analysis presented in this paper were conducted in the mains of one of the Polish steel. The indicators characterizing the quality of electricity was recorded during several cycles of measurement while making measurements at three points of different power network short-circuit power and various voltage ratings. Measurements of power quality indices included the one-week measurement cycles in accordance with the EN-50160. Data analysis will include the results obtained during the simultaneous measurement of three-point grid. This will determine the actual propagation of interference generated by the device. Based on the model studies and measurements of quality indices of electricity we will establish the effect of a specific arc on the mains. The short-circuit power network’s minimum value will also be estimated, this is necessary to limit the voltage fluctuations generated by arc furnaces. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=arc%20furnaces" title="arc furnaces">arc furnaces</a>, <a href="https://publications.waset.org/abstracts/search?q=long-term%20flicker" title=" long-term flicker"> long-term flicker</a>, <a href="https://publications.waset.org/abstracts/search?q=measurement%20and%20modeling%20of%20power%20quality" title=" measurement and modeling of power quality"> measurement and modeling of power quality</a>, <a href="https://publications.waset.org/abstracts/search?q=voltage%20fluctuations" title=" voltage fluctuations"> voltage fluctuations</a> </p> <a href="https://publications.waset.org/abstracts/75673/electric-arc-furnaces-as-a-source-of-voltage-fluctuations-in-the-power-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75673.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">290</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">43</span> Design and Evaluation of Oven Type Furnace Using Earth Materials for Roasting Foods</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jeffrey%20Cacho">Jeffrey Cacho</a>, <a href="https://publications.waset.org/abstracts/search?q=Sherwin%20Reyes"> Sherwin Reyes</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The research targeted enhancing energy utilization and reducing waste in roasting processes, particularly in Camarines Norte, where Bounty Agro Ventures Incorporated dominates through brands such as Chooks-to-Go, Uling Roaster, and Reyal. Competitors like Andok’s and Baliwag Lechon Manok also share the market. A staggering 90% of these businesses use traditional glass-type roasting furnaces fueled by wood charcoal, leading to significant energy loss and inefficiency due to suboptimal heat conservation. Only a mere 10% employ electric ovens. Many available furnaces, typically constructed from industrial materials through welding and other metal joining techniques, are not energy-efficient. Cost-prohibitive commercial options compel some micro-enterprises to fabricate their furnaces. The study proposed developing an eco-friendly, cost-effective roasting furnace with excellent heat retention. The distinct design aimed to reduce cooks' heat exposure and overall fuel consumption. The furnace features an angle bar frame, a combustion chute for fuel burning, a heat-retaining clay-walled chamber, and a top cover, all contributing to improved energy savings and user safety. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biomass%20roasting%20furnace" title="biomass roasting furnace">biomass roasting furnace</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20storage" title=" heat storage"> heat storage</a>, <a href="https://publications.waset.org/abstracts/search?q=combustion%20chute" title=" combustion chute"> combustion chute</a>, <a href="https://publications.waset.org/abstracts/search?q=start-up%20roasting%20business" title=" start-up roasting business"> start-up roasting business</a> </p> <a href="https://publications.waset.org/abstracts/185153/design-and-evaluation-of-oven-type-furnace-using-earth-materials-for-roasting-foods" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/185153.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">53</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">42</span> Induction Heating Process Design Using Comsol® Multiphysics Software Version 4.2a</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Djellabi">K. Djellabi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20E.%20H.%20Latreche"> M. E. H. Latreche</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Induction heating computer simulation is a powerful tool for process design and optimization, induction coil design, equipment selection, as well as education and business presentations. The authors share their vast experience in the practical use of computer simulation for different induction heating and heat treating processes. In this paper deals with mathematical modeling and numerical simulation of induction heating furnaces with axisymmetric geometries. For the numerical solution, we propose finite element methods combined with boundary (FEM) for the electromagnetic model using COMSOL® Multiphysics Software. Some numerical results for an industrial furnace are shown with high frequency. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=numerical%20methods" title="numerical methods">numerical methods</a>, <a href="https://publications.waset.org/abstracts/search?q=induction%20furnaces" title=" induction furnaces"> induction furnaces</a>, <a href="https://publications.waset.org/abstracts/search?q=induction%20heating" title=" induction heating"> induction heating</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title=" finite element method"> finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=Comsol%20multiphysics%20software" title=" Comsol multiphysics software"> Comsol multiphysics software</a> </p> <a href="https://publications.waset.org/abstracts/3469/induction-heating-process-design-using-comsol-multiphysics-software-version-42a" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3469.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">449</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">41</span> A Review on Benzo(a)pyrene Emission Factors from Biomass Combustion</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Franziska%20Klauser">Franziska Klauser</a>, <a href="https://publications.waset.org/abstracts/search?q=Manuel%20Schwabl"> Manuel Schwabl</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexander%20Weissinger"> Alexander Weissinger</a>, <a href="https://publications.waset.org/abstracts/search?q=Christoph%20Schmidl"> Christoph Schmidl</a>, <a href="https://publications.waset.org/abstracts/search?q=Walter%20Haslinger"> Walter Haslinger</a>, <a href="https://publications.waset.org/abstracts/search?q=Anne%20Kasper-Giebl"> Anne Kasper-Giebl</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Benzo(a)pyrene (BaP) is the most widely investigated representative of Polycyclic Aromatic Hydrocarbons (PAH) as well as one of the most toxic compounds in this group. Since 2013 in the European Union a limit value for BaP concentration in the ambient air is applied, which was set to a yearly average value of 1 ng m-3. Several reports show that in some regions, even where industry and traffic are of minor impact this threshold is regularly exceeded. This is taken as proof that biomass combustion for heating purposes contributes significantly to BaP pollution. Several investigations have been already carried out on the BaP emission behavior of biomass combustion furnaces, mostly focusing on a certain aspect like the influences from wood type, of operation type or of technology type. However, a superior view on emission patterns of BaP from biomass combustion and the aggregation of determined values also from recent studies is not presented so far. The combination of determined values allows a better understanding of the BaP emission behavior from biomass combustion. In this work the review conclusions are driven from the combination of outcomes from different publication. In two examples it was shown that technical progress leads to 10 to 100 fold lower BaP emission from modern furnaces compared to old technologies of equivalent type. It was also indicated that the operation with pellets or wood chips exhibits clearly lower BaP emission factors compared to operation with log wood. Although, the BaP emission level from automatic furnaces is strongly impacted by the kind of operation. This work delivers an overview on BaP emission factors from different biomass combustion appliances, from different operation modes and from the combustion of different fuel and wood types. The main impact factors are depicted, and suggestions for low BaP emission biomass combustion are derived. As one result possible investigation fields concerning BaP emissions from biomass combustion that seem to be most important to be clarified are suggested. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=benzo%28a%29pyrene" title="benzo(a)pyrene">benzo(a)pyrene</a>, <a href="https://publications.waset.org/abstracts/search?q=biomass" title=" biomass"> biomass</a>, <a href="https://publications.waset.org/abstracts/search?q=combustion" title=" combustion"> combustion</a>, <a href="https://publications.waset.org/abstracts/search?q=emission" title=" emission"> emission</a>, <a href="https://publications.waset.org/abstracts/search?q=pollution" title=" pollution"> pollution</a> </p> <a href="https://publications.waset.org/abstracts/58928/a-review-on-benzoapyrene-emission-factors-from-biomass-combustion" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58928.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">355</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">40</span> Simulation Analysis and Control of the Temperature Field in an Induction Furnace Based on Various Parameters</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sohaibullah%20Zarghoon">Sohaibullah Zarghoon</a>, <a href="https://publications.waset.org/abstracts/search?q=Syed%20Yousaf"> Syed Yousaf</a>, <a href="https://publications.waset.org/abstracts/search?q=Cyril%20Belavy"> Cyril Belavy</a>, <a href="https://publications.waset.org/abstracts/search?q=Stanislav%20Duris"> Stanislav Duris</a>, <a href="https://publications.waset.org/abstracts/search?q=Samuel%20Emebu"> Samuel Emebu</a>, <a href="https://publications.waset.org/abstracts/search?q=Radek%20Matusu"> Radek Matusu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Induction heating is extensively employed in industrial furnaces due to its swift response and high energy efficiency. Designing and optimising these furnaces necessitates the use of computer-aided simulations. This study aims to develop an accurate temperature field model for a rectangular steel billet in an induction furnace by leveraging various parameters in COMSOL Multiphysics software. The simulation analysis incorporated temperature dynamics, considering skin depth, temperature-dependent, and constant parameters of the steel billet. The resulting data-driven model was transformed into a state-space model using MATLAB's System Identification Toolbox for the purpose of designing a linear quadratic regulator (LQR). This controller was successfully implemented to regulate the core temperature of the billet from 1000°C to 1200°C, utilizing the distributed parameter system circuit. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=induction%20heating" title="induction heating">induction heating</a>, <a href="https://publications.waset.org/abstracts/search?q=LQR%20controller" title=" LQR controller"> LQR controller</a>, <a href="https://publications.waset.org/abstracts/search?q=skin%20depth" title=" skin depth"> skin depth</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature%20field" title=" temperature field"> temperature field</a> </p> <a href="https://publications.waset.org/abstracts/188683/simulation-analysis-and-control-of-the-temperature-field-in-an-induction-furnace-based-on-various-parameters" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/188683.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">42</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">39</span> Steel Dust as a Coating Agent for Iron Ore Pellets at Ironmaking</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Bahgat">M. Bahgat</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Hanafy"> H. Hanafy</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Al-Tassan"> H. Al-Tassan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cluster formation is an essential phenomenon during direct reduction processes at shaft furnaces. Decreasing the reducing temperature to avoid this problem can cause a significant drop in throughput. In order to prevent sticking of pellets, a coating material basically inactive under the reducing conditions prevailing in the shaft furnace, should be applied to cover the outer layer of the pellets. In the present work, steel dust is used as coating material for iron ore pellets to explore dust coating effectiveness and determines the best coating conditions. Steel dust coating is applied for iron ore pellets in various concentrations. Dust slurry concentrations of 5.0-30% were used to have a coated steel dust amount of 1.0-5.0 kg per ton iron ore. Coated pellets with various concentrations were reduced isothermally in weight loss technique with simulated gas mixture to the composition of reducing gases at shaft furnaces. The influences of various coating conditions on the reduction behavior and the morphology were studied. The optimum reduced samples were comparatively applied for sticking index measurement. It was found that the optimized steel dust coating condition that achieve higher reducibility with lower sticking index was 30% steel dust slurry concentration with 3.0 kg steel dust/ton ore. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=reduction" title="reduction">reduction</a>, <a href="https://publications.waset.org/abstracts/search?q=ironmaking" title=" ironmaking"> ironmaking</a>, <a href="https://publications.waset.org/abstracts/search?q=steel%20dust" title=" steel dust"> steel dust</a>, <a href="https://publications.waset.org/abstracts/search?q=coating" title=" coating"> coating</a> </p> <a href="https://publications.waset.org/abstracts/83968/steel-dust-as-a-coating-agent-for-iron-ore-pellets-at-ironmaking" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/83968.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">302</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">38</span> A Note on Metallurgy at Khanak: An Indus Site in Tosham Mining Area, Haryana</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ravindra%20N.%20Singh">Ravindra N. Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Dheerendra%20P.%20Singh"> Dheerendra P. Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recent discoveries of Bronze Age artefacts, tin slag, furnaces and crucibles, together with new geological evidence on tin deposits in Tosham area of Bhiwani district in Haryana (India) provide the opportunity to survey the evidence for possible sources of tin and the use of bronze in the Harappan sites of north western India. Earlier, Afghanistan emerged as the most promising eastern source of tin utilized by Indus Civilization copper-smiths. Our excavations conducted at Khanak near Tosham mining area during 2014 and 2016 revealed ample evidence of metallurgical activities as attested by the occurrence of slag, ores and evidences of ashes and fragments of furnaces in addition to the bronze objects. We have conducted petrological, XRD, EDAX, TEM, SEM and metallography on the slag, ores, crucible fragments and bronze objects samples recovered from Khanak excavations. This has given positive indication of mining and metallurgy of poly-mettalic Tin at the site; however, it can only be ascertained after the detailed scientific examination of the materials which is underway. In view of the importance of site, we intend to excavate the site horizontally in future so as to obtain more samples for scientific studies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=archaeometallurgy" title="archaeometallurgy">archaeometallurgy</a>, <a href="https://publications.waset.org/abstracts/search?q=problem%20of%20tin" title=" problem of tin"> problem of tin</a>, <a href="https://publications.waset.org/abstracts/search?q=metallography" title=" metallography"> metallography</a>, <a href="https://publications.waset.org/abstracts/search?q=indus%20civilization" title=" indus civilization"> indus civilization</a> </p> <a href="https://publications.waset.org/abstracts/50939/a-note-on-metallurgy-at-khanak-an-indus-site-in-tosham-mining-area-haryana" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50939.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">300</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">37</span> Pressure Drop Study in Moving and Stationary Beds with Lateral Gas Injection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vinci%20Mojamdar">Vinci Mojamdar</a>, <a href="https://publications.waset.org/abstracts/search?q=Govind%20S.%20Gupta"> Govind S. Gupta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Moving beds in the presence of gas flow are widely used in metallurgical and chemical industries like blast furnaces, catalyst reforming, drying, etc. Pressure drop studies in co- and counter – current conditions have been done by a few researchers. However, to the best of authours knowledge, proper pressure drop study with lateral gas injection lacks especially in the presence of cavity and nozzle protrusion inside the packed bed. The latter study is more useful for metallurgical industries for the processes such as blast furnaces, shaft reduction and, COREX. In this experimental work, a two dimensional cold model with slot type nozzle for lateral gas injection along with the plastic beads as packing material and dry air as gas have been used. The variation of pressure drop is recorded at various horizontal and vertical directions in the presence of cavity and nozzle protrusion. The study has been performed in both moving and stationary beds. Also, the experiments have been carried out in both increasing as well as decreasing gas flow conditions. Experiments have been performed at various gas flow rates and packed bed heights. Some interesting results have been reported such as there is no pressure variation in the moving bed for both the increasing and decreasing gas flow condition that is different from the stationary bed. Pressure hysteresis loop has been observed in a stationary bed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lateral%20gas%20injection" title="lateral gas injection">lateral gas injection</a>, <a href="https://publications.waset.org/abstracts/search?q=moving%20bed" title=" moving bed"> moving bed</a>, <a href="https://publications.waset.org/abstracts/search?q=pressure%20drop" title=" pressure drop"> pressure drop</a>, <a href="https://publications.waset.org/abstracts/search?q=pressure%20hysteresis" title=" pressure hysteresis"> pressure hysteresis</a>, <a href="https://publications.waset.org/abstracts/search?q=stationary%20bed" title=" stationary bed"> stationary bed</a> </p> <a href="https://publications.waset.org/abstracts/78931/pressure-drop-study-in-moving-and-stationary-beds-with-lateral-gas-injection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78931.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">313</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">36</span> Reduction in Hot Metal Silicon through Statistical Analysis at G-Blast Furnace, Tata Steel Jamshedpur </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shoumodip%20Roy">Shoumodip Roy</a>, <a href="https://publications.waset.org/abstracts/search?q=Ankit%20Singhania"> Ankit Singhania</a>, <a href="https://publications.waset.org/abstracts/search?q=Santanu%20Mallick"> Santanu Mallick</a>, <a href="https://publications.waset.org/abstracts/search?q=Abhiram%20%20Jha"> Abhiram Jha</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20K.%20%20Agarwal"> M. K. Agarwal</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20V.%20Ramna"> R. V. Ramna</a>, <a href="https://publications.waset.org/abstracts/search?q=Uttam%20Singh"> Uttam Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The quality of hot metal at any blast furnace is judged by the silicon content in it. Lower hot metal silicon not only enhances process efficiency at steel melting shops but also reduces hot metal costs. The Hot metal produced at G-Blast furnace Tata Steel Jamshedpur has a significantly higher Si content than Benchmark Blast furnaces. The higher content of hot metal Si is mainly due to inferior raw material quality than those used in benchmark blast furnaces. With minimum control over raw material quality, the only option left to control hot metal Si is via optimizing the furnace parameters. Therefore, in order to identify the levers to reduce hot metal Si, Data mining was carried out, and multiple regression models were developed. The statistical analysis revealed that Slag B3{(CaO+MgO)/SiO2}, Slag Alumina and Hot metal temperature are key controllable parameters affecting hot metal silicon. Contour Plots were used to determine the optimum range of levels identified through statistical analysis. A trial plan was formulated to operate relevant parameters, at G blast furnace, in the identified range to reduce hot metal silicon. This paper details out the process followed and subsequent reduction in hot metal silicon by 15% at G blast furnace. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=blast%20furnace" title="blast furnace">blast furnace</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=silicon" title=" silicon"> silicon</a>, <a href="https://publications.waset.org/abstracts/search?q=statistical%20tools" title=" statistical tools"> statistical tools</a> </p> <a href="https://publications.waset.org/abstracts/74955/reduction-in-hot-metal-silicon-through-statistical-analysis-at-g-blast-furnace-tata-steel-jamshedpur" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74955.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">223</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">35</span> Development of High Quality Refractory Bricks from Fireclays for Industrial Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=David%20E.%20Esezobor">David E. Esezobor</a>, <a href="https://publications.waset.org/abstracts/search?q=Friday%20I.%20Apeh"> Friday I. Apeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Harrison%20O.%20Onovo"> Harrison O. Onovo</a>, <a href="https://publications.waset.org/abstracts/search?q=Ademola%20A.%20Agbeleye"> Ademola A. Agbeleye</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Available indigenous refractory bricks in Nigeria can only be used in the lining of furnaces for melting of cast iron operating at less than 1,400°C or in preheating furnaces due to their low refractoriness less than 1,500°C. The bricks crack and shatter on heating at 1350 to 1450°C. In this paper, a simple and adaptable technology of manufacturing high-quality refractory bricks from selected Nigerian clays for furnace linings was developed. Fireclays from Onibode, Owode-Ketu in Ogun State and Kwoi in Kaduna State were crushed, ground, and sieved into various grain sizes using standard techniques. The pulverized clays were blended with alumina in various mix ratios and indurated in the furnace at 900 – 16000C. Their chemical, microstructure and mineralogical properties were characterized using atomic absorption spectrophotometry, scanning electron microscopy and x-ray diffraction spectrometry respectively. The mineralogical and spectrochemical analyses suggested that the clays are of siliceous alumino-silicate and acidic in nature. The appropriate blending of fireclays with alumina provided the tremendous improvement in the refractoriness of the bricks and other acceptable service properties comparable with imported refractory bricks. The change in microstructure from pseudo-hexagonal grains to equiaxed grains of well – ordered sequence of structural layers could be responsible for the improved properties. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alumina" title="alumina">alumina</a>, <a href="https://publications.waset.org/abstracts/search?q=furnace" title=" furnace"> furnace</a>, <a href="https://publications.waset.org/abstracts/search?q=industry" title=" industry"> industry</a>, <a href="https://publications.waset.org/abstracts/search?q=manufacturing" title=" manufacturing"> manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=refractoriness" title=" refractoriness"> refractoriness</a> </p> <a href="https://publications.waset.org/abstracts/59486/development-of-high-quality-refractory-bricks-from-fireclays-for-industrial-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59486.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">256</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">34</span> Significant Reduction in Specific CO₂ Emission through Process Optimization at G Blast Furnace, Tata Steel Jamshedpur</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shoumodip%20Roy">Shoumodip Roy</a>, <a href="https://publications.waset.org/abstracts/search?q=Ankit%20Singhania"> Ankit Singhania</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20K.%20G.%20Choudhury"> M. K. G. Choudhury</a>, <a href="https://publications.waset.org/abstracts/search?q=Santanu%20Mallick"> Santanu Mallick</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20K.%20Agarwal"> M. K. Agarwal</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20V.%20Ramna"> R. V. Ramna</a>, <a href="https://publications.waset.org/abstracts/search?q=Uttam%20Singh"> Uttam Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the key corporate goals of Tata Steel company is to demonstrate Environment Leadership. Decreasing specific CO₂ emission is one of the key steps to achieve the stated corporate goal. At any Blast Furnace, specific CO₂ emission is directly proportional to fuel intake. To reduce the fuel intake at G Blast Furnace, an initial benchmarking exercise was carried out with international and domestic Blast Furnaces to determine the potential for improvement. The gap identified during the exercise revealed that the benchmark Blast Furnaces operated with superior raw material quality than that in G Blast Furnace. However, since the raw materials to G Blast Furnace are sourced from the captive mines, improvement in the raw material quality was out of scope. Therefore, trials were taken with different operating regimes, to identify the key process parameters, which on optimization could significantly reduce the fuel intake in G Blast Furnace. The key process parameters identified from the trial were the Stoichiometric Oxygen Ratio, Melting Capacity ratio and the burden distribution inside the furnace. These identified process parameters were optimized to bridge the gap in fuel intake at G Blast Furnace, thereby reducing specific CO₂ emission to benchmark levels. This paradigm shift enabled to lower the fuel intake by 70kg per ton of liquid iron produced, thereby reducing the specific CO₂ emission by 15 percent. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=benchmark" title="benchmark">benchmark</a>, <a href="https://publications.waset.org/abstracts/search?q=blast%20furnace" title=" blast furnace"> blast furnace</a>, <a href="https://publications.waset.org/abstracts/search?q=CO%E2%82%82%20emission" title=" CO₂ emission"> CO₂ emission</a>, <a href="https://publications.waset.org/abstracts/search?q=fuel%20rate" title=" fuel rate"> fuel rate</a> </p> <a href="https://publications.waset.org/abstracts/74952/significant-reduction-in-specific-co2-emission-through-process-optimization-at-g-blast-furnace-tata-steel-jamshedpur" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74952.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">280</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">33</span> Analysis of Spectral Radiative Entropy Generation in a Non-Gray Participating Medium with Heat Source (Furnaces)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Asadollah%20Bahrami">Asadollah Bahrami</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present study, spectral radiative entropy generation is analyzed in a furnace filled with a mixture of H₂O, CO₂ and soot at radiative equilibrium. For the angular and spatial discretization of the radiative transfer equation and radiative entropy generation equations, the discrete ordinates method and the finite volume method are used, respectively. Spectral radiative properties are obtained using the correlated-k (CK) non-gray model with updated parameters based on the HITEMP2010 high-resolution database. In order to evaluate the effects of the location of the heat source, boundary condition and wall emissivity on radiative entropy generation, five cases are considered with different conditions. The spectral and total radiative entropy generation in the system are calculated for all cases and the effects of mentioned parameters on radiative entropy generation are attentively analyzed and finally, the optimum condition is especially presented. The most important results can be stated as follows: Results demonstrate that the wall emissivity has a considerable effect on the radiative entropy generation. Also, irreversible radiative transfer at the wall with lower temperatures is the main source of radiative entropy generation in the furnaces. In addition, the effect of the location of the heat source on total radiative entropy generation is less than other factors. Eventually, it can be said that characterizing the effective parameters of radiative entropy generation provides an approach to minimizing the radiative entropy generation and enhancing the furnace's performance practicality. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=spectral%20radiative%20entropy%20generation" title="spectral radiative entropy generation">spectral radiative entropy generation</a>, <a href="https://publications.waset.org/abstracts/search?q=non-gray%20medium" title=" non-gray medium"> non-gray medium</a>, <a href="https://publications.waset.org/abstracts/search?q=correlated%20k%28CK%29%20model" title=" correlated k(CK) model"> correlated k(CK) model</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20source" title=" heat source"> heat source</a> </p> <a href="https://publications.waset.org/abstracts/169050/analysis-of-spectral-radiative-entropy-generation-in-a-non-gray-participating-medium-with-heat-source-furnaces" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/169050.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">103</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">32</span> Feasibility of Iron Scrap Recycling with Considering Demand-Supply Balance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Reina%20Kawase">Reina Kawase</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuzuru%20Matsuoka"> Yuzuru Matsuoka</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To mitigate climate change, to reduce CO2 emission from steel sector, energy intensive sector, is essential. One of the effective countermeasure is recycling of iron scrap and shifting to electric arc furnace. This research analyzes the feasibility of iron scrap recycling with considering demand-supply balance and quantifies the effective by CO2 emission reduction. Generally, the quality of steel made from iron scrap is lower than the quality of steel made from basic oxygen furnace. So, the constraint of demand side is goods-wise steel demand and that of supply side is generation of iron scap. Material Stock and Flow Model (MSFM_demand) was developed to estimate goods-wise steel demand and generation of iron scrap and was applied to 35 regions which aggregated countries in the world for 2005-2050. The crude steel production was estimated under two case; BaU case (No countermeasures) and CM case (With countermeasures). For all the estimation periods, crude steel production is greater than generation of iron scrap. This makes it impossible to substitute electric arc furnaces for all the basic oxygen furnaces. Even though 100% recycling rate of iron scrap, under BaU case, CO2 emission in 2050 increases by 12% compared to that in 2005. With same condition, 32% of CO2 emission reduction is achieved in CM case. With a constraint from demand side, the reduction potential is 6% (CM case). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=iron%20scrap%20recycling" title="iron scrap recycling">iron scrap recycling</a>, <a href="https://publications.waset.org/abstracts/search?q=CO2%20emission%20reduction" title=" CO2 emission reduction"> CO2 emission reduction</a>, <a href="https://publications.waset.org/abstracts/search?q=steel%20demand" title=" steel demand"> steel demand</a>, <a href="https://publications.waset.org/abstracts/search?q=MSFM%20demand" title=" MSFM demand"> MSFM demand</a> </p> <a href="https://publications.waset.org/abstracts/21060/feasibility-of-iron-scrap-recycling-with-considering-demand-supply-balance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21060.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">552</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">31</span> The Effects of Wood Ash on Ignition Point of Wood</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20A.%20Ibe">K. A. Ibe</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20I.%20Mbonu"> J. I. Mbonu</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20K.%20Umukoro"> G. K. Umukoro</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The effects of wood ash on the ignition point of five common tropical woods in Nigeria were investigated. The ash and moisture contents of the wood saw dust from Mahogany (Khaya ivorensis), Opepe (Sarcocephalus latifolius), Abura (Hallealedermannii verdc), Rubber (Heavea brasilensis) and Poroporo (Sorghum bicolour) were determined using a furnace (Vecstar furnaces, model ECF2, serial no. f3077) and oven (Genlab laboratory oven, model MINO/040) respectively. The metal contents of the five wood sawdust ash samples were determined using a Perkin Elmer optima 3000 dv atomic absorption spectrometer while the ignition points were determined using Vecstar furnaces model ECF2. Poroporo had the highest ash content, 2.263 g while rubber had the least, 0.710 g. The results for the moisture content range from 2.971 g to 0.903 g. Magnesium metal had the highest concentration of all the metals, in all the wood ash samples; with mahogany ash having the highest concentration, 9.196 ppm while rubber ash had the least concentration of magnesium metal, 2.196 ppm. The ignition point results showed that the wood ashes from mahogany and opepe increased the ignition points of the test wood samples when coated on them while the ashes from poroporo, rubber and abura decreased the ignition points of the test wood samples when coated on them. However, Opepe saw dust ash decreased the ignition point in one of the test wood samples, suggesting that the metal content of the test wood sample was more than that of the Opepe saw dust ash. Therefore, Mahogany and Opepe saw dust ashes could be used in the surface treatment of wood to enhance their fire resistance or retardancy. However, the caution to be exercised in this application is that the metal content of the test wood samples should be evaluated as well. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ash" title="ash">ash</a>, <a href="https://publications.waset.org/abstracts/search?q=fire" title=" fire"> fire</a>, <a href="https://publications.waset.org/abstracts/search?q=ignition%20point" title=" ignition point"> ignition point</a>, <a href="https://publications.waset.org/abstracts/search?q=retardant" title=" retardant"> retardant</a>, <a href="https://publications.waset.org/abstracts/search?q=wood%20saw%20dust" title=" wood saw dust"> wood saw dust</a> </p> <a href="https://publications.waset.org/abstracts/29316/the-effects-of-wood-ash-on-ignition-point-of-wood" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29316.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">389</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">30</span> Formation of in-situ Ceramic Phase in N220 Nano Carbon Containing Low Carbon Mgo-C Refractory</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Satyananda%20Behera">Satyananda Behera</a>, <a href="https://publications.waset.org/abstracts/search?q=Ritwik%20Sarkar"> Ritwik Sarkar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In iron and steel industries, MgO–C refractories are widely used in basic oxygen furnaces, electric arc furnaces and steel ladles due to their excellent corrosion resistance, thermal shock resistance, and other excellent hot properties. Conventionally magnesia carbon refractories contain about 8-20 wt% of carbon but the use of carbon is also associate with disadvantages like oxidation, low fracture strength, high heat loss and higher carbon pick up in steel. So, MgO-C refractory having low carbon content without compromising the beneficial properties is the challenge. Nano carbon, having finer particles, can mix and distribute within the entire matrix uniformly and can result in improved mechanical, thermo-mechanical, corrosion and other refractory properties. Previous experiences with the use of nano carbon in low carbon MgO-C refractory have indicated an optimum range of use of nano carbon around 1 wt%. This optimum nano carbon content was used in MgO-C compositions with flaky graphite followed by aluminum and silicon metal powder as an anti-oxidant. These low carbon MgO-C refractory compositions were prepared by conventional manufacturing techniques. At the same time 16 wt. % flaky graphite containing conventional MgO-C refractory was also prepared parallel under similar conditions. The developed products were characterized for various refractory related properties. Nano carbon containing compositions showed better mechanical, thermo-mechanical properties, and oxidation resistance compared to that of conventional composition. Improvement in the properties is associated with the formation of in-situ ceramic phase-like aluminum carbide, silicon carbide, and magnesium aluminum spinel. Higher surface area and higher reactivity of N220 nano carbon black resulted in greater formation in-situ ceramic phases, even at a much lower amount. Nano carbon containing compositions were found to have improved properties in MgO-C refractories compared to that of the conventional ones at much lower total carbon content. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=N220nano%20carbon%20black" title="N220nano carbon black">N220nano carbon black</a>, <a href="https://publications.waset.org/abstracts/search?q=refractory%20properties" title=" refractory properties"> refractory properties</a>, <a href="https://publications.waset.org/abstracts/search?q=conventionally%20manufacturing%20techniques" title=" conventionally manufacturing techniques"> conventionally manufacturing techniques</a>, <a href="https://publications.waset.org/abstracts/search?q=conventional%20magnesia%20carbon%20refractories" title=" conventional magnesia carbon refractories"> conventional magnesia carbon refractories</a> </p> <a href="https://publications.waset.org/abstracts/34422/formation-of-in-situ-ceramic-phase-in-n220-nano-carbon-containing-low-carbon-mgo-c-refractory" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34422.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">367</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">29</span> Achieving Process Stability through Automation and Process Optimization at H Blast Furnace Tata Steel, Jamshedpur</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Krishnendu%20Mukhopadhyay">Krishnendu Mukhopadhyay</a>, <a href="https://publications.waset.org/abstracts/search?q=Subhashis%20Kundu"> Subhashis Kundu</a>, <a href="https://publications.waset.org/abstracts/search?q=Mayank%20Tiwari"> Mayank Tiwari</a>, <a href="https://publications.waset.org/abstracts/search?q=Sameeran%20Pani"> Sameeran Pani</a>, <a href="https://publications.waset.org/abstracts/search?q=Padmapal"> Padmapal</a>, <a href="https://publications.waset.org/abstracts/search?q=Uttam%20Singh"> Uttam Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Blast Furnace is a counter current process where burden descends from top and hot gases ascend from bottom and chemically reduce iron oxides into liquid hot metal. One of the major problems of blast furnace operation is the erratic burden descent inside furnace. Sometimes this problem is so acute that burden descent stops resulting in Hanging and instability of the furnace. This problem is very frequent in blast furnaces worldwide and results in huge production losses. This situation becomes more adverse when blast furnaces are operated at low coke rate and high coal injection rate with adverse raw materials like high alumina ore and high coke ash. For last three years, H-Blast Furnace Tata Steel was able to reduce coke rate from 450 kg/thm to 350 kg/thm with an increase in coal injection to 200 kg/thm which are close to world benchmarks and expand profitability. To sustain this regime, elimination of irregularities of blast furnace like hanging, channeling, and scaffolding is very essential. In this paper, sustaining of zero hanging spell for consecutive three years with low coke rate operation by improvement in burden characteristics, burden distribution, changes in slag regime, casting practices and adequate automation of the furnace operation has been illustrated. Models have been created to comprehend and upgrade the blast furnace process understanding. A model has been developed to predict the process of maintaining slag viscosity in desired range to attain proper burden permeability. A channeling prediction model has also been developed to understand channeling symptoms so that early actions can be initiated. The models have helped to a great extent in standardizing the control decisions of operators at H-Blast Furnace of Tata Steel, Jamshedpur and thus achieving process stability for last three years. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hanging" title="hanging">hanging</a>, <a href="https://publications.waset.org/abstracts/search?q=channelling" title=" channelling"> channelling</a>, <a href="https://publications.waset.org/abstracts/search?q=blast%20furnace" title=" blast furnace"> blast furnace</a>, <a href="https://publications.waset.org/abstracts/search?q=coke" title=" coke"> coke</a> </p> <a href="https://publications.waset.org/abstracts/74931/achieving-process-stability-through-automation-and-process-optimization-at-h-blast-furnace-tata-steel-jamshedpur" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74931.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">195</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">28</span> Modeling and Design of a Solar Thermal Open Volumetric Air Receiver </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Piyush%20Sharma">Piyush Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=Laltu%20Chandra"> Laltu Chandra</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20S.%20Ghoshdastidar"> P. S. Ghoshdastidar</a>, <a href="https://publications.waset.org/abstracts/search?q=Rajiv%20Shekhar"> Rajiv Shekhar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Metals processing operations such as melting and heat treatment of metals are energy-intensive, requiring temperatures greater than 500oC. The desired temperature in these industrial furnaces is attained by circulating electrically-heated air. In most of these furnaces, electricity produced from captive coal-based thermal power plants is used. Solar thermal energy could be a viable heat source in these furnaces. A retrofitted solar convective furnace (SCF) concept, which uses solar thermal generated hot air, has been proposed. Critical to the success of a SCF is the design of an open volumetric air receiver (OVAR), which can heat air in excess of 800oC. The OVAR is placed on top of a tower and receives concentrated solar radiation from a heliostat field. Absorbers, mixer assembly, and the return air flow chamber (RAFC) are the major components of an OVAR. The absorber is a porous structure that transfers heat from concentrated solar radiation to ambient air, referred to as primary air. The mixer ensures uniform air temperature at the receiver exit. Flow of the relatively cooler return air in the RAFC ensures that the absorbers do not fail by overheating. In an earlier publication, the detailed design basis, fabrication, and characterization of a 2 kWth open volumetric air receiver (OVAR) based laboratory solar air tower simulator was presented. Development of an experimentally-validated, CFD based mathematical model which can ultimately be used for the design and scale-up of an OVAR has been the major objective of this investigation. In contrast to the published literature, where flow and heat transfer have been modeled primarily in a single absorber module, the present study has modeled the entire receiver assembly, including the RAFC. Flow and heat transfer calculations have been carried out in ANSYS using the LTNE model. The complex return air flow pattern in the RAFC requires complicated meshes and is computational and time intensive. Hence a simple, realistic 1-D mathematical model, which circumvents the need for carrying out detailed flow and heat transfer calculations, has also been proposed. Several important results have emerged from this investigation. Circumferential electrical heating of absorbers can mimic frontal heating by concentrated solar radiation reasonably well in testing and characterizing the performance of an OVAR. Circumferential heating, therefore, obviates the need for expensive high solar concentration simulators. Predictions suggest that the ratio of power on aperture (POA) and mass flow rate of air (MFR) is a normalizing parameter for characterizing the thermal performance of an OVAR. Increasing POA/MFR increases the maximum temperature of air, but decreases the thermal efficiency of an OVAR. Predictions of the 1-D mathematical are within 5% of ANSYS predictions and computation time is reduced from ~ 5 hours to a few seconds. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=absorbers" title="absorbers">absorbers</a>, <a href="https://publications.waset.org/abstracts/search?q=mixer%20assembly" title=" mixer assembly"> mixer assembly</a>, <a href="https://publications.waset.org/abstracts/search?q=open%20volumetric%20air%20receiver" title=" open volumetric air receiver"> open volumetric air receiver</a>, <a href="https://publications.waset.org/abstracts/search?q=return%20air%20flow%20chamber" title=" return air flow chamber"> return air flow chamber</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20thermal%20energy" title=" solar thermal energy"> solar thermal energy</a> </p> <a href="https://publications.waset.org/abstracts/86752/modeling-and-design-of-a-solar-thermal-open-volumetric-air-receiver" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/86752.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">197</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">27</span> Morphostructural Characterization of Zinc and Manganese Nano-Oxides</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adriana-Gabriela%20Plaiasu">Adriana-Gabriela Plaiasu</a>, <a href="https://publications.waset.org/abstracts/search?q=Catalin%20Marian%20Ducu"> Catalin Marian Ducu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The interest in the unique properties associated with materials having structures on a nanometer scale has been increasing at an exponential rate in last decade. Among the functional mineral compounds such as perovskite (CaTiO3), rutile (TiO2), CaF2, spinel (MgAl2O4), wurtzite (ZnS), zincite (ZnO) and the cupric oxide (CuO) has been used in numerous applications such as catalysis, semiconductors, batteries, gas sensors, biosensors, field transistors and medicine. The Solar Physical Vapor Deposition (SPVD) presented in the paper as elaboration method is an original process to prepare nanopowders working under concentrated sunlight in 2kW solar furnaces. The influence of the synthesis parameters on the chemical and microstructural characteristics of zinc and manganese oxides synthesized nanophases has been systematically studied using XRD, TEM and SEM. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=characterization" title="characterization">characterization</a>, <a href="https://publications.waset.org/abstracts/search?q=morphological" title=" morphological"> morphological</a>, <a href="https://publications.waset.org/abstracts/search?q=nano-oxides" title=" nano-oxides"> nano-oxides</a>, <a href="https://publications.waset.org/abstracts/search?q=structural" title=" structural"> structural</a> </p> <a href="https://publications.waset.org/abstracts/83988/morphostructural-characterization-of-zinc-and-manganese-nano-oxides" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/83988.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">278</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">26</span> Naphtha Catalytic Reform: Modeling and Simulation of Unity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Leal%20Leonardo">Leal Leonardo</a>, <a href="https://publications.waset.org/abstracts/search?q=Pires%20Carlos%20Augusto%20de%20Moraes"> Pires Carlos Augusto de Moraes</a>, <a href="https://publications.waset.org/abstracts/search?q=Casiraghi%20Magela"> Casiraghi Magela</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work were realized the modeling and simulation of the catalytic reformer process, of ample form, considering all the equipment that influence the operation performance. Considered it a semi-regenerative reformer, with four reactors in series intercalated with four furnaces, two heat exchanges, one product separator and one recycle compressor. A simplified reactional system was considered, involving only ten chemical compounds related through five reactions. The considered process was the applied to aromatics production (benzene, toluene, and xylene). The models developed to diverse equipment were interconnecting in a simulator that consists of a computer program elaborate in FORTRAN 77. The simulation of the global model representative of reformer unity achieved results that are compatibles with the literature ones. It was then possible to study the effects of operational variables in the products concentration and in the performance of the unity equipment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=catalytic%20reforming" title="catalytic reforming">catalytic reforming</a>, <a href="https://publications.waset.org/abstracts/search?q=modeling" title=" modeling"> modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=petrochemical%20engineering" title=" petrochemical engineering"> petrochemical engineering</a> </p> <a href="https://publications.waset.org/abstracts/22923/naphtha-catalytic-reform-modeling-and-simulation-of-unity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22923.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">516</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25</span> Research Facility Assessment for Biomass Combustion in Moving Grate Furnaces</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Francesco%20Gallucci">Francesco Gallucci</a>, <a href="https://publications.waset.org/abstracts/search?q=Mariangela%20Salerno"> Mariangela Salerno</a>, <a href="https://publications.waset.org/abstracts/search?q=Ettore%20Guerriero"> Ettore Guerriero</a>, <a href="https://publications.waset.org/abstracts/search?q=Manfredi%20Amalfi"> Manfredi Amalfi</a>, <a href="https://publications.waset.org/abstracts/search?q=Giancarlo%20Chiatti"> Giancarlo Chiatti</a>, <a href="https://publications.waset.org/abstracts/search?q=Fulvio%20Palmieri"> Fulvio Palmieri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper deals with the experimental activities on a biomass combustion test-bed. More in detail, experimental campaigns have been devoted to investigate the operation of a biomass moving grate furnace. A research-oriented facility based on a moving grate furnace (350kW) has been set up in order to perform experimental activities in a wide range of test configurations. The paper reports the description of the complete biomass-plant and the assessment of the system operation. As the first step, the chemical and physical properties of the used wooden biomass have been preliminarily investigated. Once the biomass fuel has been characterized, investigations have been devoted to point out the operation of the furnace. It has been operated at full load, highlighting the influence of biomass combustion parameters on particulate matter and gaseous emission. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biomass" title="biomass">biomass</a>, <a href="https://publications.waset.org/abstracts/search?q=combustion" title=" combustion"> combustion</a>, <a href="https://publications.waset.org/abstracts/search?q=experimental" title=" experimental"> experimental</a>, <a href="https://publications.waset.org/abstracts/search?q=pollutants" title=" pollutants"> pollutants</a> </p> <a href="https://publications.waset.org/abstracts/60942/research-facility-assessment-for-biomass-combustion-in-moving-grate-furnaces" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60942.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">279</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">24</span> Reducing Energy Consumption and GHG Emission by Integration of Flare Gas with Fuel Gas Network in Refinery</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Tahouni">N. Tahouni</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Gholami"> M. Gholami</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20H.%20Panjeshahi"> M. H. Panjeshahi </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Gas flaring is one of the most GHG emitting sources in the oil and gas industries. It is also a major way for wasting such an energy that could be better utilized and even generates revenue. Minimize flaring is an effective approach for reducing GHG emissions and also conserving energy in flaring systems. Integrating waste and flared gases into the fuel gas networks (FGN) of refineries is an efficient tool. A fuel gas network collects fuel gases from various source streams and mixes them in an optimal manner, and supplies them to different fuel sinks such as furnaces, boilers, turbines, etc. In this article we use fuel gas network model proposed by Hasan et al. as a base model and modify some of its features and add constraints on emission pollution by gas flaring to reduce GHG emissions as possible. Results for a refinery case study showed that integration of flare gas stream with waste and natural gas streams to construct an optimal FGN can significantly reduce total annualized cost and flaring emissions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flaring" title="flaring">flaring</a>, <a href="https://publications.waset.org/abstracts/search?q=fuel%20gas%20network" title=" fuel gas network"> fuel gas network</a>, <a href="https://publications.waset.org/abstracts/search?q=GHG%20emissions" title=" GHG emissions"> GHG emissions</a>, <a href="https://publications.waset.org/abstracts/search?q=stream" title=" stream "> stream </a> </p> <a href="https://publications.waset.org/abstracts/13259/reducing-energy-consumption-and-ghg-emission-by-integration-of-flare-gas-with-fuel-gas-network-in-refinery" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13259.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">344</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">23</span> The Manufacturing of Metallurgical Grade Silicon from Diatomaceous Silica by an Induction Furnace</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shahrazed%20Medeghri">Shahrazed Medeghri</a>, <a href="https://publications.waset.org/abstracts/search?q=Saad%20Hamzaoui"> Saad Hamzaoui</a>, <a href="https://publications.waset.org/abstracts/search?q=Mokhtar%20Zerdali"> Mokhtar Zerdali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The metallurgical grade silicon (MG-Si) is obtained from the reduction of silica (SiO<sub>2</sub>) in an induction furnace or an electric arc furnace. Impurities inherent in reduction process also depend on the quality of the raw material used. Among the applications of the silicon, it is used as a substrate for the photovoltaic conversion of solar energy and this conversion is wider as the purity of the substrate is important. Research is being done where the purpose is looking for new methods of manufacturing and purification of silicon, as well as new materials that can be used as substrates for the photovoltaic conversion of light energy. In this research, the technique of production of silicon in an induction furnace, using a high vacuum for fusion. Diatomaceous Silica (SiO2) used is 99 mass% initial purities, the carbon used is 6N of purity and the particle size of 63μm as starting materials. The final achieved purity of the material was above 50% by mass. These results demonstrate that this method is a technically reliable, and allows obtaining a better return on the amount 50% of silicon. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=induction%20furnaces" title="induction furnaces">induction furnaces</a>, <a href="https://publications.waset.org/abstracts/search?q=amorphous%20silica" title=" amorphous silica"> amorphous silica</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20microstructure" title=" carbon microstructure"> carbon microstructure</a>, <a href="https://publications.waset.org/abstracts/search?q=silicon" title=" silicon"> silicon</a> </p> <a href="https://publications.waset.org/abstracts/47448/the-manufacturing-of-metallurgical-grade-silicon-from-diatomaceous-silica-by-an-induction-furnace" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47448.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">404</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">22</span> Examination of the Reasons for the Formation of Red Oil in Spent Caustic from Olefin Plant</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mehdi%20Seifollahi">Mehdi Seifollahi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ashkan%20Forootan"> Ashkan Forootan</a>, <a href="https://publications.waset.org/abstracts/search?q=Sajjad%20Bahrami%20Reyhan"> Sajjad Bahrami Reyhan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to the complexity of olefinic plants, various environmental pollutants exist such as NO<sub>x</sub>, CO<sub>2</sub>, Tar Water, and most importantly Spent Caustic. In this paper, instead of investigating ways of treating this pollutant, we evaluated the production in relation to plant’s variable items. We primarily discussed the factors affecting the quality of the output spent caustic such as impurities in the feed of olefin plant, the amount of injected dimethyl disulfide (DMDS) in furnaces, variation in feed composition, differences among gas temperatures and the concentration of caustic solution at the bottom of the tower. The results of the laboratory proved that in the formation of Red Oil, 1,3butadiene and acetaldehyde followed free radical and aldol condensation mechanism respectively. By increasing the injection rate of DMDS, Mercaptide amount increases in the effluent. In addition, pyrolysis gasoline accumulation is directly related to caustic concentration in the tower. Increasing naphtenes in the liquid feed augments the amount of 1,3butadiene, as one of the sources of Red Oil formation. By increasing the oxygenated compound in the feed, the rate of acetaldehyde formation, as the main source of Red Oil formation, increases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=olefin" title="olefin">olefin</a>, <a href="https://publications.waset.org/abstracts/search?q=spent%20caustic" title=" spent caustic"> spent caustic</a>, <a href="https://publications.waset.org/abstracts/search?q=red%20oil" title=" red oil"> red oil</a>, <a href="https://publications.waset.org/abstracts/search?q=caustic%20wash%20tower" title=" caustic wash tower"> caustic wash tower</a> </p> <a href="https://publications.waset.org/abstracts/40801/examination-of-the-reasons-for-the-formation-of-red-oil-in-spent-caustic-from-olefin-plant" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40801.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">447</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21</span> An Experimental Study of Iron Smelting Techniques Used in the South East Rajasthan, with Special Reference to Nathara-Ki-Pal, Udaipur</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Udaya%20Kumar">Udaya Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this paper is to discuss recent research conducted in experimental studies related to the process of the iron smelting. The paper will discuss issues related to the selection of iron ore, structure of furnace, making of tuyeres, fashioning of blowers and firing temperatures through experiments conducted recently and scientific analyses of experimental work. Experiments were conducted in order to investigate iron smelting techniques used at the Early Historic site of Nathara-Ki-Pal. (73°47’E; 24°16N is located about 70 km south-east of Udaipur city). Geographically, Nathara-Ki-Pal has located the foot hills of Aravalli’s. Iron ore and iron slag can be seen on the surface of the site. The remains of 4 broken furnaces were recovered during excavations (2007 and 2008) and the site was excavated by Prof. Pandey from the Department of Archaeology of the Institute of Rajasthan studies, Rajasthan Vidyapeeth University. This shows that the site of Nathara-Ki-Pal was a center of iron smelting. Results of experiments performed both in the field reconstruction of a bloomery furnace and in the laboratory are discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=experimental%20studies" title="experimental studies">experimental studies</a>, <a href="https://publications.waset.org/abstracts/search?q=furnace" title=" furnace"> furnace</a>, <a href="https://publications.waset.org/abstracts/search?q=smelting%20techniques" title=" smelting techniques"> smelting techniques</a>, <a href="https://publications.waset.org/abstracts/search?q=making%20of%20tuyeres" title=" making of tuyeres"> making of tuyeres</a> </p> <a href="https://publications.waset.org/abstracts/78056/an-experimental-study-of-iron-smelting-techniques-used-in-the-south-east-rajasthan-with-special-reference-to-nathara-ki-pal-udaipur" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78056.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">188</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20</span> Control of Pipeline Gas Quality to Extend Gas Turbine Life</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Peter%20J.%20H.%20Carnell">Peter J. H. Carnell</a>, <a href="https://publications.waset.org/abstracts/search?q=Panayiotis%20Theophanous"> Panayiotis Theophanous</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Natural gas due to its cleaner combustion characteristics is expected to be the most widely used fuel in the move towards less polluting and renewable energy sources. Thus, the developed world is supplied by a complex network of gas pipelines and natural gas is becoming a major source of fuel. Natural gas delivered directly from the well will differ in composition from gas derived from LNG or produced by anaerobic digestion processes. Each will also have specific contaminants and properties although gas from all sources is likely to enter the distribution system and be blended to provide the desired characteristics such as Higher Heating Value and Wobbe No. The absence of a standard gas composition poses problems when the gas is used as a chemical feedstock, in specialised furnaces or on gas turbines. The chemical industry has suffered in the past as a result of variable gas composition. Transition metal catalysts used in ammonia, methanol and hydrogen plants were easily poisoned by sulphur, chlorides and mercury reducing both activity and catalyst expected lives from years to months. These plants now concentrate on purification and conditioning of the natural gas feed using fixed bed technologies, allowing them to run for several years and having transformed their operations. Similar technologies can be applied to the power industry reducing maintenance requirements and extending the operating life of gas turbines. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gas%20composition" title="gas composition">gas composition</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20conditioning" title=" gas conditioning"> gas conditioning</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20turbines" title=" gas turbines"> gas turbines</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20generation" title=" power generation"> power generation</a>, <a href="https://publications.waset.org/abstracts/search?q=purification" title=" purification"> purification</a> </p> <a href="https://publications.waset.org/abstracts/69771/control-of-pipeline-gas-quality-to-extend-gas-turbine-life" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69771.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">286</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19</span> Design and Experimental Studies of a Centrifugal SWIRL Atomizer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hemabushan%20K.">Hemabushan K.</a>, <a href="https://publications.waset.org/abstracts/search?q=Manikandan"> Manikandan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In a swirl atomizer, fluid undergoes a swirling motion as a result of centrifugal force created by opposed tangential inlets in the swirl chamber. The angular momentum of fluid continually increases as it reaches the exit orifice and forms a hollow sheet. Which disintegrates to form ligaments and droplets respectively as it flows downstream. This type of atomizers used in rocket injectors and oil burner furnaces. In this present investigation a swirl atomizer with two opposed tangential inlets has been designed. Water as working fluid, experiments had been conducted for the fluid injection pressures in regime of 0.033 bar to 0.519 bar. The fluid has been pressured by a 0.5hp pump and regulated by a pressure regulator valve. Injection pressure of fluid has been measured by a U-tube mercury manometer. The spray pattern and the droplets has been captured with a high resolution camera in black background with a high intensity flash highlighting the fluid. The unprocessed images were processed in ImageJ processing software for measuring the droplet diameters and its shape characteristics along the downstream. The parameters such as mean droplet diameter and distribution, wave pattern, rupture distance and spray angle were studied for this atomizer. The above results were compared with theoretical results and also analysed for deviation with design parameters. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=swirl%20atomizer" title="swirl atomizer">swirl atomizer</a>, <a href="https://publications.waset.org/abstracts/search?q=injector" title=" injector"> injector</a>, <a href="https://publications.waset.org/abstracts/search?q=spray" title=" spray"> spray</a>, <a href="https://publications.waset.org/abstracts/search?q=SWIRL" title=" SWIRL"> SWIRL</a> </p> <a href="https://publications.waset.org/abstracts/21828/design-and-experimental-studies-of-a-centrifugal-swirl-atomizer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21828.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">490</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18</span> Studies on the Mechanical Behavior of Bottom Ash for a Sustainable Environment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20A.%20Mir">B. A. Mir</a>, <a href="https://publications.waset.org/abstracts/search?q=Asim%20Malik"> Asim Malik</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bottom ash is a by-product of the combustion process of coal in furnaces in the production of electricity in thermal power plants. In India, about 75% of total power is produced by using pulverized coal. The coal of India has a high ash content which leads to the generation of a huge quantity of bottom ash per year posing the dual problem of environmental pollution and difficulty in disposal. This calls for establishing strategies to use this industry by-product effectively and efficiently. However, its large-scale utilization is possible only in geotechnical applications, either alone or with soil. In the present investigation, bottom ash was collected from National Capital Power Station Dadri, Uttar Pradesh, India. Test samples of bottom ash admixed with 20% clayey soil were prepared and treated with different cement content by weight and subjected to various laboratory tests for assessing its suitability as an engineered construction material. This study has shown that use of 10% cement content is a viable chemical additive to enhance the mechanical properties of bottom ash, which can be used effectively as an engineered construction material in various geotechnical applications. More importantly, it offers an interesting potential for making use of an industrial waste to overcome challenges posed by bottom ash for a sustainable environment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bottom%20ash" title="bottom ash">bottom ash</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20pollution" title=" environmental pollution"> environmental pollution</a>, <a href="https://publications.waset.org/abstracts/search?q=solid%20waste" title=" solid waste"> solid waste</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20environment" title=" sustainable environment"> sustainable environment</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20utilization" title=" waste utilization"> waste utilization</a> </p> <a href="https://publications.waset.org/abstracts/67046/studies-on-the-mechanical-behavior-of-bottom-ash-for-a-sustainable-environment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67046.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">259</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=arc%20furnaces&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=arc%20furnaces&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>