CINXE.COM

Search results for: hyperparameters

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: hyperparameters</title> <meta name="description" content="Search results for: hyperparameters"> <meta name="keywords" content="hyperparameters"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="hyperparameters" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="hyperparameters"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 33</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: hyperparameters</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">33</span> Drone Classification Using Classification Methods Using Conventional Model With Embedded Audio-Visual Features</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hrishi%20Rakshit">Hrishi Rakshit</a>, <a href="https://publications.waset.org/abstracts/search?q=Pooneh%20Bagheri%20Zadeh"> Pooneh Bagheri Zadeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper investigates the performance of drone classification methods using conventional DCNN with different hyperparameters, when additional drone audio data is embedded in the dataset for training and further classification. In this paper, first a custom dataset is created using different images of drones from University of South California (USC) datasets and Leeds Beckett university datasets with embedded drone audio signal. The three well-known DCNN architectures namely, Resnet50, Darknet53 and Shufflenet are employed over the created dataset tuning their hyperparameters such as, learning rates, maximum epochs, Mini Batch size with different optimizers. Precision-Recall curves and F1 Scores-Threshold curves are used to evaluate the performance of the named classification algorithms. Experimental results show that Resnet50 has the highest efficiency compared to other DCNN methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=drone%20classifications" title="drone classifications">drone classifications</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20convolutional%20neural%20network" title=" deep convolutional neural network"> deep convolutional neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=hyperparameters" title=" hyperparameters"> hyperparameters</a>, <a href="https://publications.waset.org/abstracts/search?q=drone%20audio%20signal" title=" drone audio signal"> drone audio signal</a> </p> <a href="https://publications.waset.org/abstracts/172929/drone-classification-using-classification-methods-using-conventional-model-with-embedded-audio-visual-features" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/172929.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">104</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">32</span> Optimization of Machine Learning Regression Results: An Application on Health Expenditures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Songul%20Cinaroglu">Songul Cinaroglu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Machine learning regression methods are recommended as an alternative to classical regression methods in the existence of variables which are difficult to model. Data for health expenditure is typically non-normal and have a heavily skewed distribution. This study aims to compare machine learning regression methods by hyperparameter tuning to predict health expenditure per capita. A multiple regression model was conducted and performance results of Lasso Regression, Random Forest Regression and Support Vector Machine Regression recorded when different hyperparameters are assigned. Lambda (λ) value for Lasso Regression, number of trees for Random Forest Regression, epsilon (ε) value for Support Vector Regression was determined as hyperparameters. Study results performed by using 'k' fold cross validation changed from 5 to 50, indicate the difference between machine learning regression results in terms of R², RMSE and MAE values that are statistically significant (p < 0.001). Study results reveal that Random Forest Regression (R² ˃ 0.7500, RMSE ≤ 0.6000 ve MAE ≤ 0.4000) outperforms other machine learning regression methods. It is highly advisable to use machine learning regression methods for modelling health expenditures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title="machine learning">machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=lasso%20regression" title=" lasso regression"> lasso regression</a>, <a href="https://publications.waset.org/abstracts/search?q=random%20forest%20regression" title=" random forest regression"> random forest regression</a>, <a href="https://publications.waset.org/abstracts/search?q=support%20vector%20regression" title=" support vector regression"> support vector regression</a>, <a href="https://publications.waset.org/abstracts/search?q=hyperparameter%20tuning" title=" hyperparameter tuning"> hyperparameter tuning</a>, <a href="https://publications.waset.org/abstracts/search?q=health%20expenditure" title=" health expenditure"> health expenditure</a> </p> <a href="https://publications.waset.org/abstracts/97629/optimization-of-machine-learning-regression-results-an-application-on-health-expenditures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97629.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">226</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">31</span> Gaits Stability Analysis for a Pneumatic Quadruped Robot Using Reinforcement Learning</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Soofiyan%20Atar">Soofiyan Atar</a>, <a href="https://publications.waset.org/abstracts/search?q=Adil%20Shaikh"> Adil Shaikh</a>, <a href="https://publications.waset.org/abstracts/search?q=Sahil%20Rajpurkar"> Sahil Rajpurkar</a>, <a href="https://publications.waset.org/abstracts/search?q=Pragnesh%20Bhalala"> Pragnesh Bhalala</a>, <a href="https://publications.waset.org/abstracts/search?q=Aniket%20Desai"> Aniket Desai</a>, <a href="https://publications.waset.org/abstracts/search?q=Irfan%20Siddavatam"> Irfan Siddavatam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Deep reinforcement learning (deep RL) algorithms leverage the symbolic power of complex controllers by automating it by mapping sensory inputs to low-level actions. Deep RL eliminates the complex robot dynamics with minimal engineering. Deep RL provides high-risk involvement by directly implementing it in real-world scenarios and also high sensitivity towards hyperparameters. Tuning of hyperparameters on a pneumatic quadruped robot becomes very expensive through trial-and-error learning. This paper presents an automated learning control for a pneumatic quadruped robot using sample efficient deep Q learning, enabling minimal tuning and very few trials to learn the neural network. Long training hours may degrade the pneumatic cylinder due to jerk actions originated through stochastic weights. We applied this method to the pneumatic quadruped robot, which resulted in a hopping gait. In our process, we eliminated the use of a simulator and acquired a stable gait. This approach evolves so that the resultant gait matures more sturdy towards any stochastic changes in the environment. We further show that our algorithm performed very well as compared to programmed gait using robot dynamics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=model-based%20reinforcement%20learning" title="model-based reinforcement learning">model-based reinforcement learning</a>, <a href="https://publications.waset.org/abstracts/search?q=gait%20stability" title=" gait stability"> gait stability</a>, <a href="https://publications.waset.org/abstracts/search?q=supervised%20learning" title=" supervised learning"> supervised learning</a>, <a href="https://publications.waset.org/abstracts/search?q=pneumatic%20quadruped" title=" pneumatic quadruped"> pneumatic quadruped</a> </p> <a href="https://publications.waset.org/abstracts/140524/gaits-stability-analysis-for-a-pneumatic-quadruped-robot-using-reinforcement-learning" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/140524.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">316</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">30</span> Detecting Music Enjoyment Level Using Electroencephalogram Signals and Machine Learning Techniques</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Raymond%20Feng">Raymond Feng</a>, <a href="https://publications.waset.org/abstracts/search?q=Shadi%20Ghiasi"> Shadi Ghiasi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An electroencephalogram (EEG) is a non-invasive technique that records electrical activity in the brain using scalp electrodes. Researchers have studied the use of EEG to detect emotions and moods by collecting signals from participants and analyzing how those signals correlate with their activities. In this study, researchers investigated the relationship between EEG signals and music enjoyment. Participants listened to music while data was collected. During the signal-processing phase, power spectral densities (PSDs) were computed from the signals, and dominant brainwave frequencies were extracted from the PSDs to form a comprehensive feature matrix. A machine learning approach was then taken to find correlations between the processed data and the music enjoyment level indicated by the participants. To improve on previous research, multiple machine learning models were employed, including K-Nearest Neighbors Classifier, Support Vector Classifier, and Decision Tree Classifier. Hyperparameters were used to fine-tune each model to further increase its performance. The experiments showed that a strong correlation exists, with the Decision Tree Classifier with hyperparameters yielding 85% accuracy. This study proves that EEG is a reliable means to detect music enjoyment and has future applications, including personalized music recommendation, mood adjustment, and mental health therapy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=EEG" title="EEG">EEG</a>, <a href="https://publications.waset.org/abstracts/search?q=electroencephalogram" title=" electroencephalogram"> electroencephalogram</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=mood" title=" mood"> mood</a>, <a href="https://publications.waset.org/abstracts/search?q=music%20enjoyment" title=" music enjoyment"> music enjoyment</a>, <a href="https://publications.waset.org/abstracts/search?q=physiological%20signals" title=" physiological signals"> physiological signals</a> </p> <a href="https://publications.waset.org/abstracts/182307/detecting-music-enjoyment-level-using-electroencephalogram-signals-and-machine-learning-techniques" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/182307.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">62</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">29</span> Grey Wolf Optimization Technique for Predictive Analysis of Products in E-Commerce: An Adaptive Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shital%20Suresh%20Borse">Shital Suresh Borse</a>, <a href="https://publications.waset.org/abstracts/search?q=Vijayalaxmi%20Kadroli"> Vijayalaxmi Kadroli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> E-commerce industries nowadays implement the latest AI, ML Techniques to improve their own performance and prediction accuracy. This helps to gain a huge profit from the online market. Ant Colony Optimization, Genetic algorithm, Particle Swarm Optimization, Neural Network & GWO help many e-commerce industries for up-gradation of their predictive performance. These algorithms are providing optimum results in various applications, such as stock price prediction, prediction of drug-target interaction & user ratings of similar products in e-commerce sites, etc. In this study, customer reviews will play an important role in prediction analysis. People showing much interest in buying a lot of services& products suggested by other customers. This ultimately increases net profit. In this work, a convolution neural network (CNN) is proposed which further is useful to optimize the prediction accuracy of an e-commerce website. This method shows that CNN is used to optimize hyperparameters of GWO algorithm using an appropriate coding scheme. Accurate model results are verified by comparing them to PSO results whose hyperparameters have been optimized by CNN in Amazon's customer review dataset. Here, experimental outcome proves that this proposed system using the GWO algorithm achieves superior execution in terms of accuracy, precision, recovery, etc. in prediction analysis compared to the existing systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=prediction%20analysis" title="prediction analysis">prediction analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=e-commerce" title=" e-commerce"> e-commerce</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=grey%20wolf%20optimization" title=" grey wolf optimization"> grey wolf optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20swarm%20optimization" title=" particle swarm optimization"> particle swarm optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=CNN" title=" CNN"> CNN</a> </p> <a href="https://publications.waset.org/abstracts/148039/grey-wolf-optimization-technique-for-predictive-analysis-of-products-in-e-commerce-an-adaptive-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/148039.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">113</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">28</span> A Hierarchical Method for Multi-Class Probabilistic Classification Vector Machines</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20Byrnes">P. Byrnes</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20A.%20DiazDelaO"> F. A. DiazDelaO</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Support Vector Machine (SVM) has become widely recognised as one of the leading algorithms in machine learning for both regression and binary classification. It expresses predictions in terms of a linear combination of kernel functions, referred to as support vectors. Despite its popularity amongst practitioners, SVM has some limitations, with the most significant being the generation of point prediction as opposed to predictive distributions. Stemming from this issue, a probabilistic model namely, Probabilistic Classification Vector Machines (PCVM), has been proposed which respects the original functional form of SVM whilst also providing a predictive distribution. As physical system designs become more complex, an increasing number of classification tasks involving industrial applications consist of more than two classes. Consequently, this research proposes a framework which allows for the extension of PCVM to a multi class setting. Additionally, the original PCVM framework relies on the use of type II maximum likelihood to provide estimates for both the kernel hyperparameters and model evidence. In a high dimensional multi class setting, however, this approach has been shown to be ineffective due to bad scaling as the number of classes increases. Accordingly, we propose the application of Markov Chain Monte Carlo (MCMC) based methods to provide a posterior distribution over both parameters and hyperparameters. The proposed framework will be validated against current multi class classifiers through synthetic and real life implementations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=probabilistic%20classification%20vector%20machines" title="probabilistic classification vector machines">probabilistic classification vector machines</a>, <a href="https://publications.waset.org/abstracts/search?q=multi%20class%20classification" title=" multi class classification"> multi class classification</a>, <a href="https://publications.waset.org/abstracts/search?q=MCMC" title=" MCMC"> MCMC</a>, <a href="https://publications.waset.org/abstracts/search?q=support%20vector%20machines" title=" support vector machines"> support vector machines</a> </p> <a href="https://publications.waset.org/abstracts/77928/a-hierarchical-method-for-multi-class-probabilistic-classification-vector-machines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77928.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">221</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">27</span> Developing a DNN Model for the Production of Biogas From a Hybrid BO-TPE System in an Anaerobic Wastewater Treatment Plant</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hadjer%20Sadoune">Hadjer Sadoune</a>, <a href="https://publications.waset.org/abstracts/search?q=Liza%20Lamini"> Liza Lamini</a>, <a href="https://publications.waset.org/abstracts/search?q=Scherazade%20Krim"> Scherazade Krim</a>, <a href="https://publications.waset.org/abstracts/search?q=Amel%20Djouadi"> Amel Djouadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Rachida%20Rihani"> Rachida Rihani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Deep neural networks are highly regarded for their accuracy in predicting intricate fermentation processes. Their ability to learn from a large amount of datasets through artificial intelligence makes them particularly effective models. The primary obstacle in improving the performance of these models is to carefully choose the suitable hyperparameters, including the neural network architecture (number of hidden layers and hidden units), activation function, optimizer, learning rate, and other relevant factors. This study predicts biogas production from real wastewater treatment plant data using a sophisticated approach: hybrid Bayesian optimization with a tree-structured Parzen estimator (BO-TPE) for an optimised deep neural network (DNN) model. The plant utilizes an Upflow Anaerobic Sludge Blanket (UASB) digester that treats industrial wastewater from soft drinks and breweries. The digester has a working volume of 1574 m3 and a total volume of 1914 m3. Its internal diameter and height were 19 and 7.14 m, respectively. The data preprocessing was conducted with meticulous attention to preserving data quality while avoiding data reduction. Three normalization techniques were applied to the pre-processed data (MinMaxScaler, RobustScaler and StandardScaler) and compared with the Non-Normalized data. The RobustScaler approach has strong predictive ability for estimating the volume of biogas produced. The highest predicted biogas volume was 2236.105 Nm³/d, with coefficient of determination (R2), mean absolute error (MAE), and root mean square error (RMSE) values of 0.712, 164.610, and 223.429, respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anaerobic%20digestion" title="anaerobic digestion">anaerobic digestion</a>, <a href="https://publications.waset.org/abstracts/search?q=biogas%20production" title=" biogas production"> biogas production</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20neural%20network" title=" deep neural network"> deep neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20bo-tpe" title=" hybrid bo-tpe"> hybrid bo-tpe</a>, <a href="https://publications.waset.org/abstracts/search?q=hyperparameters%20tuning" title=" hyperparameters tuning"> hyperparameters tuning</a> </p> <a href="https://publications.waset.org/abstracts/185307/developing-a-dnn-model-for-the-production-of-biogas-from-a-hybrid-bo-tpe-system-in-an-anaerobic-wastewater-treatment-plant" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/185307.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">38</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">26</span> Improve Student Performance Prediction Using Majority Vote Ensemble Model for Higher Education</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wade%20Ghribi">Wade Ghribi</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelmoty%20M.%20Ahmed"> Abdelmoty M. Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Said%20Badawy"> Ahmed Said Badawy</a>, <a href="https://publications.waset.org/abstracts/search?q=Belgacem%20Bouallegue"> Belgacem Bouallegue</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In higher education institutions, the most pressing priority is to improve student performance and retention. Large volumes of student data are used in Educational Data Mining techniques to find new hidden information from students' learning behavior, particularly to uncover the early symptom of at-risk pupils. On the other hand, data with noise, outliers, and irrelevant information may provide incorrect conclusions. By identifying features of students' data that have the potential to improve performance prediction results, comparing and identifying the most appropriate ensemble learning technique after preprocessing the data, and optimizing the hyperparameters, this paper aims to develop a reliable students' performance prediction model for Higher Education Institutions. Data was gathered from two different systems: a student information system and an e-learning system for undergraduate students in the College of Computer Science of a Saudi Arabian State University. The cases of 4413 students were used in this article. The process includes data collection, data integration, data preprocessing (such as cleaning, normalization, and transformation), feature selection, pattern extraction, and, finally, model optimization and assessment. Random Forest, Bagging, Stacking, Majority Vote, and two types of Boosting techniques, AdaBoost and XGBoost, are ensemble learning approaches, whereas Decision Tree, Support Vector Machine, and Artificial Neural Network are supervised learning techniques. Hyperparameters for ensemble learning systems will be fine-tuned to provide enhanced performance and optimal output. The findings imply that combining features of students' behavior from e-learning and students' information systems using Majority Vote produced better outcomes than the other ensemble techniques. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=educational%20data%20mining" title="educational data mining">educational data mining</a>, <a href="https://publications.waset.org/abstracts/search?q=student%20performance%20prediction" title=" student performance prediction"> student performance prediction</a>, <a href="https://publications.waset.org/abstracts/search?q=e-learning" title=" e-learning"> e-learning</a>, <a href="https://publications.waset.org/abstracts/search?q=classification" title=" classification"> classification</a>, <a href="https://publications.waset.org/abstracts/search?q=ensemble%20learning" title=" ensemble learning"> ensemble learning</a>, <a href="https://publications.waset.org/abstracts/search?q=higher%20education" title=" higher education"> higher education</a> </p> <a href="https://publications.waset.org/abstracts/149220/improve-student-performance-prediction-using-majority-vote-ensemble-model-for-higher-education" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/149220.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">108</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25</span> Systematic Evaluation of Convolutional Neural Network on Land Cover Classification from Remotely Sensed Images </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eiman%20Kattan">Eiman Kattan</a>, <a href="https://publications.waset.org/abstracts/search?q=Hong%20Wei"> Hong Wei</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In using Convolutional Neural Network (CNN) for classification, there is a set of hyperparameters available for the configuration purpose. This study aims to evaluate the impact of a range of parameters in CNN architecture i.e. AlexNet on land cover classification based on four remotely sensed datasets. The evaluation tests the influence of a set of hyperparameters on the classification performance. The parameters concerned are epoch values, batch size, and convolutional filter size against input image size. Thus, a set of experiments were conducted to specify the effectiveness of the selected parameters using two implementing approaches, named pertained and fine-tuned. We first explore the number of epochs under several selected batch size values (32, 64, 128 and 200). The impact of kernel size of convolutional filters (1, 3, 5, 7, 10, 15, 20, 25 and 30) was evaluated against the image size under testing (64, 96, 128, 180 and 224), which gave us insight of the relationship between the size of convolutional filters and image size. To generalise the validation, four remote sensing datasets, AID, RSD, UCMerced and RSCCN, which have different land covers and are publicly available, were used in the experiments. These datasets have a wide diversity of input data, such as number of classes, amount of labelled data, and texture patterns. A specifically designed interactive deep learning GPU training platform for image classification (Nvidia Digit) was employed in the experiments. It has shown efficiency in both training and testing. The results have shown that increasing the number of epochs leads to a higher accuracy rate, as expected. However, the convergence state is highly related to datasets. For the batch size evaluation, it has shown that a larger batch size slightly decreases the classification accuracy compared to a small batch size. For example, selecting the value 32 as the batch size on the RSCCN dataset achieves the accuracy rate of 90.34 % at the 11th epoch while decreasing the epoch value to one makes the accuracy rate drop to 74%. On the other extreme, setting an increased value of batch size to 200 decreases the accuracy rate at the 11th epoch is 86.5%, and 63% when using one epoch only. On the other hand, selecting the kernel size is loosely related to data set. From a practical point of view, the filter size 20 produces 70.4286%. The last performed image size experiment shows a dependency in the accuracy improvement. However, an expensive performance gain had been noticed. The represented conclusion opens the opportunities toward a better classification performance in various applications such as planetary remote sensing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CNNs" title="CNNs">CNNs</a>, <a href="https://publications.waset.org/abstracts/search?q=hyperparamters" title=" hyperparamters"> hyperparamters</a>, <a href="https://publications.waset.org/abstracts/search?q=remote%20sensing" title=" remote sensing"> remote sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=land%20cover" title=" land cover"> land cover</a>, <a href="https://publications.waset.org/abstracts/search?q=land%20use" title=" land use"> land use</a> </p> <a href="https://publications.waset.org/abstracts/81055/systematic-evaluation-of-convolutional-neural-network-on-land-cover-classification-from-remotely-sensed-images" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81055.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">169</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">24</span> Exploring the Impact of Input Sequence Lengths on Long Short-Term Memory-Based Streamflow Prediction in Flashy Catchments</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Farzad%20Hosseini%20Hossein%20Abadi">Farzad Hosseini Hossein Abadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Cristina%20Prieto%20Sierra"> Cristina Prieto Sierra</a>, <a href="https://publications.waset.org/abstracts/search?q=Cesar%20%C3%81lvarez%20D%C3%ADaz"> Cesar Álvarez Díaz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Predicting streamflow accurately in flashy catchments prone to floods is a major research and operational challenge in hydrological modeling. Recent advancements in deep learning, particularly Long Short-Term Memory (LSTM) networks, have shown to be promising in achieving accurate hydrological predictions at daily and hourly time scales. In this work, a multi-timescale LSTM (MTS-LSTM) network was applied to the context of regional hydrological predictions at an hourly time scale in flashy catchments. The case study includes 40 catchments allocated in the Basque Country, north of Spain. We explore the impact of hyperparameters on the performance of streamflow predictions given by regional deep learning models through systematic hyperparameter tuning - where optimal regional values for different catchments are identified. The results show that predictions are highly accurate, with Nash-Sutcliffe (NSE) and Kling-Gupta (KGE) metrics values as high as 0.98 and 0.97, respectively. A principal component analysis reveals that a hyperparameter related to the length of the input sequence contributes most significantly to the prediction performance. The findings suggest that input sequence lengths have a crucial impact on the model prediction performance. Moreover, employing catchment-scale analysis reveals distinct sequence lengths for individual basins, highlighting the necessity of customizing this hyperparameter based on each catchment’s characteristics. This aligns with well known “uniqueness of the place” paradigm. In prior research, tuning the length of the input sequence of LSTMs has received limited focus in the field of streamflow prediction. Initially it was set to 365 days to capture a full annual water cycle. Later, performing limited systematic hyper-tuning using grid search, revealed a modification to 270 days. However, despite the significance of this hyperparameter in hydrological predictions, usually studies have overlooked its tuning and fixed it to 365 days. This study, employing a simultaneous systematic hyperparameter tuning approach, emphasizes the critical role of input sequence length as an influential hyperparameter in configuring LSTMs for regional streamflow prediction. Proper tuning of this hyperparameter is essential for achieving accurate hourly predictions using deep learning models. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=LSTMs" title="LSTMs">LSTMs</a>, <a href="https://publications.waset.org/abstracts/search?q=streamflow" title=" streamflow"> streamflow</a>, <a href="https://publications.waset.org/abstracts/search?q=hyperparameters" title=" hyperparameters"> hyperparameters</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrology" title=" hydrology"> hydrology</a> </p> <a href="https://publications.waset.org/abstracts/184629/exploring-the-impact-of-input-sequence-lengths-on-long-short-term-memory-based-streamflow-prediction-in-flashy-catchments" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/184629.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">70</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">23</span> Facial Emotion Recognition with Convolutional Neural Network Based Architecture</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Koray%20U.%20Erbas">Koray U. Erbas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Neural networks are appealing for many applications since they are able to learn complex non-linear relationships between input and output data. As the number of neurons and layers in a neural network increase, it is possible to represent more complex relationships with automatically extracted features. Nowadays Deep Neural Networks (DNNs) are widely used in Computer Vision problems such as; classification, object detection, segmentation image editing etc. In this work, Facial Emotion Recognition task is performed by proposed Convolutional Neural Network (CNN)-based DNN architecture using FER2013 Dataset. Moreover, the effects of different hyperparameters (activation function, kernel size, initializer, batch size and network size) are investigated and ablation study results for Pooling Layer, Dropout and Batch Normalization are presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=convolutional%20neural%20network" title="convolutional neural network">convolutional neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20learning" title=" deep learning"> deep learning</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20learning%20based%20FER" title=" deep learning based FER"> deep learning based FER</a>, <a href="https://publications.waset.org/abstracts/search?q=facial%20emotion%20recognition" title=" facial emotion recognition"> facial emotion recognition</a> </p> <a href="https://publications.waset.org/abstracts/128197/facial-emotion-recognition-with-convolutional-neural-network-based-architecture" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/128197.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">274</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">22</span> A Context-Centric Chatbot for Cryptocurrency Using the Bidirectional Encoder Representations from Transformers Neural Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Qitao%20Xie">Qitao Xie</a>, <a href="https://publications.waset.org/abstracts/search?q=Qingquan%20Zhang"> Qingquan Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiaofei%20Zhang"> Xiaofei Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Di%20Tian"> Di Tian</a>, <a href="https://publications.waset.org/abstracts/search?q=Ruixuan%20Wen"> Ruixuan Wen</a>, <a href="https://publications.waset.org/abstracts/search?q=Ting%20Zhu"> Ting Zhu</a>, <a href="https://publications.waset.org/abstracts/search?q=Ping%20Yi"> Ping Yi</a>, <a href="https://publications.waset.org/abstracts/search?q=Xin%20Li"> Xin Li</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Inspired by the recent movement of digital currency, we are building a question answering system concerning the subject of cryptocurrency using Bidirectional Encoder Representations from Transformers (BERT). The motivation behind this work is to properly assist digital currency investors by directing them to the corresponding knowledge bases that can offer them help and increase the querying speed. BERT, one of newest language models in natural language processing, was investigated to improve the quality of generated responses. We studied different combinations of hyperparameters of the BERT model to obtain the best fit responses. Further, we created an intelligent chatbot for cryptocurrency using BERT. A chatbot using BERT shows great potential for the further advancement of a cryptocurrency market tool. We show that the BERT neural networks generalize well to other tasks by applying it successfully to cryptocurrency. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bidirectional%20encoder%20representations%20from%20transformers" title="bidirectional encoder representations from transformers">bidirectional encoder representations from transformers</a>, <a href="https://publications.waset.org/abstracts/search?q=BERT" title=" BERT"> BERT</a>, <a href="https://publications.waset.org/abstracts/search?q=chatbot" title=" chatbot"> chatbot</a>, <a href="https://publications.waset.org/abstracts/search?q=cryptocurrency" title=" cryptocurrency"> cryptocurrency</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20learning" title=" deep learning"> deep learning</a> </p> <a href="https://publications.waset.org/abstracts/129261/a-context-centric-chatbot-for-cryptocurrency-using-the-bidirectional-encoder-representations-from-transformers-neural-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/129261.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">147</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21</span> Representativity Based Wasserstein Active Regression</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Benjamin%20Bobbia">Benjamin Bobbia</a>, <a href="https://publications.waset.org/abstracts/search?q=Matthias%20Picard"> Matthias Picard</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years active learning methodologies based on the representativity of the data seems more promising to limit overfitting. The presented query methodology for regression using the Wasserstein distance measuring the representativity of our labelled dataset compared to the global distribution. In this work a crucial use of GroupSort Neural Networks is made therewith to draw a double advantage. The Wasserstein distance can be exactly expressed in terms of such neural networks. Moreover, one can provide explicit bounds for their size and depth together with rates of convergence. However, heterogeneity of the dataset is also considered by weighting the Wasserstein distance with the error of approximation at the previous step of active learning. Such an approach leads to a reduction of overfitting and high prediction performance after few steps of query. After having detailed the methodology and algorithm, an empirical study is presented in order to investigate the range of our hyperparameters. The performances of this method are compared, in terms of numbers of query needed, with other classical and recent query methods on several UCI datasets. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=active%20learning" title="active learning">active learning</a>, <a href="https://publications.waset.org/abstracts/search?q=Lipschitz%20regularization" title=" Lipschitz regularization"> Lipschitz regularization</a>, <a href="https://publications.waset.org/abstracts/search?q=neural%20networks" title=" neural networks"> neural networks</a>, <a href="https://publications.waset.org/abstracts/search?q=optimal%20transport" title=" optimal transport"> optimal transport</a>, <a href="https://publications.waset.org/abstracts/search?q=regression" title=" regression"> regression</a> </p> <a href="https://publications.waset.org/abstracts/163461/representativity-based-wasserstein-active-regression" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163461.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">80</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20</span> Physically Informed Kernels for Wave Loading Prediction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Daniel%20James%20Pitchforth">Daniel James Pitchforth</a>, <a href="https://publications.waset.org/abstracts/search?q=Timothy%20James%20Rogers"> Timothy James Rogers</a>, <a href="https://publications.waset.org/abstracts/search?q=Ulf%20Tyge%20Tygesen"> Ulf Tyge Tygesen</a>, <a href="https://publications.waset.org/abstracts/search?q=Elizabeth%20Jane%20Cross"> Elizabeth Jane Cross</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Wave loading is a primary cause of fatigue within offshore structures and its quantification presents a challenging and important subtask within the SHM framework. The accurate representation of physics in such environments is difficult, however, driving the development of data-driven techniques in recent years. Within many industrial applications, empirical laws remain the preferred method of wave loading prediction due to their low computational cost and ease of implementation. This paper aims to develop an approach that combines data-driven Gaussian process models with physical empirical solutions for wave loading, including Morison’s Equation. The aim here is to incorporate physics directly into the covariance function (kernel) of the Gaussian process, enforcing derived behaviors whilst still allowing enough flexibility to account for phenomena such as vortex shedding, which may not be represented within the empirical laws. The combined approach has a number of advantages, including improved performance over either component used independently and interpretable hyperparameters. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=offshore%20structures" title="offshore structures">offshore structures</a>, <a href="https://publications.waset.org/abstracts/search?q=Gaussian%20processes" title=" Gaussian processes"> Gaussian processes</a>, <a href="https://publications.waset.org/abstracts/search?q=Physics%20informed%20machine%20learning" title=" Physics informed machine learning"> Physics informed machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=Kernel%20design" title=" Kernel design"> Kernel design</a> </p> <a href="https://publications.waset.org/abstracts/146250/physically-informed-kernels-for-wave-loading-prediction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/146250.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">192</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19</span> Analysis of the 2023 Karnataka State Elections Using Online Sentiment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pranav%20Gunhal">Pranav Gunhal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents an analysis of sentiment on Twitter towards the Karnataka elections held in 2023, utilizing transformer-based models specifically designed for sentiment analysis in Indic languages. Through an innovative data collection approach involving a combination of novel methods of data augmentation, online data preceding the election was analyzed. The study focuses on sentiment classification, effectively distinguishing between positive, negative, and neutral posts while specifically targeting the sentiment regarding the loss of the Bharatiya Janata Party (BJP) or the win of the Indian National Congress (INC). Leveraging high-performing transformer architectures, specifically IndicBERT, coupled with specifically fine-tuned hyperparameters, the AI models employed in this study achieved remarkable accuracy in predicting the INC’s victory in the election. The findings shed new light on the potential of cutting-edge transformer-based models in capturing and analyzing sentiment dynamics within the Indian political landscape. The implications of this research are far-reaching, providing invaluable insights to political parties for informed decision-making and strategic planning in preparation for the forthcoming 2024 Lok Sabha elections in the nation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sentiment%20analysis" title="sentiment analysis">sentiment analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=twitter" title=" twitter"> twitter</a>, <a href="https://publications.waset.org/abstracts/search?q=Karnataka%20elections" title=" Karnataka elections"> Karnataka elections</a>, <a href="https://publications.waset.org/abstracts/search?q=congress" title=" congress"> congress</a>, <a href="https://publications.waset.org/abstracts/search?q=BJP" title=" BJP"> BJP</a>, <a href="https://publications.waset.org/abstracts/search?q=transformers" title=" transformers"> transformers</a>, <a href="https://publications.waset.org/abstracts/search?q=Indic%20languages" title=" Indic languages"> Indic languages</a>, <a href="https://publications.waset.org/abstracts/search?q=AI" title=" AI"> AI</a>, <a href="https://publications.waset.org/abstracts/search?q=novel%20architectures" title=" novel architectures"> novel architectures</a>, <a href="https://publications.waset.org/abstracts/search?q=IndicBERT" title=" IndicBERT"> IndicBERT</a>, <a href="https://publications.waset.org/abstracts/search?q=lok%20sabha%20elections" title=" lok sabha elections"> lok sabha elections</a> </p> <a href="https://publications.waset.org/abstracts/169101/analysis-of-the-2023-karnataka-state-elections-using-online-sentiment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/169101.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">85</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18</span> A Posteriori Trading-Inspired Model-Free Time Series Segmentation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Plessen%20Mogens%20Graf">Plessen Mogens Graf </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Within the context of multivariate time series segmentation, this paper proposes a method inspired by a posteriori optimal trading. After a normalization step, time series are treated channelwise as surrogate stock prices that can be traded optimally a posteriori in a virtual portfolio holding either stock or cash. Linear transaction costs are interpreted as hyperparameters for noise filtering. Trading signals, as well as trading signals obtained on the reversed time series, are used for unsupervised channelwise labeling before a consensus over all channels is reached that determines the final segmentation time instants. The method is model-free such that no model prescriptions for segments are made. Benefits of proposed approach include simplicity, computational efficiency, and adaptability to a wide range of different shapes of time series. Performance is demonstrated on synthetic and real-world data, including a large-scale dataset comprising a multivariate time series of dimension 1000 and length 2709. Proposed method is compared to a popular model-based bottom-up approach fitting piecewise affine models and to a recent model-based top-down approach fitting Gaussian models and found to be consistently faster while producing more intuitive results in the sense of segmenting time series at peaks and valleys. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=time%20series%20segmentation" title="time series segmentation">time series segmentation</a>, <a href="https://publications.waset.org/abstracts/search?q=model-free" title=" model-free"> model-free</a>, <a href="https://publications.waset.org/abstracts/search?q=trading-inspired" title=" trading-inspired"> trading-inspired</a>, <a href="https://publications.waset.org/abstracts/search?q=multivariate%20data" title=" multivariate data"> multivariate data</a> </p> <a href="https://publications.waset.org/abstracts/118916/a-posteriori-trading-inspired-model-free-time-series-segmentation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/118916.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">136</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17</span> AutoML: Comprehensive Review and Application to Engineering Datasets</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Parsa%20Mahdavi">Parsa Mahdavi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Amin%20Hariri-Ardebili"> M. Amin Hariri-Ardebili</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The development of accurate machine learning and deep learning models traditionally demands hands-on expertise and a solid background to fine-tune hyperparameters. With the continuous expansion of datasets in various scientific and engineering domains, researchers increasingly turn to machine learning methods to unveil hidden insights that may elude classic regression techniques. This surge in adoption raises concerns about the adequacy of the resultant meta-models and, consequently, the interpretation of the findings. In response to these challenges, automated machine learning (AutoML) emerges as a promising solution, aiming to construct machine learning models with minimal intervention or guidance from human experts. AutoML encompasses crucial stages such as data preparation, feature engineering, hyperparameter optimization, and neural architecture search. This paper provides a comprehensive overview of the principles underpinning AutoML, surveying several widely-used AutoML platforms. Additionally, the paper offers a glimpse into the application of AutoML on various engineering datasets. By comparing these results with those obtained through classical machine learning methods, the paper quantifies the uncertainties inherent in the application of a single ML model versus the holistic approach provided by AutoML. These examples showcase the efficacy of AutoML in extracting meaningful patterns and insights, emphasizing its potential to revolutionize the way we approach and analyze complex datasets. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=automated%20machine%20learning" title="automated machine learning">automated machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=uncertainty" title=" uncertainty"> uncertainty</a>, <a href="https://publications.waset.org/abstracts/search?q=engineering%20dataset" title=" engineering dataset"> engineering dataset</a>, <a href="https://publications.waset.org/abstracts/search?q=regression" title=" regression"> regression</a> </p> <a href="https://publications.waset.org/abstracts/176362/automl-comprehensive-review-and-application-to-engineering-datasets" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/176362.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">61</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16</span> Predicting Options Prices Using Machine Learning</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Krishang%20Surapaneni">Krishang Surapaneni</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The goal of this project is to determine how to predict important aspects of options, including the ask price. We want to compare different machine learning models to learn the best model and the best hyperparameters for that model for this purpose and data set. Option pricing is a relatively new field, and it can be very complicated and intimidating, especially to inexperienced people, so we want to create a machine learning model that can predict important aspects of an option stock, which can aid in future research. We tested multiple different models and experimented with hyperparameter tuning, trying to find some of the best parameters for a machine-learning model. We tested three different models: a Random Forest Regressor, a linear regressor, and an MLP (multi-layer perceptron) regressor. The most important feature in this experiment is the ask price; this is what we were trying to predict. In the field of stock pricing prediction, there is a large potential for error, so we are unable to determine the accuracy of the models based on if they predict the pricing perfectly. Due to this factor, we determined the accuracy of the model by finding the average percentage difference between the predicted and actual values. We tested the accuracy of the machine learning models by comparing the actual results in the testing data and the predictions made by the models. The linear regression model performed worst, with an average percentage error of 17.46%. The MLP regressor had an average percentage error of 11.45%, and the random forest regressor had an average percentage error of 7.42% <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=finance" title="finance">finance</a>, <a href="https://publications.waset.org/abstracts/search?q=linear%20regression%20model" title=" linear regression model"> linear regression model</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning%20model" title=" machine learning model"> machine learning model</a>, <a href="https://publications.waset.org/abstracts/search?q=neural%20network" title=" neural network"> neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=stock%20price" title=" stock price"> stock price</a> </p> <a href="https://publications.waset.org/abstracts/160197/predicting-options-prices-using-machine-learning" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/160197.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">75</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15</span> Bayesian Flexibility Modelling of the Conditional Autoregressive Prior in a Disease Mapping Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Davies%20Obaromi">Davies Obaromi</a>, <a href="https://publications.waset.org/abstracts/search?q=Qin%20Yongsong"> Qin Yongsong</a>, <a href="https://publications.waset.org/abstracts/search?q=James%20Ndege"> James Ndege</a>, <a href="https://publications.waset.org/abstracts/search?q=Azeez%20Adeboye"> Azeez Adeboye</a>, <a href="https://publications.waset.org/abstracts/search?q=Akinwumi%20Odeyemi"> Akinwumi Odeyemi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The basic model usually used in disease mapping, is the Besag, York and Mollie (BYM) model and which combines the spatially structured and spatially unstructured priors as random effects. Bayesian Conditional Autoregressive (CAR) model is a disease mapping method that is commonly used for smoothening the relative risk of any disease as used in the Besag, York and Mollie (BYM) model. This model (CAR), which is also usually assigned as a prior to one of the spatial random effects in the BYM model, successfully uses information from adjacent sites to improve estimates for individual sites. To our knowledge, there are some unrealistic or counter-intuitive consequences on the posterior covariance matrix of the CAR prior for the spatial random effects. In the conventional BYM (Besag, York and Mollie) model, the spatially structured and the unstructured random components cannot be seen independently, and which challenges the prior definitions for the hyperparameters of the two random effects. Therefore, the main objective of this study is to construct and utilize an extended Bayesian spatial CAR model for studying tuberculosis patterns in the Eastern Cape Province of South Africa, and then compare for flexibility with some existing CAR models. The results of the study revealed the flexibility and robustness of this alternative extended CAR to the commonly used CAR models by comparison, using the deviance information criteria. The extended Bayesian spatial CAR model is proved to be a useful and robust tool for disease modeling and as a prior for the structured spatial random effects because of the inclusion of an extra hyperparameter. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Besag2" title="Besag2">Besag2</a>, <a href="https://publications.waset.org/abstracts/search?q=CAR%20models" title=" CAR models"> CAR models</a>, <a href="https://publications.waset.org/abstracts/search?q=disease%20mapping" title=" disease mapping"> disease mapping</a>, <a href="https://publications.waset.org/abstracts/search?q=INLA" title=" INLA"> INLA</a>, <a href="https://publications.waset.org/abstracts/search?q=spatial%20models" title=" spatial models"> spatial models</a> </p> <a href="https://publications.waset.org/abstracts/77683/bayesian-flexibility-modelling-of-the-conditional-autoregressive-prior-in-a-disease-mapping-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77683.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">280</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14</span> A Multilayer Perceptron Neural Network Model Optimized by Genetic Algorithm for Significant Wave Height Prediction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Luis%20C.%20Parra">Luis C. Parra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The significant wave height prediction is an issue of great interest in the field of coastal activities because of the non-linear behavior of the wave height and its complexity of prediction. This study aims to present a machine learning model to forecast the significant wave height of the oceanographic wave measuring buoys anchored at Mooloolaba of the Queensland Government Data. Modeling was performed by a multilayer perceptron neural network-genetic algorithm (GA-MLP), considering Relu(x) as the activation function of the MLPNN. The GA is in charge of optimized the MLPNN hyperparameters (learning rate, hidden layers, neurons, and activation functions) and wrapper feature selection for the window width size. Results are assessed using Mean Square Error (MSE), Root Mean Square Error (RMSE), and Mean Absolute Error (MAE). The GAMLPNN algorithm was performed with a population size of thirty individuals for eight generations for the prediction optimization of 5 steps forward, obtaining a performance evaluation of 0.00104 MSE, 0.03222 RMSE, 0.02338 MAE, and 0.71163% of MAPE. The results of the analysis suggest that the MLPNNGA model is effective in predicting significant wave height in a one-step forecast with distant time windows, presenting 0.00014 MSE, 0.01180 RMSE, 0.00912 MAE, and 0.52500% of MAPE with 0.99940 of correlation factor. The GA-MLP algorithm was compared with the ARIMA forecasting model, presenting better performance criteria in all performance criteria, validating the potential of this algorithm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=significant%20wave%20height" title="significant wave height">significant wave height</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning%20optimization" title=" machine learning optimization"> machine learning optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=multilayer%20perceptron%20neural%20networks" title=" multilayer perceptron neural networks"> multilayer perceptron neural networks</a>, <a href="https://publications.waset.org/abstracts/search?q=evolutionary%20algorithms" title=" evolutionary algorithms"> evolutionary algorithms</a> </p> <a href="https://publications.waset.org/abstracts/153526/a-multilayer-perceptron-neural-network-model-optimized-by-genetic-algorithm-for-significant-wave-height-prediction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/153526.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">107</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13</span> Neural Network based Risk Detection for Dyslexia and Dysgraphia in Sinhala Language Speaking Children</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Budhvin%20T.%20Withana">Budhvin T. Withana</a>, <a href="https://publications.waset.org/abstracts/search?q=Sulochana%20Rupasinghe"> Sulochana Rupasinghe</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The educational system faces a significant concern with regards to Dyslexia and Dysgraphia, which are learning disabilities impacting reading and writing abilities. This is particularly challenging for children who speak the Sinhala language due to its complexity and uniqueness. Commonly used methods to detect the risk of Dyslexia and Dysgraphia rely on subjective assessments, leading to limited coverage and time-consuming processes. Consequently, delays in diagnoses and missed opportunities for early intervention can occur. To address this issue, the project developed a hybrid model that incorporates various deep learning techniques to detect the risk of Dyslexia and Dysgraphia. Specifically, Resnet50, VGG16, and YOLOv8 models were integrated to identify handwriting issues. The outputs of these models were then combined with other input data and fed into an MLP model. Hyperparameters of the MLP model were fine-tuned using Grid Search CV, enabling the identification of optimal values for the model. This approach proved to be highly effective in accurately predicting the risk of Dyslexia and Dysgraphia, providing a valuable tool for early detection and intervention. The Resnet50 model exhibited a training accuracy of 0.9804 and a validation accuracy of 0.9653. The VGG16 model achieved a training accuracy of 0.9991 and a validation accuracy of 0.9891. The MLP model demonstrated impressive results with a training accuracy of 0.99918, a testing accuracy of 0.99223, and a loss of 0.01371. These outcomes showcase the high accuracy achieved by the proposed hybrid model in predicting the risk of Dyslexia and Dysgraphia. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=neural%20networks" title="neural networks">neural networks</a>, <a href="https://publications.waset.org/abstracts/search?q=risk%20detection%20system" title=" risk detection system"> risk detection system</a>, <a href="https://publications.waset.org/abstracts/search?q=dyslexia" title=" dyslexia"> dyslexia</a>, <a href="https://publications.waset.org/abstracts/search?q=dysgraphia" title=" dysgraphia"> dysgraphia</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20learning" title=" deep learning"> deep learning</a>, <a href="https://publications.waset.org/abstracts/search?q=learning%20disabilities" title=" learning disabilities"> learning disabilities</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20science" title=" data science"> data science</a> </p> <a href="https://publications.waset.org/abstracts/167336/neural-network-based-risk-detection-for-dyslexia-and-dysgraphia-in-sinhala-language-speaking-children" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167336.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">64</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12</span> Neural Network-based Risk Detection for Dyslexia and Dysgraphia in Sinhala Language Speaking Children</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Budhvin%20T.%20Withana">Budhvin T. Withana</a>, <a href="https://publications.waset.org/abstracts/search?q=Sulochana%20Rupasinghe"> Sulochana Rupasinghe</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The problem of Dyslexia and Dysgraphia, two learning disabilities that affect reading and writing abilities, respectively, is a major concern for the educational system. Due to the complexity and uniqueness of the Sinhala language, these conditions are especially difficult for children who speak it. The traditional risk detection methods for Dyslexia and Dysgraphia frequently rely on subjective assessments, making it difficult to cover a wide range of risk detection and time-consuming. As a result, diagnoses may be delayed and opportunities for early intervention may be lost. The project was approached by developing a hybrid model that utilized various deep learning techniques for detecting risk of Dyslexia and Dysgraphia. Specifically, Resnet50, VGG16 and YOLOv8 were integrated to detect the handwriting issues, and their outputs were fed into an MLP model along with several other input data. The hyperparameters of the MLP model were fine-tuned using Grid Search CV, which allowed for the optimal values to be identified for the model. This approach proved to be effective in accurately predicting the risk of Dyslexia and Dysgraphia, providing a valuable tool for early detection and intervention of these conditions. The Resnet50 model achieved an accuracy of 0.9804 on the training data and 0.9653 on the validation data. The VGG16 model achieved an accuracy of 0.9991 on the training data and 0.9891 on the validation data. The MLP model achieved an impressive training accuracy of 0.99918 and a testing accuracy of 0.99223, with a loss of 0.01371. These results demonstrate that the proposed hybrid model achieved a high level of accuracy in predicting the risk of Dyslexia and Dysgraphia. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=neural%20networks" title="neural networks">neural networks</a>, <a href="https://publications.waset.org/abstracts/search?q=risk%20detection%20system" title=" risk detection system"> risk detection system</a>, <a href="https://publications.waset.org/abstracts/search?q=Dyslexia" title=" Dyslexia"> Dyslexia</a>, <a href="https://publications.waset.org/abstracts/search?q=Dysgraphia" title=" Dysgraphia"> Dysgraphia</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20learning" title=" deep learning"> deep learning</a>, <a href="https://publications.waset.org/abstracts/search?q=learning%20disabilities" title=" learning disabilities"> learning disabilities</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20science" title=" data science"> data science</a> </p> <a href="https://publications.waset.org/abstracts/167325/neural-network-based-risk-detection-for-dyslexia-and-dysgraphia-in-sinhala-language-speaking-children" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167325.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">114</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11</span> Hyper Parameter Optimization of Deep Convolutional Neural Networks for Pavement Distress Classification</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Oumaima%20Khlifati">Oumaima Khlifati</a>, <a href="https://publications.waset.org/abstracts/search?q=Khadija%20Baba"> Khadija Baba</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pavement distress is the main factor responsible for the deterioration of road structure durability, damage vehicles, and driver comfort. Transportation agencies spend a high proportion of their funds on pavement monitoring and maintenance. The auscultation of pavement distress was based on the manual survey, which was extremely time consuming, labor intensive, and required domain expertise. Therefore, the automatic distress detection is needed to reduce the cost of manual inspection and avoid more serious damage by implementing the appropriate remediation actions at the right time. Inspired by recent deep learning applications, this paper proposes an algorithm for automatic road distress detection and classification using on the Deep Convolutional Neural Network (DCNN). In this study, the types of pavement distress are classified as transverse or longitudinal cracking, alligator, pothole, and intact pavement. The dataset used in this work is composed of public asphalt pavement images. In order to learn the structure of the different type of distress, the DCNN models are trained and tested as a multi-label classification task. In addition, to get the highest accuracy for our model, we adjust the structural optimization hyper parameters such as the number of convolutions and max pooling, filers, size of filters, loss functions, activation functions, and optimizer and fine-tuning hyper parameters that conclude batch size and learning rate. The optimization of the model is executed by checking all feasible combinations and selecting the best performing one. The model, after being optimized, performance metrics is calculated, which describe the training and validation accuracies, precision, recall, and F1 score. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=distress%20pavement" title="distress pavement">distress pavement</a>, <a href="https://publications.waset.org/abstracts/search?q=hyperparameters" title=" hyperparameters"> hyperparameters</a>, <a href="https://publications.waset.org/abstracts/search?q=automatic%20classification" title=" automatic classification"> automatic classification</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20learning" title=" deep learning"> deep learning</a> </p> <a href="https://publications.waset.org/abstracts/156783/hyper-parameter-optimization-of-deep-convolutional-neural-networks-for-pavement-distress-classification" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/156783.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">93</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10</span> A Hierarchical Bayesian Calibration of Data-Driven Models for Composite Laminate Consolidation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nikolaos%20Papadimas">Nikolaos Papadimas</a>, <a href="https://publications.waset.org/abstracts/search?q=Joanna%20Bennett"> Joanna Bennett</a>, <a href="https://publications.waset.org/abstracts/search?q=Amir%20Sakhaei"> Amir Sakhaei</a>, <a href="https://publications.waset.org/abstracts/search?q=Timothy%20Dodwell"> Timothy Dodwell</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Composite modeling of consolidation processes is playing an important role in the process and part design by indicating the formation of possible unwanted prior to expensive experimental iterative trial and development programs. Composite materials in their uncured state display complex constitutive behavior, which has received much academic interest, and this with different models proposed. Errors from modeling and statistical which arise from this fitting will propagate through any simulation in which the material model is used. A general hyperelastic polynomial representation was proposed, which can be readily implemented in various nonlinear finite element packages. In our case, FEniCS was chosen. The coefficients are assumed uncertain, and therefore the distribution of parameters learned using Markov Chain Monte Carlo (MCMC) methods. In engineering, the approach often followed is to select a single set of model parameters, which on average, best fits a set of experiments. There are good statistical reasons why this is not a rigorous approach to take. To overcome these challenges, A hierarchical Bayesian framework was proposed in which population distribution of model parameters is inferred from an ensemble of experiments tests. The resulting sampled distribution of hyperparameters is approximated using Maximum Entropy methods so that the distribution of samples can be readily sampled when embedded within a stochastic finite element simulation. The methodology is validated and demonstrated on a set of consolidation experiments of AS4/8852 with various stacking sequences. The resulting distributions are then applied to stochastic finite element simulations of the consolidation of curved parts, leading to a distribution of possible model outputs. With this, the paper, as far as the authors are aware, represents the first stochastic finite element implementation in composite process modelling. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=data-driven" title="data-driven ">data-driven </a>, <a href="https://publications.waset.org/abstracts/search?q=material%20consolidation" title=" material consolidation"> material consolidation</a>, <a href="https://publications.waset.org/abstracts/search?q=stochastic%20finite%20%20elements" title=" stochastic finite elements"> stochastic finite elements</a>, <a href="https://publications.waset.org/abstracts/search?q=surrogate%20models" title=" surrogate models"> surrogate models</a> </p> <a href="https://publications.waset.org/abstracts/136517/a-hierarchical-bayesian-calibration-of-data-driven-models-for-composite-laminate-consolidation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/136517.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">146</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> A Comparison of Convolutional Neural Network Architectures for the Classification of Alzheimer’s Disease Patients Using MRI Scans</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tomas%20Premoli">Tomas Premoli</a>, <a href="https://publications.waset.org/abstracts/search?q=Sareh%20Rowlands"> Sareh Rowlands</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, we investigate the impact of various convolutional neural network (CNN) architectures on the accuracy of diagnosing Alzheimer’s disease (AD) using patient MRI scans. Alzheimer’s disease is a debilitating neurodegenerative disorder that affects millions worldwide. Early, accurate, and non-invasive diagnostic methods are required for providing optimal care and symptom management. Deep learning techniques, particularly CNNs, have shown great promise in enhancing this diagnostic process. We aim to contribute to the ongoing research in this field by comparing the effectiveness of different CNN architectures and providing insights for future studies. Our methodology involved preprocessing MRI data, implementing multiple CNN architectures, and evaluating the performance of each model. We employed intensity normalization, linear registration, and skull stripping for our preprocessing. The selected architectures included VGG, ResNet, and DenseNet models, all implemented using the Keras library. We employed transfer learning and trained models from scratch to compare their effectiveness. Our findings demonstrated significant differences in performance among the tested architectures, with DenseNet201 achieving the highest accuracy of 86.4%. Transfer learning proved to be helpful in improving model performance. We also identified potential areas for future research, such as experimenting with other architectures, optimizing hyperparameters, and employing fine-tuning strategies. By providing a comprehensive analysis of the selected CNN architectures, we offer a solid foundation for future research in Alzheimer’s disease diagnosis using deep learning techniques. Our study highlights the potential of CNNs as a valuable diagnostic tool and emphasizes the importance of ongoing research to develop more accurate and effective models. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alzheimer%E2%80%99s%20disease" title="Alzheimer’s disease">Alzheimer’s disease</a>, <a href="https://publications.waset.org/abstracts/search?q=convolutional%20neural%20networks" title=" convolutional neural networks"> convolutional neural networks</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20learning" title=" deep learning"> deep learning</a>, <a href="https://publications.waset.org/abstracts/search?q=medical%20imaging" title=" medical imaging"> medical imaging</a>, <a href="https://publications.waset.org/abstracts/search?q=MRI" title=" MRI"> MRI</a> </p> <a href="https://publications.waset.org/abstracts/176580/a-comparison-of-convolutional-neural-network-architectures-for-the-classification-of-alzheimers-disease-patients-using-mri-scans" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/176580.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">73</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> Investigating the Effectiveness of Multilingual NLP Models for Sentiment Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Othmane%20Touri">Othmane Touri</a>, <a href="https://publications.waset.org/abstracts/search?q=Sanaa%20El%20Filali"> Sanaa El Filali</a>, <a href="https://publications.waset.org/abstracts/search?q=El%20Habib%20Benlahmar"> El Habib Benlahmar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Natural Language Processing (NLP) has gained significant attention lately. It has proved its ability to analyze and extract insights from unstructured text data in various languages. It is found that one of the most popular NLP applications is sentiment analysis which aims to identify the sentiment expressed in a piece of text, such as positive, negative, or neutral, in multiple languages. While there are several multilingual NLP models available for sentiment analysis, there is a need to investigate their effectiveness in different contexts and applications. In this study, we aim to investigate the effectiveness of different multilingual NLP models for sentiment analysis on a dataset of online product reviews in multiple languages. The performance of several NLP models, including Google Cloud Natural Language API, Microsoft Azure Cognitive Services, Amazon Comprehend, Stanford CoreNLP, spaCy, and Hugging Face Transformers are being compared. The models based on several metrics, including accuracy, precision, recall, and F1 score, are being evaluated and compared to their performance across different categories of product reviews. In order to run the study, preprocessing of the dataset has been performed by cleaning and tokenizing the text data in multiple languages. Then training and testing each model has been applied using a cross-validation approach where randomly dividing the dataset into training and testing sets and repeating the process multiple times has been used. A grid search approach to optimize the hyperparameters of each model and select the best-performing model for each category of product reviews and language has been applied. The findings of this study provide insights into the effectiveness of different multilingual NLP models for Multilingual Sentiment Analysis and their suitability for different languages and applications. The strengths and limitations of each model were identified, and recommendations for selecting the most performant model based on the specific requirements of a project were provided. This study contributes to the advancement of research methods in multilingual NLP and provides a practical guide for researchers and practitioners in the field. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=NLP" title="NLP">NLP</a>, <a href="https://publications.waset.org/abstracts/search?q=multilingual" title=" multilingual"> multilingual</a>, <a href="https://publications.waset.org/abstracts/search?q=sentiment%20analysis" title=" sentiment analysis"> sentiment analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=texts" title=" texts"> texts</a> </p> <a href="https://publications.waset.org/abstracts/166284/investigating-the-effectiveness-of-multilingual-nlp-models-for-sentiment-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/166284.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">104</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> A Support Vector Machine Learning Prediction Model of Evapotranspiration Using Real-Time Sensor Node Data</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Waqas%20Ahmed%20Khan%20Afridi">Waqas Ahmed Khan Afridi</a>, <a href="https://publications.waset.org/abstracts/search?q=Subhas%20Chandra%20Mukhopadhyay"> Subhas Chandra Mukhopadhyay</a>, <a href="https://publications.waset.org/abstracts/search?q=Bandita%20Mainali"> Bandita Mainali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The research paper presents a unique approach to evapotranspiration (ET) prediction using a Support Vector Machine (SVM) learning algorithm. The study leverages real-time sensor node data to develop an accurate and adaptable prediction model, addressing the inherent challenges of traditional ET estimation methods. The integration of the SVM algorithm with real-time sensor node data offers great potential to improve spatial and temporal resolution in ET predictions. In the model development, key input features are measured and computed using mathematical equations such as Penman-Monteith (FAO56) and soil water balance (SWB), which include soil-environmental parameters such as; solar radiation (Rs), air temperature (T), atmospheric pressure (P), relative humidity (RH), wind speed (u2), rain (R), deep percolation (DP), soil temperature (ST), and change in soil moisture (∆SM). The one-year field data are split into combinations of three proportions i.e. train, test, and validation sets. While kernel functions with tuning hyperparameters have been used to train and improve the accuracy of the prediction model with multiple iterations. This paper also outlines the existing methods and the machine learning techniques to determine Evapotranspiration, data collection and preprocessing, model construction, and evaluation metrics, highlighting the significance of SVM in advancing the field of ET prediction. The results demonstrate the robustness and high predictability of the developed model on the basis of performance evaluation metrics (R2, RMSE, MAE). The effectiveness of the proposed model in capturing complex relationships within soil and environmental parameters provide insights into its potential applications for water resource management and hydrological ecosystem. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=evapotranspiration" title="evapotranspiration">evapotranspiration</a>, <a href="https://publications.waset.org/abstracts/search?q=FAO56" title=" FAO56"> FAO56</a>, <a href="https://publications.waset.org/abstracts/search?q=KNIME" title=" KNIME"> KNIME</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=RStudio" title=" RStudio"> RStudio</a>, <a href="https://publications.waset.org/abstracts/search?q=SVM" title=" SVM"> SVM</a>, <a href="https://publications.waset.org/abstracts/search?q=sensors" title=" sensors"> sensors</a> </p> <a href="https://publications.waset.org/abstracts/177750/a-support-vector-machine-learning-prediction-model-of-evapotranspiration-using-real-time-sensor-node-data" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/177750.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">69</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> Machine Learning Approaches to Water Usage Prediction in Kocaeli: A Comparative Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kasim%20G%C3%B6renekli">Kasim Görenekli</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20G%C3%BClba%C4%9F"> Ali Gülbağ</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study presents a comprehensive analysis of water consumption patterns in Kocaeli province, Turkey, utilizing various machine learning approaches. We analyzed data from 5,000 water subscribers across residential, commercial, and official categories over an 80-month period from January 2016 to August 2022, resulting in a total of 400,000 records. The dataset encompasses water consumption records, weather information, weekends and holidays, previous months' consumption, and the influence of the COVID-19 pandemic.We implemented and compared several machine learning models, including Linear Regression, Random Forest, Support Vector Regression (SVR), XGBoost, Artificial Neural Networks (ANN), Long Short-Term Memory (LSTM), and Gated Recurrent Units (GRU). Particle Swarm Optimization (PSO) was applied to optimize hyperparameters for all models.Our results demonstrate varying performance across subscriber types and models. For official subscribers, Random Forest achieved the highest R² of 0.699 with PSO optimization. For commercial subscribers, Linear Regression performed best with an R² of 0.730 with PSO. Residential water usage proved more challenging to predict, with XGBoost achieving the highest R² of 0.572 with PSO.The study identified key factors influencing water consumption, with previous months' consumption, meter diameter, and weather conditions being among the most significant predictors. The impact of the COVID-19 pandemic on consumption patterns was also observed, particularly in residential usage.This research provides valuable insights for effective water resource management in Kocaeli and similar regions, considering Turkey's high water loss rate and below-average per capita water supply. The comparative analysis of different machine learning approaches offers a comprehensive framework for selecting appropriate models for water consumption prediction in urban settings. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mMachine%20learning" title="mMachine learning">mMachine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20consumption%20prediction" title=" water consumption prediction"> water consumption prediction</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20swarm%20optimization" title=" particle swarm optimization"> particle swarm optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=COVID-19" title=" COVID-19"> COVID-19</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20resource%20management" title=" water resource management"> water resource management</a> </p> <a href="https://publications.waset.org/abstracts/193028/machine-learning-approaches-to-water-usage-prediction-in-kocaeli-a-comparative-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/193028.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">15</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> Comparison of Existing Predictor and Development of Computational Method for S- Palmitoylation Site Identification in Arabidopsis Thaliana</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ayesha%20Sanjana%20Kawser%20Parsha">Ayesha Sanjana Kawser Parsha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> S-acylation is an irreversible bond in which cysteine residues are linked to fatty acids palmitate (74%) or stearate (22%), either at the COOH or NH2 terminal, via a thioester linkage. There are several experimental methods that can be used to identify the S-palmitoylation site; however, since they require a lot of time, computational methods are becoming increasingly necessary. There aren't many predictors, however, that can locate S- palmitoylation sites in Arabidopsis Thaliana with sufficient accuracy. This research is based on the importance of building a better prediction tool. To identify the type of machine learning algorithm that predicts this site more accurately for the experimental dataset, several prediction tools were examined in this research, including the GPS PALM 6.0, pCysMod, GPS LIPID 1.0, CSS PALM 4.0, and NBA PALM. These analyses were conducted by constructing the receiver operating characteristics plot and the area under the curve score. An AI-driven deep learning-based prediction tool has been developed utilizing the analysis and three sequence-based input data, such as the amino acid composition, binary encoding profile, and autocorrelation features. The model was developed using five layers, two activation functions, associated parameters, and hyperparameters. The model was built using various combinations of features, and after training and validation, it performed better when all the features were present while using the experimental dataset for 8 and 10-fold cross-validations. While testing the model with unseen and new data, such as the GPS PALM 6.0 plant and pCysMod mouse, the model performed better, and the area under the curve score was near 1. It can be demonstrated that this model outperforms the prior tools in predicting the S- palmitoylation site in the experimental data set by comparing the area under curve score of 10-fold cross-validation of the new model with the established tools' area under curve score with their respective training sets. The objective of this study is to develop a prediction tool for Arabidopsis Thaliana that is more accurate than current tools, as measured by the area under the curve score. Plant food production and immunological treatment targets can both be managed by utilizing this method to forecast S- palmitoylation sites. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=S-%20palmitoylation" title="S- palmitoylation">S- palmitoylation</a>, <a href="https://publications.waset.org/abstracts/search?q=ROC%20PLOT" title=" ROC PLOT"> ROC PLOT</a>, <a href="https://publications.waset.org/abstracts/search?q=area%20under%20the%20curve" title=" area under the curve"> area under the curve</a>, <a href="https://publications.waset.org/abstracts/search?q=cross-%20validation%20score" title=" cross- validation score"> cross- validation score</a> </p> <a href="https://publications.waset.org/abstracts/167082/comparison-of-existing-predictor-and-development-of-computational-method-for-s-palmitoylation-site-identification-in-arabidopsis-thaliana" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167082.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">77</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> Long Short-Term Memory Stream Cruise Control Method for Automated Drift Detection and Adaptation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Abu-Shaira">Mohammad Abu-Shaira</a>, <a href="https://publications.waset.org/abstracts/search?q=Weishi%20Shi"> Weishi Shi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Adaptive learning, a commonly employed solution to drift, involves updating predictive models online during their operation to react to concept drifts, thereby serving as a critical component and natural extension for online learning systems that learn incrementally from each example. This paper introduces LSTM-SCCM “Long Short-Term Memory Stream Cruise Control Method”, a drift adaptation-as-a-service framework for online learning. LSTM-SCCM automates drift adaptation through prompt detection, drift magnitude quantification, dynamic hyperparameter tuning, performing shortterm optimization and model recalibration for immediate adjustments, and, when necessary, conducting long-term model recalibration to ensure deeper enhancements in model performance. LSTM-SCCM is incorporated into a suite of cutting-edge online regression models, assessing their performance across various types of concept drift using diverse datasets with varying characteristics. The findings demonstrate that LSTM-SCCM represents a notable advancement in both model performance and efficacy in handling concept drift occurrences. LSTM-SCCM stands out as the sole framework adept at effectively tackling concept drifts within regression scenarios. Its proactive approach to drift adaptation distinguishes it from conventional reactive methods, which typically rely on retraining after significant degradation to model performance caused by drifts. Additionally, LSTM-SCCM employs an in-memory approach combined with the Self-Adjusting Memory (SAM) architecture to enhance real-time processing and adaptability. The framework incorporates variable thresholding techniques and does not assume any particular data distribution, making it an ideal choice for managing high-dimensional datasets and efficiently handling large-scale data. Our experiments, which include abrupt, incremental, and gradual drifts across both low- and high-dimensional datasets with varying noise levels, and applied to four state-of-the-art online regression models, demonstrate that LSTM-SCCM is versatile and effective, rendering it a valuable solution for online regression models to address concept drift. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=automated%20drift%20detection%20and%20adaptation" title="automated drift detection and adaptation">automated drift detection and adaptation</a>, <a href="https://publications.waset.org/abstracts/search?q=concept%20drift" title=" concept drift"> concept drift</a>, <a href="https://publications.waset.org/abstracts/search?q=hyperparameters%20optimization" title=" hyperparameters optimization"> hyperparameters optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=online%20and%20adaptive%20learning" title=" online and adaptive learning"> online and adaptive learning</a>, <a href="https://publications.waset.org/abstracts/search?q=regression" title=" regression"> regression</a> </p> <a href="https://publications.waset.org/abstracts/193474/long-short-term-memory-stream-cruise-control-method-for-automated-drift-detection-and-adaptation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/193474.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">12</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hyperparameters&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hyperparameters&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10