CINXE.COM
Search results for: contamination factor
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: contamination factor</title> <meta name="description" content="Search results for: contamination factor"> <meta name="keywords" content="contamination factor"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="contamination factor" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="contamination factor"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 6062</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: contamination factor</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6062</span> Heavy Metal Contamination of a Dumpsite Environment as Assessed with Pollution Indices</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Olubunmi%20S.%20Shittu">Olubunmi S. Shittu</a>, <a href="https://publications.waset.org/abstracts/search?q=Olufemi%20J.%20Ayodele"> Olufemi J. Ayodele</a>, <a href="https://publications.waset.org/abstracts/search?q=Augustus%20O.%20A.%20Ilori"> Augustus O. A. Ilori</a>, <a href="https://publications.waset.org/abstracts/search?q=Abidemi%20O.%20Filani"> Abidemi O. Filani</a>, <a href="https://publications.waset.org/abstracts/search?q=Adetola%20T.%20Afuye"> Adetola T. Afuye</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Indiscriminate refuse dumping in and around Ado-Ekiti combined with improper management of few available dumpsites, such as Ilokun dumpsite, posed the threat of heavy metals pollution in the surrounding soils and underground water that needs assessment using pollution indices. Surface soils (0-15 cm) were taken from the centre of Ilokun dumpsite (0 m) and environs at different directions and distances during the dry and wet seasons, as well as a background sample at 1000 m away, adjacent to the dumpsite at Ilokun, Ado-Ekiti, Nigeria. The concentration of heavy metals used to calculate the pollution indices for the soils were determined using Atomic Adsorption Spectrophotometer. The soils recorded high concentrations of all the heavy metals above the background concentrations irrespective of the season with highest concentrations at the 0 m except Ni and Fe at 50 m during the dry and wet season, respectively. The heavy metals concentration were in the order of Ni > Mn > Pb > Cr > Cu > Cd > Fe during the dry season, and Fe > Cr > Cu > Pb > Ni > Cd > Mn during the wet season. Using the Contamination Factor (CF), the soils were classified to be moderately contaminated with Cd and Fe to very high contamination with other metals during the dry season and low Cd contamination (0.87), moderate contamination with Fe, Pb, Mn and Ni and very high contamination with Cr and Cu during the wet season. At both seasons, the Pollution Load Index (PLI) indicates the soils to be generally polluted with heavy metals and the Geoaccumulation Index (I<em><sub>geo</sub></em>) calculated shown the soils to be in unpolluted to moderately polluted levels. Enrichment Factor (EF) implied the soils to be deficiently enriched with all the heavy metals except Cr (7.90) and Cu (6.42) that were at significantly enrichment levels during the wet season. Modified Degree of Contamination (mC<sub>d</sub>) recorded, indicated the soils to be of very high to extremely high degree of contamination during the dry season and moderate degree of contamination during the wet season except 0 m with high degree of contamination. The concentration of heavy metals in the soils combined with some of the pollution indices indicated the soils in and around the Ilokun Dumpsite are being polluted with heavy metals from anthropogenic sources constituted by the indiscriminate refuse dumping. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=contamination%20factor" title="contamination factor">contamination factor</a>, <a href="https://publications.waset.org/abstracts/search?q=enrichment%20factor" title=" enrichment factor"> enrichment factor</a>, <a href="https://publications.waset.org/abstracts/search?q=geoaccumulation%20index" title=" geoaccumulation index"> geoaccumulation index</a>, <a href="https://publications.waset.org/abstracts/search?q=modified%20degree%20of%20contamination" title=" modified degree of contamination"> modified degree of contamination</a>, <a href="https://publications.waset.org/abstracts/search?q=pollution%20load%20index" title=" pollution load index"> pollution load index</a> </p> <a href="https://publications.waset.org/abstracts/73809/heavy-metal-contamination-of-a-dumpsite-environment-as-assessed-with-pollution-indices" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73809.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">393</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6061</span> Heavy Metal Pollution in Soils of Yelagirihills,Tamilnadu by EDXRF Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chandrasekaran">Chandrasekaran</a>, <a href="https://publications.waset.org/abstracts/search?q=Ravisankar%20N.%20Harikrishnan"> Ravisankar N. Harikrishnan</a>, <a href="https://publications.waset.org/abstracts/search?q=Rajalakshmi"> Rajalakshmi</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20K.%20Satapathy%20M.%20V.%20R.%20Prasad"> K. K. Satapathy M. V. R. Prasad</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20V.%20Kanagasabapathy"> K. V. Kanagasabapathy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Heavy metals were considered as highly toxic environmental pollutants to soil ecosystem and human health. In present study the 12 heavy metals (Mg, Al, K, Ca, Ti, Fe, V, Cr, Mn, Co,Ni and Zn.) are determined in soils of Yelagiri hills, Tamilnadu by energy dispersive X-ray fluorescence technique. Metal concentrations were used to quantify pollution contamination factors such as enrichment factor (EF), geo-accumulation index (Igeo) and contamination factor (CF) are calculated and reported. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=soil" title="soil">soil</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20metals" title=" heavy metals"> heavy metals</a>, <a href="https://publications.waset.org/abstracts/search?q=EDXRF" title=" EDXRF"> EDXRF</a>, <a href="https://publications.waset.org/abstracts/search?q=pollution%20contamination%20factors" title=" pollution contamination factors"> pollution contamination factors</a> </p> <a href="https://publications.waset.org/abstracts/24169/heavy-metal-pollution-in-soils-of-yelagirihillstamilnadu-by-edxrf-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24169.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">341</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6060</span> Pollution Assessment and Potential Ecological Risk of Some Traces Metals in the Surface Sediments of the Gulf of Tunis, North Tunisia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ha%C3%AFfa%20Ben%20Mna">Haïfa Ben Mna</a>, <a href="https://publications.waset.org/abstracts/search?q=Ayed%20Added"> Ayed Added</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To evaluate the trace metals contamination status in the Gulf of Tunis, forty one sediment samples were analyzed using different approaches. According to certain contamination and ecological risk indices (Contamination Factor, Geoaccumulation index and Ecological risk index), Hg has the highest contamination level while pollution by Ni, Pb, Cd and Cr was absent. The highest concentrations of trace metals were found in sediments collected from the offshore and coastal areas located opposite the main exchange points with the gulf particularly, the Mejerda and Meliane Rivers, the Khalij Channel, Ghar El Melh and El Malah lagoons, Tunis Lake and Sebkhat Ariana. However, further ecological indices (Potential ecological risk index, Toxic unit and Mean effect-range median quotient) and comparison with sediment quality guidelines suggest that in addition to Mercury, Cr, Pb and Ni concentrations are detrimental to biota in both the offshore and areas near to the exchange points with the gulf. Moreover, in these areas the results from sequential extraction and individual contamination factor calculation pointed to the mobility and bioavailability of Cr, Pb and Ni. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sediment" title="sediment">sediment</a>, <a href="https://publications.waset.org/abstracts/search?q=trace%20metals" title=" trace metals"> trace metals</a>, <a href="https://publications.waset.org/abstracts/search?q=contamination%20assessment" title=" contamination assessment"> contamination assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=ecological%20risk" title=" ecological risk"> ecological risk</a>, <a href="https://publications.waset.org/abstracts/search?q=Tunis%20gulf" title=" Tunis gulf"> Tunis gulf</a> </p> <a href="https://publications.waset.org/abstracts/164916/pollution-assessment-and-potential-ecological-risk-of-some-traces-metals-in-the-surface-sediments-of-the-gulf-of-tunis-north-tunisia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164916.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">84</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6059</span> Potential Ecological Risk Index of the Northern Egyptian Lagoons, South of Mediterranean Sea, Egypt</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20El-Bady">Mohamed El-Bady</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Northern Egyptian Lagoons are (from east to west) Bardawil Lagoon, Manzala Lagoon, Burullus Lagoon, Edku Lagoons and Mariute Lagoon. These lagoons have been received the bulk of drainage water from the lands of Delta and from the other coastal areas. Where, the heavy metals can occur in Lagoons environments through a variety of sources, including industries, wastewaters and domestic effluents. The potential ecological risk index (RI) calculation of the bottom sediments of the northern lagoons depends on contamination factor (CF), potential ecological risk factor and proposed toxic response factor (Tr). Each lagoon with special indices according to its conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Northern%20Lagoons" title="Northern Lagoons">Northern Lagoons</a>, <a href="https://publications.waset.org/abstracts/search?q=Nile%20Delta" title=" Nile Delta"> Nile Delta</a>, <a href="https://publications.waset.org/abstracts/search?q=ecological%20risk%20index" title=" ecological risk index"> ecological risk index</a>, <a href="https://publications.waset.org/abstracts/search?q=contamination%20factor" title=" contamination factor"> contamination factor</a> </p> <a href="https://publications.waset.org/abstracts/48031/potential-ecological-risk-index-of-the-northern-egyptian-lagoons-south-of-mediterranean-sea-egypt" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48031.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">342</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6058</span> Vertical Distribution of Heavy Metals and Enrichment in Core Marine Sediments of East Malaysia by INAA and ICP-MS </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmadreza%20Ashraf">Ahmadreza Ashraf</a>, <a href="https://publications.waset.org/abstracts/search?q=Elias%20Saion"> Elias Saion</a>, <a href="https://publications.waset.org/abstracts/search?q=Elham%20Gharib%20Shahi"> Elham Gharib Shahi</a>, <a href="https://publications.waset.org/abstracts/search?q=Chee%20Kong%20Yap"> Chee Kong Yap</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohd%20Suhaimi%20Hamzah"> Mohd Suhaimi Hamzah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fifty-five core marine sediments from three locations at South China Sea and one location each at Sulu Sea and Sulawesi Sea of coastal East Malaysia was analyzed for heavy metals using Instrumental Neutron Activation Analysis and Inductively Coupled Plasma Mass Spectroscopy. The enrichment factor of As, Cd, Cr, Cu, Ni, Pb, and Zn varied from 0.42 to 4.26, 0.50 to 2.34, 0.31 to 0.82, 0.20 to 0.61, 0.91 to 1.92, 0.23 to 1.52, and 0.90 to 1.28 respectively, with the modified degree of contamination values below 0.6. Comparative data show that coastal East Malaysia is of low levels of contamination. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coastal%20East%20Malaysia" title="coastal East Malaysia">coastal East Malaysia</a>, <a href="https://publications.waset.org/abstracts/search?q=core%20marine%20sediments" title=" core marine sediments"> core marine sediments</a>, <a href="https://publications.waset.org/abstracts/search?q=enrichment%20factor" title=" enrichment factor"> enrichment factor</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20metals" title=" heavy metals"> heavy metals</a>, <a href="https://publications.waset.org/abstracts/search?q=INAA%20and%20ICP%20method" title=" INAA and ICP method"> INAA and ICP method</a>, <a href="https://publications.waset.org/abstracts/search?q=modified%20degree%20of%20contamination" title=" modified degree of contamination"> modified degree of contamination</a> </p> <a href="https://publications.waset.org/abstracts/44263/vertical-distribution-of-heavy-metals-and-enrichment-in-core-marine-sediments-of-east-malaysia-by-inaa-and-icp-ms" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44263.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">335</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6057</span> Heavy Metal Contamination in Sediments of North East Coast of Tamilnadu by EDXRF Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Ravisankar">R. Ravisankar</a>, <a href="https://publications.waset.org/abstracts/search?q=Tholkappian%20A.%20Chandrasekaran"> Tholkappian A. Chandrasekaran</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Raghu"> Y. Raghu</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20K.%20Satapathy"> K. K. Satapathy</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20V.%20R.%20Prasad"> M. V. R. Prasad</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20V.%20Kanagasabapathy"> K. V. Kanagasabapathy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The coastal areas of Tamilnadu are assuming greater importance owing to increasing human population, urbanization and accelerated industrial activities. sIn the present study, sediment samples are collected along the east coast of Tamilnadu for assessment of heavy metal pollution. The concentration of 13 selected heavy metals such as Mg, Al, Si, K, Ca, Ti, Fe, V, Cr, Mn, Co, Ni and Zn determined by Energy dispersive X-ray fluorescence (EDXRF) technique. In order to describe the pollution status, Contamination factor and pollution load index are calculated and reported. This result suggests that sources of metal contamination were mainly attributed to natural inputs from surrounding environments. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sediments" title="sediments">sediments</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20metals" title=" heavy metals"> heavy metals</a>, <a href="https://publications.waset.org/abstracts/search?q=EDXRF" title=" EDXRF"> EDXRF</a>, <a href="https://publications.waset.org/abstracts/search?q=pollution%20contamination%20factors" title=" pollution contamination factors"> pollution contamination factors</a> </p> <a href="https://publications.waset.org/abstracts/24170/heavy-metal-contamination-in-sediments-of-north-east-coast-of-tamilnadu-by-edxrf-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24170.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">339</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6056</span> Ecological Risk Assessment of Informal E-Waste Processing in Alaba International Market, Lagos, Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20A.%20Adebayo">A. A. Adebayo</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20Osibanjo"> O. Osibanjo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Informal electronic waste (e-waste) processing is a crude method of recycling, which is on the increase in Nigeria. The release of hazardous substances such as heavy metals (HMs) into the environment during informal e-waste processing has been a major concern. However, there is insufficient information on environmental contamination from e-waste recycling, associated ecological risk in Alaba International Market, a major electronic market in Lagos, Nigeria. The aims of this study were to determine the levels of HMs in soil, resulting from the e-waste recycling; and also assess associated ecological risks in Alaba international market. Samples of soils (334) were randomly collected seasonally for three years from fourteen selected e-waste activity points and two control sites. The samples were digested using standard methods and HMs analysed by inductive coupled plasma optical emission. Ecological risk was estimated using Ecological Risk index (ER), Potential Ecological Risk index (RI), Index of geoaccumulation (Igeo), Contamination factor (Cf) and degree of contamination factor (Cdeg). The concentrations range of HMs (mg/kg) in soil were: 16.7-11200.0 (Pb); 14.3-22600.0 (Cu); 1.90-6280.0 (Ni), 39.5-4570.0 (Zn); 0.79-12300.0 (Sn); 0.02-138.0 (Cd); 12.7-1710.0 (Ba); 0.18-131.0 (Cr); 0.07-28.0 (V), while As was below detection limit. Concentrations range in control soils were 1.36-9.70 (Pb), 2.06-7.60 (Cu), 1.25-5.11 (Ni), 3.62-15.9 (Zn), BDL-0.56 (Sn), BDL-0.01 (Cd), 14.6-47.6 (Ba), 0.21–12.2 (Cr) and 0.22-22.2 (V). The trend in ecological risk index was in the order Cu > Pb > Ni > Zn > Cr > Cd > Ba > V. The potential ecological risk index with respect to informal e-waste activities were: burning > dismantling > disposal > stockpiling. The index of geo accumulation indices revealed that soils were extremely polluted with Cd, Cu, Pb, Zn and Ni. The contamination factor indicated that 93% of the studied areas have very high contamination status for Pb, Cu, Ba, Sn and Co while Cr and Cd were in the moderately contaminated status. The degree of contamination decreased in the order of Sn > Cu > Pb >> Zn > Ba > Co > Ni > V > Cr > Cd. Heavy metal contamination of Alaba international market environment resulting from informal e-waste processing was established. Proper management of e-waste and remediation of the market environment are recommended to minimize the ecological risks. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alaba%20international%20market" title="Alaba international market">Alaba international market</a>, <a href="https://publications.waset.org/abstracts/search?q=ecological%20risk" title=" ecological risk"> ecological risk</a>, <a href="https://publications.waset.org/abstracts/search?q=electronic%20waste" title=" electronic waste"> electronic waste</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20metal%20contamination" title=" heavy metal contamination"> heavy metal contamination</a> </p> <a href="https://publications.waset.org/abstracts/96470/ecological-risk-assessment-of-informal-e-waste-processing-in-alaba-international-market-lagos-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/96470.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">197</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6055</span> Effect of Oil Contamination on the Liquefaction Behavior of Sandy Soils</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seyed%20Abolhasan%20Naeini">Seyed Abolhasan Naeini</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Mahdi%20Shojaedin"> Mohammad Mahdi Shojaedin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Oil leakage from the pipelines and the tanks carrying them, or during oil extraction, could lead to the changes in the characteristics and properties of the soil. In this paper, conducting a series of experimental cyclic triaxial tests, the effects of oil contamination on the liquefaction potential of sandy soils is investigated. The studied specimens are prepared by mixing the Firoozkuh sand with crude oil in 4, 8 and 12 percent by soil dry weight. The results show that the oil contamination up to 8% causes an increase in the soil liquefaction resistance and then with increase in the contamination, the liquefaction resistance decreases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cyclic%20triaxial%20test" title="cyclic triaxial test">cyclic triaxial test</a>, <a href="https://publications.waset.org/abstracts/search?q=liquefaction%20resistance" title=" liquefaction resistance"> liquefaction resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=oil%20contamination" title=" oil contamination"> oil contamination</a>, <a href="https://publications.waset.org/abstracts/search?q=sandy%20soil" title=" sandy soil"> sandy soil</a> </p> <a href="https://publications.waset.org/abstracts/8592/effect-of-oil-contamination-on-the-liquefaction-behavior-of-sandy-soils" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8592.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">528</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6054</span> Heavy Metal Contamination and Its Ecological Risks in the Beach Sediments along the Atlantic Ocean</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Armel%20Zacharie%20Ekoa%20Bessa">Armel Zacharie Ekoa Bessa</a>, <a href="https://publications.waset.org/abstracts/search?q=Annick%20Kwewouo%20Janpou"> Annick Kwewouo Janpou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sediments collected along the beaches of the Atlantic Ocean in Africa were analyzed by geochemical proxies such as the ICP-MS technique to determine their heavy metal contamination and related ecological risks. Several metals were selected and show a decreasing trend: Fe > Mn > Ni > Cu > Co > Zn > Cr > Cd. Several pollution indices have been calculated, including the enrichment factor (EF), whose values are generally higher than 1. 5; the geo-accumulation index (I-geo), with values of some elements (Co, Ni and Cu) in the sediments of the study area being higher than 0, and other metals (Zn, Cr, Fe and Mn) being lower than 0; the contamination factor (CF), where the values of all the selected elements are between 1 and 3; and the pollution load index (PLI), where the values in almost all the study sites are higher than 1. These results show moderate contamination of the investigated sediments with heavy metals. The potential ecological risk assessment (Eri and RI) suggests that this part of the African coast is a low to a slight risk area. Statistical analyses indicate that heavy metals have shown fairly similar trends with anthropogenic and natural sources. This study shows that this coastal area is not highly concentrated in heavy metals and reveals that the Atlantic coast of Africa would be moderately polluted by the metals studied, with a low to moderate ecological risk. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heavy%20metals" title="heavy metals">heavy metals</a>, <a href="https://publications.waset.org/abstracts/search?q=pollution" title=" pollution"> pollution</a>, <a href="https://publications.waset.org/abstracts/search?q=atlantic%20ocean" title=" atlantic ocean"> atlantic ocean</a>, <a href="https://publications.waset.org/abstracts/search?q=sediments" title=" sediments"> sediments</a> </p> <a href="https://publications.waset.org/abstracts/165141/heavy-metal-contamination-and-its-ecological-risks-in-the-beach-sediments-along-the-atlantic-ocean" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165141.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">83</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6053</span> Assessment of Heavy Metal Contamination in Soil and Groundwater Due to Leachate Migration from an Open Dumping Site</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kali%20Prasad%20Sarma">Kali Prasad Sarma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Indiscriminate disposal of municipal solid waste (MSW) in open dumping site is a common scenario in developing countries like India which poses a risk to the environment as well as human health. The objective of the present investigation was to find out the concentration of heavy metals (Pb, Cr, Ni, Mn, Zn, Cu, and Cd) and other physicochemical parameters of leachate and soil collected from an open dumping site of Tezpur town, Assam, India and its associated potential ecological risk. Tezpur is an urban agglomeration coming under the category of Class I UAs/Towns with a population of 105,377 as per data released by Government of India for Census 2011. Impact of the leachate on the groundwater was also addressed in our study. The concentrations of heavy metals were determined using ICP-OES. Energy dispersive X-Ray (SEM-EDS) microanalysis was also conducted to see the presence of the studied metals in the soil. X-Ray diffraction analysis (XRD) and Fourier Transform Infrared (FTIR) spectroscopy were also used to identify dominant minerals present in the soil samples. The trend of measured heavy metals in the soil samples was found in the following order: Mn > Pb > Cu > Zn > Cr > Ni > Cd. The assessment of heavy metal contamination in the soil was carried out by calculating enrichment factor (EF), geo-accumulation index (Igeo), contamination factor (Cfi), degree of contamination (Cd), pollution load index (PLI) and ecological risk factor (Eri). The study showed that the concentrations of Pb, Cu, and Cd were much higher than their respective average shale value and the EF of the soil samples depicted very severe enrichment for Pb, Cu, and Cd; moderate enrichment for Cr and Zn. Calculated Igeo values indicated that the soil is moderate to strongly contaminated with Pb and uncontaminated to moderately contaminated with Cd and Cu. The Cfi value for Pb indicates a very strong contamination level of the metal in the soil. The Cfi values for Cu and Cd were 2.37 and 1.65 respectively indicating moderate contamination level. To apportion the possible sources of heavy metal contamination in soil, principal components analysis (PCA) has been adopted. From the leachate, heavy metals are accumulated at the dumping site soil which could easily percolate through the soil and reach the groundwater. The possible relation of groundwater contamination due to leachate percolation was examined by analyzing the heavy metal concentrations in groundwater with respect to distance from the dumping site. The concentrations of Cd and Pb in groundwater (at a distance of 20m from dumping site) exceeded the permissible limit for drinking water as set by WHO. Occurrence of elevated concentration of potentially toxic heavy metals such as Pb and Cd in groundwater and soil are much environmental concern as it is detrimental to human health and ecosystem. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=groundwater" title="groundwater">groundwater</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20metal%20contamination" title=" heavy metal contamination"> heavy metal contamination</a>, <a href="https://publications.waset.org/abstracts/search?q=leachate" title=" leachate"> leachate</a>, <a href="https://publications.waset.org/abstracts/search?q=open%20dumping%20site" title=" open dumping site"> open dumping site</a> </p> <a href="https://publications.waset.org/abstracts/105319/assessment-of-heavy-metal-contamination-in-soil-and-groundwater-due-to-leachate-migration-from-an-open-dumping-site" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/105319.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">109</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6052</span> Assessment of the Soils Pollution Level of the Open Mine and Tailing Dump of Surrounding Territories of Akhtala Ore Processing Combine by Heavy Metals</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20A.%20Ghazaryan">K. A. Ghazaryan</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20H.%20Derdzyan"> T. H. Derdzyan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> For assessment of the soils pollution level of the open mine and tailing dump of surrounding territories of Akhtala ore processing combine by heavy metals in 2013 collected soil samples and analyzed for different heavy metals, such as Cu, Zn, Pb, Ni and Cd. The main soil type in the study sites was the mountain cambisol. To classify soil pollution level contamination indices like Contamination factors (Cf), Degree of contamination (Cd), Pollution load index (PLI) and Geoaccumulation index (I-geo) are calculated. The distribution pattern of trace metals in the soil profile according to I geo, Cf and Cd values shows that the soil is very polluted. And also the PLI values for the 19 sites were >1, which indicates deterioration of site quality. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=soils%20pollution" title="soils pollution">soils pollution</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20metal" title=" heavy metal"> heavy metal</a>, <a href="https://publications.waset.org/abstracts/search?q=geoaccumulation%20index" title=" geoaccumulation index"> geoaccumulation index</a>, <a href="https://publications.waset.org/abstracts/search?q=pollution%20load%20index" title=" pollution load index"> pollution load index</a>, <a href="https://publications.waset.org/abstracts/search?q=contamination%20factor" title=" contamination factor"> contamination factor</a> </p> <a href="https://publications.waset.org/abstracts/13828/assessment-of-the-soils-pollution-level-of-the-open-mine-and-tailing-dump-of-surrounding-territories-of-akhtala-ore-processing-combine-by-heavy-metals" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13828.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">434</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6051</span> Risk Assessment of Contamination by Heavy Metals in Sarcheshmeh Copper Complex of Iran Using Topsis Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hossein%20Hassani">Hossein Hassani</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Rezaei"> Ali Rezaei</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years, the study of soil contamination problems surrounding mines and smelting plants has attracted some serious attention of the environmental experts. These elements due to the non- chemical disintegration and nature are counted as environmental stable and durable contaminants. Variability of these contaminants in the soil and the time and financial limitation for the favorable environmental application, in order to reduce the risk of their irreparable negative consequences on environment, caused to apply the favorable grading of these contaminant for the further success of the risk management processes. In this study, we use the contaminants factor risk indices, average concentration, enrichment factor and geoaccumulation indices for evaluating the metal contaminant of including Pb, Ni, Se, Mo and Zn in the soil of Sarcheshmeh copper mine area. For this purpose, 120 surface soil samples up to the depth of 30 cm have been provided from the study area. And the metals have been analyzed using ICP-MS method. Comparison of the heavy and potentially toxic elements concentration in the soil samples with the world average value of the uncontaminated soil and shale average indicates that the value of Zn, Pb, Ni, Se and Mo is higher than the world average value and only the Ni element shows the lower value than the shale average. Expert opinions on the relative importance of each indicators were used to assign a final weighting of the metals and the heavy metals were ranked using the TOPSIS approach. This allows us to carry out efficient environmental proceedings, leading to the reduction of environmental ricks form the contaminants. According to the results, Ni, Pb, Mo, Zn, and Se have the highest rate of risk contamination in the soil samples of the study area. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=contamination%20coefficient" title="contamination coefficient">contamination coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=geoaccumulation%20factor" title=" geoaccumulation factor"> geoaccumulation factor</a>, <a href="https://publications.waset.org/abstracts/search?q=TOPSIS%20techniques" title=" TOPSIS techniques"> TOPSIS techniques</a>, <a href="https://publications.waset.org/abstracts/search?q=Sarcheshmeh%20copper%20complex" title=" Sarcheshmeh copper complex"> Sarcheshmeh copper complex</a> </p> <a href="https://publications.waset.org/abstracts/51426/risk-assessment-of-contamination-by-heavy-metals-in-sarcheshmeh-copper-complex-of-iran-using-topsis-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51426.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">274</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6050</span> Multivariate Statistical Analysis of Heavy Metals Pollution of Dietary Vegetables in Swabi, Khyber Pakhtunkhwa, Pakistan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fawad%20Ali">Fawad Ali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Toxic heavy metal contamination has a negative impact on soil quality which ultimately pollutes the agriculture system. In the current work, we analyzed uptake of various heavy metals by dietary vegetables grown in wastewater irrigated areas of Swabi city. The samples of soil and vegetables were analyzed for heavy metals viz Cd, Cr, Mn, Fe, Ni, Cu, Zn and Pb using Atomic Absorption Spectrophotometer. High levels of metals were found in wastewater irrigated soil and vegetables in the study area. Especially the concentrations of Pb and Cd in the dietary vegetable crossed the permissible level of World Health Organization. Substantial positive correlation was found among the soil and vegetable contamination. Transfer factor for some metals including Cr, Zn, Mn, Ni, Cd and Cu was greater than 0.5 which shows enhanced accumulation of these metals due to contamination by domestic discharges and industrial effluents. Linear regression analysis indicated significant correlation of heavy metals viz Pb, Cr, Cd, Ni, Zn, Cu, Fe and Mn in vegetables with concentration in soil of 0.964 at P≤0.001. Abelmoschus esculentus indicated Health Risk Index (HRI) of Pb >1 in adults and children. The source identification analysis carried out by Principal Component Analysis (PCA) and Cluster Analysis (CA) showed that ground water and soil were being polluted by the trace metals coming out from industries and domestic wastes. Hierarchical cluster analysis (HCA) divided metals into two clusters for wastewater and soil but into five clusters for soil of control area. PCA extracted two factors for wastewater, each contributing 61.086 % and 16.229 % of the total 77.315 % variance. PCA extracted two factors, for soil samples, having total variance of 79.912 % factor 1 and factor 2 contributed 63.889 % and 16.023 % of the total variance. PCA for sub soil extracted two factors with a total variance of 76.136 % factor 1 being 61.768 % and factor 2 being 14.368 %of the total variance. High pollution load index for vegetables in the study area due to metal polluted soil has opened a study area for proper legislation to protect further contamination of vegetables. This work would further reveal serious health risks to human population of the study area. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=health%20risk" title="health risk">health risk</a>, <a href="https://publications.waset.org/abstracts/search?q=vegetables" title=" vegetables"> vegetables</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewater" title=" wastewater"> wastewater</a>, <a href="https://publications.waset.org/abstracts/search?q=atomic%20absorption%20sepctrophotometer" title=" atomic absorption sepctrophotometer"> atomic absorption sepctrophotometer</a> </p> <a href="https://publications.waset.org/abstracts/176508/multivariate-statistical-analysis-of-heavy-metals-pollution-of-dietary-vegetables-in-swabi-khyber-pakhtunkhwa-pakistan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/176508.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">70</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6049</span> Radioactive Contamination by ¹³⁷Cs in Marine Sediments Taken up from Cuba's North and South Coast</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maris%C3%A9%20Garc%C3%ADa%20Batlle">Marisé García Batlle</a>, <a href="https://publications.waset.org/abstracts/search?q=Juan%20Manuel%20Navarrete%20Tejero"> Juan Manuel Navarrete Tejero</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In aquatic ecosystems, the main indicators of pollution are contaminated sediments, which are the primary repository of radionuclides and chemicals elements in the marine environment. Radioactive Contamination Factor (RCF) has been proposed as a suitable unit to measure the magnitude of radioactive contamination at global scale, caused mainly by more than 2,000 nuclear explosions tests performed during the 1945-65 period. It is obtained as percentage of contaminant radioactivity (¹³⁷Cs) compared to natural radioactivity (⁴⁰K), both expressed in Bq/g of marine sediments conditioned in Marinelli containers and detected in both NaI(Tl) and HPGe detectors. So, in this paper samples of marine sediments were taken up along the occidental Cuban coasts and analyzed by gamma spectrometry for the determination of gamma-emitting radioisotopes with energies between 60 and 2000 keV. The results proved that the proposed method is simple and suitable to evaluated radioactive contamination. Also, the RCF values provide an appropriate indicator to predict which pollution levels in the future will be and if the rate will go down as disintegrates the ¹³⁷Cs present when only 2,4 half-lives have passed away. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cuba" title="Cuba">Cuba</a>, <a href="https://publications.waset.org/abstracts/search?q=gamma%20spectrometry" title=" gamma spectrometry"> gamma spectrometry</a>, <a href="https://publications.waset.org/abstracts/search?q=marine%20sediments" title=" marine sediments"> marine sediments</a>, <a href="https://publications.waset.org/abstracts/search?q=radioactive%20pollution" title=" radioactive pollution"> radioactive pollution</a> </p> <a href="https://publications.waset.org/abstracts/81508/radioactive-contamination-by-137cs-in-marine-sediments-taken-up-from-cubas-north-and-south-coast" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81508.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">212</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6048</span> Enrichment and Flux of Heavy Metals along the Coastal Sediments of Pakistan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Asmat%20Siddiqui">Asmat Siddiqui</a>, <a href="https://publications.waset.org/abstracts/search?q=Noor%20Us%20Saher"> Noor Us Saher</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Heavy metal contamination in the marine environment is a global issue, and in past decades, this problem has intensified due to an increase in urbanization and industrialization, especially in developing countries. Marine sediments act as a preliminary indicator of heavy metal contamination in the coastal and estuarine environment, which has adverse effects on biota as well as in the marine system. The aim of the current study was to evaluate the contamination status, enrichment, and flux of heavy metals in two monitoring years from coastal sediments of Pakistan. A total of 74 sediment samples were collected from seven coastal areas of Pakistan in two monitoring years, 2001-03 (MY-I) and 2011-13 (MY-II). The geochemical properties (grain size analysis, organic contents and eight heavy metals, i.e. Fe, Zn, Cu, Cr, Ni, Co, Pb, and Cd) of all sediment samples were analyzed. A significant increase in Fe, Ni and Cr concentrations detected between the years, whereas no significant differences were exhibited in Cu, Zn, Co, Pb and Cd concentrations. The extremely high enrichment (>50) of Cu, Zn, Pb and Cd were scrutinized in both monitoring years. The annual deposition flux of heavy metals ranged from 0.63 to 66.44 and 0.78 to 68.27 tons per year in MY-I and MY-II, respectively, with the lowest flux evaluated for Cd and highest for Zn in both monitoring years. A significant increase (p <0.05) was observed in the burial flux of Cr and Ni during the last decade in coastal sediments. The use of geo-indicators is helpful to assess the contamination analysis for management and conservation of the marine environment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coastal%20contamination" title="coastal contamination">coastal contamination</a>, <a href="https://publications.waset.org/abstracts/search?q=enrichment%20factor" title=" enrichment factor"> enrichment factor</a>, <a href="https://publications.waset.org/abstracts/search?q=geo-indicator" title=" geo-indicator"> geo-indicator</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20metal%20flux" title=" heavy metal flux"> heavy metal flux</a> </p> <a href="https://publications.waset.org/abstracts/69834/enrichment-and-flux-of-heavy-metals-along-the-coastal-sediments-of-pakistan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69834.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">379</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6047</span> Assessment of Trace Metals Contamination in Surficial and Core Sediments from Ghannouch- Gabes Coastline, Impact of Phosphogypsum Discharge, Southeastern of Tunisia, Mediterranean Sea: Geochemical and Mineralogical Approaches</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rim%20Ben%20Amor">Rim Ben Amor</a>, <a href="https://publications.waset.org/abstracts/search?q=Myriam%20Abidi"> Myriam Abidi</a>, <a href="https://publications.waset.org/abstracts/search?q=Moncef%20Gueddari"> Moncef Gueddari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of the present study is to assess the level and the distribution of CaO, SO3, Cd, Cu, Pb and Zn incore sediments of Ghannouch-Gabes coast, Gulf of Gabes, Tunisian Mediterranean coast. The XRD analyses indicate that the sediments of Ghannouch-Gabes coast are mainly composed of quartz, calcite, gypsum and fluorine reflecting the impact of the phosphate fertilizer industrial waste. The vertical distribution of surface sediments shows for all the elements analyzed, that the area located between the commercial and the fishing port of Gabes, is the most polluted zone, where the two harbors acted as barriers and limited the dispersion of phosphogypsum discharge. The abundance order of metals was found to be Zn > Cd > Cu >Pb and that the highest levels of heavy metals were found in the uppermost segment of the sediment core compared to lower depth subsurface due to a continuous input of PG release and showed that the area between the two harbor suffered from several types of pollutants compared to reference core C1, collected from non-industrialized area. The level of pollution was evaluated using contamination factor (Cf), pollution load index (PLI) and the geoaccumulation index (Igeo). The obtained results of Igeo allowed us to distinguish that the area between the commercial harbor of Ghannouch and the fishing harbor of Gabes is the most polluted where sediments are strongly contaminated for Pb, Cu and Cd. The pollution load index (PLI) of all sediments collected classified them as "polluted". According to contamination factor (Cf), the sediments can be considered as ‘considerable’ to ‘very high’ contaminated for Pb, ‘very high to moderate’ for Cd, ‘ moderate’ for Zn, between ‘moderate’ and ‘considerable’ for Cu. Statistical analyses show that heavy metals, fluoride, calcium and sulphate are resulting from the same anthropogenic origin. The metallic pollution status of sediments of Ghanouch -Gabes coast is worrying and requires a serious intervention. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=trace%20metals" title="trace metals">trace metals</a>, <a href="https://publications.waset.org/abstracts/search?q=phosphogypsum" title=" phosphogypsum"> phosphogypsum</a>, <a href="https://publications.waset.org/abstracts/search?q=core%20sediments" title=" core sediments"> core sediments</a>, <a href="https://publications.waset.org/abstracts/search?q=accumulation%20factor" title=" accumulation factor"> accumulation factor</a>, <a href="https://publications.waset.org/abstracts/search?q=contamination%20factor" title=" contamination factor"> contamination factor</a> </p> <a href="https://publications.waset.org/abstracts/73427/assessment-of-trace-metals-contamination-in-surficial-and-core-sediments-from-ghannouch-gabes-coastline-impact-of-phosphogypsum-discharge-southeastern-of-tunisia-mediterranean-sea-geochemical-and-mineralogical-approaches" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73427.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">141</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6046</span> An Assessment of Trace Heavy Metal Contamination of Some Edible Oils Regularly Marketed in Benue and Taraba States of Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Raphael%20Odoh">Raphael Odoh</a>, <a href="https://publications.waset.org/abstracts/search?q=Obida%20J.%20Oko"> Obida J. Oko</a>, <a href="https://publications.waset.org/abstracts/search?q=Mary%20S.%20Dauda"> Mary S. Dauda </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The determination of Cd, Cr, Cu, Fe,Mn, Ni, Pb and Zn contents in edible oils (palm oil, ground-nut oil and soybean oil) bought from various markets of Benue and Taraba state were carried out with flame atomic absorption spectrophotometric technique. The method 3031 developed acid digestion of oils for metal analysis by atomic absorption or ICP spectrometry was used in the preparation of the edible oil samples for the determination of total metal content in this study. The overall results (µg/g) in palm oil sample ranged from 0.028-0.076, 0.035-0.092, 1.011-1.955, 2.101-4.892, 0.666-0.922, 0.054-0.095, 0.031-0.068 and 1.987-2.971 for Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn respectively, while in ground-nut oil the overall results ranged from 0.011-0.042, 0.011-0.052, 0.133-0.788, 1.789-2.511, 0.078-0.765, 0.045-0.092, 0.011-0.028 and 1.098-1.997 for Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn respectively. Of the heavy metals considered Cd and Ni showed the highest contamination in the soybean oil sample. The overall results in soybean oil samples ranged from 0.011-0.015, 0.017-0.032, 0.453-0.987, 1.789-2.511, 0.089-0.321, 0.011-0.016, 0.012-0.065 and 1.011-1.997 for Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn respectively. The concentration of Pb was the highest. The degree of contamination by each metal was estimated by the transfer factor. The transfer factors obtained for Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn in edible oils (palm oil, ground-nut oil and soybean oil) were 10.800, 16.500, 16.000, 18.813, 15.115, 14.230, 23.000 and 9.418 for Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn in palm oil, and 7.000, 12.500, 8.880, 11.333, 7.708, 10.833, 15.00 and 6.608 for Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn in ground-nut oil while for soybean oil the transfer factors were 13.000, 11.000, 7.642, 11.578, 4.486, 13.00, 12.333 and 4.412 for Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn respectively. The inter-element correlation was found among metals in edible oil samples using Pearson’s correlation co-efficient. There were positive and negative correlations among the metals determined. All Metals determined showed degree of contamination but concentrations lower than the USP specification. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Benue%20State" title="Benue State">Benue State</a>, <a href="https://publications.waset.org/abstracts/search?q=contamination" title=" contamination"> contamination</a>, <a href="https://publications.waset.org/abstracts/search?q=edible%20oils" title=" edible oils"> edible oils</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20metals" title=" heavy metals"> heavy metals</a>, <a href="https://publications.waset.org/abstracts/search?q=markets" title=" markets"> markets</a>, <a href="https://publications.waset.org/abstracts/search?q=Taraba%20State" title=" Taraba State"> Taraba State</a> </p> <a href="https://publications.waset.org/abstracts/8924/an-assessment-of-trace-heavy-metal-contamination-of-some-edible-oils-regularly-marketed-in-benue-and-taraba-states-of-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8924.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">323</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6045</span> Evaluation of Groundwater Quality and Contamination Sources Using Geostatistical Methods and GIS in Miryang City, Korea</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20E.%20Elzain">H. E. Elzain</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Y.%20Chung"> S. Y. Chung</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Senapathi"> V. Senapathi</a>, <a href="https://publications.waset.org/abstracts/search?q=Kye-Hun%20Park"> Kye-Hun Park</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Groundwater is considered a significant source for drinking and irrigation purposes in Miryang city, and it is attributed to a limited number of a surface water reservoirs and high seasonal variations in precipitation. Population growth in addition to the expansion of agricultural land uses and industrial development may affect the quality and management of groundwater. This research utilized multidisciplinary approaches of geostatistics such as multivariate statistics, factor analysis, cluster analysis and kriging technique in order to identify the hydrogeochemical process and characterizing the control factors of the groundwater geochemistry distribution for developing risk maps, exploiting data obtained from chemical investigation of groundwater samples under the area of study. A total of 79 samples have been collected and analyzed using atomic absorption spectrometer (AAS) for major and trace elements. Chemical maps using 2-D spatial Geographic Information System (GIS) of groundwater provided a powerful tool for detecting the possible potential sites of groundwater that involve the threat of contamination. GIS computer based map exhibited that the higher rate of contamination observed in the central and southern area with relatively less extent in the northern and southwestern parts. It could be attributed to the effect of irrigation, residual saline water, municipal sewage and livestock wastes. At wells elevation over than 85m, the scatter diagram represents that the groundwater of the research area was mainly influenced by saline water and NO3. Level of pH measurement revealed low acidic condition due to dissolved atmospheric CO2 in the soil, while the saline water had a major impact on the higher values of TDS and EC. Based on the cluster analysis results, the groundwater has been categorized into three group includes the CaHCO3 type of the fresh water, NaHCO3 type slightly influenced by sea water and Ca-Cl, Na-Cl types which are heavily affected by saline water. The most predominant water type was CaHCO3 in the study area. Contamination sources and chemical characteristics were identified from factor analysis interrelationship and cluster analysis. The chemical elements that belong to factor 1 analysis were related to the effect of sea water while the elements of factor 2 associated with agricultural fertilizers. The degree level, distribution, and location of groundwater contamination have been generated by using Kriging methods. Thus, geostatistics model provided more accurate results for identifying the source of contamination and evaluating the groundwater quality. GIS was also a creative tool to visualize and analyze the issues affecting water quality in the Miryang city. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=groundwater%20characteristics" title="groundwater characteristics">groundwater characteristics</a>, <a href="https://publications.waset.org/abstracts/search?q=GIS%20chemical%20maps" title=" GIS chemical maps"> GIS chemical maps</a>, <a href="https://publications.waset.org/abstracts/search?q=factor%20analysis" title=" factor analysis"> factor analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=cluster%20analysis" title=" cluster analysis"> cluster analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=Kriging%20techniques" title=" Kriging techniques"> Kriging techniques</a> </p> <a href="https://publications.waset.org/abstracts/79099/evaluation-of-groundwater-quality-and-contamination-sources-using-geostatistical-methods-and-gis-in-miryang-city-korea" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79099.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">168</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6044</span> GIS-Based Spatial Distribution and Evaluation of Selected Heavy Metals Contamination in Topsoil around Ecton Mining Area, Derbyshire, UK</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zahid%20O.%20Alibrahim">Zahid O. Alibrahim</a>, <a href="https://publications.waset.org/abstracts/search?q=Craig%20D.%20Williams"> Craig D. Williams</a>, <a href="https://publications.waset.org/abstracts/search?q=Clive%20L.%20Roberts"> Clive L. Roberts</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study area (Ecton mining area) is located in the southern part of the Peak District in Derbyshire, England. It is bounded by the River Manifold from the west. This area has been mined for a long period. As a result, huge amounts of potentially toxic metals were released into the surrounding area and are most likely to be a significant source of heavy metal contamination to the local soil, water and vegetation. In order to appraise the potential heavy metal pollution in this area, 37 topsoil samples (5-20 cm depth) were collected and analysed for their total content of Cu, Pb, Zn, Mn, Cr, Ni and V using ICP (Inductively Coupled Plasma) optical emission spectroscopy. Multivariate Geospatial analyses using the GIS technique were utilised to draw geochemical maps of the metals of interest over the study area. A few hotspot points, areas of elevated concentrations of metals, were specified, which are presumed to be the results of anthropogenic activities. In addition, the soil’s environmental quality was evaluated by calculating the Mullers’ Geoaccumulation index (I geo), which suggests that the degree of contamination of the investigated heavy metals has the following trend: Pb > Zn > Cu > Mn > Ni = Cr = V. Furthermore, the potential ecological risk, using the enrichment factor (EF), was also specified. On the basis of the calculated amount or the EF, the levels of pollution for the studied metals in the study area have the following order: Pb>Zn>Cu>Cr>V>Ni>Mn. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=enrichment%20factor" title="enrichment factor">enrichment factor</a>, <a href="https://publications.waset.org/abstracts/search?q=geoaccumulation%20index" title=" geoaccumulation index"> geoaccumulation index</a>, <a href="https://publications.waset.org/abstracts/search?q=GIS" title=" GIS"> GIS</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20metals" title=" heavy metals"> heavy metals</a>, <a href="https://publications.waset.org/abstracts/search?q=multivariate%20analysis" title=" multivariate analysis"> multivariate analysis</a> </p> <a href="https://publications.waset.org/abstracts/69415/gis-based-spatial-distribution-and-evaluation-of-selected-heavy-metals-contamination-in-topsoil-around-ecton-mining-area-derbyshire-uk" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69415.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">358</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6043</span> Lead in The Soil-Plant System Following Aged Contamination from Ceramic Wastes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=F.%20Pedron">F. Pedron</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Grifoni"> M. Grifoni</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Petruzzelli"> G. Petruzzelli</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Barbafieri"> M. Barbafieri</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Rosellini"> I. Rosellini</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Pezzarossa"> B. Pezzarossa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lead contamination of agricultural land mainly vegetated with perennial ryegrass (<em>Lolium perenne</em>) has been investigated. The metal derived from the discharge of sludge from a ceramic industry in the past had used lead paints. The results showed very high values of lead concentration in many soil samples. In order to assess the lead soil contamination, a sequential extraction with H<sub>2</sub>O, KNO<sub>3</sub>, EDTA was performed, and the chemical forms of lead in the soil were evaluated. More than 70% of lead was in a potentially bioavailable form. Analysis of <em>Lolium perenne</em> showed elevated lead concentration. A Freundlich-like model was used to describe the transferability of the metal from the soil to the plant. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bioavailability" title="bioavailability">bioavailability</a>, <a href="https://publications.waset.org/abstracts/search?q=Freundlich-like%20equation" title=" Freundlich-like equation"> Freundlich-like equation</a>, <a href="https://publications.waset.org/abstracts/search?q=sequential%20extraction" title=" sequential extraction"> sequential extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20lead%20contamination" title=" soil lead contamination"> soil lead contamination</a> </p> <a href="https://publications.waset.org/abstracts/90618/lead-in-the-soil-plant-system-following-aged-contamination-from-ceramic-wastes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90618.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">310</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6042</span> Linking Disgust and Misophonia: The Role of Mental Contamination</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Laurisa%20Peters">Laurisa Peters</a>, <a href="https://publications.waset.org/abstracts/search?q=Usha%20Barahmand"> Usha Barahmand</a>, <a href="https://publications.waset.org/abstracts/search?q=Maria%20Stalias-Mantzikos"> Maria Stalias-Mantzikos</a>, <a href="https://publications.waset.org/abstracts/search?q=Naila%20Shamsina"> Naila Shamsina</a>, <a href="https://publications.waset.org/abstracts/search?q=Kerry%20Aguero"> Kerry Aguero</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the current study, the authors sought to examine whether the links between moral and sexual disgust and misophonia are mediated by mental contamination. An internationally diverse sample of 283 adults (193 females, 76 males, and 14 non-binary individuals) ranging in age from 18 to 60 years old was recruited from online social media platforms and survey recruitment sites. The sample completed an online battery of scales that consisted of the New York Misophonia Scale, State Mental Contamination Scale, and the Three-Domain Disgust Scale. The hypotheses were evaluated using a series of mediations performed using the PROCESS add-on in SPSS. Correlations were found between emotional and aggressive-avoidant reactions in misophonia, mental contamination, pathogen disgust, and sexual disgust. Moral disgust and non-aggressive reactions in misophonia failed to correlate significantly with any of the other constructs. Sexual disgust had direct and indirect effects, while pathogen disgust had only direct effects on aspects of misophonia. These findings partially support our hypothesis that mental contamination mediates the link between disgust propensity and misophonia while also confirming that pathogen-based disgust is not associated with mental contamination. Findings imply that misophonia is distinct from obsessive-compulsive disorder. Further research into the conceptualization of moral disgust is warranted. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=misophonia" title="misophonia">misophonia</a>, <a href="https://publications.waset.org/abstracts/search?q=moral%20disgust" title=" moral disgust"> moral disgust</a>, <a href="https://publications.waset.org/abstracts/search?q=pathogen%20disgust" title=" pathogen disgust"> pathogen disgust</a>, <a href="https://publications.waset.org/abstracts/search?q=sexual%20disgust" title=" sexual disgust"> sexual disgust</a>, <a href="https://publications.waset.org/abstracts/search?q=mental%20contamination" title=" mental contamination"> mental contamination</a> </p> <a href="https://publications.waset.org/abstracts/156112/linking-disgust-and-misophonia-the-role-of-mental-contamination" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/156112.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">96</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6041</span> Bioremediation Influence on Shear Strength of Contaminated Soils </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tawar%20Mahmoodzadeh">Tawar Mahmoodzadeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Today soil contamination is an unavoidable issue; Irrespective of environmental impact, which happens during the soil contaminating and remediating process, the influence of this phenomenon on soil has not been searched thoroughly. In this study, unconfined compression and compaction tests were done on samples, contaminated and treated soil after 50 days of bio-treatment. The results show that rising in the amount of oil, cause decreased optimum water content and maximum dry density and increased strength. However, almost 65% of this contamination terminated by using a Bioremer as a bioremediation agent. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=oil%20contamination%20soil" title="oil contamination soil">oil contamination soil</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20strength" title=" shear strength"> shear strength</a>, <a href="https://publications.waset.org/abstracts/search?q=compaction" title=" compaction"> compaction</a>, <a href="https://publications.waset.org/abstracts/search?q=bioremediation" title=" bioremediation"> bioremediation</a> </p> <a href="https://publications.waset.org/abstracts/108173/bioremediation-influence-on-shear-strength-of-contaminated-soils" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/108173.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">154</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6040</span> Application of Various Methods for Evaluation of Heavy Metal Pollution in Soils around Agarak Copper-Molybdenum Mine Complex, Armenia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20A.%20Ghazaryan">K. A. Ghazaryan</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20S.%20Movsesyan"> H. S. Movsesyan</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20P.%20Ghazaryan"> N. P. Ghazaryan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study was aimed in assessing the heavy metal pollution of the soils around Agarak copper-molybdenum mine complex and related environmental risks. This mine complex is located in the south-east part of Armenia, and the present study was conducted in 2013. The soils of the five riskiest sites of this region were studied: surroundings of the open mine, the sites adjacent to processing plant of Agarak copper-molybdenum mine complex, surroundings of Darazam active tailing dump, the recultivated tailing dump of “ravine - 2”, and the recultivated tailing dump of “ravine - 3”. The mountain cambisol was the main soil type in the study sites. The level of soil contamination by heavy metals was assessed by Contamination factors (<em>Cf</em>), Degree of contamination (<em>Cd</em>), Geoaccumulation index (<em>I-geo</em>) and Enrichment factor (<em>EF</em>). The distribution pattern of trace metals in the soil profile according to <em>Cf, Cd, I-geo </em>and <em>EF</em> values shows that the soil is much polluted. Almost in all studied sites, Cu, Mo, Pb, and Cd were the main polluting heavy metals, and this was conditioned by Agarak copper-molybdenum mine complex activity. It is necessary to state that the pollution problem becomes pressing as some parts of these highly polluted region are inhabited by population, and agriculture is highly developed there; therefore, heavy metals can be transferred into human bodies through food chains and have direct influence on public health. Since the induced pollution can pose serious threats to public health, further investigations on soil and vegetation pollution are recommended. Finally, Cf calculating based on distance from the pollution source and the wind direction can provide more reasonable results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Agarak%20copper-molybdenum%20mine%20complex" title="Agarak copper-molybdenum mine complex">Agarak copper-molybdenum mine complex</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20metals" title=" heavy metals"> heavy metals</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20contamination" title=" soil contamination"> soil contamination</a>, <a href="https://publications.waset.org/abstracts/search?q=enrichment%20factor%20%28EF%29" title=" enrichment factor (EF)"> enrichment factor (EF)</a>, <a href="https://publications.waset.org/abstracts/search?q=Armenia" title=" Armenia"> Armenia</a> </p> <a href="https://publications.waset.org/abstracts/48545/application-of-various-methods-for-evaluation-of-heavy-metal-pollution-in-soils-around-agarak-copper-molybdenum-mine-complex-armenia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48545.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">235</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6039</span> Environmental Consequences of Metal Concentrations in Stream Sediments of Atoyac River Basin, Central Mexico: Natural and Industrial Influences</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=V.%20C.%20Shruti">V. C. Shruti</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20F.%20Rodr%C3%ADguez-Espinosa"> P. F. Rodríguez-Espinosa</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20C.%20Escobedo-Ur%C3%ADas"> D. C. Escobedo-Urías</a>, <a href="https://publications.waset.org/abstracts/search?q=Estefan%C3%ADa%20Martinez%20Tavera"> Estefanía Martinez Tavera</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20P.%20Jonathan"> M. P. Jonathan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Atoyac River, a major south-central river flowing through the states of Puebla and Tlaxcala in Mexico is significantly impacted by the natural volcanic inputs in addition with wastewater discharges from urban, agriculture and industrial zones. In the present study, core samples were collected from R. Atoyac and analyzed for sediment granularity, major (Al, Fe, Ca, Mg, K, P and S) and trace elemental concentrations (Ba, Cr, Cd, Mn, Pb, Sr, V, Zn, Zr). The textural studies reveal that the sediments are mostly sand sized particles exceeding 99% and with very few to no presence of mud fractions. It is observed that most of the metals like (avg: all values in μg g<sup>-1</sup>) Ca (35,528), Mg (10,789), K (7453), S (1394), Ba (203), Cr (30), Cd (4), Pb (11), Sr (435), Zn (76) and Zr (88) are enriched throughout the sediments mainly sourced from volcanic inputs, source rock composition of Atoyac River basin and industrial influences from the Puebla city region. Contamination indices, such as anthropogenic factor (AF), enrichment factor (EF) and geoaccumulation index (I<sub>geo</sub>), were used to investigate the level of contamination and toxicity as well as quantitatively assess the influences of human activities on metal concentrations. The AF values (>1) for Ba, Ca, Mg, Na, K, P and S suggested volcanic inputs from the study region, where as Cd and Zn are attributed to the impacts of industrial inputs in this zone. The EF and I<sub>geo</sub> values revealed an extreme enrichment of S and Cd. The ecological risks were evaluated using potential ecological risk index (RI) and the results indicate that the metals Cd and V pose a major hazard for the biological community. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Atoyac%20River" title="Atoyac River">Atoyac River</a>, <a href="https://publications.waset.org/abstracts/search?q=contamination%20indices" title=" contamination indices"> contamination indices</a>, <a href="https://publications.waset.org/abstracts/search?q=metal%20concentrations" title=" metal concentrations"> metal concentrations</a>, <a href="https://publications.waset.org/abstracts/search?q=Mexico" title=" Mexico"> Mexico</a>, <a href="https://publications.waset.org/abstracts/search?q=textural%20studies" title=" textural studies"> textural studies</a> </p> <a href="https://publications.waset.org/abstracts/56024/environmental-consequences-of-metal-concentrations-in-stream-sediments-of-atoyac-river-basin-central-mexico-natural-and-industrial-influences" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56024.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">292</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6038</span> Mercury Contamination of Wetland Caused by Wastewater from Chlor-Alkali Industry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mitsuo%20Yoshida">Mitsuo Yoshida</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A significant mercury contamination of soil/sediment was unveiled by an environmental monitoring program in a wetland along La Plata River, west to Montevideo City, Uruguay. The mercury contamination was caused by industrial wastewater discharged from a chlor-alkali plant using a mercury-cell process. The contamination level is above 60 mg/kg in soil/sediment. Most of mercury (Hg) in the environment is inorganic, but some fractions are converted by bacteria to methylmercury (MeHg), a toxic organic compound. MeHg biologically accumulates through a food-chain and become serious public health risk. In order to clarify the contaminated part for countermeasure operation, an intervention value of mercury contamination of sediment/soil was defined as 15 mg/kg (total Hg) by the authority. According to the intervention value, mercury contaminated area in the La Plata site is approximately 48,280 m² and estimated total volume of contaminated sediments/soils was around 18,750 m³. The countermeasures to contaminated zone were proposed in two stages; (i) mitigation of risks for public health and (ii) site remediation. The first stage is an installation of fens and net around the contamination zone, for mitigating risks of exposure, inhalation, and intake. The food chain among wetland-river ecosystem was also interrupted by the installation of net and fens. The state of mercury contamination in La Plata site and plan of countermeasure was disclosed to local people and the public, and consensus on setting off-limit area was successfully achieved. Mass media also contribute to share the information on the contamination site. The cost for countermeasures was borne by the industry under the polluter-pay-principle. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chlor-alkali%20plant" title="chlor-alkali plant">chlor-alkali plant</a>, <a href="https://publications.waset.org/abstracts/search?q=mercury%20contamination" title=" mercury contamination"> mercury contamination</a>, <a href="https://publications.waset.org/abstracts/search?q=polluter%20pay%20principle" title=" polluter pay principle"> polluter pay principle</a>, <a href="https://publications.waset.org/abstracts/search?q=Uruguay" title=" Uruguay"> Uruguay</a>, <a href="https://publications.waset.org/abstracts/search?q=wetland" title=" wetland"> wetland</a> </p> <a href="https://publications.waset.org/abstracts/102082/mercury-contamination-of-wetland-caused-by-wastewater-from-chlor-alkali-industry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/102082.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">137</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6037</span> Groundwater Contamination Assessment and Mitigation Strategies for Water Resource Sustainability: A Concise Review</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khawar%20Naeem">Khawar Naeem</a>, <a href="https://publications.waset.org/abstracts/search?q=Adel%20Elomri"> Adel Elomri</a>, <a href="https://publications.waset.org/abstracts/search?q=Adel%20Zghibi"> Adel Zghibi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Contamination leakage from municipal solid waste (MSW) landfills is a serious environmental challenge that poses a threat to interconnected ecosystems. It not only contaminates the soil of the saturated zone, but it also percolates down the earth and contaminates the groundwater (GW). In this concise literature review, an effort is made to understand the environmental hazards posed by this contamination to the soil and groundwater, the type of contamination, and possible solutions proposed in the literature. In the study’s second phase, the MSW management practices are explored as the landfill site dump rate and type of MSW into the landfill site directly depend on the MSW management strategies. Case studies from multiple developed and underdeveloped countries are presented, and the complex MSW management system is investigated from an operational perspective to minimize the contamination of GW. One of the significant tools used in the literature was found to be Systems Dynamic Modeling (SDM), which is a simulation-based approach to study the stakeholder’s approach. By employing the SDM approach, the risk of GW contamination can be reduced by devising effective MSW management policies, ultimately resulting in water resource sustainability and regional sustainable development. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=groundwater%20contamination" title="groundwater contamination">groundwater contamination</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20risk" title=" environmental risk"> environmental risk</a>, <a href="https://publications.waset.org/abstracts/search?q=municipal%20solid%20waste%20management" title=" municipal solid waste management"> municipal solid waste management</a>, <a href="https://publications.waset.org/abstracts/search?q=system%20dynamic%20modeling" title=" system dynamic modeling"> system dynamic modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20resource%20sustainability" title=" water resource sustainability"> water resource sustainability</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20development" title=" sustainable development"> sustainable development</a> </p> <a href="https://publications.waset.org/abstracts/172776/groundwater-contamination-assessment-and-mitigation-strategies-for-water-resource-sustainability-a-concise-review" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/172776.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">76</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6036</span> Hydrogeochemical Investigation of Lead-Zinc Deposits in Oshiri and Ishiagu Areas, South Eastern Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Christian%20Ogubuchi%20Ede">Christian Ogubuchi Ede</a>, <a href="https://publications.waset.org/abstracts/search?q=Moses%20Oghenenyoreme%20Eyankware"> Moses Oghenenyoreme Eyankware</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study assessed the concentration of heavy metals (HMs) in soil, rock, mine dump pile, and water from Oshiri and Ishiagu areas of Ebonyi State. Investigations on mobile fraction equally evaluated the geochemical condition of different HM using UV spectrophotometer for Mineralized and unmineralized rocks, dumps, and soil, while AAS was used in determining the geochemical nature of the water system. Analysis revealed very high pollution of Cd mostly in Ishiagu (Ihetutu and Amaonye) active mine zones and with subordinates enrichments of Pb, Cu, As, and Zn in Amagu and Umungbala. Oshiri recorded sparingly moderate to high contamination of Cd and Mn but out rightly high anthropogenic input. Observation showed that most of the contamination conditions were unbearable while at the control but decrease with increasing distance from the mine vicinity. The potential heavy metal risk of the environments was evaluated using the risk factors such as enrichment factor, index of Geoacumulation, Contamination Factor, and Effect Range Median. Cadmium and Zn showed moderate to extreme contamination using Geoaccumulation Index (Igeo) while Pb, Cd, and As indicated moderate to strong pollution using the Effect Range Median. Results, when compared with the allowable limits and standards, showed the concentration of the metals in the following order Cd>Zn>Pb>As>Cu>Ni (rocks), Cd>As>Pb>Zn>Cu>Ni (soil) while Cd>Zn>As>Pb> Cu (for mine dump pile. High concentrations of Zn and As were recorded more in mine pond and salt line/drain channels along active mine zones, it heightened its threat during the rainy period as it settles into river course, living behind full-scale contaminations to inhabitants depending on it for domestic uses. Pb and Cu with moderate pollution were recorded in surface/stream water source as its mobility were relatively low. Results from Ishiagu Crush rock sites and Fedeco metallurgical and auto workshop where groundwater contamination was seen infiltrating some of the wells points gave rise to values that were 4 times high than the allowable limits. Some of these metal concentrations according to WHO (2015) if left unmitigated pose adverse effects to the soil and human community. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=water" title="water">water</a>, <a href="https://publications.waset.org/abstracts/search?q=geo-accumulation" title=" geo-accumulation"> geo-accumulation</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20metals" title=" heavy metals"> heavy metals</a>, <a href="https://publications.waset.org/abstracts/search?q=mine%20and%20Nigeria." title=" mine and Nigeria."> mine and Nigeria.</a> </p> <a href="https://publications.waset.org/abstracts/140255/hydrogeochemical-investigation-of-lead-zinc-deposits-in-oshiri-and-ishiagu-areas-south-eastern-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/140255.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">170</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6035</span> An Investigation of E. coli Contamination in Fars Province, Iran and Methods of Reducing the Contamination</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Mohagheghzadeh">Ali Mohagheghzadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Samad%20Vaez%20Badiegard"> Samad Vaez Badiegard</a>, <a href="https://publications.waset.org/abstracts/search?q=Bita%20Shomali"> Bita Shomali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nowadays, with the increase in population, the need for protein sources is increasing. Different bacteria can cause food poisoning while most of the symptoms of food poisoning are similar to those of gastrointestinal infections. As a result, the diagnosis of bacteria and viruses causing food poisoning would not be possible without a stool culture. Cases of food poisoning are often accompanied by gastrointestinal disorders such as diarrhea, vomit, and gastrointestinal stomach cramps. Thus, providing enough food, taking into account health issues has always been a concern of authorities. Since E. coli bacterium is one of the important indicators of food hygiene and quality, producing food without being contaminated by this bacterium is desired in the food industry. This study aimed at assessing the E. coli contamination of poultry meat produced in slaughterhouses. Samples were taken from critical areas of slaughterhouses, namely the feather picking area, viscera and carcass evacuation area the area after cooling chillers. The results showed that 60% of contamination occurs in feather picking area. Among antiseptic and detergent materials, the highest reduction belongs to Epimax. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=slaughterhouse" title="slaughterhouse">slaughterhouse</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20coli" title=" E. coli"> E. coli</a>, <a href="https://publications.waset.org/abstracts/search?q=Epimax" title=" Epimax"> Epimax</a>, <a href="https://publications.waset.org/abstracts/search?q=contamination" title=" contamination"> contamination</a> </p> <a href="https://publications.waset.org/abstracts/14858/an-investigation-of-e-coli-contamination-in-fars-province-iran-and-methods-of-reducing-the-contamination" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14858.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">706</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6034</span> Bioremediation Effect on Shear Strength of Contaminated Soils </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Samira%20Abbaspour">Samira Abbaspour</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Soil contamination by oil industry is unavoidable issue; irrespective of environmental impact, which occurs during the process of soil contaminating and remediating. Effect of this phenomenon on the geotechnical properties of the soil has not been investigated thoroughly. Some researchers studied the environmental aspects of these phenomena more than geotechnical point of view. In this research, compaction and unconfined compression tests were conducted on samples of natural, contaminated and treated soil after 50 days of bio-treatment. The results manifest that increasing the amount of crude oil, leads to decreased values of maximum dry density and optimum water content and increased values of unconfined compression strength (UCS). However, almost 65% of this contamination terminated by using a Bioremer as a bioremediation agent. Foremost, as bioremediation takes place, values of maximum dry density, unconfined compression strength and failure strain increase. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=contamination" title="contamination">contamination</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20strength" title=" shear strength"> shear strength</a>, <a href="https://publications.waset.org/abstracts/search?q=compaction" title=" compaction"> compaction</a>, <a href="https://publications.waset.org/abstracts/search?q=oil%20contamination" title=" oil contamination"> oil contamination</a> </p> <a href="https://publications.waset.org/abstracts/84458/bioremediation-effect-on-shear-strength-of-contaminated-soils" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84458.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">184</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6033</span> Numerical Response of Planar HPGe Detector for 241Am Contamination of Various Shapes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Manohari">M. Manohari</a>, <a href="https://publications.waset.org/abstracts/search?q=Himanshu%20Gupta"> Himanshu Gupta</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Priyadharshini"> S. Priyadharshini</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Santhanam"> R. Santhanam</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Chandrasekaran"> S. Chandrasekaran</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Venkatraman"> B. Venkatraman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Injection is one of the potential routes of intake in a radioactive facility. The internal dose due to this intake is monitored at the radiation emergency medical centre, IGCAR using a portable planar HPGe detector. The contaminated wound may be having different shapes. In a reprocessing potential of wound contamination with actinide is more. Efficiency is one of the input parameters for estimation of internal dose. Estimating these efficiencies experimentally would be tedious and cumbersome. Numerical estimation can be a supplement to experiment. As an initial step in this study 241Am contamination of different shapes are studied. In this study portable planar HPGe detector was modeled using Monte Carlo code FLUKA and the effect of different parameters like distance of the contamination from the detector, radius of the circular contamination were studied. Efficiency values for point and surface contamination located at different distances were estimated. The effect of efficiency on the radius of the surface source was more predominant when the source is at 1 cm distance compared to when the source to detector distance is 10 cm. At 1 cm the efficiency decreased quadratically as the radius increased and at 10 cm it decreased linearly. The point source efficiency varied exponentially with source to detector distance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Planar%20HPGe" title="Planar HPGe">Planar HPGe</a>, <a href="https://publications.waset.org/abstracts/search?q=efficiency%20value" title=" efficiency value"> efficiency value</a>, <a href="https://publications.waset.org/abstracts/search?q=injection" title=" injection"> injection</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20source" title=" surface source"> surface source</a> </p> <a href="https://publications.waset.org/abstracts/185308/numerical-response-of-planar-hpge-detector-for-241am-contamination-of-various-shapes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/185308.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">42</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=contamination%20factor&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=contamination%20factor&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=contamination%20factor&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=contamination%20factor&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=contamination%20factor&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=contamination%20factor&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=contamination%20factor&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=contamination%20factor&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=contamination%20factor&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=contamination%20factor&page=202">202</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=contamination%20factor&page=203">203</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=contamination%20factor&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>