CINXE.COM
Search results for: thermal insulating materials
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: thermal insulating materials</title> <meta name="description" content="Search results for: thermal insulating materials"> <meta name="keywords" content="thermal insulating materials"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="thermal insulating materials" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="thermal insulating materials"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 9610</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: thermal insulating materials</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9610</span> Study of Hydrothermal Behavior of Thermal Insulating Materials Based on Natural Fibers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20Zach">J. Zach</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Hroudova"> J. Hroudova</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Brozovsky"> J. Brozovsky </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Thermal insulation materials based on natural fibers represent a very promising area of materials based on natural easy renewable row sources. These materials may be in terms of the properties of most competing synthetic insulations, but show somewhat higher moisture sensitivity and thermal insulation properties are strongly influenced by the density and orientation of fibers. The paper described the problem of hygrothermal behavior of thermal insulation materials based on natural plant and animal fibers. This is especially the dependence of the thermal properties of these materials on the type of fiber, bulk density, temperature, moisture and the fiber orientation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=thermal%20insulating%20materials" title="thermal insulating materials">thermal insulating materials</a>, <a href="https://publications.waset.org/abstracts/search?q=hemp%20fibers" title=" hemp fibers"> hemp fibers</a>, <a href="https://publications.waset.org/abstracts/search?q=sheep%20wool%20fibers" title=" sheep wool fibers"> sheep wool fibers</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20conductivity" title=" thermal conductivity"> thermal conductivity</a>, <a href="https://publications.waset.org/abstracts/search?q=moisture" title=" moisture"> moisture</a> </p> <a href="https://publications.waset.org/abstracts/12473/study-of-hydrothermal-behavior-of-thermal-insulating-materials-based-on-natural-fibers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12473.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">391</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9609</span> Development of Thermal Insulation Materials Based on Silicate Using Non-Traditional Binders and Fillers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20Hroudova">J. Hroudova</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Zach"> J. Zach</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Vodova"> L. Vodova </a> </p> <p class="card-text"><strong>Abstract:</strong></p> When insulation and rehabilitation of structures is important to use quality building materials with high utility value. One potentially interesting and promising groups of construction materials in this area are advanced, thermally insulating plaster silicate based. With the present trend reduction of energy consumption of building structures and reducing CO2 emissions to be developed capillary-active materials that are characterized by their low density, low thermal conductivity while maintaining good mechanical properties. The paper describes the results of research activities aimed at the development of thermal insulating and rehabilitation material ongoing at the Technical University in Brno, Faculty of Civil Engineering. The achieved results of this development will be the basis for subsequent experimental analysis of the influence of thermal and moisture loads developed on these materials. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=insulation%20materials" title="insulation materials">insulation materials</a>, <a href="https://publications.waset.org/abstracts/search?q=rehabilitation%20materials" title=" rehabilitation materials"> rehabilitation materials</a>, <a href="https://publications.waset.org/abstracts/search?q=lightweight%20aggregate" title=" lightweight aggregate"> lightweight aggregate</a>, <a href="https://publications.waset.org/abstracts/search?q=fly%20ash" title=" fly ash"> fly ash</a>, <a href="https://publications.waset.org/abstracts/search?q=slag" title=" slag"> slag</a>, <a href="https://publications.waset.org/abstracts/search?q=hemp%20fibers" title=" hemp fibers"> hemp fibers</a>, <a href="https://publications.waset.org/abstracts/search?q=glass%20fibers" title=" glass fibers"> glass fibers</a>, <a href="https://publications.waset.org/abstracts/search?q=metakaolin" title=" metakaolin "> metakaolin </a> </p> <a href="https://publications.waset.org/abstracts/10589/development-of-thermal-insulation-materials-based-on-silicate-using-non-traditional-binders-and-fillers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10589.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">235</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9608</span> Acoustic and Thermal Insulating Materials Based on Natural Fibres Used in Floor Construction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jitka%20Hroudova">Jitka Hroudova</a>, <a href="https://publications.waset.org/abstracts/search?q=Jiri%20Zach"> Jiri Zach</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The majority of contemporary insulation materials commonly used in the building industry is made from non-renewable raw materials; furthermore, their production often brings high energy costs. A long-term trend as far as sustainable development is concerned has been the reduction of energy and material demands of building material production. One of the solutions is the possibility of using easily renewable natural raw material sources which are considerably more ecological and their production is mostly less energy-consuming compared to the production of normal insulations (mineral wool, polystyrene). The paper describes the results of research focused on the development of thermal and acoustic insulation materials based on natural fibres intended for floor constructions. Given the characteristic open porosity of natural fibre materials, the hygrothermal behaviour of the developed materials was studied. Especially the influence of relative humidity and temperature on thermal insulation properties was observed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Green%20thermal%20and%20acoustic%20insulating%20materials" title="Green thermal and acoustic insulating materials">Green thermal and acoustic insulating materials</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20fibres" title=" natural fibres"> natural fibres</a>, <a href="https://publications.waset.org/abstracts/search?q=technical%20hemp" title=" technical hemp"> technical hemp</a>, <a href="https://publications.waset.org/abstracts/search?q=flax" title=" flax"> flax</a>, <a href="https://publications.waset.org/abstracts/search?q=floor%20construction" title=" floor construction"> floor construction</a> </p> <a href="https://publications.waset.org/abstracts/15542/acoustic-and-thermal-insulating-materials-based-on-natural-fibres-used-in-floor-construction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15542.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">334</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9607</span> Thermal Insulating Silicate Materials Suitable for Thermal Insulation and Rehabilitation Structures </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jitka%20Hroudov%C3%A1">Jitka Hroudová</a>, <a href="https://publications.waset.org/abstracts/search?q=Martin%20Sedlmajer"> Martin Sedlmajer</a>, <a href="https://publications.waset.org/abstracts/search?q=Ji%C5%99%C3%AD%20Zach"> Jiří Zach</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Problems insulation of building structures is often closely connected with the problem of moisture remediation. In the case of historic buildings or if only part of the redevelopment of envelope of structures, it is not possible to apply the classical external thermal insulation composite systems. This application is mostly effective thermal insulation plasters with high porosity and controlled capillary properties which assures improvement of thermal properties construction, its diffusion openness towards the external environment and suitable treatment capillary properties of preventing the penetration of liquid moisture and salts thereof toward the outer surface of the structure. With respect to the current trend of reducing the energy consumption of building structures and reduce the production of CO2 is necessary to develop capillary-active materials characterized by their low density, low thermal conductivity while maintaining good mechanical properties. The aim of researchers at the Faculty of Civil Engineering, Brno University of Technology is the development and study of hygrothermal behaviour of optimal materials for thermal insulation and rehabilitation of building structures with the possible use of alternative, less energy demanding binders in comparison with conventional, frequently used binder, which represents cement. The paper describes the evaluation of research activities aimed at the development of thermal insulation and repair materials using lightweight aggregate and alternative binders such as metakaolin and finely ground fly ash. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=thermal%20insulating%20plasters" title="thermal insulating plasters">thermal insulating plasters</a>, <a href="https://publications.waset.org/abstracts/search?q=rehabilitation%20materials" title=" rehabilitation materials"> rehabilitation materials</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20conductivity" title=" thermal conductivity"> thermal conductivity</a>, <a href="https://publications.waset.org/abstracts/search?q=lightweight%20aggregate" title=" lightweight aggregate"> lightweight aggregate</a>, <a href="https://publications.waset.org/abstracts/search?q=alternative%20binders." title=" alternative binders. "> alternative binders. </a> </p> <a href="https://publications.waset.org/abstracts/30075/thermal-insulating-silicate-materials-suitable-for-thermal-insulation-and-rehabilitation-structures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30075.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">304</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9606</span> Manufacturing New Insulating Materials: A Study on Thermal Properties of Date Palm Wood</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Almi">K. Almi</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Lakel"> S. Lakel</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Benchabane"> A. Benchabane</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Kriker"> A. Kriker</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The fiber–matrix compatibility can be improved if suitable enforcements are chosen. Whenever the reinforcements have more thermal stability, they can resist to the main processes for wood–thermoplastic composites. Several researches are focused on natural resources for the production of biomaterials intended for technical applications. Date palm wood present one of the world’s most important natural resource. Its use as insulating materials will help to solve the severe environmental and recycling problems which other artificial insulating materials caused. This paper reports the results of an experimental investigation on the thermal proprieties of date palm wood from Algeria. A study of physical, chemical and mechanical properties is also carried out. The goal is to use this natural material in the manufacture of thermal insulation materials for buildings. The local natural resources used in this study are the date palm fibers from Biskra oasis in Algeria. The results have shown that there is no significant difference in the morphological proprieties of the four types of residues. Their chemical composition differed slightly; with the lowest amounts of cellulose and lignin content belong to Petiole. Water absorption study proved that Rachis has a low value of sorption whereas Petiole and Fibrillium have a high value of sorption what influenced their mechanical properties. It is seen that the Rachis and leaflets exhibit a high tensile strength values compared to the other residue. On the other hand the low value of bulk density of Petiole and Fibrillium leads to high value of specific tensile strength and young modulus. It was found that the specific young modulus of Petiole and Fibrillium was higher than that of Rachis and Leaflets and that of other natural fibers or even artificial fibers. Compared to the other materials date palm wood provide a good thermal proprieties thus, date palm wood will be a good candidate for the manufacturing efficient and safe insulating materials. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=composite%20materials" title="composite materials">composite materials</a>, <a href="https://publications.waset.org/abstracts/search?q=date%20palm%20fiber" title=" date palm fiber"> date palm fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20fibers" title=" natural fibers"> natural fibers</a>, <a href="https://publications.waset.org/abstracts/search?q=tensile%20tests" title=" tensile tests"> tensile tests</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20proprieties" title=" thermal proprieties"> thermal proprieties</a> </p> <a href="https://publications.waset.org/abstracts/14220/manufacturing-new-insulating-materials-a-study-on-thermal-properties-of-date-palm-wood" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14220.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">642</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9605</span> Thermal Proprieties of Date Palm Wood </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Almi">K. Almi</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Lakel"> S. Lakel</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Benchabane"> A. Benchabane</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Kriker"> A. Kriker</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Several researches are focused on natural resources for the production of biomaterials intended for technical applications. Date palm wood present one of the world’s most important natural resource. Its use as insulating materials will help to solve the severe environmental and recycling problems which other artificial insulating materials caused. This paper reports the results of an experimental investigation on the thermal proprieties of date palm wood from Algeria. A study of physical, chemical, and mechanical properties is also carried out. The goal is to use this natural material in the manufacture of thermal insulation materials for buildings. The local natural resources used in this study are the date palm fibers from Biskra oasis in Algeria. The results have shown that there is no significant difference in the morphological proprieties of the four types of residues. Their chemical composition differed slightly; with the lowest amounts of cellulose and lignin content belong to Petiole. Water absorption study proved that Rachis has a low value of sorption whereas Petiole and Fibrillium have a high value of sorption what influenced their mechanical properties. It is seen that the Rachis and leaflets exhibit high tensile strength values compared to the other residue. On the other hand, the low value of the bulk density of Petiole and Fibrillium leads to a high value of specific tensile strength and young modulus. It was found that the specific young modulus of Petiole and Fibrillium was higher than that of Rachis and Leaflets and that of other natural fibers or even artificial fibers. Compared to the other materials date palm wood provide a good thermal proprieties thus, date palm wood will be a good candidate for the manufacturing efficient and safe insulating materials. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=composite%20materials" title="composite materials">composite materials</a>, <a href="https://publications.waset.org/abstracts/search?q=date%20palm%20fiber" title=" date palm fiber"> date palm fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20fibers" title=" natural fibers"> natural fibers</a>, <a href="https://publications.waset.org/abstracts/search?q=tensile%20tests" title=" tensile tests"> tensile tests</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20proprieties" title=" thermal proprieties"> thermal proprieties</a> </p> <a href="https://publications.waset.org/abstracts/14539/thermal-proprieties-of-date-palm-wood" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14539.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">293</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9604</span> Development of Low-Cost Vibro-Acoustic, and Fire-Resistant, Insulation Material from Natural and Sustainable Sources</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Nasir">K. Nasir</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Ahmad"> S. Ahmad</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Khan"> A. Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Benkreira"> H. Benkreira</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The topic of the research is to develop sustainable fire-resistant materials for vibration and acoustic damping of structure and airborne noises from sustainable recycled materials and biodegradable binders. The paper reports, methods and techniques of enhancing fire resistive, vibration and acoustic properties of building insulation materials made from natural resources like wood and recycled materials like rubber and textile waste. The structures are designed to optimize the number, size and stratification of closed (heat insulating) and open (noise insulating) pores. The samples produced are tested for their heat and noise insulating properties, including vibration damping and their structural properties (airflow resistivity, porosity, tortuosity and elastic modulus). The structural properties are then used in theoretical models to check the acoustic insulation measurements. Initial data indicate that one layer of such material can yield as much as 18 times more damping, increasing the loss factor by 18%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fire%20resistant" title="fire resistant">fire resistant</a>, <a href="https://publications.waset.org/abstracts/search?q=vibration%20damping" title=" vibration damping"> vibration damping</a>, <a href="https://publications.waset.org/abstracts/search?q=acoustic%20material" title=" acoustic material"> acoustic material</a>, <a href="https://publications.waset.org/abstracts/search?q=vibro-acoustic" title=" vibro-acoustic"> vibro-acoustic</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20insulation" title=" thermal insulation"> thermal insulation</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20material" title=" sustainable material"> sustainable material</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20cost%20materials" title=" low cost materials"> low cost materials</a>, <a href="https://publications.waset.org/abstracts/search?q=recycled%20materials" title=" recycled materials"> recycled materials</a>, <a href="https://publications.waset.org/abstracts/search?q=construction%20material" title=" construction material"> construction material</a> </p> <a href="https://publications.waset.org/abstracts/106069/development-of-low-cost-vibro-acoustic-and-fire-resistant-insulation-material-from-natural-and-sustainable-sources" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/106069.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">134</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9603</span> Sound Absorbing and Thermal Insulating Properties of Natural Fibers (Coir/Jute) Hybrid Composite Materials for Automotive Textiles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Robel%20Legese%20Meko">Robel Legese Meko</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Natural fibers have been used as end-of-life textiles and made into textile products which have become a well-proven and effective way of processing. Nowadays, resources to make primary synthetic fibers are becoming less and less as the world population is rising. Hence it is necessary to develop processes to fabricate textiles that are easily converted to composite materials. Acoustic comfort is closely related to the concept of sound absorption and includes protection against noise. This research paper presents an experimental study on sound absorption coefficients, for natural fiber composite materials: a natural fiber (Coir/Jute) with different blend proportions of raw materials mixed with rigid polyurethane foam as a binder. The natural fiber composite materials were characterized both acoustically (sound absorption coefficient SAC) and also in terms of heat transfer (thermal conductivity). The acoustic absorption coefficient was determined using the impedance tube method according to the ASTM Standard (ASTM E 1050). The influence of the structure of these materials on the sound-absorbing properties was analyzed. The experimental results signify that the porous natural coir/jute composites possess excellent performance in the absorption of high-frequency sound waves, especially above 2000 Hz, and didn’t induce a significant change in the thermal conductivity of the composites. Thus, the sound absorption performances of natural fiber composites based on coir/jute fiber materials promote environmentally friendly solutions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coir%2Fjute%20fiber" title="coir/jute fiber">coir/jute fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=sound%20absorption%20coefficients" title=" sound absorption coefficients"> sound absorption coefficients</a>, <a href="https://publications.waset.org/abstracts/search?q=compression%20molding" title=" compression molding"> compression molding</a>, <a href="https://publications.waset.org/abstracts/search?q=impedance%20tube" title=" impedance tube"> impedance tube</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20insulating%20properties" title=" thermal insulating properties"> thermal insulating properties</a>, <a href="https://publications.waset.org/abstracts/search?q=SEM%20analysis" title=" SEM analysis"> SEM analysis</a> </p> <a href="https://publications.waset.org/abstracts/163181/sound-absorbing-and-thermal-insulating-properties-of-natural-fibers-coirjute-hybrid-composite-materials-for-automotive-textiles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163181.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">110</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9602</span> Utilizing Fly Ash Cenosphere and Aerogel for Lightweight Thermal Insulating Cement-Based Composites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Asad%20Hanif">Asad Hanif</a>, <a href="https://publications.waset.org/abstracts/search?q=Pavithra%20Parthasarathy"> Pavithra Parthasarathy</a>, <a href="https://publications.waset.org/abstracts/search?q=Zongjin%20Li"> Zongjin Li</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Thermal insulating composites help to reduce the total power consumption in a building by creating a barrier between external and internal environment. Such composites can be used in the roofing tiles or wall panels for exterior surfaces. This study purposes to develop lightweight cement-based composites for thermal insulating applications. Waste materials like silica fume (an industrial by-product) and fly ash cenosphere (FAC) (hollow micro-spherical shells obtained as a waste residue from coal fired power plants) were used as partial replacement of cement and lightweight filler, respectively. Moreover, aerogel, a nano-porous material made of silica, was also used in different dosages for improved thermal insulating behavior, while poly vinyl alcohol (PVA) fibers were added for enhanced toughness. The raw materials including binders and fillers were characterized by X-Ray Diffraction (XRD), X-Ray Fluorescence spectroscopy (XRF), and Brunauer–Emmett–Teller (BET) analysis techniques in which various physical and chemical properties of the raw materials were evaluated like specific surface area, chemical composition (oxide form), and pore size distribution (if any). Ultra-lightweight cementitious composites were developed by varying the amounts of FAC and aerogel with 28-day unit weight ranging from 1551.28 kg/m<sup>3 </sup>to 1027.85 kg/m<sup>3</sup>. Excellent mechanical and thermal insulating properties of the resulting composites were obtained ranging from 53.62 MPa to 8.66 MPa compressive strength, 9.77 MPa to 3.98 MPa flexural strength, and 0.3025 W/m-K to 0.2009 W/m-K as thermal conductivity coefficient (QTM-500). The composites were also tested for peak temperature difference between outer and inner surfaces when subjected to heating (in a specially designed experimental set-up) by a 275W infrared lamp. The temperature difference up to 16.78 <sup>o</sup>C was achieved, which indicated outstanding properties of the developed composites to act as a thermal barrier for building envelopes. Microstructural studies were carried out by Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray Spectroscopy (EDS) for characterizing the inner structure of the composite specimen. Also, the hydration products were quantified using the surface area mapping and line scale technique in EDS. The microstructural analyses indicated excellent bonding of FAC and aerogel in the cementitious system. Also, selective reactivity of FAC was ascertained from the SEM imagery where the partially consumed FAC shells were observed. All in all, the lightweight fillers, FAC, and aerogel helped to produce the lightweight composites due to their physical characteristics, while exceptional mechanical properties, owing to FAC partial reactivity, were achieved. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerogel" title="aerogel">aerogel</a>, <a href="https://publications.waset.org/abstracts/search?q=cement-based" title=" cement-based"> cement-based</a>, <a href="https://publications.waset.org/abstracts/search?q=composite" title=" composite"> composite</a>, <a href="https://publications.waset.org/abstracts/search?q=fly%20ash%20cenosphere" title=" fly ash cenosphere"> fly ash cenosphere</a>, <a href="https://publications.waset.org/abstracts/search?q=lightweight" title=" lightweight"> lightweight</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20development" title=" sustainable development"> sustainable development</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20conductivity" title=" thermal conductivity"> thermal conductivity</a> </p> <a href="https://publications.waset.org/abstracts/61566/utilizing-fly-ash-cenosphere-and-aerogel-for-lightweight-thermal-insulating-cement-based-composites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61566.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">224</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9601</span> Effect of Coal on Engineering Properties in Building Materials: Opportunity to Manufacturing Insulating Bricks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bachir%20Chemani">Bachir Chemani</a>, <a href="https://publications.waset.org/abstracts/search?q=Halima%20Chemani"> Halima Chemani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this study is to investigate the effect of adding coal to obtain insulating ceramic product. The preparation of mixtures is achieved with 04 types of different masse compositions, consisting of gray and yellow clay, and coal. Analyses are performed on local raw materials by adding coal as additive. The coal content varies from 5 to 20 % in weight by varying the size of coal particles ranging from 0.25 mm to 1.60 mm. Initially, each natural moisture content of a raw material has been determined at the temperature of 105°C in a laboratory oven. The Influence of low-coal content on absorption, the apparent density, the contraction and the resistance during compression have been evaluated. The experimental results showed that the optimized composition could be obtained by adding 10% by weight of coal leading thus to insulating ceramic products with water absorption, a density and resistance to compression of 9.40 %, 1.88 g/cm3, 35.46 MPa, respectively. The results show that coal, when mixed with traditional raw materials, offers the conditions to be used as an additive in the production of lightweight ceramic products. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=clay" title="clay">clay</a>, <a href="https://publications.waset.org/abstracts/search?q=coal" title=" coal"> coal</a>, <a href="https://publications.waset.org/abstracts/search?q=resistance%20to%20compression" title=" resistance to compression"> resistance to compression</a>, <a href="https://publications.waset.org/abstracts/search?q=insulating%20bricks" title=" insulating bricks"> insulating bricks</a> </p> <a href="https://publications.waset.org/abstracts/10532/effect-of-coal-on-engineering-properties-in-building-materials-opportunity-to-manufacturing-insulating-bricks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10532.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">329</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9600</span> An Investigation of Vegetable Oils as Potential Insulating Liquid</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Celal%20Kocatepe">Celal Kocatepe</a>, <a href="https://publications.waset.org/abstracts/search?q=Eyup%20Taslak"> Eyup Taslak</a>, <a href="https://publications.waset.org/abstracts/search?q=Celal%20Fadil%20Kumru"> Celal Fadil Kumru</a>, <a href="https://publications.waset.org/abstracts/search?q=Oktay%20Arikan"> Oktay Arikan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> While choosing insulating oil, characteristic features such as thermal cooling, endurance, efficiency and being environment-friendly should be considered. Mineral oils are referred as petroleum-based oil. In this study, vegetable oils investigated as an alternative insulating liquid to mineral oil. Dissipation factor, breakdown voltage, relative dielectric constant and resistivity changes with the frequency and voltage of mineral, rapeseed and nut oils were measured. Experimental studies were performed according to ASTM D924 and IEC 60156 standards. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=breakdown%20voltage" title="breakdown voltage">breakdown voltage</a>, <a href="https://publications.waset.org/abstracts/search?q=dielectric%20dissipation%20factor" title=" dielectric dissipation factor"> dielectric dissipation factor</a>, <a href="https://publications.waset.org/abstracts/search?q=mineral%20oil" title=" mineral oil"> mineral oil</a>, <a href="https://publications.waset.org/abstracts/search?q=vegetable%20oils" title=" vegetable oils"> vegetable oils</a> </p> <a href="https://publications.waset.org/abstracts/35815/an-investigation-of-vegetable-oils-as-potential-insulating-liquid" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35815.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">693</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9599</span> Modeling and Numerical Simulation of Heat Transfer and Internal Loads at Insulating Glass Units</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nina%20Penkova">Nina Penkova</a>, <a href="https://publications.waset.org/abstracts/search?q=Kalin%20Krumov"> Kalin Krumov</a>, <a href="https://publications.waset.org/abstracts/search?q=Liliana%20Zashcova"> Liliana Zashcova</a>, <a href="https://publications.waset.org/abstracts/search?q=Ivan%20Kassabov"> Ivan Kassabov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The insulating glass units (IGU) are widely used in the advanced and renovated buildings in order to reduce the energy for heating and cooling. Rules for the choice of IGU to ensure energy efficiency and thermal comfort in the indoor space are well known. The existing of internal loads - gage or vacuum pressure in the hermetized gas space, requires additional attention at the design of the facades. The internal loads appear at variations of the altitude, meteorological pressure and gas temperature according to the same at the process of sealing. The gas temperature depends on the presence of coatings, coating position in the transparent multi-layer system, IGU geometry and space orientation, its fixing on the facades and varies with the climate conditions. An algorithm for modeling and numerical simulation of thermal fields and internal pressure in the gas cavity at insulating glass units as function of the meteorological conditions is developed. It includes models of the radiation heat transfer in solar and infrared wave length, indoor and outdoor convection heat transfer and free convection in the hermetized gas space, assuming the gas as compressible. The algorithm allows prediction of temperature and pressure stratification in the gas domain of the IGU at different fixing system. The models are validated by comparison of the numerical results with experimental data obtained by Hot-box testing. Numerical calculations and estimation of 3D temperature, fluid flow fields, thermal performances and internal loads at IGU in window system are implemented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=insulating%20glass%20units" title="insulating glass units">insulating glass units</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20loads" title=" thermal loads"> thermal loads</a>, <a href="https://publications.waset.org/abstracts/search?q=internal%20pressure" title=" internal pressure"> internal pressure</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD%20analysis" title=" CFD analysis"> CFD analysis</a> </p> <a href="https://publications.waset.org/abstracts/65370/modeling-and-numerical-simulation-of-heat-transfer-and-internal-loads-at-insulating-glass-units" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65370.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">273</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9598</span> Products in Early Development Phases: Ecological Classification and Evaluation Using an Interval Arithmetic Based Calculation Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Helen%20L.%20Hein">Helen L. Hein</a>, <a href="https://publications.waset.org/abstracts/search?q=Joachim%20Schwarte"> Joachim Schwarte</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As a pillar of sustainable development, ecology has become an important milestone in research community, especially due to global challenges like climate change. The ecological performance of products can be scientifically conducted with life cycle assessments. In the construction sector, significant amounts of CO<sub>2</sub> emissions are assigned to the energy used for building heating purposes. Therefore, sustainable construction materials for insulating purposes are substantial, whereby aerogels have been explored intensively in the last years due to their low thermal conductivity. Therefore, the WALL-ACE project aims to develop an aerogel-based thermal insulating plaster that would achieve minor thermal conductivities. But as in the early stage of development phases, a lot of information is still missing or not yet accessible, the ecological performance of innovative products bases increasingly on uncertain data that can lead to significant deviations in the results. To be able to predict realistically how meaningful the results are and how viable the developed products may be with regard to their corresponding respective market, these deviations however have to be considered. Therefore, a classification method is presented in this study, which may allow comparing the ecological performance of modern products with already established and competitive materials. In order to achieve this, an alternative calculation method was used that allows computing with lower and upper bounds to consider all possible values without precise data. The life cycle analysis of the considered products was conducted with an interval arithmetic based calculation method. The results lead to the conclusion that the interval solutions describing the possible environmental impacts are so wide that the result usability is limited. Nevertheless, a further optimization in reducing environmental impacts of aerogels seems to be needed to become more competitive in the future. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerogel-based" title="aerogel-based">aerogel-based</a>, <a href="https://publications.waset.org/abstracts/search?q=insulating%20material" title=" insulating material"> insulating material</a>, <a href="https://publications.waset.org/abstracts/search?q=early%20development%20phase" title=" early development phase"> early development phase</a>, <a href="https://publications.waset.org/abstracts/search?q=interval%20arithmetic" title=" interval arithmetic"> interval arithmetic</a> </p> <a href="https://publications.waset.org/abstracts/102735/products-in-early-development-phases-ecological-classification-and-evaluation-using-an-interval-arithmetic-based-calculation-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/102735.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">143</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9597</span> Characterization and Evaluation of South West Tunisian Clay Types as Insulation of Building Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Najah%20Majouri">Najah Majouri</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20El%20Mankibi"> Mohamed El Mankibi</a>, <a href="https://publications.waset.org/abstracts/search?q=Jalila%20Sghaier"> Jalila Sghaier</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study examined the geotechnical, mineralogical, thermal and physical characterization of clays in south-west Tunisia. Its aims are to elaborate an insulator material based on the clay used in the field of building materials. The geotechnical study showed that the clay studied is characterized by a high degree of plasticity of 30.83%. High mineralogical findings showed that the sample consisted mainly of kaonolite and other clay minerals. The thermal and physical properties of the different samples are obtained by mixing clays, which indicates a promising future for the use of this type of clays in the production of insulating building materials. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=clay" title="clay">clay</a>, <a href="https://publications.waset.org/abstracts/search?q=energy-saving" title=" energy-saving"> energy-saving</a>, <a href="https://publications.waset.org/abstracts/search?q=insulator%20material" title=" insulator material"> insulator material</a>, <a href="https://publications.waset.org/abstracts/search?q=and%20South-West%20Tunisia." title=" and South-West Tunisia."> and South-West Tunisia.</a> </p> <a href="https://publications.waset.org/abstracts/165403/characterization-and-evaluation-of-south-west-tunisian-clay-types-as-insulation-of-building-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165403.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">86</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9596</span> Analysis of the Reaction to the Fire of a Composite Material the Base of Scrapes of Tires and Latex for Thermal Isolation in Vehicles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Elmo%20Thiao%20Lins%20C%C3%B6uras%20Ford">Elmo Thiao Lins Cöuras Ford</a>, <a href="https://publications.waset.org/abstracts/search?q=Valentina%20Alessandra%20Carvalho%20do%20Vale"> Valentina Alessandra Carvalho do Vale</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20M.%20Nascimento"> R. M. Nascimento</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20U.%20L.%20Mendes"> J. U. L. Mendes</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Now the great majority of the applications of thermal isolation in the strip of drops and averages temperatures (up to 200ºC), it is made being used from aggressive materials to the nature such an as: glass wool, rock wool, polystyrene, EPS among others. Such materials, in spite of the effectiveness in the retention of the flow of heat, possess considerable cost and when discarded they are long years to be to decompose. In that context, trying to adapt the world politics the about of the preservation of the environment, a study began with intention of developing a material composite, with properties of thermal, originating from insulating industrial residues. In this research, the behavior of the composite was analyzed, as submitted the fire. For this, the reaction rehearsals were accomplished to the fire for the composites 2:1; 1:1; 1:2 and for the latex, based in the "con" experiment in agreement with the norm ASTM–E 1334-90. As consequence, in function of the answers of the system, was possible to observe to the acting of each mixture proportion. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=composite" title="composite">composite</a>, <a href="https://publications.waset.org/abstracts/search?q=Latex" title=" Latex"> Latex</a>, <a href="https://publications.waset.org/abstracts/search?q=reacion%20to%20the%20fire" title=" reacion to the fire"> reacion to the fire</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20isolation" title=" thermal isolation"> thermal isolation</a> </p> <a href="https://publications.waset.org/abstracts/18376/analysis-of-the-reaction-to-the-fire-of-a-composite-material-the-base-of-scrapes-of-tires-and-latex-for-thermal-isolation-in-vehicles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18376.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">435</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9595</span> Assessment of the Thermal and Mechanical Properties of Bio-based Composite Materials for Thermal Insulation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nega%20Tesfie%20Asfaw">Nega Tesfie Asfaw</a>, <a href="https://publications.waset.org/abstracts/search?q=Rafik%20Absi"> Rafik Absi</a>, <a href="https://publications.waset.org/abstracts/search?q=Labouda%20B.%20A"> Labouda B. A</a>, <a href="https://publications.waset.org/abstracts/search?q=Ikram%20El%20Abbassi"> Ikram El Abbassi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Composite materials have come to the fore a few decades ago because of their superior insulation performances. Recycling natural fiber composites and natural fiber reinforcement of waste materials are other steps for conserving resources and the environment. This paper reviewed the Thermal properties (Thermal conductivity, Effusivity, and Diffusivity) and Mechanical properties (Compressive strength, Flexural strength, and Tensile strength) of bio-composite materials for thermal insulation in the construction industry. For several years, the development of the building materials industry has placed a special emphasis on bio-source materials. According to recent studies, most natural fibers have good thermal insulating qualities and good mechanical properties. To determine the thermal and mechanical performance of bio-composite materials in construction most research used experimental methods. the results of the study show that these natural fibers have allowed us to optimize energy consumption in a building and state that density, porosity, percentage of fiber, the direction of heat flow orientation of the fiber, and the shape of the specimen are the main elements that limit the thermal performance and also showed that density, porosity, Type of Fiber, Fiber length, orientation and weight percentage loading, Fiber-matrix adhesion, Choice of the polymer matrix, Presence of void are the main elements that limit the mechanical performance of the insulation material. Based on the results of this reviewed paper Moss fibers (0.034W/ (m. K)), Wood Fiber (0.043 W/ (m. K)), Wheat straw (0.046 W/ (m. K), and corn husk fibers (0.046 W/ (m. K) are a most promising solution for energy efficiency for construction industry with interesting insulation properties and with good acceptable mechanical properties. Finally, depending on the best fibers used for insulation applications in the construction sector, the thermal performance rate of various fibers reviewed in this article are analyzed. Due to Typha's high porosity, the results indicated that Typha australis fiber had a better thermal performance rate of 89.03% with clay. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bio-based%20materials" title="bio-based materials">bio-based materials</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20conductivity" title=" thermal conductivity"> thermal conductivity</a>, <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength" title=" compressive strength"> compressive strength</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20performance" title=" thermal performance"> thermal performance</a> </p> <a href="https://publications.waset.org/abstracts/191041/assessment-of-the-thermal-and-mechanical-properties-of-bio-based-composite-materials-for-thermal-insulation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/191041.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">28</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9594</span> Experimental Approach and Numerical Modeling of Thermal Properties of Porous Materials: Application to Construction Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nassima%20Sotehi">Nassima Sotehi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This article presents experimental and numerical results concerning the thermal properties of the porous materials used as heat insulator in the buildings sector. Initially, the thermal conductivity of three types of studied walls (classic concrete, concrete with cork aggregate and polystyrene concrete) was measured in experiments by the method of the boxes. Then a numerical modeling of the heat and mass transfers which occur within porous materials was applied to these walls. This work shows the influence of the presence of water in building materials on their thermophysical properties, as well as influence of the nature of materials and dosage of fibers introduced within these materials on the thermal and mass transfers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=modeling" title="modeling">modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=porous%20media" title=" porous media"> porous media</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20materials" title=" thermal materials"> thermal materials</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20properties" title=" thermal properties"> thermal properties</a> </p> <a href="https://publications.waset.org/abstracts/38381/experimental-approach-and-numerical-modeling-of-thermal-properties-of-porous-materials-application-to-construction-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38381.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">472</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9593</span> Thermal Securing of Electrical Contacts inside Oil Power Transformers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ioan%20Rusu">Ioan Rusu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the operation of power transformers of 110 kV/MV from substations, these are traveled by fault current resulting from MV line damage. Defect electrical contacts are heated when they are travelled from fault currents. In the case of high temperatures when 135 °C is reached, the electrical insulating oil in the vicinity of the electrical faults comes into contact with these contacts releases gases, and activates the electrical protection. To avoid auto-flammability of electro-insulating oil, we designed a security system thermal of electrical contact defects by pouring fire-resistant polyurethane foam, mastic or mortar fire inside a cardboard electro-insulating cylinder. From practical experience, in the exploitation of power transformers of 110 kV/MT in oil electro-insulating were recorded some passing disconnecting commanded by the gas protection at internal defects. In normal operation and in the optimal load, nominal currents do not require thermal secure contacts inside electrical transformers, contacts are made at the fabrication according to the projects or to repair by solder. In the case of external short circuits close to the substation, the contacts inside electrical transformers, even if they are well made in sizes of Rcontact = 10<sup>‑6</sup> Ω, are subjected to short-circuit currents of the order of 10 kA-20 kA which lead to the dissipation of some significant second-order electric powers, 100 W-400 W, on contact. At some internal or external factors which action on electrical contacts, including electrodynamic efforts at short-circuits, these factors could be degraded over time to values in the range of 10<sup>-4</sup> Ω to 10<sup>-5 </sup>Ω and if the action time of protection is great, on the order of seconds, power dissipation on electrical contacts achieve high values of 1,0 kW to 40,0 kW. This power leads to strong local heating, hundreds of degrees Celsius and can initiate self-ignition and burning oil in the vicinity of electro-insulating contacts with action the gas relay. Degradation of electrical contacts inside power transformers may not be limited for the duration of their operation. In order to avoid oil burn with gas release near electrical contacts, at short-circuit currents 10 kA-20 kA, we have outlined the following solutions: covering electrical contacts in fireproof materials that would avoid direct burn oil at short circuit and transmission of heat from electrical contact along the conductors with heat dissipation gradually over time, in a large volume of cooling. Flame retardant materials are: polyurethane foam, mastic, cement (concrete). In the normal condition of operation of transformer, insulating of conductors coils is with paper and insulating oil. Ignition points of its two components respectively are approximated: 135 °C heat for oil and 200 <sup>0</sup>C for paper. In the case of a faulty electrical contact, about 10<sup>-3 </sup>Ω, at short-circuit; the temperature can reach for a short time, a value of 300 °C-400 °C, which ignite the paper and also the oil. By burning oil, there are local gases that disconnect the power transformer. Securing thermal electrical contacts inside the transformer, in cardboard tube with polyurethane foams, mastik or cement, ensures avoiding gas release and also gas protection working. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=power%20transformer" title="power transformer">power transformer</a>, <a href="https://publications.waset.org/abstracts/search?q=oil%20insulatation" title=" oil insulatation"> oil insulatation</a>, <a href="https://publications.waset.org/abstracts/search?q=electric%20contacts" title=" electric contacts"> electric contacts</a>, <a href="https://publications.waset.org/abstracts/search?q=Bucholtz%20relay" title=" Bucholtz relay"> Bucholtz relay</a> </p> <a href="https://publications.waset.org/abstracts/84051/thermal-securing-of-electrical-contacts-inside-oil-power-transformers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84051.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">158</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9592</span> Development of Composite Material for Thermal and Electrical Insulation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Elmo%20Thiago%20Lins%20C%C3%B6uras%20Ford">Elmo Thiago Lins Cöuras Ford</a>, <a href="https://publications.waset.org/abstracts/search?q=Valentina%20Alessandra%20Carvalho%20do%20Vale"> Valentina Alessandra Carvalho do Vale</a>, <a href="https://publications.waset.org/abstracts/search?q=Rubens%20Maribondo%20do%20Nascimento"> Rubens Maribondo do Nascimento</a>, <a href="https://publications.waset.org/abstracts/search?q=Jos%C3%A9%20Ubiragi%20de%20Lima%20Mendes"> José Ubiragi de Lima Mendes </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recycling has been greatly stimulated by the market. There are already several products that are produced with recycled materials and various wastes have been studied in various forms of applications. The vast majority of insulation applications in domestic, commercial and industrial systems in the range of low and medium temperatures (up to 180 ° C), using the aggressive nature materials such as glass wool, rock wool, polyurethane, polystyrene. Such materials, while retaining the effectiveness of the heat flux, are disposed as expensive and take years too absorbed by nature. Thus, trying to adapt to a global policy on the preservation of the environment, a study in order to develop an insulating compound of natural / industrial waste and biodegradable materials conducted. Thus, this research presents the development of a composite material based zest tire and latex for thermal and electrical insulation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=composite" title="composite">composite</a>, <a href="https://publications.waset.org/abstracts/search?q=latex" title=" latex"> latex</a>, <a href="https://publications.waset.org/abstracts/search?q=scrapes%20tire" title=" scrapes tire"> scrapes tire</a>, <a href="https://publications.waset.org/abstracts/search?q=insulation" title=" insulation"> insulation</a>, <a href="https://publications.waset.org/abstracts/search?q=electrical" title=" electrical "> electrical </a> </p> <a href="https://publications.waset.org/abstracts/18269/development-of-composite-material-for-thermal-and-electrical-insulation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18269.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">535</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9591</span> Determination of Thermal Conductivity of Plaster Tow Material and Kapok Plaster by Numerical Method: Influence of the Heat Exchange Coefficient in Transitional Regime</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Traore%20Papa%20Touty">Traore Papa Touty</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This article presents a numerical method for determining the thermal conductivity of local materials, kapok plaster and tow plaster. It consists of heating the front face of a wall made from these two materials and at the same time insulating its rear face. We simultaneously study the curves of the evolution of the heat flux density as a function of time on the rear face and the evolution of the temperature gradient as a function of time between the heated face and the insulated face. Thermal conductivity is obtained when reaching a steady state when the evolution of the heat flux density and the temperature gradient no longer depend on time. The results showed that the theoretical value of thermal conductivity is obtained when the material has reached its equilibrium state. And the values obtained for different values of the convective exchange coefficients are appreciably equal to the experimental value. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=thermal%20conductivity" title="thermal conductivity">thermal conductivity</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20method" title=" numerical method"> numerical method</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20exchange%20coefficient" title=" heat exchange coefficient"> heat exchange coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=transitional%20regime" title=" transitional regime"> transitional regime</a> </p> <a href="https://publications.waset.org/abstracts/137744/determination-of-thermal-conductivity-of-plaster-tow-material-and-kapok-plaster-by-numerical-method-influence-of-the-heat-exchange-coefficient-in-transitional-regime" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/137744.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">219</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9590</span> Study of Compatibility and Oxidation Stability of Vegetable Insulating Oils</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Helena%20M.%20Wilhelm">Helena M. Wilhelm</a>, <a href="https://publications.waset.org/abstracts/search?q=Paulo%20O.%20Fernandes"> Paulo O. Fernandes</a>, <a href="https://publications.waset.org/abstracts/search?q=La%C3%ADs%20P.%20Dill"> Laís P. Dill</a>, <a href="https://publications.waset.org/abstracts/search?q=Kethlyn%20G.%20Moscon"> Kethlyn G. Moscon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The use of vegetable oil (or natural ester) as an insulating fluid in electrical transformers is a trend that aims to contribute to environmental preservation since it is biodegradable and non-toxic. Besides, vegetable oil has high flash and combustion points, being considered a fire safety fluid. However, vegetable oil is usually less stable towards oxidation than mineral oil. Both insulating fluids, mineral and vegetable oils, need to be tested periodically according to specific standards. Oxidation stability can be determined by the induction period measured by conductivity method (Rancimat) by monitoring the effectivity of oil’s antioxidant additives, a methodology already developed for food application and biodiesel but still not standardized for insulating fluids. Besides adequate oxidation stability, fluids must be compatible with transformer's construction materials under normal operating conditions to ensure that damage to the oil and parts of the transformer does not occur. ASTM standard and Brazilian normative differ in parameters evaluated, which reveals the need to regulate tests for each oil type. The aim of this study was to assess oxidation stability and compatibility of vegetable oils to suggest the best way to assure a viable performance of vegetable oil as transformer insulating fluid. The determination of the induction period for several vegetable insulating oils from the local market by using Rancimat was carried out according to BS EN 14112 standard, at different temperatures (110, 120, and 130 °C). Also, the compatibility of vegetable oil was assessed according to ASTM and ABNT NBR standards. The main results showed that the best temperature for use in the Rancimat test is 130 °C, which allows a better observation of conductivity change. The compatibility test results presented differences between vegetable and mineral oil standards that should be taken into account in oil testing since materials compatibility and oxidation stability are essential for equipment reliability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=compatibility" title="compatibility">compatibility</a>, <a href="https://publications.waset.org/abstracts/search?q=Rancimat" title=" Rancimat"> Rancimat</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20ester" title=" natural ester"> natural ester</a>, <a href="https://publications.waset.org/abstracts/search?q=vegetable%20oil" title=" vegetable oil"> vegetable oil</a> </p> <a href="https://publications.waset.org/abstracts/134515/study-of-compatibility-and-oxidation-stability-of-vegetable-insulating-oils" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/134515.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">210</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9589</span> Analysis Thermal of Composite Material in Cold Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Elmo%20Thiago%20Lins%20C%C3%B6uras%20Ford">Elmo Thiago Lins Cöuras Ford</a>, <a href="https://publications.waset.org/abstracts/search?q=Valentina%20Alessandra%20Carvalho%20do%20Vale"> Valentina Alessandra Carvalho do Vale</a>, <a href="https://publications.waset.org/abstracts/search?q=Rubens%20Maribondo%20do%20Nascimento"> Rubens Maribondo do Nascimento</a>, <a href="https://publications.waset.org/abstracts/search?q=Jos%C3%A9%20Ubiragi%20de%20Lima%20Mendes"> José Ubiragi de Lima Mendes </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Given the unquestionable need of environmental preservation of discarded industrial residues, The scrape of tires have been seen as a salutary alternative for addictive in concrete, asphalt production and of other composites materials. In this work, grew a composite the base of scrape of tire as reinforcement and latex as matrix, to be used as insulating thermal in "cold" systems (0º). Analyzed the acting of the material was what plays the thermal conservation when submitted the flow of heat. Verified the temperature profiles in the internal surfaces and it expresses of the composite as well as the temperature gradient in the same. As a consequence, in function of the answers of the system, conclusions were reached. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cold%20system" title="cold system">cold system</a>, <a href="https://publications.waset.org/abstracts/search?q=latex" title=" latex"> latex</a>, <a href="https://publications.waset.org/abstracts/search?q=flow%20of%20heat" title=" flow of heat"> flow of heat</a>, <a href="https://publications.waset.org/abstracts/search?q=asphalt%20production" title=" asphalt production"> asphalt production</a> </p> <a href="https://publications.waset.org/abstracts/18718/analysis-thermal-of-composite-material-in-cold-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18718.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">462</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9588</span> Development of Light-Weight Refractory Bricks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Liaqat%20Ali">Liaqat Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Furqan%20Ahmad"> Furqan Ahmad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The heat losses should be controlled during the high temperature processes from energy conservation point of view. For this purpose, refractories with low thermal conductivity, high porosity and good mechanical strength along with low price are desirable. In this work, various combinations of naturally occurring, locally available, cheap raw materials, namely, clay, rice husk and saw dust were used. Locally produced insulating firebricks (IFBs) cannot be used at higher than a few hundred °C and possess low strength as well. Various process parameters were studied and the refractories with desirable properties were produced, which can be used up to 1200 °C. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=firebricks" title="firebricks">firebricks</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20strength" title=" mechanical strength"> mechanical strength</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20conductivity" title=" thermal conductivity"> thermal conductivity</a>, <a href="https://publications.waset.org/abstracts/search?q=refractory%20bricks" title=" refractory bricks"> refractory bricks</a> </p> <a href="https://publications.waset.org/abstracts/40387/development-of-light-weight-refractory-bricks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40387.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">328</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9587</span> Thermal and Flammability Properties of Paraffin/Nanoclay Composite Phase Change Materials Incorporated in Building Materials for Thermal Energy Storage</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Awni%20H.%20Alkhazaleh">Awni H. Alkhazaleh</a>, <a href="https://publications.waset.org/abstracts/search?q=Baljinder%20K.%20Kandola"> Baljinder K. Kandola</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, a form-stable composite Paraffin/Nanoclay (PA-NC) has been prepared by absorbing PA into porous particles of NC to be used for low-temperature latent heat thermal energy storage. The leakage test shows that the maximum mass fraction of PA that can be incorporated in NC without leakage is 60 wt.%. Differential scanning calorimetry (DSC) has been used to measure the thermal properties of the PA and PA-NC both before and after incorporation in plasterboard (PL). The mechanical performance of the samples has been evaluated in flexural mode. The thermal energy storage performance has been studied using a small test chamber (100 mm × 100 mm × 100 mm) made from 10 mm thick PL and measuring the temperatures using thermocouples. The flammability of the PL+PL-NC has been discussed using a cone calorimeter. The results indicate that the form composite PA has good potential for use as thermal energy storage materials in building applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=building%20materials" title="building materials">building materials</a>, <a href="https://publications.waset.org/abstracts/search?q=flammability" title=" flammability"> flammability</a>, <a href="https://publications.waset.org/abstracts/search?q=phase%20change%20materials" title=" phase change materials"> phase change materials</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20energy%20storage" title=" thermal energy storage"> thermal energy storage</a> </p> <a href="https://publications.waset.org/abstracts/67209/thermal-and-flammability-properties-of-paraffinnanoclay-composite-phase-change-materials-incorporated-in-building-materials-for-thermal-energy-storage" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67209.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">335</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9586</span> Study on the Thermal Conductivity about Porous Materials in Wet State</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Han%20Yan">Han Yan</a>, <a href="https://publications.waset.org/abstracts/search?q=Jieren%20Luo"> Jieren Luo</a>, <a href="https://publications.waset.org/abstracts/search?q=Qiuhui%20Yan"> Qiuhui Yan</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiaoqing%20Li"> Xiaoqing Li</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The thermal conductivity of porous materials is closely related to the thermal and moisture environment and the overall energy consumption of the building. The study of thermal conductivity of porous materials has great significance for the realization of low energy consumption building and economic construction building. Based on the study of effective thermal conductivity of porous materials at home and abroad, the thermal conductivity under a variety of different density of polystyrene board (EPS), plastic extruded board (XPS) and polyurethane (PU) and phenolic resin (PF) in wet state through theoretical analysis and experimental research has been studied. Initially, the moisture absorption and desorption properties of specimens had been discussed under different density, which led a result indicates the moisture absorption of four porous materials all have three stages, fast, stable and gentle. For the moisture desorption, there are two types. One is the existence of the rapid phase of the stage, such as XPS board, PU board. The other one does not have the fast desorption, instead, it is more stabilized, such as XPS board, PF board. Furthermore, the relationship between water content and thermal conductivity of porous materials had been studied and fitted, which figured out that in the wake of the increasing water content, the thermal conductivity of porous material is continually improving. At the same time, this result also shows, in different density, when the same kind of materials decreases, the saturated moisture content increases. Finally, the moisture absorption and desorption properties of the four kinds of materials are compared comprehensively, and it turned out that the heat preservation performance of PU board is the best, followed by EPS board, XPS board, PF board. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=porous%20materials" title="porous materials">porous materials</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20conductivity" title=" thermal conductivity"> thermal conductivity</a>, <a href="https://publications.waset.org/abstracts/search?q=moisture%20content" title=" moisture content"> moisture content</a>, <a href="https://publications.waset.org/abstracts/search?q=transient%20hot-wire%20method" title=" transient hot-wire method"> transient hot-wire method</a> </p> <a href="https://publications.waset.org/abstracts/71053/study-on-the-thermal-conductivity-about-porous-materials-in-wet-state" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71053.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">187</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9585</span> Thermo-Mechanical Behavior of Steel-Wood Connections of Wooden Structures Under the Effect of a Fire</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Alagha">Ahmed Alagha</a>, <a href="https://publications.waset.org/abstracts/search?q=Belkacem%20Lamri"> Belkacem Lamri</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelhak%20Kada."> Abdelhak Kada.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Steel-wood assemblies often have complex geometric configurations whose overall behavior under the effect of a fire is conditioned by the thermal response, by combining the two materials steel and wood, whose thermal characteristics are greatly influenced by high temperatures. The objective of this work is to study the thermal behavior of a steel-wood connection, with or without insulating material, subjected to an ISO834 standard fire model. The analysis is developed by the analytical approach using the Eurocode, and numerically, by the finite element method, through the ANSYS calculation code. The design of the connections is evaluated at room temperature taking the cases of single shear and double shear. The thermal behavior of the connections is simulated in transient state while taking into account the modes of heat transfer by convection and by radiation. The variation of temperature as a function of time is evaluated in different positions of the connections while talking about the heat produced and the formation of the carbon layer. The results relate to the temperature distributions in the connection elements as a function of the duration of the fire. The results of the thermal analysis show that the temperature increases rapidly and reaches more than 260 °C in the steel material for an hour of exposure to fire. The temperature development in wood material is different from that in steel because of its thermal properties. Wood heats up on the outside and burns, its surface can reach very high temperatures in points on the surface. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eurocode%205" title="Eurocode 5">Eurocode 5</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20elements" title=" finite elements"> finite elements</a>, <a href="https://publications.waset.org/abstracts/search?q=ISO834" title=" ISO834"> ISO834</a>, <a href="https://publications.waset.org/abstracts/search?q=simple%20shear" title=" simple shear"> simple shear</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20behaviour" title=" thermal behaviour"> thermal behaviour</a>, <a href="https://publications.waset.org/abstracts/search?q=wood-steel%20connection" title=" wood-steel connection"> wood-steel connection</a> </p> <a href="https://publications.waset.org/abstracts/160170/thermo-mechanical-behavior-of-steel-wood-connections-of-wooden-structures-under-the-effect-of-a-fire" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/160170.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">86</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9584</span> Mineral Thermal Insulation Materials Based on Sodium Liquid Glass</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zin%20Min%20Htet">Zin Min Htet</a>, <a href="https://publications.waset.org/abstracts/search?q=Tikhomirova%20Irina%20Nikolaevna"> Tikhomirova Irina Nikolaevna</a>, <a href="https://publications.waset.org/abstracts/search?q=Karpenko%20Marina%20A."> Karpenko Marina A.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, thermal insulation materials based on sodium liquid glass with light fillers as foam glass granules with different sizes and wollastonite - M325 (U.S.A production) were studied. Effective mineral thermal insulation materials are in demand in many industries because of their incombustibility and durability. A method for the preparation of such materials based on mechanically foamed sodium liquid glass and light mineral fillers is proposed. The thermal insulation properties depend on the type, amount of filler and on the foaming factor, which is determined by the concentration of the foaming agent. The water resistance of the material is provided by using an additive to neutralize the glass and transfer it to the silica gel. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=thermal%20insulation%20material" title="thermal insulation material">thermal insulation material</a>, <a href="https://publications.waset.org/abstracts/search?q=sodium%20liquid%20glass" title=" sodium liquid glass"> sodium liquid glass</a>, <a href="https://publications.waset.org/abstracts/search?q=foam%20glass%20granules" title=" foam glass granules"> foam glass granules</a>, <a href="https://publications.waset.org/abstracts/search?q=foaming%20agent" title=" foaming agent"> foaming agent</a>, <a href="https://publications.waset.org/abstracts/search?q=hardener" title=" hardener"> hardener</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20conductivity" title=" thermal conductivity"> thermal conductivity</a>, <a href="https://publications.waset.org/abstracts/search?q=apparent%20density" title=" apparent density"> apparent density</a>, <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength" title=" compressive strength"> compressive strength</a> </p> <a href="https://publications.waset.org/abstracts/92313/mineral-thermal-insulation-materials-based-on-sodium-liquid-glass" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92313.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">190</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9583</span> Flashover Voltage of Silicone Insulating Surface Covered by Water Drops under AC Voltage</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fatiha%20Aouabed">Fatiha Aouabed</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelhafid%20Bayadi"> Abdelhafid Bayadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Rabah%20Boudissa"> Rabah Boudissa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nowadays, silicone rubber insulation materials are widely used in high voltage outdoor insulation systems as they can combat pollution flashover problems. The difference in pollution flashover performance of silicone rubber and other insulating materials is due to the way that water wets their surfaces. It resides as discrete drops on silicone rubber, and the mechanism of flashover is due to the breakdown of the air between the water drops and the distortion of these drops in the direction of the electric field which brings the insulation to degradation and failure. The main objective of this work is to quantify the effect of different types of water drops arrangements, their position and dry bands width on the flashover voltage of the silicone insulating surface with non-uniform electric field systems. The tests were carried out on a rectangular sample under AC voltage. A rod-rod electrode system is used. The findings of this work indicate that the performance of the samples decreases with the presence of water drops on their surfaces. Further, these experimental findings show that there is a limiting number of rows from which the flashover voltage of the insulation is minimal and constant. This minimum is a function of the distance between two successive rows. Finally, it is concluded that the system withstand voltage increases when the row of droplets on the electrode axis is removed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=contamination" title="contamination">contamination</a>, <a href="https://publications.waset.org/abstracts/search?q=flashover" title=" flashover"> flashover</a>, <a href="https://publications.waset.org/abstracts/search?q=testing" title=" testing"> testing</a>, <a href="https://publications.waset.org/abstracts/search?q=silicone%20rubber%20insulators" title=" silicone rubber insulators"> silicone rubber insulators</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20wettability" title=" surface wettability"> surface wettability</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20droplets" title=" water droplets"> water droplets</a> </p> <a href="https://publications.waset.org/abstracts/13301/flashover-voltage-of-silicone-insulating-surface-covered-by-water-drops-under-ac-voltage" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13301.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">442</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9582</span> Upgrading of Old Large Turbo Generators</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Shadmand">M. Shadmand</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Enayaty%20Ahangar"> T. Enayaty Ahangar</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Kazemi"> S. Kazemi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Insulation system of electrical machineries is the most critical point for their durability. Depending on generator nominal voltage, its insulation system is designed. In this research, a new stator insulation system is designed by new type of mica tapes which will consequently enables us to decrease the nominal ground-wall insulation thickness for the same voltage level. By keeping constant the slot area, it will be possible to increase the copper value in stator bars which will consequently able us to increase the nominal output current of turbo-generator. This will affect the cooling capability of machinery to some extent. But by considering the thermal conductivity of new insulating system which is improved, it is possible to increase the output power of generator up to 6% more. This research is done practically on a 200 MVA and 15.75 kV turbo-generators which its insulating system is Resin Rich (RR). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=insulation%20system" title="insulation system">insulation system</a>, <a href="https://publications.waset.org/abstracts/search?q=resin%20rich" title=" resin rich"> resin rich</a>, <a href="https://publications.waset.org/abstracts/search?q=VPI" title=" VPI"> VPI</a>, <a href="https://publications.waset.org/abstracts/search?q=upgrading" title=" upgrading"> upgrading</a> </p> <a href="https://publications.waset.org/abstracts/35957/upgrading-of-old-large-turbo-generators" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35957.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">503</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9581</span> Total Thermal Resistance of Graphene-Oxide-Substrate Stack: Role of Interfacial Thermal Resistance in Heat Flow of 2D Material Based Devices</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Roisul%20H.%20Galib">Roisul H. Galib</a>, <a href="https://publications.waset.org/abstracts/search?q=Prabhakar%20R.%20Bandaru"> Prabhakar R. Bandaru</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In 2D material based device, an interface between 2D materials and substrates often limits the heat flow through the device. In this paper, we quantify the total thermal resistance of a graphene-based device by series resistance model and show that the thermal resistance at the interface of graphene and substrate contributes to more than 50% of the total resistance. Weak Van der Waals interactions at the interface and dissimilar phonon vibrational modes create this thermal resistance, allowing less heat to flow across the interface. We compare our results with commonly used materials and interfaces, demonstrating the role of the interface as a potential application for heat guide or block in a 2D material-based device. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=2D%20material" title="2D material">2D material</a>, <a href="https://publications.waset.org/abstracts/search?q=graphene" title=" graphene"> graphene</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20conductivity" title=" thermal conductivity"> thermal conductivity</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20conductance" title=" thermal conductance"> thermal conductance</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20resistance" title=" thermal resistance"> thermal resistance</a> </p> <a href="https://publications.waset.org/abstracts/150149/total-thermal-resistance-of-graphene-oxide-substrate-stack-role-of-interfacial-thermal-resistance-in-heat-flow-of-2d-material-based-devices" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150149.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">154</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=thermal%20insulating%20materials&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=thermal%20insulating%20materials&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=thermal%20insulating%20materials&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=thermal%20insulating%20materials&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=thermal%20insulating%20materials&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=thermal%20insulating%20materials&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=thermal%20insulating%20materials&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=thermal%20insulating%20materials&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=thermal%20insulating%20materials&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=thermal%20insulating%20materials&page=320">320</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=thermal%20insulating%20materials&page=321">321</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=thermal%20insulating%20materials&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>