CINXE.COM
Search | arXiv e-print repository
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1–10 of 10 results for author: <span class="mathjax">Anokhina, A</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> <div class="content"> <form method="GET" action="/search/math" aria-role="search"> Searching in archive <strong>math</strong>. <a href="/search/?searchtype=author&query=Anokhina%2C+A">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Anokhina, A"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Anokhina%2C+A&terms-0-field=author&size=50&order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Anokhina, A"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.18525">arXiv:2410.18525</a> <span> [<a href="https://arxiv.org/pdf/2410.18525">pdf</a>, <a href="https://arxiv.org/format/2410.18525">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mathematical Physics">math-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Geometric Topology">math.GT</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Representation Theory">math.RT</span> </div> </div> <p class="title is-5 mathjax"> Planar decomposition of bipartite HOMFLY polynomials in symmetric representations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/math?searchtype=author&query=Anokhina%2C+A">A. Anokhina</a>, <a href="/search/math?searchtype=author&query=Lanina%2C+E">E. Lanina</a>, <a href="/search/math?searchtype=author&query=Morozov%2C+A">A. Morozov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.18525v1-abstract-short" style="display: inline;"> We generalize the recently discovered planar decomposition (Kauffman bracket) for the HOMFLY polynomials of bipartite knot/link diagrams to (anti)symmetrically colored HOMFLY polynomials. Cabling destroys planarity, but it is restored after projection to (anti)symmetric representations. This allows to go beyond arborescent calculus, which so far produced the majority of results for colored polynom… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.18525v1-abstract-full').style.display = 'inline'; document.getElementById('2410.18525v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.18525v1-abstract-full" style="display: none;"> We generalize the recently discovered planar decomposition (Kauffman bracket) for the HOMFLY polynomials of bipartite knot/link diagrams to (anti)symmetrically colored HOMFLY polynomials. Cabling destroys planarity, but it is restored after projection to (anti)symmetric representations. This allows to go beyond arborescent calculus, which so far produced the majority of results for colored polynomials. Technicalities include combinations of projectors, and these can be handled rigorously, without any guess-work -- what can be also useful for other considerations, where reliable quantization was so far unavailable. We explicitly provide simple examples of calculation of the HOMFLY polynomials in symmetric representations with the use of our planar technique. These examples reveal what we call the bipartite evolution and the bipartite decomposition of squares of $\mathcal{R}$-matrices eigenvalues in the antiparallel channel. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.18525v1-abstract-full').style.display = 'none'; document.getElementById('2410.18525v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">26 pages</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.08724">arXiv:2407.08724</a> <span> [<a href="https://arxiv.org/pdf/2407.08724">pdf</a>, <a href="https://arxiv.org/format/2407.08724">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mathematical Physics">math-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Geometric Topology">math.GT</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjc/s10052-024-13309-0">10.1140/epjc/s10052-024-13309-0 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Planar decomposition of the HOMFLY polynomial for bipartite knots and links </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/math?searchtype=author&query=Anokhina%2C+A">A. Anokhina</a>, <a href="/search/math?searchtype=author&query=Lanina%2C+E">E. Lanina</a>, <a href="/search/math?searchtype=author&query=Morozov%2C+A">A. Morozov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.08724v2-abstract-short" style="display: inline;"> The theory of the Kauffman bracket, which describes the Jones polynomial as a sum over closed circles formed by the planar resolution of vertices in a knot diagram, can be straightforwardly lifted from sl(2) to sl(N) at arbitrary N -- but for a special class of bipartite diagrams made entirely from the anitparallel lock tangle. Many amusing and important knots and links can be described in this wa… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.08724v2-abstract-full').style.display = 'inline'; document.getElementById('2407.08724v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.08724v2-abstract-full" style="display: none;"> The theory of the Kauffman bracket, which describes the Jones polynomial as a sum over closed circles formed by the planar resolution of vertices in a knot diagram, can be straightforwardly lifted from sl(2) to sl(N) at arbitrary N -- but for a special class of bipartite diagrams made entirely from the anitparallel lock tangle. Many amusing and important knots and links can be described in this way, from twist and double braid knots to the celebrated Kanenobu knots for even parameters -- and for all of them the entire HOMFLY polynomials possess planar decomposition. This provides an approach to evaluation of HOMFLY polynomials, which is complementary to the arborescent calculus, and this opens a new direction to homological techniques, parallel to Khovanov-Rozansky generalisations of the Kauffman calculus. Moreover, this planar calculus is also applicable to other symmetric representations beyond the fundamental one, and to links which are not fully bipartite what is illustrated by examples of Kanenobu-like links. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.08724v2-abstract-full').style.display = 'none'; document.getElementById('2407.08724v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">33 pages, published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> The European Physical Journal C 84 (2024) 990 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.13095">arXiv:2308.13095</a> <span> [<a href="https://arxiv.org/pdf/2308.13095">pdf</a>, <a href="https://arxiv.org/ps/2308.13095">ps</a>, <a href="https://arxiv.org/format/2308.13095">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mathematical Physics">math-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Geometric Topology">math.GT</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nuclphysb.2023.116403">10.1016/j.nuclphysb.2023.116403 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Towards tangle calculus for Khovanov polynomials </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/math?searchtype=author&query=Anokhina%2C+A">A. Anokhina</a>, <a href="/search/math?searchtype=author&query=Lanina%2C+E">E. Lanina</a>, <a href="/search/math?searchtype=author&query=Morozov%2C+A">A. Morozov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.13095v1-abstract-short" style="display: inline;"> We provide new evidence that the tangle calculus and "evolution" are applicable to the Khovanov polynomials for families of long braids inside the knot diagram. We show that jumps in evolution, peculiar for superpolynomials, are much less abundant than it was originally expected. Namely, for torus and twist satellites of a fixed companion knot, the main (most complicated) contribution does not jum… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.13095v1-abstract-full').style.display = 'inline'; document.getElementById('2308.13095v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.13095v1-abstract-full" style="display: none;"> We provide new evidence that the tangle calculus and "evolution" are applicable to the Khovanov polynomials for families of long braids inside the knot diagram. We show that jumps in evolution, peculiar for superpolynomials, are much less abundant than it was originally expected. Namely, for torus and twist satellites of a fixed companion knot, the main (most complicated) contribution does not jump, all jumps are concentrated in the torus and twist part correspondingly, where these jumps are necessary to make the Khovanov polynomial positive. Among other things, this opens a way to define a jump-free part of the colored Khovanov polynomials, which differs from the naive colored polynomial just "infinitesimally". The separation between jumping and smooth parts involves a combination of Rasmussen index and a new knot invariant, which we call "Thickness". <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.13095v1-abstract-full').style.display = 'none'; document.getElementById('2308.13095v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nuclear Physics B 998 (2023) 116403 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2104.14491">arXiv:2104.14491</a> <span> [<a href="https://arxiv.org/pdf/2104.14491">pdf</a>, <a href="https://arxiv.org/format/2104.14491">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mathematical Physics">math-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Geometric Topology">math.GT</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1142/S0217751X21502432">10.1142/S0217751X21502432 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Khovanov polynomials for satellites and asymptotic adjoint polynomials </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/math?searchtype=author&query=Anokhina%2C+A">A. Anokhina</a>, <a href="/search/math?searchtype=author&query=Morozov%2C+A">A. Morozov</a>, <a href="/search/math?searchtype=author&query=Popolitov%2C+A">A. Popolitov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2104.14491v1-abstract-short" style="display: inline;"> We compute explicitly the Khovanov polynomials (using the computer program from katlas.org) for the two simplest families of the satellite knots, which are the twisted Whitehead doubles and the two-strand cables. We find that a quantum group decomposition for the HOMFLY polynomial of a satellite knot can be extended to the Khovanov polynomial, whose quantum group properties are not manifest. Namel… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.14491v1-abstract-full').style.display = 'inline'; document.getElementById('2104.14491v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2104.14491v1-abstract-full" style="display: none;"> We compute explicitly the Khovanov polynomials (using the computer program from katlas.org) for the two simplest families of the satellite knots, which are the twisted Whitehead doubles and the two-strand cables. We find that a quantum group decomposition for the HOMFLY polynomial of a satellite knot can be extended to the Khovanov polynomial, whose quantum group properties are not manifest. Namely, the Khovanov polynomial of a twisted Whitehead double or two-strand cable (the two simplest satellite families) can be presented as a naively deformed linear combination of the pattern and companion invariants. For a given companion, the satellite polynomial "smoothly" depends on the pattern but for the "jump" at one critical point defined by the s-invariant of the companion knot. A similar phenomenon is known for the knot Floer homology and tau-invariant for the same kind of satellites. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.14491v1-abstract-full').style.display = 'none'; document.getElementById('2104.14491v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1904.10277">arXiv:1904.10277</a> <span> [<a href="https://arxiv.org/pdf/1904.10277">pdf</a>, <a href="https://arxiv.org/ps/1904.10277">ps</a>, <a href="https://arxiv.org/format/1904.10277">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mathematical Physics">math-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Geometric Topology">math.GT</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjc/s10052-019-7303-5">10.1140/epjc/s10052-019-7303-5 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Nimble evolution for pretzel Khovanov polynomials </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/math?searchtype=author&query=Anokhina%2C+A">Aleksandra Anokhina</a>, <a href="/search/math?searchtype=author&query=Morozov%2C+A">Alexei Morozov</a>, <a href="/search/math?searchtype=author&query=Popolitov%2C+A">Aleksandr Popolitov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1904.10277v2-abstract-short" style="display: inline;"> We conjecture explicit evolution formulas for Khovanov polynomials for pretzel knots in some regions in the windings space. Our description is exhaustive for genera 1 and 2. As previously observed, evolution at T != -1 is not fully smooth: it switches abruptly at the boundaries between different regions. We reveal that this happens also at the boundary between thin and thick knots, moreover, the t… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.10277v2-abstract-full').style.display = 'inline'; document.getElementById('1904.10277v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1904.10277v2-abstract-full" style="display: none;"> We conjecture explicit evolution formulas for Khovanov polynomials for pretzel knots in some regions in the windings space. Our description is exhaustive for genera 1 and 2. As previously observed, evolution at T != -1 is not fully smooth: it switches abruptly at the boundaries between different regions. We reveal that this happens also at the boundary between thin and thick knots, moreover, the thick-knot domain is further stratified. For thin knots evolution is governed by the standard T-deformation lambda of the eigenvalues of the R-matrix. Emerging in the thick knots regions are additional Lyapunov exponents, which are multiples of the naive ones. Such frequency doubling is typical for non-linear dynamics, and our observation can signal about a hidden non-linearity of superpolynomial evolution. Since evolution with eigenvalues lambda^2, ..., lambda^g is "faster" than the one with lambda in the thin-knot region, we name it "nimble. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.10277v2-abstract-full').style.display = 'none'; document.getElementById('1904.10277v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 September, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 April, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Eur. Phys. J. C 79 (2019) 867 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1802.09383">arXiv:1802.09383</a> <span> [<a href="https://arxiv.org/pdf/1802.09383">pdf</a>, <a href="https://arxiv.org/ps/1802.09383">ps</a>, <a href="https://arxiv.org/format/1802.09383">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mathematical Physics">math-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Geometric Topology">math.GT</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/JHEP04(2018)066">10.1007/JHEP04(2018)066 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Are Khovanov-Rozansky polynomials consistent with evolution in the space of knots? </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/math?searchtype=author&query=Anokhina%2C+A">A. Anokhina</a>, <a href="/search/math?searchtype=author&query=Morozov%2C+A">A. Morozov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1802.09383v1-abstract-short" style="display: inline;"> $R$-coloured knot polynomials for $m$-strand torus knots $Torus_{[m,n]}$ are described by the Rosso-Jones formula, which is an example of evolution in $n$ with Lyapunov exponents, labelled by Young diagrams from $R^{\otimes m}$. This means that they satisfy a finite-difference equation (recursion) of finite degree. For the gauge group $SL(N)$ only diagrams with no more than $N… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1802.09383v1-abstract-full').style.display = 'inline'; document.getElementById('1802.09383v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1802.09383v1-abstract-full" style="display: none;"> $R$-coloured knot polynomials for $m$-strand torus knots $Torus_{[m,n]}$ are described by the Rosso-Jones formula, which is an example of evolution in $n$ with Lyapunov exponents, labelled by Young diagrams from $R^{\otimes m}$. This means that they satisfy a finite-difference equation (recursion) of finite degree. For the gauge group $SL(N)$ only diagrams with no more than $N$ lines can contribute and the recursion degree is reduced. We claim that these properties (evolution/recursion and reduction) persist for Khovanov-Rozansky (KR) polynomials, obtained by additional factorization modulo $1+{\bf t}$, which is not yet adequately described in quantum field theory. Also preserved is some weakened version of differential expansion, which is responsible at least for a simple relation between {\it reduced} and {\it unreduced} Khovanov polynomials. However, in the KR case evolution is incompatible with the mirror symmetry under the change $n\longrightarrow -n$, what can signal about an ambiguity in the KR factorization even for torus knots. } <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1802.09383v1-abstract-full').style.display = 'none'; document.getElementById('1802.09383v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 February, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 pp</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> ITEP-TH/05-18 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JHEP 1804 (2018) 066 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1307.2216">arXiv:1307.2216</a> <span> [<a href="https://arxiv.org/pdf/1307.2216">pdf</a>, <a href="https://arxiv.org/ps/1307.2216">ps</a>, <a href="https://arxiv.org/format/1307.2216">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mathematical Physics">math-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Geometric Topology">math.GT</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Algebra">math.QA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.4213/tmf8588">10.4213/tmf8588 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Cabling procedure for the colored HOMFLY polynomials </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/math?searchtype=author&query=Anokhina%2C+A">A. Anokhina</a>, <a href="/search/math?searchtype=author&query=Morozov%2C+A">An. Morozov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1307.2216v2-abstract-short" style="display: inline;"> In the present paper we discuss the cabling procedure for the colored HOMFLY polynomial. We describe how it can be used and how one can find all the quantities such as projectors and $\mathcal{R}$-matrices, which are needed in this procedure. The constructed matrix forms of the projectors and the fundamental $\mathcal{R}$-matrices allow one in principle (neglecting the computational difficulties)… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1307.2216v2-abstract-full').style.display = 'inline'; document.getElementById('1307.2216v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1307.2216v2-abstract-full" style="display: none;"> In the present paper we discuss the cabling procedure for the colored HOMFLY polynomial. We describe how it can be used and how one can find all the quantities such as projectors and $\mathcal{R}$-matrices, which are needed in this procedure. The constructed matrix forms of the projectors and the fundamental $\mathcal{R}$-matrices allow one in principle (neglecting the computational difficulties) to find the HOMFLY polynomial in any representation for any knot. We also discuss the group theory explanation of the cabling procedure. This leads to the explanations of the form of the fundamental $\mathcal{R}$-matrices and illuminates several conjectures proposed in previous papers. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1307.2216v2-abstract-full').style.display = 'none'; document.getElementById('1307.2216v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 February, 2014; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 July, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">52 pages + Tables of Colored Knot Polynomials</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> ITEP/TH-23/13 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Teor.Mat.Fiz. 178 (2014) 3-68; Theor.Math.Phys. 178 (2014) 1-58 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1304.1486">arXiv:1304.1486</a> <span> [<a href="https://arxiv.org/pdf/1304.1486">pdf</a>, <a href="https://arxiv.org/ps/1304.1486">ps</a>, <a href="https://arxiv.org/format/1304.1486">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Geometric Topology">math.GT</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Algebra">math.QA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1155/2013/931830">10.1155/2013/931830 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Colored HOMFLY polynomials as multiple sums over paths or standard Young tableaux </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/math?searchtype=author&query=Anokhina%2C+A">A. Anokhina</a>, <a href="/search/math?searchtype=author&query=Mironov%2C+A">A. Mironov</a>, <a href="/search/math?searchtype=author&query=Morozov%2C+A">A. Morozov</a>, <a href="/search/math?searchtype=author&query=Morozov%2C+A">An. Morozov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1304.1486v1-abstract-short" style="display: inline;"> If a knot is represented by an m-strand braid, then HOMFLY polynomial in representation R is a sum over characters in all representations Q\in R^{\otimes m}. Coefficients in this sum are traces of products of quantum R-matrices along the braid, but these matrices act in the space of intertwiners, and their size is equal to the multiplicity M_{RQ} of Q in R^{\otimes m}. If R is the fundamental repr… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1304.1486v1-abstract-full').style.display = 'inline'; document.getElementById('1304.1486v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1304.1486v1-abstract-full" style="display: none;"> If a knot is represented by an m-strand braid, then HOMFLY polynomial in representation R is a sum over characters in all representations Q\in R^{\otimes m}. Coefficients in this sum are traces of products of quantum R-matrices along the braid, but these matrices act in the space of intertwiners, and their size is equal to the multiplicity M_{RQ} of Q in R^{\otimes m}. If R is the fundamental representation R=[1], then M_{[1] Q} is equal to the number of paths in representation graph, which lead from the fundamental vertex [1] to the vertex Q. In the basis of paths the entries of the m-1 relevant R-matrices are associated with the pairs of paths and are non-vanishing only when the two paths either coincide or differ by at most one vertex; as a corollary R-matrices consist of just 1x1 and 2x2 blocks, given by very simple explicit expressions. If cabling method is used to color the knot with the representation R, then the braid has m|R| strands, Q have a bigger size m|R|, but only paths passing through the vertex R are included into the sums over paths which define the products and traces of the m|R|-1 relevant R-matrices. In the case of SU(N) this path sum formula can also be interpreted as a multiple sum over the standard Young tableaux. By now it provides the most effective way for evaluation of the colored HOMFLY polynomials, conventional or extended, for arbitrary braids. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1304.1486v1-abstract-full').style.display = 'none'; document.getElementById('1304.1486v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 April, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FIAN/TD-06/13; ITEP/TH-13/13 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Advances in High Energy Physics, Volume 2013 (2013) 931830 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1211.6375">arXiv:1211.6375</a> <span> [<a href="https://arxiv.org/pdf/1211.6375">pdf</a>, <a href="https://arxiv.org/ps/1211.6375">ps</a>, <a href="https://arxiv.org/format/1211.6375">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mathematical Physics">math-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Geometric Topology">math.GT</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Algebra">math.QA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nuclphysb.2014.03.002">10.1016/j.nuclphysb.2014.03.002 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Knot polynomials in the first non-symmetric representation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/math?searchtype=author&query=Anokhina%2C+A">A. Anokhina</a>, <a href="/search/math?searchtype=author&query=Mironov%2C+A">A. Mironov</a>, <a href="/search/math?searchtype=author&query=Morozov%2C+A">A. Morozov</a>, <a href="/search/math?searchtype=author&query=Morozov%2C+A">An. Morozov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1211.6375v1-abstract-short" style="display: inline;"> We describe the explicit form and the hidden structure of the answer for the HOMFLY polynomial for the figure eight and some other 3-strand knots in representation [21]. This is the first result for non-torus knots beyond (anti)symmetric representations, and its evaluation is far more complicated. We provide a whole variety of different arguments, allowing one to guess the answer for the figure ei… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1211.6375v1-abstract-full').style.display = 'inline'; document.getElementById('1211.6375v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1211.6375v1-abstract-full" style="display: none;"> We describe the explicit form and the hidden structure of the answer for the HOMFLY polynomial for the figure eight and some other 3-strand knots in representation [21]. This is the first result for non-torus knots beyond (anti)symmetric representations, and its evaluation is far more complicated. We provide a whole variety of different arguments, allowing one to guess the answer for the figure eight knot, which can be also partly used in more complicated situations. Finally we report the result of exact calculation for figure eight and some other 3-strand knots based on the previously developed sophisticated technique of multi-strand calculations. We also discuss a formula for the superpolynomial in representation [21] for the figure eight knot, which heavily relies on the conjectural form of superpolynomial expansion nearby the special polynomial point. Generalizations and details will be presented elsewhere. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1211.6375v1-abstract-full').style.display = 'none'; document.getElementById('1211.6375v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 November, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FIAN/TD-28/12; ITEP/TH-52/12; IIP-TH-29/12 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nuclear Physics, Section B 882C (2014), pp. 171-194 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1207.0279">arXiv:1207.0279</a> <span> [<a href="https://arxiv.org/pdf/1207.0279">pdf</a>, <a href="https://arxiv.org/ps/1207.0279">ps</a>, <a href="https://arxiv.org/format/1207.0279">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Geometric Topology">math.GT</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Algebra">math.QA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nuclphysb.2012.11.006">10.1016/j.nuclphysb.2012.11.006 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Racah coefficients and extended HOMFLY polynomials for all 5-, 6- and 7-strand braids </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/math?searchtype=author&query=Anokhina%2C+A">A. Anokhina</a>, <a href="/search/math?searchtype=author&query=Mironov%2C+A">A. Mironov</a>, <a href="/search/math?searchtype=author&query=Morozov%2C+A">A. Morozov</a>, <a href="/search/math?searchtype=author&query=Morozov%2C+A">An. Morozov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1207.0279v2-abstract-short" style="display: inline;"> Basing on evaluation of the Racah coefficients for SU_q(3) (which supported the earlier conjecture of their universal form) we derive explicit formulas for all the 5-, 6- and 7-strand Wilson averages in the fundamental representation of arbitrary SU(N) group (the HOMFLY polynomials). As an application, we list the answers for all 5-strand knots with 9 crossings. In fact, the 7-strand formulas are… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1207.0279v2-abstract-full').style.display = 'inline'; document.getElementById('1207.0279v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1207.0279v2-abstract-full" style="display: none;"> Basing on evaluation of the Racah coefficients for SU_q(3) (which supported the earlier conjecture of their universal form) we derive explicit formulas for all the 5-, 6- and 7-strand Wilson averages in the fundamental representation of arbitrary SU(N) group (the HOMFLY polynomials). As an application, we list the answers for all 5-strand knots with 9 crossings. In fact, the 7-strand formulas are sufficient to reproduce all the HOMFLY polynomials from the katlas.org: they are all described at once by a simple explicit formula with a very transparent structure. Moreover, would the formulas for the relevant SU_q(3) Racah coefficients remain true for all other quantum groups, the paper provides a complete description of the fundamental HOMFLY polynomials for all braids with any number of strands. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1207.0279v2-abstract-full').style.display = 'none'; document.getElementById('1207.0279v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 October, 2012; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 July, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages + Tables and Appendices</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FIAN/TD-12/12; ITEP/TH-33/12 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nuclear Physics, B868 (2013) 271-313 </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>