CINXE.COM

Search results for: crude oil tank

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: crude oil tank</title> <meta name="description" content="Search results for: crude oil tank"> <meta name="keywords" content="crude oil tank"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="crude oil tank" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="crude oil tank"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 1033</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: crude oil tank</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">823</span> Desktop High-Speed Aerodynamics by Shallow Water Analogy in a Tin Box for Engineering Students</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Etsuo%20Morishita">Etsuo Morishita</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we show shallow water in a tin box as an analogous simulation tool for high-speed aerodynamics education and research. It is customary that we use a water tank to create shallow water flow. While a flow in a water tank is not necessarily uniform and is sometimes wavy, we can visualize a clear supercritical flow even when we move a body manually in stationary water in a simple shallow tin box. We can visualize a blunt shock wave around a moving circular cylinder together with a shock pattern around a diamond airfoil. Another interesting analogous experiment is a hydrodynamic shock tube with water and tea. We observe the contact surface clearly due to color difference of the two liquids those are invisible in the real gas dynamics experiment. We first revisit the similarities between high-speed aerodynamics and shallow water hydraulics. Several educational and research experiments are then introduced for engineering students. Shallow water experiments in a tin box simulate properly the high-speed flows. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerodynamics%20compressible%20flow" title="aerodynamics compressible flow">aerodynamics compressible flow</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20dynamics" title=" gas dynamics"> gas dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=hydraulics" title=" hydraulics"> hydraulics</a>, <a href="https://publications.waset.org/abstracts/search?q=shock%20wave" title=" shock wave"> shock wave</a> </p> <a href="https://publications.waset.org/abstracts/68545/desktop-high-speed-aerodynamics-by-shallow-water-analogy-in-a-tin-box-for-engineering-students" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68545.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">302</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">822</span> Physicochemical Properties of Moringa oleifera Seeds</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Oyewusi%20Peter%20Ayodele">Oyewusi Peter Ayodele</a>, <a href="https://publications.waset.org/abstracts/search?q=Onipede%20Ayodeji"> Onipede Ayodeji</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Our research focuses on some physicochemical parameters of Moringa Oleifera seed meal and its seed oil to determine its nutritional quality. Proximate, mineral, and vitamin analyses were performed on the defatted seed meal, while fatty acid determination was carried out on the seed oil. The results of the proximate composition show moisture content (3.52 ± 0.01), ash (2.80 ± 0.33), crude fibre (3.92 ± 0.01), protein (42.96 ± 0.05), crude fat (7.04 ± 0.01) and carbohydrate (36.79 ± 0.04). The mineral composition shows that the seed is rich in Ca, K, and Na with 220ppm, 205ppm, and 118ppm, respectively. The seed has vitamins A and C with 2.17 ± 0.01mg/100g and 6.95 ± 0.00 mg/100g respectively. The seed also contains 56.62 %, 38.50 %, and 5.24 % saturated, monounsaturated, and polyunsaturated fatty acids, respectively. It could be illustrated that Moringa seeds and their oil can be considered potential sources for both dietary and industrial purposes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Moringa%20oleifera%20seed" title="Moringa oleifera seed">Moringa oleifera seed</a>, <a href="https://publications.waset.org/abstracts/search?q=chemical%20composition" title=" chemical composition"> chemical composition</a>, <a href="https://publications.waset.org/abstracts/search?q=fatty%20acid" title=" fatty acid"> fatty acid</a>, <a href="https://publications.waset.org/abstracts/search?q=proximate" title=" proximate"> proximate</a>, <a href="https://publications.waset.org/abstracts/search?q=minerals%20and%20vitamins%20compositions" title=" minerals and vitamins compositions"> minerals and vitamins compositions</a> </p> <a href="https://publications.waset.org/abstracts/171774/physicochemical-properties-of-moringa-oleifera-seeds" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/171774.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">288</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">821</span> Optimization of Biomass Components from Rice Husk Treated with Trichophyton Soudanense and Trichophyton Mentagrophyte and Effect of Yeast on the Bio-Ethanol Yield</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chukwuma%20S.%20Ezeonu">Chukwuma S. Ezeonu</a>, <a href="https://publications.waset.org/abstracts/search?q=Ikechukwu%20N.%20E.%20Onwurah"> Ikechukwu N. E. Onwurah</a>, <a href="https://publications.waset.org/abstracts/search?q=Uchechukwu%20U.%20Nwodo"> Uchechukwu U. Nwodo</a>, <a href="https://publications.waset.org/abstracts/search?q=Chibuike%20S.%20Ubani"> Chibuike S. Ubani</a>, <a href="https://publications.waset.org/abstracts/search?q=Chigozie%20M.%20Ejikeme"> Chigozie M. Ejikeme</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Trichophyton soudanense and Trichophyton mentagrophyte were isolated from the rice mill environment, cultured and used singly and as di-culture in the treatment of measure quantities of preheated rice husk. Optimized conditions studied showed that carboxymethylcellulase (CMCellulase) activity of 57.61 µg/ml/min was optimum for Trichophyton mentagrophyte heat pretreated rice husk crude enzymes at 50oC and 80oC respectively. Duration of 120 hours (5 days) gave the highest CMcellulase activity of 75.84 µg/ml/min for crude enzyme of Trichophyton mentagrophyte heat pretreated rice husk. However, 96 hours (4 days) duration gave maximum activity of 58.21 µg/ml/min for crude enzyme of Trichophyton soudanense heat pretreated rice husk. Highest CMCellulase activities of 67.02 µg/ml/min and 69.02 µg/ml/min at pH of 5 were recorded for crude enzymes of monocultures of Trichophyton soudanense (TS) and Trichophyton mentagrophyte (TM) heat pretreated rice husk respectively. Biomass components showed that rice husk cooled after heating followed by treatment with Trichophyton mentagrophyte gave 44.50 ± 10.90 (% ± Standard Error of Mean) cellulose as the highest yield. Maximum total lignin value of 28.90 ± 1.80 (% ± SEM) was obtained from pre-heated rice husk treated with di-culture of Trichophyton soudanense and Trichophyton mentagrophyte (TS+TM). The hemicellulose content of 30.50 ± 2.12 (% ± SEM) from pre-heated rice husk treated with Trichophyton soudanense (TS); lignin value of 28.90 ± 1.80 from pre-heated rice husk treated with di-culture of Trichophyton soudanense and Trichophyton mentagrophyte (TS+TM); also carbohydrate content of 16.79 ± 9.14 (% ± SEM) , reducing and non-reducing sugar values of 2.66 ± 0.45 and 14.13 ± 8.69 (% ± SEM) were all obtained from for pre- heated rice husk treated with Trichophyton mentagrophyte (TM). All the values listed above were the highest values obtained from each rice husk treatment. The pre-heated rice husk treated with Trichophyton mentagrophyte (TM) fermented with palmwine yeast gave bio-ethanol value of 11.11 ± 0.21 (% ± Standard Deviation) as the highest yield. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Trichophyton%20soudanense" title="Trichophyton soudanense">Trichophyton soudanense</a>, <a href="https://publications.waset.org/abstracts/search?q=Trichophyton%20mentagrophyte" title=" Trichophyton mentagrophyte"> Trichophyton mentagrophyte</a>, <a href="https://publications.waset.org/abstracts/search?q=biomass" title=" biomass"> biomass</a>, <a href="https://publications.waset.org/abstracts/search?q=bioethanol" title=" bioethanol"> bioethanol</a>, <a href="https://publications.waset.org/abstracts/search?q=rice%20husk" title=" rice husk"> rice husk</a> </p> <a href="https://publications.waset.org/abstracts/27579/optimization-of-biomass-components-from-rice-husk-treated-with-trichophyton-soudanense-and-trichophyton-mentagrophyte-and-effect-of-yeast-on-the-bio-ethanol-yield" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27579.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">679</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">820</span> Fault Detection and Isolation of a Three-Tank System using Analytical Temporal Redundancy, Parity Space/Relation Based Residual Generation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20T.%20Kuda">A. T. Kuda</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20J.%20Dayya"> J. J. Dayya</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Jimoh"> A. Jimoh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper investigates the fault detection and Isolation technique of measurement data sets from a three tank system using analytical model-based temporal redundancy which is based on residual generation using parity equations/space approach. It further briefly outlines other approaches of model-based residual generation. The basic idea of parity space residual generation in temporal redundancy is dynamic relationship between sensor outputs and actuator inputs (input-output model). These residuals where then used to detect whether or not the system is faulty and indicate the location of the fault when it is faulty. The method obtains good results by detecting and isolating faults from the considered data sets measurements generated from the system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fault%20detection" title="fault detection">fault detection</a>, <a href="https://publications.waset.org/abstracts/search?q=fault%20isolation" title=" fault isolation"> fault isolation</a>, <a href="https://publications.waset.org/abstracts/search?q=disturbing%20influences" title=" disturbing influences"> disturbing influences</a>, <a href="https://publications.waset.org/abstracts/search?q=system%20failure" title=" system failure"> system failure</a>, <a href="https://publications.waset.org/abstracts/search?q=parity%20equation%2Frelation" title=" parity equation/relation"> parity equation/relation</a>, <a href="https://publications.waset.org/abstracts/search?q=structured%20parity%20equations" title=" structured parity equations"> structured parity equations</a> </p> <a href="https://publications.waset.org/abstracts/9886/fault-detection-and-isolation-of-a-three-tank-system-using-analytical-temporal-redundancy-parity-spacerelation-based-residual-generation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9886.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">302</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">819</span> Spillovers between Oil and the Gulf Cooperation Council Stock Markets: Fresh Evidence from a Regime-Switching Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20BenSa%C3%AFda">Ahmed BenSaïda</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study examines the relationship between crude oil and the Gulf Cooperation Council (GCC) region stock markets by employing a regime-switching approach. The methodology provides new insights into how the interrelationship between oil and GCC stock markets may fluctuate in different economic or market regimes, which is crucial for understanding the transmission of oil shocks and tailoring policy responses. Our findings indicate that the spillovers between the underlying assets are asymmetric. Specifically, during the turmoil periods, the connectedness is intense among these assets, whereas during tranquil periods, the linkage is moderate. Furthermore, an increase in oil prices can positively contribute to the profits of firms that are heavily dependent on oil, leading to an increase in the linkage between these countries and crude oil. The findings have important implications for investors and decision-makers in the GCC region. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=GCC%20indices" title="GCC indices">GCC indices</a>, <a href="https://publications.waset.org/abstracts/search?q=oil" title=" oil"> oil</a>, <a href="https://publications.waset.org/abstracts/search?q=regime-switching" title=" regime-switching"> regime-switching</a>, <a href="https://publications.waset.org/abstracts/search?q=spillovers" title=" spillovers"> spillovers</a> </p> <a href="https://publications.waset.org/abstracts/192294/spillovers-between-oil-and-the-gulf-cooperation-council-stock-markets-fresh-evidence-from-a-regime-switching-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/192294.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">19</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">818</span> Non-Destructive Prediction System Using near Infrared Spectroscopy for Crude Palm Oil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Siti%20Nurhidayah%20Naqiah%20Abdull%20Rani">Siti Nurhidayah Naqiah Abdull Rani</a>, <a href="https://publications.waset.org/abstracts/search?q=Herlina%20Abdul%20Rahim"> Herlina Abdul Rahim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Near infrared (NIR) spectroscopy has always been of great interest in the food and agriculture industries. The development of predictive models has facilitated the estimation process in recent years. In this research, 176 crude palm oil (CPO) samples acquired from Felda Johor Bulker Sdn Bhd were studied. A FOSS NIRSystem was used to tak e absorbance measurements from the sample. The wavelength range for the spectral measurement is taken at 1600nm to 1900nm. Partial Least Square Regression (PLSR) prediction model with 50 optimal number of principal components was implemented to study the relationship between the measured Free Fatty Acid (FFA) values and the measured spectral absorption. PLSR showed predictive ability of FFA values with correlative coefficient (R) of 0.9808 for the training set and 0.9684 for the testing set. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=palm%20oil" title="palm oil">palm oil</a>, <a href="https://publications.waset.org/abstracts/search?q=fatty%20acid" title=" fatty acid"> fatty acid</a>, <a href="https://publications.waset.org/abstracts/search?q=NIRS" title=" NIRS"> NIRS</a>, <a href="https://publications.waset.org/abstracts/search?q=PLSR" title=" PLSR"> PLSR</a> </p> <a href="https://publications.waset.org/abstracts/79918/non-destructive-prediction-system-using-near-infrared-spectroscopy-for-crude-palm-oil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79918.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">209</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">817</span> Assessment of the Physico-Chemical Parameters and Heavy Metal Concentration in Water and Callinectes amnicola (Swimming Crab) in a Crude Oil Exposed Community (Bodo Creek), Rivers State, Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ehiedu%20Philomina%20Kika">Ehiedu Philomina Kika</a>, <a href="https://publications.waset.org/abstracts/search?q=Jessica%20Chinonso%20Ehilegbu"> Jessica Chinonso Ehilegbu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The exploration and production of fossil fuel particularly crude oil has led to some serious environmental damage in some oil producing communities like the Bodo Community who rely heavily on their aquatic environment for food and water. This study was therefore carried out to investigate the level of some heavy metals in water and Callinectes amnicola (Swimming Crab) in the month of August, September and October from Bodo creek, Rivers State, Nigeria. The physico-chemical parameters of the water were also analyzed in-situ. The levels of heavy metals, Lead (Pb), Cadmium (Cd), Chromium (Cr), Zinc (Zn), Copper (Cu) were analyzed in water and in Callinectes amnicola (Swimming Crab), using Atomic Absorption Spectrophotometer (AAS) after acid digestion. For the concentration of heavy metals in water, Pb ranged from 0.103 - 0.791 mg/l, Zn 0.0025 - 0.342 mg/l, Cr < 0.001 - 0.304 mg/l, Cd 0.011 - 0.116 mg/l and Cu <0.001 - 0.079 mg/l. For the concentration of heavy metals in Callinectes amnicola (Swimming Crab), the level of Pb ranged from 0.359 - 0.849 mg/l, Zn 0.134 - 0.342 mg/l, Cd 0.053 - 0.103 mg/l, Cr < 0.001 - <0.001 mg/l, Cu < 0.001 - 0.131 mg/l. The concentrations of Pb, Cd and Cr for all water and crab samples collected from the various stations were higher than permissible level suggesting serious anthropogenic influence. Thus, precaution needs to be taken to prevent further contamination and adequate purification measures need to be put in place. Therefore, there should be periodic environmental pollution monitoring, for assessment and awareness especially with regards heavy metal. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bodo%20creek" title="Bodo creek">Bodo creek</a>, <a href="https://publications.waset.org/abstracts/search?q=crude%20oil" title=" crude oil"> crude oil</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20metal" title=" heavy metal"> heavy metal</a>, <a href="https://publications.waset.org/abstracts/search?q=swimming%20crab" title=" swimming crab"> swimming crab</a> </p> <a href="https://publications.waset.org/abstracts/93484/assessment-of-the-physico-chemical-parameters-and-heavy-metal-concentration-in-water-and-callinectes-amnicola-swimming-crab-in-a-crude-oil-exposed-community-bodo-creek-rivers-state-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93484.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">162</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">816</span> Cascade Control for Pressure Calibration by Fieldbus Communication System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chatchaval%20Pornpatkul">Chatchaval Pornpatkul</a>, <a href="https://publications.waset.org/abstracts/search?q=Wipawan%20Suksathid"> Wipawan Suksathid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper is to study and control the pressure of the water inside the open tank using a cascade control with the communication in the process by fieldbus system for the pressure calibration. The plant model is to be used in experiments to control the level and flow process of the water by using Syscon program to create functions. We used to control by Intouch runtime program to create the graphic display on the screen. In this case we used PI control the level and the flow process of water in the open tank in the range of 0 – 10 L/m. The output signal of the level and the flow transmitter are the digital standard signal by fieldbus system. And all information displayed on the computer with the communication between the computer and plant model can be communication to each other through just one cable pair. And in this paper, the PI tuning, we used calculate by Ziegler-Nichols reaction curve method to control the plant model by PI controller. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cascade%20control" title="cascade control">cascade control</a>, <a href="https://publications.waset.org/abstracts/search?q=fieldbus%20system" title=" fieldbus system"> fieldbus system</a>, <a href="https://publications.waset.org/abstracts/search?q=pressure%20calibration" title=" pressure calibration"> pressure calibration</a>, <a href="https://publications.waset.org/abstracts/search?q=microelectronics%20systems" title=" microelectronics systems"> microelectronics systems</a> </p> <a href="https://publications.waset.org/abstracts/6419/cascade-control-for-pressure-calibration-by-fieldbus-communication-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6419.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">459</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">815</span> Free Fatty Acid Assessment of Crude Palm Oil Using a Non-Destructive Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Siti%20Nurhidayah%20Naqiah%20Abdull%20Rani">Siti Nurhidayah Naqiah Abdull Rani</a>, <a href="https://publications.waset.org/abstracts/search?q=Herlina%20Abdul%20Rahim"> Herlina Abdul Rahim</a>, <a href="https://publications.waset.org/abstracts/search?q=Rashidah%20Ghazali"> Rashidah Ghazali</a>, <a href="https://publications.waset.org/abstracts/search?q=Noramli%20Abdul%20Razak"> Noramli Abdul Razak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Near infrared (NIR) spectroscopy has always been of great interest in the food and agriculture industries. The development of prediction models has facilitated the estimation process in recent years. In this study, 110 crude palm oil (CPO) samples were used to build a free fatty acid (FFA) prediction model. 60% of the collected data were used for training purposes and the remaining 40% used for testing. The visible peaks on the NIR spectrum were at 1725 nm and 1760 nm, indicating the existence of the first overtone of C-H bands. Principal component regression (PCR) was applied to the data in order to build this mathematical prediction model. The optimal number of principal components was 10. The results showed R2=0.7147 for the training set and R2=0.6404 for the testing set. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=palm%20oil" title="palm oil">palm oil</a>, <a href="https://publications.waset.org/abstracts/search?q=fatty%20acid" title=" fatty acid"> fatty acid</a>, <a href="https://publications.waset.org/abstracts/search?q=NIRS" title=" NIRS"> NIRS</a>, <a href="https://publications.waset.org/abstracts/search?q=regression" title=" regression"> regression</a> </p> <a href="https://publications.waset.org/abstracts/13718/free-fatty-acid-assessment-of-crude-palm-oil-using-a-non-destructive-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13718.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">507</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">814</span> Implementation of Chlorine Monitoring and Supply System for Drinking Water Tanks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ugur%20Fidan">Ugur Fidan</a>, <a href="https://publications.waset.org/abstracts/search?q=Naim%20Karasekreter"> Naim Karasekreter</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Healthy and clean water should not contain disease-causing micro-organisms and toxic chemicals and must contain the necessary minerals in a balanced manner. Today, water resources have a limited and strategic importance, necessitating the management of water reserves. Water tanks meet the water needs of people and should be regularly chlorinated to prevent waterborne diseases. For this purpose, automatic chlorination systems placed in water tanks for killing bacteria. However, the regular operation of automatic chlorination systems depends on refilling the chlorine tank when it is empty. For this reason, there is a need for a stock control system, in which chlorine levels are regularly monitored and supplied. It has become imperative to take urgent measures against epidemics caused by the fact that most of our country is not aware of the end of chlorine. The aim of this work is to rehabilitate existing water tanks and to provide a method for a modern water storage system in which chlorination is digitally monitored by turning the newly established water tanks into a closed system. A sensor network structure using GSM/GPRS communication infrastructure has been developed in the study. The system consists of two basic units: hardware and software. The hardware includes a chlorine level sensor, an RFID interlock system for authorized personnel entry into water tank, a motion sensor for animals and other elements, and a camera system to ensure process safety. It transmits the data from the hardware sensors to the host server software via the TCP/IP protocol. The main server software processes the incoming data through the security algorithm and informs the relevant unit responsible (Security forces, Chlorine supply unit, Public health, Local Administrator) by e-mail and SMS. Since the software is developed base on the web, authorized personnel are also able to monitor drinking water tank and report data on the internet. When the findings and user feedback obtained as a result of the study are evaluated, it is shown that closed drinking water tanks are built with GRP type material, and continuous monitoring in digital environment is vital for sustainable health water supply for people. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wireless%20sensor%20networks%20%28WSN%29" title="wireless sensor networks (WSN)">wireless sensor networks (WSN)</a>, <a href="https://publications.waset.org/abstracts/search?q=monitoring" title=" monitoring"> monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=chlorine" title=" chlorine"> chlorine</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20tank" title=" water tank"> water tank</a>, <a href="https://publications.waset.org/abstracts/search?q=security" title=" security"> security</a> </p> <a href="https://publications.waset.org/abstracts/78971/implementation-of-chlorine-monitoring-and-supply-system-for-drinking-water-tanks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78971.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">160</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">813</span> Ultrasonic Techniques to Characterize and Monitor Water-in-Oil Emulsion</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=E.%20A.%20Alshaafi">E. A. Alshaafi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Prakash"> A. Prakash</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Oil-water emulsions are commonly encountered in various industrial operations and at different stages of crude oil production and processing. Emulsions are often difficult to track and treat and can cause a number of costly problems which need to be avoided. The characteristics of the emulsion phase can vary with crude composition and types of impurities present in oil. The objectives of this study are the development of ultrasonic techniques to track and characterize emulsion phase generated during production and cleaning of crude oil. The position of emulsion layer is monitored with the help of ultrasonic probes suitably placed in the vessel. The sensitivity of the technique and its potential has been demonstrated based on extensive testing with different oil samples. The technique is also being developed to monitor emulsion phase characteristics such as stability, composition, and droplet size distribution. The ultrasonic parameters recorded are changes in acoustic velocity, signal attenuation and its frequency spectrum. Emulsion has been prepared with light mineral oil sample and the effects of various factors including mixing speed, temperature, surfactant, and solid particles concentrations have been investigated. The applied frequency for ultrasonic waves has been varied from 1 to 5 MHz to carry out a sensitivity analysis. Emulsion droplet structure is observed with optical microscopy and stability is examined by tracking the changes in ultrasonic parameters with time. A model based on ultrasonic attenuation spectroscopy is being developed and tested to track changes in droplet size distribution with time. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ultrasonic%20techniques" title="ultrasonic techniques">ultrasonic techniques</a>, <a href="https://publications.waset.org/abstracts/search?q=emulsion" title=" emulsion"> emulsion</a>, <a href="https://publications.waset.org/abstracts/search?q=characterization" title=" characterization"> characterization</a>, <a href="https://publications.waset.org/abstracts/search?q=droplet%20size" title=" droplet size"> droplet size</a> </p> <a href="https://publications.waset.org/abstracts/74038/ultrasonic-techniques-to-characterize-and-monitor-water-in-oil-emulsion" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74038.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">175</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">812</span> Modeling of Oxygen Supply Profiles in Stirred-Tank Aggregated Stem Cells Cultivation Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vytautas%20Galvanauskas">Vytautas Galvanauskas</a>, <a href="https://publications.waset.org/abstracts/search?q=Vykantas%20Grincas"> Vykantas Grincas</a>, <a href="https://publications.waset.org/abstracts/search?q=Rimvydas%20Simutis"> Rimvydas Simutis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper investigates a possible practical solution for reasonable oxygen supply during the pluripotent stem cells expansion processes, where the stem cells propagate as aggregates in stirred-suspension bioreactors. Low glucose and low oxygen concentrations are preferred for efficient proliferation of pluripotent stem cells. However, strong oxygen limitation, especially inside of cell aggregates, can lead to cell starvation and death. In this research, the oxygen concentration profile inside of stem cell aggregates in a stem cell expansion process was predicted using a modified oxygen diffusion model. This profile can be realized during the stem cells cultivation process by manipulating the oxygen concentration in inlet gas or inlet gas flow. The proposed approach is relatively simple and may be attractive for installation in a real pluripotent stem cell expansion processes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aggregated%20stem%20cells" title="aggregated stem cells">aggregated stem cells</a>, <a href="https://publications.waset.org/abstracts/search?q=dissolved%20oxygen%20profiles" title=" dissolved oxygen profiles"> dissolved oxygen profiles</a>, <a href="https://publications.waset.org/abstracts/search?q=modeling" title=" modeling"> modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=stirred-tank" title=" stirred-tank"> stirred-tank</a>, <a href="https://publications.waset.org/abstracts/search?q=3D%20expansion" title=" 3D expansion"> 3D expansion</a> </p> <a href="https://publications.waset.org/abstracts/49847/modeling-of-oxygen-supply-profiles-in-stirred-tank-aggregated-stem-cells-cultivation-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49847.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">305</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">811</span> Automation Test Method and HILS Environment Configuration for Hydrogen Storage System Management Unit Verification</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jaejeogn%20Kim">Jaejeogn Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Jeongmin%20Hong"> Jeongmin Hong</a>, <a href="https://publications.waset.org/abstracts/search?q=Jungin%20Lee"> Jungin Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Hydrogen Storage System Management Unit (HMU) is a controller that manages hydrogen charging and storage. It detects hydrogen leaks and tank pressure and temperature, calculates the charging concentration and remaining amount, and controls the opening and closing of the hydrogen tank valve. Since this role is an important part of the vehicle behavior and stability of Fuel Cell Electric Vehicles (FCEV), verifying the HMU controller is an essential part. To perform verification under various conditions, it is necessary to increase time efficiency based on an automated verification environment and increase the reliability of the controller by applying numerous test cases. To this end, we introduce the HMU controller automation verification method by applying the HILS environment and an automation test program with the ASAM XIL standard. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=HILS" title="HILS">HILS</a>, <a href="https://publications.waset.org/abstracts/search?q=ASAM" title=" ASAM"> ASAM</a>, <a href="https://publications.waset.org/abstracts/search?q=fuel%20cell%20electric%20vehicle" title=" fuel cell electric vehicle"> fuel cell electric vehicle</a>, <a href="https://publications.waset.org/abstracts/search?q=automation%20test" title=" automation test"> automation test</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogen%20storage%20system" title=" hydrogen storage system"> hydrogen storage system</a> </p> <a href="https://publications.waset.org/abstracts/184315/automation-test-method-and-hils-environment-configuration-for-hydrogen-storage-system-management-unit-verification" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/184315.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">70</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">810</span> Exploratory Tests of Crude Bacteriocins from Autochthonous Lactic Acid Bacteria against Food-Borne Pathogens and Spoilage Bacteria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Naimi">M. Naimi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20B.%20Khaled"> M. B. Khaled</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of the present work was to test in vitro inhibition of food pathogens and spoilage bacteria by crude bacteriocins from autochthonous lactic acid bacteria. Thirty autochthonous lactic acid bacteria isolated previously, belonging to the genera: Lactobacillus, Carnobacterium, Lactococcus, Vagococcus, Streptococcus, and Pediococcus, have been screened by an agar spot test and a well diffusion assay against Gram-positive and Gram-negative harmful bacteria: Bacillus cereus, Bacillus subtilis ATCC 6633, Escherichia coli ATCC 8739, Salmonella typhimurium ATCC 14028, Staphylococcus aureus ATCC 6538, and Pseudomonas aeruginosa under conditions means to reduce lactic acid and hydrogen peroxide effect to select bacteria with high bacteriocinogenic potential. Furthermore, crude bacteriocins semiquantification and heat sensitivity to different temperatures (80, 95, 110°C, and 121°C) were performed. Another exploratory test concerning the response of St. aureus ATCC 6538 to the presence of crude bacteriocins was realized. It has been observed by the agar spot test that fifteen candidates were active toward Gram-positive targets strains. The secondary screening demonstrated an antagonistic activity oriented only against St. aureus ATCC 6538, leading to the selection of five isolates: Lm14, Lm21, Lm23, Lm24, and Lm25 with a larger inhibition zone compared to the others. The ANOVA statistical analysis reveals a small variation of repeatability: Lm21: 0.56%, Lm23: 0%, Lm25: 1.67%, Lm14: 1.88%, Lm24: 2.14%. Conversely, slight variation was reported in terms of inhibition diameters: 9.58± 0.40, 9.83± 0.46, and 10.16± 0.24 8.5 ± 0.40 10 mm for, Lm21, Lm23, Lm25, Lm14and Lm24, indicating that the observed potential showed a heterogeneous distribution (BMS = 0.383, WMS = 0.117). The repeatability coefficient calculated displayed 7.35%. As for the bacteriocins semiquantification, the five samples exhibited production amounts about 4.16 for Lm21, Lm23, Lm25 and 2.08 AU/ml for Lm14, Lm24. Concerning the sensitivity the crude bacteriocins were fully insensitive to heat inactivation, until 121°C, they preserved the same inhibition diameter. As to, kinetic of growth , the µmax showed reductions in pathogens load for Lm21, Lm23, Lm25, Lm14, Lm24 of about 42.92%, 84.12%, 88.55%, 54.95%, 29.97% in the second trails. Inversely, this pathogen growth after five hours displayed differences of 79.45%, 12.64%, 11.82%, 87.88%, 85.66% in the second trails, compared to the control. This study showed potential inhibition to the growth of this food pathogen, suggesting the possibility to improve the hygienic food quality. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=exploratory%20test" title="exploratory test">exploratory test</a>, <a href="https://publications.waset.org/abstracts/search?q=lactic%20acid%20bacteria" title=" lactic acid bacteria"> lactic acid bacteria</a>, <a href="https://publications.waset.org/abstracts/search?q=crude%20bacteriocins" title=" crude bacteriocins"> crude bacteriocins</a>, <a href="https://publications.waset.org/abstracts/search?q=spoilage" title=" spoilage"> spoilage</a>, <a href="https://publications.waset.org/abstracts/search?q=pathogens" title=" pathogens"> pathogens</a> </p> <a href="https://publications.waset.org/abstracts/1992/exploratory-tests-of-crude-bacteriocins-from-autochthonous-lactic-acid-bacteria-against-food-borne-pathogens-and-spoilage-bacteria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1992.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">213</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">809</span> Vibration Mitigation in Partially Liquid-Filled Vessel Using Passive Energy Absorbers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maor%20Farid">Maor Farid</a>, <a href="https://publications.waset.org/abstracts/search?q=Oleg%20Gendelman"> Oleg Gendelman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The following study deals with fluid vibration of a liquid in a partially filled vessel under periodic ground excitation. This external excitation might lead to hidraulic impact applied on the vessel inner walls. In order to model these sloshing dynamic regimes, several equivalent mechanical models were suggested in the literature, such as series of pendula or mass-spring systems that are able to impact the inner tank walls. In the following study, we use the latter methodology, use parameter values documented in literature corresponding to cylindrical tanks and consider structural elasticity of the tank. The hydraulic impulses are modeled by the high-exponent potential function. Additional system parameters are found with the help of Finite-Element (FE) analysis. Model-driven stress assessment method is developed. Finally, vibration mitigation performances of both tuned mass damper (TMD) and nonlinear energy sink (NES) are examined. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20energy%20sink%20%28NES%29" title="nonlinear energy sink (NES)">nonlinear energy sink (NES)</a>, <a href="https://publications.waset.org/abstracts/search?q=reduced-order%20modelling" title=" reduced-order modelling"> reduced-order modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=liquid%20sloshing" title=" liquid sloshing"> liquid sloshing</a>, <a href="https://publications.waset.org/abstracts/search?q=vibration%20mitigation" title=" vibration mitigation"> vibration mitigation</a>, <a href="https://publications.waset.org/abstracts/search?q=vibro-impact%20dynamics" title=" vibro-impact dynamics"> vibro-impact dynamics</a> </p> <a href="https://publications.waset.org/abstracts/83537/vibration-mitigation-in-partially-liquid-filled-vessel-using-passive-energy-absorbers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/83537.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">197</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">808</span> Forage Quality of Chickpea - Barley as Affected by Mixed Cropping System in Water Stress Condition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Masoud%20Rafiee">Masoud Rafiee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To study the quality response of forage to chickpea-barley mixed cropping under drought stress and vermicompost consumption, an experiment was carried out under well watered and %70 water requirement (stress condition) in RCBD as split plot with four replications in temperate condition of Khorramabad in 2013. Chickpea-barley mix cropping (%100 chickpea, %75:25 chickpea:barley, %50:50 chickpea:barley, %25:75 chickpea:barley, and %100 barley) was studied. Results showed that wet and dry forage yield were significantly affected by environment and decreased in stress condition. Also, crude protein content decreased from %26.2 in well watered to %17.3 in stress condition. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=crude%20protein" title="crude protein">crude protein</a>, <a href="https://publications.waset.org/abstracts/search?q=wet%20forage%20yield" title=" wet forage yield"> wet forage yield</a>, <a href="https://publications.waset.org/abstracts/search?q=dry%20forage%20yield" title=" dry forage yield"> dry forage yield</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20stress%20condition" title=" water stress condition"> water stress condition</a>, <a href="https://publications.waset.org/abstracts/search?q=well%20watered" title=" well watered"> well watered</a> </p> <a href="https://publications.waset.org/abstracts/31169/forage-quality-of-chickpea-barley-as-affected-by-mixed-cropping-system-in-water-stress-condition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31169.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">343</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">807</span> Development of a Smart Liquid Level Controller</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adamu%20Mudi">Adamu Mudi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ibrahim%20Wahab%20Fawole"> Ibrahim Wahab Fawole</a>, <a href="https://publications.waset.org/abstracts/search?q=Abubakar%20Abba%20Kolo"> Abubakar Abba Kolo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this research paper, we present a microcontroller-based liquid level controller that identifies the various levels of a liquid, carries out certain actions, and is capable of communicating with the human being and other devices through the GSM network. This project is useful in ensuring that a liquid is not wasted. It also contributes to the internet of things paradigm, which is the future of the internet. The method used in this work includes designing the circuit and simulating it. The circuit is then implemented on a solderless breadboard, after which it is implemented on a strip board. A C++ computer program is developed and uploaded into the microcontroller. This program instructs the microcontroller on how to carry out its actions. In other to determine levels of the liquid, an ultrasonic wave is sent to the surface of the liquid similar to radar or the method for detecting the level of sea bed. Message is sent to the phone of the user similar to the way computers send messages to phones of GSM users. It is concluded that the routine of observing the levels of a liquid in a tank, refilling the tank when the liquid level is too low can be entirely handled by a programmable device without wastage of the liquid or bothering a human being with such tasks. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arduino%20Uno" title="Arduino Uno">Arduino Uno</a>, <a href="https://publications.waset.org/abstracts/search?q=HC-SR04%20ultrasonic%20sensor" title=" HC-SR04 ultrasonic sensor"> HC-SR04 ultrasonic sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=internet%20of%20things" title=" internet of things"> internet of things</a>, <a href="https://publications.waset.org/abstracts/search?q=IoT" title=" IoT"> IoT</a>, <a href="https://publications.waset.org/abstracts/search?q=SIM900%20GSM%20module" title=" SIM900 GSM module"> SIM900 GSM module</a> </p> <a href="https://publications.waset.org/abstracts/125994/development-of-a-smart-liquid-level-controller" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/125994.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">130</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">806</span> Energy Consumption Estimation for Hybrid Marine Power Systems: Comparing Modeling Methodologies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kamyar%20Maleki%20Bagherabadi">Kamyar Maleki Bagherabadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Torstein%20Aarseth%20B%C3%B8"> Torstein Aarseth Bø</a>, <a href="https://publications.waset.org/abstracts/search?q=Truls%20Flatberg"> Truls Flatberg</a>, <a href="https://publications.waset.org/abstracts/search?q=Olve%20Mo"> Olve Mo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hydrogen fuel cells and batteries are one of the promising solutions aligned with carbon emission reduction goals for the marine sector. However, the higher installation and operation costs of hydrogen-based systems compared to conventional diesel gensets raise questions about the appropriate hydrogen tank size, energy, and fuel consumption estimations. Ship designers need methodologies and tools to calculate energy and fuel consumption for different component sizes to facilitate decision-making regarding feasibility and performance for retrofits and design cases. The aim of this work is to compare three alternative modeling approaches for the estimation of energy and fuel consumption with various hydrogen tank sizes, battery capacities, and load-sharing strategies. A fishery vessel is selected as an example, using logged load demand data over a year of operations. The modeled power system consists of a PEM fuel cell, a diesel genset, and a battery. The methodologies used are: first, an energy-based model; second, considering load variations during the time domain with a rule-based Power Management System (PMS); and third, a load variations model and dynamic PMS strategy based on optimization with perfect foresight. The errors and potentials of the methods are discussed, and design sensitivity studies for this case are conducted. The results show that the energy-based method can estimate fuel and energy consumption with acceptable accuracy. However, models that consider time variation of the load provide more realistic estimations of energy and fuel consumption regarding hydrogen tank and battery size, still within low computational time. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fuel%20cell" title="fuel cell">fuel cell</a>, <a href="https://publications.waset.org/abstracts/search?q=battery" title=" battery"> battery</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogen" title=" hydrogen"> hydrogen</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20power%20system" title=" hybrid power system"> hybrid power system</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20management%20system" title=" power management system"> power management system</a> </p> <a href="https://publications.waset.org/abstracts/187386/energy-consumption-estimation-for-hybrid-marine-power-systems-comparing-modeling-methodologies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/187386.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">36</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">805</span> Anti-Angiogenic Effects of the Macrovipera lebetina obtusa Snake Crude Venom and Obtustatin</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Narine%20Ghazaryan">Narine Ghazaryan</a>, <a href="https://publications.waset.org/abstracts/search?q=Joana%20Catarina%20Macedo"> Joana Catarina Macedo</a>, <a href="https://publications.waset.org/abstracts/search?q=Sara%20Vaz"> Sara Vaz</a>, <a href="https://publications.waset.org/abstracts/search?q=Naira%20Ayvazyan"> Naira Ayvazyan</a>, <a href="https://publications.waset.org/abstracts/search?q=Elsa%20Logarinho"> Elsa Logarinho</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Macrovipera lebetina obtusa (MLO) is a poisonous snake in Armenia. Obtustatin represents the shortest known monomeric disintegrin, isolated from the snake venom of MLO, and is known to specifically inhibit α1β1 integrin. Its oncostatic effect is due to the inhibition of angiogenesis, which likely arises from α1β1 integrin inhibition in the endothelial cells. To explore the therapeutic potential of the MLO snake venom and obtustatin, we studied activity of obtustatin and MLO venom in vitro, by testing their efficacy in human dermal microvascular endothelial cells (HMVEC-D) and in vivo, using chick embryo chorioallantoic membrane assay (CAM assay). Our in vitro results showed that obtustatin in comparison with MLO venom did not exhibit cytotoxic activity in HMVEC-D cells in comparison to MLO venom. But in vivo results have shown that 4µg /embryo (90 µM) of obtustatin inhibited angiogenesis induced by FGF2 by 17% while MLO snake venom induced 22% reduction of the angiogenic index. The concentration of obtustatin in the crude MLO venom was 0.3 nM, which is 300.000 times less than the concentration of the obtustatin itself. Given this enormous difference in concentration, it is likely that some components of the crude venom contribute to the observed anti-angiogenic effect. Hypotheses will be ascertained to justify this action: components in the MLO venom may increase obtustatin efficacy or have independent but synergic anti-angiogenic activities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=angiogenesis" title="angiogenesis">angiogenesis</a>, <a href="https://publications.waset.org/abstracts/search?q=alpa1%20beta%201%20integrin" title=" alpa1 beta 1 integrin"> alpa1 beta 1 integrin</a>, <a href="https://publications.waset.org/abstracts/search?q=Macrovipera%20lebetina%20obtusa" title=" Macrovipera lebetina obtusa"> Macrovipera lebetina obtusa</a>, <a href="https://publications.waset.org/abstracts/search?q=obtustatin" title=" obtustatin"> obtustatin</a> </p> <a href="https://publications.waset.org/abstracts/85110/anti-angiogenic-effects-of-the-macrovipera-lebetina-obtusa-snake-crude-venom-and-obtustatin" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85110.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">196</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">804</span> Modelling High-Frequency Crude Oil Dynamics Using Affine and Non-Affine Jump-Diffusion Models</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Katja%20Ignatieva">Katja Ignatieva</a>, <a href="https://publications.waset.org/abstracts/search?q=Patrick%20Wong"> Patrick Wong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We investigated the dynamics of high frequency energy prices, including crude oil and electricity prices. The returns of underlying quantities are modelled using various parametric models such as stochastic framework with jumps and stochastic volatility (SVCJ) as well as non-parametric alternatives, which are purely data driven and do not require specification of the drift or the diffusion coefficient function. Using different statistical criteria, we investigate the performance of considered parametric and nonparametric models in their ability to forecast price series and volatilities. Our models incorporate possible seasonalities in the underlying dynamics and utilise advanced estimation techniques for the dynamics of energy prices. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=stochastic%20volatility" title="stochastic volatility">stochastic volatility</a>, <a href="https://publications.waset.org/abstracts/search?q=affine%20jump-diffusion%20models" title=" affine jump-diffusion models"> affine jump-diffusion models</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20frequency%20data" title=" high frequency data"> high frequency data</a>, <a href="https://publications.waset.org/abstracts/search?q=model%20specification" title=" model specification"> model specification</a>, <a href="https://publications.waset.org/abstracts/search?q=markov%20chain%20monte%20carlo" title=" markov chain monte carlo"> markov chain monte carlo</a> </p> <a href="https://publications.waset.org/abstracts/159124/modelling-high-frequency-crude-oil-dynamics-using-affine-and-non-affine-jump-diffusion-models" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/159124.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">104</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">803</span> Freshwater Pinch Analysis for Optimal Design of the Photovoltaic Powered-Pumping System </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Iman%20Janghorban%20Esfahani">Iman Janghorban Esfahani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to the increased use of irrigation in agriculture, the importance and need for highly reliable water pumping systems have significantly increased. The pumping of the groundwater is essential to provide water for both drip and furrow irrigation to increase the agricultural yield, especially in arid regions that suffer from scarcities of surface water. The most common irrigation pumping systems (IPS) consume conventional energies through the use of electric motors and generators or connecting to the electricity grid. Due to the shortage and transportation difficulties of fossil fuels, and unreliable access to the electricity grid, especially in the rural areas, and the adverse environmental impacts of fossil fuel usage, such as greenhouse gas (GHG) emissions, the need for renewable energy sources such as photovoltaic systems (PVS) as an alternative way of powering irrigation pumping systems is urgent. Integration of the photovoltaic systems with irrigation pumping systems as the Photovoltaic Powered-Irrigation Pumping System (PVP-IPS) can avoid fossil fuel dependency and the subsequent greenhouse gas emissions, as well as ultimately lower energy costs and improve efficiency, which made PVP-IPS systems as an environmentally and economically efficient solution for agriculture irrigation in every region. The greatest problem faced by integration of PVP with IPS systems is matching the intermittence of the energy supply with the dynamic water demand. The best solution to overcome the intermittence is to incorporate a storage system into the PVP-IPS to provide water-on-demand as a highly reliable stand-alone irrigation pumping system. The water storage tank (WST) is the most common storage device for PVP-IPS systems. In the integrated PVP-IPS with a water storage tank (PVP-IPS-WST), a water storage tank stores the water pumped by the IPS in excess of the water demand and then delivers it when demands are high. The Freshwater pinch analysis (FWaPA) as an alternative to mathematical modeling was used by other researchers for retrofitting the off-grid battery less photovoltaic-powered reverse osmosis system. However, the Freshwater pinch analysis has not been used to integrate the photovoltaic systems with irrigation pumping system with water storage tanks. In this study, FWaPA graphical and numerical tools were used for retrofitting an existing PVP-IPS system located in Salahadin, Republic of Iraq. The plant includes a 5 kW submersible water pump and 7.5 kW solar PV system. The Freshwater Composite Curve as the graphical tool and Freashwater Storage Cascade Table as the numerical tool were constructed to determine the minimum required outsourced water during operation, optimal amount of delivered electricity to the water pump, and optimal size of the water storage tank for one-year operation data. The results of implementing the FWaPA on the case study show that the PVP-IPS system with a WST as the reliable system can reduce outsourced water by 95.41% compare to the PVP-IPS system without storage tank. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=irrigation" title="irrigation">irrigation</a>, <a href="https://publications.waset.org/abstracts/search?q=photovoltaic" title=" photovoltaic"> photovoltaic</a>, <a href="https://publications.waset.org/abstracts/search?q=pinch%20analysis" title=" pinch analysis"> pinch analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=pumping" title=" pumping"> pumping</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20energy" title=" solar energy"> solar energy</a> </p> <a href="https://publications.waset.org/abstracts/130658/freshwater-pinch-analysis-for-optimal-design-of-the-photovoltaic-powered-pumping-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/130658.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">138</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">802</span> Computational Fluid Dynamics Simulation of Gas-Liquid Phase Stirred Tank</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Thiyam%20Tamphasana%20Devi">Thiyam Tamphasana Devi</a>, <a href="https://publications.waset.org/abstracts/search?q=Bimlesh%20Kumar"> Bimlesh Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A Computational Fluid Dynamics (CFD) technique has been applied to simulate the gas-liquid phase in double stirred tank of Rushton impeller. Eulerian-Eulerian model was adopted to simulate the multiphase with standard correlation of Schiller and Naumann for drag co-efficient. The turbulence was modeled by using standard k-&epsilon; turbulence model. The present CFD model predicts flow pattern, local gas hold-up, and local specific area. It also predicts local kLa (mass transfer rate) for single impeller. The predicted results were compared with experimental and CFD results of published literature. The predicted results are slightly over predicted with the experimental results; however, it is in reasonable agreement with other simulated results of published literature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eulerian-Eulerian" title="Eulerian-Eulerian">Eulerian-Eulerian</a>, <a href="https://publications.waset.org/abstracts/search?q=gas-hold%20up" title=" gas-hold up"> gas-hold up</a>, <a href="https://publications.waset.org/abstracts/search?q=gas-liquid%20phase" title=" gas-liquid phase"> gas-liquid phase</a>, <a href="https://publications.waset.org/abstracts/search?q=local%20mass%20transfer%20rate" title=" local mass transfer rate"> local mass transfer rate</a>, <a href="https://publications.waset.org/abstracts/search?q=local%20specific%20area" title=" local specific area"> local specific area</a>, <a href="https://publications.waset.org/abstracts/search?q=Rushton%20Impeller" title=" Rushton Impeller"> Rushton Impeller</a> </p> <a href="https://publications.waset.org/abstracts/49631/computational-fluid-dynamics-simulation-of-gas-liquid-phase-stirred-tank" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49631.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">234</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">801</span> Identification and Quantification of Sesquiterpene Lactones of Sagebrush (Artemisia tridentate) and Its Chemical Modification</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rosemary%20Anibogwu">Rosemary Anibogwu</a>, <a href="https://publications.waset.org/abstracts/search?q=Kavita%20Sharma"> Kavita Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=Karl%20De%20Jesus"> Karl De Jesus </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sagebrush is an abundant and naturally occurring plant in the Intermountain West region of the United States. The plant contains an array of bioactive compounds such as flavonoids, terpenoids, sterols, and phenolic acids. It is important to identify and characterize these compounds because Native Americans use sagebrush as herbal medicine. These compounds are also utilized for preventing infection in wounds, treating headaches and colds, and possess antitumor properties. This research is an exploratory study on the sesquiterpene present in the leaves of sagebrush. The leaf foliage was extracted with 100 % chloroform and 100 % methanol. The percentage yield for the crude was considerably higher in chloroform. The Thin Layer Chromatography (TLC) analysis of the crude extracted unveiled a brown band at Rf = 0.25 and a dark brown band at Rf = 0.74, along with three unknown faint bands the 254 nm UV lamp. Furthermore, the two distinct brown (Achillin) and dark brown band (Hydroxyachillin) in TLC were further utilized in the isolation of pure compounds with column chromatography. The structures of Achillin and Hydroxyachillin were elucidated based on extensive spectroscopic analysis, including TLC, High-Performance Liquid Chromatography (HPLC), 1D- and 2D-Nuclear Magnetic Resonance (NMR), and Mass Spectroscopy (MS). The antioxidant activities of crude extract and three pure compounds were evaluated in terms of their peroxyl radical scavenging by Ferric Reducing Ability of Plasma (FRAP) and 1,1-Diphenyl-2-picryl-hydrazyl (DPPH) methods. The crude extract showed the antioxidant activity of 18.99 ± 0.51 µmol TEg -1 FW for FRAP and 11.59 ± 0.38 µmol TEg -1 FW for DPPH. The activities of Achillin, Hydroxyachillin, and Quercetagetin trimethyl ether were 13.03, 15.90 and 14.02 µmol TEg -1 FW respectively for the FRAP assay. The three purified compounds have been submitted to the National Cancer Institute 60 cancer cell line for further study. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=HPLC" title="HPLC">HPLC</a>, <a href="https://publications.waset.org/abstracts/search?q=nuclear%20magnetic%20resonance%20spectroscopy" title=" nuclear magnetic resonance spectroscopy"> nuclear magnetic resonance spectroscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=sagebrush" title=" sagebrush"> sagebrush</a>, <a href="https://publications.waset.org/abstracts/search?q=sesquiterpene%20lactones" title=" sesquiterpene lactones"> sesquiterpene lactones</a> </p> <a href="https://publications.waset.org/abstracts/115012/identification-and-quantification-of-sesquiterpene-lactones-of-sagebrush-artemisia-tridentate-and-its-chemical-modification" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/115012.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">131</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">800</span> Fermented Unripe Plantain (Musa paradisiacal) Peel Meal as a Replacement for Maize in the Diet of Nile Tilapia (Oreochromis niloticus) Fingerlings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20A.%20Bamidele">N. A. Bamidele</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20O.%20Obasa"> S. O. Obasa</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20O.%20Taiwo"> I. O. Taiwo</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Abdulraheem"> I. Abdulraheem</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20C.%20Odebiyi"> O. C. Odebiyi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20A.%20Adeoye"> A. A. Adeoye</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20E.%20Babalola"> O. E. Babalola</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20V.%20Uzamere"> O. V. Uzamere</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A feeding trial was conducted to investigate the effect of fermented unripe plantain peel meal (FUP) on growth performance, nutrients digestibility and economic indices of production of Nile tilapia, Oreochromis niloticus fingerlings. Fingerlings (150) of Nile tilapia (1.70±0.1g) were stocked at 10 per plastic tank. Five iso-nitrogenous diets containing 40% crude protein in which maize meal was replaced by fermented unripe plantain peel meal at 0% (FUP0), 25% (FUP25), 50% (FUP50), 75% (FUP75) and 100% (FUP100) were formulated and prepared. The fingerlings were fed at 5% body weight per day for 56 days. There was no significant difference (p > 0.05) in all the growth parameters among the treatments. Feed conversion ratio of 1.35 in fish fed diet FUP25 was not significantly different (P > 0.05) from 1.42 of fish fed diet FUP0. Apparent protein digestibility of 86.94% in fish fed diet FUP100 was significantly higher (p < 0.05) than 70.37% in fish fed diet FUP0 while apparent carbohydrate of 88.34% in fish fed diet FUP0 was significantly different (p < 0.05) from 70.29% of FUP100. Red blood cell (4.30 ml/mm3) of fish fed diet FUP100 was not significantly different from 4.13 ml/mm3 of fish fed diet FUP50. The highest percentage profit of 88.85% in fish fed diet FUP100 was significantly higher than 66.68% in fish fed diet FUP0 while the profit index of 1.89 in fish fed diet FUP100 was significantly different from 1.67 in fish fed diet FUP0. Therefore, fermented unripe plantain peel meal can completely replace maize in the diet of O. niloticus fingerlings. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fermentation" title="fermentation">fermentation</a>, <a href="https://publications.waset.org/abstracts/search?q=fish%20diets" title=" fish diets"> fish diets</a>, <a href="https://publications.waset.org/abstracts/search?q=plantain%20peel" title=" plantain peel"> plantain peel</a>, <a href="https://publications.waset.org/abstracts/search?q=tilapia" title=" tilapia"> tilapia</a> </p> <a href="https://publications.waset.org/abstracts/25105/fermented-unripe-plantain-musa-paradisiacal-peel-meal-as-a-replacement-for-maize-in-the-diet-of-nile-tilapia-oreochromis-niloticus-fingerlings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25105.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">537</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">799</span> Improvement of Performance of Anti-Splash Device for Cargo Oil Tank Vent Pipe Using CFD Simulation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sung-Min%20Kim">Sung-Min Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Joon-Hong%20Park"> Joon-Hong Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyuk%20Choi"> Hyuk Choi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study is focused on the comparative analysis and improvement to grasp the flow characteristic of the anti-splash device located under the P/V valve and new concept design models using the CFD. The P/V valve located upper deck to solve the pressure rising and vacuum condition of inner tank of the liquid cargo ships occurred oil outflow accident by transverse and longitudinal sloshing force. Anti-splash device is fitted to improve and prevent this problem in the shipbuilding industry, but the oil outflow accidents are still reported by ship owners. Thus, 4 types of new design model are presented by this study, and then comparative analysis is conducted with new models and existing model. Mostly the key criterion of this problem is flux in the outlet of the anti-splash device. Therefore, the flow and velocity are grasped by transient analysis, and then it decided optimum model and design parameters to develop model. Later, it is needed to develop an anti-splash device by flow test to get certification and verification using experiment equipments. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anti-splash%20device" title="anti-splash device">anti-splash device</a>, <a href="https://publications.waset.org/abstracts/search?q=P%2FV%20valve" title=" P/V valve"> P/V valve</a>, <a href="https://publications.waset.org/abstracts/search?q=sloshing" title=" sloshing"> sloshing</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD" title=" CFD"> CFD</a> </p> <a href="https://publications.waset.org/abstracts/15181/improvement-of-performance-of-anti-splash-device-for-cargo-oil-tank-vent-pipe-using-cfd-simulation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15181.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">634</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">798</span> Effect of Plant Density and Planting Pattern on Yield and Quality of Single Cross 704 Silage Corn (Zea mays L.) in Isfahan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seyed%20Mohammad%20Ali%20Zahedi">Seyed Mohammad Ali Zahedi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This field experiment was conducted in Isfahan in 2011 in order to study the effect of plant density and planting pattern on growth, yield and quality of silage corn (SC 704) using a randomized complete block design with split plot layout and four replications. The main plot consisted of three planting patterns (60 and 75 cm single planting row and 75 cm double planting row referred to as 60S, 75S and 75T, respectively). The subplots consisted of four levels of plant densities (65000, 80000, 95000 and 110000 plants per hectare). Each subplot consisted of 7 rows, each with 10m length. Vegetative and reproductive characteristics of plants at silking and hard dough stages (when the plants were harvested for silage) were evaluated. Results of variance analysis showed that the effects of planting pattern and plant density were significant on leaf area per plant, leaf area index (at silking), plant height, stem diameter, dry weights of leaf, stem and ear in silking and harvest stages and on fresh and dry yield, dry matter percentage and crude protein percentage at harvest. There was no planting pattern × plant density interaction for these parameters. As row space increased from 60 cm with single planting to 75 cm with single planting, leaf area index and plant height increased, but leaf area per plant, stem diameter, dry weight of leaf, stem and ear, dry matter percentage, dry matter yield and crude protein percentage decreased. Dry matter yield reduced from 24.9 to 18.5 t/ha and crude protein percentage decreased from 6.11 to 5.60 percent. When the plant density increased from 65000 to 110000 plant per hectare, leaf area index, plant height, dry weight of leaf, stem and ear and dry matter yield increased from 19.2 to 23.3 t/ha, whereas leaf area per plant, stem diameter, dry matter percentage and crude protein percentage decreased from 6.30 to 5.25. The best results were obtained with 60 cm row distance with single planting and 110000 plants per hectare. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=silage%20corn" title="silage corn">silage corn</a>, <a href="https://publications.waset.org/abstracts/search?q=plant%20density" title=" plant density"> plant density</a>, <a href="https://publications.waset.org/abstracts/search?q=planting%20pattern" title=" planting pattern"> planting pattern</a>, <a href="https://publications.waset.org/abstracts/search?q=yield" title=" yield"> yield</a> </p> <a href="https://publications.waset.org/abstracts/2465/effect-of-plant-density-and-planting-pattern-on-yield-and-quality-of-single-cross-704-silage-corn-zea-mays-l-in-isfahan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2465.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">338</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">797</span> Isolation and Molecular Identification of Two Fungal Strains Capable of Degrading hydrocarbon Contaminants on Saudi Arabian Environment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amr%20A.%20EL%20Hanafy">Amr A. EL Hanafy</a>, <a href="https://publications.waset.org/abstracts/search?q=Yasir%20Anwar"> Yasir Anwar</a>, <a href="https://publications.waset.org/abstracts/search?q=Saleh%20A.%20Mohamed"> Saleh A. Mohamed</a>, <a href="https://publications.waset.org/abstracts/search?q=Saleh%20Mohamed%20Saleh%20Al-Garni"> Saleh Mohamed Saleh Al-Garni</a>, <a href="https://publications.waset.org/abstracts/search?q=Jamal%20S.%20M.%20Sabir"> Jamal S. M. Sabir </a>, <a href="https://publications.waset.org/abstracts/search?q=Osama%20A.%20H.%20Abu%20Zinadah"> Osama A. H. Abu Zinadah</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Morsi%20Ahmed"> Mohamed Morsi Ahmed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the vicinity of the red sea about 15 fungi species were isolated from oil contaminated sites. On the basis of aptitude to degrade the crude oil and DCPIP assay, two fungal isolates were selected amongst 15 oil degrading strains. Analysis of ITS-1, ITS-2 and amplicon pyrosequencing studies of fungal diversity revealed that these strains belong to Penicillium and Aspergillus species. Two strains that proved to be the most efficient in degrading crude oil was Aspergillus niger (54 %) and Penicillium commune (48 %) Subsequent to two weeks of cultivation in BHS medium the degradation rate were recorded by using spectrophotometer and GC-MS. Hence, it is cleared that these fungal strains has the capability of degradation and can be utilized for cleaning the Saudi Arabian environment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fungal%20%20strains" title="fungal strains">fungal strains</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrocarbon%20contaminants" title=" hydrocarbon contaminants"> hydrocarbon contaminants</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20identification" title=" molecular identification"> molecular identification</a>, <a href="https://publications.waset.org/abstracts/search?q=biodegradation" title=" biodegradation"> biodegradation</a>, <a href="https://publications.waset.org/abstracts/search?q=GC-MS" title=" GC-MS"> GC-MS</a> </p> <a href="https://publications.waset.org/abstracts/36036/isolation-and-molecular-identification-of-two-fungal-strains-capable-of-degrading-hydrocarbon-contaminants-on-saudi-arabian-environment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36036.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">522</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">796</span> Active Control Effects on Dynamic Response of Elevated Water Storage Tanks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Etemadi">Ali Etemadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Claudia%20Fernanda%20Yasar"> Claudia Fernanda Yasar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Elevated water storage tank structures (EWSTs) are high elevated-ponderous structural systems and very vulnerable to seismic vibrations. In past earthquake events, many of these structures exhibit poor performance and experienced severe damage. The dynamic analysis of the EWSTs under earthquake loads is, therefore, of significant importance for the design of the structure and a key issue for the development of modern methods, such as active control design. In this study, a reduced model of the EWSTs is explained, which is based on a tuned mass damper model (TMD). Vibration analysis of a structure under seismic excitation is presented and then used to propose an active vibration controller. MATLAB/Simulink is employed for dynamic analysis of the system and control of the seismic response. A single degree of freedom (SDOF) and two degree of freedom (2DOF) models of ELSTs are going to be used to study the concept of active vibration control. Lab-scale experimental models similar to pendulum are applied to suppress vibrations in ELST under seismic excitation. One of the most important phenomena in liquid storage tanks is the oscillation of fluid due to the movements of the tank body because of its base motions during an earthquake. Simulation results illustrate that the EWSTs vibration can be reduced by means of an input shaping technique that takes into account the dominant mode shape of the structure. Simulations with which to guide many of our designs are presented in detail. A simple and effective real-time control for seismic vibration damping can be, therefore, design and built-in practice. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=elevated%20water%20storage%20tank" title="elevated water storage tank">elevated water storage tank</a>, <a href="https://publications.waset.org/abstracts/search?q=tuned%20mass%20damper%20model" title=" tuned mass damper model"> tuned mass damper model</a>, <a href="https://publications.waset.org/abstracts/search?q=real%20time%20control" title=" real time control"> real time control</a>, <a href="https://publications.waset.org/abstracts/search?q=shaping%20control" title=" shaping control"> shaping control</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20vibration%20control" title=" seismic vibration control"> seismic vibration control</a>, <a href="https://publications.waset.org/abstracts/search?q=the%20laplace%20transform" title=" the laplace transform"> the laplace transform</a> </p> <a href="https://publications.waset.org/abstracts/133584/active-control-effects-on-dynamic-response-of-elevated-water-storage-tanks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/133584.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">152</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">795</span> Predicting Mixing Patterns of Overflows from a Square Manhole</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Modupe%20O.%20Jimoh">Modupe O. Jimoh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> During manhole overflows, its contents pollute the immediate environment. Understanding the pollutant transfer characteristics between manhole’s incoming sewer and the overflow is therefore of great importance. A square manhole with sides 388 mm by 388 mm and height 700 mm with an overflow facility was used in the laboratory to carry out overflow concentration measurements. Two scenarios were investigated using three flow rates. The first scenario corresponded to when the exit of the pipe becomes blocked and the only exit for the flow is the manhole. The second scenario is when there is an overflow in combination with a pipe exit. The temporal concentration measurements showed that the peak concentration of pollutants in the flow was attenuated between the inlet and the overflow. A deconvolution software was used to predict the Residence time distribution (RTD) and consequently the Cumulative Residence time distribution (CRTD). The CRTDs suggest that complete mixing is occurring between the pipe inlet and the overflow, like what is obtained in a low surcharged manhole. The results also suggest that an instantaneous stirred tank reactor model can describe the mixing characteristics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CRTDs" title="CRTDs">CRTDs</a>, <a href="https://publications.waset.org/abstracts/search?q=instantaneous%20stirred%20tank%20reactor%20model" title=" instantaneous stirred tank reactor model"> instantaneous stirred tank reactor model</a>, <a href="https://publications.waset.org/abstracts/search?q=overflow" title=" overflow"> overflow</a>, <a href="https://publications.waset.org/abstracts/search?q=square%20manholes" title=" square manholes"> square manholes</a>, <a href="https://publications.waset.org/abstracts/search?q=surcharge" title=" surcharge"> surcharge</a>, <a href="https://publications.waset.org/abstracts/search?q=temporal%20concentration%20profiles" title=" temporal concentration profiles"> temporal concentration profiles</a> </p> <a href="https://publications.waset.org/abstracts/97743/predicting-mixing-patterns-of-overflows-from-a-square-manhole" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97743.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">144</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">794</span> An Evaluation of the Artificial Neural Network and Adaptive Neuro Fuzzy Inference System Predictive Models for the Remediation of Crude Oil-Contaminated Soil Using Vermicompost</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Precious%20Ehiomogue">Precious Ehiomogue</a>, <a href="https://publications.waset.org/abstracts/search?q=Ifechukwude%20Israel%20Ahuchaogu"> Ifechukwude Israel Ahuchaogu</a>, <a href="https://publications.waset.org/abstracts/search?q=Isiguzo%20Edwin%20Ahaneku"> Isiguzo Edwin Ahaneku</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Vermicompost is the product of the decomposition process using various species of worms, to create a mixture of decomposing vegetable or food waste, bedding materials, and vemicast. This process is called vermicomposting, while the rearing of worms for this purpose is called vermiculture. Several works have verified the adsorption of toxic metals using vermicompost but the application is still scarce for the retention of organic compounds. This research brings to knowledge the effectiveness of earthworm waste (vermicompost) for the remediation of crude oil contaminated soils. The remediation methods adopted in this study were two soil washing methods namely, batch and column process which represent laboratory and in-situ remediation. Characterization of the vermicompost and crude oil contaminated soil were performed before and after the soil washing using Fourier transform infrared (FTIR), scanning electron microscopy (SEM), X-ray fluorescence (XRF), X-ray diffraction (XRD) and Atomic adsorption spectrometry (AAS). The optimization of washing parameters, using response surface methodology (RSM) based on Box-Behnken Design was performed on the response from the laboratory experimental results. This study also investigated the application of machine learning models [Artificial neural network (ANN), Adaptive neuro fuzzy inference system (ANFIS). ANN and ANFIS were evaluated using the coefficient of determination (R²) and mean square error (MSE)]. Removal efficiency obtained from the Box-Behnken design experiment ranged from 29% to 98.9% for batch process remediation. Optimization of the experimental factors carried out using numerical optimization techniques by applying desirability function method of the response surface methodology (RSM) produce the highest removal efficiency of 98.9% at absorbent dosage of 34.53 grams, adsorbate concentration of 69.11 (g/ml), contact time of 25.96 (min), and pH value of 7.71, respectively. Removal efficiency obtained from the multilevel general factorial design experiment ranged from 56% to 92% for column process remediation. The coefficient of determination (R²) for ANN was (0.9974) and (0.9852) for batch and column process, respectively, showing the agreement between experimental and predicted results. For batch and column precess, respectively, the coefficient of determination (R²) for RSM was (0.9712) and (0.9614), which also demonstrates agreement between experimental and projected findings. For the batch and column processes, the ANFIS coefficient of determination was (0.7115) and (0.9978), respectively. It can be concluded that machine learning models can predict the removal of crude oil from polluted soil using vermicompost. Therefore, it is recommended to use machines learning models to predict the removal of crude oil from contaminated soil using vermicompost. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ANFIS" title="ANFIS">ANFIS</a>, <a href="https://publications.waset.org/abstracts/search?q=ANN" title=" ANN"> ANN</a>, <a href="https://publications.waset.org/abstracts/search?q=crude-oil" title=" crude-oil"> crude-oil</a>, <a href="https://publications.waset.org/abstracts/search?q=contaminated%20soil" title=" contaminated soil"> contaminated soil</a>, <a href="https://publications.waset.org/abstracts/search?q=remediation%20and%20vermicompost" title=" remediation and vermicompost"> remediation and vermicompost</a> </p> <a href="https://publications.waset.org/abstracts/165700/an-evaluation-of-the-artificial-neural-network-and-adaptive-neuro-fuzzy-inference-system-predictive-models-for-the-remediation-of-crude-oil-contaminated-soil-using-vermicompost" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165700.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">111</span> </span> </div> </div> <ul class="pagination"> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=crude%20oil%20tank&amp;page=7" rel="prev">&lsaquo;</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=crude%20oil%20tank&amp;page=1">1</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=crude%20oil%20tank&amp;page=2">2</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=crude%20oil%20tank&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=crude%20oil%20tank&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=crude%20oil%20tank&amp;page=7">7</a></li> <li class="page-item active"><span class="page-link">8</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=crude%20oil%20tank&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=crude%20oil%20tank&amp;page=10">10</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=crude%20oil%20tank&amp;page=11">11</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=crude%20oil%20tank&amp;page=34">34</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=crude%20oil%20tank&amp;page=35">35</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=crude%20oil%20tank&amp;page=9" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10