CINXE.COM
Maximal entropy random walk - Wikipedia
<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>Maximal entropy random walk - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy", "wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"b79444a7-b950-4d53-a56f-5688618146ab","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Maximal_entropy_random_walk","wgTitle":"Maximal entropy random walk","wgCurRevisionId":1187389876,"wgRevisionId":1187389876,"wgArticleId":53153455,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["Use dmy dates from October 2017","Network theory","Diffusion","Information theory","Quantum mechanics"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName":"Maximal_entropy_random_walk","wgRelevantArticleId":53153455,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false, "wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":20000,"wgRelatedArticlesCompat":[],"wgCentralAuthMobileDomain":false,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q30591435","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={ "ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.cite.styles":"ready","ext.math.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","jquery.makeCollapsible.styles":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","mediawiki.page.media","site","mediawiki.page.ready","jquery.makeCollapsible","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.ReferenceTooltips","ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth", "ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cjquery.makeCollapsible.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&only=styles&skin=vector-2022"> <script async="" src="/w/load.php?lang=en&modules=startup&only=scripts&raw=1&skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&modules=site.styles&only=styles&skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.4"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Maximal entropy random walk - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/Maximal_entropy_random_walk"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=Maximal_entropy_random_walk&action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Maximal_entropy_random_walk"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Maximal_entropy_random_walk rootpage-Maximal_entropy_random_walk skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page's font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_en.wikipedia.org&uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&returnto=Maximal+entropy+random+walk" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&returnto=Maximal+entropy+random+walk" title="You're encouraged to log in; however, it's not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_en.wikipedia.org&uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&returnto=Maximal+entropy+random+walk" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&returnto=Maximal+entropy+random+walk" title="You're encouraged to log in; however, it's not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contents" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contents</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(Top)</div> </a> </li> <li id="toc-Basic_model" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Basic_model"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Basic model</span> </div> </a> <button aria-controls="toc-Basic_model-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Basic model subsection</span> </button> <ul id="toc-Basic_model-sublist" class="vector-toc-list"> <li id="toc-Sketch_of_derivation" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Sketch_of_derivation"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.1</span> <span>Sketch of derivation</span> </div> </a> <ul id="toc-Sketch_of_derivation-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Weighted_MERW:_Boltzmann_path_ensemble" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Weighted_MERW:_Boltzmann_path_ensemble"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.2</span> <span>Weighted MERW: Boltzmann path ensemble</span> </div> </a> <ul id="toc-Weighted_MERW:_Boltzmann_path_ensemble-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Examples" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Examples"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Examples</span> </div> </a> <ul id="toc-Examples-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-See_also" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#See_also"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>See also</span> </div> </a> <ul id="toc-See_also-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-References" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#References"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>References</span> </div> </a> <ul id="toc-References-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-External_links" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#External_links"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>External links</span> </div> </a> <ul id="toc-External_links-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Maximal entropy random walk</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Go to an article in another language. Available in 1 language" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-1" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">1 language</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D9%82%D8%AF%D9%85%E2%80%8C%D8%B2%D8%AF%D9%86_%D8%AA%D8%B5%D8%A7%D8%AF%D9%81%DB%8C_%D8%AD%D8%AF%D8%A7%DA%A9%D8%AB%D8%B1_%D8%A2%D9%86%D8%AA%D8%B1%D9%88%D9%BE%DB%8C" title="قدمزدن تصادفی حداکثر آنتروپی – Persian" lang="fa" hreflang="fa" data-title="قدمزدن تصادفی حداکثر آنتروپی" data-language-autonym="فارسی" data-language-local-name="Persian" class="interlanguage-link-target"><span>فارسی</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q30591435#sitelinks-wikipedia" title="Edit interlanguage links" class="wbc-editpage">Edit links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Maximal_entropy_random_walk" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:Maximal_entropy_random_walk" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Maximal_entropy_random_walk"><span>Read</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Maximal_entropy_random_walk&action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Maximal_entropy_random_walk&action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Maximal_entropy_random_walk"><span>Read</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Maximal_entropy_random_walk&action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Maximal_entropy_random_walk&action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/Maximal_entropy_random_walk" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/Maximal_entropy_random_walk" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages" title="A list of all special pages [q]" accesskey="q"><span>Special pages</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Maximal_entropy_random_walk&oldid=1187389876" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Maximal_entropy_random_walk&action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&page=Maximal_entropy_random_walk&id=1187389876&wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FMaximal_entropy_random_walk"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FMaximal_entropy_random_walk"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&page=Maximal_entropy_random_walk&action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Maximal_entropy_random_walk&printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q30591435" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><p> <b>Maximal entropy random walk</b> (<b>MERW</b>) is a popular type of <a href="/wiki/Biased_random_walk_on_a_graph" title="Biased random walk on a graph">biased random walk on a graph</a>, in which transition probabilities are chosen accordingly to the <a href="/wiki/Principle_of_maximum_entropy" title="Principle of maximum entropy">principle of maximum entropy</a>, which says that the <a href="/wiki/Probability_distribution" title="Probability distribution">probability distribution</a> which best represents the current state of knowledge is the one with largest entropy. While standard <a href="/wiki/Random_walk" title="Random walk">random walk</a> chooses for every vertex uniform probability distribution among its outgoing edges, locally maximizing <a href="/wiki/Entropy_rate" title="Entropy rate">entropy rate</a>, MERW maximizes it globally (average <a href="/wiki/Entropy_production" title="Entropy production">entropy production</a>) by assuming uniform probability distribution among all paths in a given graph. </p><p>MERW is used in various fields of science. A direct application is choosing probabilities to maximize transmission rate through a constrained channel, analogously to <a href="/wiki/Fibonacci_coding" title="Fibonacci coding">Fibonacci coding</a>. Its properties also made it useful for example in analysis of complex networks,<sup id="cite_ref-SinatraGómez-Gardeñes2011_1-0" class="reference"><a href="#cite_note-SinatraGómez-Gardeñes2011-1"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup> like <a href="/wiki/Link_prediction" title="Link prediction">link prediction</a>,<sup id="cite_ref-LiYu2011_2-0" class="reference"><a href="#cite_note-LiYu2011-2"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup> community detection,<sup id="cite_ref-OchabBurda2013_3-0" class="reference"><a href="#cite_note-OchabBurda2013-3"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup> robust transport over networks<sup id="cite_ref-CGPT2016_4-0" class="reference"><a href="#cite_note-CGPT2016-4"><span class="cite-bracket">[</span>4<span class="cite-bracket">]</span></a></sup> and <a href="/wiki/Centrality" title="Centrality">centrality</a> measures.<sup id="cite_ref-DelvenneLibert2011_5-0" class="reference"><a href="#cite_note-DelvenneLibert2011-5"><span class="cite-bracket">[</span>5<span class="cite-bracket">]</span></a></sup> Also in <a href="/wiki/Image_analysis" title="Image analysis">image analysis</a>, for example for detecting visual saliency regions,<sup id="cite_ref-saliency_6-0" class="reference"><a href="#cite_note-saliency-6"><span class="cite-bracket">[</span>6<span class="cite-bracket">]</span></a></sup> object localization,<sup id="cite_ref-local_7-0" class="reference"><a href="#cite_note-local-7"><span class="cite-bracket">[</span>7<span class="cite-bracket">]</span></a></sup> tampering detection<sup id="cite_ref-tamp_8-0" class="reference"><a href="#cite_note-tamp-8"><span class="cite-bracket">[</span>8<span class="cite-bracket">]</span></a></sup> or <a href="/wiki/Tractography" title="Tractography">tractography</a> problem.<sup id="cite_ref-trac_9-0" class="reference"><a href="#cite_note-trac-9"><span class="cite-bracket">[</span>9<span class="cite-bracket">]</span></a></sup> </p><p>Additionally, it recreates some properties of <a href="/wiki/Quantum_mechanics" title="Quantum mechanics">quantum mechanics</a>, suggesting a way to repair the discrepancy between <a href="/wiki/Diffusion" title="Diffusion">diffusion</a> models and quantum predictions, like <a href="/wiki/Anderson_localization" title="Anderson localization">Anderson localization</a>.<sup id="cite_ref-prl_10-0" class="reference"><a href="#cite_note-prl-10"><span class="cite-bracket">[</span>10<span class="cite-bracket">]</span></a></sup> </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Basic_model">Basic model</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Maximal_entropy_random_walk&action=edit&section=1" title="Edit section: Basic model"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:General_picture_for_Maximal_Entropy_Random_Walk.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/7/7a/General_picture_for_Maximal_Entropy_Random_Walk.png/580px-General_picture_for_Maximal_Entropy_Random_Walk.png" decoding="async" width="580" height="274" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/7/7a/General_picture_for_Maximal_Entropy_Random_Walk.png/870px-General_picture_for_Maximal_Entropy_Random_Walk.png 1.5x, //upload.wikimedia.org/wikipedia/commons/7/7a/General_picture_for_Maximal_Entropy_Random_Walk.png 2x" data-file-width="945" data-file-height="447" /></a><figcaption><b>Left:</b> basic concept of the generic random walk (GRW) and maximal entropy random walk (MERW)<br /><b>Right:</b> example of their evolution on the same inhomogeneous 2D lattice with cyclic boundary conditions – probability density after 10, 100 and 1000 steps while starting from the same vertex. The small boxes represent defects: all vertices but the marked ones have additional <a href="/wiki/Self-loop" class="mw-redirect" title="Self-loop">self-loop</a> (edge to itself). For regular lattices (no defects), GRW and MERW are identical. While defects do not strongly affect the local beha­vior, they lead to a completely different global stationary probability here. While GRW (and based on it standard <a href="/wiki/Diffusion" title="Diffusion">diffusion</a>) leads to nearly uniform stationary density, MERW has strong localization property, imprisoning the walkers in entropic wells in analogy to electrons in defected lattice of <a href="/wiki/Semi-conductor" class="mw-redirect" title="Semi-conductor">semi-conductor</a>.</figcaption></figure> <p>Consider a <a href="/wiki/Graph_(discrete_mathematics)" title="Graph (discrete mathematics)">graph</a> with <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span> vertices, defined by an <a href="/wiki/Adjacency_matrix" title="Adjacency matrix">adjacency matrix</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A\in \left\{0,1\right\}^{n\times n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>∈<!-- ∈ --></mo> <msup> <mrow> <mo>{</mo> <mrow> <mn>0</mn> <mo>,</mo> <mn>1</mn> </mrow> <mo>}</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>×<!-- × --></mo> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A\in \left\{0,1\right\}^{n\times n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/440ef0b49ed25c3237c715560d6ac721a0f49d74" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.751ex; height:3.009ex;" alt="{\displaystyle A\in \left\{0,1\right\}^{n\times n}}"></span>: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A_{ij}=1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A_{ij}=1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8916c05c951f8ea0d35d58269fc6710d656c8472" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:7.481ex; height:2.843ex;" alt="{\displaystyle A_{ij}=1}"></span> if there is an edge from vertex <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle i}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>i</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle i}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/add78d8608ad86e54951b8c8bd6c8d8416533d20" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.802ex; height:2.176ex;" alt="{\displaystyle i}"></span> to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle j}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>j</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle j}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2f461e54f5c093e92a55547b9764291390f0b5d0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.027ex; width:0.985ex; height:2.509ex;" alt="{\displaystyle j}"></span>, 0 otherwise. For simplicity assume it is an <a href="/wiki/Graph_(discrete_mathematics)#Undirected_graph" title="Graph (discrete mathematics)">undirected graph</a>, which corresponds to a symmetric <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span>; however, MERW can also be generalized for directed and <a href="/wiki/Graph_(discrete_mathematics)#Weighted_graph" title="Graph (discrete mathematics)">weighted graphs</a> (for example <a href="/wiki/Boltzmann_distribution" title="Boltzmann distribution">Boltzmann distribution</a> among paths instead of uniform). </p><p>We would like to choose a random walk as a <a href="/wiki/Markov_process" class="mw-redirect" title="Markov process">Markov process</a> on this graph: for every vertex <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle i}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>i</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle i}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/add78d8608ad86e54951b8c8bd6c8d8416533d20" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.802ex; height:2.176ex;" alt="{\displaystyle i}"></span> and its outgoing edge to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle j}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>j</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle j}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2f461e54f5c093e92a55547b9764291390f0b5d0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.027ex; width:0.985ex; height:2.509ex;" alt="{\displaystyle j}"></span>, choose probability <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S_{ij}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S_{ij}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7207b997c68f09a399b687baba2430393420dbba" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.902ex; height:2.843ex;" alt="{\displaystyle S_{ij}}"></span> of the walker randomly using this edge after visiting <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle i}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>i</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle i}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/add78d8608ad86e54951b8c8bd6c8d8416533d20" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.802ex; height:2.176ex;" alt="{\displaystyle i}"></span>. Formally, find a <a href="/wiki/Stochastic_matrix" title="Stochastic matrix">stochastic matrix</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4611d85173cd3b508e67077d4a1252c9c05abca2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.499ex; height:2.176ex;" alt="{\displaystyle S}"></span> (containing the transition probabilities of a Markov chain) such that </p> <ul><li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0\leq S_{ij}\leq A_{ij}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> <mo>≤<!-- ≤ --></mo> <msub> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>≤<!-- ≤ --></mo> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0\leq S_{ij}\leq A_{ij}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/df02b71d6fcb951e3bed8e891d35ba44e87d624a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:13.482ex; height:2.843ex;" alt="{\displaystyle 0\leq S_{ij}\leq A_{ij}}"></span> for all <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle i,j}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>i</mi> <mo>,</mo> <mi>j</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle i,j}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f4cbf8bbc622154cda8208d6e339495fe16a1f9a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.794ex; height:2.509ex;" alt="{\displaystyle i,j}"></span> and</li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{j=1}^{n}S_{ij}=1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <msub> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sum _{j=1}^{n}S_{ij}=1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2343a4edce47863eb78840239df4f7c2f7e5f303" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.338ex; width:10.905ex; height:7.176ex;" alt="{\displaystyle \sum _{j=1}^{n}S_{ij}=1}"></span> for all <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle i}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>i</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle i}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/add78d8608ad86e54951b8c8bd6c8d8416533d20" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.802ex; height:2.176ex;" alt="{\displaystyle i}"></span>.</li></ul> <p>Assuming this graph is connected and not <a href="/wiki/Periodic_graph_(graph_theory)" title="Periodic graph (graph theory)">periodic</a>, <a href="/wiki/Ergodic_theory" title="Ergodic theory">ergodic theory</a> says that evolution of this <a href="/wiki/Stochastic_process" title="Stochastic process">stochastic process</a> leads to some stationary probability distribution <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \rho }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ρ<!-- ρ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \rho }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1f7d439671d1289b6a816e6af7a304be40608d64" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.202ex; height:2.176ex;" alt="{\displaystyle \rho }"></span> such that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \rho S=\rho }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ρ<!-- ρ --></mi> <mi>S</mi> <mo>=</mo> <mi>ρ<!-- ρ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \rho S=\rho }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1b1656c1630ded8e10e176c0710520b26296c851" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.002ex; height:2.676ex;" alt="{\displaystyle \rho S=\rho }"></span>. </p><p>Using <a href="/wiki/Shannon_entropy" class="mw-redirect" title="Shannon entropy">Shannon entropy</a> for every vertex and averaging over probability of visiting this vertex (to be able to use its entropy), we get the following formula for average entropy production (<a href="/wiki/Entropy_rate" title="Entropy rate">entropy rate</a>) of the stochastic process: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle H(S)=\sum _{i=1}^{n}\rho _{i}\sum _{j=1}^{n}S_{ij}\log(1/S_{ij})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>H</mi> <mo stretchy="false">(</mo> <mi>S</mi> <mo stretchy="false">)</mo> <mo>=</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <msub> <mi>ρ<!-- ρ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <msub> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mi>log</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <msub> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle H(S)=\sum _{i=1}^{n}\rho _{i}\sum _{j=1}^{n}S_{ij}\log(1/S_{ij})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0818f90a30f1c2022cbaf6ae70d70f2cc228036c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.338ex; width:31.641ex; height:7.176ex;" alt="{\displaystyle H(S)=\sum _{i=1}^{n}\rho _{i}\sum _{j=1}^{n}S_{ij}\log(1/S_{ij})}"></span></dd></dl> <p>This definition turns out to be equivalent to the asymptotic average entropy (per length) of the probability distribution in the space of paths for this stochastic process. </p><p>In the standard random walk, referred to here as generic random walk (GRW), we naturally choose that each outgoing edge is equally probable: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S_{ij}={\frac {A_{ij}}{\sum \limits _{k=1}^{n}A_{ik}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mrow> <munderover> <mo movablelimits="false">∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>k</mi> </mrow> </msub> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S_{ij}={\frac {A_{ij}}{\sum \limits _{k=1}^{n}A_{ik}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3eb5178403ddc941cf40a705a383d8cefddfd04f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -5.838ex; width:13.58ex; height:9.676ex;" alt="{\displaystyle S_{ij}={\frac {A_{ij}}{\sum \limits _{k=1}^{n}A_{ik}}}}"></span>.</dd></dl> <p>For a symmetric <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span> it leads to a stationary probability distribution <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \rho }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ρ<!-- ρ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \rho }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1f7d439671d1289b6a816e6af7a304be40608d64" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.202ex; height:2.176ex;" alt="{\displaystyle \rho }"></span> with </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \rho _{i}={\frac {\sum \limits _{j=1}^{n}A_{ij}}{\sum \limits _{i=1}^{n}\sum \limits _{j=1}^{n}A_{ij}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>ρ<!-- ρ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <munderover> <mo movablelimits="false">∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> </msub> </mrow> <mrow> <munderover> <mo movablelimits="false">∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <munderover> <mo movablelimits="false">∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> </msub> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \rho _{i}={\frac {\sum \limits _{j=1}^{n}A_{ij}}{\sum \limits _{i=1}^{n}\sum \limits _{j=1}^{n}A_{ij}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4ee918e6eee047e8f768844ca72e43ed3542633d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -6.171ex; width:15.377ex; height:13.509ex;" alt="{\displaystyle \rho _{i}={\frac {\sum \limits _{j=1}^{n}A_{ij}}{\sum \limits _{i=1}^{n}\sum \limits _{j=1}^{n}A_{ij}}}}"></span>.</dd></dl> <p>It locally maximizes entropy production (uncertainty) for every vertex, but usually leads to a suboptimal averaged global entropy rate <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle H(S)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>H</mi> <mo stretchy="false">(</mo> <mi>S</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle H(S)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1061a0762c27da11a9f4a68b4775d3273f6c9d2e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.372ex; height:2.843ex;" alt="{\displaystyle H(S)}"></span>. </p><p>MERW chooses the stochastic matrix which maximizes <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle H(S)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>H</mi> <mo stretchy="false">(</mo> <mi>S</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle H(S)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1061a0762c27da11a9f4a68b4775d3273f6c9d2e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.372ex; height:2.843ex;" alt="{\displaystyle H(S)}"></span>, or equivalently assumes uniform probability distribution among all paths in a given graph. Its formula is obtained by first calculating the dominant <a href="/wiki/Eigenvalue" class="mw-redirect" title="Eigenvalue">eigenvalue</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lambda }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>λ<!-- λ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lambda }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b43d0ea3c9c025af1be9128e62a18fa74bedda2a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.355ex; height:2.176ex;" alt="{\displaystyle \lambda }"></span> and corresponding <a href="/wiki/Eigenvector" class="mw-redirect" title="Eigenvector">eigenvector</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \psi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ψ<!-- ψ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \psi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/45e5789e5d9c8f7c79744f43ecaaf8ba42a8553a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.513ex; height:2.509ex;" alt="{\displaystyle \psi }"></span> of the adjacency matrix, i.e. the largest <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lambda \in \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>λ<!-- λ --></mi> <mo>∈<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lambda \in \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b87bc1622689bc998795834cd65eecdb4955a785" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.874ex; height:2.176ex;" alt="{\displaystyle \lambda \in \mathbb {R} }"></span> with corresponding <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \psi \in \mathbb {R} ^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ψ<!-- ψ --></mi> <mo>∈<!-- ∈ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \psi \in \mathbb {R} ^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81b793c5960499775bb829a059e64b15791a4e61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.25ex; height:2.676ex;" alt="{\displaystyle \psi \in \mathbb {R} ^{n}}"></span> such that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \psi A=\lambda \psi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ψ<!-- ψ --></mi> <mi>A</mi> <mo>=</mo> <mi>λ<!-- λ --></mi> <mi>ψ<!-- ψ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \psi A=\lambda \psi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1bba4c4f8259a5ccdb904d4061f5849291fc4a70" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:9.223ex; height:2.509ex;" alt="{\displaystyle \psi A=\lambda \psi }"></span>. Then stochastic matrix and stationary probability distribution are given by </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S_{ij}={\frac {A_{ij}}{\lambda }}{\frac {\psi _{j}}{\psi _{i}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mi>λ<!-- λ --></mi> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>ψ<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <msub> <mi>ψ<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S_{ij}={\frac {A_{ij}}{\lambda }}{\frac {\psi _{j}}{\psi _{i}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f5c64a633070544bae44a6c10e8ca195a547ded5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:13.316ex; height:6.176ex;" alt="{\displaystyle S_{ij}={\frac {A_{ij}}{\lambda }}{\frac {\psi _{j}}{\psi _{i}}}}"></span></dd></dl> <p>for which every possible path of length <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle l}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>l</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle l}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/829091f745070b9eb97a80244129025440a1cfac" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.693ex; height:2.176ex;" alt="{\displaystyle l}"></span> from the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle i}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>i</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle i}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/add78d8608ad86e54951b8c8bd6c8d8416533d20" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.802ex; height:2.176ex;" alt="{\displaystyle i}"></span>-th to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle j}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>j</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle j}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2f461e54f5c093e92a55547b9764291390f0b5d0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.027ex; width:0.985ex; height:2.509ex;" alt="{\displaystyle j}"></span>-th vertex has probability </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {1}{\lambda ^{l}}}{\frac {\psi _{j}}{\psi _{i}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msup> <mi>λ<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>l</mi> </mrow> </msup> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>ψ<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <msub> <mi>ψ<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {1}{\lambda ^{l}}}{\frac {\psi _{j}}{\psi _{i}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/face3d6b0f96711b6bac4dd414bd8be743b45ef8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:6.173ex; height:6.176ex;" alt="{\displaystyle {\frac {1}{\lambda ^{l}}}{\frac {\psi _{j}}{\psi _{i}}}}"></span>.</dd></dl> <p>Its entropy rate is <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \log(\lambda )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>log</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>λ<!-- λ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \log(\lambda )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6e97dffd18af3ce06a20b188ddc56afd35cd0192" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.136ex; height:2.843ex;" alt="{\displaystyle \log(\lambda )}"></span> and the stationary probability distribution <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \rho }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ρ<!-- ρ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \rho }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1f7d439671d1289b6a816e6af7a304be40608d64" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.202ex; height:2.176ex;" alt="{\displaystyle \rho }"></span> is </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \rho _{i}={\frac {\psi _{i}^{2}}{\|\psi \|_{2}^{2}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>ρ<!-- ρ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msubsup> <mi>ψ<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mrow> <mo fence="false" stretchy="false">‖<!-- ‖ --></mo> <mi>ψ<!-- ψ --></mi> <msubsup> <mo fence="false" stretchy="false">‖<!-- ‖ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \rho _{i}={\frac {\psi _{i}^{2}}{\|\psi \|_{2}^{2}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8de49d06c5c268bbbcdbfa6689bfb2b7cfd55bf0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.838ex; width:10.829ex; height:6.843ex;" alt="{\displaystyle \rho _{i}={\frac {\psi _{i}^{2}}{\|\psi \|_{2}^{2}}}}"></span>.</dd></dl> <p>In contrast to GRW, the MERW transition probabilities generally depend on the structure of the entire graph (are nonlocal). Hence, they should not be imagined as directly applied by the walker – if random-looking decisions are made based on the local situation, like a person would make, the GRW approach is more appropriate. MERW is based on the principle of maximum entropy, making it the safest assumption when we don't have any additional knowledge about the system. For example, it would be appropriate for modelling our knowledge about an object performing some complex dynamics – not necessarily random, like a particle. </p> <div class="mw-heading mw-heading3"><h3 id="Sketch_of_derivation">Sketch of derivation</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Maximal_entropy_random_walk&action=edit&section=2" title="Edit section: Sketch of derivation"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Assume for simplicity that the considered graph is indirected, connected and aperiodic, allowing to conclude from the <a href="/wiki/Perron%E2%80%93Frobenius_theorem" title="Perron–Frobenius theorem">Perron–Frobenius theorem</a> that the dominant eigenvector is unique. Hence <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A^{l}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>l</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A^{l}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/79d34c847899c432bfa25ed20d88d1d719db349b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.466ex; height:2.676ex;" alt="{\displaystyle A^{l}}"></span> can be asymptotically (<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle l\rightarrow \infty }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>l</mi> <mo stretchy="false">→<!-- → --></mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle l\rightarrow \infty }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/511a8f1e7d658c9edf47dbf207862ac3865ef2a6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.631ex; height:2.176ex;" alt="{\displaystyle l\rightarrow \infty }"></span>) approximated by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lambda ^{l}\psi \psi ^{T}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>λ<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>l</mi> </mrow> </msup> <mi>ψ<!-- ψ --></mi> <msup> <mi>ψ<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>T</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lambda ^{l}\psi \psi ^{T}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9498f0730bbcfeaff254152ea01820f58c3de9fc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.493ex; height:3.009ex;" alt="{\displaystyle \lambda ^{l}\psi \psi ^{T}}"></span> (or <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lambda ^{l}|\psi \rangle \langle \psi |}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>λ<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>l</mi> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>ψ<!-- ψ --></mi> <mo fence="false" stretchy="false">⟩<!-- ⟩ --></mo> <mo fence="false" stretchy="false">⟨<!-- ⟨ --></mo> <mi>ψ<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lambda ^{l}|\psi \rangle \langle \psi |}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/963141eac56a94d9b0dba379c7d156beb329b2b8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.207ex; height:3.176ex;" alt="{\displaystyle \lambda ^{l}|\psi \rangle \langle \psi |}"></span> in <a href="/wiki/Bra%E2%80%93ket_notation" title="Bra–ket notation">bra–ket notation</a>). </p><p>MERW requires uniform distribution along paths. The number <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m_{il}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>l</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m_{il}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7950976d94dd657909c1138b79d94d3bcdb167eb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.33ex; height:2.009ex;" alt="{\displaystyle m_{il}}"></span> of paths with length <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2l}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>2</mn> <mi>l</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2l}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c1261ad6a008336f3691b246e203119117ba0a3d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.856ex; height:2.176ex;" alt="{\displaystyle 2l}"></span> and vertex <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle i}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>i</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle i}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/add78d8608ad86e54951b8c8bd6c8d8416533d20" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.802ex; height:2.176ex;" alt="{\displaystyle i}"></span> in the center is </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m_{il}=\sum _{j=1}^{n}\sum _{k=1}^{n}\left(A^{l}\right)_{ji}\left(A^{l}\right)_{ik}\approx \sum _{j=1}^{n}\sum _{k=1}^{n}\left(\lambda ^{l}\psi \psi ^{\top }\right)_{ji}\left(\lambda ^{l}\psi \psi ^{\top }\right)_{ik}=\sum _{j=1}^{n}\sum _{k=1}^{n}\lambda ^{2l}\psi _{j}\psi _{i}\psi _{i}\psi _{k}=\lambda ^{2l}\psi _{i}^{2}\underbrace {\sum _{j=1}^{n}\psi _{j}\sum _{k=1}^{n}\psi _{k}} _{=:b}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>l</mi> </mrow> </msub> <mo>=</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <msub> <mrow> <mo>(</mo> <msup> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>l</mi> </mrow> </msup> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mi>i</mi> </mrow> </msub> <msub> <mrow> <mo>(</mo> <msup> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>l</mi> </mrow> </msup> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>k</mi> </mrow> </msub> <mo>≈<!-- ≈ --></mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <msub> <mrow> <mo>(</mo> <mrow> <msup> <mi>λ<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>l</mi> </mrow> </msup> <mi>ψ<!-- ψ --></mi> <msup> <mi>ψ<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">⊤<!-- ⊤ --></mi> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mi>i</mi> </mrow> </msub> <msub> <mrow> <mo>(</mo> <mrow> <msup> <mi>λ<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>l</mi> </mrow> </msup> <mi>ψ<!-- ψ --></mi> <msup> <mi>ψ<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">⊤<!-- ⊤ --></mi> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>k</mi> </mrow> </msub> <mo>=</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <msup> <mi>λ<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>l</mi> </mrow> </msup> <msub> <mi>ψ<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <msub> <mi>ψ<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <msub> <mi>ψ<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <msub> <mi>ψ<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>=</mo> <msup> <mi>λ<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>l</mi> </mrow> </msup> <msubsup> <mi>ψ<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <munder> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <munder> <mrow> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <msub> <mi>ψ<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <msub> <mi>ψ<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mrow> <mo>⏟<!-- ⏟ --></mo> </munder> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>=:</mo> <mi>b</mi> </mrow> </munder> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m_{il}=\sum _{j=1}^{n}\sum _{k=1}^{n}\left(A^{l}\right)_{ji}\left(A^{l}\right)_{ik}\approx \sum _{j=1}^{n}\sum _{k=1}^{n}\left(\lambda ^{l}\psi \psi ^{\top }\right)_{ji}\left(\lambda ^{l}\psi \psi ^{\top }\right)_{ik}=\sum _{j=1}^{n}\sum _{k=1}^{n}\lambda ^{2l}\psi _{j}\psi _{i}\psi _{i}\psi _{k}=\lambda ^{2l}\psi _{i}^{2}\underbrace {\sum _{j=1}^{n}\psi _{j}\sum _{k=1}^{n}\psi _{k}} _{=:b}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dea0580253c3d83eb5fe18d4fa51a9997567b82c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -6.838ex; margin-right: -0.028ex; width:102.065ex; height:10.676ex;" alt="{\displaystyle m_{il}=\sum _{j=1}^{n}\sum _{k=1}^{n}\left(A^{l}\right)_{ji}\left(A^{l}\right)_{ik}\approx \sum _{j=1}^{n}\sum _{k=1}^{n}\left(\lambda ^{l}\psi \psi ^{\top }\right)_{ji}\left(\lambda ^{l}\psi \psi ^{\top }\right)_{ik}=\sum _{j=1}^{n}\sum _{k=1}^{n}\lambda ^{2l}\psi _{j}\psi _{i}\psi _{i}\psi _{k}=\lambda ^{2l}\psi _{i}^{2}\underbrace {\sum _{j=1}^{n}\psi _{j}\sum _{k=1}^{n}\psi _{k}} _{=:b}}"></span>,</dd></dl> <p>hence for all <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle i}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>i</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle i}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/add78d8608ad86e54951b8c8bd6c8d8416533d20" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.802ex; height:2.176ex;" alt="{\displaystyle i}"></span>, </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \rho _{i}=\lim _{l\rightarrow \infty }{\frac {m_{il}}{\sum \limits _{k=1}^{n}m_{kl}}}=\lim _{l\rightarrow \infty }{\frac {\lambda ^{2l}\psi _{i}^{2}b}{\sum \limits _{k=1}^{n}\lambda ^{2l}\psi _{k}^{2}b}}=\lim _{l\rightarrow \infty }{\frac {\psi _{i}^{2}}{\sum \limits _{k=1}^{n}\psi _{k}^{2}}}={\frac {\psi _{i}^{2}}{\sum \limits _{k=1}^{n}\psi _{k}^{2}}}={\frac {\psi _{i}^{2}}{\|\psi \|_{2}^{2}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>ρ<!-- ρ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>=</mo> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>l</mi> <mo stretchy="false">→<!-- → --></mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </munder> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>l</mi> </mrow> </msub> <mrow> <munderover> <mo movablelimits="false">∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mi>l</mi> </mrow> </msub> </mrow> </mfrac> </mrow> <mo>=</mo> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>l</mi> <mo stretchy="false">→<!-- → --></mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </munder> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>λ<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>l</mi> </mrow> </msup> <msubsup> <mi>ψ<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mi>b</mi> </mrow> <mrow> <munderover> <mo movablelimits="false">∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <msup> <mi>λ<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>l</mi> </mrow> </msup> <msubsup> <mi>ψ<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mi>b</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>l</mi> <mo stretchy="false">→<!-- → --></mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </munder> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msubsup> <mi>ψ<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mrow> <munderover> <mo movablelimits="false">∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <msubsup> <mi>ψ<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msubsup> <mi>ψ<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mrow> <munderover> <mo movablelimits="false">∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <msubsup> <mi>ψ<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msubsup> <mi>ψ<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mrow> <mo fence="false" stretchy="false">‖<!-- ‖ --></mo> <mi>ψ<!-- ψ --></mi> <msubsup> <mo fence="false" stretchy="false">‖<!-- ‖ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \rho _{i}=\lim _{l\rightarrow \infty }{\frac {m_{il}}{\sum \limits _{k=1}^{n}m_{kl}}}=\lim _{l\rightarrow \infty }{\frac {\lambda ^{2l}\psi _{i}^{2}b}{\sum \limits _{k=1}^{n}\lambda ^{2l}\psi _{k}^{2}b}}=\lim _{l\rightarrow \infty }{\frac {\psi _{i}^{2}}{\sum \limits _{k=1}^{n}\psi _{k}^{2}}}={\frac {\psi _{i}^{2}}{\sum \limits _{k=1}^{n}\psi _{k}^{2}}}={\frac {\psi _{i}^{2}}{\|\psi \|_{2}^{2}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6f9463b2f42136df469d7ddfaa5867fa29de59df" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -5.838ex; width:67.756ex; height:10.009ex;" alt="{\displaystyle \rho _{i}=\lim _{l\rightarrow \infty }{\frac {m_{il}}{\sum \limits _{k=1}^{n}m_{kl}}}=\lim _{l\rightarrow \infty }{\frac {\lambda ^{2l}\psi _{i}^{2}b}{\sum \limits _{k=1}^{n}\lambda ^{2l}\psi _{k}^{2}b}}=\lim _{l\rightarrow \infty }{\frac {\psi _{i}^{2}}{\sum \limits _{k=1}^{n}\psi _{k}^{2}}}={\frac {\psi _{i}^{2}}{\sum \limits _{k=1}^{n}\psi _{k}^{2}}}={\frac {\psi _{i}^{2}}{\|\psi \|_{2}^{2}}}}"></span>.</dd></dl> <p>Analogously calculating probability distribution for two succeeding vertices, one obtains that the probability of being at the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle i}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>i</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle i}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/add78d8608ad86e54951b8c8bd6c8d8416533d20" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.802ex; height:2.176ex;" alt="{\displaystyle i}"></span>-th vertex and next at the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle j}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>j</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle j}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2f461e54f5c093e92a55547b9764291390f0b5d0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.027ex; width:0.985ex; height:2.509ex;" alt="{\displaystyle j}"></span>-th vertex is </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {\psi _{i}A_{ij}\psi _{j}}{\sum \limits _{i'=1}^{n}\sum \limits _{j'=1}^{n}\psi _{i'}A_{i'j'}\psi _{j'}}}={\frac {\psi _{i}A_{ij}\psi _{j}}{\psi A\psi ^{\top }}}={\frac {\psi _{i}A_{ij}\psi _{j}}{\lambda \|\psi \|_{2}^{2}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msub> <mi>ψ<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> </msub> <msub> <mi>ψ<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> </mrow> <mrow> <munderover> <mo movablelimits="false">∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>i</mi> <mo>′</mo> </msup> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <munderover> <mo movablelimits="false">∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>j</mi> <mo>′</mo> </msup> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <msub> <mi>ψ<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>i</mi> <mo>′</mo> </msup> </mrow> </msub> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>i</mi> <mo>′</mo> </msup> <msup> <mi>j</mi> <mo>′</mo> </msup> </mrow> </msub> <msub> <mi>ψ<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>j</mi> <mo>′</mo> </msup> </mrow> </msub> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msub> <mi>ψ<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> </msub> <msub> <mi>ψ<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> </mrow> <mrow> <mi>ψ<!-- ψ --></mi> <mi>A</mi> <msup> <mi>ψ<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">⊤<!-- ⊤ --></mi> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msub> <mi>ψ<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> </msub> <msub> <mi>ψ<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> </mrow> <mrow> <mi>λ<!-- λ --></mi> <mo fence="false" stretchy="false">‖<!-- ‖ --></mo> <mi>ψ<!-- ψ --></mi> <msubsup> <mo fence="false" stretchy="false">‖<!-- ‖ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {\psi _{i}A_{ij}\psi _{j}}{\sum \limits _{i'=1}^{n}\sum \limits _{j'=1}^{n}\psi _{i'}A_{i'j'}\psi _{j'}}}={\frac {\psi _{i}A_{ij}\psi _{j}}{\psi A\psi ^{\top }}}={\frac {\psi _{i}A_{ij}\psi _{j}}{\lambda \|\psi \|_{2}^{2}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/86ada0056126940b4a49032017acaf78e8a19948" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -6.338ex; width:41.983ex; height:10.176ex;" alt="{\displaystyle {\frac {\psi _{i}A_{ij}\psi _{j}}{\sum \limits _{i'=1}^{n}\sum \limits _{j'=1}^{n}\psi _{i'}A_{i'j'}\psi _{j'}}}={\frac {\psi _{i}A_{ij}\psi _{j}}{\psi A\psi ^{\top }}}={\frac {\psi _{i}A_{ij}\psi _{j}}{\lambda \|\psi \|_{2}^{2}}}}"></span>.</dd></dl> <p>Dividing by the probability of being at the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle i}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>i</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle i}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/add78d8608ad86e54951b8c8bd6c8d8416533d20" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.802ex; height:2.176ex;" alt="{\displaystyle i}"></span>-th vertex, i.e. <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \rho _{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>ρ<!-- ρ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \rho _{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1f9e51d2ad9cab8f8a5d962502ddf4189b713f7a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:2.002ex; height:2.176ex;" alt="{\displaystyle \rho _{i}}"></span>, gives for the <a href="/wiki/Conditional_probability" title="Conditional probability">conditional probability</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S_{ij}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S_{ij}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7207b997c68f09a399b687baba2430393420dbba" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.902ex; height:2.843ex;" alt="{\displaystyle S_{ij}}"></span> of the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle j}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>j</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle j}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2f461e54f5c093e92a55547b9764291390f0b5d0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.027ex; width:0.985ex; height:2.509ex;" alt="{\displaystyle j}"></span>-th vertex being next after the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle i}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>i</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle i}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/add78d8608ad86e54951b8c8bd6c8d8416533d20" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.802ex; height:2.176ex;" alt="{\displaystyle i}"></span>-th vertex </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S_{ij}={\frac {A_{ij}}{\lambda }}{\frac {\psi _{j}}{\psi _{i}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mi>λ<!-- λ --></mi> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>ψ<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <msub> <mi>ψ<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S_{ij}={\frac {A_{ij}}{\lambda }}{\frac {\psi _{j}}{\psi _{i}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f5c64a633070544bae44a6c10e8ca195a547ded5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:13.316ex; height:6.176ex;" alt="{\displaystyle S_{ij}={\frac {A_{ij}}{\lambda }}{\frac {\psi _{j}}{\psi _{i}}}}"></span>.</dd></dl> <div class="mw-heading mw-heading3"><h3 id="Weighted_MERW:_Boltzmann_path_ensemble">Weighted MERW: Boltzmann path ensemble</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Maximal_entropy_random_walk&action=edit&section=3" title="Edit section: Weighted MERW: Boltzmann path ensemble"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>We have assumed that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A_{ij}\in \{0,1\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>∈<!-- ∈ --></mo> <mo fence="false" stretchy="false">{</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A_{ij}\in \{0,1\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/24896e9c58eda6cb936e3329c448f985a862eec4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:11.745ex; height:3.009ex;" alt="{\displaystyle A_{ij}\in \{0,1\}}"></span> for MERW corresponding to uniform ensemble among paths. However, the above derivation works for real nonnegative <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span>. Parametrizing <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A_{ij}=\exp(-E_{ij})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>=</mo> <mi>exp</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mo>−<!-- − --></mo> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A_{ij}=\exp(-E_{ij})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5fa1688a10a0107c43d0beffcb78148db20f7f3e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:16.681ex; height:3.009ex;" alt="{\displaystyle A_{ij}=\exp(-E_{ij})}"></span> and asking for probability of length <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle l}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>l</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle l}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/829091f745070b9eb97a80244129025440a1cfac" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.693ex; height:2.176ex;" alt="{\displaystyle l}"></span> path <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\gamma _{0},\ldots ,\gamma _{l})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mi>γ<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>,</mo> <mo>…<!-- … --></mo> <mo>,</mo> <msub> <mi>γ<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>l</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\gamma _{0},\ldots ,\gamma _{l})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b8c8c1723bfcfdac7e8069d23bf8bfdbdac63579" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.173ex; height:2.843ex;" alt="{\displaystyle (\gamma _{0},\ldots ,\gamma _{l})}"></span>, we get: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\textrm {Pr}}(\gamma _{0},\ldots ,\gamma _{l})=\rho _{\gamma _{0}}S_{\gamma _{0}\gamma _{1}}\ldots S_{\gamma _{l-1}\gamma _{l}}=\psi _{\gamma _{0}}{\frac {A_{\gamma _{0}\gamma _{1}}\ldots A_{\gamma _{l-1}\gamma _{l}}}{\lambda ^{l}}}\psi _{\gamma _{l}}=\psi _{\gamma _{0}}{\frac {\exp(-(E_{\gamma _{0}\gamma _{1}}+\ldots +E_{\gamma _{l-1}\gamma _{l}}))}{\lambda ^{l}}}\psi _{\gamma _{l}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mtext>Pr</mtext> </mrow> </mrow> <mo stretchy="false">(</mo> <msub> <mi>γ<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>,</mo> <mo>…<!-- … --></mo> <mo>,</mo> <msub> <mi>γ<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>l</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mi>ρ<!-- ρ --></mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>γ<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mrow> </msub> <msub> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>γ<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <msub> <mi>γ<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> </msub> <mo>…<!-- … --></mo> <msub> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>γ<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>l</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msub> <msub> <mi>γ<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>l</mi> </mrow> </msub> </mrow> </msub> <mo>=</mo> <msub> <mi>ψ<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>γ<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>γ<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <msub> <mi>γ<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> </msub> <mo>…<!-- … --></mo> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>γ<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>l</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msub> <msub> <mi>γ<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>l</mi> </mrow> </msub> </mrow> </msub> </mrow> <msup> <mi>λ<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>l</mi> </mrow> </msup> </mfrac> </mrow> <msub> <mi>ψ<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>γ<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>l</mi> </mrow> </msub> </mrow> </msub> <mo>=</mo> <msub> <mi>ψ<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>γ<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>exp</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mo>−<!-- − --></mo> <mo stretchy="false">(</mo> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>γ<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <msub> <mi>γ<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> </msub> <mo>+</mo> <mo>…<!-- … --></mo> <mo>+</mo> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>γ<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>l</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msub> <msub> <mi>γ<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>l</mi> </mrow> </msub> </mrow> </msub> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mrow> <msup> <mi>λ<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>l</mi> </mrow> </msup> </mfrac> </mrow> <msub> <mi>ψ<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>γ<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>l</mi> </mrow> </msub> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\textrm {Pr}}(\gamma _{0},\ldots ,\gamma _{l})=\rho _{\gamma _{0}}S_{\gamma _{0}\gamma _{1}}\ldots S_{\gamma _{l-1}\gamma _{l}}=\psi _{\gamma _{0}}{\frac {A_{\gamma _{0}\gamma _{1}}\ldots A_{\gamma _{l-1}\gamma _{l}}}{\lambda ^{l}}}\psi _{\gamma _{l}}=\psi _{\gamma _{0}}{\frac {\exp(-(E_{\gamma _{0}\gamma _{1}}+\ldots +E_{\gamma _{l-1}\gamma _{l}}))}{\lambda ^{l}}}\psi _{\gamma _{l}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/571d0dd8c94fcd704cbe57596060c341e8d6170d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:100.163ex; height:6.176ex;" alt="{\displaystyle {\textrm {Pr}}(\gamma _{0},\ldots ,\gamma _{l})=\rho _{\gamma _{0}}S_{\gamma _{0}\gamma _{1}}\ldots S_{\gamma _{l-1}\gamma _{l}}=\psi _{\gamma _{0}}{\frac {A_{\gamma _{0}\gamma _{1}}\ldots A_{\gamma _{l-1}\gamma _{l}}}{\lambda ^{l}}}\psi _{\gamma _{l}}=\psi _{\gamma _{0}}{\frac {\exp(-(E_{\gamma _{0}\gamma _{1}}+\ldots +E_{\gamma _{l-1}\gamma _{l}}))}{\lambda ^{l}}}\psi _{\gamma _{l}}}"></span></dd></dl> <p>As in <a href="/wiki/Boltzmann_distribution" title="Boltzmann distribution">Boltzmann distribution</a> of paths for energy defined as sum of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E_{ij}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E_{ij}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/acbcb625c128efafee881204113cd9e7a8a293a0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:3.192ex; height:2.843ex;" alt="{\displaystyle E_{ij}}"></span> over given path. For example, it allows to calculate probability distribution of patterns in <a href="/wiki/Ising_model" title="Ising model">Ising model</a>. </p> <div class="mw-heading mw-heading2"><h2 id="Examples">Examples</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Maximal_entropy_random_walk&action=edit&section=4" title="Edit section: Examples"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Examples_of_using_MERW,_Fibonacci_coding(left)_and_1D_defected_lattice_(right).png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/a/ab/Examples_of_using_MERW%2C_Fibonacci_coding%28left%29_and_1D_defected_lattice_%28right%29.png/320px-Examples_of_using_MERW%2C_Fibonacci_coding%28left%29_and_1D_defected_lattice_%28right%29.png" decoding="async" width="320" height="168" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/a/ab/Examples_of_using_MERW%2C_Fibonacci_coding%28left%29_and_1D_defected_lattice_%28right%29.png/480px-Examples_of_using_MERW%2C_Fibonacci_coding%28left%29_and_1D_defected_lattice_%28right%29.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/a/ab/Examples_of_using_MERW%2C_Fibonacci_coding%28left%29_and_1D_defected_lattice_%28right%29.png/640px-Examples_of_using_MERW%2C_Fibonacci_coding%28left%29_and_1D_defected_lattice_%28right%29.png 2x" data-file-width="2161" data-file-height="1137" /></a><figcaption>Left: choosing the optimal probability after symbol 0 in <a href="/wiki/Fibonacci_coding" title="Fibonacci coding">Fibonacci coding</a>. Right: one-dimensional defected lattice and its stationary density for length 1000 cycle (it has three defects). While in standard random walk the stationary density is proportional to degree of a vertex, leading to 3/2 difference here, in MERW density is nearly completely localized in the largest defect-free region, analogous to the <a href="/wiki/Ground_state" title="Ground state">ground state</a> predicted by <a href="/wiki/Quantum_mechanics" title="Quantum mechanics">quantum mechanics</a>.</figcaption></figure> <p>Let us first look at a simple nontrivial situation: Fibonacci coding, where we want to transmit a message as a sequence of 0s and 1s, but not using two successive 1s: after a 1 there has to be a 0. To maximize the amount of information transmitted in such sequence, we should assume uniform probability distribution in the space of all possible sequences fulfilling this constraint. To practically use such long sequences, after 1 we have to use 0, but there remains a freedom of choosing the probability of 0 after 0. Let us denote this probability by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle q}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>q</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle q}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/06809d64fa7c817ffc7e323f85997f783dbdf71d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.07ex; height:2.009ex;" alt="{\displaystyle q}"></span>, then <a href="/wiki/Entropy_coding" title="Entropy coding">entropy coding</a> would allow encoding a message using this chosen probability distribution. The stationary probability distribution of symbols for a given <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle q}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>q</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle q}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/06809d64fa7c817ffc7e323f85997f783dbdf71d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.07ex; height:2.009ex;" alt="{\displaystyle q}"></span> turns out to be <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \rho =(1/(2-q),1-1/(2-q))}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ρ<!-- ρ --></mi> <mo>=</mo> <mo stretchy="false">(</mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mo stretchy="false">(</mo> <mn>2</mn> <mo>−<!-- − --></mo> <mi>q</mi> <mo stretchy="false">)</mo> <mo>,</mo> <mn>1</mn> <mo>−<!-- − --></mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mo stretchy="false">(</mo> <mn>2</mn> <mo>−<!-- − --></mo> <mi>q</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \rho =(1/(2-q),1-1/(2-q))}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/59a37ae7d477c2113b8b2ea308f0ff4a2b56b5bb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:29.56ex; height:2.843ex;" alt="{\displaystyle \rho =(1/(2-q),1-1/(2-q))}"></span>. Hence, entropy production is <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle H(S)=\rho _{0}\left(q\log(1/q)+(1-q)\log(1/(1-q))\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>H</mi> <mo stretchy="false">(</mo> <mi>S</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mi>ρ<!-- ρ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mrow> <mo>(</mo> <mrow> <mi>q</mi> <mi>log</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>q</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo>−<!-- − --></mo> <mi>q</mi> <mo stretchy="false">)</mo> <mi>log</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mo stretchy="false">(</mo> <mn>1</mn> <mo>−<!-- − --></mo> <mi>q</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle H(S)=\rho _{0}\left(q\log(1/q)+(1-q)\log(1/(1-q))\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/29e31f95b658859b8e9bc248bff886419f10af71" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:46.652ex; height:2.843ex;" alt="{\displaystyle H(S)=\rho _{0}\left(q\log(1/q)+(1-q)\log(1/(1-q))\right)}"></span>, which is maximized for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle q=({\sqrt {5}}-1)/2\approx 0.618}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>q</mi> <mo>=</mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>5</mn> </msqrt> </mrow> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> <mo>≈<!-- ≈ --></mo> <mn>0.618</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle q=({\sqrt {5}}-1)/2\approx 0.618}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a9e2eb837861819d109698319ceb3b4ac33feba3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:23.799ex; height:3.009ex;" alt="{\displaystyle q=({\sqrt {5}}-1)/2\approx 0.618}"></span>, known as the <a href="/wiki/Golden_ratio" title="Golden ratio">golden ratio</a>. In contrast, standard random walk would choose suboptimal <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle q=0.5}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>q</mi> <mo>=</mo> <mn>0.5</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle q=0.5}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3d11907d2215512589a070f06b507fa3ba4723e7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.14ex; height:2.509ex;" alt="{\displaystyle q=0.5}"></span>. While choosing larger <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle q}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>q</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle q}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/06809d64fa7c817ffc7e323f85997f783dbdf71d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.07ex; height:2.009ex;" alt="{\displaystyle q}"></span> reduces the amount of information produced after 0, it also reduces frequency of 1, after which we cannot write any information. </p><p>A more complex example is the defected one-dimensional cyclic lattice: let say 1000 nodes connected in a ring, for which all nodes but the defects have a self-loop (edge to itself). In standard random walk (GRW) the stationary probability distribution would have defect probability being 2/3 of probability of the non-defect vertices – there is nearly no localization, also analogously for standard diffusion, which is infinitesimal limit of GRW. For MERW we have to first find the dominant eigenvector of the adjacency matrix – maximizing <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lambda }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>λ<!-- λ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lambda }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b43d0ea3c9c025af1be9128e62a18fa74bedda2a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.355ex; height:2.176ex;" alt="{\displaystyle \lambda }"></span> in: </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\lambda \psi )_{x}=(A\psi )_{x}=\psi _{x-1}+(1-V_{x})\psi _{x}+\psi _{x+1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>λ<!-- λ --></mi> <mi>ψ<!-- ψ --></mi> <msub> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> <mo>=</mo> <mo stretchy="false">(</mo> <mi>A</mi> <mi>ψ<!-- ψ --></mi> <msub> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>ψ<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msub> <mo>+</mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo>−<!-- − --></mo> <msub> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> <mo stretchy="false">)</mo> <msub> <mi>ψ<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>ψ<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\lambda \psi )_{x}=(A\psi )_{x}=\psi _{x-1}+(1-V_{x})\psi _{x}+\psi _{x+1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e1c7344d8c4a44a45aa41293c67cf762aa3962cd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:44.564ex; height:2.843ex;" alt="{\displaystyle (\lambda \psi )_{x}=(A\psi )_{x}=\psi _{x-1}+(1-V_{x})\psi _{x}+\psi _{x+1}}"></span> </p><p>for all positions <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span>, where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V_{x}=1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle V_{x}=1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2acca315ca4f8838057bc68e2db34e29d6ded641" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.789ex; height:2.509ex;" alt="{\displaystyle V_{x}=1}"></span> for defects, 0 otherwise. Substituting <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 3\psi _{x}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>3</mn> <msub> <mi>ψ<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 3\psi _{x}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3bf6b1cba2cca5d27e42e324fb69f1c146450445" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.848ex; height:2.509ex;" alt="{\displaystyle 3\psi _{x}}"></span> and multiplying the equation by −1 we get: </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E\psi _{x}=-(\psi _{x-1}-2\psi _{x}+\psi _{x+1})+V_{x}\psi _{x}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> <msub> <mi>ψ<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> <mo>=</mo> <mo>−<!-- − --></mo> <mo stretchy="false">(</mo> <msub> <mi>ψ<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msub> <mo>−<!-- − --></mo> <mn>2</mn> <msub> <mi>ψ<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>ψ<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>+</mo> <msub> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> <msub> <mi>ψ<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E\psi _{x}=-(\psi _{x-1}-2\psi _{x}+\psi _{x+1})+V_{x}\psi _{x}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/91d30e4c5c054aae660caf0ea1215d1de93dc3bb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:38.332ex; height:2.843ex;" alt="{\displaystyle E\psi _{x}=-(\psi _{x-1}-2\psi _{x}+\psi _{x+1})+V_{x}\psi _{x}}"></span> </p><p>where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E=3-\lambda }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> <mo>=</mo> <mn>3</mn> <mo>−<!-- − --></mo> <mi>λ<!-- λ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E=3-\lambda }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/56b2b89bec5daf2340df8068ef195cbcd9ef33c3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:10.232ex; height:2.343ex;" alt="{\displaystyle E=3-\lambda }"></span> is minimized now, becoming the analog of energy. The formula inside the bracket is <a href="/wiki/Discrete_Laplace_operator" title="Discrete Laplace operator">discrete Laplace operator</a>, making this equation a discrete analogue of stationary <a href="/wiki/Schrodinger_equation" class="mw-redirect" title="Schrodinger equation">Schrodinger equation</a>. As in quantum mechanics, MERW predicts that the probability distribution should lead exactly to the one of quantum <a href="/wiki/Ground_state" title="Ground state">ground state</a>: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \rho _{x}\propto \psi _{x}^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>ρ<!-- ρ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> <mo>∝<!-- ∝ --></mo> <msubsup> <mi>ψ<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \rho _{x}\propto \psi _{x}^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bd172e6efdeac0e1451197ae84b575c72d578df4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.159ex; height:3.009ex;" alt="{\displaystyle \rho _{x}\propto \psi _{x}^{2}}"></span> with its strongly localized density (in contrast to standard diffusion). Taking the <a href="/wiki/Infinitesimal" title="Infinitesimal">infinitesimal</a> limit, we can get standard continuous stationary (time-independent) Schrodinger equation (<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E\psi =-C\psi _{xx}+V\psi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> <mi>ψ<!-- ψ --></mi> <mo>=</mo> <mo>−<!-- − --></mo> <mi>C</mi> <msub> <mi>ψ<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> <mi>x</mi> </mrow> </msub> <mo>+</mo> <mi>V</mi> <mi>ψ<!-- ψ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E\psi =-C\psi _{xx}+V\psi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d68fd3c59cc73717f52b6287dcc70d030591e59e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:19.728ex; height:2.509ex;" alt="{\displaystyle E\psi =-C\psi _{xx}+V\psi }"></span> for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C=\hbar ^{2}/2m}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>C</mi> <mo>=</mo> <msup> <mi class="MJX-variant">ℏ<!-- ℏ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> <mi>m</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C=\hbar ^{2}/2m}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3f456ea8150f9cb5ad72a90910be22ce4db1fd2a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.606ex; height:3.176ex;" alt="{\displaystyle C=\hbar ^{2}/2m}"></span>) here.<sup id="cite_ref-ext_11-0" class="reference"><a href="#cite_note-ext-11"><span class="cite-bracket">[</span>11<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="See_also">See also</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Maximal_entropy_random_walk&action=edit&section=5" title="Edit section: See also"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/Principle_of_maximum_entropy" title="Principle of maximum entropy">Principle of maximum entropy</a></li> <li><a href="/wiki/Eigenvector_centrality" title="Eigenvector centrality">Eigenvector centrality</a></li> <li><a href="/wiki/Markov_chain" title="Markov chain">Markov chain</a></li> <li><a href="/wiki/Anderson_localization" title="Anderson localization">Anderson localization</a></li></ul> <div class="mw-heading mw-heading2"><h2 id="References">References</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Maximal_entropy_random_walk&action=edit&section=6" title="Edit section: References"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist"> <div class="mw-references-wrap mw-references-columns"><ol class="references"> <li id="cite_note-SinatraGómez-Gardeñes2011-1"><span class="mw-cite-backlink"><b><a href="#cite_ref-SinatraGómez-Gardeñes2011_1-0">^</a></b></span> <span class="reference-text"><style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite id="CITEREFSinatraGómez-GardeñesLambiotteNicosia2011" class="citation journal cs1">Sinatra, Roberta; Gómez-Gardeñes, Jesús; Lambiotte, Renaud; Nicosia, Vincenzo; Latora, Vito (2011). <a rel="nofollow" class="external text" href="http://www.robertasinatra.com/pdf/sinatra_maximal_entropy.pdf">"Maximal-entropy random walks in complex networks with limited information"</a> <span class="cs1-format">(PDF)</span>. <i>Physical Review E</i>. <b>83</b> (3): 030103. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1007.4936">1007.4936</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2011PhRvE..83c0103S">2011PhRvE..83c0103S</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRevE.83.030103">10.1103/PhysRevE.83.030103</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1539-3755">1539-3755</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/21517435">21517435</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:6984660">6984660</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Physical+Review+E&rft.atitle=Maximal-entropy+random+walks+in+complex+networks+with+limited+information&rft.volume=83&rft.issue=3&rft.pages=030103&rft.date=2011&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A6984660%23id-name%3DS2CID&rft_id=info%3Abibcode%2F2011PhRvE..83c0103S&rft_id=info%3Aarxiv%2F1007.4936&rft.issn=1539-3755&rft_id=info%3Adoi%2F10.1103%2FPhysRevE.83.030103&rft_id=info%3Apmid%2F21517435&rft.aulast=Sinatra&rft.aufirst=Roberta&rft.au=G%C3%B3mez-Garde%C3%B1es%2C+Jes%C3%BAs&rft.au=Lambiotte%2C+Renaud&rft.au=Nicosia%2C+Vincenzo&rft.au=Latora%2C+Vito&rft_id=http%3A%2F%2Fwww.robertasinatra.com%2Fpdf%2Fsinatra_maximal_entropy.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMaximal+entropy+random+walk" class="Z3988"></span></span> </li> <li id="cite_note-LiYu2011-2"><span class="mw-cite-backlink"><b><a href="#cite_ref-LiYu2011_2-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLiYuLiu2011" class="citation conference cs1">Li, Rong-Hua; Yu, Jeffrey Xu; Liu, Jianquan (2011). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20170212090812/https://pdfs.semanticscholar.org/f185/bc2499be95b4312169a7e722bac570c2d509.pdf"><i>Link prediction: the power of maximal entropy random walk</i></a> <span class="cs1-format">(PDF)</span>. <a rel="nofollow" class="external text" href="http://www.cikm2011.org/">Association for Computing Machinery Conference on Information and Knowledge Management</a>. p. 1147. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1145%2F2063576.2063741">10.1145/2063576.2063741</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:15309519">15309519</a>. Archived from <a rel="nofollow" class="external text" href="https://pdfs.semanticscholar.org/f185/bc2499be95b4312169a7e722bac570c2d509.pdf">the original</a> <span class="cs1-format">(PDF)</span> on 12 February 2017.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=conference&rft.btitle=Link+prediction%3A+the+power+of+maximal+entropy+random+walk&rft.pages=1147&rft.date=2011&rft_id=info%3Adoi%2F10.1145%2F2063576.2063741&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A15309519%23id-name%3DS2CID&rft.aulast=Li&rft.aufirst=Rong-Hua&rft.au=Yu%2C+Jeffrey+Xu&rft.au=Liu%2C+Jianquan&rft_id=https%3A%2F%2Fpdfs.semanticscholar.org%2Ff185%2Fbc2499be95b4312169a7e722bac570c2d509.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMaximal+entropy+random+walk" class="Z3988"></span></span> </li> <li id="cite_note-OchabBurda2013-3"><span class="mw-cite-backlink"><b><a href="#cite_ref-OchabBurda2013_3-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFOchabBurda2013" class="citation journal cs1">Ochab, J.K.; Burda, Z. (2013). "Maximal entropy random walk in community detection". <i>The European Physical Journal Special Topics</i>. <b>216</b> (1): 73–81. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1208.3688">1208.3688</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2013EPJST.216...73O">2013EPJST.216...73O</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1140%2Fepjst%2Fe2013-01730-6">10.1140/epjst/e2013-01730-6</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1951-6355">1951-6355</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:56409069">56409069</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=The+European+Physical+Journal+Special+Topics&rft.atitle=Maximal+entropy+random+walk+in+community+detection&rft.volume=216&rft.issue=1&rft.pages=73-81&rft.date=2013&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A56409069%23id-name%3DS2CID&rft_id=info%3Abibcode%2F2013EPJST.216...73O&rft_id=info%3Aarxiv%2F1208.3688&rft.issn=1951-6355&rft_id=info%3Adoi%2F10.1140%2Fepjst%2Fe2013-01730-6&rft.aulast=Ochab&rft.aufirst=J.K.&rft.au=Burda%2C+Z.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMaximal+entropy+random+walk" class="Z3988"></span></span> </li> <li id="cite_note-CGPT2016-4"><span class="mw-cite-backlink"><b><a href="#cite_ref-CGPT2016_4-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFChenGeorgiouPavonTannenbaum2016" class="citation journal cs1">Chen, Y.; Georgiou, T.T.; Pavon, M.; Tannenbaum, A. (2016). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5600536">"Robust transport over networks"</a>. <i>IEEE Transactions on Automatic Control</i>. <b>62</b> (9): 4675–4682. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1603.08129">1603.08129</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2016arXiv160308129C">2016arXiv160308129C</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1109%2FTAC.2016.2626796">10.1109/TAC.2016.2626796</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5600536">5600536</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/28924302">28924302</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=IEEE+Transactions+on+Automatic+Control&rft.atitle=Robust+transport+over+networks&rft.volume=62&rft.issue=9&rft.pages=4675-4682&rft.date=2016&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC5600536%23id-name%3DPMC&rft_id=info%3Abibcode%2F2016arXiv160308129C&rft_id=info%3Aarxiv%2F1603.08129&rft_id=info%3Apmid%2F28924302&rft_id=info%3Adoi%2F10.1109%2FTAC.2016.2626796&rft.aulast=Chen&rft.aufirst=Y.&rft.au=Georgiou%2C+T.T.&rft.au=Pavon%2C+M.&rft.au=Tannenbaum%2C+A.&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC5600536&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMaximal+entropy+random+walk" class="Z3988"></span></span> </li> <li id="cite_note-DelvenneLibert2011-5"><span class="mw-cite-backlink"><b><a href="#cite_ref-DelvenneLibert2011_5-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDelvenneLibert2011" class="citation journal cs1">Delvenne, Jean-Charles; Libert, Anne-Sophie (2011). "Centrality measures and thermodynamic formalism for complex networks". <i>Physical Review E</i>. <b>83</b> (4): 046117. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/0710.3972">0710.3972</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2011PhRvE..83d6117D">2011PhRvE..83d6117D</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRevE.83.046117">10.1103/PhysRevE.83.046117</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1539-3755">1539-3755</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/21599250">21599250</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:25816198">25816198</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Physical+Review+E&rft.atitle=Centrality+measures+and+thermodynamic+formalism+for+complex+networks&rft.volume=83&rft.issue=4&rft.pages=046117&rft.date=2011&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A25816198%23id-name%3DS2CID&rft_id=info%3Abibcode%2F2011PhRvE..83d6117D&rft_id=info%3Aarxiv%2F0710.3972&rft.issn=1539-3755&rft_id=info%3Adoi%2F10.1103%2FPhysRevE.83.046117&rft_id=info%3Apmid%2F21599250&rft.aulast=Delvenne&rft.aufirst=Jean-Charles&rft.au=Libert%2C+Anne-Sophie&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMaximal+entropy+random+walk" class="Z3988"></span></span> </li> <li id="cite_note-saliency-6"><span class="mw-cite-backlink"><b><a href="#cite_ref-saliency_6-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJin-Gang_YuJi_ZhaoJinwen_TianYihua_Tan2014" class="citation journal cs1">Jin-Gang Yu; Ji Zhao; Jinwen Tian; Yihua Tan (2014). "Maximal Entropy Random Walk for Region-Based Visual Saliency". <i>IEEE Transactions on Cybernetics</i>. <b>44</b> (9). Institute of Electrical and Electronics Engineers (IEEE): 1661–1672. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1109%2Ftcyb.2013.2292054">10.1109/tcyb.2013.2292054</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/2168-2267">2168-2267</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/25137693">25137693</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:20962642">20962642</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=IEEE+Transactions+on+Cybernetics&rft.atitle=Maximal+Entropy+Random+Walk+for+Region-Based+Visual+Saliency&rft.volume=44&rft.issue=9&rft.pages=1661-1672&rft.date=2014&rft.issn=2168-2267&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A20962642%23id-name%3DS2CID&rft_id=info%3Apmid%2F25137693&rft_id=info%3Adoi%2F10.1109%2Ftcyb.2013.2292054&rft.au=Jin-Gang+Yu&rft.au=Ji+Zhao&rft.au=Jinwen+Tian&rft.au=Yihua+Tan&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMaximal+entropy+random+walk" class="Z3988"></span></span> </li> <li id="cite_note-local-7"><span class="mw-cite-backlink"><b><a href="#cite_ref-local_7-0">^</a></b></span> <span class="reference-text"><a rel="nofollow" class="external text" href="https://ieeexplore.ieee.org/abstract/document/6678551/">L. Wang, J. Zhao, X. Hu, J. Lu, <i>Weakly supervised object localization via maximal entropy random walk</i></a>, ICIP, 2014.</span> </li> <li id="cite_note-tamp-8"><span class="mw-cite-backlink"><b><a href="#cite_ref-tamp_8-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKorusHuang2016" class="citation journal cs1">Korus, Pawel; Huang, Jiwu (2016). "Improved Tampering Localization in Digital Image Forensics Based on Maximal Entropy Random Walk". <i>IEEE Signal Processing Letters</i>. <b>23</b> (1). Institute of Electrical and Electronics Engineers (IEEE): 169–173. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2016ISPL...23..169K">2016ISPL...23..169K</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1109%2Flsp.2015.2507598">10.1109/lsp.2015.2507598</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1070-9908">1070-9908</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:16305991">16305991</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=IEEE+Signal+Processing+Letters&rft.atitle=Improved+Tampering+Localization+in+Digital+Image+Forensics+Based+on+Maximal+Entropy+Random+Walk&rft.volume=23&rft.issue=1&rft.pages=169-173&rft.date=2016&rft_id=info%3Adoi%2F10.1109%2Flsp.2015.2507598&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A16305991%23id-name%3DS2CID&rft.issn=1070-9908&rft_id=info%3Abibcode%2F2016ISPL...23..169K&rft.aulast=Korus&rft.aufirst=Pawel&rft.au=Huang%2C+Jiwu&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMaximal+entropy+random+walk" class="Z3988"></span></span> </li> <li id="cite_note-trac-9"><span class="mw-cite-backlink"><b><a href="#cite_ref-trac_9-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGalinskyFrank2015" class="citation journal cs1">Galinsky, Vitaly L.; Frank, Lawrence R. (2015). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4417445">"Simultaneous Multi-Scale Diffusion Estimation and Tractography Guided by Entropy Spectrum Pathways"</a>. <i>IEEE Transactions on Medical Imaging</i>. <b>34</b> (5). Institute of Electrical and Electronics Engineers (IEEE): 1177–1193. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1109%2Ftmi.2014.2380812">10.1109/tmi.2014.2380812</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0278-0062">0278-0062</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4417445">4417445</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/25532167">25532167</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=IEEE+Transactions+on+Medical+Imaging&rft.atitle=Simultaneous+Multi-Scale+Diffusion+Estimation+and+Tractography+Guided+by+Entropy+Spectrum+Pathways&rft.volume=34&rft.issue=5&rft.pages=1177-1193&rft.date=2015&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC4417445%23id-name%3DPMC&rft.issn=0278-0062&rft_id=info%3Apmid%2F25532167&rft_id=info%3Adoi%2F10.1109%2Ftmi.2014.2380812&rft.aulast=Galinsky&rft.aufirst=Vitaly+L.&rft.au=Frank%2C+Lawrence+R.&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC4417445&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMaximal+entropy+random+walk" class="Z3988"></span></span> </li> <li id="cite_note-prl-10"><span class="mw-cite-backlink"><b><a href="#cite_ref-prl_10-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBurdaDudaLuckWaclaw2009" class="citation journal cs1">Burda, Z.; Duda, J.; Luck, J. M.; Waclaw, B. (23 April 2009). "Localization of the Maximal Entropy Random Walk". <i>Physical Review Letters</i>. <b>102</b> (16): 160602. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/0810.4113">0810.4113</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2009PhRvL.102p0602B">2009PhRvL.102p0602B</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2Fphysrevlett.102.160602">10.1103/physrevlett.102.160602</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0031-9007">0031-9007</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/19518691">19518691</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:32134048">32134048</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Physical+Review+Letters&rft.atitle=Localization+of+the+Maximal+Entropy+Random+Walk&rft.volume=102&rft.issue=16&rft.pages=160602&rft.date=2009-04-23&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A32134048%23id-name%3DS2CID&rft_id=info%3Abibcode%2F2009PhRvL.102p0602B&rft_id=info%3Aarxiv%2F0810.4113&rft.issn=0031-9007&rft_id=info%3Adoi%2F10.1103%2Fphysrevlett.102.160602&rft_id=info%3Apmid%2F19518691&rft.aulast=Burda&rft.aufirst=Z.&rft.au=Duda%2C+J.&rft.au=Luck%2C+J.+M.&rft.au=Waclaw%2C+B.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMaximal+entropy+random+walk" class="Z3988"></span></span> </li> <li id="cite_note-ext-11"><span class="mw-cite-backlink"><b><a href="#cite_ref-ext_11-0">^</a></b></span> <span class="reference-text"><a rel="nofollow" class="external text" href="http://www.fais.uj.edu.pl/documents/41628/d63bc0b7-cb71-4eba-8a5a-d974256fd065">J. Duda, <i>Extended Maximal Entropy Random Walk</i></a>, PhD Thesis, 2012.</span> </li> </ol></div></div> <div class="mw-heading mw-heading2"><h2 id="External_links">External links</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Maximal_entropy_random_walk&action=edit&section=7" title="Edit section: External links"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li>Gábor Simonyi, <a rel="nofollow" class="external text" href="http://www.nature.com/articles/srep05365">Y. Lin, Z. Zhang, "Mean first-passage time for maximal-entropy random walks in complex networks"</a>. Scientific Reports, 2014.</li> <li><a rel="nofollow" class="external text" href="http://demonstrations.wolfram.com/ElectronConductanceModelsUsingMaximalEntropyRandomWalks/">Electron Conductance Models Using Maximal Entropy Random Walks</a> Wolfram Demonstration Project</li></ul> <div class="navbox-styles"><style data-mw-deduplicate="TemplateStyles:r1129693374">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><style data-mw-deduplicate="TemplateStyles:r1236075235">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{line-height:1.5em;border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}body.skin--responsive .mw-parser-output .navbox-image img{max-width:none!important}@media print{body.ns-0 .mw-parser-output .navbox{display:none!important}}</style></div><div role="navigation" class="navbox" aria-labelledby="Stochastic_processes" style="padding:3px"><table class="nowraplinks mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1239400231">.mw-parser-output .navbar{display:inline;font-size:88%;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar a>span,.mw-parser-output .navbar a>abbr{text-decoration:inherit}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}html.skin-theme-clientpref-night .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}@media(prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}}@media print{.mw-parser-output .navbar{display:none!important}}</style><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Stochastic_processes" title="Template:Stochastic processes"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Stochastic_processes" title="Template talk:Stochastic processes"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Stochastic_processes" title="Special:EditPage/Template:Stochastic processes"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Stochastic_processes" style="font-size:114%;margin:0 4em"><a href="/wiki/Stochastic_process" title="Stochastic process">Stochastic processes</a></div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Discrete-time_stochastic_process" class="mw-redirect" title="Discrete-time stochastic process">Discrete time</a></th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Bernoulli_process" title="Bernoulli process">Bernoulli process</a></li> <li><a href="/wiki/Branching_process" title="Branching process">Branching process</a></li> <li><a href="/wiki/Chinese_restaurant_process" title="Chinese restaurant process">Chinese restaurant process</a></li> <li><a href="/wiki/Galton%E2%80%93Watson_process" title="Galton–Watson process">Galton–Watson process</a></li> <li><a href="/wiki/Independent_and_identically_distributed_random_variables" title="Independent and identically distributed random variables">Independent and identically distributed random variables</a></li> <li><a href="/wiki/Markov_chain" title="Markov chain">Markov chain</a></li> <li><a href="/wiki/Moran_process" title="Moran process">Moran process</a></li> <li><a href="/wiki/Random_walk" title="Random walk">Random walk</a> <ul><li><a href="/wiki/Loop-erased_random_walk" title="Loop-erased random walk">Loop-erased</a></li> <li><a href="/wiki/Self-avoiding_walk" title="Self-avoiding walk">Self-avoiding</a></li> <li><a href="/wiki/Biased_random_walk_on_a_graph" title="Biased random walk on a graph"> Biased</a></li> <li><a class="mw-selflink selflink">Maximal entropy</a></li></ul></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Continuous-time_stochastic_process" title="Continuous-time stochastic process">Continuous time</a></th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Additive_process" title="Additive process">Additive process</a></li> <li><a href="/wiki/Bessel_process" title="Bessel process">Bessel process</a></li> <li><a href="/wiki/Birth%E2%80%93death_process" title="Birth–death process">Birth–death process</a> <ul><li><a href="/wiki/Birth_process" title="Birth process">pure birth</a></li></ul></li> <li><a href="/wiki/Wiener_process" title="Wiener process">Brownian motion</a> <ul><li><a href="/wiki/Brownian_bridge" title="Brownian bridge">Bridge</a></li> <li><a href="/wiki/Brownian_excursion" title="Brownian excursion">Excursion</a></li> <li><a href="/wiki/Fractional_Brownian_motion" title="Fractional Brownian motion">Fractional</a></li> <li><a href="/wiki/Geometric_Brownian_motion" title="Geometric Brownian motion">Geometric</a></li> <li><a href="/wiki/Brownian_meander" title="Brownian meander">Meander</a></li></ul></li> <li><a href="/wiki/Cauchy_process" title="Cauchy process">Cauchy process</a></li> <li><a href="/wiki/Contact_process_(mathematics)" title="Contact process (mathematics)">Contact process</a></li> <li><a href="/wiki/Continuous-time_random_walk" title="Continuous-time random walk">Continuous-time random walk</a></li> <li><a href="/wiki/Cox_process" title="Cox process">Cox process</a></li> <li><a href="/wiki/Diffusion_process" title="Diffusion process">Diffusion process</a></li> <li><a href="/wiki/Dyson_Brownian_motion" title="Dyson Brownian motion">Dyson Brownian motion</a></li> <li><a href="/wiki/Empirical_process" title="Empirical process">Empirical process</a></li> <li><a href="/wiki/Feller_process" title="Feller process">Feller process</a></li> <li><a href="/wiki/Fleming%E2%80%93Viot_process" title="Fleming–Viot process">Fleming–Viot process</a></li> <li><a href="/wiki/Gamma_process" title="Gamma process">Gamma process</a></li> <li><a href="/wiki/Geometric_process" title="Geometric process">Geometric process</a></li> <li><a href="/wiki/Hawkes_process" title="Hawkes process">Hawkes process</a></li> <li><a href="/wiki/Hunt_process" title="Hunt process">Hunt process</a></li> <li><a href="/wiki/Interacting_particle_system" title="Interacting particle system">Interacting particle systems</a></li> <li><a href="/wiki/It%C3%B4_diffusion" title="Itô diffusion">Itô diffusion</a></li> <li><a href="/wiki/It%C3%B4_process" class="mw-redirect" title="Itô process">Itô process</a></li> <li><a href="/wiki/Jump_diffusion" title="Jump diffusion">Jump diffusion</a></li> <li><a href="/wiki/Jump_process" title="Jump process">Jump process</a></li> <li><a href="/wiki/L%C3%A9vy_process" title="Lévy process">Lévy process</a></li> <li><a href="/wiki/Local_time_(mathematics)" title="Local time (mathematics)">Local time</a></li> <li><a href="/wiki/Markov_additive_process" title="Markov additive process">Markov additive process</a></li> <li><a href="/wiki/McKean%E2%80%93Vlasov_process" title="McKean–Vlasov process">McKean–Vlasov process</a></li> <li><a href="/wiki/Ornstein%E2%80%93Uhlenbeck_process" title="Ornstein–Uhlenbeck process">Ornstein–Uhlenbeck process</a></li> <li><a href="/wiki/Poisson_point_process" title="Poisson point process">Poisson process</a> <ul><li><a href="/wiki/Compound_Poisson_process" title="Compound Poisson process">Compound</a></li> <li><a href="/wiki/Non-homogeneous_Poisson_process" class="mw-redirect" title="Non-homogeneous Poisson process">Non-homogeneous</a></li></ul></li> <li><a href="/wiki/Schramm%E2%80%93Loewner_evolution" title="Schramm–Loewner evolution">Schramm–Loewner evolution</a></li> <li><a href="/wiki/Semimartingale" title="Semimartingale">Semimartingale</a></li> <li><a href="/wiki/Sigma-martingale" title="Sigma-martingale">Sigma-martingale</a></li> <li><a href="/wiki/Stable_process" title="Stable process">Stable process</a></li> <li><a href="/wiki/Superprocess" title="Superprocess">Superprocess</a></li> <li><a href="/wiki/Telegraph_process" title="Telegraph process">Telegraph process</a></li> <li><a href="/wiki/Variance_gamma_process" title="Variance gamma process">Variance gamma process</a></li> <li><a href="/wiki/Wiener_process" title="Wiener process">Wiener process</a></li> <li><a href="/wiki/Wiener_sausage" title="Wiener sausage">Wiener sausage</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Both</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Branching_process" title="Branching process">Branching process</a></li> <li><a href="/wiki/Gaussian_process" title="Gaussian process">Gaussian process</a></li> <li><a href="/wiki/Hidden_Markov_model" title="Hidden Markov model">Hidden Markov model (HMM)</a></li> <li><a href="/wiki/Markov_process" class="mw-redirect" title="Markov process">Markov process</a></li> <li><a href="/wiki/Martingale_(probability_theory)" title="Martingale (probability theory)">Martingale</a> <ul><li><a href="/wiki/Martingale_difference_sequence" title="Martingale difference sequence">Differences</a></li> <li><a href="/wiki/Local_martingale" title="Local martingale">Local</a></li> <li><a href="/wiki/Submartingale" class="mw-redirect" title="Submartingale">Sub-</a></li> <li><a href="/wiki/Supermartingale" class="mw-redirect" title="Supermartingale">Super-</a></li></ul></li> <li><a href="/wiki/Random_dynamical_system" title="Random dynamical system">Random dynamical system</a></li> <li><a href="/wiki/Regenerative_process" title="Regenerative process">Regenerative process</a></li> <li><a href="/wiki/Renewal_process" class="mw-redirect" title="Renewal process">Renewal process</a></li> <li><a href="/wiki/Stochastic_chains_with_memory_of_variable_length" title="Stochastic chains with memory of variable length">Stochastic chains with memory of variable length</a></li> <li><a href="/wiki/White_noise" title="White noise">White noise</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Fields and other</th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Dirichlet_process" title="Dirichlet process">Dirichlet process</a></li> <li><a href="/wiki/Gaussian_random_field" title="Gaussian random field">Gaussian random field</a></li> <li><a href="/wiki/Gibbs_measure" title="Gibbs measure">Gibbs measure</a></li> <li><a href="/wiki/Hopfield_model" class="mw-redirect" title="Hopfield model">Hopfield model</a></li> <li><a href="/wiki/Ising_model" title="Ising model">Ising model</a> <ul><li><a href="/wiki/Potts_model" title="Potts model">Potts model</a></li> <li><a href="/wiki/Boolean_network" title="Boolean network">Boolean network</a></li></ul></li> <li><a href="/wiki/Markov_random_field" title="Markov random field">Markov random field</a></li> <li><a href="/wiki/Percolation_theory" title="Percolation theory">Percolation</a></li> <li><a href="/wiki/Pitman%E2%80%93Yor_process" title="Pitman–Yor process">Pitman–Yor process</a></li> <li><a href="/wiki/Point_process" title="Point process">Point process</a> <ul><li><a href="/wiki/Point_process#Cox_point_process" title="Point process">Cox</a></li> <li><a href="/wiki/Poisson_point_process" title="Poisson point process">Poisson</a></li></ul></li> <li><a href="/wiki/Random_field" title="Random field">Random field</a></li> <li><a href="/wiki/Random_graph" title="Random graph">Random graph</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Time_series" title="Time series">Time series models</a></th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Autoregressive_conditional_heteroskedasticity" title="Autoregressive conditional heteroskedasticity">Autoregressive conditional heteroskedasticity (ARCH) model</a></li> <li><a href="/wiki/Autoregressive_integrated_moving_average" title="Autoregressive integrated moving average">Autoregressive integrated moving average (ARIMA) model</a></li> <li><a href="/wiki/Autoregressive_model" title="Autoregressive model">Autoregressive (AR) model</a></li> <li><a href="/wiki/Autoregressive%E2%80%93moving-average_model" class="mw-redirect" title="Autoregressive–moving-average model">Autoregressive–moving-average (ARMA) model</a></li> <li><a href="/wiki/Autoregressive_conditional_heteroskedasticity" title="Autoregressive conditional heteroskedasticity">Generalized autoregressive conditional heteroskedasticity (GARCH) model</a></li> <li><a href="/wiki/Moving-average_model" title="Moving-average model">Moving-average (MA) model</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Asset_pricing_model" class="mw-redirect" title="Asset pricing model">Financial models</a></th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Binomial_options_pricing_model" title="Binomial options pricing model">Binomial options pricing model</a></li> <li><a href="/wiki/Black%E2%80%93Derman%E2%80%93Toy_model" title="Black–Derman–Toy model">Black–Derman–Toy</a></li> <li><a href="/wiki/Black%E2%80%93Karasinski_model" title="Black–Karasinski model">Black–Karasinski</a></li> <li><a href="/wiki/Black%E2%80%93Scholes_model" title="Black–Scholes model">Black–Scholes</a></li> <li><a href="/wiki/Chan%E2%80%93Karolyi%E2%80%93Longstaff%E2%80%93Sanders_process" title="Chan–Karolyi–Longstaff–Sanders process">Chan–Karolyi–Longstaff–Sanders (CKLS)</a></li> <li><a href="/wiki/Chen_model" title="Chen model">Chen</a></li> <li><a href="/wiki/Constant_elasticity_of_variance_model" title="Constant elasticity of variance model">Constant elasticity of variance (CEV)</a></li> <li><a href="/wiki/Cox%E2%80%93Ingersoll%E2%80%93Ross_model" title="Cox–Ingersoll–Ross model">Cox–Ingersoll–Ross (CIR)</a></li> <li><a href="/wiki/Garman%E2%80%93Kohlhagen_model" class="mw-redirect" title="Garman–Kohlhagen model">Garman–Kohlhagen</a></li> <li><a href="/wiki/Heath%E2%80%93Jarrow%E2%80%93Morton_framework" title="Heath–Jarrow–Morton framework">Heath–Jarrow–Morton (HJM)</a></li> <li><a href="/wiki/Heston_model" title="Heston model">Heston</a></li> <li><a href="/wiki/Ho%E2%80%93Lee_model" title="Ho–Lee model">Ho–Lee</a></li> <li><a href="/wiki/Hull%E2%80%93White_model" title="Hull–White model">Hull–White</a></li> <li><a href="/wiki/Korn%E2%80%93Kreer%E2%80%93Lenssen_model" title="Korn–Kreer–Lenssen model">Korn-Kreer-Lenssen</a></li> <li><a href="/wiki/LIBOR_market_model" title="LIBOR market model">LIBOR market</a></li> <li><a href="/wiki/Rendleman%E2%80%93Bartter_model" title="Rendleman–Bartter model">Rendleman–Bartter</a></li> <li><a href="/wiki/SABR_volatility_model" title="SABR volatility model">SABR volatility</a></li> <li><a href="/wiki/Vasicek_model" title="Vasicek model">Vašíček</a></li> <li><a href="/wiki/Wilkie_investment_model" title="Wilkie investment model">Wilkie</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Actuarial_mathematics" class="mw-redirect" title="Actuarial mathematics">Actuarial models</a></th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/B%C3%BChlmann_model" title="Bühlmann model">Bühlmann</a></li> <li><a href="/wiki/Cram%C3%A9r%E2%80%93Lundberg_model" class="mw-redirect" title="Cramér–Lundberg model">Cramér–Lundberg</a></li> <li><a href="/wiki/Risk_process" class="mw-redirect" title="Risk process">Risk process</a></li> <li><a href="/wiki/Sparre%E2%80%93Anderson_model" class="mw-redirect" title="Sparre–Anderson model">Sparre–Anderson</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Queueing_model" class="mw-redirect" title="Queueing model">Queueing models</a></th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Bulk_queue" title="Bulk queue">Bulk</a></li> <li><a href="/wiki/Fluid_queue" title="Fluid queue">Fluid</a></li> <li><a href="/wiki/G-network" title="G-network">Generalized queueing network</a></li> <li><a href="/wiki/M/G/1_queue" title="M/G/1 queue">M/G/1</a></li> <li><a href="/wiki/M/M/1_queue" title="M/M/1 queue">M/M/1</a></li> <li><a href="/wiki/M/M/c_queue" title="M/M/c queue">M/M/c</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Properties</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/C%C3%A0dl%C3%A0g" title="Càdlàg">Càdlàg paths</a></li> <li><a href="/wiki/Continuous_stochastic_process" title="Continuous stochastic process">Continuous</a></li> <li><a href="/wiki/Sample-continuous_process" title="Sample-continuous process">Continuous paths</a></li> <li><a href="/wiki/Ergodicity" title="Ergodicity">Ergodic</a></li> <li><a href="/wiki/Exchangeable_random_variables" title="Exchangeable random variables">Exchangeable</a></li> <li><a href="/wiki/Feller-continuous_process" title="Feller-continuous process">Feller-continuous</a></li> <li><a href="/wiki/Gauss%E2%80%93Markov_process" title="Gauss–Markov process">Gauss–Markov</a></li> <li><a href="/wiki/Markov_property" title="Markov property">Markov</a></li> <li><a href="/wiki/Mixing_(mathematics)" title="Mixing (mathematics)">Mixing</a></li> <li><a href="/wiki/Piecewise-deterministic_Markov_process" title="Piecewise-deterministic Markov process">Piecewise-deterministic</a></li> <li><a href="/wiki/Predictable_process" title="Predictable process">Predictable</a></li> <li><a href="/wiki/Progressively_measurable_process" title="Progressively measurable process">Progressively measurable</a></li> <li><a href="/wiki/Self-similar_process" title="Self-similar process">Self-similar</a></li> <li><a href="/wiki/Stationary_process" title="Stationary process">Stationary</a></li> <li><a href="/wiki/Time_reversibility" title="Time reversibility">Time-reversible</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Limit theorems</th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Central_limit_theorem" title="Central limit theorem">Central limit theorem</a></li> <li><a href="/wiki/Donsker%27s_theorem" title="Donsker's theorem">Donsker's theorem</a></li> <li><a href="/wiki/Doob%27s_martingale_convergence_theorems" title="Doob's martingale convergence theorems">Doob's martingale convergence theorems</a></li> <li><a href="/wiki/Ergodic_theorem" class="mw-redirect" title="Ergodic theorem">Ergodic theorem</a></li> <li><a href="/wiki/Fisher%E2%80%93Tippett%E2%80%93Gnedenko_theorem" title="Fisher–Tippett–Gnedenko theorem">Fisher–Tippett–Gnedenko theorem</a></li> <li><a href="/wiki/Large_deviation_principle" class="mw-redirect" title="Large deviation principle">Large deviation principle</a></li> <li><a href="/wiki/Law_of_large_numbers" title="Law of large numbers">Law of large numbers (weak/strong)</a></li> <li><a href="/wiki/Law_of_the_iterated_logarithm" title="Law of the iterated logarithm">Law of the iterated logarithm</a></li> <li><a href="/wiki/Maximal_ergodic_theorem" title="Maximal ergodic theorem">Maximal ergodic theorem</a></li> <li><a href="/wiki/Sanov%27s_theorem" title="Sanov's theorem">Sanov's theorem</a></li> <li><a href="/wiki/Zero%E2%80%93one_law" title="Zero–one law">Zero–one laws</a> (<a href="/wiki/Blumenthal%27s_zero%E2%80%93one_law" title="Blumenthal's zero–one law">Blumenthal</a>, <a href="/wiki/Borel%E2%80%93Cantelli_lemma" title="Borel–Cantelli lemma">Borel–Cantelli</a>, <a href="/wiki/Engelbert%E2%80%93Schmidt_zero%E2%80%93one_law" title="Engelbert–Schmidt zero–one law">Engelbert–Schmidt</a>, <a href="/wiki/Hewitt%E2%80%93Savage_zero%E2%80%93one_law" title="Hewitt–Savage zero–one law">Hewitt–Savage</a>, <a href="/wiki/Kolmogorov%27s_zero%E2%80%93one_law" title="Kolmogorov's zero–one law"> Kolmogorov</a>, <a href="/wiki/L%C3%A9vy%27s_zero%E2%80%93one_law" class="mw-redirect" title="Lévy's zero–one law">Lévy</a>)</li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/List_of_inequalities#Probability_theory_and_statistics" title="List of inequalities">Inequalities</a></th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Burkholder%E2%80%93Davis%E2%80%93Gundy_inequalities" class="mw-redirect" title="Burkholder–Davis–Gundy inequalities">Burkholder–Davis–Gundy</a></li> <li><a href="/wiki/Doob%27s_martingale_inequality" title="Doob's martingale inequality">Doob's martingale</a></li> <li><a href="/wiki/Doob%27s_upcrossing_inequality" class="mw-redirect" title="Doob's upcrossing inequality">Doob's upcrossing</a></li> <li><a href="/wiki/Kunita%E2%80%93Watanabe_inequality" title="Kunita–Watanabe inequality">Kunita–Watanabe</a></li> <li><a href="/wiki/Marcinkiewicz%E2%80%93Zygmund_inequality" title="Marcinkiewicz–Zygmund inequality">Marcinkiewicz–Zygmund</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Tools</th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Cameron%E2%80%93Martin_formula" class="mw-redirect" title="Cameron–Martin formula">Cameron–Martin formula</a></li> <li><a href="/wiki/Convergence_of_random_variables" title="Convergence of random variables">Convergence of random variables</a></li> <li><a href="/wiki/Dol%C3%A9ans-Dade_exponential" title="Doléans-Dade exponential">Doléans-Dade exponential</a></li> <li><a href="/wiki/Doob_decomposition_theorem" title="Doob decomposition theorem">Doob decomposition theorem</a></li> <li><a href="/wiki/Doob%E2%80%93Meyer_decomposition_theorem" title="Doob–Meyer decomposition theorem">Doob–Meyer decomposition theorem</a></li> <li><a href="/wiki/Doob%27s_optional_stopping_theorem" class="mw-redirect" title="Doob's optional stopping theorem">Doob's optional stopping theorem</a></li> <li><a href="/wiki/Dynkin%27s_formula" title="Dynkin's formula">Dynkin's formula</a></li> <li><a href="/wiki/Feynman%E2%80%93Kac_formula" title="Feynman–Kac formula">Feynman–Kac formula</a></li> <li><a href="/wiki/Filtration_(probability_theory)" title="Filtration (probability theory)">Filtration</a></li> <li><a href="/wiki/Girsanov_theorem" title="Girsanov theorem">Girsanov theorem</a></li> <li><a href="/wiki/Infinitesimal_generator_(stochastic_processes)" title="Infinitesimal generator (stochastic processes)">Infinitesimal generator</a></li> <li><a href="/wiki/It%C3%B4_integral" class="mw-redirect" title="Itô integral">Itô integral</a></li> <li><a href="/wiki/It%C3%B4%27s_lemma" title="Itô's lemma">Itô's lemma</a></li> <li><a href="/wiki/Karhunen%E2%80%93Lo%C3%A8ve_theorem" class="mw-redirect" title="Karhunen–Loève theorem">Karhunen–Loève theorem</a></li> <li><a href="/wiki/Kolmogorov_continuity_theorem" title="Kolmogorov continuity theorem">Kolmogorov continuity theorem</a></li> <li><a href="/wiki/Kolmogorov_extension_theorem" title="Kolmogorov extension theorem">Kolmogorov extension theorem</a></li> <li><a href="/wiki/L%C3%A9vy%E2%80%93Prokhorov_metric" title="Lévy–Prokhorov metric">Lévy–Prokhorov metric</a></li> <li><a href="/wiki/Malliavin_calculus" title="Malliavin calculus">Malliavin calculus</a></li> <li><a href="/wiki/Martingale_representation_theorem" title="Martingale representation theorem">Martingale representation theorem</a></li> <li><a href="/wiki/Optional_stopping_theorem" title="Optional stopping theorem">Optional stopping theorem</a></li> <li><a href="/wiki/Prokhorov%27s_theorem" title="Prokhorov's theorem">Prokhorov's theorem</a></li> <li><a href="/wiki/Quadratic_variation" title="Quadratic variation">Quadratic variation</a></li> <li><a href="/wiki/Reflection_principle_(Wiener_process)" title="Reflection principle (Wiener process)">Reflection principle</a></li> <li><a href="/wiki/Skorokhod_integral" title="Skorokhod integral">Skorokhod integral</a></li> <li><a href="/wiki/Skorokhod%27s_representation_theorem" title="Skorokhod's representation theorem">Skorokhod's representation theorem</a></li> <li><a href="/wiki/Skorokhod_space" class="mw-redirect" title="Skorokhod space">Skorokhod space</a></li> <li><a href="/wiki/Snell_envelope" title="Snell envelope">Snell envelope</a></li> <li><a href="/wiki/Stochastic_differential_equation" title="Stochastic differential equation">Stochastic differential equation</a> <ul><li><a href="/wiki/Tanaka_equation" title="Tanaka equation">Tanaka</a></li></ul></li> <li><a href="/wiki/Stopping_time" title="Stopping time">Stopping time</a></li> <li><a href="/wiki/Stratonovich_integral" title="Stratonovich integral">Stratonovich integral</a></li> <li><a href="/wiki/Uniform_integrability" title="Uniform integrability">Uniform integrability</a></li> <li><a href="/wiki/Usual_hypotheses" class="mw-redirect" title="Usual hypotheses">Usual hypotheses</a></li> <li><a href="/wiki/Wiener_space" class="mw-redirect" title="Wiener space">Wiener space</a> <ul><li><a href="/wiki/Classical_Wiener_space" title="Classical Wiener space">Classical</a></li> <li><a href="/wiki/Abstract_Wiener_space" title="Abstract Wiener space">Abstract</a></li></ul></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Disciplines</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Actuarial_mathematics" class="mw-redirect" title="Actuarial mathematics">Actuarial mathematics</a></li> <li><a href="/wiki/Stochastic_control" title="Stochastic control">Control theory</a></li> <li><a href="/wiki/Econometrics" title="Econometrics">Econometrics</a></li> <li><a href="/wiki/Ergodic_theory" title="Ergodic theory">Ergodic theory</a></li> <li><a href="/wiki/Extreme_value_theory" title="Extreme value theory">Extreme value theory (EVT)</a></li> <li><a href="/wiki/Large_deviations_theory" title="Large deviations theory">Large deviations theory</a></li> <li><a href="/wiki/Mathematical_finance" title="Mathematical finance">Mathematical finance</a></li> <li><a href="/wiki/Mathematical_statistics" title="Mathematical statistics">Mathematical statistics</a></li> <li><a href="/wiki/Probability_theory" title="Probability theory">Probability theory</a></li> <li><a href="/wiki/Queueing_theory" title="Queueing theory">Queueing theory</a></li> <li><a href="/wiki/Renewal_theory" title="Renewal theory">Renewal theory</a></li> <li><a href="/wiki/Ruin_theory" title="Ruin theory">Ruin theory</a></li> <li><a href="/wiki/Signal_processing" title="Signal processing">Signal processing</a></li> <li><a href="/wiki/Statistics" title="Statistics">Statistics</a></li> <li><a href="/wiki/Stochastic_analysis" class="mw-redirect" title="Stochastic analysis">Stochastic analysis</a></li> <li><a href="/wiki/Time_series_analysis" class="mw-redirect" title="Time series analysis">Time series analysis</a></li> <li><a href="/wiki/Machine_learning" title="Machine learning">Machine learning</a></li></ul> </div></td></tr><tr><td class="navbox-abovebelow hlist" colspan="2"><div> <ul><li><a href="/wiki/List_of_stochastic_processes_topics" title="List of stochastic processes topics">List of topics</a></li> <li><a href="/wiki/Category:Stochastic_processes" title="Category:Stochastic processes">Category</a></li></ul> </div></td></tr></tbody></table></div> <!-- NewPP limit report Parsed by mw‐api‐int.codfw.main‐849f99967d‐trwvr Cached time: 20241123183520 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 0.407 seconds Real time usage: 1.166 seconds Preprocessor visited node count: 1340/1000000 Post‐expand include size: 64500/2097152 bytes Template argument size: 311/2097152 bytes Highest expansion depth: 12/100 Expensive parser function count: 2/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 52836/5000000 bytes Lua time usage: 0.214/10.000 seconds Lua memory usage: 3955684/52428800 bytes Number of Wikibase entities loaded: 0/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 340.414 1 -total 53.90% 183.498 1 Template:Reflist 42.25% 143.809 8 Template:Cite_journal 29.63% 100.852 1 Template:Stochastic_processes 28.78% 97.959 1 Template:Navbox 13.69% 46.615 1 Template:Use_dmy_dates 3.87% 13.159 1 Template:Cite_conference 3.39% 11.532 1 Template:DMCA 2.46% 8.370 1 Template:Dated_maintenance_category 1.69% 5.747 1 Template:FULLROOTPAGENAME --> <!-- Saved in parser cache with key enwiki:pcache:idhash:53153455-0!canonical and timestamp 20241123183520 and revision id 1187389876. Rendering was triggered because: api-parse --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=Maximal_entropy_random_walk&oldid=1187389876">https://en.wikipedia.org/w/index.php?title=Maximal_entropy_random_walk&oldid=1187389876</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Categories</a>: <ul><li><a href="/wiki/Category:Network_theory" title="Category:Network theory">Network theory</a></li><li><a href="/wiki/Category:Diffusion" title="Category:Diffusion">Diffusion</a></li><li><a href="/wiki/Category:Information_theory" title="Category:Information theory">Information theory</a></li><li><a href="/wiki/Category:Quantum_mechanics" title="Category:Quantum mechanics">Quantum mechanics</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Hidden category: <ul><li><a href="/wiki/Category:Use_dmy_dates_from_October_2017" title="Category:Use dmy dates from October 2017">Use dmy dates from October 2017</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 28 November 2023, at 23:25<span class="anonymous-show"> (UTC)</span>.</li> <li id="footer-info-copyright">Text is available under the <a href="/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" title="Wikipedia:Text of the Creative Commons Attribution-ShareAlike 4.0 International License">Creative Commons Attribution-ShareAlike 4.0 License</a>; additional terms may apply. By using this site, you agree to the <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use" class="extiw" title="foundation:Special:MyLanguage/Policy:Terms of Use">Terms of Use</a> and <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy" class="extiw" title="foundation:Special:MyLanguage/Policy:Privacy policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=Maximal_entropy_random_walk&mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-f69cdc8f6-l24nk","wgBackendResponseTime":213,"wgPageParseReport":{"limitreport":{"cputime":"0.407","walltime":"1.166","ppvisitednodes":{"value":1340,"limit":1000000},"postexpandincludesize":{"value":64500,"limit":2097152},"templateargumentsize":{"value":311,"limit":2097152},"expansiondepth":{"value":12,"limit":100},"expensivefunctioncount":{"value":2,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":52836,"limit":5000000},"entityaccesscount":{"value":0,"limit":400},"timingprofile":["100.00% 340.414 1 -total"," 53.90% 183.498 1 Template:Reflist"," 42.25% 143.809 8 Template:Cite_journal"," 29.63% 100.852 1 Template:Stochastic_processes"," 28.78% 97.959 1 Template:Navbox"," 13.69% 46.615 1 Template:Use_dmy_dates"," 3.87% 13.159 1 Template:Cite_conference"," 3.39% 11.532 1 Template:DMCA"," 2.46% 8.370 1 Template:Dated_maintenance_category"," 1.69% 5.747 1 Template:FULLROOTPAGENAME"]},"scribunto":{"limitreport-timeusage":{"value":"0.214","limit":"10.000"},"limitreport-memusage":{"value":3955684,"limit":52428800}},"cachereport":{"origin":"mw-api-int.codfw.main-849f99967d-trwvr","timestamp":"20241123183520","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Maximal entropy random walk","url":"https:\/\/en.wikipedia.org\/wiki\/Maximal_entropy_random_walk","sameAs":"http:\/\/www.wikidata.org\/entity\/Q30591435","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q30591435","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2017-02-11T08:19:56Z","dateModified":"2023-11-28T23:25:25Z"}</script> </body> </html>