CINXE.COM
Search results for: Chebyshev polynomials
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Chebyshev polynomials</title> <meta name="description" content="Search results for: Chebyshev polynomials"> <meta name="keywords" content="Chebyshev polynomials"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Chebyshev polynomials" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Chebyshev polynomials"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 92</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Chebyshev polynomials</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">92</span> Chebyshev Polynomials Relad with Fibonacci and Lucas Polynomials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vandana%20N.%20Purav">Vandana N. Purav</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fibonacci and Lucas polynomials are special cases of Chebyshev polynomial. There are two types of Chebyshev polynomials, a Chebyshev polynomial of first kind and a Chebyshev polynomial of second kind. Chebyshev polynomial of second kind can be derived from the Chebyshev polynomial of first kind. Chebyshev polynomial is a polynomial of degree n and satisfies a second order homogenous differential equation. We consider the difference equations which are related with Chebyshev, Fibonacci and Lucas polynomias. Thus Chebyshev polynomial of second kind play an important role in finding the recurrence relations with Fibonacci and Lucas polynomials. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=" title=""></a> </p> <a href="https://publications.waset.org/abstracts/24133/chebyshev-polynomials-relad-with-fibonacci-and-lucas-polynomials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24133.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">368</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">91</span> Fractional Order Differentiator Using Chebyshev Polynomials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Koushlendra%20Kumar%20Singh">Koushlendra Kumar Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Manish%20Kumar%20Bajpai"> Manish Kumar Bajpai</a>, <a href="https://publications.waset.org/abstracts/search?q=Rajesh%20Kumar%20Pandey"> Rajesh Kumar Pandey</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A discrete time fractional orderdifferentiator has been modeled for estimating the fractional order derivatives of contaminated signal. The proposed approach is based on Chebyshev’s polynomials. We use the Riemann-Liouville fractional order derivative definition for designing the fractional order SG differentiator. In first step we calculate the window weight corresponding to the required fractional order. Then signal is convoluted with this calculated window’s weight for finding the fractional order derivatives of signals. Several signals are considered for evaluating the accuracy of the proposed method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fractional%20order%20derivative" title="fractional order derivative">fractional order derivative</a>, <a href="https://publications.waset.org/abstracts/search?q=chebyshev%0D%0Apolynomials" title=" chebyshev polynomials"> chebyshev polynomials</a>, <a href="https://publications.waset.org/abstracts/search?q=signals" title=" signals"> signals</a>, <a href="https://publications.waset.org/abstracts/search?q=S-G%20differentiator" title=" S-G differentiator"> S-G differentiator</a> </p> <a href="https://publications.waset.org/abstracts/21346/fractional-order-differentiator-using-chebyshev-polynomials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21346.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">648</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">90</span> Convergence Analysis of Cubic B-Spline Collocation Method for Time Dependent Parabolic Advection-Diffusion Equations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bharti%20Gupta">Bharti Gupta</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20K.%20Kukreja"> V. K. Kukreja</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A comprehensive numerical study is presented for the solution of time-dependent advection diffusion problems by using cubic B-spline collocation method. The linear combination of cubic B-spline basis, taken as approximating function, is evaluated using the zeros of shifted Chebyshev polynomials as collocation points in each element to obtain the best approximation. A comparison, on the basis of efficiency and accuracy, with the previous techniques is made which confirms the superiority of the proposed method. An asymptotic convergence analysis of technique is also discussed, and the method is found to be of order two. The theoretical analysis is supported with suitable examples to show second order convergence of technique. Different numerical examples are simulated using MATLAB in which the 3-D graphical presentation has taken at different time steps as well as different domain of interest. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cubic%20B-spline%20basis" title="cubic B-spline basis">cubic B-spline basis</a>, <a href="https://publications.waset.org/abstracts/search?q=spectral%20norms" title=" spectral norms"> spectral norms</a>, <a href="https://publications.waset.org/abstracts/search?q=shifted%20Chebyshev%20polynomials" title=" shifted Chebyshev polynomials"> shifted Chebyshev polynomials</a>, <a href="https://publications.waset.org/abstracts/search?q=collocation%20points" title=" collocation points"> collocation points</a>, <a href="https://publications.waset.org/abstracts/search?q=error%20estimates" title=" error estimates"> error estimates</a> </p> <a href="https://publications.waset.org/abstracts/73363/convergence-analysis-of-cubic-b-spline-collocation-method-for-time-dependent-parabolic-advection-diffusion-equations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73363.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">223</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">89</span> Chebyshev Wavelets and Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Emanuel%20Guariglia">Emanuel Guariglia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper we deal with Chebyshev wavelets. We analyze their properties computing their Fourier transform. Moreover, we discuss the differential properties of Chebyshev wavelets due the connection coefficients. The differential properties of Chebyshev wavelets, expressed by the connection coefficients (also called refinable integrals), are given by finite series in terms of the Kronecker delta. Moreover, we treat the p-order derivative of Chebyshev wavelets and compute its Fourier transform. Finally, we expand the mother wavelet in Taylor series with an application both in fractional calculus and fractal geometry. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chebyshev%20wavelets" title="Chebyshev wavelets">Chebyshev wavelets</a>, <a href="https://publications.waset.org/abstracts/search?q=Fourier%20transform" title=" Fourier transform"> Fourier transform</a>, <a href="https://publications.waset.org/abstracts/search?q=connection%20coefficients" title=" connection coefficients"> connection coefficients</a>, <a href="https://publications.waset.org/abstracts/search?q=Taylor%20series" title=" Taylor series"> Taylor series</a>, <a href="https://publications.waset.org/abstracts/search?q=local%20fractional%20derivative" title=" local fractional derivative"> local fractional derivative</a>, <a href="https://publications.waset.org/abstracts/search?q=Cantor%20set" title=" Cantor set"> Cantor set</a> </p> <a href="https://publications.waset.org/abstracts/157194/chebyshev-wavelets-and-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157194.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">123</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">88</span> An Audit of Climate Change and Sustainability Teaching in Medical School</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Tiachachat">M. Tiachachat</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Mihoubi"> M. Mihoubi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Bell polynomials are special polynomials in combinatorial analysis that have a wide range of applications in mathematics. They have interested many authors. The exponential partial Bell polynomials have been well reduced to some special combinatorial sequences. Numerous researchers had already been interested in the above polynomials, as evidenced by many articles in the literature. Inspired by this work, in this work, we propose a family of special polynomials named after the 2-successive partial Bell polynomials. Using the combinatorial approach, we prove the properties of these numbers, derive several identities, and discuss some special cases. This family includes well-known numbers and polynomials such as Stirling numbers, Bell numbers and polynomials, and so on. We investigate their properties by employing generating functions <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=2-associated%20r-Stirling%20numbers" title="2-associated r-Stirling numbers">2-associated r-Stirling numbers</a>, <a href="https://publications.waset.org/abstracts/search?q=the%20exponential%20partial%20Bell%20polynomials" title=" the exponential partial Bell polynomials"> the exponential partial Bell polynomials</a>, <a href="https://publications.waset.org/abstracts/search?q=generating%20function" title=" generating function"> generating function</a>, <a href="https://publications.waset.org/abstracts/search?q=combinatorial%20interpretation" title=" combinatorial interpretation"> combinatorial interpretation</a> </p> <a href="https://publications.waset.org/abstracts/157494/an-audit-of-climate-change-and-sustainability-teaching-in-medical-school" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157494.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">110</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">87</span> Polar Bergman Polynomials on Domain with Corners</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Laskri%20Yamina">Laskri Yamina</a>, <a href="https://publications.waset.org/abstracts/search?q=Rehouma%20Abdel%20Hamid"> Rehouma Abdel Hamid </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper we present a new class named polar of monic orthogonal polynomials with respect to the area measure supported on G, where G is a bounded simply-connected domain in the complex planeℂ. We analyze some open questions and discuss some ideas properties related to solving asymptotic behavior of polar Bergman polynomials over domains with corners and asymptotic behavior of modified Bergman polynomials by affine transforms in variable and polar modified Bergman polynomials by affine transforms in variable. We show that uniform asymptotic of Bergman polynomials over domains with corners and by Pritsker's theorem imply uniform asymptotic for all their derivatives. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bergman%20orthogonal%20polynomials" title="Bergman orthogonal polynomials">Bergman orthogonal polynomials</a>, <a href="https://publications.waset.org/abstracts/search?q=polar%20rthogonal%20polynomials" title=" polar rthogonal polynomials"> polar rthogonal polynomials</a>, <a href="https://publications.waset.org/abstracts/search?q=asymptotic%20behavior" title=" asymptotic behavior"> asymptotic behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=Faber%20polynomials" title=" Faber polynomials"> Faber polynomials</a> </p> <a href="https://publications.waset.org/abstracts/15621/polar-bergman-polynomials-on-domain-with-corners" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15621.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">445</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">86</span> An Efficient Algorithm of Time Step Control for Error Correction Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Youngji%20Lee">Youngji Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Yonghyeon%20Jeon"> Yonghyeon Jeon</a>, <a href="https://publications.waset.org/abstracts/search?q=Sunyoung%20Bu"> Sunyoung Bu</a>, <a href="https://publications.waset.org/abstracts/search?q=Philsu%20Kim"> Philsu Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this paper is to construct an algorithm of time step control for the error correction method most recently developed by one of the authors for solving stiff initial value problems. It is achieved with the generalized Chebyshev polynomial and the corresponding error correction method. The main idea of the proposed scheme is in the usage of the duplicated node points in the generalized Chebyshev polynomials of two different degrees by adding necessary sample points instead of re-sampling all points. At each integration step, the proposed method is comprised of two equations for the solution and the error, respectively. The constructed algorithm controls both the error and the time step size simultaneously and possesses a good performance in the computational cost compared to the original method. Two stiff problems are numerically solved to assess the effectiveness of the proposed scheme. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=stiff%20initial%20value%20problem" title="stiff initial value problem">stiff initial value problem</a>, <a href="https://publications.waset.org/abstracts/search?q=error%20correction%20method" title=" error correction method"> error correction method</a>, <a href="https://publications.waset.org/abstracts/search?q=generalized%20Chebyshev%20polynomial" title=" generalized Chebyshev polynomial"> generalized Chebyshev polynomial</a>, <a href="https://publications.waset.org/abstracts/search?q=node%20points" title=" node points "> node points </a> </p> <a href="https://publications.waset.org/abstracts/16920/an-efficient-algorithm-of-time-step-control-for-error-correction-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16920.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">573</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">85</span> Numerical Solution of Space Fractional Order Solute Transport System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shubham%20Jaiswal">Shubham Jaiswal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present article, a drive is taken to compute the solution of spatial fractional order advection-dispersion equation having source/sink term with given initial and boundary conditions. The equation is converted to a system of ordinary differential equations using second-kind shifted Chebyshev polynomials, which have finally been solved using finite difference method. The striking feature of the article is the fast transportation of solute concentration as and when the system approaches fractional order from standard order for specified values of the parameters of the system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=spatial%20fractional%20order%20advection-dispersion%20equation" title="spatial fractional order advection-dispersion equation">spatial fractional order advection-dispersion equation</a>, <a href="https://publications.waset.org/abstracts/search?q=second-kind%20shifted%20Chebyshev%20polynomial" title=" second-kind shifted Chebyshev polynomial"> second-kind shifted Chebyshev polynomial</a>, <a href="https://publications.waset.org/abstracts/search?q=collocation%20method" title=" collocation method"> collocation method</a>, <a href="https://publications.waset.org/abstracts/search?q=conservative%20system" title=" conservative system"> conservative system</a>, <a href="https://publications.waset.org/abstracts/search?q=non-conservative%20system" title=" non-conservative system"> non-conservative system</a> </p> <a href="https://publications.waset.org/abstracts/80604/numerical-solution-of-space-fractional-order-solute-transport-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80604.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">261</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">84</span> Numerical Approach for Solving the Hyper Singular Integral Equation in the Analysis of a Central Symmetrical Crack within an Infinite Strip</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ikram%20Slamani">Ikram Slamani</a>, <a href="https://publications.waset.org/abstracts/search?q=Hicheme%20Ferdjani"> Hicheme Ferdjani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study focuses on analyzing a Griffith crack situated at the center of an infinite strip. The problem is reformulated as a hyper-singular integral equation and solved numerically using second-order Chebyshev polynomials. The primary objective is to calculate the stress intensity factor in mode 1, denoted as K1. The obtained results reveal the influence of the strip width and crack length on the stress intensity factor, assuming stress-free edges. Additionally, a comparison is made with relevant literature to validate the findings. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=center%20crack" title="center crack">center crack</a>, <a href="https://publications.waset.org/abstracts/search?q=Chebyshev%20polynomial" title=" Chebyshev polynomial"> Chebyshev polynomial</a>, <a href="https://publications.waset.org/abstracts/search?q=hyper%20singular%20integral%20equation" title=" hyper singular integral equation"> hyper singular integral equation</a>, <a href="https://publications.waset.org/abstracts/search?q=Griffith" title=" Griffith"> Griffith</a>, <a href="https://publications.waset.org/abstracts/search?q=infinite%20strip" title=" infinite strip"> infinite strip</a>, <a href="https://publications.waset.org/abstracts/search?q=stress%20intensity%20factor" title=" stress intensity factor"> stress intensity factor</a> </p> <a href="https://publications.waset.org/abstracts/167367/numerical-approach-for-solving-the-hyper-singular-integral-equation-in-the-analysis-of-a-central-symmetrical-crack-within-an-infinite-strip" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167367.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">144</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">83</span> Numerical Solution of Two-Dimensional Solute Transport System Using Operational Matrices</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shubham%20Jaiswal">Shubham Jaiswal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the numerical solution of two-dimensional solute transport system in a homogeneous porous medium of finite-length is obtained. The considered transport system have the terms accounting for advection, dispersion and first-order decay with first-type boundary conditions. Initially, the aquifer is considered solute free and a constant input-concentration is considered at inlet boundary. The solution is describing the solute concentration in rectangular inflow-region of the homogeneous porous media. The numerical solution is derived using a powerful method viz., spectral collocation method. The numerical computation and graphical presentations exhibit that the method is effective and reliable during solution of the physical model with complicated boundary conditions even in the presence of reaction term. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=two-dimensional%20solute%20transport%20system" title="two-dimensional solute transport system">two-dimensional solute transport system</a>, <a href="https://publications.waset.org/abstracts/search?q=spectral%20collocation%20method" title=" spectral collocation method"> spectral collocation method</a>, <a href="https://publications.waset.org/abstracts/search?q=Chebyshev%20polynomials" title=" Chebyshev polynomials"> Chebyshev polynomials</a>, <a href="https://publications.waset.org/abstracts/search?q=Chebyshev%20differentiation%20matrix" title=" Chebyshev differentiation matrix"> Chebyshev differentiation matrix</a> </p> <a href="https://publications.waset.org/abstracts/79522/numerical-solution-of-two-dimensional-solute-transport-system-using-operational-matrices" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79522.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">232</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">82</span> Optimal Image Representation for Linear Canonical Transform Multiplexing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Navdeep%20Goel">Navdeep Goel</a>, <a href="https://publications.waset.org/abstracts/search?q=Salvador%20Gabarda"> Salvador Gabarda</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Digital images are widely used in computer applications. To store or transmit the uncompressed images requires considerable storage capacity and transmission bandwidth. Image compression is a means to perform transmission or storage of visual data in the most economical way. This paper explains about how images can be encoded to be transmitted in a multiplexing time-frequency domain channel. Multiplexing involves packing signals together whose representations are compact in the working domain. In order to optimize transmission resources each 4x4 pixel block of the image is transformed by a suitable polynomial approximation, into a minimal number of coefficients. Less than 4*4 coefficients in one block spares a significant amount of transmitted information, but some information is lost. Different approximations for image transformation have been evaluated as polynomial representation (Vandermonde matrix), least squares + gradient descent, 1-D Chebyshev polynomials, 2-D Chebyshev polynomials or singular value decomposition (SVD). Results have been compared in terms of nominal compression rate (NCR), compression ratio (CR) and peak signal-to-noise ratio (PSNR) in order to minimize the error function defined as the difference between the original pixel gray levels and the approximated polynomial output. Polynomial coefficients have been later encoded and handled for generating chirps in a target rate of about two chirps per 4*4 pixel block and then submitted to a transmission multiplexing operation in the time-frequency domain. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chirp%20signals" title="chirp signals">chirp signals</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20multiplexing" title=" image multiplexing"> image multiplexing</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20transformation" title=" image transformation"> image transformation</a>, <a href="https://publications.waset.org/abstracts/search?q=linear%20canonical%20transform" title=" linear canonical transform"> linear canonical transform</a>, <a href="https://publications.waset.org/abstracts/search?q=polynomial%20approximation" title=" polynomial approximation"> polynomial approximation</a> </p> <a href="https://publications.waset.org/abstracts/35260/optimal-image-representation-for-linear-canonical-transform-multiplexing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35260.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">412</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">81</span> Approximations of Fractional Derivatives and Its Applications in Solving Non-Linear Fractional Variational Problems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Harendra%20Singh">Harendra Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Rajesh%20Pandey"> Rajesh Pandey</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper presents a numerical method based on operational matrix of integration and Ryleigh method for the solution of a class of non-linear fractional variational problems (NLFVPs). Chebyshev first kind polynomials are used for the construction of operational matrix. Using operational matrix and Ryleigh method the NLFVP is converted into a system of non-linear algebraic equations, and solving these equations we obtained approximate solution for NLFVPs. Convergence analysis of the proposed method is provided. Numerical experiment is done to show the applicability of the proposed numerical method. The obtained numerical results are compared with exact solution and solution obtained from Chebyshev third kind. Further the results are shown graphically for different fractional order involved in the problems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=non-linear%20fractional%20variational%20problems" title="non-linear fractional variational problems">non-linear fractional variational problems</a>, <a href="https://publications.waset.org/abstracts/search?q=Rayleigh-Ritz%20method" title=" Rayleigh-Ritz method"> Rayleigh-Ritz method</a>, <a href="https://publications.waset.org/abstracts/search?q=convergence%20analysis" title=" convergence analysis"> convergence analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=error%20analysis" title=" error analysis"> error analysis</a> </p> <a href="https://publications.waset.org/abstracts/57497/approximations-of-fractional-derivatives-and-its-applications-in-solving-non-linear-fractional-variational-problems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57497.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">298</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">80</span> Hydromagnetic Linear Instability Analysis of Giesekus Fluids in Taylor-Couette Flow</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Godazandeh">K. Godazandeh</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Sadeghy"> K. Sadeghy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present study, the effect of magnetic field on the hydrodynamic instability of Taylor-Couette flow between two concentric rotating cylinders has been numerically investigated. At the beginning the basic flow has been solved using continuity, Cauchy equations (with regards to Lorentz force) and the constitutive equations of a viscoelastic model called "Giesekus" model. Small perturbations, considered to be normal mode, have been superimposed to the basic flow and the unsteady perturbation equations have been derived consequently. Neglecting non-linear terms, the general eigenvalue problem obtained has been solved using pseudo spectral method (combination of Chebyshev polynomials). The objective of the calculations is to study the effect of magnetic fields on the onset of first mode of instability (axisymmetric mode) for different dimensionless parameters of the flow. The results show that the stability picture is highly influenced by the magnetic field. When magnetic field increases, it first has a destabilization effect which changes to stabilization effect due to more increase of magnetic fields. Therefor there is a critical magnetic number (Hartmann number) for instability of Taylor-Couette flow. Also, the effect of magnetic field is more dominant in large gaps. Also based on the results obtained, magnetic field shows a more considerable effect on the stability at higher Weissenberg numbers (at higher elasticity), while the "mobility factor" changes show no dominant role on the intense of suction and injection effect on the flow's instability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=magnetic%20field" title="magnetic field">magnetic field</a>, <a href="https://publications.waset.org/abstracts/search?q=Taylor-Couette%20flow" title=" Taylor-Couette flow"> Taylor-Couette flow</a>, <a href="https://publications.waset.org/abstracts/search?q=Giesekus%20model" title=" Giesekus model"> Giesekus model</a>, <a href="https://publications.waset.org/abstracts/search?q=pseudo%20spectral%20method" title=" pseudo spectral method"> pseudo spectral method</a>, <a href="https://publications.waset.org/abstracts/search?q=Chebyshev%20polynomials" title=" Chebyshev polynomials"> Chebyshev polynomials</a>, <a href="https://publications.waset.org/abstracts/search?q=Hartmann%20number" title=" Hartmann number"> Hartmann number</a>, <a href="https://publications.waset.org/abstracts/search?q=Weissenberg%20number" title=" Weissenberg number"> Weissenberg number</a>, <a href="https://publications.waset.org/abstracts/search?q=mobility%20factor" title=" mobility factor"> mobility factor</a> </p> <a href="https://publications.waset.org/abstracts/13488/hydromagnetic-linear-instability-analysis-of-giesekus-fluids-in-taylor-couette-flow" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13488.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">390</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">79</span> Hosoya Polynomials of Mycielskian Graphs</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sanju%20Vaidya">Sanju Vaidya</a>, <a href="https://publications.waset.org/abstracts/search?q=Aihua%20Li"> Aihua Li</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Vulnerability measures and topological indices are crucial in solving various problems such as the stability of the communication networks and development of mathematical models for chemical compounds. In 1947, Harry Wiener introduced a topological index related to molecular branching. Now there are more than 100 topological indices for graphs. For example, Hosoya polynomials (also called Wiener polynomials) were introduced to derive formulas for certain vulnerability measures and topological indices for various graphs. In this paper, we will find a relation between the Hosoya polynomials of any graph and its Mycielskian graph. Additionally, using this we will compute vulnerability measures, closeness and betweenness centrality, and extended Wiener indices. It is fascinating to see how Hosoya polynomials are useful in the two diverse fields, cybersecurity and chemistry. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hosoya%20polynomial" title="hosoya polynomial">hosoya polynomial</a>, <a href="https://publications.waset.org/abstracts/search?q=mycielskian%20graph" title=" mycielskian graph"> mycielskian graph</a>, <a href="https://publications.waset.org/abstracts/search?q=graph%20vulnerability%20measure" title=" graph vulnerability measure"> graph vulnerability measure</a>, <a href="https://publications.waset.org/abstracts/search?q=topological%20index" title=" topological index"> topological index</a> </p> <a href="https://publications.waset.org/abstracts/172528/hosoya-polynomials-of-mycielskian-graphs" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/172528.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">69</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">78</span> Modelling of Polymeric Fluid Flows between Two Coaxial Cylinders Taking into Account the Heat Dissipation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alexander%20Blokhin">Alexander Blokhin</a>, <a href="https://publications.waset.org/abstracts/search?q=Ekaterina%20Kruglova"> Ekaterina Kruglova</a>, <a href="https://publications.waset.org/abstracts/search?q=Boris%20Semisalov"> Boris Semisalov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mathematical model based on the mesoscopic theory of polymer dynamics is developed for numerical simulation of the flows of polymeric liquid between two coaxial cylinders. This model is a system of nonlinear partial differential equations written in the cylindrical coordinate system and coupled with the heat conduction equation including a specific dissipation term. The stationary flows similar to classical Poiseuille ones are considered, and the resolving equations for the velocity of flow and for the temperature are obtained. For solving them, a fast pseudospectral method is designed based on Chebyshev approximations, that enables one to simulate the flows through the channels with extremely small relative values of the radius of inner cylinder. The numerical analysis of the dependance of flow on this radius and on the values of dissipation constant is done. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dynamics%20of%20polymeric%20liquid" title="dynamics of polymeric liquid">dynamics of polymeric liquid</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20dissipation" title=" heat dissipation"> heat dissipation</a>, <a href="https://publications.waset.org/abstracts/search?q=singularly%20perturbed%20problem" title=" singularly perturbed problem"> singularly perturbed problem</a>, <a href="https://publications.waset.org/abstracts/search?q=pseudospectral%20method" title=" pseudospectral method"> pseudospectral method</a>, <a href="https://publications.waset.org/abstracts/search?q=Chebyshev%20polynomials" title=" Chebyshev polynomials"> Chebyshev polynomials</a>, <a href="https://publications.waset.org/abstracts/search?q=stabilization%20technique" title=" stabilization technique"> stabilization technique</a> </p> <a href="https://publications.waset.org/abstracts/85108/modelling-of-polymeric-fluid-flows-between-two-coaxial-cylinders-taking-into-account-the-heat-dissipation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85108.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">290</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">77</span> Bernstein Type Polynomials for Solving Differential Equations and Their Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yilmaz%20Simsek">Yilmaz Simsek</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we study the Bernstein-type basis functions with their generating functions. We give various properties of these polynomials with the aid of their generating functions. These polynomials and generating functions have many valuable applications in mathematics, in probability, in statistics and also in mathematical physics. By using the Bernstein-Galerkin and the Bernstein-Petrov-Galerkin methods, we give some applications of the Bernstein-type polynomials for solving high even-order differential equations with their numerical computations. We also give Bezier-type curves related to the Bernstein-type basis functions. We investigate fundamental properties of these curves. These curves have many applications in mathematics, in computer geometric design and other related areas. Moreover, we simulate these polynomials with their plots for some selected numerical values. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=generating%20functions" title="generating functions">generating functions</a>, <a href="https://publications.waset.org/abstracts/search?q=Bernstein%20basis%20functions" title=" Bernstein basis functions"> Bernstein basis functions</a>, <a href="https://publications.waset.org/abstracts/search?q=Bernstein%20polynomials" title=" Bernstein polynomials"> Bernstein polynomials</a>, <a href="https://publications.waset.org/abstracts/search?q=Bezier%20curves" title=" Bezier curves"> Bezier curves</a>, <a href="https://publications.waset.org/abstracts/search?q=differential%20equations" title=" differential equations"> differential equations</a> </p> <a href="https://publications.waset.org/abstracts/67937/bernstein-type-polynomials-for-solving-differential-equations-and-their-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67937.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">274</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">76</span> Numerical Simulation of Laser Propagation through Turbulent Atmosphere Using Zernike Polynomials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Moradi%20%E2%80%8E">Mohammad Moradi </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this article, propagation of a laser beam through turbulent atmosphere is evaluated. At first the laser beam is simulated and then turbulent atmosphere will be simulated by using Zernike polynomials. Some parameter like intensity, PSF will be measured for four wavelengths in different Cn2. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=laser%20beam%20propagation" title="laser beam propagation">laser beam propagation</a>, <a href="https://publications.waset.org/abstracts/search?q=phase%20screen" title=" phase screen"> phase screen</a>, <a href="https://publications.waset.org/abstracts/search?q=turbulent%20atmosphere" title=" turbulent atmosphere"> turbulent atmosphere</a>, <a href="https://publications.waset.org/abstracts/search?q=Zernike%20%E2%80%8Epolynomials" title=" Zernike polynomials"> Zernike polynomials</a> </p> <a href="https://publications.waset.org/abstracts/35907/numerical-simulation-of-laser-propagation-through-turbulent-atmosphere-using-zernike-polynomials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35907.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">511</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">75</span> Fast and Efficient Algorithms for Evaluating Uniform and Nonuniform Lagrange and Newton Curves</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Taweechai%20Nuntawisuttiwong">Taweechai Nuntawisuttiwong</a>, <a href="https://publications.waset.org/abstracts/search?q=Natasha%20Dejdumrong"> Natasha Dejdumrong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Newton-Lagrange Interpolations are widely used in numerical analysis. However, it requires a quadratic computational time for their constructions. In computer aided geometric design (CAGD), there are some polynomial curves: Wang-Ball, DP and Dejdumrong curves, which have linear time complexity algorithms. Thus, the computational time for Newton-Lagrange Interpolations can be reduced by applying the algorithms of Wang-Ball, DP and Dejdumrong curves. In order to use Wang-Ball, DP and Dejdumrong algorithms, first, it is necessary to convert Newton-Lagrange polynomials into Wang-Ball, DP or Dejdumrong polynomials. In this work, the algorithms for converting from both uniform and non-uniform Newton-Lagrange polynomials into Wang-Ball, DP and Dejdumrong polynomials are investigated. Thus, the computational time for representing Newton-Lagrange polynomials can be reduced into linear complexity. In addition, the other utilizations of using CAGD curves to modify the Newton-Lagrange curves can be taken. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lagrange%20interpolation" title="Lagrange interpolation">Lagrange interpolation</a>, <a href="https://publications.waset.org/abstracts/search?q=linear%20complexity" title=" linear complexity"> linear complexity</a>, <a href="https://publications.waset.org/abstracts/search?q=monomial%20matrix" title=" monomial matrix"> monomial matrix</a>, <a href="https://publications.waset.org/abstracts/search?q=Newton%20interpolation" title=" Newton interpolation"> Newton interpolation</a> </p> <a href="https://publications.waset.org/abstracts/110424/fast-and-efficient-algorithms-for-evaluating-uniform-and-nonuniform-lagrange-and-newton-curves" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/110424.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">234</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">74</span> Some Results on the Generalized Higher Rank Numerical Ranges</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohsen%20Zahraei">Mohsen Zahraei</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the notion of rank-k numerical range of rectangular complex matrix polynomials are introduced. Some algebraic and geometrical properties are investigated. Moreover, for ε>0 the notion of Birkhoff-James approximate orthogonality sets for ε-higher rank numerical ranges of rectangular matrix polynomials is also introduced and studied. The proposed definitions yield a natural generalization of the standard higher rank numerical ranges. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=%E2%80%8E%E2%80%8ERank-k%20numerical%20range%E2%80%8E" title="Rank-k numerical range">Rank-k numerical range</a>, <a href="https://publications.waset.org/abstracts/search?q=%E2%80%8Eisometry%E2%80%8E" title=" isometry"> isometry</a>, <a href="https://publications.waset.org/abstracts/search?q=%E2%80%8Enumerical%20range%E2%80%8E" title=" numerical range"> numerical range</a>, <a href="https://publications.waset.org/abstracts/search?q=%E2%80%8Erectangular%20matrix%20polynomials" title=" rectangular matrix polynomials"> rectangular matrix polynomials</a> </p> <a href="https://publications.waset.org/abstracts/28955/some-results-on-the-generalized-higher-rank-numerical-ranges" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28955.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">459</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">73</span> Forward Stable Computation of Roots of Real Polynomials with Only Real Distinct Roots</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nevena%20Jakov%C4%8Devi%C4%87%20Stor">Nevena Jakovčević Stor</a>, <a href="https://publications.waset.org/abstracts/search?q=Ivan%20Slapni%C4%8Dar"> Ivan Slapničar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Any polynomial can be expressed as a characteristic polynomial of a complex symmetric arrowhead matrix. This expression is not unique. If the polynomial is real with only real distinct roots, the matrix can be chosen as real. By using accurate forward stable algorithm for computing eigen values of real symmetric arrowhead matrices we derive a forward stable algorithm for computation of roots of such polynomials in O(n^2 ) operations. The algorithm computes each root to almost full accuracy. In some cases, the algorithm invokes extended precision routines, but only in the non-iterative part. Our examples include numerically difficult problems, like the well-known Wilkinson’s polynomials. Our algorithm compares favorably to other method for polynomial root-finding, like MPSolve or Newton’s method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=roots%20of%20polynomials" title="roots of polynomials">roots of polynomials</a>, <a href="https://publications.waset.org/abstracts/search?q=eigenvalue%20decomposition" title=" eigenvalue decomposition"> eigenvalue decomposition</a>, <a href="https://publications.waset.org/abstracts/search?q=arrowhead%20matrix" title=" arrowhead matrix"> arrowhead matrix</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20relative%20accuracy" title=" high relative accuracy"> high relative accuracy</a> </p> <a href="https://publications.waset.org/abstracts/40100/forward-stable-computation-of-roots-of-real-polynomials-with-only-real-distinct-roots" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40100.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">417</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">72</span> A Robust Optimization of Chassis Durability/Comfort Compromise Using Chebyshev Polynomial Chaos Expansion Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hanwei%20Gao">Hanwei Gao</a>, <a href="https://publications.waset.org/abstracts/search?q=Louis%20Jezequel"> Louis Jezequel</a>, <a href="https://publications.waset.org/abstracts/search?q=Eric%20Cabrol"> Eric Cabrol</a>, <a href="https://publications.waset.org/abstracts/search?q=Bernard%20Vitry"> Bernard Vitry</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The chassis system is composed of complex elements that take up all the loads from the tire-ground contact area and thus it plays an important role in numerous specifications such as durability, comfort, crash, etc. During the development of new vehicle projects in Renault, durability validation is always the main focus while deployment of comfort comes later in the project. Therefore, sometimes design choices have to be reconsidered because of the natural incompatibility between these two specifications. Besides, robustness is also an important point of concern as it is related to manufacturing costs as well as the performance after the ageing of components like shock absorbers. In this paper an approach is proposed aiming to realize a multi-objective optimization between chassis endurance and comfort while taking the random factors into consideration. The adaptive-sparse polynomial chaos expansion method (PCE) with Chebyshev polynomial series has been applied to predict responses’ uncertainty intervals of a system according to its uncertain-but-bounded parameters. The approach can be divided into three steps. First an initial design of experiments is realized to build the response surfaces which represent statistically a black-box system. Secondly within several iterations an optimum set is proposed and validated which will form a Pareto front. At the same time the robustness of each response, served as additional objectives, is calculated from the pre-defined parameter intervals and the response surfaces obtained in the first step. Finally an inverse strategy is carried out to determine the parameters’ tolerance combination with a maximally acceptable degradation of the responses in terms of manufacturing costs. A quarter car model has been tested as an example by applying the road excitations from the actual road measurements for both endurance and comfort calculations. One indicator based on the Basquin’s law is defined to compare the global chassis durability of different parameter settings. Another indicator related to comfort is obtained from the vertical acceleration of the sprung mass. An optimum set with best robustness has been finally obtained and the reference tests prove a good robustness prediction of Chebyshev PCE method. This example demonstrates the effectiveness and reliability of the approach, in particular its ability to save computational costs for a complex system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chassis%20durability" title="chassis durability">chassis durability</a>, <a href="https://publications.waset.org/abstracts/search?q=Chebyshev%20polynomials" title=" Chebyshev polynomials"> Chebyshev polynomials</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-objective%20optimization" title=" multi-objective optimization"> multi-objective optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=polynomial%20chaos%20expansion" title=" polynomial chaos expansion"> polynomial chaos expansion</a>, <a href="https://publications.waset.org/abstracts/search?q=ride%20comfort" title=" ride comfort"> ride comfort</a>, <a href="https://publications.waset.org/abstracts/search?q=robust%20design" title=" robust design"> robust design</a> </p> <a href="https://publications.waset.org/abstracts/102912/a-robust-optimization-of-chassis-durabilitycomfort-compromise-using-chebyshev-polynomial-chaos-expansion-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/102912.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">152</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">71</span> A Numerical Solution Based on Operational Matrix of Differentiation of Shifted Second Kind Chebyshev Wavelets for a Stefan Problem</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rajeev">Rajeev</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20K.%20Raigar"> N. K. Raigar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, one dimensional phase change problem (a Stefan problem) is considered and a numerical solution of this problem is discussed. First, we use similarity transformation to convert the governing equations into ordinary differential equations with its boundary conditions. The solutions of ordinary differential equation with the associated boundary conditions and interface condition (Stefan condition) are obtained by using a numerical approach based on operational matrix of differentiation of shifted second kind Chebyshev wavelets. The obtained results are compared with existing exact solution which is sufficiently accurate. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=operational%20matrix%20of%20differentiation" title="operational matrix of differentiation">operational matrix of differentiation</a>, <a href="https://publications.waset.org/abstracts/search?q=similarity%20transformation" title=" similarity transformation"> similarity transformation</a>, <a href="https://publications.waset.org/abstracts/search?q=shifted%20second%20kind%20chebyshev%20wavelets" title=" shifted second kind chebyshev wavelets"> shifted second kind chebyshev wavelets</a>, <a href="https://publications.waset.org/abstracts/search?q=stefan%20problem" title=" stefan problem"> stefan problem</a> </p> <a href="https://publications.waset.org/abstracts/30738/a-numerical-solution-based-on-operational-matrix-of-differentiation-of-shifted-second-kind-chebyshev-wavelets-for-a-stefan-problem" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30738.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">403</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">70</span> A Proof for Goldbach's Conjecture</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hashem%20Sazegar">Hashem Sazegar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In 1937, Vinograd of Russian Mathematician proved that each odd large number can be shown by three primes. In 1973, Chen Jingrun proved that each odd number can be shown by one prime plus a number that has maximum two primes. In this article, we state one proof for Goldbach’conjecture. Introduction: Bertrand’s postulate state for every positive integer n, there is always at least one prime p, such that n < p < 2n. This was first proved by Chebyshev in 1850, which is why postulate is also called the Bertrand-Chebyshev theorem. Legendre’s conjecture states that there is a prime between n2 and (n+1)2 for every positive integer n, which is one of the four Landau’s problems. The rest of these four basic problems are; (i) Twin prime conjecture: There are infinitely many primes p such that p+2 is a prime. (ii) Goldbach’s conjecture: Every even integer n > 2 can be written asthe sum of two primes. (iii) Are there infinitely many primes p such that p−1 is a perfect square? Problems (i), (ii), and (iii) are open till date. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bertrand-Chebyshev%20theorem" title="Bertrand-Chebyshev theorem">Bertrand-Chebyshev theorem</a>, <a href="https://publications.waset.org/abstracts/search?q=Landau%E2%80%99s%20problems" title=" Landau’s problems"> Landau’s problems</a>, <a href="https://publications.waset.org/abstracts/search?q=twin%20prime" title=" twin prime"> twin prime</a>, <a href="https://publications.waset.org/abstracts/search?q=Legendre%E2%80%99s%20conjecture" title=" Legendre’s conjecture"> Legendre’s conjecture</a>, <a href="https://publications.waset.org/abstracts/search?q=Oppermann%E2%80%99s%20conjecture" title=" Oppermann’s conjecture"> Oppermann’s conjecture</a> </p> <a href="https://publications.waset.org/abstracts/30678/a-proof-for-goldbachs-conjecture" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30678.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">402</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">69</span> A Survey on Routh-Hurwitz Stability Criterion</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mojtaba%20Hakimi-Moghaddam">Mojtaba Hakimi-Moghaddam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Routh-Hurwitz stability criterion is a powerful approach to determine stability of linear time invariant systems. On the other hand, applying this criterion to characteristic equation of a system, whose stability or marginal stability can be determined. Although the command roots (.) of MATLAB software can be easily used to determine the roots of a polynomial, the characteristic equation of closed loop system usually includes parameters, so software cannot handle it; however, Routh-Hurwitz stability criterion results the region of parameter changes where the stability is guaranteed. Moreover, this criterion has been extended to characterize the stability of interval polynomials as well as fractional-order polynomials. Furthermore, it can help us to design stable and minimum-phase controllers. In this paper, theory and application of this criterion will be reviewed. Also, several illustrative examples are given. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hurwitz%20polynomials" title="Hurwitz polynomials">Hurwitz polynomials</a>, <a href="https://publications.waset.org/abstracts/search?q=Routh-Hurwitz%20stability%20criterion" title=" Routh-Hurwitz stability criterion"> Routh-Hurwitz stability criterion</a>, <a href="https://publications.waset.org/abstracts/search?q=continued%20fraction%20expansion" title=" continued fraction expansion"> continued fraction expansion</a>, <a href="https://publications.waset.org/abstracts/search?q=pure%20imaginary%20roots" title=" pure imaginary roots"> pure imaginary roots</a> </p> <a href="https://publications.waset.org/abstracts/72768/a-survey-on-routh-hurwitz-stability-criterion" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72768.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">328</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">68</span> Edge Detection in Low Contrast Images</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Koushlendra%20Kumar%20Singh">Koushlendra Kumar Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Manish%20Kumar%20Bajpai"> Manish Kumar Bajpai</a>, <a href="https://publications.waset.org/abstracts/search?q=Rajesh%20K.%20Pandey"> Rajesh K. Pandey</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The edges of low contrast images are not clearly distinguishable to the human eye. It is difficult to find the edges and boundaries in it. The present work encompasses a new approach for low contrast images. The Chebyshev polynomial based fractional order filter has been used for filtering operation on an image. The preprocessing has been performed by this filter on the input image. Laplacian of Gaussian method has been applied on preprocessed image for edge detection. The algorithm has been tested on two test images. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=low%20contrast%20image" title="low contrast image">low contrast image</a>, <a href="https://publications.waset.org/abstracts/search?q=fractional%20order%20differentiator" title="fractional order differentiator">fractional order differentiator</a>, <a href="https://publications.waset.org/abstracts/search?q=Laplacian%20of%20Gaussian%20%28LoG%29%20method" title="Laplacian of Gaussian (LoG) method">Laplacian of Gaussian (LoG) method</a>, <a href="https://publications.waset.org/abstracts/search?q=chebyshev%20polynomial" title=" chebyshev polynomial"> chebyshev polynomial</a> </p> <a href="https://publications.waset.org/abstracts/21264/edge-detection-in-low-contrast-images" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21264.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">636</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">67</span> The K-Distance Neighborhood Polynomial of a Graph</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Soner%20Nandappa%20D.">Soner Nandappa D.</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Mohammed%20Naji"> Ahmed Mohammed Naji</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In a graph G = (V, E), the distance from a vertex v to a vertex u is the length of shortest v to u path. The eccentricity e(v) of v is the distance to a farthest vertex from v. The diameter diam(G) is the maximum eccentricity. The k-distance neighborhood of v, for 0 ≤ k ≤ e(v), is Nk(v) = {u ϵ V (G) : d(v, u) = k}. In this paper, we introduce a new distance degree based topological polynomial of a graph G is called a k- distance neighborhood polynomial, denoted Nk(G, x). It is a polynomial with the coefficient of the term k, for 0 ≤ k ≤ e(v), is the sum of the cardinalities of Nk(v) for every v ϵ V (G). Some properties of k- distance neighborhood polynomials are obtained. Exact formulas of the k- distance neighborhood polynomial for some well-known graphs, Cartesian product and join of graphs are presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=vertex%20degrees" title="vertex degrees">vertex degrees</a>, <a href="https://publications.waset.org/abstracts/search?q=distance%20in%20graphs" title=" distance in graphs"> distance in graphs</a>, <a href="https://publications.waset.org/abstracts/search?q=graph%20operation" title=" graph operation"> graph operation</a>, <a href="https://publications.waset.org/abstracts/search?q=Nk-polynomials" title=" Nk-polynomials"> Nk-polynomials</a> </p> <a href="https://publications.waset.org/abstracts/52946/the-k-distance-neighborhood-polynomial-of-a-graph" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52946.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">549</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">66</span> Effect of Coriolis Force on Magnetoconvection in an Anisotropic Porous Medium</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20F.%20M.%20Mokhtar">N. F. M. Mokhtar</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Z.%20A.%20Hamid"> N. Z. A. Hamid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper reports an analytical investigation of the stability and thermal convection in a horizontal anisotropic porous medium in the presence of Coriolis force and magnetic field. The Darcy model is used in the momentum equation and Boussinesq approximation is considered for the density variation of the porous medium. The upper and lower boundaries of the porous medium are assumed to be conducting to temperature perturbation and we used first order Chebyshev polynomial Tau method to solve the resulting eigenvalue problem. Analytical solution is obtained for the case of stationary convection. It is found that the porous layer system becomes unstable when the mechanical anisotropy parameter elevated and increasing the Coriolis force and magnetic field help to stabilize the anisotropy porous medium. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anisotropic" title="anisotropic">anisotropic</a>, <a href="https://publications.waset.org/abstracts/search?q=Chebyshev%20tau%20method" title=" Chebyshev tau method"> Chebyshev tau method</a>, <a href="https://publications.waset.org/abstracts/search?q=Coriolis%20force" title=" Coriolis force"> Coriolis force</a>, <a href="https://publications.waset.org/abstracts/search?q=Magnetic%20field" title=" Magnetic field"> Magnetic field</a> </p> <a href="https://publications.waset.org/abstracts/96169/effect-of-coriolis-force-on-magnetoconvection-in-an-anisotropic-porous-medium" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/96169.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">214</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">65</span> On Hankel Matrices Approach to Interpolation Problem in Infinite and Finite Fields</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ivan%20Baravy">Ivan Baravy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Interpolation problem, as it was initially posed in terms of polynomials, is well researched. However, further mathematical developments extended it significantly. Trigonometric interpolation is widely used in Fourier analysis, while its generalized representation as exponential interpolation is applicable to such problem of mathematical physics as modelling of Ziegler-Biersack-Littmark repulsive interatomic potentials. Formulated for finite fields, this problem arises in decoding Reed--Solomon codes. This paper shows the relation between different interpretations of the problem through the class of matrices of special structure - Hankel matrices. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Berlekamp-Massey%20algorithm" title="Berlekamp-Massey algorithm">Berlekamp-Massey algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=exponential%20interpolation" title=" exponential interpolation"> exponential interpolation</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20fields" title=" finite fields"> finite fields</a>, <a href="https://publications.waset.org/abstracts/search?q=Hankel%20matrices" title=" Hankel matrices"> Hankel matrices</a>, <a href="https://publications.waset.org/abstracts/search?q=Hankel%20polynomials" title=" Hankel polynomials"> Hankel polynomials</a> </p> <a href="https://publications.waset.org/abstracts/21861/on-hankel-matrices-approach-to-interpolation-problem-in-infinite-and-finite-fields" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21861.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">520</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">64</span> Large Time Asymptotic Behavior to Solutions of a Forced Burgers Equation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Satyanarayana%20Engu">Satyanarayana Engu</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Mohd"> Ahmed Mohd</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Murugan"> V. Murugan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We study the large time asymptotics of solutions to the Cauchy problem for a forced Burgers equation (FBE) with the initial data, which is continuous and summable on R. For which, we first derive explicit solutions of FBE assuming a different class of initial data in terms of Hermite polynomials. Later, by violating this assumption we prove the existence of a solution to the considered Cauchy problem. Finally, we give an asymptotic approximate solution and establish that the error will be of order O(t^(-1/2)) with respect to L^p -norm, where 1≤p≤∞, for large time. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Burgers%20equation" title="Burgers equation">Burgers equation</a>, <a href="https://publications.waset.org/abstracts/search?q=Cole-Hopf%20transformation" title=" Cole-Hopf transformation"> Cole-Hopf transformation</a>, <a href="https://publications.waset.org/abstracts/search?q=Hermite%20polynomials" title=" Hermite polynomials"> Hermite polynomials</a>, <a href="https://publications.waset.org/abstracts/search?q=large%20time%20asymptotics" title=" large time asymptotics"> large time asymptotics</a> </p> <a href="https://publications.waset.org/abstracts/65872/large-time-asymptotic-behavior-to-solutions-of-a-forced-burgers-equation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65872.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">334</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">63</span> Chebyshev Collocation Method for Solving Heat Transfer Analysis for Squeezing Flow of Nanofluid in Parallel Disks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mustapha%20Rilwan%20Adewale">Mustapha Rilwan Adewale</a>, <a href="https://publications.waset.org/abstracts/search?q=Salau%20Ayobami%20Muhammed"> Salau Ayobami Muhammed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study focuses on the heat transfer analysis of magneto-hydrodynamics (MHD) squeezing flow between parallel disks, considering a viscous incompressible fluid. The upper disk exhibits both upward and downward motion, while the lower disk remains stationary but permeable. By employing similarity transformations, a system of nonlinear ordinary differential equations is derived to describe the flow behavior. To solve this system, a numerical approach, namely the Chebyshev collocation method, is utilized. The study investigates the influence of flow parameters and compares the obtained results with existing literature. The significance of this research lies in understanding the heat transfer characteristics of MHD squeezing flow, which has practical implications in various engineering and industrial applications. By employing the similarity transformations, the complex governing equations are simplified into a system of nonlinear ordinary differential equations, facilitating the analysis of the flow behavior. To obtain numerical solutions for the system, the Chebyshev collocation method is implemented. This approach provides accurate approximations for the nonlinear equations, enabling efficient computations of the heat transfer properties. The obtained results are compared with existing literature, establishing the validity and consistency of the numerical approach. The study's major findings shed light on the influence of flow parameters on the heat transfer characteristics of the squeezing flow. The analysis reveals the impact of parameters such as magnetic field strength, disk motion amplitude, fluid viscosity on the heat transfer rate between the disks, the squeeze number(S), suction/injection parameter(A), Hartman number(M), Prandtl number(Pr), modified Eckert number(Ec), and the dimensionless length(δ). These findings contribute to a comprehensive understanding of the system's behavior and provide insights for optimizing heat transfer processes in similar configurations. In conclusion, this study presents a thorough heat transfer analysis of magneto-hydrodynamics squeezing flow between parallel disks. The numerical solutions obtained through the Chebyshev collocation method demonstrate the feasibility and accuracy of the approach. The investigation of flow parameters highlights their influence on heat transfer, contributing to the existing knowledge in this field. The agreement of the results with previous literature further strengthens the reliability of the findings. These outcomes have practical implications for engineering applications and pave the way for further research in related areas. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=squeezing%20flow" title="squeezing flow">squeezing flow</a>, <a href="https://publications.waset.org/abstracts/search?q=magneto-hydro-dynamics%20%28MHD%29" title=" magneto-hydro-dynamics (MHD)"> magneto-hydro-dynamics (MHD)</a>, <a href="https://publications.waset.org/abstracts/search?q=chebyshev%20collocation%20method%28CCA%29" title=" chebyshev collocation method(CCA)"> chebyshev collocation method(CCA)</a>, <a href="https://publications.waset.org/abstracts/search?q=parallel%20manifolds" title=" parallel manifolds"> parallel manifolds</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20difference%20method%20%28FDM%29" title=" finite difference method (FDM)"> finite difference method (FDM)</a> </p> <a href="https://publications.waset.org/abstracts/169728/chebyshev-collocation-method-for-solving-heat-transfer-analysis-for-squeezing-flow-of-nanofluid-in-parallel-disks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/169728.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">75</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Chebyshev%20polynomials&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Chebyshev%20polynomials&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Chebyshev%20polynomials&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Chebyshev%20polynomials&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>