CINXE.COM

Search results for: cathodic electrodeposition

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <script> var _paq = window._paq = window._paq || []; /* tracker methods like "setCustomDimension" should be called before "trackPageView" */ _paq.push(['trackPageView']); _paq.push(['enableLinkTracking']); (function() { var u="//matomo.waset.org/"; _paq.push(['setTrackerUrl', u+'matomo.php']); _paq.push(['setSiteId', '2']); var d=document, g=d.createElement('script'), s=d.getElementsByTagName('script')[0]; g.async=true; g.src=u+'matomo.js'; s.parentNode.insertBefore(g,s); })(); </script> <!-- End Matomo Code --> <title>Search results for: cathodic electrodeposition</title> <meta name="description" content="Search results for: cathodic electrodeposition"> <meta name="keywords" content="cathodic electrodeposition"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="cathodic electrodeposition" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2025/2026/2027">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="cathodic electrodeposition"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 157</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: cathodic electrodeposition</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">157</span> Development of (Cu2o-Zno) Binary Oxide Anode for Electrochemical Degradation of Dye</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20El%20Hajji">M. El Hajji</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Hallaoui"> A. Hallaoui</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Bazzi"> L. Bazzi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Benlhachemi"> A. Benlhachemi</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20Jbara"> O. Jbara</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Tara"> A. Tara</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Bakiz"> B. Bakiz</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Bazzi"> L. Bazzi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Hilali"> M. Hilali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this study was the development of zinc-copper binary oxide "Cu2O-ZnO" thin films by the electrochemical method "cathodic electrodeposition" and their uses for the degradation of a basic dye "Congo Red" by direct anodic oxidation. The anode materials synthesized were characterized by X-ray diffraction "XRD" and by scanning electron microscopy "SEM" coupled to EDS. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cu2O-ZnO%20thin%20films" title="Cu2O-ZnO thin films">Cu2O-ZnO thin films</a>, <a href="https://publications.waset.org/abstracts/search?q=cathodic%20electrodeposition" title=" cathodic electrodeposition"> cathodic electrodeposition</a>, <a href="https://publications.waset.org/abstracts/search?q=electrodegradation" title=" electrodegradation"> electrodegradation</a>, <a href="https://publications.waset.org/abstracts/search?q=Congo%20Red" title=" Congo Red"> Congo Red</a>, <a href="https://publications.waset.org/abstracts/search?q=BDD" title=" BDD"> BDD</a> </p> <a href="https://publications.waset.org/abstracts/17657/development-of-cu2o-zno-binary-oxide-anode-for-electrochemical-degradation-of-dye" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17657.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">348</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">156</span> Improving the Electrical Conductivity of Epoxy Coating Using Carbon Nanotube by Electrodeposition Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahla%20Zabet">Mahla Zabet</a>, <a href="https://publications.waset.org/abstracts/search?q=Navid%20Zanganeh"> Navid Zanganeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Hafez%20Balavi"> Hafez Balavi</a>, <a href="https://publications.waset.org/abstracts/search?q=Farbod%20Sharif"> Farbod Sharif</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Electrodeposition is a method for applying coatings with uniform thickness on complex objects. A conductive surface can be produced using the electrical current in this method. Carbon nanotubes are known to have high electrical conductivity and mechanical properties. In this report, NH2-multiwalled carbon nanotubes (MWCNTs) were used in epoxy resin with different weight percent. The weight percent of incorporated MWCNTS into the matrix was changed in the range of 0.6-3.6 wt% to obtain a series of electrocoatings. The electrocoats were then applied on steel substrates by a cathodic electrodeposition technique. Scanning electron microscopy (SEM) and optical microscopy were used to characterize the electrocoated films. The results illustrated the increase in conductivity by increasing of MWCNT load. However, at the percolation threshold, throwing power was dropped with increase in recoating ability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrodeposition" title="electrodeposition">electrodeposition</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20nanotube" title=" carbon nanotube"> carbon nanotube</a>, <a href="https://publications.waset.org/abstracts/search?q=electrical%20conductivity" title=" electrical conductivity"> electrical conductivity</a>, <a href="https://publications.waset.org/abstracts/search?q=throwing%20power" title=" throwing power"> throwing power</a> </p> <a href="https://publications.waset.org/abstracts/17061/improving-the-electrical-conductivity-of-epoxy-coating-using-carbon-nanotube-by-electrodeposition-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17061.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">425</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">155</span> Potentiostatic Electrodeposition of Cu₂O Films as P-Type Electrode at Room Temperature</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20M.%20Moharam">M. M. Moharam</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20M.%20Elsayed"> E. M. Elsayed</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20M.%20Rashad"> M. M. Rashad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Single phase Cu₂O films have been prepared via an electrodeposition technique onto ITO glass substrates at room temperature. Likewise, Cu₂O films were deposited using a potentiostatic process from an alkaline electrolyte containing copper (II) nitrate and 1M sodium citrate. Single phase Cu₂O films were electrodeposited at a cathodic deposition potential of 500mV for a reaction period of 90 min, and pH of 12 to yield a film thickness of 0.49 µm. The mechanism for nucleation of Cu₂O films was found to vary with deposition potential. Applying the Scharifker and Hills model at -500 and -600 mV to describe the mechanism of nucleation for the electrochemical reaction, the nucleation mechanism consisted of a mix between instantaneous and progressive growth mechanisms at -500 mV, while above -600 mV the growth mechanism was instantaneous. Using deposition times from 30 to 90 min at -500 mV deposition potential, pure Cu2O films with different microstructures were electrodeposited. Changing the deposition time from 30 to 90 min varied the microstructure from cubic to more complex polyhedra. The transmittance of electrodeposited Cu₂O films ranged from 20-70% in visible range, and samples exhibited a 2.4 eV band gap. The electrical resistivity for electrodeposited Cu₂O films was found to decrease with increasing deposition time from 0.854 x 105 Ω-cm at 30 min to 0.221 x 105 Ω-cm at 90 min without any thermal treatment following the electrodeposition process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cu%E2%82%82O" title="Cu₂O">Cu₂O</a>, <a href="https://publications.waset.org/abstracts/search?q=electrodeposition" title=" electrodeposition"> electrodeposition</a>, <a href="https://publications.waset.org/abstracts/search?q=film%20thickness" title=" film thickness"> film thickness</a>, <a href="https://publications.waset.org/abstracts/search?q=characterization" title=" characterization"> characterization</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20properties" title=" optical properties"> optical properties</a> </p> <a href="https://publications.waset.org/abstracts/57827/potentiostatic-electrodeposition-of-cu2o-films-as-p-type-electrode-at-room-temperature" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57827.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">217</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">154</span> Electrochemical Synthesis and Morphostructural Study of the Cuprite Thin Film</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20El%20Hajji">M. El Hajji</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Hallaoui"> A. Hallaoui</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Bazzi"> L. Bazzi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Benlhachemi"> A. Benlhachemi</a>, <a href="https://publications.waset.org/abstracts/search?q=Lh.%20Bazzi"> Lh. Bazzi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Hilali"> M. Hilali</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20Jbara"> O. Jbara</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Tara"> A. Tara</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Bakiz"> B. Bakiz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The cathodic electro deposition of the cuprite Cu2O by chrono potentiometry is performed on two types of electrodes "titanium and stainless steel", in a basic medium containing the precursor of copper. The plot produced vs SCE, shows the formation of a brown layer on the electrode surface. The chrono potentiometric recording made between - 0.2 and - 1 mA/cm2, has allowed us to have a deposit having different morphologies and structural orientation obtained as a function of the variation of many parameters. The morphology, the size of crystals, and the phase of the deposits produced were studied by conventional techniques of analysis of the solid, particularly the X-ray diffraction (XRD), scanning electron microscopy analysis (SEM) and quantitative chemical analysis (EDS). The results will be presented and discussed, they show that the majority of deposits are pure and uniform. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cathodic%20electrodeposition" title="cathodic electrodeposition">cathodic electrodeposition</a>, <a href="https://publications.waset.org/abstracts/search?q=cuprite%20Cu2O" title=" cuprite Cu2O"> cuprite Cu2O</a>, <a href="https://publications.waset.org/abstracts/search?q=XRD" title=" XRD"> XRD</a>, <a href="https://publications.waset.org/abstracts/search?q=SEM" title=" SEM"> SEM</a>, <a href="https://publications.waset.org/abstracts/search?q=EDS%20analysis" title=" EDS analysis"> EDS analysis</a> </p> <a href="https://publications.waset.org/abstracts/17659/electrochemical-synthesis-and-morphostructural-study-of-the-cuprite-thin-film" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17659.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">423</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">153</span> Nanowire by Ac Electrodeposition Into Nanoporous Alumina Fabrication of High Aspect Ratio Metalic</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Beyzaiea">M. Beyzaiea</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Mohammadia"> S. Mohammadia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> High aspect ratio metallic (silver, cobalt) nanowire arrays were fabricated using ac electrodeposition techniques into the nanoporous alumina template. The template with long pore dept fabricated by hard anodization (HA) and thinned for ac electrodeposition. Template preparation was done in short time by using HA technique and high speed thing process. The TEM and XRD investigation confirm the three dimensional nucleation growth mechanism of metallic nanowire inside the nanoporous alumina that fabricated by HA process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=metallic" title="metallic">metallic</a>, <a href="https://publications.waset.org/abstracts/search?q=nanowire" title=" nanowire"> nanowire</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoporous%20alumina" title=" nanoporous alumina"> nanoporous alumina</a>, <a href="https://publications.waset.org/abstracts/search?q=ac%20electrodeposition" title=" ac electrodeposition"> ac electrodeposition</a> </p> <a href="https://publications.waset.org/abstracts/43733/nanowire-by-ac-electrodeposition-into-nanoporous-alumina-fabrication-of-high-aspect-ratio-metalic" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43733.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">281</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">152</span> Techno-Economic Analysis of Solar Energy for Cathodic Protection of Oil and Gas Buried Pipelines in Southwestern of Iran</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Goodarzi">M. Goodarzi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Mohammadi"> M. Mohammadi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Gharib"> A. Gharib</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Solar energy is a renewable energy which has attracted special attention in many countries. Solar cathodic protectionsystems harness the sun’senergy to protect underground pipelinesand tanks from galvanic corrosion. The object of this study is to design and the economic analysis a cathodic protection system by impressed current supplied with solar energy panels applied to underground pipelines. In the present study, the technical and economic analysis of using solar energy for cathodic protection system in southwestern of Iran (Khuzestan province) is investigated. For this purpose, the ecological conditions such as the weather data, air clearness and sunshine hours are analyzed. The economic analyses were done using computer code to investigate the feasibility analysis from the using of various energy sources in order to cathodic protection system. The overall research methodology is divided into four components: Data collection, design of elements, techno economical evaluation, and output analysis. According to the results, solar renewable energy systems can supply adequate power for cathodic protection system purposes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=renewable%20energy" title="renewable energy">renewable energy</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20energy" title=" solar energy"> solar energy</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20cathodic%20protection%20station" title=" solar cathodic protection station"> solar cathodic protection station</a>, <a href="https://publications.waset.org/abstracts/search?q=lifecycle%20cost%20method" title=" lifecycle cost method"> lifecycle cost method</a> </p> <a href="https://publications.waset.org/abstracts/33008/techno-economic-analysis-of-solar-energy-for-cathodic-protection-of-oil-and-gas-buried-pipelines-in-southwestern-of-iran" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33008.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">548</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">151</span> Cyclic Voltammetric Investigations on Nickel Electrodeposition from Industrial Sulfate Electrolyte in Presence of Ca(II), Mg(II), Na(I) Ions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Udit%20Mohanty">Udit Mohanty</a>, <a href="https://publications.waset.org/abstracts/search?q=Mari%20Lundstrom"> Mari Lundstrom</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Electrochemical investigation by cyclic voltammetry was conducted to explore the polarization behavior of reactions occurring in nickel electrowinning in presence of cationic impurities such as Ca2+ (0-100 mg/L), Na+ (1-10 g/L) and Mg2+ (10-100 mg/L). A comparative study was devised between industrial and synthetic electrolytes to observe the shift in the nucleation overpotentials of nickel deposition, dissolution and hydrogen evolution reactions at the cathode and anode respectively. Significant polarization of cathodic reactions were observed with concentrations of Na ≥ 8g /L and Ca ≤ 40 mg /L in the synthetic electrolytes. Nevertheless, a progressive increase in the concentration of Ca, Mg and Na in the industrial electrolyte demonstrated a depolarization behavior in the cathodic reactions related to nickel deposition and/or hydrogen evolution. Synergistic effect of Ca with Mg and Na in both the industrial and synthetic electrolytes induced a notable depolarization effect, also reflected in the peak currents. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cationic%20impurities" title="cationic impurities">cationic impurities</a>, <a href="https://publications.waset.org/abstracts/search?q=cyclic%20voltammetry" title=" cyclic voltammetry"> cyclic voltammetry</a>, <a href="https://publications.waset.org/abstracts/search?q=electrowinning" title=" electrowinning"> electrowinning</a>, <a href="https://publications.waset.org/abstracts/search?q=nickel" title=" nickel"> nickel</a>, <a href="https://publications.waset.org/abstracts/search?q=polarization" title=" polarization"> polarization</a> </p> <a href="https://publications.waset.org/abstracts/77338/cyclic-voltammetric-investigations-on-nickel-electrodeposition-from-industrial-sulfate-electrolyte-in-presence-of-caii-mgii-nai-ions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77338.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">246</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">150</span> Design Considerations on Cathodic Protection for X65 Steel Tank Containing Fresh Water</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20M.%20Al-Sabagh">A. M. Al-Sabagh</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Deyab"> M. A. Deyab</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20N.%20Kroush"> M. N. Kroush</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study focused on critical and detailed approach for using aluminum electrode as impressed current anode for cathodic protection of X65 steel tank containing fresh water. The impressed current design calculation showed 0.6 A of current demand and voltage of 0.33 V required to adequately protect the X65 steel tank with internal surface area of 421 m². We used here one transformer rectifier with current and voltage output of 25 A and 25 V, respectively. The data showed that the potentials ranged from -0.474 to -0.509 V (vs. Cu/CuSO₄), prior to the application of cathodic protection. When the potential was measured 1 h after the application of cathodic protection, the potential values showed considerable shift within protection range (-0.950 V vs. Cu/CuSO₄). The results confirmed that aluminum anode can be used in freshwater applications with high efficiency (current capacity) and low consumption rate. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cathodic%20protection" title="cathodic protection">cathodic protection</a>, <a href="https://publications.waset.org/abstracts/search?q=aluminum" title=" aluminum"> aluminum</a>, <a href="https://publications.waset.org/abstracts/search?q=steel" title=" steel"> steel</a>, <a href="https://publications.waset.org/abstracts/search?q=fresh%20water" title=" fresh water"> fresh water</a> </p> <a href="https://publications.waset.org/abstracts/91429/design-considerations-on-cathodic-protection-for-x65-steel-tank-containing-fresh-water" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/91429.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">161</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">149</span> Mechanism of Cathodic Protection to Minimize Corrosion Caused by Chloride in Reinforcement Concrete</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20A.%20Deyab">Mohamed A. Deyab</a>, <a href="https://publications.waset.org/abstracts/search?q=Omnia%20El-Shamy"> Omnia El-Shamy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main objective of this case study is to integrate the advantages of cathodic protection technologies in order to lessen chloride-induced corrosion in reinforced concrete. This research employs potentiodynamic polarisation, impedance spectroscopy (EIS), and surface characteristics. The results showed how effectively the new cathodic control strategy is preventing corrosion of the concrete iron rods. Over time, the protective system becomes more reliable and effective. The potentials of the zinc electrode persist still more negative after 30 days, implying that the zinc electrode can maintain powerful electrocatalytic behavior for a long period of time. As per the electrochemical impedance spectroscopy (EIS), using the CP technique reduces the rate of corrosion of rebar iron in cementitious materials over time. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cathodic%20protection" title="cathodic protection">cathodic protection</a>, <a href="https://publications.waset.org/abstracts/search?q=corrosion" title=" corrosion"> corrosion</a>, <a href="https://publications.waset.org/abstracts/search?q=reinforced%20concrete" title=" reinforced concrete"> reinforced concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=chloride" title=" chloride"> chloride</a> </p> <a href="https://publications.waset.org/abstracts/161822/mechanism-of-cathodic-protection-to-minimize-corrosion-caused-by-chloride-in-reinforcement-concrete" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/161822.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">92</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">148</span> Structure and Morphology of Electrodeposited Nickel Nanowires at an Electrode Distance of 20mm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahendran%20Samykano">Mahendran Samykano</a>, <a href="https://publications.waset.org/abstracts/search?q=Ram%20Mohan"> Ram Mohan</a>, <a href="https://publications.waset.org/abstracts/search?q=Shyam%20Aravamudhan"> Shyam Aravamudhan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this work is to study the effect of two key factors-external magnetic field and applied current density during the template-based electrodeposition of nickel nanowires using an electrode distance of 20 mm. Morphology, length, crystallite size, and crystallographic characterization of the grown nickel nanowires at an electrode distance of 20mm are presented. For this electrode distance of 20 mm, these two key electrodeposition factors when coupled was found to reduce crystallite size with a higher growth length and preferred orientation of Ni crystals. These observed changes can be inferred to be due to coupled interaction forces induced by the intensity of applied electric field (current density) and external magnetic field known as magnetohydrodynamic (MHD) effect during the electrodeposition process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anodic%20alumina%20oxide" title="anodic alumina oxide">anodic alumina oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=electrodeposition" title=" electrodeposition"> electrodeposition</a>, <a href="https://publications.waset.org/abstracts/search?q=nanowires" title=" nanowires"> nanowires</a>, <a href="https://publications.waset.org/abstracts/search?q=nickel" title=" nickel "> nickel </a> </p> <a href="https://publications.waset.org/abstracts/23704/structure-and-morphology-of-electrodeposited-nickel-nanowires-at-an-electrode-distance-of-20mm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23704.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">285</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">147</span> The Mechanical and Electrochemical Properties of DC-Electrodeposited Ni-Mn Alloy Coating with Low Internal Stress</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chun-Ying%20Lee">Chun-Ying Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Kuan-Hui%20Cheng"> Kuan-Hui Cheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Mei-Wen%20Wu"> Mei-Wen Wu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The nickel-manganese (Ni-Mn) alloy coating prepared from DC electrodeposition process in sulphamate bath was studied. The effects of process parameters, such as current density and electrolyte composition, on the cathodic current efficiency, microstructure, internal stress and mechanical properties were investigated. Because of its crucial effect on the application to the electroforming of microelectronic components, the development of low internal stress coating with high leveling power was emphasized. It was found that both the coating’s manganese content and the cathodic current efficiency increased with the raise in current density. In addition, the internal stress of the deposited coating showed compressive nature at low current densities while changed to tensile one at higher current densities. Moreover, the metallographic observation, X-ray diffraction measurement, transmission electron microscope (TEM) examination, and polarization curve measurement were conducted. It was found that the Ni-Mn coating consisted of nano-sized columnar grains and the maximum hardness of the coating was associated with (111) preferred orientation in the microstructure. The grain size was refined along with the increase in the manganese content of the coating, which accordingly, raised its hardness and mechanical tensile strength. In summary, the Ni-Mn coating prepared at lower current density of 1-2 A/dm2 had low internal stress, high leveling power, and better corrosion resistance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ni-Mn%20coating" title="Ni-Mn coating">Ni-Mn coating</a>, <a href="https://publications.waset.org/abstracts/search?q=DC%20plating" title=" DC plating"> DC plating</a>, <a href="https://publications.waset.org/abstracts/search?q=internal%20stress" title=" internal stress"> internal stress</a>, <a href="https://publications.waset.org/abstracts/search?q=leveling%20power" title=" leveling power"> leveling power</a> </p> <a href="https://publications.waset.org/abstracts/24914/the-mechanical-and-electrochemical-properties-of-dc-electrodeposited-ni-mn-alloy-coating-with-low-internal-stress" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24914.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">374</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">146</span> Effect of Manganese Doping Percentage on Optical Band Gap and Conductivity of Copper Sulphide Nano-Films Prepared by Electrodeposition Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20C.%20Okafor">P. C. Okafor</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20J.%20Ekpunobi"> A. J. Ekpunobi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mn doped copper sulphide (CuS:Mn) nano-films were deposited on indiums coated tin oxide (ITO) glass substrates using electrodeposition method. Electrodeposition was carried out using bath of PH = 3 at room temperature. Other depositions parameters such as deposition time (DT) are kept constant while Mn doping was varied from 3% to 23%. Absorption spectra of CuS:Mn films was obtained by using JENWAY 6405 UV-VIS -spectrophotometer. Optical band gap (E_g ), optical conductivity (σo) and electrical conductivity (σe) of CuS:Mn films were determined using absorption spectra and appropriate formula. The effect of Mn doping % on these properties were investigated. Results show that film thickness (t) for the 13.27 nm to 18.49 nm; absorption coefficient (α) from 0.90 x 1011 to 1.50 x 1011 optical band gap from 2.29eV to 2.35 eV; optical conductivity from 1.70 x 1013 and electrical conductivity from 160 millions to 154 millions. Possible applications of such films for solar cells fabrication and optoelectronic devices applications were also discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=copper%20sulphide%20%28CuS%29" title="copper sulphide (CuS)">copper sulphide (CuS)</a>, <a href="https://publications.waset.org/abstracts/search?q=Manganese%20%28Mn%29%20doping" title=" Manganese (Mn) doping"> Manganese (Mn) doping</a>, <a href="https://publications.waset.org/abstracts/search?q=electrodeposition" title=" electrodeposition"> electrodeposition</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20band%20gap" title=" optical band gap"> optical band gap</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20conductivity" title=" optical conductivity"> optical conductivity</a>, <a href="https://publications.waset.org/abstracts/search?q=electrical%20conductivity" title=" electrical conductivity"> electrical conductivity</a> </p> <a href="https://publications.waset.org/abstracts/19832/effect-of-manganese-doping-percentage-on-optical-band-gap-and-conductivity-of-copper-sulphide-nano-films-prepared-by-electrodeposition-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19832.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">726</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">145</span> Recycling the Lanthanides from Permanent Magnets by Electrochemistry in Ionic Liquid</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Celine%20Bonnaud">Celine Bonnaud</a>, <a href="https://publications.waset.org/abstracts/search?q=Isabelle%20Billard"> Isabelle Billard</a>, <a href="https://publications.waset.org/abstracts/search?q=Nicolas%20Papaiconomou"> Nicolas Papaiconomou</a>, <a href="https://publications.waset.org/abstracts/search?q=Eric%20Chainet"> Eric Chainet</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Thanks to their high magnetization and low mass, permanent magnets (NdFeB and SmCo) have quickly became essential for new energies (wind turbines, electrical vehicles…). They contain large quantities of neodymium, samarium and dysprosium, that have been recently classified as critical elements and that therefore need to be recycled. Electrochemical processes including electrodissolution followed by electrodeposition are an elegant and environmentally friendly solution for the recycling of such lanthanides contained in permanent magnets. However, electrochemistry of the lanthanides is a real challenge as their standard potentials are highly negative (around -2.5V vs ENH). Consequently, non-aqueous solvents are required. Ionic liquids (IL) are novel electrolytes exhibiting physico-chemical properties that fulfill many requirements of the sustainable chemistry principles, such as extremely low volatility and non-flammability. Furthermore, their chemical and electrochemical properties (solvation of metallic ions, large electrochemical windows, etc.) render them very attractive media to implement alternative and sustainable processes in view of integrated processes. All experiments that will be presented were carried out using butyl-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide. Linear sweep, cyclic voltammetry and potentiostatic electrochemical techniques were used. The reliability of electrochemical experiments, performed without glove box, for the classic three electrodes cell used in this study has been assessed. Deposits were obtained by chronoamperometry and were characterized by scanning electron microscopy and energy-dispersive X-ray spectroscopy. The IL cathodic behavior under different constraints (argon, nitrogen, oxygen atmosphere or water content) and using several electrode materials (Pt, Au, GC) shows that with argon gas flow and gold as a working electrode, the cathodic potential can reach the maximum value of -3V vs Fc+/Fc; thus allowing a possible reduction of lanthanides. On a gold working electrode, the reduction potential of samarium and neodymium was found to be -1.8V vs Fc+/Fc while that of dysprosium was -2.1V vs Fc+/Fc. The individual deposits obtained were found to be porous and presented some significant amounts of C, N, F, S and O atoms. Selective deposition of neodymium in presence of dysprosium was also studied and will be discussed. Next, metallic Sm, Nd and Dy electrodes were used in replacement of Au, which induced changes in the reduction potential values and the deposit structures of lanthanides. The individual corrosion potentials were also measured in order to determine the parameters influencing the electrodissolution of these metals. Finally, a full recycling process was investigated. Electrodissolution of a real permanent magnet sample was monitored kinetically. Then, the sequential electrodeposition of all lanthanides contained in the IL was investigated. Yields, quality of the deposits and consumption of chemicals will be discussed in depth, in view of the industrial feasibility of this process for real permanent magnets recycling. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrodeposition" title="electrodeposition">electrodeposition</a>, <a href="https://publications.waset.org/abstracts/search?q=electrodissolution" title=" electrodissolution"> electrodissolution</a>, <a href="https://publications.waset.org/abstracts/search?q=ionic%20liquids" title=" ionic liquids"> ionic liquids</a>, <a href="https://publications.waset.org/abstracts/search?q=lanthanides" title=" lanthanides"> lanthanides</a>, <a href="https://publications.waset.org/abstracts/search?q=rcycling" title=" rcycling"> rcycling</a> </p> <a href="https://publications.waset.org/abstracts/57911/recycling-the-lanthanides-from-permanent-magnets-by-electrochemistry-in-ionic-liquid" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57911.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">278</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">144</span> The Effectiveness of Close Interval Potential Survey of the Large Protected Pre-Stressed Concrete Cylinder Pipe for Man-Made River Project-Data Evaluation and Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hussein%20Saleh%20Elkuwafi">Hussein Saleh Elkuwafi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Evaluation of cathodic protection systems is critical to ensuring the longevity and structural integrity of prestressed concrete pipes (PCCP) spanning more than 1,700 kilometers. Cathodic protection is also necessary to reduce the rate of corrosion often eliminate the need for costly replacement and/or repairs, Corrosion evaluations of existing PCCP detect locations where serious corrosion has occurred and a risk assessment for future operations. Sacrificial zinc and magnesium anodes were used. These systems are evaluated using close-interval potential survey (CIP'S) techniques over an installation period of 25 years and comparing these tests with standards. The most used and approved international standard is -710mV absolute and -100mV decay, The corrosion evaluating provides data to identified pipelines may be economically repaired instead of replaced. Each survey results of these standards are crucial, and allows this comparison identifies any differences or defects and ensures that the system adheres to internationally recognized standards, thus enhancing cathodic protection and longevity of the pipes. In addition, it is important to comp are cases of pipe failure and their causes, especially those related to corrosion in the wires that make up the concrete pipe, which can contribute in pipe failure and collapse, and by understanding these causes associated with corrosion and, we were able to develop evaluation strategies for this data that are more comprehensive and have a broader vision of the cathodic protection system for pipelines. After analyzing and evaluating the cathodic protection system and compared to international standards, which identifies the locations of corrosion or other reasons. This evaluation emphasizes the importance data analysis evaluation and regular monitoring surveys and maintenance of cathodic protection systems to prevent costly repairs and ensure their safe operation. The results contribute to improving cathodic protection strategies, and enhancing the reliability and sustainability of pipeline projects. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cathodic%20protection" title="cathodic protection">cathodic protection</a>, <a href="https://publications.waset.org/abstracts/search?q=sacrificial" title=" sacrificial"> sacrificial</a>, <a href="https://publications.waset.org/abstracts/search?q=anodes" title=" anodes"> anodes</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20integrity" title=" structural integrity"> structural integrity</a>, <a href="https://publications.waset.org/abstracts/search?q=longevity" title=" longevity"> longevity</a> </p> <a href="https://publications.waset.org/abstracts/199528/the-effectiveness-of-close-interval-potential-survey-of-the-large-protected-pre-stressed-concrete-cylinder-pipe-for-man-made-river-project-data-evaluation-and-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/199528.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">0</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">143</span> Influence of Cathodic Protection on High Strength, Pre-Stressed Corroded Tendons</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ibrahim%20R.%20Elomari">Ibrahim R. Elomari</a>, <a href="https://publications.waset.org/abstracts/search?q=Fin%20O%27Flaherty"> Fin O&#039;Flaherty</a>, <a href="https://publications.waset.org/abstracts/search?q=Ibrahim%20R.%20Elomari"> Ibrahim R. Elomari</a>, <a href="https://publications.waset.org/abstracts/search?q=Paul%20Lambert"> Paul Lambert </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cathodic protection (CP) is a technique commonly used to arrest corrosion of steel in infrastructure. However, it is not generally used on high strength, pre-stressed tendons due to the risk of hydrogen generation, leading to possible embrittlement. This paper investigates its use in such circumstances where the applied protection potential is varied to determine if CP can be safely employed on pre-stressed tendons. Plain steel tendons measuring 5.4 mm diameter were pre-stressed in timber moulds and embedded in sand/cement mortar, formulated to represent gunite. Two levels of pre-stressing were investigated (400MPa and 1200MPa). Pre-corrosion of 0% (control), 3% and 6% target loss of cross-sectional area was applied to replicate service conditions. Impressed current cathodic protection (ICCP) was then applied to the tendons at two levels of potential to identify any effect on strength. Instant-off values up to -950mV were used for normal protection with values of -1100mV or more negative to achieve overprotection. Following the ICCP phase, the tendons were removed from the mortar, cleaned and weighed to confirm actual percentage of corrosion. Tensile tests were then conducted on the tendons. The preliminary results show the influence of normal levels and overprotection of CP on the ultimate strength of the tendons. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pre-stressed%20concrete" title="pre-stressed concrete">pre-stressed concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=corrosion" title=" corrosion"> corrosion</a>, <a href="https://publications.waset.org/abstracts/search?q=cathodic%20protection" title=" cathodic protection"> cathodic protection</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogen%20embrittlement" title=" hydrogen embrittlement"> hydrogen embrittlement</a> </p> <a href="https://publications.waset.org/abstracts/79186/influence-of-cathodic-protection-on-high-strength-pre-stressed-corroded-tendons" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79186.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">268</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">142</span> Effect of Soil Resistivity on the Development of a Cathodic Protection System Using Zinc Anode</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chinedu%20F.%20Anochie">Chinedu F. Anochie</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The deterioration of materials as a result of their interaction with the environment has been a huge challenge to engineering. Many steps have been taking to tackle corrosion and its effects on harmful effects on engineering materials and structures. Corrosion inhibition, coating, passivation, materials selection, and cathodic protection are some of the methods utilized to curtail the rate at which materials corrode. The use of sacrificial anodes (magnesium, aluminum, or zinc) to protect the metal of interest is a widespread technique used to prevent corrosion in underground structures, ship hauls, and other structures susceptible to corrosion attack. However, certain factors, like resistivity, affect the performance of sacrificial anodes. To establish the effect of soil resistivity on the effectiveness of a cathodic protection system, a mild steel specimen was cathodically protected around Workshop 2 area, Federal University of Technology, Owerri, Nigeria. Design calculations showed that one zinc anode was sufficient to protect the pipe. The specimen (mild steel pipe) was coated with white and black polykene tapes and was subsequently buried in a high resistivity soil. The pipe-to-soil potential measurements were obtained using a digital fluke multimeter. The protection potential obtained on installation was higher than the minimum protection criteria. However, the potential results obtained over a fourteen-day intervals continually decreased to a value significantly lower than the minimum protection criteria. This showed that the sacrificial anode (zinc) was rendered ineffective by the high resistivity of the area of installation. It has been shown that the resistivity of the soil has a marked effect on the feasibility of cathodic protection systems. This work justified that zinc anode cannot be used for cathodic protection around Workshop 2 area, Federal University of Technology, Owerri, Nigeria, because of the high resistivity of the area. An experimental data which explains the effectiveness of galvanic anode cathodic protection system on corrosion control of a small steel structure, exposed to a soil of high resistivity has been established. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cathodic%20protection" title="cathodic protection">cathodic protection</a>, <a href="https://publications.waset.org/abstracts/search?q=corrosion" title=" corrosion"> corrosion</a>, <a href="https://publications.waset.org/abstracts/search?q=pipe" title=" pipe"> pipe</a>, <a href="https://publications.waset.org/abstracts/search?q=sacrificial%20anode" title=" sacrificial anode"> sacrificial anode</a> </p> <a href="https://publications.waset.org/abstracts/126882/effect-of-soil-resistivity-on-the-development-of-a-cathodic-protection-system-using-zinc-anode" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/126882.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">194</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">141</span> Investigation of the Cathodic Behavior of AA2024-T3 in Neutral Medium</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nisrine%20Benzbiria">Nisrine Benzbiria</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Azzi"> Mohammed Azzi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mustapha%20Zertoubi"> Mustapha Zertoubi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> 2XXX series of aluminum alloys are widely employed in several applications, such as beverages, automotive, and aerospace industries. However, they are particularly prone to localized corrosion, such as pitting, often induced by a difference in corrosion potential measured for intermetallic phases and pure metal. The galvanic cells comprising Al–Cu– Mn–Fe intermetallic phases control cathodically the dissolution rate as oxygen reduction reaction kinetics are privileged on Al–Cu–Mn–Fe particles. Hence, understanding the properties of cathode sites and the processes involved must be carried out. Our interest is to outline the cathodic behavior of AA2024-T3 in sodium sulfate solution using electrochemical techniques. Oxygen reduction reaction (ORR) was investigated in the mixed charge transfer and mass transport regime using the Koutecky-Levich approach. An environmentally benign inhibitor was considered to slow the ORR on the Cu-rich cathodic phases. The surface morphology of the electrodes was investigated with SEM/EDS and AFM. The obtained results were discussed accordingly. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=AA2024-T3" title="AA2024-T3">AA2024-T3</a>, <a href="https://publications.waset.org/abstracts/search?q=neutral%20medium" title=" neutral medium"> neutral medium</a>, <a href="https://publications.waset.org/abstracts/search?q=ORR%20kinetics" title=" ORR kinetics"> ORR kinetics</a>, <a href="https://publications.waset.org/abstracts/search?q=Koutecky-Levich" title=" Koutecky-Levich"> Koutecky-Levich</a>, <a href="https://publications.waset.org/abstracts/search?q=DFT" title=" DFT"> DFT</a> </p> <a href="https://publications.waset.org/abstracts/180865/investigation-of-the-cathodic-behavior-of-aa2024-t3-in-neutral-medium" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/180865.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">56</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">140</span> Development and Characterization of Sb₂(SₓSe₁-ₓ)₃ Thin Films and Its Application as a Promising Photocathode</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20R.%20Mathews">N. R. Mathews</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20G.%20Sotelo%20Marquina"> R. G. Sotelo Marquina</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20G.%20Avilez%20Garc%C3%ADa"> R. G. Avilez García</a>, <a href="https://publications.waset.org/abstracts/search?q=X.%20Mathew"> X. Mathew</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sb₂(SₓSe₁-ₓ)₃ thin films were developed by a single-step electrodeposition process on fluorine-doped SnO₂ conducting substrates. Cyclic voltammetry studies were done to determine the optimum potential for the co-electrodeposition of Sb-S-Se. The deposited films were adherent and uniform, without pin holes. The effect of the deposition potential on the S/Se ratio in the films and the optoelectronic properties was correlated. The results of the structural, morphological and optical properties of the films will be presented. The structural studies using X-ray diffraction and Raman spectroscopy confirmed the formation of orthorhombic antimony sulfide selenide thin films without any impurity phases. The optical band gap of Sb₂(SₓSe₁-ₓ)₃ decreased with the increase of the Se concentration in the films. The capacitance-voltage data showed a negative slope, characteristic of p-type materials. The films deposited at higher negative potentials showed larger carrier concentrations due to their higher Se content. The heterostructure Sb2(S-Se)₃ CdS/Pt demonstrated a photocurrent density of 10 mA cm-² at 0 V vs reversible hydrogen electrode <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sb2%28SxSe1-x%293" title="Sb2(SxSe1-x)3">Sb2(SxSe1-x)3</a>, <a href="https://publications.waset.org/abstracts/search?q=photocathode" title=" photocathode"> photocathode</a>, <a href="https://publications.waset.org/abstracts/search?q=chalcogenide%20thin-films" title=" chalcogenide thin-films"> chalcogenide thin-films</a>, <a href="https://publications.waset.org/abstracts/search?q=electrodeposition" title=" electrodeposition"> electrodeposition</a> </p> <a href="https://publications.waset.org/abstracts/198105/development-and-characterization-of-sb2sse1-3-thin-films-and-its-application-as-a-promising-photocathode" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/198105.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">11</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">139</span> Electrodeposition of NiO Films from Organic Solvent-Based Electrolytic Solutions for Solar Cell Application </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Thierry%20Pauport%C3%A9">Thierry Pauporté</a>, <a href="https://publications.waset.org/abstracts/search?q=Sana%20Koussi"> Sana Koussi</a>, <a href="https://publications.waset.org/abstracts/search?q=Fabrice%20Odobel"> Fabrice Odobel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The preparation of semiconductor oxide layers and structures by soft techniques is an important field of research. Higher performances are expected from the optimizing of the oxide films and then use of new methods of preparation for a better control of their chemical, morphological, electrical and optical properties. We present the preparation of NiO by electrodeposition from pure polar aprotic medium and mixtures with water. The effect of the solvent, of the electrochemical deposition parameters and post-deposition annealing treatment on the structural, morphological and optical properties of the films is investigated. We remarkably show that the solvent is inserted in the deposited layer and act as a blowing agent, giving rise to mesoporous films after elimination by thermal annealing. These layers of p-type oxide have been successfully used, after sensitization by a dye, in p-type dye-sensitized solar cells. The effects of the solvent on the layer properties and the application of these layers in p-type dye-sensitized solar cells are described. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=NiO" title="NiO">NiO</a>, <a href="https://publications.waset.org/abstracts/search?q=layer" title=" layer"> layer</a>, <a href="https://publications.waset.org/abstracts/search?q=p-type%20sensitized%20solar%20cells" title=" p-type sensitized solar cells"> p-type sensitized solar cells</a>, <a href="https://publications.waset.org/abstracts/search?q=electrodeposition" title=" electrodeposition"> electrodeposition</a> </p> <a href="https://publications.waset.org/abstracts/66597/electrodeposition-of-nio-films-from-organic-solvent-based-electrolytic-solutions-for-solar-cell-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66597.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">303</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">138</span> Template-Assisted Synthesis of IrO2 Nanopores Membrane Electrode Assembly</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhuo-Xin%20Lu">Zhuo-Xin Lu</a>, <a href="https://publications.waset.org/abstracts/search?q=Yan%20Shi"> Yan Shi</a>, <a href="https://publications.waset.org/abstracts/search?q=Chang-Feng%20Yan"> Chang-Feng Yan</a>, <a href="https://publications.waset.org/abstracts/search?q=Ying%20Huang"> Ying Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuan%20Gan"> Yuan Gan</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhi-Da%20Wang"> Zhi-Da Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With TiO2 nanotube arrays (TNTA) as template, a IrO2 nanopores membrane electrode assembly (MEA) was synthesized by a novel depositi-assemble-etch strategy. By analysing the morphology of IrO2/TNTA and cyclic voltammetry (CV) curve at different deposition cycles, we proposed a reasonable scheme for the process of IrO2 electrodeposition on TNTA. The current density of IrO2/TNTA at 1.5V vs RHE reaches 5.12mA/cm2 after 55 cycles deposition, which shows promising performance for its high OER activity after template removal. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrodeposition" title="electrodeposition">electrodeposition</a>, <a href="https://publications.waset.org/abstracts/search?q=IrO2%20nanopores" title=" IrO2 nanopores"> IrO2 nanopores</a>, <a href="https://publications.waset.org/abstracts/search?q=MEA" title=" MEA"> MEA</a>, <a href="https://publications.waset.org/abstracts/search?q=OER" title=" OER"> OER</a> </p> <a href="https://publications.waset.org/abstracts/46915/template-assisted-synthesis-of-iro2-nanopores-membrane-electrode-assembly" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46915.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">453</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">137</span> Investigation of Tribological Behavior of Electrodeposited Cr, Co-Cr and Co-Cr/Tio2 Nano-Composite Coatings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Mahdavi">S. Mahdavi</a>, <a href="https://publications.waset.org/abstracts/search?q=S.R.%20Allahkaram"> S.R. Allahkaram </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Electrodeposition is a simple and economic technique for precision coating of different shaped substrates with pure metal, alloy or composite films. Dc electrodeposition was used to produce Cr, Co-Cr and Co-Cr/TiO2 nano-composite coatings from Cr(III) based electrolytes onto 316L SS substrates. The effects of TiO2 nano-particles concentration on co-deposition of these particles along with Cr content and microhardness of the coatings were investigated. Morphology of the Cr, Co-Cr and Co-Cr/TiO2 coatings besides their tribological behavior were studied. The results showed that increment of TiO2 nano-particles concentration from 0 to 30 g L-1 in the bath increased their co-deposition and Cr content of the coatings from 0 to 3.5 wt.% and from 23.7 to 31.2 wt.%, respectively. Microhardness of Cr coating was about 920 Hv which was higher than Co-Cr and even Co-Cr/TiO2 films. Microhardness of Co-Cr and Co-Cr/TiO2 coatings were improved by increasing their Cr and TiO2 content. All the coatings had nodular morphology and contained microcracks. Nodules sizes and the number of microcracks in the alloy and composite coatings were lower than the Cr film. Wear results revealed that the Co-Cr/TiO2 coating had the lowest wear loss between all the samples, while the Cr film had the worst wear resistance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Co-Cr%20alloy" title="Co-Cr alloy">Co-Cr alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=electrodeposition" title=" electrodeposition"> electrodeposition</a>, <a href="https://publications.waset.org/abstracts/search?q=nano-composite" title=" nano-composite"> nano-composite</a>, <a href="https://publications.waset.org/abstracts/search?q=tribological%20behavior" title=" tribological behavior"> tribological behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=trivalent%20chromium" title=" trivalent chromium"> trivalent chromium</a> </p> <a href="https://publications.waset.org/abstracts/24529/investigation-of-tribological-behavior-of-electrodeposited-cr-co-cr-and-co-crtio2-nano-composite-coatings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24529.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">496</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">136</span> The Effectiveness of Close Interval Potential Surveys (CIP’s) on the Large Pre-stressed Concrete Cylinder Pipe with a Length of More Than 2000 KM Comparing with Other Techniques</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hussein%20S.%20Elkuwafi">Hussein S. Elkuwafi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Evaluation of cathodic protection systems using sacrificial zinc and magnesium electrodes is critical to ensuring the longevity and structural integrity of large reinforced concrete pipes spanning more than 2,000 km. This study focuses on evaluating these systems using near-interval potential survey (CIPS) techniques and over a 25-year installation period. Comparing these tests with international standards and assessing the extent to which these standards are met is crucial for ensuring the effectiveness and reliability of the cathodic protection system. This comparison allows for the identification of any discrepancies and ensures that the system adheres to globally recognized benchmarks, thereby enhancing the overall protection and longevity of the infrastructure. Cathodic protection is necessary to reduce corrosion, which poses a major threat to the durability of concrete pipes. Sacrificial zinc and magnesium electrodes are used due to their effectiveness in providing a protective layer against corrosive elements. Additionally, it is important to compare cases of pipe failures and their causes, particularly those not related to corrosion. Factors such as external loads, internal pressures, water velocity, clogging, ground movement, and extreme temperatures can all contribute to pipe failures. By understanding these non-corrosion-related causes, we can develop more comprehensive protection strategies and improve the overall resilience of the pipeline system. The CIPS method allows for precise monitoring of the protection levels along the extensive pipeline, identifying areas of potential vulnerability and ensuring uniform protection. The results indicate that the use of sacrificial electrodes significantly reduces the rate of corrosion, thereby extending the service life of the infrastructure. This evaluation underscores the importance of regular monitoring and maintenance of cathodic protection systems to prevent costly repairs and ensure the safe operation of critical infrastructure. The findings contribute to the optimization of cathodic protection strategies, enhancing the reliability and sustainability of large-scale pipeline projects. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cathodic%20protection" title="cathodic protection">cathodic protection</a>, <a href="https://publications.waset.org/abstracts/search?q=sacrificial%20anodes" title=" sacrificial anodes"> sacrificial anodes</a>, <a href="https://publications.waset.org/abstracts/search?q=reinforced%20concrete%20pipes" title=" reinforced concrete pipes"> reinforced concrete pipes</a>, <a href="https://publications.waset.org/abstracts/search?q=corrosion%20prevention" title=" corrosion prevention"> corrosion prevention</a> </p> <a href="https://publications.waset.org/abstracts/198339/the-effectiveness-of-close-interval-potential-surveys-cips-on-the-large-pre-stressed-concrete-cylinder-pipe-with-a-length-of-more-than-2000-km-comparing-with-other-techniques" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/198339.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">12</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">135</span> Deep Well Grounded Magnetite Anode Chains Retrieval and Installation for Raslanuf Complex Impressed Current Cathodic Protection System Rectification</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Ahmed%20Khali">Mohamed Ahmed Khali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Numbers of deep well anode ground beds (GBs) have been retrieved due to un operated anode chains. New identical magnetite anode chains(MAC) have been installed at Raslanuf complex impressed current Cathodic protection(ICCP) system, distributed at different plants(Utility, ethylene and polyethylene). All problems associated with retrieving and installation of MACs have been discussed, rectified and presented. All GB associated severely corroded wellhead casings were well maintained and/ or replaced by new fabricated and modified ones. The main cause of wellhead casings internal corrosion was discussed, and the conducted remedy action to overcome future corrosion problem is presented. All GB connected anode junction boxes (AJBs) and shunts were closely inspected, maintained, and necessary replacement/and or modification were carried out on shunts. All damaged GB concrete foundations (CF) have been inspected and completely replaced. All GB associated Transformer-Rectifiers units (TRUs) were subjected to through inspection, and necessary maintenance has been performed on each individual TRU. After completion of all MACs and TRU maintenance activities, each cathodic protection station (CPS) has been re-operated. An alternative current (AC), direct current (DC), voltage and structure to soil potential (S/P) measurements have been conducted, recorded, and all obtained test results are presented. DC current outputs has been adjusted, and DC current outputs of each MAC has been recorded for each GB AJB. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=magnatite%20anode" title="magnatite anode">magnatite anode</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20well" title=" deep well"> deep well</a>, <a href="https://publications.waset.org/abstracts/search?q=ground%20bed" title=" ground bed"> ground bed</a>, <a href="https://publications.waset.org/abstracts/search?q=cathodic%20protection" title=" cathodic protection"> cathodic protection</a>, <a href="https://publications.waset.org/abstracts/search?q=transformer%20rectifies" title=" transformer rectifies"> transformer rectifies</a>, <a href="https://publications.waset.org/abstracts/search?q=impreced%20current" title=" impreced current"> impreced current</a>, <a href="https://publications.waset.org/abstracts/search?q=junction%20box" title=" junction box"> junction box</a> </p> <a href="https://publications.waset.org/abstracts/165966/deep-well-grounded-magnetite-anode-chains-retrieval-and-installation-for-raslanuf-complex-impressed-current-cathodic-protection-system-rectification" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165966.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">121</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">134</span> Electrochemical Behavior and Cathodic Stripping Voltammetric Determination of Dianabol Steroid in Urine at Bare Glassy Carbon Paste Electrode</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Al-Orfi">N. Al-Orfi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20S.%20El-Shahawi"> M. S. El-Shahawi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20S.%20Bashammakh"> A. S. Bashammakh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The electrochemical response of glassy carbon electrode (GCE) for the sensitive and selective determination of dianabol steroid (DS) in phosphate, Britton-Robinson (B-R) and HEPES buffers of pH 2.0 - 11, 2.0 - 11 and 6.2 - 8.0, respectively using cyclic voltammetry (CV) and differential pulse- adsorptive cathodic stripping voltammetry (DP-CSV) at bare GCE was studied. The dependence of the CV response of the developed cathodic peak potential (Ep, c), peak current (ip, c) and the current function (ip, c / υ1/2) on the scan rate (υ) at the bare GCE revealed the occurrence of electrode coupled chemical reaction of EC type mechanism. The selectivity of the proposed method was assessed in the presence of high concentrations of major interfering species e.g. uric acid, ascorbic acid, citric acid, glucose, fructose, sucrose, starch and ions Na+, K+, PO4-3, NO3- and SO42-. The recovery of the method was not significant where t(critical)=2.20 > texp=1.81-1.93 at 95% confidence. The analytical application of the sensor for the quantification of DS in biological fluids as urine was investigated. The results were demonstrated as recovery percentages in the range 95±2.5-97±4.7% with relative standard deviation (RSD) of 0.5-1.5%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dianabol" title="dianabol">dianabol</a>, <a href="https://publications.waset.org/abstracts/search?q=determination" title=" determination"> determination</a>, <a href="https://publications.waset.org/abstracts/search?q=modified%20electrode" title=" modified electrode"> modified electrode</a>, <a href="https://publications.waset.org/abstracts/search?q=urine" title=" urine"> urine</a> </p> <a href="https://publications.waset.org/abstracts/43111/electrochemical-behavior-and-cathodic-stripping-voltammetric-determination-of-dianabol-steroid-in-urine-at-bare-glassy-carbon-paste-electrode" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43111.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">281</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">133</span> Electrodeposited Silver Nanostructures: A Non-Enzymatic Sensor for Hydrogen Peroxide </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mandana%20Amiri">Mandana Amiri</a>, <a href="https://publications.waset.org/abstracts/search?q=Sima%20Nouhi"> Sima Nouhi</a>, <a href="https://publications.waset.org/abstracts/search?q=Yashar%20Azizan-Kalandaragh"> Yashar Azizan-Kalandaragh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Silver nanostructures have been successfully fabricated by using electrodeposition method onto indium-tin-oxide (ITO) substrate. Scanning electron microscopy (SEM), electrochemical impedance spectroscopy (EIS) and ultraviolet-visible spectroscopy (UV-Vis) techniques were employed for characterization of silver nanostructures. The results show nanostructures with different morphology and electrochemical properties can be obtained by various the deposition potentials and times. Electrochemical behavior of the nanostructures has been studied by using cyclic voltammetry. Silver nanostructures exhibits good electrocatalytic activity towards the reduction of H<sub>2</sub>O<sub>2</sub>. The presented electrode can be employed as sensing element for hydrogen peroxide. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrochemical%20sensor" title="electrochemical sensor">electrochemical sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=electrodeposition" title=" electrodeposition"> electrodeposition</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogen%20peroxide" title=" hydrogen peroxide"> hydrogen peroxide</a>, <a href="https://publications.waset.org/abstracts/search?q=silver%20nanostructures" title=" silver nanostructures "> silver nanostructures </a> </p> <a href="https://publications.waset.org/abstracts/21938/electrodeposited-silver-nanostructures-a-non-enzymatic-sensor-for-hydrogen-peroxide" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21938.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">518</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">132</span> Establishment of Kinetic Zone Diagrams via Simulated Linear Sweep Voltammograms for Soluble-Insoluble Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Imene%20Atek">Imene Atek</a>, <a href="https://publications.waset.org/abstracts/search?q=Abed%20M.%20Affoune"> Abed M. Affoune</a>, <a href="https://publications.waset.org/abstracts/search?q=Hubert%20Girault"> Hubert Girault</a>, <a href="https://publications.waset.org/abstracts/search?q=Pekka%20Peljo"> Pekka Peljo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to the need for a rigorous mathematical&nbsp;model that can help to estimate kinetic properties for soluble-insoluble systems, through voltammetric experiments, a Nicholson Semi Analytical Approach was used in this work for modeling and prediction of theoretical linear sweep voltammetry responses for reversible, quasi reversible or irreversible electron transfer reactions. The redox system of interest is a one-step metal electrodeposition process. A rigorous analysis of simulated linear scan voltammetric responses following variation of dimensionless factors, the rate constant and charge transfer coefficients in a broad range was studied and presented in the form of the so called kinetic zones diagrams. These kinetic diagrams were divided into three kinetics zones. Interpreting these zones leads to empirical mathematical models which can allow the experimenter to determine electrodeposition reactions kinetics whatever the degree of reversibility. The validity of the obtained results was tested and an excellent experiment&ndash;theory agreement has been showed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrodeposition" title="electrodeposition">electrodeposition</a>, <a href="https://publications.waset.org/abstracts/search?q=kinetics%20diagrams" title=" kinetics diagrams"> kinetics diagrams</a>, <a href="https://publications.waset.org/abstracts/search?q=modeling" title=" modeling"> modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=voltammetry" title=" voltammetry"> voltammetry</a> </p> <a href="https://publications.waset.org/abstracts/120819/establishment-of-kinetic-zone-diagrams-via-simulated-linear-sweep-voltammograms-for-soluble-insoluble-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/120819.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">148</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">131</span> Deep Well-Grounded Magnetite Anode Chains Retrieval and Installation for Raslanuf Complex Impressed Current Cathodic Protection System Rectification</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Ahmed%20Khalil">Mohamed Ahmed Khalil</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The number of deep well anode ground beds (GBs) have been retrieved due to unoperated anode chains. New identical magnetite anode chains (MAC) have been installed at Raslanuf complex impressed current Cathodic protection (ICCP) system, distributed at different plants (Utility, ethylene and polyethylene). All problems associated with retrieving and installation of MACs have been discussed, rectified and presented. All GB-associated severely corroded wellhead casings were well maintained and/or replaced by new fabricated and modified ones. The main cause of the wellhead casing's severe internal corrosion was discussed and the conducted remedy action to overcome future corrosion problems is presented. All GB-connected anode junction boxes (AJBs) and shunts were closely inspected, maintained and necessary replacement and/or modifications were carried out on shunts. All damaged GB concrete foundations (CF) have been inspected and completely replaced. All GB-associated Transformer-Rectifiers Units (TRU) were subjected to thorough inspection and necessary maintenance was performed on each individual TRU. After completion of all MACs and TRU maintenance activities, each cathodic protection station (CPS) has been re-operated, alternative current (AC), direct current (DC), voltage and structure to soil potential (S/P) measurements have been conducted, recorded and all obtained test results are presented. DC current outputs have been adjusted and DC current outputs of each MAC have been recorded for each GB AJB. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=magnetite%20anodes" title="magnetite anodes">magnetite anodes</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20well" title=" deep well"> deep well</a>, <a href="https://publications.waset.org/abstracts/search?q=ground%20beds" title=" ground beds"> ground beds</a>, <a href="https://publications.waset.org/abstracts/search?q=cathodic%20protection" title=" cathodic protection"> cathodic protection</a>, <a href="https://publications.waset.org/abstracts/search?q=transformer%20rectifier" title=" transformer rectifier"> transformer rectifier</a>, <a href="https://publications.waset.org/abstracts/search?q=impressed%20current" title=" impressed current"> impressed current</a>, <a href="https://publications.waset.org/abstracts/search?q=junction%20boxes" title=" junction boxes"> junction boxes</a> </p> <a href="https://publications.waset.org/abstracts/165646/deep-well-grounded-magnetite-anode-chains-retrieval-and-installation-for-raslanuf-complex-impressed-current-cathodic-protection-system-rectification" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165646.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">130</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">130</span> The Effectiveness of Close Interval Potential Survey on the Larg Pre-Stressed Concrete Cylinder Pipe with a Length of More than 2000 KM Comparing with Other Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hussein%20S.%20Elkuwafi">Hussein S. Elkuwafi</a>, <a href="https://publications.waset.org/abstracts/search?q=Hassan%20Aljoroushi"> Hassan Aljoroushi</a>, <a href="https://publications.waset.org/abstracts/search?q=Sofuain%20Gesa"> Sofuain Gesa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Evaluation of cathodic protection systems using sacrificial zinc and magnesium electrodes is critical to ensuring the longevity and structural integrity of large reinforced concrete pipes spanning more than 2,000 km. This study focuses on evaluating these systems using near-interval potential survey (CIPS) techniques over a 25-year installation period. Comparing these tests with international standards and assessing the extent to which these standards are met is crucial for ensuring the effectiveness and reliability of the cathodic protection system. This comparison allows for the identification of any discrepancies and ensures that the system adheres to globally recognized benchmarks, thereby enhancing the overall protection and longevity of the infrastructure. Cathodic protection is necessary to reduce corrosion, which poses a major threat to the durability of concrete pipes. Sacrificial zinc and magnesium electrodes are used due to their effectiveness in providing a protective layer against corrosive elements. Additionally, it is important to compare cases of pipe failures and their causes, particularly those not related to corrosion. Factors such as external loads, internal pressures, water velocity, clogging, ground movement, and extreme temperatures can all contribute to pipe failures. By understanding these non-corrosion-related causes, we can develop more comprehensive protection strategies and improve the overall resilience of the pipeline system. The CIPS method allows for precise monitoring of the protection levels along the extensive pipeline, identifying areas of potential vulnerability and ensuring uniform protection. The results indicate that the use of sacrificial electrodes significantly reduces the rate of corrosion, thereby extending the service life of the infrastructure. This evaluation underscores the importance of regular monitoring and maintenance of cathodic protection systems to prevent costly repairs and ensure the safe operation of critical infrastructure. The findings contribute to the optimization of cathodic protection strategies, enhancing the reliability and sustainability of large-scale pipeline projects. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cathodic%20protection" title="cathodic protection">cathodic protection</a>, <a href="https://publications.waset.org/abstracts/search?q=sacrificial%20anodes" title=" sacrificial anodes"> sacrificial anodes</a>, <a href="https://publications.waset.org/abstracts/search?q=reinforced%20concrete%20pipes" title=" reinforced concrete pipes"> reinforced concrete pipes</a>, <a href="https://publications.waset.org/abstracts/search?q=corrosion%20prevention" title=" corrosion prevention"> corrosion prevention</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20integrity" title=" structural integrity"> structural integrity</a>, <a href="https://publications.waset.org/abstracts/search?q=longevity" title=" longevity"> longevity</a> </p> <a href="https://publications.waset.org/abstracts/198341/the-effectiveness-of-close-interval-potential-survey-on-the-larg-pre-stressed-concrete-cylinder-pipe-with-a-length-of-more-than-2000-km-comparing-with-other-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/198341.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">7</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">129</span> The Effectiveness of Close Interval Potential Survey on the Large Pre-Stressed Concrete Cylinder Pipe with a Length of More than 2000 km Comparing with Other Techniques</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hussein%20S.%20Elkuwafi">Hussein S. Elkuwafi</a>, <a href="https://publications.waset.org/abstracts/search?q=Hassan%20Gabaeli"> Hassan Gabaeli</a>, <a href="https://publications.waset.org/abstracts/search?q=Sofuain%20Gesa"> Sofuain Gesa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Evaluation of cathodic protection systems using sacrificial zinc and magnesium electrodes is critical to ensuring the longevity and structural integrity of large reinforced concrete pipes spanning more than 2,000 km. This study focuses on evaluating these systems using near-interval potential survey (CIPS) techniques over a 25-year installation period. Comparing these tests with international standards and assessing the extent to which these standards are met is crucial for ensuring the effectiveness and reliability of the cathodic protection system. This comparison allows for the identification of any discrepancies and ensures that the system adheres to globally recognized benchmarks, thereby enhancing the overall protection and longevity of the infrastructure. Cathodic protection is necessary to reduce corrosion, which poses a major threat to the durability of concrete pipes. Sacrificial zinc and magnesium electrodes are used due to their effectiveness in providing a protective layer against corrosive elements. Additionally, it is important to compare cases of pipe failures and their causes, particularly those not related to corrosion. Factors such as external loads, internal pressures, water velocity, clogging, ground movement, and extreme temperatures can all contribute to pipe failures. By understanding these non-corrosion-related causes, we can develop more comprehensive protection strategies and improve the overall resilience of the pipeline system. The CIPS method allows for precise monitoring of the protection levels along the extensive pipeline, identifying areas of potential vulnerability and ensuring uniform protection. The results indicate that the use of sacrificial electrodes significantly reduces the rate of corrosion, thereby extending the service life of the infrastructure. This evaluation underscores the importance of regular monitoring and maintenance of cathodic protection systems to prevent costly repairs and ensure the safe operation of critical infrastructure. The findings contribute to the optimization of cathodic protection strategies, enhancing the reliability and sustainability of large-scale pipeline projects. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cathodic%20protection" title="cathodic protection">cathodic protection</a>, <a href="https://publications.waset.org/abstracts/search?q=sacrificial%20anodes" title=" sacrificial anodes"> sacrificial anodes</a>, <a href="https://publications.waset.org/abstracts/search?q=reinforced%20concrete%20pipes" title=" reinforced concrete pipes"> reinforced concrete pipes</a>, <a href="https://publications.waset.org/abstracts/search?q=corrosion%20prevention" title=" corrosion prevention"> corrosion prevention</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20integrity" title=" structural integrity"> structural integrity</a>, <a href="https://publications.waset.org/abstracts/search?q=longevity" title=" longevity"> longevity</a> </p> <a href="https://publications.waset.org/abstracts/197532/the-effectiveness-of-close-interval-potential-survey-on-the-large-pre-stressed-concrete-cylinder-pipe-with-a-length-of-more-than-2000-km-comparing-with-other-techniques" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/197532.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">11</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">128</span> Application of Voltammetry as a Non-Destructive Tool to Quantify Cathodic Protection of Steel in Simulated Soil Solution</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mandlenkosi%20G.%20R.%20Mahlobo">Mandlenkosi G. R. Mahlobo</a>, <a href="https://publications.waset.org/abstracts/search?q=Peter%20A.%20Olubambi"> Peter A. Olubambi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cathodic protection (CP) has been widely considered as a suitable technique for mitigating corrosion of steel structures buried in soil. Plenty of efforts have been made in developing techniques, in particular non-destructive techniques, for monitoring and quantifying the effectiveness of CP to ensure the sustainability and performance of buried steel structures. This study was aimed at using a specifically modified voltammetry approach as a non-destructive tool to monitor and quantify the effectiveness of CP of steel in simulated soil. Carbon steel was subjected to electrochemical tests with NS4 solution used as simulated soil conditions for four days before applying CP for further 11 days. A specifically modified voltammetry technique was applied at various time intervals of the experiment to monitor the corrosion behaviour and therefore reflect CP effectiveness. The voltammetry results revealed that the application of CP reduced the corrosion rate from the highest value of 410 µm/yr to 8 µm/yr between days 5 and 14 of the experiments. The microstructural analysis of the steel surface performed using x-ray diffraction identified calcareous deposit as the dominant phase protecting the surface from corrosion. It was deduced that the formation of calcareous deposits was linked with the effectiveness of CP of steel. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20steel" title="carbon steel">carbon steel</a>, <a href="https://publications.waset.org/abstracts/search?q=cathodic%20protection" title=" cathodic protection"> cathodic protection</a>, <a href="https://publications.waset.org/abstracts/search?q=NS4%20solution" title=" NS4 solution"> NS4 solution</a>, <a href="https://publications.waset.org/abstracts/search?q=voltammetry" title=" voltammetry"> voltammetry</a>, <a href="https://publications.waset.org/abstracts/search?q=XRD" title=" XRD"> XRD</a> </p> <a href="https://publications.waset.org/abstracts/171321/application-of-voltammetry-as-a-non-destructive-tool-to-quantify-cathodic-protection-of-steel-in-simulated-soil-solution" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/171321.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">73</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cathodic%20electrodeposition&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cathodic%20electrodeposition&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cathodic%20electrodeposition&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cathodic%20electrodeposition&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cathodic%20electrodeposition&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cathodic%20electrodeposition&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2025 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10